NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1979-01-01
A time dependent numerical formulation was derived for sound propagation in a two dimensional straight soft-walled duct in the absence of mean flow. The time dependent governing acoustic-difference equations and boundary conditions were developed along with the maximum stable time increment. Example calculations were presented for sound attenuation in hard and soft wall ducts. The time dependent analysis were found to be superior to the conventional steady numerical analysis because of much shorter solution times and the elimination of matrix storage requirements.
NASA Astrophysics Data System (ADS)
Shaikhova, G.; Ozat, N.; Yesmakhanova, K.; Bekova, G.
2018-02-01
In this work, we present Lax pair for two-dimensional complex modified Korteweg-de Vries and Maxwell-Bloch (cmKdV-MB) system with the time-dependent coefficient. Dark and bright soliton solutions for the cmKdV-MB system with variable coefficient are received by Darboux transformation. Moreover, the determinant representation of the one-fold and two-fold Darboux transformation for the cmKdV-MB system with time-dependent coefficient is presented.
Harris, C.K.; Wiberg, P.L.
2001-01-01
A two-dimensional, time-dependent solution to the transport equation is formulated to account for advection and diffusion of sediment suspended in the bottom boundary layer of continental shelves. This model utilizes a semi-implicit, upwind-differencing scheme to solve the advection-diffusion equation across a two-dimensional transect that is configured so that one dimension is the vertical, and the other is a horizontal dimension usually aligned perpendicular to shelf bathymetry. The model calculates suspended sediment concentration and flux; and requires as input wave properties, current velocities, sediment size distributions, and hydrodynamic sediment properties. From the calculated two-dimensional suspended sediment fluxes, we quantify the redistribution of shelf sediment, bed erosion, and deposition for several sediment sizes during resuspension events. The two-dimensional, time-dependent approach directly accounts for cross-shelf gradients in bed shear stress and sediment properties, as well as transport that occurs before steady-state suspended sediment concentrations have been attained. By including the vertical dimension in the calculations, we avoid depth-averaging suspended sediment concentrations and fluxes, and directly account for differences in transport rates and directions for fine and coarse sediment in the bottom boundary layer. A flux condition is used as the bottom boundary condition for the transport equation in order to capture time-dependence of the suspended sediment field. Model calculations demonstrate the significance of both time-dependent and spatial terms on transport and depositional patterns on continental shelves. ?? 2001 Elsevier Science Ltd. All rights reserved.
Avalanches and plasticity for colloids in a time dependent optical trap
Olson Reichhardt, Cynthia Jane; McDermott, Danielle Marie; Reichhardt, Charles
2015-08-25
Here, with the use of optical traps it is possible to confine assemblies of colloidal particles in two-dimensional and quasi-one-dimensional arrays. Here we examine how colloidal particles rearrange in a quasi-one-dimensional trap with a time dependent confining potential. The particle motion occurs both through slow elastic uniaxial distortions as well as through abrupt large-scale two-dimensional avalanches associated with plastic rearrangements. During the avalanches the particle velocity distributions extend over a broad range and can be fit to a power law consistent with other studies of plastic events mediated by dislocations.
NASA Astrophysics Data System (ADS)
Fring, Andreas; Frith, Thomas
2018-06-01
We provide exact analytical solutions for a two-dimensional explicitly time-dependent non-Hermitian quantum system. While the time-independent variant of the model studied is in the broken PT-symmetric phase for the entire range of the model parameters, and has therefore a partially complex energy eigenspectrum, its time-dependent version has real energy expectation values at all times. In our solution procedure we compare the two equivalent approaches of directly solving the time-dependent Dyson equation with one employing the Lewis–Riesenfeld method of invariants. We conclude that the latter approach simplifies the solution procedure due to the fact that the invariants of the non-Hermitian and Hermitian system are related to each other in a pseudo-Hermitian fashion, which in turn does not hold for their corresponding time-dependent Hamiltonians. Thus constructing invariants and subsequently using the pseudo-Hermiticity relation between them allows to compute the Dyson map and to solve the Dyson equation indirectly. In this way one can bypass to solve nonlinear differential equations, such as the dissipative Ermakov–Pinney equation emerging in our and many other systems.
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1991-01-01
An algorithm is presented for unsteady two-dimensional incompressible Navier-Stokes calculations. This algorithm is based on the fourth order partial differential equation for incompressible fluid flow which uses the streamfunction as the only dependent variable. The algorithm is second order accurate in both time and space. It uses a multigrid solver at each time step. It is extremely efficient with respect to the use of both CPU time and physical memory. It is extremely robust with respect to Reynolds number.
Multi-Dimensional, Non-Pyrolyzing Ablation Test Problems
NASA Technical Reports Server (NTRS)
Risch, Tim; Kostyk, Chris
2016-01-01
Non-pyrolyzingcarbonaceous materials represent a class of candidate material for hypersonic vehicle components providing both structural and thermal protection system capabilities. Two problems relevant to this technology are presented. The first considers the one-dimensional ablation of a carbon material subject to convective heating. The second considers two-dimensional conduction in a rectangular block subject to radiative heating. Surface thermochemistry for both problems includes finite-rate surface kinetics at low temperatures, diffusion limited ablation at intermediate temperatures, and vaporization at high temperatures. The first problem requires the solution of both the steady-state thermal profile with respect to the ablating surface and the transient thermal history for a one-dimensional ablating planar slab with temperature-dependent material properties. The slab front face is convectively heated and also reradiates to a room temperature environment. The back face is adiabatic. The steady-state temperature profile and steady-state mass loss rate should be predicted. Time-dependent front and back face temperature, surface recession and recession rate along with the final temperature profile should be predicted for the time-dependent solution. The second problem requires the solution for the transient temperature history for an ablating, two-dimensional rectangular solid with anisotropic, temperature-dependent thermal properties. The front face is radiatively heated, convectively cooled, and also reradiates to a room temperature environment. The back face and sidewalls are adiabatic. The solution should include the following 9 items: final surface recession profile, time-dependent temperature history of both the front face and back face at both the centerline and sidewall, as well as the time-dependent surface recession and recession rate on the front face at both the centerline and sidewall. The results of the problems from all submitters will be collected, summarized, and presented at a later conference.
3D visualization of unsteady 2D airplane wake vortices
NASA Technical Reports Server (NTRS)
Ma, Kwan-Liu; Zheng, Z. C.
1994-01-01
Air flowing around the wing tips of an airplane forms horizontal tornado-like vortices that can be dangerous to following aircraft. The dynamics of such vortices, including ground and atmospheric effects, can be predicted by numerical simulation, allowing the safety and capacity of airports to be improved. In this paper, we introduce three-dimensional techniques for visualizing time-dependent, two-dimensional wake vortex computations, and the hazard strength of such vortices near the ground. We describe a vortex core tracing algorithm and a local tiling method to visualize the vortex evolution. The tiling method converts time-dependent, two-dimensional vortex cores into three-dimensional vortex tubes. Finally, a novel approach calculates the induced rolling moment on the following airplane at each grid point within a region near the vortex tubes and thus allows three-dimensional visualization of the hazard strength of the vortices. We also suggest ways of combining multiple visualization methods to present more information simultaneously.
NASA Astrophysics Data System (ADS)
Titze, Michael; Li, Bo; Zhang, Xiang; Ajayan, Pulickel M.; Li, Hebin
2018-05-01
Quantum coherence and its dynamics in monolayer transition metal dichalcogenides (TMDs) are essential information to fully control valley pseudospin for valleytronics applications. Experimental understanding of coherence dephasing dynamics has been limited for excitons and largely unexplored for trions in monolayer TMDs. Here we use optical two-dimensional coherent spectroscopy to measure the trion coherence dephasing time in monolayer MoSe2 by analyzing the homogeneous linewidth. An intrinsic coherence time of 182 fs is extrapolated from the excitation density and temperature dependence measurement. The results show that trion-trion and trion-phonon interactions strongly affect the coherence dephasing time, while the intrinsic coherence time at zero excitation and zero temperature is primarily limited by the pure dephasing due to defect states. Our experiment also confirms optical two-dimensional coherent spectroscopy as a reliable technique for studying valley quantum dynamics in two-dimensional layered materials.
Mixing Regimes in a Spatially Confined, Two-Dimensional, Supersonic Shear Layer
1992-07-31
MODEL ................................... 3 THE MODEL PROBLEMS .............................................. 6 THE ONE-DIMENSIONAL PROBLEM...the effects of the numerical diffusion on the spectrum. Guirguis et al.ś and Farouk et al."’ have studied spatially evolving mixing layers for equal...approximations. Physical and Numerical Model General Formulation We solve the time-dependent, two-dimensional, compressible, Navier-Stokes equations for a
NASA Astrophysics Data System (ADS)
Posnansky, Oleg P.
2018-05-01
The measuring of dynamic magnetic susceptibility by nuclear magnetic resonance is used for revealing information about the internal structure of various magnetoactive composites. The response of such material on the applied external static and time-varying magnetic fields encodes intrinsic dynamic correlations and depends on links between macroscopic effective susceptibility and structure on the microscopic scale. In the current work we carried out computational analysis of the frequency dependent dynamic magnetic susceptibility and demonstrated its dependence on the microscopic architectural elements while also considering Euclidean dimensionality. The proposed numerical method is efficient in the simulation of nuclear magnetic resonance experiments in two- and three-dimensional random magnetic media by choosing and modeling the influence of the concentration of components and internal hierarchical characteristics of physical parameters.
NASA Astrophysics Data System (ADS)
Fu, Yuan; Zhang, Da-peng; Xie, Xi-lin
2018-04-01
In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.
NASA Astrophysics Data System (ADS)
Fu, Yuan; Zhang, Da-peng; Xie, Xi-lin
2018-03-01
In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.
A two-dimensional kinematic dynamo model of the ionospheric magnetic field at Venus
NASA Technical Reports Server (NTRS)
Cravens, T. E.; Wu, D.; Shinagawa, H.
1990-01-01
The results of a high-resolution, two-dimensional, time dependent, kinematic dynamo model of the ionospheric magnetic field of Venus are presented. Various one-dimensional models are considered and the two-dimensional model is then detailed. In this model, the two-dimensional magnetic induction equation, the magnetic diffusion-convection equation, is numerically solved using specified plasma velocities. Origins of the vertical velocity profile and of the horizontal velocities are discussed. It is argued that the basic features of the vertical magnetic field profile remain unaltered by horizontal flow effects and also that horizontal plasma flow can strongly affect the magnetic field for altitudes above 300 km.
Fundamental differences between glassy dynamics in two and three dimensions.
Flenner, Elijah; Szamel, Grzegorz
2015-06-12
The two-dimensional freezing transition is very different from its three-dimensional counterpart. In contrast, the glass transition is usually assumed to have similar characteristics in two and three dimensions. Using computer simulations, here we show that glassy dynamics in supercooled two- and three-dimensional fluids are fundamentally different. Specifically, transient localization of particles on approaching the glass transition is absent in two dimensions, whereas it is very pronounced in three dimensions. Moreover, the temperature dependence of the relaxation time of orientational correlations is decoupled from that of the translational relaxation time in two dimensions but not in three dimensions. Last, the relationships between the characteristic size of dynamically heterogeneous regions and the relaxation time are very different in two and three dimensions. These results strongly suggest that the glass transition in two dimensions is different than in three dimensions.
NASA Astrophysics Data System (ADS)
Vasilyev, V.; Ludwig, H.-G.; Freytag, B.; Lemasle, B.; Marconi, M.
2017-10-01
Context. Standard spectroscopic analyses of Cepheid variables are based on hydrostatic one-dimensional model atmospheres, with convection treated using various formulations of mixing-length theory. Aims: This paper aims to carry out an investigation of the validity of the quasi-static approximation in the context of pulsating stars. We check the adequacy of a two-dimensional time-dependent model of a Cepheid-like variable with focus on its spectroscopic properties. Methods: With the radiation-hydrodynamics code CO5BOLD, we construct a two-dimensional time-dependent envelope model of a Cepheid with Teff = 5600 K, log g = 2.0, solar metallicity, and a 2.8-day pulsation period. Subsequently, we perform extensive spectral syntheses of a set of artificial iron lines in local thermodynamic equilibrium. The set of lines allows us to systematically study effects of line strength, ionization stage, and excitation potential. Results: We evaluate the microturbulent velocity, line asymmetry, projection factor, and Doppler shifts. The microturbulent velocity, averaged over all lines, depends on the pulsational phase and varies between 1.5 and 2.7 km s-1. The derived projection factor lies between 1.23 and 1.27, which agrees with observational results. The mean Doppler shift is non-zero and negative, -1 km s-1, after averaging over several full periods and lines. This residual line-of-sight velocity (related to the "K-term") is primarily caused by horizontal inhomogeneities, and consequently we interpret it as the familiar convective blueshift ubiquitously present in non-pulsating late-type stars. Limited statistics prevent firm conclusions on the line asymmetries. Conclusions: Our two-dimensional model provides a reasonably accurate representation of the spectroscopic properties of a short-period Cepheid-like variable star. Some properties are primarily controlled by convective inhomogeneities rather than by the Cepheid-defining pulsations. Extended multi-dimensional modelling offers new insight into the nature of pulsating stars.
NASA Astrophysics Data System (ADS)
Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung
2015-04-01
Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.
Approximation and Numerical Analysis of Nonlinear Equations of Evolution.
1980-01-31
dominant convective terms, or Stefan type problems such as the flow of fluids through porous media or the melting and freezing of ice. Such problems...means of formulating time-dependent Stefan problems was initiated. Classes of problems considered here include the one-phase and two-phase Stefan ...some new numerical methods were 2 developed for two dimensional, two-phase Stefan problems with time dependent boundary conditions. A variety of example
Solving time-dependent two-dimensional eddy current problems
NASA Technical Reports Server (NTRS)
Lee, Min Eig; Hariharan, S. I.; Ida, Nathan
1990-01-01
Transient eddy current calculations are presented for an EM wave-scattering and field-penetrating case in which a two-dimensional transverse magnetic field is incident on a good (i.e., not perfect) and infinitely long conductor. The problem thus posed is of initial boundary-value interface type, where the boundary of the conductor constitutes the interface. A potential function is used for time-domain modeling of the situation, and finite difference-time domain techniques are used to march the potential function explicitly in time. Attention is given to the case of LF radiation conditions.
Fundamental differences between glassy dynamics in two and three dimensions
Flenner, Elijah; Szamel, Grzegorz
2015-01-01
The two-dimensional freezing transition is very different from its three-dimensional counterpart. In contrast, the glass transition is usually assumed to have similar characteristics in two and three dimensions. Using computer simulations, here we show that glassy dynamics in supercooled two- and three-dimensional fluids are fundamentally different. Specifically, transient localization of particles on approaching the glass transition is absent in two dimensions, whereas it is very pronounced in three dimensions. Moreover, the temperature dependence of the relaxation time of orientational correlations is decoupled from that of the translational relaxation time in two dimensions but not in three dimensions. Last, the relationships between the characteristic size of dynamically heterogeneous regions and the relaxation time are very different in two and three dimensions. These results strongly suggest that the glass transition in two dimensions is different than in three dimensions. PMID:26067877
Holocinematographic velocimeter for measuring time-dependent, three-dimensional flows
NASA Technical Reports Server (NTRS)
Beeler, George B.; Weinstein, Leonard M.
1987-01-01
Two simulatneous, orthogonal-axis holographic movies are made of tracer particles in a low-speed water tunnel to determine the time-dependent, three-dimensional velocity field. This instrument is called a Holocinematographic Velocimeter (HCV). The holographic movies are reduced to the velocity field with an automatic data reduction system. This permits the reduction of large numbers of holograms (time steps) in a reasonable amount of time. The current version of the HCV, built for proof-of-concept tests, uses low-frame rate holographic cameras and a prototype of a new type of water tunnel. This water tunnel is a unique low-disturbance facility which has minimal wall effects on the flow. This paper presents the first flow field examined by the HCV, the two-dimensional von Karman vortex street downstream of an unswept circular cylinder. Key factors in the HCV are flow speed, spatial and temporal resolution required, measurement volume, film transport speed, and laser pulse length. The interactions between these factors are discussed.
NASA Astrophysics Data System (ADS)
Bukhenskyy, K. V.; Dubois, A. B.; Kucheryavyy, S. I.; Mashnina, S. N.; Safoshkin, A. S.; Baukov, A. A.; Shchigorev, E. Yu
2017-12-01
The article discusses the joint solution of the Schrödinger and Poisson equations for two-dimensional semiconductor heterojunction. The application of a triangular potential of well approximation for the calculation of the electron-electron interaction is offered in the paper. The influence of the parameters of the selected approximation was analyzed.
NASA Astrophysics Data System (ADS)
Ono, Junichi; Takada, Shoji; Saito, Shinji
2015-06-01
An analytical method based on a three-time correlation function and the corresponding two-dimensional (2D) lifetime spectrum is developed to elucidate the time-dependent couplings between the multi-timescale (i.e., hierarchical) conformational dynamics in heterogeneous systems such as proteins. In analogy with 2D NMR, IR, electronic, and fluorescence spectroscopies, the waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra can provide a quantitative description of the dynamical correlations between the conformational motions with different lifetimes. The present method is applied to intrinsic conformational changes of substrate-free adenylate kinase (AKE) using long-time coarse-grained molecular dynamics simulations. It is found that the hierarchical conformational dynamics arise from the intra-domain structural transitions among conformational substates of AKE by analyzing the one-time correlation functions and one-dimensional lifetime spectra for the donor-acceptor distances corresponding to single-molecule Förster resonance energy transfer experiments with the use of the principal component analysis. In addition, the complicated waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra for the donor-acceptor distances is attributed to the fact that the time evolution of the couplings between the conformational dynamics depends upon both the spatial and temporal characters of the system. The present method is expected to shed light on the biological relationship among the structure, dynamics, and function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, Junichi; Takada, Shoji; Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502
2015-06-07
An analytical method based on a three-time correlation function and the corresponding two-dimensional (2D) lifetime spectrum is developed to elucidate the time-dependent couplings between the multi-timescale (i.e., hierarchical) conformational dynamics in heterogeneous systems such as proteins. In analogy with 2D NMR, IR, electronic, and fluorescence spectroscopies, the waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra can provide a quantitative description of the dynamical correlations between the conformational motions with different lifetimes. The present method is applied to intrinsic conformational changes of substrate-free adenylate kinase (AKE) using long-time coarse-grained molecular dynamics simulations. It is found that the hierarchicalmore » conformational dynamics arise from the intra-domain structural transitions among conformational substates of AKE by analyzing the one-time correlation functions and one-dimensional lifetime spectra for the donor-acceptor distances corresponding to single-molecule Förster resonance energy transfer experiments with the use of the principal component analysis. In addition, the complicated waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra for the donor-acceptor distances is attributed to the fact that the time evolution of the couplings between the conformational dynamics depends upon both the spatial and temporal characters of the system. The present method is expected to shed light on the biological relationship among the structure, dynamics, and function.« less
Information transport in classical statistical systems
NASA Astrophysics Data System (ADS)
Wetterich, C.
2018-02-01
For "static memory materials" the bulk properties depend on boundary conditions. Such materials can be realized by classical statistical systems which admit no unique equilibrium state. We describe the propagation of information from the boundary to the bulk by classical wave functions. The dependence of wave functions on the location of hypersurfaces in the bulk is governed by a linear evolution equation that can be viewed as a generalized Schrödinger equation. Classical wave functions obey the superposition principle, with local probabilities realized as bilinears of wave functions. For static memory materials the evolution within a subsector is unitary, as characteristic for the time evolution in quantum mechanics. The space-dependence in static memory materials can be used as an analogue representation of the time evolution in quantum mechanics - such materials are "quantum simulators". For example, an asymmetric Ising model on a Euclidean two-dimensional lattice represents the time evolution of free relativistic fermions in two-dimensional Minkowski space.
Plasmon mass scale in two-dimensional classical nonequilibrium gauge theory
NASA Astrophysics Data System (ADS)
Lappi, T.; Peuron, J.
2018-02-01
We study the plasmon mass scale in classical gluodynamics in a two-dimensional configuration that mimics the boost-invariant initial color fields in a heavy-ion collision. We numerically measure the plasmon mass scale using three different methods: a hard thermal loop (HTL) expression involving the quasiparticle spectrum constructed from Coulomb gauge field correlators, an effective dispersion relation, and the measurement of oscillations between electric and magnetic energies after introducing a spatially uniform perturbation to the electric field. We find that the HTL expression and the uniform electric field measurement are in rough agreement. The effective dispersion relation agrees with other methods within a factor of 2. We also study the dependence on time and occupation number, observing similar trends as in three spatial dimensions, where a power-law dependence sets in after an occupation-number-dependent transient time. We observe a decrease of the plasmon mass squared as t-1 / 3 at late times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibarra-Sierra, V.G.; Sandoval-Santana, J.C.; Cardoso, J.L.
We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra ismore » later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai–Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators. -- Highlights: •We deal with the general quadratic Hamiltonian and a particle in electromagnetic fields. •The evolution operator is worked out through the Lie algebraic approach. •We also obtain the propagator and Heisenberg picture position and momentum operators. •Analytical expressions for a rotating quadrupole field ion trap are presented. •Exact solutions for magneto-transport in variable electromagnetic fields are shown.« less
Multigrid for hypersonic viscous two- and three-dimensional flows
NASA Technical Reports Server (NTRS)
Turkel, E.; Swanson, R. C.; Vatsa, V. N.; White, J. A.
1991-01-01
The use of a multigrid method with central differencing to solve the Navier-Stokes equations for hypersonic flows is considered. The time dependent form of the equations is integrated with an explicit Runge-Kutta scheme accelerated by local time stepping and implicit residual smoothing. Variable coefficients are developed for the implicit process that removes the diffusion limit on the time step, producing significant improvement in convergence. A numerical dissipation formulation that provides good shock capturing capability for hypersonic flows is presented. This formulation is shown to be a crucial aspect of the multigrid method. Solutions are given for two-dimensional viscous flow over a NACA 0012 airfoil and three-dimensional flow over a blunt biconic.
Wang, Ping; Zhou, Ye; MacLaren, Stephan A.; ...
2015-11-06
Three- and two-dimensional numerical studies have been carried out to simulate recent counter-propagating shear flow experiments on the National Ignition Facility. A multi-physics three-dimensional, time-dependent radiation hydrodynamics simulation code is used. Using a Reynolds Averaging Navier-Stokes model, we show that the evolution of the mixing layer width obtained from the simulations agrees well with that measured from the experiments. A sensitivity study is conducted to illustrate a 3D geometrical effect that could confuse the measurement at late times, if the energy drives from the two ends of the shock tube are asymmetric. Implications for future experiments are discussed.
Anisotropic dielectric properties of two-dimensional matrix in pseudo-spin ferroelectric system
NASA Astrophysics Data System (ADS)
Kim, Se-Hun
2016-10-01
The anisotropic dielectric properties of a two-dimensional (2D) ferroelectric system were studied using the statistical calculation of the pseudo-spin Ising Hamiltonian model. It is necessary to delay the time for measurements of the observable and the independence of the new spin configuration under Monte Carlo sampling, in which the thermal equilibrium state depends on the temperature and size of the system. The autocorrelation time constants of the normalized relaxation function were determined by taking temperature and 2D lattice size into account. We discuss the dielectric constants of a two-dimensional ferroelectric system by using the Metropolis method in view of the Slater-Takagi defect energies.
NASA Astrophysics Data System (ADS)
Ernazarov, K. K.
2017-12-01
We consider a (m + 2)-dimensional Einstein-Gauss-Bonnet (EGB) model with the cosmological Λ-term. We restrict the metrics to be diagonal ones and find for certain Λ = Λ(m) class of cosmological solutions with non-exponential time dependence of two scale factors of dimensions m > 2 and 1. Any solution from this class describes an accelerated expansion of m-dimensional subspace and tends asymptotically to isotropic solution with exponential dependence of scale factors.
Anisotropic Defect-Mediated Melting of Two-Dimensional Colloidal Crystals
NASA Astrophysics Data System (ADS)
Eisenmann, C.; Gasser, U.; Keim, P.; Maret, G.
2004-09-01
The melting transition of anisotropic two-dimensional (2D) crystals is studied in a model system of superparamagnetic colloids. The anisotropy of the induced dipole-dipole interaction is varied by tilting the external magnetic field off the normal to the particle plane. By analyzing the time-dependent Lindemann parameter as well as translational and orientational order we observe a 2D smecticlike phase. The Kosterlitz-Thouless-Halperin-Nelson-Young scenario of isotropic melting is modified: dislocation pairs and dislocations appear with different probabilities depending on their orientation with respect to the in-plane field.
NASA Astrophysics Data System (ADS)
Stökl, A.
2008-11-01
Context: In spite of all the advances in multi-dimensional hydrodynamics, investigations of stellar evolution and stellar pulsations still depend on one-dimensional computations. This paper devises an alternative to the mixing-length theory or turbulence models usually adopted in modelling convective transport in such studies. Aims: The present work attempts to develop a time-dependent description of convection, which reflects the essential physics of convection and that is only moderately dependent on numerical parameters and far less time consuming than existing multi-dimensional hydrodynamics computations. Methods: Assuming that the most extensive convective patterns generate the majority of convective transport, the convective velocity field is described using two parallel, radial columns to represent up- and downstream flows. Horizontal exchange, in the form of fluid flow and radiation, over their connecting interface couples the two columns and allows a simple circulating motion. The main parameters of this convective description have straightforward geometrical meanings, namely the diameter of the columns (corresponding to the size of the convective cells) and the ratio of the cross-section between up- and downdrafts. For this geometrical setup, the time-dependent solution of the equations of radiation hydrodynamics is computed from an implicit scheme that has the advantage of being unaffected by the Courant-Friedrichs-Lewy time-step limit. This implementation is part of the TAPIR-Code (short for The adaptive, implicit RHD-Code). Results: To demonstrate the approach, results for convection zones in Cepheids are presented. The convective energy transport and convective velocities agree with expectations for Cepheids and the scheme reproduces both the kinetic energy flux and convective overshoot. A study of the parameter influence shows that the type of solution derived for these stars is in fact fairly robust with respect to the constitutive numerical parameters.
NASA Astrophysics Data System (ADS)
Schneider, Kai; Kadoch, Benjamin; Bos, Wouter
2017-11-01
The angle between two subsequent particle displacement increments is evaluated as a function of the time lag. The directional change of particles can thus be quantified at different scales and multiscale statistics can be performed. Flow dependent and geometry dependent features can be distinguished. The mean angle satisfies scaling behaviors for short time lags based on the smoothness of the trajectories. For intermediate time lags a power law behavior can be observed for some turbulent flows, which can be related to Kolmogorov scaling. The long time behavior depends on the confinement geometry of the flow. We show that the shape of the probability distribution function of the directional change can be well described by a Fischer distribution. Results for two-dimensional (direct and inverse cascade) and three-dimensional turbulence with and without confinement, illustrate the properties of the proposed multiscale statistics. The presented Monte-Carlo simulations allow disentangling geometry dependent and flow independent features. Finally, we also analyze trajectories of football players, which are, in general, not randomly spaced on a field.
Two-dimensional time-dependent modelling of fume formation in a pulsed gas metal arc welding process
NASA Astrophysics Data System (ADS)
Boselli, M.; Colombo, V.; Ghedini, E.; Gherardi, M.; Sanibondi, P.
2013-06-01
Fume formation in a pulsed gas metal arc welding (GMAW) process is investigated by coupling a time-dependent axi-symmetric two-dimensional model, which takes into account both droplet detachment and production of metal vapour, with a model for fume formation and transport based on the method of moments for the solution of the aerosol general dynamic equation. We report simulative results of a pulsed process (peak current = 350 A, background current 30 A, period = 9 ms) for a 1 mm diameter iron wire, with Ar shielding gas. Results showed that metal vapour production occurs mainly at the wire tip, whereas fume formation is concentrated in the fringes of the arc in the spatial region close to the workpiece, where metal vapours are transported by convection. The proposed modelling approach allows time-dependent tracking of fumes also in plasma processes where temperature-time variations occur faster than nanoparticle transport from the nucleation region to the surrounding atmosphere, as is the case for most pulsed GMAW processes.
1984-07-01
piecewise constant energy dependence. This is a seven-dimensional problem with time dependence, three spatial and two angular or directional variables and...in extending the computer implementation of the method to time and energy dependent problems, and to solving and validating this technique on a...problems they have severe limitations. The Monte Carlo method, usually requires the use of many hours of expensive computer time , and for deep
Nonlinear stability of Taylor's vortex array
NASA Technical Reports Server (NTRS)
Lin, S. P.; Tobak, M.
1987-01-01
It is proved that the two-dimensional Taylor vortex array, which is an exact unsteady solution of the Navier-Stokes equation, is globally and asymptotically stable in the mean with respect to three-dimensional periodic disturbances. A time-dependent bound on the decay rate of the kinetic energy of disturbances is obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Xuedan; Diroll, Benjamin T.; Cho, Wooje
Quasi-two-dimensional nanoplatelets (NPLs) possess fundamentally different excitonic properties from zero-dimensional quantum dots. We study lateral size-dependent photon emission statistics and carrier dynamics of individual NPLs using second-order photon correlation (g( 2)(τ)) spectroscopy and photoluminescence (PL) intensity-dependent lifetime analysis. Room-temperature radiative lifetimes of NPLs can be derived from maximum PL intensity periods in PL time traces. It first decreases with NPL lateral size and then stays constant, deviating from the electric dipole approximation. Analysis of the PL time traces further reveals that the single exciton quantum yield in NPLs decreases with NPL lateral size and increases with protecting shell thickness, indicatingmore » the importance of surface passivation on NPL emission quality. Second-order photon correlation (g( 2)(τ)) studies of single NPLs show that the biexciton quantum yield is strongly dependent on the lateral size and single exciton quantum yield of the NPLs. In large NPLs with unity single exciton quantum yield, the corresponding biexciton quantum yield can reach unity. In conclusion, these findings reveal that by careful growth control and core–shell material engineering, NPLs can be of great potential for light amplification and integrated quantum photonic applications.« less
Ma, Xuedan; Diroll, Benjamin T.; Cho, Wooje; ...
2017-08-08
Quasi-two-dimensional nanoplatelets (NPLs) possess fundamentally different excitonic properties from zero-dimensional quantum dots. We study lateral size-dependent photon emission statistics and carrier dynamics of individual NPLs using second-order photon correlation (g( 2)(τ)) spectroscopy and photoluminescence (PL) intensity-dependent lifetime analysis. Room-temperature radiative lifetimes of NPLs can be derived from maximum PL intensity periods in PL time traces. It first decreases with NPL lateral size and then stays constant, deviating from the electric dipole approximation. Analysis of the PL time traces further reveals that the single exciton quantum yield in NPLs decreases with NPL lateral size and increases with protecting shell thickness, indicatingmore » the importance of surface passivation on NPL emission quality. Second-order photon correlation (g( 2)(τ)) studies of single NPLs show that the biexciton quantum yield is strongly dependent on the lateral size and single exciton quantum yield of the NPLs. In large NPLs with unity single exciton quantum yield, the corresponding biexciton quantum yield can reach unity. In conclusion, these findings reveal that by careful growth control and core–shell material engineering, NPLs can be of great potential for light amplification and integrated quantum photonic applications.« less
Double ionization of neon in elliptically polarized femtosecond laser fields
NASA Astrophysics Data System (ADS)
Kang, HuiPeng; Henrichs, Kevin; Wang, YanLan; Hao, XiaoLei; Eckart, Sebastian; Kunitski, Maksim; Schöffler, Markus; Jahnke, Till; Liu, XiaoJun; Dörner, Reinhard
2018-06-01
We present a joint experimental and theoretical investigation of the correlated electron momentum spectra from strong-field double ionization of neon induced by elliptically polarized laser pulses. A significant asymmetry of the electron momentum distributions along the major polarization axis is reported. This asymmetry depends sensitively on the laser ellipticity. Using a three-dimensional semiclassical model, we attribute this asymmetry pattern to the ellipticity-dependent probability distributions of recollision time. Our work demonstrates that, by simply varying the ellipticity, the correlated electron emission can be two-dimensionally controlled and the recolliding electron trajectories can be steered on a subcycle time scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Rui, E-mail: rzhu@scut.edu.cn; Dai, Jiao-Hua; Guo, Yong
Interference between different quantum paths can generate Fano resonance. One of the examples is transport through a quasibound state driven by a time-dependent scattering potential. Previously it is found that Fano resonance occurs as a result of energy matching in one-dimensional systems. In this work, we demonstrate that when transverse motion is present, Fano resonance occurs precisely at the wavevector matching situation. Using the Floquet scattering theory, we considered the transport properties of a nonadiabatic time-dependent well both in a two-dimensional electron gas and monolayer graphene structure. Dispersion of the quasibound state of a static quantum well is obtained withmore » transverse motion present. We found that Fano resonance occurs when the wavevector in the transport direction of one of the Floquet sidebands is exactly identical to that of the quasibound state in the well at equilibrium and follows the dispersion pattern of the latter. To observe the Fano resonance phenomenon in the transmission spectrum, we also considered the pumped shot noise properties when time and spatial symmetry secures vanishing current in the considered configuration. Prominent Fano resonance is found in the differential pumped shot noise with respect to the reservoir Fermi energy.« less
Limitations to the use of two-dimensional thermal modeling of a nuclear waste repository
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, B.W.
1979-01-04
Thermal modeling of a nuclear waste repository is basic to most waste management predictive models. It is important that the modeling techniques accurately determine the time-dependent temperature distribution of the waste emplacement media. Recent modeling studies show that the time-dependent temperature distribution can be accurately modeled in the far-field using a 2-dimensional (2-D) planar numerical model; however, the near-field cannot be modeled accurately enough by either 2-D axisymmetric or 2-D planar numerical models for repositories in salt. The accuracy limits of 2-D modeling were defined by comparing results from 3-dimensional (3-D) TRUMP modeling with results from both 2-D axisymmetric andmore » 2-D planar. Both TRUMP and ADINAT were employed as modeling tools. Two-dimensional results from the finite element code, ADINAT were compared with 2-D results from the finite difference code, TRUMP; they showed almost perfect correspondence in the far-field. This result adds substantially to confidence in future use of ADINAT and its companion stress code ADINA for thermal stress analysis. ADINAT was found to be somewhat sensitive to time step and mesh aspect ratio. 13 figures, 4 tables.« less
Lee, Jonathan K.; Froehlich, David C.
1987-01-01
Published literature on the application of the finite-element method to solving the equations of two-dimensional surface-water flow in the horizontal plane is reviewed in this report. The finite-element method is ideally suited to modeling two-dimensional flow over complex topography with spatially variable resistance. A two-dimensional finite-element surface-water flow model with depth and vertically averaged velocity components as dependent variables allows the user great flexibility in defining geometric features such as the boundaries of a water body, channels, islands, dikes, and embankments. The following topics are reviewed in this report: alternative formulations of the equations of two-dimensional surface-water flow in the horizontal plane; basic concepts of the finite-element method; discretization of the flow domain and representation of the dependent flow variables; treatment of boundary conditions; discretization of the time domain; methods for modeling bottom, surface, and lateral stresses; approaches to solving systems of nonlinear equations; techniques for solving systems of linear equations; finite-element alternatives to Galerkin's method of weighted residuals; techniques of model validation; and preparation of model input data. References are listed in the final chapter.
A small-scale turbulence model
NASA Technical Reports Server (NTRS)
Lundgren, T. S.
1992-01-01
A model for the small-scale structure of turbulence is reformulated in such a way that it may be conveniently computed. The model is an ensemble of randomly oriented structured two dimensional vortices stretched by an axially symmetric strain flow. The energy spectrum of the resulting flow may be expressed as a time integral involving only the enstrophy spectrum of the time evolving two-dimensional cross section flow, which may be obtained numerically. Examples are given in which a k(exp -5/3) spectrum is obtained by this method without using large wave number asymptotic analysis. The k(exp -5/3) inertial range spectrum is shown to be related to the existence of a self-similar enstrophy preserving range in the two-dimensional enstrophy spectrum. The results are insensitive to time dependence of the strain-rate, including even intermittent on-or-off strains.
Cosmological perturbations in the (1 + 3 + 6)-dimensional space-times
NASA Astrophysics Data System (ADS)
Tomita, K.
2014-12-01
Cosmological perturbations in the (1+3+6)-dimensional space-times including photon gas without viscous processes are studied on the basis of Abbott et al.'s formalism [R. B. Abbott, B. Bednarz, and S. D. Ellis, Phys. Rev. D 33, 2147 (1986)]. Space-times consist of outer space (the 3-dimensional expanding section) and inner space (the 6-dimensional section). The inner space expands initially and later contracts. Abbott et al. derived only power-type solutions, which appear at the final stage of the space-times, in the small wave-number limit. In this paper, we derive not only small wave-number solutions, but also large wave-number solutions. It is found that the latter solutions depend on the two wave-numbers k_r and k_R (which are defined in the outer and inner spaces, respectively), and that the k_r-dependent and k_R-dependent parts dominate the total perturbations when (k_r/r(t))/(k_R/R(t)) ≫ 1 or ≪ 1, respectively, where r(t) and R(t) are the scale-factors in the outer and inner spaces. By comparing the behaviors of these perturbations, moreover, changes in the spectrum of perturbations in the outer space with time are discussed.
NASA Astrophysics Data System (ADS)
Prudnikov, V. V.; Prudnikov, P. V.; Popov, I. S.
2018-03-01
A Monte Carlo numerical simulation of the specific features of nonequilibrium critical behavior is carried out for the two-dimensional structurally disordered XY model during its evolution from a low-temperature initial state. On the basis of the analysis of the two-time dependence of autocorrelation functions and dynamic susceptibility for systems with spin concentrations of p = 1.0, 0.9, and 0.6, aging phenomena characterized by a slowing down of the relaxation system with increasing waiting time and the violation of the fluctuation-dissipation theorem (FDT) are revealed. The values of the universal limiting fluctuation-dissipation ratio (FDR) are obtained for the systems considered. As a result of the analysis of the two-time scaling dependence for spin-spin and connected spin autocorrelation functions, it is found that structural defects lead to subaging phenomena in the behavior of the spin-spin autocorrelation function and superaging phenomena in the behavior of the connected spin autocorrelation function.
Solution of the one-dimensional consolidation theory equation with a pseudospectral method
Sepulveda, N.; ,
1991-01-01
The one-dimensional consolidation theory equation is solved for an aquifer system using a pseudospectral method. The spatial derivatives are computed using Fast Fourier Transforms and the time derivative is solved using a fourth-order Runge-Kutta scheme. The computer model calculates compaction based on the void ratio changes accumulated during the simulated periods of time. Compactions and expansions resulting from groundwater withdrawals and recharges are simulated for two observation wells in Santa Clara Valley and two in San Joaquin Valley, California. Field data previously published are used to obtain mean values for the soil grain density and the compression index and to generate depth-dependent profiles for hydraulic conductivity and initial void ratio. The water-level plots for the wells studied were digitized and used to obtain the time dependent profiles of effective stress.
NASA Technical Reports Server (NTRS)
Chan, S. T. K.; Lee, C. H.; Brashears, M. R.
1975-01-01
A finite element algorithm for solving unsteady, three-dimensional high velocity impact problems is presented. A computer program was developed based on the Eulerian hydroelasto-viscoplastic formulation and the utilization of the theorem of weak solutions. The equations solved consist of conservation of mass, momentum, and energy, equation of state, and appropriate constitutive equations. The solution technique is a time-dependent finite element analysis utilizing three-dimensional isoparametric elements, in conjunction with a generalized two-step time integration scheme. The developed code was demonstrated by solving one-dimensional as well as three-dimensional impact problems for both the inviscid hydrodynamic model and the hydroelasto-viscoplastic model.
NASA Technical Reports Server (NTRS)
Weinberg, B. C.; Mcdonald, H.
1982-01-01
A numerical scheme is developed for solving the time dependent, three dimensional compressible viscous flow equations to be used as an aid in the design of helicopter rotors. In order to further investigate the numerical procedure, the computer code developed to solve an approximate form of the three dimensional unsteady Navier-Stokes equations employing a linearized block implicit technique in conjunction with a QR operator scheme is tested. Results of calculations are presented for several two dimensional boundary layer flows including steady turbulent and unsteady laminar cases. A comparison of fourth order and second order solutions indicate that increased accuracy can be obtained without any significant increases in cost (run time). The results of the computations also indicate that the computer code can be applied to more complex flows such as those encountered on rotating airfoils. The geometry of a symmetric NACA four digit airfoil is considered and the appropriate geometrical properties are computed.
NASA Technical Reports Server (NTRS)
Harp, J. L., Jr.
1977-01-01
A two-dimensional time-dependent computer code was utilized to calculate the three-dimensional steady flow within the impeller blading. The numerical method is an explicit time marching scheme in two spatial dimensions. Initially, an inviscid solution is generated on the hub blade-to-blade surface by the method of Katsanis and McNally (1973). Starting with the known inviscid solution, the viscous effects are calculated through iteration. The approach makes it possible to take into account principal impeller fluid-mechanical effects. It is pointed out that the second iterate provides a complete solution to the three-dimensional, compressible, Navier-Stokes equations for flow in a centrifugal impeller. The problems investigated are related to the study of a radial impeller and a backswept impeller.
Inertial objects in complex flows
NASA Astrophysics Data System (ADS)
Syed, Rayhan; Ho, George; Cavas, Samuel; Bao, Jialun; Yecko, Philip
2017-11-01
Chaotic Advection and Finite Time Lyapunov Exponents both describe stirring and transport in complex and time-dependent flows, but FTLE analysis has been largely limited to either purely kinematic flow models or high Reynolds number flow field data. The neglect of dynamic effects in FTLE and Lagrangian Coherent Structure studies has stymied detailed information about the role of pressure, Coriolis effects and object inertia. We present results of laboratory and numerical experiments on time-dependent and multi-gyre Stokes flows. In the lab, a time-dependent effectively two-dimensional low Re flow is used to distinguish transport properties of passive tracer from those of small paramagnetic spheres. Companion results of FTLE calculations for inertial particles in a time-dependent multi-gyre flow are presented, illustrating the critical roles of density, Stokes number and Coriolis forces on their transport. Results of Direct Numerical Simulations of fully resolved inertial objects (spheroids) immersed in a three dimensional (ABC) flow show the role of shape and finite size in inertial transport at small finite Re. We acknowledge support of NSF DMS-1418956.
Eliminating Bias In Acousto-Optical Spectrum Analysis
NASA Technical Reports Server (NTRS)
Ansari, Homayoon; Lesh, James R.
1992-01-01
Scheme for digital processing of video signals in acousto-optical spectrum analyzer provides real-time correction for signal-dependent spectral bias. Spectrum analyzer described in "Two-Dimensional Acousto-Optical Spectrum Analyzer" (NPO-18092), related apparatus described in "Three-Dimensional Acousto-Optical Spectrum Analyzer" (NPO-18122). Essence of correction is to average over digitized outputs of pixels in each CCD row and to subtract this from the digitized output of each pixel in row. Signal processed electro-optically with reference-function signals to form two-dimensional spectral image in CCD camera.
Improved tomographic reconstructions using adaptive time-dependent intensity normalization.
Titarenko, Valeriy; Titarenko, Sofya; Withers, Philip J; De Carlo, Francesco; Xiao, Xianghui
2010-09-01
The first processing step in synchrotron-based micro-tomography is the normalization of the projection images against the background, also referred to as a white field. Owing to time-dependent variations in illumination and defects in detection sensitivity, the white field is different from the projection background. In this case standard normalization methods introduce ring and wave artefacts into the resulting three-dimensional reconstruction. In this paper the authors propose a new adaptive technique accounting for these variations and allowing one to obtain cleaner normalized data and to suppress ring and wave artefacts. The background is modelled by the product of two time-dependent terms representing the illumination and detection stages. These terms are written as unknown functions, one scaled and shifted along a fixed direction (describing the illumination term) and one translated by an unknown two-dimensional vector (describing the detection term). The proposed method is applied to two sets (a stem Salix variegata and a zebrafish Danio rerio) acquired at the parallel beam of the micro-tomography station 2-BM at the Advanced Photon Source showing significant reductions in both ring and wave artefacts. In principle the method could be used to correct for time-dependent phenomena that affect other tomographic imaging geometries such as cone beam laboratory X-ray computed tomography.
NASA Astrophysics Data System (ADS)
Rhee, Hyop S.; Begg, Lester L.; Wetch, Joseph R.; Jang, Jong H.; Juhasz, Albert J.
An innovative pumped loop concept for 600 K space power system radiators utilizing direct contact heat transfer, which facilitates repeated startup/shutdown of the power system without complex and time-consuming coolant thawing during power startup, is under development. The heat transfer process with melting/freezing of Li in an NaK flow was studied through two-dimensional time-dependent numerical simulations to characterize and predict the Li/NaK radiator performance during startup (thawing) and shutdown (cold-trapping). Effects of system parameters and the criteria for the plugging domain are presented together with temperature distribution patterns in solid Li and subsequent melting surface profile variations in time.
Thorneywork, Alice L; Rozas, Roberto E; Dullens, Roel P A; Horbach, Jürgen
2015-12-31
We compare experimental results from a quasi-two-dimensional colloidal hard sphere fluid to a Monte Carlo simulation of hard disks with small particle displacements. The experimental short-time self-diffusion coefficient D(S) scaled by the diffusion coefficient at infinite dilution, D(0), strongly depends on the area fraction, pointing to significant hydrodynamic interactions at short times in the experiment, which are absent in the simulation. In contrast, the area fraction dependence of the experimental long-time self-diffusion coefficient D(L)/D(0) is in quantitative agreement with D(L)/D(0) obtained from the simulation. This indicates that the reduction in the particle mobility at short times due to hydrodynamic interactions does not lead to a proportional reduction in the long-time self-diffusion coefficient. Furthermore, the quantitative agreement between experiment and simulation at long times indicates that hydrodynamic interactions effectively do not affect the dependence of D(L)/D(0) on the area fraction. In light of this, we discuss the link between structure and long-time self-diffusion in terms of a configurational excess entropy and do not find a simple exponential relation between these quantities for all fluid area fractions.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Nwadike, E. V.; Sinha, S. E.
1982-01-01
The theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model are described. Model verification at two sites, a separate user's manual for each model are included. The 3-D model has two forms: free surface and rigid lid. The former allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth, estuaries and coastal regions. The latter is suited for small surface wave heights compared to depth because surface elevation was removed as a parameter. These models allow computation of time dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions. The free surface model also provides surface height variations with time.
On the mixing time in the Wang-Landau algorithm
NASA Astrophysics Data System (ADS)
Fadeeva, Marina; Shchur, Lev
2018-01-01
We present preliminary results of the investigation of the properties of the Markov random walk in the energy space generated by the Wang-Landau probability. We build transition matrix in the energy space (TMES) using the exact density of states for one-dimensional and two-dimensional Ising models. The spectral gap of TMES is inversely proportional to the mixing time of the Markov chain. We estimate numerically the dependence of the mixing time on the lattice size, and extract the mixing exponent.
Polarization-dependent plasmonic photocurrents in two-dimensional electron systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popov, V. V., E-mail: popov-slava@yahoo.co.uk; Saratov State University, Saratov 410012; Saratov Scientific Center of the Russian Academy of Sciences, Saratov 410028
2016-06-27
Plasmonic polarization dependent photocurrents in a homogeneous two-dimensional electron system are studied. Those effects are completely different from the photon drag and electronic photogalvanic effects as well as from the plasmonic ratchet effect in a density modulated two-dimensional electron system. Linear and helicity-dependent contributions to the photocurrent are found. The linear contribution can be interpreted as caused by the longitudinal and transverse plasmon drag effect. The helicity-dependent contribution originates from the non-linear electron convection and changes its sign with reversing the plasmonic field helicity. It is shown that the helicity-dependent component of the photocurrent can exceed the linear one bymore » several orders of magnitude in high-mobility two-dimensional electron systems. The results open possibilities for all-electronic detection of the radiation polarization states by exciting the plasmonic photocurrents in two-dimensional electron systems.« less
Experimental Quantum-Walk Revival with a Time-Dependent Coin
NASA Astrophysics Data System (ADS)
Xue, P.; Zhang, R.; Qin, H.; Zhan, X.; Bian, Z. H.; Li, J.; Sanders, Barry C.
2015-04-01
We demonstrate a quantum walk with time-dependent coin bias. With this technique we realize an experimental single-photon one-dimensional quantum walk with a linearly ramped time-dependent coin flip operation and thereby demonstrate two periodic revivals of the walker distribution. In our beam-displacer interferometer, the walk corresponds to movement between discretely separated transverse modes of the field serving as lattice sites, and the time-dependent coin flip is effected by implementing a different angle between the optical axis of half-wave plate and the light propagation at each step. Each of the quantum-walk steps required to realize a revival comprises two sequential orthogonal coin-flip operators, with one coin having constant bias and the other coin having a time-dependent ramped coin bias, followed by a conditional translation of the walker.
Nature of self-diffusion in two-dimensional fluids
NASA Astrophysics Data System (ADS)
Choi, Bongsik; Han, Kyeong Hwan; Kim, Changho; Talkner, Peter; Kidera, Akinori; Lee, Eok Kyun
2017-12-01
Self-diffusion in a two-dimensional simple fluid is investigated by both analytical and numerical means. We investigate the anomalous aspects of self-diffusion in two-dimensional fluids with regards to the mean square displacement, the time-dependent diffusion coefficient, and the velocity autocorrelation function (VACF) using a consistency equation relating these quantities. We numerically confirm the consistency equation by extensive molecular dynamics simulations for finite systems, corroborate earlier results indicating that the kinematic viscosity approaches a finite, non-vanishing value in the thermodynamic limit, and establish the finite size behavior of the diffusion coefficient. We obtain the exact solution of the consistency equation in the thermodynamic limit and use this solution to determine the large time asymptotics of the mean square displacement, the diffusion coefficient, and the VACF. An asymptotic decay law of the VACF resembles the previously known self-consistent form, 1/(t\\sqrt{{ln}t}), however with a rescaled time.
Boundary condition computational procedures for inviscid, supersonic steady flow field calculations
NASA Technical Reports Server (NTRS)
Abbett, M. J.
1971-01-01
Results are given of a comparative study of numerical procedures for computing solid wall boundary points in supersonic inviscid flow calculatons. Twenty five different calculation procedures were tested on two sample problems: a simple expansion wave and a simple compression (two-dimensional steady flow). A simple calculation procedure was developed. The merits and shortcomings of the various procedures are discussed, along with complications for three-dimensional and time-dependent flows.
NASA Technical Reports Server (NTRS)
Bhattacharya, K.; Ghil, M.
1979-01-01
A slightly modified version of the one-dimensional time-dependent energy-balance climate model of Ghil and Bhattacharya (1978) is presented. The albedo-temperature parameterization has been reformulated and the smoothing of the temperature distribution in the tropics has been eliminated. The model albedo depends on time-lagged temperature in order to account for finite growth and decay time of continental ice sheets. Two distinct regimes of oscillatory behavior which depend on the value of the albedo-temperature time lag are considered.
Topographic evolution of orogens: The long term perspective
NASA Astrophysics Data System (ADS)
Robl, Jörg; Hergarten, Stefan; Prasicek, Günther
2017-04-01
The landscape of mountain ranges reflects the competition of tectonics and climate, that build up and destroy topography, respectively. While there is a broad consensus on the acting processes, there is a vital debate whether the topography of individual orogens reflects stages of growth, steady-state or decay. This debate is fuelled by the million-year time scales hampering direct observations on landscape evolution in mountain ranges, the superposition of various process patterns and the complex interactions among different processes. In this presentation we focus on orogen-scale landscape evolution based on time-dependent numerical models and explore model time series to constrain the development of mountain range topography during an orogenic cycle. The erosional long term response of rivers and hillslopes to uplift can be mathematically formalised by the stream power and mass diffusion equations, respectively, which enables us to describe the time-dependent evolution of topography in orogens. Based on a simple one-dimensional model consisting of two rivers separated by a watershed we explain the influence of uplift rate and rock erodibility on steady-state channel profiles and show the time-dependent development of the channel - drainage divide system. The effect of dynamic drainage network reorganization adds additional complexity and its effect on topography is explored on the basis of two-dimensional models. Further complexity is introduced by coupling a mechanical model (thin viscous sheet approach) describing continental collision, crustal thickening and topography formation with a stream power-based landscape evolution model. Model time series show the impact of crustal deformation on drainage networks and consequently on the evolution of mountain range topography (Robl et al., in review). All model outcomes, from simple one-dimensional to coupled two dimensional models are presented as movies featuring a high spatial and temporal resolution. Robl, J., S. Hergarten, and G. Prasicek (in review), The topographic state of mountain ranges, Earth Science Reviews.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, K.W.
1991-07-01
HEATING is a FORTRAN program designed to solve steady-state and/or transient heat conduction problems in one-, two-, or three- dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heating generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which maymore » be surface-to-boundary or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General graybody radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING is variably dimensioned and utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion). The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less
Solving time-dependent two-dimensional eddy current problems
NASA Technical Reports Server (NTRS)
Lee, Min Eig; Hariharan, S. I.; Ida, Nathan
1988-01-01
Results of transient eddy current calculations are reported. For simplicity, a two-dimensional transverse magnetic field which is incident on an infinitely long conductor is considered. The conductor is assumed to be a good but not perfect conductor. The resulting problem is an interface initial boundary value problem with the boundary of the conductor being the interface. A finite difference method is used to march the solution explicitly in time. The method is shown. Treatment of appropriate radiation conditions is given special consideration. Results are validated with approximate analytic solutions. Two stringent test cases of high and low frequency incident waves are considered to validate the results.
Strain-Tuning Atomic Substitution in Two-Dimensional Atomic Crystals.
Li, Honglai; Liu, Hongjun; Zhou, Linwei; Wu, Xueping; Pan, Yuhao; Ji, Wei; Zheng, Biyuan; Zhang, Qinglin; Zhuang, Xiujuan; Zhu, Xiaoli; Wang, Xiao; Duan, Xiangfeng; Pan, Anlian
2018-05-22
Atomic substitution offers an important route to achieve compositionally engineered two-dimensional nanostructures and their heterostructures. Despite the recent research progress, the fundamental understanding of the reaction mechanism has still remained unclear. Here, we reveal the atomic substitution mechanism of two-dimensional atomic layered materials. We found that the atomic substitution process depends on the varying lattice constant (strain) in monolayer crystals, dominated by two strain-tuning (self-promoted and self-limited) mechanisms using density functional theory calculations. These mechanisms were experimentally confirmed by the controllable realization of a graded substitution ratio in the monolayers by controlling the substitution temperature and time and further theoretically verified by kinetic Monte Carlo simulations. The strain-tuning atomic substitution processes are of general importance to other two-dimensional layered materials, which offers an interesting route for tailoring electronic and optical properties of these materials.
Time-dependent photon migration imaging
NASA Astrophysics Data System (ADS)
Sevick, Eva M.; Wang, NaiGuang; Chance, Britton
1992-02-01
Recently, the application of both time- and frequency-resolved fluorescence techniques for the determination of photon migration characteristics in strongly scattering media has been used to characterize the optical properties in strongly scattering media. Specifically, Chance and coworkers have utilized measurement of photon migration characteristics to determine tissue hemoglobin absorbance and ultimately oxygenation status in homogeneous tissues. In this study, we present simulation results and experimental measurements for both techniques to show the capacity of time-dependent photon migration characteristics to image optically obscure absorbers located in strongly scattering media. The applications of time-dependent photon imaging in the biomedical community include imaging of light absorbing hematomas, tumors, hypoxic tissue volumes, and other tissue abnormalities. Herein, we show that the time-resolved parameter of mean photon path length, , and the frequency- resolved parameter of phase-shift, (theta) , can be used similarly to obtain three dimensional information of absorber position from two-dimensional measurements. Finally, we show that unlike imaging techniques that monitor the intensity of light without regard to the migration characteristics, the resolution of time-dependent photon migration measurements is enhanced by tissue scattering, further potentiating their use for biomedical imaging.
Quantum theoretical study of electron solvation dynamics in ice layers on a Cu(111) surface.
Andrianov, I; Klamroth, T; Saalfrank, P; Bovensiepen, U; Gahl, C; Wolf, M
2005-06-15
Recent experiments using time- and angle-resolved two-photon photoemission (2PPE) spectroscopy at metal/polar adsorbate interfaces succeeded in time-dependent analysis of the process of electron solvation. A fully quantum mechanical, two-dimensional simulation of this process, which explicitly includes laser excitation, is presented here, confirming the origin of characteristic features, such as the experimental observation of an apparently negative dispersion. The inference of the spatial extent of the localized electron states from the angular dependence of the 2PPE spectra has been found to be non-trivial and system-dependent.
Order and chaos in the one-dimensional ϕ4 model: N-dependence and the Second Law of Thermodynamics
NASA Astrophysics Data System (ADS)
Hoover, William Graham; Aoki, Kenichiro
2017-08-01
We revisit the equilibrium one-dimensional ϕ4 model from the dynamical systems point of view. We find an infinite number of periodic orbits which are computationally stable. At the same time some of the orbits are found to exhibit positive Lyapunov exponents! The periodic orbits confine every particle in a periodic chain to trace out either the same or a mirror-image trajectory in its two-dimensional phase space. These ;computationally stable; sets of pairs of single-particle orbits are either symmetric or antisymmetric to the very last computational bit. In such a periodic chain the odd-numbered and even-numbered particles' coordinates and momenta are either identical or differ only in sign. ;Positive Lyapunov exponents; can and do result if an infinitesimal perturbation breaking a perfect two-dimensional antisymmetry is introduced so that the motion expands into a four-dimensional phase space. In that extended space a positive exponent results. We formulate a standard initial condition for the investigation of the microcanonical chaotic number dependence of the model. We speculate on the uniqueness of the model's chaotic sea and on the connection of such collections of deterministic and time-reversible states to the Second Law of Thermodynamics.
NASA Astrophysics Data System (ADS)
Can, Nuri; Okur, Serdal; Monavarian, Morteza; Zhang, Fan; Avrutin, Vitaliy; Morkoç, Hadis; Teke, Ali; Özgür, Ümit
2015-03-01
Temperature dependent recombination dynamics in c-plane InGaN light emitting diodes (LEDs) with different well thicknesses, 1.5, 2, and 3 nm, were investigated to determine the active region dimensionality and its effect on the internal quantum efficiencies. It was confirmed for all LEDs that the photoluminescence (PL) transients are governed by radiative recombination at low temperatures while nonradiative recombination dominates at room temperature. At photoexcited carrier densities of 3 - 4.5 x 1016 cm-3 , the room-temperature Shockley-Read-Hall (A) and the bimolecular (B) recombination coefficients (A, B) were deduced to be (9.2x107 s-1, 8.8x10-10 cm3s-1), (8.5x107 s-1, 6.6x10-10 cm3s-1), and (6.5x107 s-1, 1.4x10-10 cm3s-1) for the six period 1.5, 2, and 3 nm well-width LEDs, respectively. From the temperature dependence of the radiative lifetimes, τrad α Tn/2, the dimensionality n of the active region was found to decrease consistently with decreasing well width. The 3 nm wide wells exhibited ~T1.5 dependence, suggesting a three-dimensional nature, whereas the 1.5 nm wells were confirmed to be two-dimensional (~T1) and the 2 nm wells close to being two-dimensional. We demonstrate that a combination of temperature dependent PL and time-resolved PL techniques can be used to evaluate the dimensionality as well as the quantum efficiencies of the LED active regions for a better understanding of the relationship between active-region design and the efficiency limiting processes in InGaN LEDs.
Exploration properties of biased evanescent random walkers on a one-dimensional lattice
NASA Astrophysics Data System (ADS)
Esguerra, Jose Perico; Reyes, Jelian
2017-08-01
We investigate the combined effects of bias and evanescence on the characteristics of random walks on a one-dimensional lattice. We calculate the time-dependent return probability, eventual return probability, conditional mean return time, and the time-dependent mean number of visited sites of biased immortal and evanescent discrete-time random walkers on a one-dimensional lattice. We then extend the calculations to the case of a continuous-time step-coupled biased evanescent random walk on a one-dimensional lattice with an exponential waiting time distribution.
NASA Astrophysics Data System (ADS)
Ueda, Yoshihiro; Suzuki, Yasumitsu; Watanabe, Kazuyuki
2018-02-01
Angle-resolved secondary electron emission (ARSEE) spectra were analyzed for two-dimensional atomic sheets using a time-dependent first-principles simulation of electron scattering. We demonstrate that the calculated ARSEE spectra capture the unoccupied band structure of the atomic sheets. The excitation dynamics that lead to SEE have also been revealed by the time-dependent Kohn-Sham decomposition scheme. In the present study, the mechanism for the experimentally observed ARSEE from atomic sheets is elucidated with respect to both energetics and the dynamical aspects of SEE.
Two-dimensional electronic spectroscopy signatures of the glass transition
Lewis, K. L. .. M.; Myers, J. A.; Fuller, F.; ...
2010-01-01
Two-dimensional electronic spectroscopy is a sensitive probe of solvation dynamics. Using a pump–probe geometry with a pulse shaper [ Optics Express 15 (2007), 16681-16689; Optics Express 16 (2008), 17420-17428], we present temperature dependent 2D spectra of laser dyes dissolved in glass-forming solvents. At low waiting times, the system has not yet relaxed, resulting in a spectrum that is elongated along the diagonal. At longer times, the system loses its memory of the initial excitation frequency, and the 2D spectrum rounds out. As the temperature is lowered, the time scale of this relaxation grows, and the elongation persists for longer waitingmore » times. This can be measured in the ratio of the diagonal width to the anti-diagonal width; the behavior of this ratio is representative of the frequency–frequency correlation function [ Optics Letters 31 (2006), 3354–3356]. Near the glass transition temperature, the relaxation behavior changes. Understanding this change is important for interpreting temperature-dependent dynamics of biological systems.« less
Choi, S; Dunjko, V; Zhang, Z D; Olshanii, M
2015-09-11
Using a time-dependent modified nonlinear Schrödinger equation (MNLSE)-where the conventional chemical potential proportional to the density is replaced by the one inferred from Lieb-Liniger's exact solution-we study frequencies of the collective monopole excitations of a one-dimensional Bose gas. We find that our method accurately reproduces the results of a recent experimental study [E. Haller et al., Science 325, 1224 (2009)] in the full spectrum of interaction regimes from the ideal gas, through the mean-field regime, through the mean-field Thomas-Fermi regime, all the way to the Tonks-Giradeau gas. While the former two are accessible by the standard time-dependent NLSE and inaccessible by the time-dependent local density approximation, the situation reverses in the latter case. However, the MNLSE is shown to treat all these regimes within a single numerical method.
Anharmonic, dimensionality and size effects in phonon transport
NASA Astrophysics Data System (ADS)
Thomas, Iorwerth O.; Srivastava, G. P.
2017-12-01
We have developed and employed a numerically efficient semi- ab initio theory, based on density-functional and relaxation-time schemes, to examine anharmonic, dimensionality and size effects in phonon transport in three- and two-dimensional solids of different crystal symmetries. Our method uses third- and fourth-order terms in crystal Hamiltonian expressed in terms of a temperature-dependent Grüneisen’s constant. All input to numerical calculations are generated from phonon calculations based on the density-functional perturbation theory. It is found that four-phonon processes make important and measurable contribution to lattice thermal resistivity above the Debye temperature. From our numerical results for bulk Si, bulk Ge, bulk MoS2 and monolayer MoS2 we find that the sample length dependence of phonon conductivity is significantly stronger in low-dimensional solids.
Squeezing in a 2-D generalized oscillator
NASA Technical Reports Server (NTRS)
Castanos, Octavio; Lopez-Pena, Ramon; Manko, Vladimir I.
1994-01-01
A two-dimensional generalized oscillator with time-dependent parameters is considered to study the two-mode squeezing phenomena. Specific choices of the parameters are used to determine the dispersion matrix and analytic expressions, in terms of standard hermite polynomials, of the wavefunctions and photon distributions.
Computation for Electromigration in Interconnects of Microelectronic Devices
NASA Astrophysics Data System (ADS)
Averbuch, Amir; Israeli, Moshe; Ravve, Igor; Yavneh, Irad
2001-03-01
Reliability and performance of microelectronic devices depend to a large extent on the resistance of interconnect lines. Voids and cracks may occur in the interconnects, causing a severe increase in the total resistance and even open circuits. In this work we analyze void motion and evolution due to surface diffusion effects and applied external voltage. The interconnects under consideration are three-dimensional (sandwich) constructs made of a very thin metal film of possibly variable thickness attached to a substrate of nonvanishing conductance. A two-dimensional level set approach was applied to study the dynamics of the moving (assumed one-dimensional) boundary of a void in the metal film. The level set formulation of an electromigration and diffusion model results in a fourth-order nonlinear (two-dimensional) time-dependent PDE. This equation was discretized by finite differences on a regular grid in space and a Runge-Kutta integration scheme in time, and solved simultaneously with a second-order static elliptic PDE describing the electric potential distribution throughout the interconnect line. The well-posed three-dimensional problem for the potential was approximated via singular perturbations, in the limit of small aspect ratio, by a two-dimensional elliptic equation with variable coefficients describing the combined local conductivity of metal and substrate (which is allowed to vary in time and space). The difference scheme for the elliptic PDE was solved by a multigrid technique at each time step. Motion of voids in both weak and strong electric fields was examined, and different initial void configurations were considered, including circles, ellipses, polygons with rounded corners, a butterfly, and long grooves. Analysis of the void behavior and its influence on the resistance gives the circuit designer a tool for choosing the proper parameters of an interconnect (width-to-length ratio, properties of the line material, conductivity of the underlayer, etc.).
NASA Astrophysics Data System (ADS)
Matsevityi, Yu. M.; Alekhina, S. V.; Borukhov, V. T.; Zayats, G. M.; Kostikov, A. O.
2017-11-01
The problem of identifying the time-dependent thermal conductivity coefficient in the initial-boundary-value problem for the quasi-stationary two-dimensional heat conduction equation in a bounded cylinder is considered. It is assumed that the temperature field in the cylinder is independent of the angular coordinate. To solve the given problem, which is related to a class of inverse problems, a mathematical approach based on the method of conjugate gradients in a functional form is being developed.
Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy
Caram, Justin R.; Zheng, Haibin; Dahlberg, Peter D.; Rolczynski, Brian S.; Griffin, Graham B.; Dolzhnikov, Dmitriy S.; Talapin, Dmitri V.; Engel, Gregory S.
2014-01-01
Development of optoelectronic technologies based on quantum dots depends on measuring, optimizing, and ultimately predicting charge carrier dynamics in the nanocrystal. In such systems, size inhomogeneity and the photoexcited population distribution among various excitonic states have distinct effects on electron and hole relaxation, which are difficult to distinguish spectroscopically. Two-dimensional electronic spectroscopy can help to untangle these effects by resolving excitation energy and subsequent nonlinear response in a single experiment. Using a filament-generated continuum as a pump and probe source, we collect two-dimensional spectra with sufficient spectral bandwidth to follow dynamics upon excitation of the lowest three optical transitions in a polydisperse ensemble of colloidal CdSe quantum dots. We first compare to prior transient absorption studies to confirm excitation-state-dependent dynamics such as increased surface-trapping upon excitation of hot electrons. Second, we demonstrate fast band-edge electron-hole pair solvation by ligand and phonon modes, as the ensemble relaxes to the photoluminescent state on a sub-picosecond time-scale. Third, we find that static disorder due to size polydispersity dominates the nonlinear response upon excitation into the hot electron manifold; this broadening mechanism stands in contrast to that of the band-edge exciton. Finally, we demonstrate excitation-energy dependent hot-carrier relaxation rates, and we describe how two-dimensional electronic spectroscopy can complement other transient nonlinear techniques. PMID:24588185
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.; Tuann, S. Y.; Lee, C. R.
1982-01-01
The six-volume report: describes the theory of a three-dimensional (3-D) mathematical thermal discharge model and a related one-dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth. These models allow computation of time-dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions.
Wavepacket propagation using time-sliced semiclassical initial value methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, Brett B.; Reimers, Jeffrey R.; School of Chemistry, University of Sydney, Sydney NSW 2006
2004-12-22
A new semiclassical initial value representation (SC-IVR) propagator and a SC-IVR propagator originally introduced by Kay [J. Chem. Phys. 100, 4432 (1994)], are investigated for use in the split-operator method for solving the time-dependent Schroedinger equation. It is shown that the SC-IVR propagators can be derived from a procedure involving modified Filinov filtering of the Van Vleck expression for the semiclassical propagator. The two SC-IVR propagators have been selected for investigation because they avoid the need to perform a coherent state basis set expansion that is necessary in other time-slicing propagation schemes. An efficient scheme for solving the propagators ismore » introduced and can be considered to be a semiclassical form of the effective propagators of Makri [Chem. Phys. Lett. 159, 489 (1989)]. Results from applications to a one-dimensional, two-dimensional, and three-dimensional Hamiltonian for a double-well potential are presented.« less
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.; Nwadike, E. V.; Sinha, S. K.
1982-01-01
The six-volume report: describes the theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth (e.g., natural or man-made inland lakes) because surface elevation has been removed as a parameter. These models allow computation of time-dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions. The free-surface model also provides surface height variations with time.
Nature of self-diffusion in two-dimensional fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Bongsik; Han, Kyeong Hwan; Kim, Changho
Self-diffusion in a two-dimensional simple fluid is investigated by both analytical and numerical means. We investigate the anomalous aspects of self-diffusion in two-dimensional fluids with regards to the mean square displacement, the time-dependent diffusion coefficient, and the velocity autocorrelation function (VACF) using a consistency equation relating these quantities. Here, we numerically confirm the consistency equation by extensive molecular dynamics simulations for finite systems, corroborate earlier results indicating that the kinematic viscosity approaches a finite, non-vanishing value in the thermodynamic limit, and establish the finite size behavior of the diffusion coefficient. We obtain the exact solution of the consistency equation in the thermodynamic limit and use this solution to determine the large time asymptotics of the mean square displacement, the diffusion coefficient, and the VACF. An asymptotic decay law of the VACF resembles the previously known self-consistent form, 1/(more » $$t\\sqrt{In t)}$$ however with a rescaled time.« less
Nature of self-diffusion in two-dimensional fluids
Choi, Bongsik; Han, Kyeong Hwan; Kim, Changho; ...
2017-12-18
Self-diffusion in a two-dimensional simple fluid is investigated by both analytical and numerical means. We investigate the anomalous aspects of self-diffusion in two-dimensional fluids with regards to the mean square displacement, the time-dependent diffusion coefficient, and the velocity autocorrelation function (VACF) using a consistency equation relating these quantities. Here, we numerically confirm the consistency equation by extensive molecular dynamics simulations for finite systems, corroborate earlier results indicating that the kinematic viscosity approaches a finite, non-vanishing value in the thermodynamic limit, and establish the finite size behavior of the diffusion coefficient. We obtain the exact solution of the consistency equation in the thermodynamic limit and use this solution to determine the large time asymptotics of the mean square displacement, the diffusion coefficient, and the VACF. An asymptotic decay law of the VACF resembles the previously known self-consistent form, 1/(more » $$t\\sqrt{In t)}$$ however with a rescaled time.« less
Dynamical initial-state model for relativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Shen, Chun; Schenke, Björn
2018-02-01
We present a fully three-dimensional model providing initial conditions for energy and net-baryon density distributions in heavy-ion collisions at arbitrary collision energy. The model includes the dynamical deceleration of participating nucleons or valence quarks, depending on the implementation. The duration of the deceleration continues until the string spanned between colliding participants is assumed to thermalize, which is either after a fixed proper time, or a fluctuating time depending on sampled final rapidities. Energy is deposited in space time along the string, which in general will span a range of space-time rapidities and proper times. We study various observables obtained directly from the initial-state model, including net-baryon rapidity distributions, two-particle rapidity correlations, as well as the rapidity decorrelation of the transverse geometry. Their dependence on the model implementation and parameter values is investigated. We also present the implementation of the model with 3+1-dimensional hydrodynamics, which involves the addition of source terms that deposit energy and net-baryon densities produced by the initial-state model at proper times greater than the initial time for the hydrodynamic simulation.
Quasi-two-dimensional spin correlations in the triangular lattice bilayer spin glass LuCoGaO 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritsch, Katharina; Ross, Kathyrn A.; Granroth, Garrett E.
Here we present a single-crystal time-of-flight neutron scattering study of the static and dynamic spin correlations in LuCoGaO 4, a quasi-two-dimensional dilute triangular lattice antiferromagnetic spin-glass material. This system is based on Co 2+ ions that are randomly distributed on triangular bilayers within the YbFe 2O 4 type, hexagonal crystal structure. Antiferromagnetic short-range two-dimensional correlations at wave vectors Q = (1/3,1/3, L) develop within the bilayers at temperatures as high as |Θ CW| ~100 K and extend over roughly five unit cells at temperatures below T g = 19 K. These two-dimensional static correlations are observed as diffuse rods ofmore » neutron scattering intensity along c * and display a continuous spin freezing process in their energy dependence. Aside from exhibiting these typical spin-glass characteristics, this insulating material reveals a novel gapped magnetic resonant spin excitation at ΔE ~12 meV localized around Q = (1 / 3, 1 / 3,L) . The temperature dependence of the spin gap associated with this two-dimensional excitation correlates with the evolution of the static correlations into the spin-glass state ground state. Lastly, we associate it with the effect of the staggered exchange field acting on the S eff = 1/2 Ising-like doublet of the Co 2+ moments.« less
Quasi-two-dimensional spin correlations in the triangular lattice bilayer spin glass LuCoGaO 4
Fritsch, Katharina; Ross, Kathyrn A.; Granroth, Garrett E.; ...
2017-09-13
Here we present a single-crystal time-of-flight neutron scattering study of the static and dynamic spin correlations in LuCoGaO 4, a quasi-two-dimensional dilute triangular lattice antiferromagnetic spin-glass material. This system is based on Co 2+ ions that are randomly distributed on triangular bilayers within the YbFe 2O 4 type, hexagonal crystal structure. Antiferromagnetic short-range two-dimensional correlations at wave vectors Q = (1/3,1/3, L) develop within the bilayers at temperatures as high as |Θ CW| ~100 K and extend over roughly five unit cells at temperatures below T g = 19 K. These two-dimensional static correlations are observed as diffuse rods ofmore » neutron scattering intensity along c * and display a continuous spin freezing process in their energy dependence. Aside from exhibiting these typical spin-glass characteristics, this insulating material reveals a novel gapped magnetic resonant spin excitation at ΔE ~12 meV localized around Q = (1 / 3, 1 / 3,L) . The temperature dependence of the spin gap associated with this two-dimensional excitation correlates with the evolution of the static correlations into the spin-glass state ground state. Lastly, we associate it with the effect of the staggered exchange field acting on the S eff = 1/2 Ising-like doublet of the Co 2+ moments.« less
Tracer particles in two-dimensional elastic networks diffuse logarithmically slow
NASA Astrophysics Data System (ADS)
Lizana, Ludvig; Ambjörnsson, Tobias; Lomholt, Michael A.
2017-01-01
Several experiments on tagged molecules or particles in living systems suggest that they move anomalously slow—their mean squared displacement (MSD) increase slower than linearly with time. Leading models aimed at understanding these experiments predict that the MSD grows as a power law with a growth exponent that is smaller than unity. However, in some experiments the growth is so slow (fitted exponent ˜0.1-0.2) that they hint towards other mechanisms at play. In this paper, we theoretically demonstrate how in-plane collective modes excited by thermal fluctuations in a two dimensional membrane lead to logarithmic time dependence for the the tracer particle’s MSD.
Diffusion in biased turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlad, M.; Spineanu, F.; Misguich, J. H.
2001-06-01
Particle transport in two-dimensional divergence-free stochastic velocity fields with constant average is studied. Analytical expressions for the Lagrangian velocity correlation and for the time-dependent diffusion coefficients are obtained. They apply to stationary and homogeneous Gaussian velocity fields.
NASA Astrophysics Data System (ADS)
Nome, Rene A.; Sorbello, Cecilia; Jobbágy, Matías; Barja, Beatriz C.; Sanches, Vitor; Cruz, Joyce S.; Aguiar, Vinicius F.
2017-03-01
The stochastic dynamics of individual co-doped Er:Yb upconversion nanoparticles (UCNP) were investigated from experiments and simulations. The UCNP were characterized by high-resolution scanning electron microscopy, dynamic light scattering, and zeta potential measurements. Single UCNP measurements were performed by fluorescence upconversion micro-spectroscopy and optical trapping. The mean-square displacement (MSD) from single UCNP exhibited a time-dependent diffusion coefficient which was compared with Brownian dynamics simulations of a viscoelastic model of harmonically bound spheres. Experimental time-dependent two-dimensional trajectories of individual UCNP revealed correlated two-dimensional nanoparticle motion. The measurements were compared with stochastic trajectories calculated in the presence of a non-conservative rotational force field. Overall, the complex interplay of UCNP adhesion, thermal fluctuations and optical forces led to a rich stochastic behavior of these nanoparticles.
Static and dynamic properties of two-dimensional Coulomb clusters.
Ash, Biswarup; Chakrabarti, J; Ghosal, Amit
2017-10-01
We study the temperature dependence of static and dynamic responses of Coulomb interacting particles in two-dimensional confinements across the crossover from solid- to liquid-like behaviors. While static correlations that investigate the translational and bond orientational order in the confinements show the footprints of hexatic-like phase at low temperatures, dynamics of the particles slow down considerably in this phase, reminiscent of a supercooled liquid. Using density correlations, we probe long-lived heterogeneities arising from the interplay of the irregularity in the confinement and long-range Coulomb interactions. The relaxation at multiple time scales show stretched-exponential decay of spatial correlations in irregular traps. Temperature dependence of characteristic time scales, depicting the structural relaxation of the system, show striking similarities with those observed for the glassy systems, indicating that some of the key signatures of supercooled liquids emerge in confinements with lower spatial symmetries.
Highly Parallel Alternating Directions Algorithm for Time Dependent Problems
NASA Astrophysics Data System (ADS)
Ganzha, M.; Georgiev, K.; Lirkov, I.; Margenov, S.; Paprzycki, M.
2011-11-01
In our work, we consider the time dependent Stokes equation on a finite time interval and on a uniform rectangular mesh, written in terms of velocity and pressure. For this problem, a parallel algorithm based on a novel direction splitting approach is developed. Here, the pressure equation is derived from a perturbed form of the continuity equation, in which the incompressibility constraint is penalized in a negative norm induced by the direction splitting. The scheme used in the algorithm is composed of two parts: (i) velocity prediction, and (ii) pressure correction. This is a Crank-Nicolson-type two-stage time integration scheme for two and three dimensional parabolic problems in which the second-order derivative, with respect to each space variable, is treated implicitly while the other variable is made explicit at each time sub-step. In order to achieve a good parallel performance the solution of the Poison problem for the pressure correction is replaced by solving a sequence of one-dimensional second order elliptic boundary value problems in each spatial direction. The parallel code is implemented using the standard MPI functions and tested on two modern parallel computer systems. The performed numerical tests demonstrate good level of parallel efficiency and scalability of the studied direction-splitting-based algorithm.
Synthesis and Characterization of Liquid Crystalline Epoxy Resins
2014-01-01
Temperature dependence of the four parameters in the Burgers model. ......... 81 Figure 4.7 Dependence of creep compliance on creep time at different...Kinetic parameters for LCERs. ......................................................................... 65 Table 3.4 Kinetic parameters for non-LCERs...curing in a high strength magnetic field. The orientation was quantified by an orientation parameter determined with two-dimensional X-ray diffraction
Analysis and generation of groundwater concentration time series
NASA Astrophysics Data System (ADS)
Crăciun, Maria; Vamoş, Călin; Suciu, Nicolae
2018-01-01
Concentration time series are provided by simulated concentrations of a nonreactive solute transported in groundwater, integrated over the transverse direction of a two-dimensional computational domain and recorded at the plume center of mass. The analysis of a statistical ensemble of time series reveals subtle features that are not captured by the first two moments which characterize the approximate Gaussian distribution of the two-dimensional concentration fields. The concentration time series exhibit a complex preasymptotic behavior driven by a nonstationary trend and correlated fluctuations with time-variable amplitude. Time series with almost the same statistics are generated by successively adding to a time-dependent trend a sum of linear regression terms, accounting for correlations between fluctuations around the trend and their increments in time, and terms of an amplitude modulated autoregressive noise of order one with time-varying parameter. The algorithm generalizes mixing models used in probability density function approaches. The well-known interaction by exchange with the mean mixing model is a special case consisting of a linear regression with constant coefficients.
Dagdeviren, Omur E
2018-08-03
The effect of surface disorder, load, and velocity on friction between a single asperity contact and a model surface is explored with one-dimensional and two-dimensional Prandtl-Tomlinson (PT) models. We show that there are fundamental physical differences between the predictions of one-dimensional and two-dimensional models. The one-dimensional model estimates a monotonic increase in friction and energy dissipation with load, velocity, and surface disorder. However, a two-dimensional PT model, which is expected to approximate a tip-sample system more realistically, reveals a non-monotonic trend, i.e. friction is inert to surface disorder and roughness in wearless friction regime. The two-dimensional model discloses that the surface disorder starts to dominate the friction and energy dissipation when the tip and the sample interact predominantly deep into the repulsive regime. Our numerical calculations address that tracking the minimum energy path and the slip-stick motion are two competing effects that determine the load, velocity, and surface disorder dependence of friction. In the two-dimensional model, the single asperity can follow the minimum energy path in wearless regime; however, with increasing load and sliding velocity, the slip-stick movement dominates the dynamic motion and results in an increase in friction by impeding tracing the minimum energy path. Contrary to the two-dimensional model, when the one-dimensional PT model is employed, the single asperity cannot escape to the minimum energy minimum due to constraint motion and reveals only a trivial dependence of friction on load, velocity, and surface disorder. Our computational analyses clarify the physical differences between the predictions of the one-dimensional and two-dimensional models and open new avenues for disordered surfaces for low energy dissipation applications in wearless friction regime.
Apparent critical thickness versus temperature for InAs quantum dot growth on GaAs(001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patella, F.; Arciprete, F.; Fanfoni, M.
2006-04-17
We studied the temperature dependence of the two-dimensional to three-dimensional growth transition in InAs/GaAs(001) heteroepitaxy by means of reflection high energy electron diffraction and atomic force microscopy. The observed shift of the transition to higher InAs deposition times, at temperatures above 500 deg. C, is not a change of critical thickness for islanding, which instead, is constant in the 450-560 deg. C range. Consequently, In-Ga intermixing and surface and interface strain have a negligible dependence on temperature in this range.
Numerical Solution of Time-Dependent Problems with a Fractional-Power Elliptic Operator
NASA Astrophysics Data System (ADS)
Vabishchevich, P. N.
2018-03-01
A time-dependent problem in a bounded domain for a fractional diffusion equation is considered. The first-order evolution equation involves a fractional-power second-order elliptic operator with Robin boundary conditions. A finite-element spatial approximation with an additive approximation of the operator of the problem is used. The time approximation is based on a vector scheme. The transition to a new time level is ensured by solving a sequence of standard elliptic boundary value problems. Numerical results obtained for a two-dimensional model problem are presented.
A three-dimensional spin-diffusion model for micromagnetics
Abert, Claas; Ruggeri, Michele; Bruckner, Florian; Vogler, Christoph; Hrkac, Gino; Praetorius, Dirk; Suess, Dieter
2015-01-01
We solve a time-dependent three-dimensional spin-diffusion model coupled to the Landau-Lifshitz-Gilbert equation numerically. The presented model is validated by comparison to two established spin-torque models: The model of Slonzewski that describes spin-torque in multi-layer structures in the presence of a fixed layer and the model of Zhang and Li that describes current driven domain-wall motion. It is shown that both models are incorporated by the spin-diffusion description, i.e., the nonlocal effects of the Slonzewski model are captured as well as the spin-accumulation due to magnetization gradients as described by the model of Zhang and Li. Moreover, the presented method is able to resolve the time dependency of the spin-accumulation. PMID:26442796
NASA Astrophysics Data System (ADS)
Noda, Isao
2018-05-01
Two cyclic diastereoisomeric structures, known as α- and β-anomers of D-glucose with different configurations around C1 with OH groups in axial or equitroial positions, undergo the mutarotation conversion to each other in water. Two-dimensional correlation and codistribution spectroscopy (2DCOS and 2DCDS) analyses were applied to the time-dependent ATR IR spectra of aqueous solutions of α- and β-D-glucose undergoing such mutarotation conversion. 2DCOS analysis reveals that the increase and decrease in the IR intensities after the dissolution of α- or β-D-glucose are not fully synchronized, suggesting the mutarotation of D-glucose in water is not a simple binary conversion process but a multi-step reaction involving an intermediate species with a finite and observable concentration level and lifetime. 2DCDS analysis of the time-dependent ATR IR spectra clearly demonstrated the presence of intermediate species contributing to the band positions overlapped close to bands for α- and β-D-glucose. The fact that band positions identified for the intermediate species for α- to β-D-glucose conversion are the same for the reverse reaction suggests that they arise from the same species, most likely the open-ring structure produced by the hydrolysis.
Watanabe, H; Takaya, N; Mitsumori, F
2008-06-01
Localized two-dimensional constant-time correlation spectroscopy (CT-COSY) was used to resolve glutamate (Glu), gamma-aminobutyric acid (GABA), and glutamine (Gln) in the human brain at 4.7 T. In this method, three-dimensional localization was achieved using three radio frequency pulses of the CT-COSY module for slice selection. As this sequence could decouple JHH along the F1 direction, peak resolution of metabolites was improved even on a magnitude-mode display. In experiments on a phantom containing N-acetylaspartate, creatine, Glu, Gln, and GABA with a constant time delay (Tct) of 110 ms, cross peaks of Glu, Gln, and GABA were obtained on a spectrum processed with standard sine-bell windows, which emphasize sine-dependent signals along the t2 direction. In contrast, diagonal peaks of Glu C4H at 2.35 ppm, GABA C2H at 2.28 ppm, and Gln C4H at 2.44 ppm were resolved on a spectrum processed with Gaussian windows, which emphasize cosine-dependent signals along t2. Human brain spectra were obtained from a 27 mL voxel within the parieto-occipital region using a volume transverse electromagnetic (TEM) coil for both transmission and reception. Tct was 110 ms; the total scan time was 30 min. Diagonal peaks of Glu C4H, GABA C2H, and Gln C4H were also resolved on the spectrum processed with Gaussian windows. These results show that the localized two-dimensional CT-COSY method featuring 1H decoupling along the F1 direction could resolve Glu, GABA, and Gln signals in the human brain. Copyright (c) 2008 John Wiley & Sons, Ltd.
Generalizing DTW to the multi-dimensional case requires an adaptive approach
Hu, Bing; Jin, Hongxia; Wang, Jun; Keogh, Eamonn
2017-01-01
In recent years Dynamic Time Warping (DTW) has emerged as the distance measure of choice for virtually all time series data mining applications. For example, virtually all applications that process data from wearable devices use DTW as a core sub-routine. This is the result of significant progress in improving DTW’s efficiency, together with multiple empirical studies showing that DTW-based classifiers at least equal (and generally surpass) the accuracy of all their rivals across dozens of datasets. Thus far, most of the research has considered only the one-dimensional case, with practitioners generalizing to the multi-dimensional case in one of two ways, dependent or independent warping. In general, it appears the community believes either that the two ways are equivalent, or that the choice is irrelevant. In this work, we show that this is not the case. The two most commonly used multi-dimensional DTW methods can produce different classifications, and neither one dominates over the other. This seems to suggest that one should learn the best method for a particular application. However, we will show that this is not necessary; a simple, principled rule can be used on a case-by-case basis to predict which of the two methods we should trust at the time of classification. Our method allows us to ensure that classification results are at least as accurate as the better of the two rival methods, and, in many cases, our method is significantly more accurate. We demonstrate our ideas with the most extensive set of multi-dimensional time series classification experiments ever attempted. PMID:29104448
Leiter, Jeff R S; de Korompay, Nevin; Macdonald, Lindsey; McRae, Sheila; Froese, Warren; Macdonald, Peter B
2011-08-01
To compare the reliability of tibial tunnel position and angle produced with a standard ACL guide (two-dimensional guide) or Howell 65° Guide (three-dimensional guide) in the coronal and sagittal planes. In the sagittal plane, the dependent variables were the angle of the tibial tunnel relative to the tibial plateau and the position of the tibial tunnel with respect to the most posterior aspect of the tibia. In the coronal plane, the dependent variables were the angle of the tunnel with respect to the medial joint line of the tibia and the medial and lateral placement of the tibial tunnel relative to the most medial aspect of the tibia. The position and angle of the tibial tunnel in the coronal and sagittal planes were determined from anteroposterior and lateral radiographs, respectively, taken 2-6 months postoperatively. The two-dimensional and three-dimensional guide groups included 28 and 24 sets of radiographs, respectively. Tibial tunnel position was identified, and tunnel angle measurements were completed. Multiple investigators measured the position and angle of the tunnel 3 times, at least 7 days apart. The angle of the tibial tunnel in the coronal plane using a two-dimensional guide (61.3 ± 4.8°) was more horizontal (P < 0.05) than tunnels drilled with a three-dimensional guide (64.7 ± 6.2°). The position of the tibial tunnel in the sagittal plane was more anterior (P < 0.05) in the two-dimensional (41.6 ± 2.5%) guide group compared to the three-dimensional guide group (43.3 ± 2.9%). The Howell Tibial Guide allows for reliable placement of the tibial tunnel in the coronal plane at an angle of 65°. Tibial tunnels were within the anatomical footprint of the ACL with either technique. Future studies should investigate the effects of tibial tunnel angle on knee function and patient quality of life. Case-control retrospective comparative study, Level III.
Kozik, Pavel; Hoppmann, Christiane A; Gerstorf, Denis
2015-01-01
Future time perspective has been associated with subjective well-being, though depending on the line of research considered either an open-ended future time perspective or a limited future time perspective has been associated with high well-being. Most of this research however has conceptualized future time perspective as a one-dimensional construct, whereas recent evidence has demonstrated that there are likely at least two different underlying dimensions, a focus on opportunities and a focus on limitations. This project first seeks to replicate the two-dimensional structure of the Future Time Perspective Scale, and then examines the associations these dimensions may have with different measures of subjective well-being and a biological index of chronic stress. To test if the two dimensions of the Future Time Perspective Scale, a focus on opportunities and a focus on limitations, differentially associate with two measures of subjective well-being and a biological indicator of chronic stress, namely hair cortisol. Sixty-six community-dwelling participants with a mean age of 72 years (SD = 5.83) completed the Future Time Perspective Scale, Center for Epidemiologic Studies Depression Scale, and Philadelphia Geriatric Center Morale Scale. Participants also provided a 3-cm-long hair strand to index cortisol accumulation over the past 3 months. Following the results of a factor analysis, a mediation model was created for each dimension of the Future Time Perspective Scale, and significance testing was done through a bootstrapping approach to harness maximal statistical power. Factor analysis results replicated the two-dimensional structure of the Future Time Perspective Scale. Both dimensions were then found to have unique associations with well-being. Specifically, a high focus on opportunities was associated with fewer depressive symptoms and higher morale, whereas a low focus on limitations was associated with reduced hair cortisol, though this association was mediated by subjective well-being. RESULTS replicate and extend previous research by pointing to the multi-dimensional nature of the Future Time Perspective Scale. While an open future time perspective was overall beneficial for well-being, the exact association each dimension had with well-being differed depending on whether subjective measures of well-being or biological indices of chronic stress were considered. © 2014 S. Karger AG, Basel.
Finite-time barriers to front propagation in two-dimensional fluid flows
NASA Astrophysics Data System (ADS)
Mahoney, John R.; Mitchell, Kevin A.
2015-08-01
Recent theoretical and experimental investigations have demonstrated the role of certain invariant manifolds, termed burning invariant manifolds (BIMs), as one-way dynamical barriers to reaction fronts propagating within a flowing fluid. These barriers form one-dimensional curves in a two-dimensional fluid flow. In prior studies, the fluid velocity field was required to be either time-independent or time-periodic. In the present study, we develop an approach to identify prominent one-way barriers based only on fluid velocity data over a finite time interval, which may have arbitrary time-dependence. We call such a barrier a burning Lagrangian coherent structure (bLCS) in analogy to Lagrangian coherent structures (LCSs) commonly used in passive advection. Our approach is based on the variational formulation of LCSs using curves of stationary "Lagrangian shear," introduced by Farazmand et al. [Physica D 278-279, 44 (2014)] in the context of passive advection. We numerically validate our technique by demonstrating that the bLCS closely tracks the BIM for a time-independent, double-vortex channel flow with an opposing "wind."
Experimental Observation of Two-Dimensional Anderson Localization with the Atomic Kicked Rotor.
Manai, Isam; Clément, Jean-François; Chicireanu, Radu; Hainaut, Clément; Garreau, Jean Claude; Szriftgiser, Pascal; Delande, Dominique
2015-12-11
Dimension 2 is expected to be the lower critical dimension for Anderson localization in a time-reversal-invariant disordered quantum system. Using an atomic quasiperiodic kicked rotor-equivalent to a two-dimensional Anderson-like model-we experimentally study Anderson localization in dimension 2 and we observe localized wave function dynamics. We also show that the localization length depends exponentially on the disorder strength and anisotropy and is in quantitative agreement with the predictions of the self-consistent theory for the 2D Anderson localization.
Heat transfer of phase-change materials in two-dimensional cylindrical coordinates
NASA Technical Reports Server (NTRS)
Labdon, M. B.; Guceri, S. I.
1981-01-01
Two-dimensional phase-change problem is numerically solved in cylindrical coordinates (r and z) by utilizing two Taylor series expansions for the temperature distributions in the neighborhood of the interface location. These two expansions form two polynomials in r and z directions. For the regions sufficiently away from the interface the temperature field equations are numerically solved in the usual way and the results are coupled with the polynomials. The main advantages of this efficient approach include ability to accept arbitrarily time dependent boundary conditions of all types and arbitrarily specified initial temperature distributions. A modified approach using a single Taylor series expansion in two variables is also suggested.
NASA Astrophysics Data System (ADS)
Deng, Gao-Fu; Gao, Yi-Tian; Gao, Xin-Yi
2018-07-01
In this paper, an extended (3+1)-dimensional Jimbo-Miwa equation with time-dependent coefficients is investigated, which comes from the second member of the Kadomtsev-Petviashvili hierarchy and is shown to be conditionally integrable. Bilinear form, Bäcklund transformation, Lax pair and infinitely-many conservation laws are derived via the binary Bell polynomials and symbolic computation. With the help of the bilinear form, one-, two- and three-soliton solutions are obtained via the Hirota method, one-periodic wave solutions are constructed via the Riemann theta function. Additionally, propagation and interaction of the solitons are investigated analytically and graphically, from which we find that the interaction between the solitons is elastic and the time-dependent coefficients can affect the soliton velocities, but the soliton amplitudes remain unchanged. One-periodic waves approach the one-solitary waves with the amplitudes vanishing and can be viewed as a superposition of the overlapping solitary waves, placed one period apart.
NASA Astrophysics Data System (ADS)
Johnson, Ryan Federick; Chelliah, Harsha Kumar
2017-01-01
For a range of flow and chemical timescales, numerical simulations of two-dimensional laminar flow over a reacting carbon surface were performed to understand further the complex coupling between heterogeneous and homogeneous reactions. An open-source computational package (OpenFOAM®) was used with previously developed lumped heterogeneous reaction models for carbon surfaces and a detailed homogeneous reaction model for CO oxidation. The influence of finite-rate chemical kinetics was explored by varying the surface temperatures from 1800 to 2600 K, while flow residence time effects were explored by varying the free-stream velocity up to 50 m/s. The reacting boundary layer structure dependence on the residence time was analysed by extracting the ratio of chemical source and species diffusion terms. The important contributions of radical species reactions on overall carbon removal rate, which is often neglected in multi-dimensional simulations, are highlighted. The results provide a framework for future development and validation of lumped heterogeneous reaction models based on multi-dimensional reacting flow configurations.
NASA Astrophysics Data System (ADS)
Xu, Qian; Krivets, Vitaliy V.; Sewell, Everest G.; Jacobs, Jeffrey W.
2016-11-01
A vertical shock tube is used to perform experiments on the single-mode three-dimensional Richtmyer-Meshkov Instability (RMI). The light gas (Air) and the heavy gas (SF6) enter from the top and the bottom of the shock tube driven section to form the interface. The initial perturbation is then generated by oscillating the gases vertically. Both gases are seeded with particles generated through vaporizing propylene glycol. An incident shock wave (M 1.2) impacts the interface to create an impulsive acceleration. The seeded particles are illuminated by a dual cavity 75W, Nd: YLF laser. Three high-speed CMOS cameras record time sequences of image pairs at a rate of 2 kHz. The initial perturbation used is that of a single, square-mode perturbation with either a single spike or a single bubble positioned at the center of the shock tube. The full time dependent velocity field is obtained allowing the determination of the circulation versus time. In addition, the evolution of time dependent amplitude is also determined. The results are compared with PIV measurements from previous two-dimensional single mode experiments along with PLIF measurements from previous three-dimensional single mode experiments.
Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics
NASA Technical Reports Server (NTRS)
Roe, P. L.
1984-01-01
A possible technique is explored for extending to multidimensional flows some of the upwind-differencing methods that are highly successful in the one-dimensional case. Emphasis is on the two-dimensional case, and the flow domain is assumed to be divided into polygonal computational elements. Inside each element, the flow is represented by a local superposition of elementary solutions consisting of plane waves not necessarily aligned with the element boundaries.
NASA Technical Reports Server (NTRS)
Bland, S. R.
1982-01-01
Finite difference methods for unsteady transonic flow frequency use simplified equations in which certain of the time dependent terms are omitted from the governing equations. Kernel functions are derived for two dimensional subsonic flow, and provide accurate solutions of the linearized potential equation with the same time dependent terms omitted. These solutions make possible a direct evaluation of the finite difference codes for the linear problem. Calculations with two of these low frequency kernel functions verify the accuracy of the LTRAN2 and HYTRAN2 finite difference codes. Comparisons of the low frequency kernel function results with the Possio kernel function solution of the complete linear equations indicate the adequacy of the HYTRAN approximation for frequencies in the range of interest for flutter calculations.
Singular-Arc Time-Optimal Trajectory of Aircraft in Two-Dimensional Wind Field
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2006-01-01
This paper presents a study of a minimum time-to-climb trajectory analysis for aircraft flying in a two-dimensional altitude dependent wind field. The time optimal control problem possesses a singular control structure when the lift coefficient is taken as a control variable. A singular arc analysis is performed to obtain an optimal control solution on the singular arc. Using a time-scale separation with the flight path angle treated as a fast state, the dimensionality of the optimal control solution is reduced by eliminating the lift coefficient control. A further singular arc analysis is used to decompose the original optimal control solution into the flight path angle solution and a trajectory solution as a function of the airspeed and altitude. The optimal control solutions for the initial and final climb segments are computed using a shooting method with known starting values on the singular arc The numerical results of the shooting method show that the optimal flight path angle on the initial and final climb segments are constant. The analytical approach provides a rapid means for analyzing a time optimal trajectory for aircraft performance.
Directional detection of dark matter with two-dimensional targets
Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; ...
2017-09-01
We propose two-dimensional materials as targets for direct detection of dark matter. Using graphene as an example, we focus on the case where dark matter scattering deposits sufficient energy on a valence-band electron to eject it from the target. Here, we show that the sensitivity of graphene to dark matter of MeV to GeV mass can be comparable, for similar exposure and background levels, to that of semiconductor targets such as silicon and germanium. Moreover, a two-dimensional target is an excellent directional detector, as the ejected electron retains information about the angular dependence of the incident dark matter particle. Ourmore » proposal can be implemented by the PTOLEMY experiment, presenting for the first time an opportunity for directional detection of sub-GeV dark matter.« less
Directional detection of dark matter with two-dimensional targets
NASA Astrophysics Data System (ADS)
Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; Tully, Christopher G.; Zurek, Kathryn M.
2017-09-01
We propose two-dimensional materials as targets for direct detection of dark matter. Using graphene as an example, we focus on the case where dark matter scattering deposits sufficient energy on a valence-band electron to eject it from the target. We show that the sensitivity of graphene to dark matter of MeV to GeV mass can be comparable, for similar exposure and background levels, to that of semiconductor targets such as silicon and germanium. Moreover, a two-dimensional target is an excellent directional detector, as the ejected electron retains information about the angular dependence of the incident dark matter particle. This proposal can be implemented by the PTOLEMY experiment, presenting for the first time an opportunity for directional detection of sub-GeV dark matter.
Directional detection of dark matter with two-dimensional targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela
We propose two-dimensional materials as targets for direct detection of dark matter. Using graphene as an example, we focus on the case where dark matter scattering deposits sufficient energy on a valence-band electron to eject it from the target. Here, we show that the sensitivity of graphene to dark matter of MeV to GeV mass can be comparable, for similar exposure and background levels, to that of semiconductor targets such as silicon and germanium. Moreover, a two-dimensional target is an excellent directional detector, as the ejected electron retains information about the angular dependence of the incident dark matter particle. Ourmore » proposal can be implemented by the PTOLEMY experiment, presenting for the first time an opportunity for directional detection of sub-GeV dark matter.« less
Two-dimensional radiative transfer. I - Planar geometry. [in stellar atmospheres
NASA Technical Reports Server (NTRS)
Mihalas, D.; Auer, L. H.; Mihalas, B. R.
1978-01-01
Differential-equation methods for solving the transfer equation in two-dimensional planar geometries are developed. One method, which uses a Hermitian integration formula on ray segments through grid points, proves to be extremely well suited to velocity-dependent problems. An efficient elimination scheme is developed for which the computing time scales linearly with the number of angles and frequencies; problems with large velocity amplitudes can thus be treated accurately. A very accurate and efficient method for performing a formal solution is also presented. A discussion is given of several examples of periodic media and free-standing slabs, both in static cases and with velocity fields. For the free-standing slabs, two-dimensional transport effects are significant near boundaries, but no important effects were found in any of the periodic cases studied.
Imaging galectin-3 dependent endocytosis with lattice light-sheet microscopy
NASA Astrophysics Data System (ADS)
Baek, Jongho; Lou, Jieqiong; Coelho, Simao; Lim, Yean Jin; Seidlitz, Silvia; Nicovich, Philip R.; Wunder, Christian; Johannes, Ludger; Gaus, Katharina
2017-04-01
Lattice light-sheet (LLS) microscopy provides ultrathin light sheets of a two-dimensional optical lattice that allows us imaging three-dimensional (3D) objects for hundreds of time points at sub-second intervals and at or below the diffraction limit. Galectin-3 (Gal3), a carbohydrate-binding protein, triggers glycosphingolipid (GSL)-dependent biogenesis of morphologically distinct endocytic vesicles that are cargo specific and clathrin independent. In this study, we apply LLS microscopy to study the dynamics of Gal3 dependent endocytosis in live T cells. This will allow us to observe Gal3-mediated endocytosis at high temporal and excellent 3D spatial resolution, which may shed light on our understanding of the mechanism and physiological function of Gal3-induced endocytosis.
NASA Astrophysics Data System (ADS)
Le Gros, M.; Kotlicld, A.; Turrell, B. G.
1990-08-01
The measurement of the field dependence of the nuclear spin-lattice relaxation time of 54Mn in the two manganese sites in the quasi-2 dimensional ferromagnet Mn(COOCH 3) 2·4H 20 obtained by the pulsed NMRON technique is reported. This technique allows the observation in low fields of the higher frequency resonance which previously could not be measured by CW methods. The anomaly in the 54Mn relaxation time observed in the 55Mn level crossing regime is discussed, and the thermometric observation of the field dependence and lice width of the resonance lines from the abundant 55Mn spin systems is reported and related to the 54Mn spin-lattice relaxation behavior.
Numerical solution of the two-dimensional time-dependent incompressible Euler equations
NASA Technical Reports Server (NTRS)
Whitfield, David L.; Taylor, Lafayette K.
1994-01-01
A numerical method is presented for solving the artificial compressibility form of the 2D time-dependent incompressible Euler equations. The approach is based on using an approximate Riemann solver for the cell face numerical flux of a finite volume discretization. Characteristic variable boundary conditions are developed and presented for all boundaries and in-flow out-flow situations. The system of algebraic equations is solved using the discretized Newton-relaxation (DNR) implicit method. Numerical results are presented for both steady and unsteady flow.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.; Nwadike, E. V.
1982-01-01
The six-volume report: describes the theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorate (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth (e.g., natural or man-made inland lakes) because surface elevation has been removed as a parameter. These models allow computation of time dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions.
Quantum and classical dissipation of charged particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibarra-Sierra, V.G.; Anzaldo-Meneses, A.; Cardoso, J.L.
2013-08-15
A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle.more » •Classical and quantum dynamics of a damped electric charge.« less
Cao, Lushuai; Krönke, Sven; Vendrell, Oriol; Schmelcher, Peter
2013-10-07
We develop the multi-layer multi-configuration time-dependent Hartree method for bosons (ML-MCTDHB), a variational numerically exact ab initio method for studying the quantum dynamics and stationary properties of general bosonic systems. ML-MCTDHB takes advantage of the permutation symmetry of identical bosons, which allows for investigations of the quantum dynamics from few to many-body systems. Moreover, the multi-layer feature enables ML-MCTDHB to describe mixed bosonic systems consisting of arbitrary many species. Multi-dimensional as well as mixed-dimensional systems can be accurately and efficiently simulated via the multi-layer expansion scheme. We provide a detailed account of the underlying theory and the corresponding implementation. We also demonstrate the superior performance by applying the method to the tunneling dynamics of bosonic ensembles in a one-dimensional double well potential, where a single-species bosonic ensemble of various correlation strengths and a weakly interacting two-species bosonic ensemble are considered.
Time-dependent interaction between a two-level atom and a su(1,1) Lie algebra quantum system
NASA Astrophysics Data System (ADS)
Abdalla, M. Sebaweh; Khalil, E. M.; Obada, A.-S. F.
2017-06-01
The problem of the interaction between a two-level atom and a two-mode field in the parametric amplifier-type is considered. A similar problem appears in an ion trapped in a two-dimensional trap. The problem is transformed into an interaction governed by su(1,1) Lie algebraic operators with phase and coupling parameter depending on time. Under an integrability condition, that relates phase and coupling, a solution to the wavefunction is obtained using the Schrödinger equation. The effects of the functional dependence of the coupling and the initial state of the two-level atom on atomic inversion, the degree of entanglement, the fidelity and the Glauber second-order correlation function are investigated. It is shown that the acceleration term plays an important role in controlling the function behavior of the considered quantities.
NASA Astrophysics Data System (ADS)
Kreer, Torsten; Meyer, Hendrik; Baschnagel, Joerg
2008-03-01
By means of numerical investigations we demonstrate that the structural relaxation of linear polymers in two dimensional (space-filling) melts is characterized by ameba-like diffusion, where the chains relax via frictional dissipation at their interfacial contact lines. The perimeter length of the contact line determines a new length scale, which does not exist in three dimensions. We show how this length scale follows from the critical exponents, which hence characterize not only the static but also the dynamic properties of the melt. Our data is in agreement with recent theoretical predictions, concerning the time-dependence of single-monomer mean-square displacements and the scaling of concomitant relaxation times with the degree of polymerization. For the latter we demonstrate a density crossover-scaling as an additional test for ameba-like relaxation. We compare our results to the conceptually different Rouse model, which predicts numerically close exponents. Our data can clearly rule out the classical picture as the relevant relaxation mechanism in two-dimensional polymer melts.
Logarithmic Superdiffusion in Two Dimensional Driven Lattice Gases
NASA Astrophysics Data System (ADS)
Krug, J.; Neiss, R. A.; Schadschneider, A.; Schmidt, J.
2018-03-01
The spreading of density fluctuations in two-dimensional driven diffusive systems is marginally anomalous. Mode coupling theory predicts that the diffusivity in the direction of the drive diverges with time as (ln t)^{2/3} with a prefactor depending on the macroscopic current-density relation and the diffusion tensor of the fluctuating hydrodynamic field equation. Here we present the first numerical verification of this behavior for a particular version of the two-dimensional asymmetric exclusion process. Particles jump strictly asymmetrically along one of the lattice directions and symmetrically along the other, and an anisotropy parameter p governs the ratio between the two rates. Using a novel massively parallel coupling algorithm that strongly reduces the fluctuations in the numerical estimate of the two-point correlation function, we are able to accurately determine the exponent of the logarithmic correction. In addition, the variation of the prefactor with p provides a stringent test of mode coupling theory.
Analytical solutions to non-Fickian subsurface dispersion in uniform groundwater flow
Zou, S.; Xia, J.; Koussis, Antonis D.
1996-01-01
Analytical solutions are obtained by the Fourier transform technique for the one-, two-, and three-dimensional transport of a conservative solute injected instantaneously in a uniform groundwater flow. These solutions account for dispersive non-linearity caused by the heterogeneity of the hydraulic properties of aquifer systems and can be used as building blocks to construct solutions by convolution (principle of superposition) for source conditions other than slug injection. The dispersivity is assumed to vary parabolically with time and is thus constant for the entire system at any given time. Two approaches for estimating time-dependent dispersion parameters are developed for two-dimensional plumes. They both require minimal field tracer test data and, therefore, represent useful tools for assessing real-world aquifer contamination sites. The first approach requires mapped plume-area measurements at two specific times after the tracer injection. The second approach requires concentration-versus-time data from two sampling wells through which the plume passes. Detailed examples and comparisons with other procedures show that the methods presented herein are sufficiently accurate and easier to use than other available methods.
Localization and tracking of moving objects in two-dimensional space by echolocation.
Matsuo, Ikuo
2013-02-01
Bats use frequency-modulated echolocation to identify and capture moving objects in real three-dimensional space. Experimental evidence indicates that bats are capable of locating static objects with a range accuracy of less than 1 μs. A previously introduced model estimates ranges of multiple, static objects using linear frequency modulation (LFM) sound and Gaussian chirplets with a carrier frequency compatible with bat emission sweep rates. The delay time for a single object was estimated with an accuracy of about 1.3 μs by measuring the echo at a low signal-to-noise ratio (SNR). The range accuracy was dependent not only on the SNR but also the Doppler shift, which was dependent on the movements. However, it was unclear whether this model could estimate the moving object range at each timepoint. In this study, echoes were measured from the rotating pole at two receiving points by intermittently emitting LFM sounds. The model was shown to localize moving objects in two-dimensional space by accurately estimating the object's range at each timepoint.
Computation of steady nozzle flow by a time-dependent method
NASA Technical Reports Server (NTRS)
Cline, M. C.
1974-01-01
The equations of motion governing steady, inviscid flow are of a mixed type, that is, hyperbolic in the supersonic region and elliptic in the subsonic region. These mathematical difficulties may be removed by using the so-called time-dependent method, where the governing equations become hyperbolic everywhere. The steady-state solution may be obtained as the asymptotic solution for large time. The object of this research was to develop a production type computer program capable of solving converging, converging-diverging, and plug two-dimensional nozzle flows in computational times of 1 min or less on a CDC 6600 computer.
Slow quench dynamics of a one-dimensional Bose gas confined to an optical lattice.
Bernier, Jean-Sébastien; Roux, Guillaume; Kollath, Corinna
2011-05-20
We analyze the effect of a linear time variation of the interaction strength on a trapped one-dimensional Bose gas confined to an optical lattice. The evolution of different observables such as the experimentally accessible on site particle distribution are studied as a function of the ramp time by using time-dependent numerical techniques. We find that the dynamics of a trapped system typically displays two regimes: For long ramp times, the dynamics is governed by density redistribution, while at short ramp times, local dynamics dominates as the evolution is identical to that of an homogeneous system. In the homogeneous limit, we also discuss the nontrivial scaling of the energy absorbed with the ramp time.
Vortex motion in doubly connected domains
NASA Astrophysics Data System (ADS)
Zannetti, L.; Gallizio, F.; Ottino, G. M.
The unsteady two-dimensional rotational flow past doubly connected domains is analytically addressed. By concentrating the vorticity in point vortices, the flow is modelled as a potential flow with point singularities. The dependence of the complex potential on time is defined according to the Kelvin theorem. The general case of non-null circulations around the solid bodies is discussed. Vortex shedding and time evolution of the circulation past a two-element airfoil and past a two-bladed Darrieus turbine are presented as physically coherent examples.
Jiménez-Aquino, J I; Romero-Bastida, M
2011-07-01
The detection of weak signals through nonlinear relaxation times for a Brownian particle in an electromagnetic field is studied in the dynamical relaxation of the unstable state, characterized by a two-dimensional bistable potential. The detection process depends on a dimensionless quantity referred to as the receiver output, calculated as a function of the nonlinear relaxation time and being a characteristic time scale of our system. The latter characterizes the complete dynamical relaxation of the Brownian particle as it relaxes from the initial unstable state of the bistable potential to its corresponding steady state. The one-dimensional problem is also studied to complement the description.
Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles
Wang, Jiajun; Karen Chen-Wiegart, Yu-chen; Eng, Christopher; ...
2016-08-12
Anisotropy, or alternatively, isotropy of phase transformations extensively exist in a number of solid-state materials, with performance depending on the three-dimensional transformation features. Fundamental insights into internal chemical phase evolution allow manipulating materials with desired functionalities, and can be developed via real-time multi-dimensional imaging methods. In this paper, we report a five-dimensional imaging method to track phase transformation as a function of charging time in individual lithium iron phosphate battery cathode particles during delithiation. The electrochemically driven phase transformation is initially anisotropic with a preferred boundary migration direction, but becomes isotropic as delithiation proceeds further. We also observe the expectedmore » two-phase coexistence throughout the entire charging process. Finally, we expect this five-dimensional imaging method to be broadly applicable to problems in energy, materials, environmental and life sciences.« less
Stopping dynamics of ions passing through correlated honeycomb clusters
NASA Astrophysics Data System (ADS)
Balzer, Karsten; Schlünzen, Niclas; Bonitz, Michael
2016-12-01
A combined nonequilibrium Green functions-Ehrenfest dynamics approach is developed that allows for a time-dependent study of the energy loss of a charged particle penetrating a strongly correlated system at zero and finite temperatures. Numerical results are presented for finite inhomogeneous two-dimensional Fermi-Hubbard models, where the many-electron dynamics in the target are treated fully quantum mechanically and the motion of the projectile is treated classically. The simulations are based on the solution of the two-time Dyson (Keldysh-Kadanoff-Baym) equations using the second-order Born, third-order, and T -matrix approximations of the self-energy. As application, we consider protons and helium nuclei with a kinetic energy between 1 and 500 keV/u passing through planar fragments of the two-dimensional honeycomb lattice and, in particular, examine the influence of electron-electron correlations on the energy exchange between projectile and electron system. We investigate the time dependence of the projectile's kinetic energy (stopping power), the electron density, the double occupancy, and the photoemission spectrum. Finally, we show that, for a suitable choice of the Hubbard model parameters, the results for the stopping power are in fair agreement with ab initio simulations for particle irradiation of single-layer graphene.
Spreading of mercury droplets on thin silver films at room temperature.
Be'er, Avraham; Lereah, Yossi; Frydman, Aviad; Taitelbaum, Haim
2007-05-01
We study the spreading characteristics of a reactive-wetting system of mercury (Hg) droplets on silver (Ag) films in room temperature. This is done using our recently developed method for reconstructing the dynamical three-dimensional shape of spreading droplets from two-dimensional microscope images [A. Be'er and Y. Lereah, J. Microsc. 208, 148 (2002)]. We study the time evolution of the droplet radius and its contact angle, and find that the spreading process consists of two stages: (i) the "bulk propagation" regime, controlled by chemical reaction on the surface, and (ii) the "fast-flow" regime, which occurs within the metal film as well as on the surface and consists of both reactive and diffusive propagation. We show that the transition time between the two main time regimes depends solely on the thickness of the Ag film. We also discuss the chemical structure of the intermetallic compound formed in this process.
Noda, Isao
2018-05-15
Two cyclic diastereoisomeric structures, known as α- and β-anomers of d-glucose with different configurations around C1 with OH groups in axial or equitroial positions, undergo the mutarotation conversion to each other in water. Two-dimensional correlation and codistribution spectroscopy (2DCOS and 2DCDS) analyses were applied to the time-dependent ATR IR spectra of aqueous solutions of α- and β-d-glucose undergoing such mutarotation conversion. 2DCOS analysis reveals that the increase and decrease in the IR intensities after the dissolution of α- or β-d-glucose are not fully synchronized, suggesting the mutarotation of d-glucose in water is not a simple binary conversion process but a multi-step reaction involving an intermediate species with a finite and observable concentration level and lifetime. 2DCDS analysis of the time-dependent ATR IR spectra clearly demonstrated the presence of intermediate species contributing to the band positions overlapped close to bands for α- and β-d-glucose. The fact that band positions identified for the intermediate species for α- to β-d-glucose conversion are the same for the reverse reaction suggests that they arise from the same species, most likely the open-ring structure produced by the hydrolysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Breathing is different in the quantum world
NASA Astrophysics Data System (ADS)
Bonitz, Michael; Bauch, Sebastian; Balzer, Karsten; Henning, Christian; Hochstuhl, David
2009-11-01
Interacting classicle particles in a harmonic trap are known to possess a radial collective oscillation -- the breathing mode (BM). In case of Coulomb interaction its frequency is universal -- it is independent of the particle number and system dimensionality [1]. Here we study strongly correlated quantum systems. We report a qualitatively different breathing behavior: a quantum system has two BMs one of which is universal whereas the frequency of the other varies with system dimensionality, the particle spin and the strength of the pair interaction. The results are based on exact solutions of the time-dependent Schr"odinger equation for two particles and on time-dependent many-body results for larger particle numbers. Finally, we discuss experimental ways to excite and measure the breathing frequencies which should give direct access to key properties of trapped particles, including their many-body effects [2]. [4pt] [1] C. Henning et al., Phys. Rev. Lett. 101, 045002 (2008) [0pt] [2] S. Bauch, K. Balzer, C. Henning, and M. Bonitz, submitted to Phys. Rev. Lett., arXiv:0903.1993
NASA Astrophysics Data System (ADS)
Arendt, V.; Shalchi, A.
2018-06-01
We explore numerically the transport of energetic particles in a turbulent magnetic field configuration. A test-particle code is employed to compute running diffusion coefficients as well as particle distribution functions in the different directions of space. Our numerical findings are compared with models commonly used in diffusion theory such as Gaussian distribution functions and solutions of the cosmic ray Fokker-Planck equation. Furthermore, we compare the running diffusion coefficients across the mean magnetic field with solutions obtained from the time-dependent version of the unified non-linear transport theory. In most cases we find that particle distribution functions are indeed of Gaussian form as long as a two-component turbulence model is employed. For turbulence setups with reduced dimensionality, however, the Gaussian distribution can no longer be obtained. It is also shown that the unified non-linear transport theory agrees with simulated perpendicular diffusion coefficients as long as the pure two-dimensional model is excluded.
Finite state modeling of aeroelastic systems
NASA Technical Reports Server (NTRS)
Vepa, R.
1977-01-01
A general theory of finite state modeling of aerodynamic loads on thin airfoils and lifting surfaces performing completely arbitrary, small, time-dependent motions in an airstream is developed and presented. The nature of the behavior of the unsteady airloads in the frequency domain is explained, using as raw materials any of the unsteady linearized theories that have been mechanized for simple harmonic oscillations. Each desired aerodynamic transfer function is approximated by means of an appropriate Pade approximant, that is, a rational function of finite degree polynomials in the Laplace transform variable. The modeling technique is applied to several two dimensional and three dimensional airfoils. Circular, elliptic, rectangular and tapered planforms are considered as examples. Identical functions are also obtained for control surfaces for two and three dimensional airfoils.
Two-dimensional simulations of stimulated Brillouin scattering in laser produced plasmas
NASA Astrophysics Data System (ADS)
Amin, M. R.; Capjack, C. E.; Frycz, P.; Rozmus, W.; Tikhonchuk, V. T.
1993-07-01
A system of electromagnetic and ion acoustic wave equations coupled via the ponderomotive force are solved numerically in a two-dimensional planar geometry. The competition between forward, side, and backward Brillouin scattering of the finite size laser beam is studied for the first time without the standard paraxial optics approximation. Simulations reveal a strong dependence of the scattered light characteristics on the geometry of the interaction region, the shape of the pump beam, and the ion acoustic wave damping. The main effects include side and forward scattering enhancement and a stimulation of collimated backward scattered radiation.
NASA Astrophysics Data System (ADS)
Avilés, L.; Canfora, F.; Dimakis, N.; Hidalgo, D.
2017-12-01
We construct the first analytic examples of topologically nontrivial solutions of the (3 +1 )-dimensional U (1 ) gauged Skyrme model within a finite box in (3 +1 )-dimensional flat space-time. There are two types of gauged solitons. The first type corresponds to gauged Skyrmions living within a finite volume. The second corresponds to gauged time crystals (smooth solutions of the U (1 ) gauged Skyrme model whose periodic time dependence is protected by a winding number). The notion of electromagnetic duality can be extended for these two types of configurations in the sense that the electric and one of the magnetic components can be interchanged. These analytic solutions show very explicitly the Callan-Witten mechanism (according to which magnetic monopoles may "swallow" part of the topological charge of the Skyrmion) since the electromagnetic field contributes directly to the conserved topological charge of the gauged Skyrmions. As it happens in superconductors, the magnetic field is suppressed in the core of the gauged Skyrmions. On the other hand, the electric field is strongly suppresed in the core of gauged time crystals.
NASA Astrophysics Data System (ADS)
Sui, Heliang; Hao, Xiaofei; Luo, Yiwei; Xu, Jinjiang; Zhong, Fachun; Xu, Ruijuan
2017-09-01
Two-dimensional X-ray photoelectron spectroscopy (2DXPS) was employed to obtain the radiation resistance order of high explosives. Mixed hexanitrohexaazaisowurtzitane (CL-20) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) were irradiated by X-ray radiation. The time-dependent N1s XPS spectra were collected. 2DXPS was used to analyze the variation of the binding energy peaks. The main degradation time of TATB was longer than that of CL-20. CL-20 changes occurred prior to that of TATB during radiation. These changes suggest that TATB exhibited higher radiation resistance property than CL-20. 2DXPS is a very useful method to distinguish the radiation resistance orders of materials.
Quasi-static MHD processes in earth's magnetosphere
NASA Technical Reports Server (NTRS)
Voigt, Gerd-Hannes
1988-01-01
An attempt is made to use the MHD equilibrium theory to describe the global magnetic field configuration of earth's magnetosphere and its time evolution under the influence of magnetospheric convection. To circumvent the difficulties inherent in today's MHD codes, use is made of a restriction to slowly time-dependent convection processes with convective velocities well below the typical Alfven speed. This restriction leads to a quasi-static MHD theory. The two-dimensional theory is outlined, and it is shown how sequences of two-dimensional equilibria evolve into a steady state configuration that is likely to become tearing mode unstable. It is then concluded that magnetospheric substorms occur periodically in earth's magnetosphere, thus being an integral part of the entire convection cycle.
NASA Technical Reports Server (NTRS)
Wang, P.; Li, P.
1998-01-01
A high-resolution numerical study on parallel systems is reported on three-dimensional, time-dependent, thermal convective flows. A parallel implentation on the finite volume method with a multigrid scheme is discussed, and a parallel visualization systemm is developed on distributed systems for visualizing the flow.
NASA Astrophysics Data System (ADS)
Stich, D.; Zhou, J.; Korn, T.; Schulz, R.; Schuh, D.; Wegscheider, W.; Wu, M. W.; Schüller, C.
2007-11-01
We have studied the spin dynamics of a high-mobility two-dimensional electron system in a GaAs/Al0.3Ga0.7As single quantum well by time-resolved Faraday rotation and time-resolved Kerr rotation in dependence on the initial degree of spin polarization, P , of the electrons. By increasing the initial spin polarization from the low- P regime to a significant P of several percent, we find that the spin dephasing time, T2* , increases from about 20to200ps . Moreover, T2* increases with temperature at small spin polarization but decreases with temperature at large spin polarization. All these features are in good agreement with theoretical predictions by Weng and Wu [Phys. Rev. B 68, 075312 (2003)]. Measurements as a function of spin polarization at fixed electron density are performed to further confirm the theory. A fully microscopic calculation is performed by setting up and numerically solving the kinetic spin Bloch equations, including the D’yakonov-Perel’ and the Bir-Aronov-Pikus mechanisms, with all the scattering explicitly included. We reproduce all principal features of the experiments, i.e., a dramatic decrease of spin dephasing with increasing P and the temperature dependences at different spin polarizations.
Directional change of fluid particles in two-dimensional turbulence and of football players
NASA Astrophysics Data System (ADS)
Kadoch, Benjamin; Bos, Wouter J. T.; Schneider, Kai
2017-06-01
Multiscale directional statistics are investigated in two-dimensional incompressible turbulence. It is shown that the short-time behavior of the mean angle of directional change of fluid particles is linearly dependent on the time lag and that no inertial range behavior is observed in the directional change associated with the enstrophy-cascade range. In simulations of the inverse-cascade range, the directional change shows a power law behavior at inertial range time scales. By comparing the directional change in space-periodic and wall-bounded flow, it is shown that the probability density function of the directional change at long times carries the signature of the confinement. The geometrical origin of this effect is validated by Monte Carlo simulations. The same effect is also observed in the directional statistics computed from the trajectories of football players (soccer players in American English).
Well-posed continuum equations for granular flow with compressibility and μ(I)-rheology
NASA Astrophysics Data System (ADS)
Barker, T.; Schaeffer, D. G.; Shearer, M.; Gray, J. M. N. T.
2017-05-01
Continuum modelling of granular flow has been plagued with the issue of ill-posed dynamic equations for a long time. Equations for incompressible, two-dimensional flow based on the Coulomb friction law are ill-posed regardless of the deformation, whereas the rate-dependent μ(I)-rheology is ill-posed when the non-dimensional inertial number I is too high or too low. Here, incorporating ideas from critical-state soil mechanics, we derive conditions for well-posedness of partial differential equations that combine compressibility with I-dependent rheology. When the I-dependence comes from a specific friction coefficient μ(I), our results show that, with compressibility, the equations are well-posed for all deformation rates provided that μ(I) satisfies certain minimal, physically natural, inequalities.
Well-posed continuum equations for granular flow with compressibility and μ(I)-rheology
Schaeffer, D. G.; Shearer, M.; Gray, J. M. N. T.
2017-01-01
Continuum modelling of granular flow has been plagued with the issue of ill-posed dynamic equations for a long time. Equations for incompressible, two-dimensional flow based on the Coulomb friction law are ill-posed regardless of the deformation, whereas the rate-dependent μ(I)-rheology is ill-posed when the non-dimensional inertial number I is too high or too low. Here, incorporating ideas from critical-state soil mechanics, we derive conditions for well-posedness of partial differential equations that combine compressibility with I-dependent rheology. When the I-dependence comes from a specific friction coefficient μ(I), our results show that, with compressibility, the equations are well-posed for all deformation rates provided that μ(I) satisfies certain minimal, physically natural, inequalities. PMID:28588402
Well-posed continuum equations for granular flow with compressibility and μ(I)-rheology.
Barker, T; Schaeffer, D G; Shearer, M; Gray, J M N T
2017-05-01
Continuum modelling of granular flow has been plagued with the issue of ill-posed dynamic equations for a long time. Equations for incompressible, two-dimensional flow based on the Coulomb friction law are ill-posed regardless of the deformation, whereas the rate-dependent μ ( I )-rheology is ill-posed when the non-dimensional inertial number I is too high or too low. Here, incorporating ideas from critical-state soil mechanics, we derive conditions for well-posedness of partial differential equations that combine compressibility with I -dependent rheology. When the I -dependence comes from a specific friction coefficient μ ( I ), our results show that, with compressibility, the equations are well-posed for all deformation rates provided that μ ( I ) satisfies certain minimal, physically natural, inequalities.
NASA Astrophysics Data System (ADS)
Lotfy, K.; Sarkar, N.
2017-11-01
In this work, a novel generalized model of photothermal theory with two-temperature thermoelasticity theory based on memory-dependent derivative (MDD) theory is performed. A one-dimensional problem for an elastic semiconductor material with isotropic and homogeneous properties has been considered. The problem is solved with a new model (MDD) under the influence of a mechanical force with a photothermal excitation. The Laplace transform technique is used to remove the time-dependent terms in the governing equations. Moreover, the general solutions of some physical fields are obtained. The surface taken into consideration is free of traction and subjected to a time-dependent thermal shock. The numerical Laplace inversion is used to obtain the numerical results of the physical quantities of the problem. Finally, the obtained results are presented and discussed graphically.
Analysis of electrophoresis performance
NASA Technical Reports Server (NTRS)
Roberts, G. O.
1984-01-01
The SAMPLE computer code models electrophoresis separation in a wide range of conditions. Results are included for steady three dimensional continuous flow electrophoresis (CFE), time dependent gel and acetate film experiments in one or two dimensions and isoelectric focusing in one dimension. The code evolves N two dimensional radical concentration distributions in time, or distance down a CFE chamber. For each time or distance increment, there are six stages, successively obtaining the pH distribution, the corresponding degrees of ionization for each radical, the conductivity, the electric field and current distribution, and the flux components in each direction for each separate radical. The final stage is to update the radical concentrations. The model formulation for ion motion in an electric field ignores activity effects, and is valid only for low concentrations; for larger concentrations the conductivity is, therefore, also invalid.
NASA Technical Reports Server (NTRS)
Cline, M. C.
1981-01-01
A computer program, VNAP2, for calculating turbulent (as well as laminar and inviscid), steady, and unsteady flow is presented. It solves the two dimensional, time dependent, compressible Navier-Stokes equations. The turbulence is modeled with either an algebraic mixing length model, a one equation model, or the Jones-Launder two equation model. The geometry may be a single or a dual flowing stream. The interior grid points are computed using the unsplit MacCormack scheme. Two options to speed up the calculations for high Reynolds number flows are included. The boundary grid points are computed using a reference plane characteristic scheme with the viscous terms treated as source functions. An explicit artificial viscosity is included for shock computations. The fluid is assumed to be a perfect gas. The flow boundaries may be arbitrary curved solid walls, inflow/outflow boundaries, or free jet envelopes. Typical problems that can be solved concern nozzles, inlets, jet powered afterbodies, airfoils, and free jet expansions. The accuracy and efficiency of the program are shown by calculations of several inviscid and turbulent flows. The program and its use are described completely, and six sample cases and a code listing are included.
Two-Dimensional Modelling of the Hall Thruster Discharge: Final Report
2007-09-10
performing a number Nprob,jk of probability tests to determine the real number of macroions to be created, Njk, in a particular cell and time step. The...hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...temperature-dependent yield expression is proposed, which avoids integrals expressions at the same time that it recovers approximately the reduction of that
Turbulence imaging and applications using beam emission spectroscopy on DIII-D (invited)
NASA Astrophysics Data System (ADS)
McKee, G. R.; Fenzi, C.; Fonck, R. J.; Jakubowski, M.
2003-03-01
Two-dimensional measurements of density fluctuations are obtained in the radial and poloidal plane of the DIII-D tokamak with the Beam Emission Spectroscopy (BES) diagnostic system. The goals are to visualize the spatial structure and time evolution of turbulent eddies, as well as to obtain the 2D statistical properties of turbulence. The measurements are obtained with an array of localized BES spatial channels configured to image a midplane region of the plasma. 32 channels have been deployed, each with a spatial resolution of about 1 cm in the radial and poloidal directions, thus providing measurements of turbulence in the wave number range 0
Exact Solutions for Wind-Driven Coastal Upwelling and Downwelling over Sloping Topography
NASA Astrophysics Data System (ADS)
Choboter, P.; Duke, D.; Horton, J.; Sinz, P.
2009-12-01
The dynamics of wind-driven coastal upwelling and downwelling are studied using a simplified dynamical model. Exact solutions are examined as a function of time and over a family of sloping topographies. Assumptions in the two-dimensional model include a frictionless ocean interior below the surface Ekman layer, and no alongshore dependence of the variables; however, dependence in the cross-shore and vertical directions is retained. Additionally, density and alongshore momentum are advected by the cross-shore velocity in order to maintain thermal wind. The time-dependent initial-value problem is solved with constant initial stratification and no initial alongshore flow. An alongshore pressure gradient is added to allow the cross-shore flow to be geostrophically balanced far from shore. Previously, this model has been used to study upwelling over flat-bottom and sloping topographies, but the novel feature in this work is the discovery of exact solutions for downwelling. These exact solutions are compared to numerical solutions from a primitive-equation ocean model, based on the Princeton Ocean Model, configured in a similar two-dimensional geometry. Many typical features of the evolution of density and velocity during downwelling are displayed by the analytical model.
NASA Technical Reports Server (NTRS)
Sondergaard, R.; Cantwell, B.; Mansour, N.
1997-01-01
Direct numerical simulations have been used to examine the effect of the initial disturbance field on the development of three-dimensionality and the transition to turbulence in the incompressible plane wake. The simulations were performed using a new numerical method for solving the time-dependent, three-dimensional, incompressible Navier-Stokes equations in flows with one infinite and two periodic directions. The method uses standard Fast Fourier Transforms and is applicable to cases where the vorticity field is compact in the infinite direction. Initial disturbances fields examined were combinations of two-dimensional waves and symmetric pairs of 60 deg oblique waves at the fundamental, subharmonic, and sub-subharmonic wavelengths. The results of these simulations indicate that the presence of 60 deg disturbances at the subharmonic streamwise wavelength results in the development of strong coherent three-dimensional structures. The resulting strong three-dimensional rate-of-strain triggers the growth of intense fine scale motions. Wakes initiated with 60 deg disturbances at the fundamental streamwise wavelength develop weak coherent streamwise structures, and do not develop significant fine scale motions, even at high Reynolds numbers. The wakes which develop strong three-dimensional structures exhibit growth rates on par with experimentally observed turbulent plane wakes. Wakes which develop only weak three-dimensional structures exhibit significantly lower late time growth rates. Preliminary studies of wakes initiated with an oblique fundamental and a two-dimensional subharmonic, which develop asymmetric coherent oblique structures at the subharmonic wavelength, indicate that significant fine scale motions only develop if the resulting oblique structures are above an angle of approximately 45 deg.
NASA Astrophysics Data System (ADS)
Childress, Stephen; Gilbert, Andrew D.
2018-02-01
A theory of an eroding ‘hairpin’ vortex dipole structure in three-dimensions is developed, extending our previous study of an axisymmetric eroding dipole without swirl. The axisymmetric toroidal dipole was found to lead to maximal growth of vorticity, as {t}4/3. The hairpin is here similarly proposed as a model to produce large ‘self-stretching’ of vorticity, with the possibility of finite-time blow-up. We derive a system of partial differential equations of ‘generalized’ form, involving contour averaging of a locally two-dimensional Euler flow. We do not attempt here to solve the system exactly, but point out that non-existence of physically acceptable solutions would most probably be a result of the axial flow. Because of the axial flow the vorticity distribution within the dipole eddies is no longer of the simple Sadovskii type (vorticity constant over a cross-section) obtained in the axisymmetric problem. Thus the solution of the system depends upon the existence of a larger class of propagating two-dimensional dipoles. The hairpin model is obtained by formal asymptotic analysis. As in the axisymmetric problem a local transformation to ‘shrinking’ coordinates is introduced, but now in a self-similar form appropriate to the study of a possible finite-time singularity. We discuss some properties of the model, including a study of the helicity and a first step in iterating toward a solution from the Sadovskii structure. We also present examples of two-dimensional propagating dipoles not previously studied, which have a vorticity profile consistent with our model. Although no rigorous results can be given, and analysis of the system is only partial, the formal calculations are consistent with the possibility of a finite time blowup of vorticity at a point of vanishing circulation of the dipole eddies, but depending upon the existence of the necessary two-dimensional propagating dipole. Our results also suggest that conservation of kinetic energy as realized in the eroding hairpin excludes a finite time blowup for the corresponding Navier-Stokes model.
Stokes' theorem, gauge symmetry and the time-dependent Aharonov-Bohm effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macdougall, James, E-mail: jbm34@mail.fresnostate.edu; Singleton, Douglas, E-mail: dougs@csufresno.edu
2014-04-15
Stokes' theorem is investigated in the context of the time-dependent Aharonov-Bohm effect—the two-slit quantum interference experiment with a time varying solenoid between the slits. The time varying solenoid produces an electric field which leads to an additional phase shift which is found to exactly cancel the time-dependent part of the usual magnetic Aharonov-Bohm phase shift. This electric field arises from a combination of a non-single valued scalar potential and/or a 3-vector potential. The gauge transformation which leads to the scalar and 3-vector potentials for the electric field is non-single valued. This feature is connected with the non-simply connected topology ofmore » the Aharonov-Bohm set-up. The non-single valued nature of the gauge transformation function has interesting consequences for the 4-dimensional Stokes' theorem for the time-dependent Aharonov-Bohm effect. An experimental test of these conclusions is proposed.« less
Albert, Julian; Falge, Mirjam; Gomez, Sandra; Sola, Ignacio R; Hildenbrand, Heiko; Engel, Volker
2015-07-28
We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.
NASA Technical Reports Server (NTRS)
Cebeci, T.; Carr, L. W.
1978-01-01
A computer program is described which provides solutions of two dimensional equations appropriate to laminar and turbulent boundary layers for boundary conditions with an external flow which fluctuates in magnitude. The program is based on the numerical solution of the governing boundary layer equations by an efficient two point finite difference method. An eddy viscosity formulation was used to model the Reynolds shear stress term. The main features of the method are briefly described and instructions for the computer program with a listing are provided. Sample calculations to demonstrate its usage and capabilities for laminar and turbulent unsteady boundary layers with an external flow which fluctuated in magnitude are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Julian; Falge, Mirjam; Hildenbrand, Heiko
2015-07-28
We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.
Structure and Dynamics of the Solar Corona
NASA Technical Reports Server (NTRS)
Schnack, D. D.
1994-01-01
Advanced computational techniques were used to study solar coronal heating and coronal mass ejections. A three dimensional, time dependent resistive magnetohydrodynamic code was used to study the dynamic response of a model corona to continuous, slow, random magnetic footpoint displacements in the photosphere. Three dimensional numerical simulations of the response of the corona to simple smooth braiding flows in the photosphere were calculated to illustrate and understand the spontaneous formation of current filaments. Two dimensional steady state helmet streamer configurations were obtained by determining the time asymptotic state of the interaction of an initially one dimensinal transponic solar wind with a spherical potential dipole field. The disruption of the steady state helmet streamer configuration was studied as a response to shearing of the magnetic footpoints of the closed field lines under the helmet.
Inter- and Intra-Dimensional Dependencies in Implicit Phonotactic Learning
ERIC Educational Resources Information Center
Moreton, Elliott
2012-01-01
Is phonological learning subject to the same inductive biases as learning in other domains? Previous studies of non-linguistic learning found that intra-dimensional dependencies (between two instances of the same feature) were learned more easily than inter-dimensional ones. This study compares implicit learning of intra- and inter-dimensional…
Test of quantum thermalization in the two-dimensional transverse-field Ising model
Blaß, Benjamin; Rieger, Heiko
2016-01-01
We study the quantum relaxation of the two-dimensional transverse-field Ising model after global quenches with a real-time variational Monte Carlo method and address the question whether this non-integrable, two-dimensional system thermalizes or not. We consider both interaction quenches in the paramagnetic phase and field quenches in the ferromagnetic phase and compare the time-averaged probability distributions of non-conserved quantities like magnetization and correlation functions to the thermal distributions according to the canonical Gibbs ensemble obtained with quantum Monte Carlo simulations at temperatures defined by the excess energy in the system. We find that the occurrence of thermalization crucially depends on the quench parameters: While after the interaction quenches in the paramagnetic phase thermalization can be observed, our results for the field quenches in the ferromagnetic phase show clear deviations from the thermal system. These deviations increase with the quench strength and become especially clear comparing the shape of the thermal and the time-averaged distributions, the latter ones indicating that the system does not completely lose the memory of its initial state even for strong quenches. We discuss our results with respect to a recently formulated theorem on generalized thermalization in quantum systems. PMID:27905523
A time-based concept for terminal-area traffic management
NASA Technical Reports Server (NTRS)
Erzberger, H.; Tobias, L.
1986-01-01
An automated air-traffic-management concept that has the potential for significantly increasing the efficiency of traffic flows in high-density terminal areas is discussed. The concept's implementation depends on the techniques for controlling the landing time of all aircraft entering the terminal area, both those that are equipped with on-board four dimensional guidance systems as well as those aircraft types that are conventionally equipped. The two major ground-based elements of the system are a scheduler which assigns conflict-free landing times and a profile descent advisor. Landing times provided by the scheduler are uplinked to equipped aircraft and translated into the appropriate four dimensional trajectory by the on-board flight-management system. The controller issues descent advisories to unequipped aircraft to help them achieve the assigned landing times. Air traffic control simulations have established that the concept provides an efficient method for controlling various mixes of four dimensional-equipped and unequipped, as well as low-and high-performance, aircraft.
An interactive adaptive remeshing algorithm for the two-dimensional Euler equations
NASA Technical Reports Server (NTRS)
Slack, David C.; Walters, Robert W.; Lohner, R.
1990-01-01
An interactive adaptive remeshing algorithm utilizing a frontal grid generator and a variety of time integration schemes for the two-dimensional Euler equations on unstructured meshes is presented. Several device dependent interactive graphics interfaces have been developed along with a device independent DI-3000 interface which can be employed on any computer that has the supporting software including the Cray-2 supercomputers Voyager and Navier. The time integration methods available include: an explicit four stage Runge-Kutta and a fully implicit LU decomposition. A cell-centered finite volume upwind scheme utilizing Roe's approximate Riemann solver is developed. To obtain higher order accurate results a monotone linear reconstruction procedure proposed by Barth is utilized. Results for flow over a transonic circular arc and flow through a supersonic nozzle are examined.
A minimization principle for the description of modes associated with finite-time instabilities
Babaee, H.
2016-01-01
We introduce a minimization formulation for the determination of a finite-dimensional, time-dependent, orthonormal basis that captures directions of the phase space associated with transient instabilities. While these instabilities have finite lifetime, they can play a crucial role either by altering the system dynamics through the activation of other instabilities or by creating sudden nonlinear energy transfers that lead to extreme responses. However, their essentially transient character makes their description a particularly challenging task. We develop a minimization framework that focuses on the optimal approximation of the system dynamics in the neighbourhood of the system state. This minimization formulation results in differential equations that evolve a time-dependent basis so that it optimally approximates the most unstable directions. We demonstrate the capability of the method for two families of problems: (i) linear systems, including the advection–diffusion operator in a strongly non-normal regime as well as the Orr–Sommerfeld/Squire operator, and (ii) nonlinear problems, including a low-dimensional system with transient instabilities and the vertical jet in cross-flow. We demonstrate that the time-dependent subspace captures the strongly transient non-normal energy growth (in the short-time regime), while for longer times the modes capture the expected asymptotic behaviour. PMID:27118900
Density functional of a two-dimensional gas of dipolar atoms: Thomas-Fermi-Dirac treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Bess; Englert, Berthold-Georg
We derive the density functional for the ground-state energy of a two-dimensional, spin-polarized gas of neutral fermionic atoms with magnetic-dipole interaction, in the Thomas-Fermi-Dirac approximation. For many atoms in a harmonic trap, we give analytical solutions for the single-particle spatial density and the ground-state energy, in dependence on the interaction strength, and we discuss the weak-interaction limit that is relevant for experiments. We then lift the restriction of full spin polarization and account for a time-independent inhomogeneous external magnetic field. The field strength necessary to ensure full spin polarization is derived.
In situ two-dimensional imaging quick-scanning XAFS with pixel array detector.
Tanida, Hajime; Yamashige, Hisao; Orikasa, Yuki; Oishi, Masatsugu; Takanashi, Yu; Fujimoto, Takahiro; Sato, Kenji; Takamatsu, Daiko; Murayama, Haruno; Arai, Hajime; Matsubara, Eiichiro; Uchimoto, Yoshiharu; Ogumi, Zempachi
2011-11-01
Quick-scanning X-ray absorption fine structure (XAFS) measurements were performed in transmission mode using a PILATUS 100K pixel array detector (PAD). The method can display a two-dimensional image for a large area of the order of a centimetre with a spatial resolution of 0.2 mm at each energy point in the XAFS spectrum. The time resolution of the quick-scanning method ranged from 10 s to 1 min per spectrum depending on the energy range. The PAD has a wide dynamic range and low noise, so the obtained spectra have a good signal-to-noise ratio.
Two-dimensional Euler and Navier-Stokes Time accurate simulations of fan rotor flows
NASA Technical Reports Server (NTRS)
Boretti, A. A.
1990-01-01
Two numerical methods are presented which describe the unsteady flow field in the blade-to-blade plane of an axial fan rotor. These methods solve the compressible, time-dependent, Euler and the compressible, turbulent, time-dependent, Navier-Stokes conservation equations for mass, momentum, and energy. The Navier-Stokes equations are written in Favre-averaged form and are closed with an approximate two-equation turbulence model with low Reynolds number and compressibility effects included. The unsteady aerodynamic component is obtained by superposing inflow or outflow unsteadiness to the steady conditions through time-dependent boundary conditions. The integration in space is performed by using a finite volume scheme, and the integration in time is performed by using k-stage Runge-Kutta schemes, k = 2,5. The numerical integration algorithm allows the reduction of the computational cost of an unsteady simulation involving high frequency disturbances in both CPU time and memory requirements. Less than 200 sec of CPU time are required to advance the Euler equations in a computational grid made up of about 2000 grid during 10,000 time steps on a CRAY Y-MP computer, with a required memory of less than 0.3 megawords.
Nonreciprocal quantum Hall devices with driven edge magnetoplasmons in two-dimensional materials
NASA Astrophysics Data System (ADS)
Bosco, S.; DiVincenzo, D. P.
2017-05-01
We develop a theory that describes the response of nonreciprocal devices employing two-dimensional materials in the quantum Hall regime capacitively coupled to external electrodes. As the conduction in these devices is understood to be associated to the edge magnetoplasmons (EMPs), we first investigate the EMP problem by using the linear response theory in the random phase approximation. Our model can incorporate several cases that were often treated on different grounds in literature. In particular, we analyze plasmonic excitations supported by a smooth and sharp confining potential in a two-dimensional electron gas, and in monolayer graphene, and we point out the similarities and differences in these materials. We also account for a general time-dependent external drive applied to the system. Finally, we describe the behavior of a nonreciprocal quantum Hall device: the response contains additional resonant features, which were not foreseen from previous models.
Ke, Yujie; Balin, Igal; Wang, Ning; Lu, Qi; Tok, Alfred Iing Yoong; White, Timothy J; Magdassi, Shlomo; Abdulhalim, Ibrahim; Long, Yi
2016-12-07
Two-dimensional (2D) photonic structures, widely used for generating photonic band gaps (PBG) in a variety of materials, are for the first time integrated with the temperature-dependent phase change of vanadium dioxide (VO 2 ). VO 2 possesses thermochromic properties, whose potential remains unrealized due to an undesirable yellow-brown color. Here, a SiO 2 /VO 2 core/shell 2D photonic crystal is demonstrated to exhibit static visible light tunability and dynamic near-infrared (NIR) modulation. Three-dimensional (3D) finite difference time domain (FDTD) simulations predict that the transmittance can be tuned across the visible spectrum, while maintaining good solar regulation efficiency (ΔT sol = 11.0%) and high solar transmittance (T lum = 49.6%). Experiments show that the color changes of VO 2 films are accompanied by NIR modulation. This work presents a novel way to manipulate VO 2 photonic structures to modulate light transmission as a function of wavelength at different temperatures.
Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2.
Wang, Haining; Zhang, Changjian; Rana, Farhan
2015-01-14
In this Letter, we present nondegenerate ultrafast optical pump-probe studies of the carrier recombination dynamics in MoS2 monolayers. By tuning the probe to wavelengths much longer than the exciton line, we make the probe transmission sensitive to the total population of photoexcited electrons and holes. Our measurement reveals two distinct time scales over which the photoexcited electrons and holes recombine; a fast time scale that lasts ∼ 2 ps and a slow time scale that lasts longer than ∼ 100 ps. The temperature and the pump fluence dependence of the observed carrier dynamics are consistent with defect-assisted recombination as being the dominant mechanism for electron-hole recombination in which the electrons and holes are captured by defects via Auger processes. Strong Coulomb interactions in two-dimensional atomic materials, together with strong electron and hole correlations in two-dimensional metal dichalcogenides, make Auger processes particularly effective for carrier capture by defects. We present a model for carrier recombination dynamics that quantitatively explains all features of our data for different temperatures and pump fluences. The theoretical estimates for the rate constants for Auger carrier capture are in good agreement with the experimentally determined values. Our results underscore the important role played by Auger processes in two-dimensional atomic materials.
Electron quantum dynamics in atom-ion interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabzyan, H., E-mail: sabzyan@sci.ui.ac.ir; Jenabi, M. J.
2016-04-07
Electron transfer (ET) process and its dependence on the system parameters are investigated by solving two-dimensional time-dependent Schrödinger equation numerically using split operator technique. Evolution of the electron wavepacket occurs from the one-electron species hydrogen atom to another bare nucleus of charge Z > 1. This evolution is quantified by partitioning the simulation box and defining regional densities belonging to the two nuclei of the system. It is found that the functional form of the time-variations of these regional densities and the extent of ET process depend strongly on the inter-nuclear distance and relative values of the nuclear charges, whichmore » define the potential energy surface governing the electron wavepacket evolution. Also, the initial electronic state of the single-electron atom has critical effect on this evolution and its consequent (partial) electron transfer depending on its spreading extent and orientation with respect to the inter-nuclear axis.« less
Federspiel, François; Froehlicher, Guillaume; Nasilowski, Michel; Pedetti, Silvia; Mahmood, Ather; Doudin, Bernard; Park, Serin; Lee, Jeong-O; Halley, David; Dubertret, Benoît; Gilliot, Pierre; Berciaud, Stéphane
2015-02-11
The near-field Coulomb interaction between a nanoemitter and a graphene monolayer results in strong Förster-type resonant energy transfer and subsequent fluorescence quenching. Here, we investigate the distance dependence of the energy transfer rate from individual, (i) zero-dimensional CdSe/CdS nanocrystals and (ii) two-dimensional CdSe/CdS/ZnS nanoplatelets to a graphene monolayer. For increasing distances d, the energy transfer rate from individual nanocrystals to graphene decays as 1/d(4). In contrast, the distance dependence of the energy transfer rate from a two-dimensional nanoplatelet to graphene deviates from a simple power law but is well described by a theoretical model, which considers a thermal distribution of free excitons in a two-dimensional quantum well. Our results show that accurate distance measurements can be performed at the single particle level using graphene-based molecular rulers and that energy transfer allows probing dimensionality effects at the nanoscale.
Corrected Implicit Monte Carlo
Cleveland, Mathew Allen; Wollaber, Allan Benton
2018-01-02
Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less
Corrected implicit Monte Carlo
NASA Astrophysics Data System (ADS)
Cleveland, M. A.; Wollaber, A. B.
2018-04-01
In this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle for frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. We present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.
Spatial distribution on high-order-harmonic generation of an H2+ molecule in intense laser fields
NASA Astrophysics Data System (ADS)
Zhang, Jun; Ge, Xin-Lei; Wang, Tian; Xu, Tong-Tong; Guo, Jing; Liu, Xue-Shen
2015-07-01
High-order-harmonic generation (HHG) for the H2 + molecule in a 3-fs, 800-nm few-cycle Gaussian laser pulse combined with a static field is investigated by solving the one-dimensional electronic and one-dimensional nuclear time-dependent Schrödinger equation within the non-Born-Oppenheimer approximation. The spatial distribution in HHG is demonstrated and the results present the recombination process of the electron with the two nuclei, respectively. The spatial distribution of the HHG spectra shows that there is little possibility of the recombination of the electron with the nuclei around the origin z =0 a.u. and equilibrium internuclear positions z =±1.3 a.u. This characteristic is irrelevant to laser parameters and is only attributed to the molecular structure. Furthermore, we investigate the time-dependent electron-nuclear wave packet and ionization probability to further explain the underlying physical mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleveland, Mathew Allen; Wollaber, Allan Benton
Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Tianhui; Fu, Bina, E-mail: bina@dicp.ac.cn, E-mail: zhangdh@dicp.ac.cn; Zhang, Dong H., E-mail: bina@dicp.ac.cn, E-mail: zhangdh@dicp.ac.cn
A new finding of the site-averaging approximation was recently reported on the dissociative chemisorption of the HCl/DCl+Au(111) surface reaction [T. Liu, B. Fu, and D. H. Zhang, J. Chem. Phys. 139, 184705 (2013); T. Liu, B. Fu, and D. H. Zhang, J. Chem. Phys. 140, 144701 (2014)]. Here, in order to investigate the dependence of new site-averaging approximation on the initial vibrational state of H{sub 2} as well as the PES for the dissociative chemisorption of H{sub 2} on Cu(111) surface at normal incidence, we carried out six-dimensional quantum dynamics calculations using the initial state-selected time-dependent wave packet approach, withmore » H{sub 2} initially in its ground vibrational state and the first vibrational excited state. The corresponding four-dimensional site-specific dissociation probabilities are also calculated with H{sub 2} fixed at bridge, center, and top sites. These calculations are all performed based on two different potential energy surfaces (PESs). It is found that the site-averaging dissociation probability over 15 fixed sites obtained from four-dimensional quantum dynamics calculations can accurately reproduce the six-dimensional dissociation probability for H{sub 2} (v = 0) and (v = 1) on the two PESs.« less
Thermal stiffening of clamped elastic ribbons
NASA Astrophysics Data System (ADS)
Wan, Duanduan; Nelson, David R.; Bowick, Mark J.
2017-07-01
We use molecular dynamics to study the vibrations of a thermally fluctuating two-dimensional elastic membrane clamped at both ends. We directly extract the eigenmodes from resonant peaks in the frequency domain of the time-dependent height and measure the dependence of the corresponding eigenfrequencies on the microscopic bending rigidity of the membrane, taking care also of the subtle role of thermal contraction in generating a tension when the projected area is fixed. At finite temperatures we show that the effective (macroscopic) bending rigidity tends to a constant as the bare bending rigidity vanishes, consistent with theoretical arguments that the large-scale bending rigidity of the membrane arises from a strong thermal renormalization of the microscopic bending rigidity. Experimental realizations include covalently bonded two-dimensional atomically thin membranes such as graphene and molybdenum disulfide or soft matter systems such as the spectrin skeleton of red blood cells or diblock copolymers.
Measuring Monotony in Two-Dimensional Samples
ERIC Educational Resources Information Center
Kachapova, Farida; Kachapov, Ilias
2010-01-01
This note introduces a monotony coefficient as a new measure of the monotone dependence in a two-dimensional sample. Some properties of this measure are derived. In particular, it is shown that the absolute value of the monotony coefficient for a two-dimensional sample is between /"r"/ and 1, where "r" is the Pearson's…
Photoacoustic diagnosis of burns in rats: two-dimensional photo-acoustic imaging of burned tissue
NASA Astrophysics Data System (ADS)
Yamazaki, Mutsuo; Sato, Shunichi; Saito, Daizo; Okada, Yoshiaki; Kurita, Akira; Kikuchi, Makoto; Ashida, Hiroshi; Obara, Minoru
2003-06-01
We previously reported that for rat burn models, deep dermal burns and deep burns can be well differentiated by measuring the propagation time of the photoacoustic signals originated from the blood in the healthy skin tissue under the damaged tissue layer. However, the diagnosis was based on point measurement in the wound, and therefore site-dependent information on the injuries was not obtained; such information is very important for diagnosis of extended burns. In the present study, we scanned a photoacoustic detector on the wound and constructed two-dimensional (2-D) images of the blood-originated photoacoustic signals for superficial dermal burns (SDB), deep dermal burns (DDB), deep burns (DB), and healthy skins (control) in rats. For each burn model, site-dependent variation of the signal was observed; the variation probably reflects the distribution of blood vessels in the skin tissue. In spite of the variation, clear differentiation was obtained between SDB, DDB, and DB from the 2D images. The images were constructed as a function of post burn time. Temporal signal variation will be also presented.
Finite-momentum Bose-Einstein condensates in shaken two-dimensional square optical lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Liberto, M.; Scuola Superiore di Catania, Universita di Catania, Via Valdisavoia 9, I-95123 Catania; Tieleman, O.
2011-07-15
We consider ultracold bosons in a two-dimensional square optical lattice described by the Bose-Hubbard model. In addition, an external time-dependent sinusoidal force is applied to the system, which shakes the lattice along one of the diagonals. The effect of the shaking is to renormalize the nearest-neighbor-hopping coefficients, which can be arbitrarily reduced, can vanish, or can even change sign, depending on the shaking parameter. Therefore, it is necessary to account for higher-order-hopping terms, which are renormalized differently by the shaking, and to introduce anisotropy into the problem. We show that the competition between these different hopping terms leads to finite-momentummore » condensates with a momentum that may be tuned via the strength of the shaking. We calculate the boundaries between the Mott insulator and the different superfluid phases and present the time-of-flight images expected to be observed experimentally. Our results open up possibilities for the realization of bosonic analogs of the Fulde, Ferrel, Larkin, and Ovchinnikov phase describing inhomogeneous superconductivity.« less
Neural network approach to time-dependent dividing surfaces in classical reaction dynamics.
Schraft, Philippe; Junginger, Andrej; Feldmaier, Matthias; Bardakcioglu, Robin; Main, Jörg; Wunner, Günter; Hernandez, Rigoberto
2018-04-01
In a dynamical system, the transition between reactants and products is typically mediated by an energy barrier whose properties determine the corresponding pathways and rates. The latter is the flux through a dividing surface (DS) between the two corresponding regions, and it is exact only if it is free of recrossings. For time-independent barriers, the DS can be attached to the top of the corresponding saddle point of the potential energy surface, and in time-dependent systems, the DS is a moving object. The precise determination of these direct reaction rates, e.g., using transition state theory, requires the actual construction of a DS for a given saddle geometry, which is in general a demanding methodical and computational task, especially in high-dimensional systems. In this paper, we demonstrate how such time-dependent, global, and recrossing-free DSs can be constructed using neural networks. In our approach, the neural network uses the bath coordinates and time as input, and it is trained in a way that its output provides the position of the DS along the reaction coordinate. An advantage of this procedure is that, once the neural network is trained, the complete information about the dynamical phase space separation is stored in the network's parameters, and a precise distinction between reactants and products can be made for all possible system configurations, all times, and with little computational effort. We demonstrate this general method for two- and three-dimensional systems and explain its straightforward extension to even more degrees of freedom.
Neural network approach to time-dependent dividing surfaces in classical reaction dynamics
NASA Astrophysics Data System (ADS)
Schraft, Philippe; Junginger, Andrej; Feldmaier, Matthias; Bardakcioglu, Robin; Main, Jörg; Wunner, Günter; Hernandez, Rigoberto
2018-04-01
In a dynamical system, the transition between reactants and products is typically mediated by an energy barrier whose properties determine the corresponding pathways and rates. The latter is the flux through a dividing surface (DS) between the two corresponding regions, and it is exact only if it is free of recrossings. For time-independent barriers, the DS can be attached to the top of the corresponding saddle point of the potential energy surface, and in time-dependent systems, the DS is a moving object. The precise determination of these direct reaction rates, e.g., using transition state theory, requires the actual construction of a DS for a given saddle geometry, which is in general a demanding methodical and computational task, especially in high-dimensional systems. In this paper, we demonstrate how such time-dependent, global, and recrossing-free DSs can be constructed using neural networks. In our approach, the neural network uses the bath coordinates and time as input, and it is trained in a way that its output provides the position of the DS along the reaction coordinate. An advantage of this procedure is that, once the neural network is trained, the complete information about the dynamical phase space separation is stored in the network's parameters, and a precise distinction between reactants and products can be made for all possible system configurations, all times, and with little computational effort. We demonstrate this general method for two- and three-dimensional systems and explain its straightforward extension to even more degrees of freedom.
Surveying unsteady flows by means of movie sequences - A case study
NASA Astrophysics Data System (ADS)
Freymuth, P.; Bank, W.; Finaish, F.
Photographic surveying techniques and their results are presented for vortical pattern development in unsteady two-dimensional flows, which depends on a multitude of parameters that have heretofore hampered broad investigation, in order to delineate the more important parametric dependencies. Samples are given from 100 films representing over 2000 sequences consisting of 400,000 photographic frames. Attention is given to the problems posed by resolution of time and lateral dimensions, spanwise vortical structure, and the dependence of angle of attack on Reynolds number and flow geometry.
Time and Frequency Dependent Behavior of a Two Dimensional Electron Gas at Long Wavelengths.
1985-11-05
lated by techniques which are basically similar to those employed 5-10 T y c e sfor the three dimensional case. The dynamic properties have also received...2m, Vk 2re 2/k, where m and e are, respectively, the electron mass and charge, 1 = . Our system is imposed under an external perturbing potential of...the following form: H = 3’ Pk(t) Pk e i’t (2) where -. is the Fourier comp6nent of the external electric field sufficiently small as to permit the use
A New Mixing Diagnostic and Gulf Oil Spill Movement
NASA Astrophysics Data System (ADS)
Mezić, Igor; Loire, S.; Fonoberov, Vladimir A.; Hogan, P.
2010-10-01
Chaotic advection has served as the paradigm for mixing in fluid flows with simple time dependence. Its skeletal structure is based on analysis of invariant attracting and repelling manifolds in fluid flows. Here we develop a finite-time theory for two-dimensional incompressible fluid flows with arbitrary time dependence and introduce a new mixing diagnostic based on it. Besides stretching events around attracting and repelling manifolds, this allows us to detect hyperbolic mixing zones. We used the new diagnostic to forecast the spatial location and timing of oil washing ashore in Plaquemines Parish and Grand Isle, Louisiana, and Pensacola, Florida, in May 2010 and the flow of oil toward Panama City Beach, Florida, in June 2010.
Dimensional control of die castings
NASA Astrophysics Data System (ADS)
Karve, Aniruddha Ajit
The demand for net shape die castings, which require little or no machining, is steadily increasing. Stringent customer requirements are forcing die casters to deliver high quality castings in increasingly short lead times. Dimensional conformance to customer specifications is an inherent part of die casting quality. The dimensional attributes of a die casting are essentially dependent upon many factors--the quality of the die and the degree of control over the process variables being the two major sources of dimensional error in die castings. This study focused on investigating the nature and the causes of dimensional error in die castings. The two major components of dimensional error i.e., dimensional variability and die allowance were studied. The major effort of this study was to qualitatively and quantitatively study the effects of casting geometry and process variables on die casting dimensional variability and die allowance. This was accomplished by detailed dimensional data collection at production die casting sites. Robust feature characterization schemes were developed to describe complex casting geometry in quantitative terms. Empirical modeling was utilized to quantify the effects of the casting variables on dimensional variability and die allowance for die casting features. A number of casting geometry and process variables were found to affect dimensional variability in die castings. The dimensional variability was evaluated by comparisons with current published dimensional tolerance standards. The casting geometry was found to play a significant role in influencing the die allowance of the features measured. The predictive models developed for dimensional variability and die allowance were evaluated to test their effectiveness. Finally, the relative impact of all the components of dimensional error in die castings was put into perspective, and general guidelines for effective dimensional control in the die casting plant were laid out. The results of this study will contribute to enhancement of dimensional quality and lead time compression in the die casting industry, thus making it competitive with other net shape manufacturing processes.
Tunneling of Two Interacting Fermions
NASA Astrophysics Data System (ADS)
Ishmukhamedov, Ilyas; Ishmukhamedov, Altay
2018-04-01
We consider two interacting atoms subject to a one-dimensional anharmonic trap and magnetic field gradient. This system has been recently investigated by the Heidelberg group in the experiment on two 6Li atoms. In the present paper the tunneling of two cold 6Li atoms, initially prepared in the center-of-mass and relative motion excited state, is explored and full time-dependent simulation of the tunneling dynamics is performed. The dynamics is analyzed for the interatomic coupling strength ranging from strong attraction to strong repulsion.
NASA Technical Reports Server (NTRS)
Shih, T. I. P.; Yang, S. L.; Schock, H. J.
1986-01-01
A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.
NASA Technical Reports Server (NTRS)
Shih, T. I-P.; Yang, S. L.; Schock, H. J.
1986-01-01
A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.
Pair Interaction of Dislocations in Two-Dimensional Crystals
NASA Astrophysics Data System (ADS)
Eisenmann, C.; Gasser, U.; Keim, P.; Maret, G.; von Grünberg, H. H.
2005-10-01
The pair interaction between crystal dislocations is systematically explored by analyzing particle trajectories of two-dimensional colloidal crystals measured by video microscopy. The resulting pair energies are compared to Monte Carlo data and to predictions derived from the standard Hamiltonian of the elastic theory of dislocations. Good agreement is found with respect to the distance and temperature dependence of the interaction potential, but not regarding the angle dependence where discrete lattice effects become important. Our results on the whole confirm that the dislocation Hamiltonian allows a quantitative understanding of the formation and interaction energies of dislocations in two-dimensional crystals.
Reynolds-number dependence of the longitudinal dispersion in turbulent pipe flow.
Hawkins, Christopher; Angheluta, Luiza; Krotkiewski, Marcin; Jamtveit, Bjørn
2016-04-01
In Taylor's theory, the longitudinal dispersion in turbulent pipe flows approaches, on long time scales, a diffusive behavior with a constant diffusivity K_{L}, which depends empirically on the Reynolds number Re. We show that the dependence on Re can be determined from the turbulent energy spectrum. By using the intimate connection between the friction factor and the longitudinal dispersion in wall-bounded turbulence, we predict different asymptotic scaling laws of K_{L}(Re) depending on the different turbulent cascades in two-dimensional turbulence. We also explore numerically the K_{L}(Re) dependence in turbulent channel flows with smooth and rough walls using a lattice Boltzmann method.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1979-01-01
A time dependent numerical solution of the linearized continuity and momentum equation was developed for sound propagation in a two dimensional straight hard or soft wall duct with a sheared mean flow. The time dependent governing acoustic difference equations and boundary conditions were developed along with a numerical determination of the maximum stable time increments. A harmonic noise source radiating into a quiescent duct was analyzed. This explicit iteration method then calculated stepwise in real time to obtain the transient as well as the steady state solution of the acoustic field. Example calculations were presented for sound propagation in hard and soft wall ducts, with no flow and plug flow. Although the problem with sheared flow was formulated and programmed, sample calculations were not examined. The time dependent finite difference analysis was found to be superior to the steady state finite difference and finite element techniques because of shorter solution times and the elimination of large matrix storage requirements.
Thermal mathematical modeling of a multicell common pressure vessel nickel-hydrogen battery
NASA Technical Reports Server (NTRS)
Kim, Junbom; Nguyen, T. V.; White, R. E.
1992-01-01
A two-dimensional and time-dependent thermal model of a multicell common pressure vessel (CPV) nickel-hydrogen battery was developed. A finite element solver called PDE/Protran was used to solve this model. The model was used to investigate the effects of various design parameters on the temperature profile within the cell. The results were used to help find a design that will yield an acceptable temperature gradient inside a multicell CPV nickel-hydrogen battery. Steady-state and unsteady-state cases with a constant heat generation rate and a time-dependent heat generation rate were solved.
Flame-Generated Vorticity Production in Premixed Flame-Vortex Interactions
NASA Technical Reports Server (NTRS)
Patnaik, G.; Kailasanath, K.
2003-01-01
In this study, we use detailed time-dependent, multi-dimensional numerical simulations to investigate the relative importance of the processes leading to FGV in flame-vortex interactions in normal gravity and microgravity and to determine if the production of vorticity in flames in gravity is the same as that in zero gravity except for the contribution of the gravity term. The numerical simulations will be performed using the computational model developed at NRL, FLAME3D. FLAME3D is a parallel, multi-dimensional (either two- or three-dimensional) flame model based on FLIC2D, which has been used extensively to study the structure and stability of premixed hydrogen and methane flames.
NASA Astrophysics Data System (ADS)
Chen, Chui-Zhen; Xie, Ying-Ming; Liu, Jie; Lee, Patrick A.; Law, K. T.
2018-03-01
Quantum anomalous Hall insulator/superconductor heterostructures emerged as a competitive platform to realize topological superconductors with chiral Majorana edge states as shown in recent experiments [He et al. Science 357, 294 (2017), 10.1126/science.aag2792]. However, chiral Majorana modes, being extended, cannot be used for topological quantum computation. In this work, we show that quasi-one-dimensional quantum anomalous Hall structures exhibit a large topological regime (much larger than the two-dimensional case) which supports localized Majorana zero energy modes. The non-Abelian properties of a cross-shaped quantum anomalous Hall junction is shown explicitly by time-dependent calculations. We believe that the proposed quasi-one-dimensional quantum anomalous Hall structures can be easily fabricated for scalable topological quantum computation.
Numerical Studies of Three-dimensional Breakdown in Trailing Vortex Wakes
NASA Technical Reports Server (NTRS)
Evans, P. F.; Hackett, J. E.
1976-01-01
Finite element, three dimensional relaxation methods are used to calculate the development of vortex wakes behind aircraft for a considerable downstream distance. The inclusion of a self-induction term in the solution, dependent upon local curvature and vortex core radius, permits calculation of finite lifetimes for systems for which infinite life would be predicted two dimensionally. The associated computer program is described together with single-pair, twin-pair, and multiple-pair studies carried out using it. It is found, in single-pair studies, that there is a lower limit to the wavelengths at which the Crow-type of instability can occur. Below this limit, self-induction effects cause the plane of the disturbance waves to rotate counter to the vortex direction. Self induction in two dimensionally generated twin spiral waves causes an increase in axial length which becomes more marked with decreasing initial wavelength. The time taken for vortex convergence toward the center plane is correspondingly increased. The limited parametric twin-pair study performed suggests that time-to-converge increases with increasing flap span. Limited studies of Boeing 747 configurations show correct qualitative response to removal of the outer flap and to gear deployment, as compared with wind tunnel and flight test experience.
Effect of a Starting Model on the Solution of a Travel Time Seismic Tomography Problem
NASA Astrophysics Data System (ADS)
Yanovskaya, T. B.; Medvedev, S. V.; Gobarenko, V. S.
2018-03-01
In the problems of three-dimensional (3D) travel time seismic tomography where the data are travel times of diving waves and the starting model is a system of plane layers where the velocity is a function of depth alone, the solution turns out to strongly depend on the selection of the starting model. This is due to the fact that in the different starting models, the rays between the same points can intersect different layers, which makes the tomography problem fundamentally nonlinear. This effect is demonstrated by the model example. Based on the same example, it is shown how the starting model should be selected to ensure a solution close to the true velocity distribution. The starting model (the average dependence of the seismic velocity on depth) should be determined by the method of successive iterations at each step of which the horizontal velocity variations in the layers are determined by solving the two-dimensional tomography problem. An example illustrating the application of this technique to the P-wave travel time data in the region of the Black Sea basin is presented.
Residence time of symmetric random walkers in a strip with large reflective obstacles
NASA Astrophysics Data System (ADS)
Ciallella, Alessandro; Cirillo, Emilio N. M.; Sohier, Julien
2018-05-01
We study the effect of a large obstacle on the so-called residence time, i.e., the time that a particle performing a symmetric random walk in a rectangular (two-dimensional, 2D) domain needs to cross the strip. We observe complex behavior: We find out that the residence time does not depend monotonically on the geometric properties of the obstacle, such as its width, length, and position. In some cases, due to the presence of the obstacle, the mean residence time is shorter with respect to the one measured for the obstacle-free strip. We explain the residence time behavior by developing a one-dimensional (1D) analog of the 2D model where the role of the obstacle is played by two defect sites having smaller probability to be crossed with respect to all the other regular sites. The 1D and 2D models behave similarly, but in the 1D case we are able to compute exactly the residence time, finding a perfect match with the Monte Carlo simulations.
Direct Numerical Simulation of a Weakly Stratified Turbulent Wake
NASA Technical Reports Server (NTRS)
Redford, J. A.; Lund, T. S.; Coleman, Gary N.
2014-01-01
Direct numerical simulation (DNS) is used to investigate a time-dependent turbulent wake evolving in a stably stratified background. A large initial Froude number is chosen to allow the wake to become fully turbulent and axisymmetric before stratification affects the spreading rate of the mean defect. The uncertainty introduced by the finite sample size associated with gathering statistics from a simulation of a time-dependent flow is reduced, compared to earlier simulations of this flow. The DNS reveals the buoyancy-induced changes to the turbulence structure, as well as to the mean-defect history and the terms in the mean-momentum and turbulence-kinetic-energy budgets, that characterize the various states of this flow - namely the three-dimensional (essentially unstratified), non-equilibrium (or 'wake-collapse') and quasi-two-dimensional (or 'two-component') regimes observed elsewhere for wakes embedded in both weakly and strongly stratified backgrounds. The wake-collapse regime is not accompanied by transfer (or 'reconversion') of the potential energy of the turbulence to the kinetic energy of the turbulence, implying that this is not an essential feature of stratified-wake dynamics. The dependence upon Reynolds number of the duration of the wake-collapse period is demonstrated, and the effect of the details of the initial/near-field conditions of the wake on its subsequent development is examined.
Photoconductivity in Dirac materials
NASA Astrophysics Data System (ADS)
Shao, J. M.; Yang, G. W.
2015-11-01
Two-dimensional (2D) Dirac materials including graphene and the surface of a three-dimensional (3D) topological insulator, and 3D Dirac materials including 3D Dirac semimetal and Weyl semimetal have attracted great attention due to their linear Dirac nodes and exotic properties. Here, we use the Fermi's golden rule and Boltzmann equation within the relaxation time approximation to study and compare the photoconductivity of Dirac materials under different far- or mid-infrared irradiation. Theoretical results show that the photoconductivity exhibits the anisotropic property under the polarized irradiation, but the anisotropic strength is different between 2D and 3D Dirac materials. The photoconductivity depends strongly on the relaxation time for different scattering mechanism, just like the dark conductivity.
Transition to spatiotemporal chaos in a two-dimensional hydrodynamic system.
Pirat, Christophe; Naso, Aurore; Meunier, Jean-Louis; Maïssa, Philippe; Mathis, Christian
2005-04-08
We study the transition to spatiotemporal chaos in a two-dimensional hydrodynamic experiment where liquid columns take place in the gravity induced instability of a liquid film. The film is formed below a plane grid which is used as a porous media and is continuously supplied with a controlled flow rate. This system can be either ordered (on a hexagonal structure) or disordered depending on the flow rate. We observe, for the first time in an initially structured state, a subcritical transition to spatiotemporal disorder which arises through spatiotemporal intermittency. Statistics of numbers, creations, and fusions of columns are investigated. We exhibit a critical behavior close to the directed percolation one.
Conformal killing tensors and covariant Hamiltonian dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cariglia, M., E-mail: marco@iceb.ufop.br; Gibbons, G. W., E-mail: G.W.Gibbons@damtp.cam.ac.uk; LE STUDIUM, Loire Valley Institute for Advanced Studies, Tours and Orleans
2014-12-15
A covariant algorithm for deriving the conserved quantities for natural Hamiltonian systems is combined with the non-relativistic framework of Eisenhart, and of Duval, in which the classical trajectories arise as geodesics in a higher dimensional space-time, realized by Brinkmann manifolds. Conserved quantities which are polynomial in the momenta can be built using time-dependent conformal Killing tensors with flux. The latter are associated with terms proportional to the Hamiltonian in the lower dimensional theory and with spectrum generating algebras for higher dimensional quantities of order 1 and 2 in the momenta. Illustrations of the general theory include the Runge-Lenz vector formore » planetary motion with a time-dependent gravitational constant G(t), motion in a time-dependent electromagnetic field of a certain form, quantum dots, the Hénon-Heiles and Holt systems, respectively, providing us with Killing tensors of rank that ranges from one to six.« less
NASA Astrophysics Data System (ADS)
Toro, E. F.; Titarev, V. A.
2005-01-01
In this paper we develop non-linear ADER schemes for time-dependent scalar linear and non-linear conservation laws in one-, two- and three-space dimensions. Numerical results of schemes of up to fifth order of accuracy in both time and space illustrate that the designed order of accuracy is achieved in all space dimensions for a fixed Courant number and essentially non-oscillatory results are obtained for solutions with discontinuities. We also present preliminary results for two-dimensional non-linear systems.
Deformation dependence of proton decay rates and angular distributions in a time-dependent approach
NASA Astrophysics Data System (ADS)
Carjan, N.; Talou, P.; Strottman, D.
1998-12-01
A new, time-dependent, approach to proton decay from axially symmetric deformed nuclei is presented. The two-dimensional time-dependent Schrödinger equation for the interaction between the emitted proton and the rest of the nucleus is solved numerically for well defined initial quasi-stationary proton states. Applied to the hypothetical proton emission from excited states in deformed nuclei of 208Pb, this approach shows that the problem cannot be reduced to one dimension. There are in general more than one directions of emission with wide distributions around them, determined mainly by the quantum numbers of the initial wave function rather than by the potential landscape. The distribution of the "residual" angular momentum and its variation in time play a major role in the determination of the decay rate. In a couple of cases, no exponential decay was found during the calculated time evolution (2×10-21 sec) although more than half of the wave function escaped during that time.
First-Passage Times in d -Dimensional Heterogeneous Media
NASA Astrophysics Data System (ADS)
Vaccario, G.; Antoine, C.; Talbot, J.
2015-12-01
Although there are many theoretical studies of the mean first-passage time (MFPT), most neglect the diffusive heterogeneity of real systems. We present exact analytical expressions for the MFPT and residence times of a pointlike particle diffusing in a spherically symmetric d -dimensional heterogeneous system composed of two concentric media with different diffusion coefficients with an absorbing inner boundary (target) and a reflecting outer boundary. By varying the convention, e.g., Itō, Stratonovich, or isothermal, chosen to interpret the overdamped Langevin equation with multiplicative noise describing the diffusion process, we find different predictions and counterintuitive results for the residence time in the outer region and hence for the MFPT, while the residence time in the inner region is independent of the convention. This convention dependence of residence times and the MFPT could provide insights about the heterogeneous diffusion in a cell or in a tumor, or for animal and insect searches inside their home range.
NASA Astrophysics Data System (ADS)
Hamid, Aamir; Hashim; Khan, Masood
2018-06-01
The main concern of this communication is to investigate the two-layer flow of a non-Newtonian rheological fluid past a wedge-shaped geometry. One remarkable aspect of this article is the mathematical formulation for two-dimensional flow of Williamson fluid by incorporating the effect of infinite shear rate viscosity. The impacts of heat transfer mechanism on time-dependent flow field are further studied. At first, we employ the suitable non-dimensional variables to transmute the time-dependent governing flow equations into a system of non-linear ordinary differential equations. The converted conservation equations are numerically integrated subject to physically suitable boundary conditions with the aid of Runge-Kutta Fehlberg integration procedure. The effects of involved pertinent parameters, such as, moving wedge parameter, wedge angle parameter, local Weissenberg number, unsteadiness parameter and Prandtl number on the non-dimensional velocity and temperature distributions have been evaluated. In addition, the numerical values of the local skin friction coefficient and the local Nusselt number are compared and presented through tables. The outcomes of this study indicate that the rate of heat transfer increases with the growth of both wedge angle parameter and unsteadiness parameter. Moreover, a substantial rise in the fluid velocity is observed with enhancement in the viscosity ratio parameter while an opposite trend is true for the non-dimensional temperature field. A comparison is presented between the current study and already published works and results found to be in outstanding agreement. Finally, the main findings of this article are highlighted in the last section.
An Implicit Characteristic Based Method for Electromagnetics
NASA Technical Reports Server (NTRS)
Beggs, John H.; Briley, W. Roger
2001-01-01
An implicit characteristic-based approach for numerical solution of Maxwell's time-dependent curl equations in flux conservative form is introduced. This method combines a characteristic based finite difference spatial approximation with an implicit lower-upper approximate factorization (LU/AF) time integration scheme. This approach is advantageous for three-dimensional applications because the characteristic differencing enables a two-factor approximate factorization that retains its unconditional stability in three space dimensions, and it does not require solution of tridiagonal systems. Results are given both for a Fourier analysis of stability, damping and dispersion properties, and for one-dimensional model problems involving propagation and scattering for free space and dielectric materials using both uniform and nonuniform grids. The explicit Finite Difference Time Domain Method (FDTD) algorithm is used as a convenient reference algorithm for comparison. The one-dimensional results indicate that for low frequency problems on a highly resolved uniform or nonuniform grid, this LU/AF algorithm can produce accurate solutions at Courant numbers significantly greater than one, with a corresponding improvement in efficiency for simulating a given period of time. This approach appears promising for development of dispersion optimized LU/AF schemes for three dimensional applications.
Numerical Modeling of Fuel Injection into an Accelerating, Turning Flow with a Cavity
NASA Astrophysics Data System (ADS)
Colcord, Ben James
Deliberate continuation of the combustion in the turbine passages of a gas turbine engine has the potential to increase the efficiency and the specific thrust or power of current gas-turbine engines. This concept, known as a turbine-burner, must overcome many challenges before becoming a viable product. One major challenge is the injection, mixing, ignition, and burning of fuel within a short residence time in a turbine passage characterized by large three-dimensional accelerations. One method of increasing the residence time is to inject the fuel into a cavity adjacent to the turbine passage, creating a low-speed zone for mixing and combustion. This situation is simulated numerically, with the turbine passage modeled as a turning, converging channel flow of high-temperature, vitiated air adjacent to a cavity. Both two- and three-dimensional, reacting and non-reacting calculations are performed, examining the effects of channel curvature and convergence, fuel and additional air injection configurations, and inlet conditions. Two-dimensional, non-reacting calculations show that higher aspect ratio cavities improve the fluid interaction between the channel flow and the cavity, and that the cavity dimensions are important for enhancing the mixing. Two-dimensional, reacting calculations show that converging channels improve the combustion efficiency. Channel curvature can be either beneficial or detrimental to combustion efficiency, depending on the location of the cavity and the fuel and air injection configuration. Three-dimensional, reacting calculations show that injecting fuel and air so as to disrupt the natural motion of the cavity stimulates three-dimensional instability and improves the combustion efficiency.
High-order harmonic generation from a two-dimensional band structure
NASA Astrophysics Data System (ADS)
Jin, Jian-Zhao; Xiao, Xiang-Ru; Liang, Hao; Wang, Mu-Xue; Chen, Si-Ge; Gong, Qihuang; Peng, Liang-You
2018-04-01
In the past few years, harmonic generation in solids has attracted tremendous attention. Recently, some experiments of two-dimensional (2D) monolayer or few-layer materials have been carried out. These studies demonstrated that harmonic generation in the 2D case shows a strong dependence on the laser's orientation and ellipticity, which calls for a quantitative theoretical interpretation. In this work, we carry out a systematic study on the harmonic generation from a 2D band structure based on a numerical solution to the time-dependent Schrödinger equation. By comparing with the 1D case, we find that the generation dynamics can have a significant difference due to the existence of many crossing points in the 2D band structure. In particular, the higher conduction bands can be excited step by step via these crossing points and the total contribution of the harmonic is given by the mixing of transitions between different clusters of conduction bands to the valence band. We also present the orientation dependence of the harmonic yield on the laser polarization direction.
Measuring monotony in two-dimensional samples
NASA Astrophysics Data System (ADS)
Kachapova, Farida; Kachapov, Ilias
2010-04-01
This note introduces a monotony coefficient as a new measure of the monotone dependence in a two-dimensional sample. Some properties of this measure are derived. In particular, it is shown that the absolute value of the monotony coefficient for a two-dimensional sample is between |r| and 1, where r is the Pearson's correlation coefficient for the sample; that the monotony coefficient equals 1 for any monotone increasing sample and equals -1 for any monotone decreasing sample. This article contains a few examples demonstrating that the monotony coefficient is a more accurate measure of the degree of monotone dependence for a non-linear relationship than the Pearson's, Spearman's and Kendall's correlation coefficients. The monotony coefficient is a tool that can be applied to samples in order to find dependencies between random variables; it is especially useful in finding couples of dependent variables in a big dataset of many variables. Undergraduate students in mathematics and science would benefit from learning and applying this measure of monotone dependence.
Optimal control of lift/drag ratios on a rotating cylinder
NASA Technical Reports Server (NTRS)
Ou, Yuh-Roung; Burns, John A.
1992-01-01
We present the numerical solution to a problem of maximizing the lift to drag ratio by rotating a circular cylinder in a two-dimensional viscous incompressible flow. This problem is viewed as a test case for the newly developing theoretical and computational methods for control of fluid dynamic systems. We show that the time averaged lift to drag ratio for a fixed finite-time interval achieves its maximum value at an optimal rotation rate that depends on the time interval.
3D glasma initial state for relativistic heavy ion collisions
Schenke, Björn; Schlichting, Sören
2016-10-13
We extend the impact-parameter-dependent Glasma model to three dimensions using explicit small-x evolution of the two incoming nuclear gluon distributions. We compute rapidity distributions of produced gluons and the early-time energy momentum tensor as a function of space-time rapidity and transverse coordinates. Finally, we study rapidity correlations and fluctuations of the initial geometry and multiplicity distributions and make comparisons to existing models for the three-dimensional initial state.
Strongly correlated fermions after a quantum quench.
Manmana, S R; Wessel, S; Noack, R M; Muramatsu, A
2007-05-25
Using the adaptive time-dependent density-matrix renormalization group method, we study the time evolution of strongly correlated spinless fermions on a one-dimensional lattice after a sudden change of the interaction strength. For certain parameter values, two different initial states (e.g., metallic and insulating) lead to observables which become indistinguishable after relaxation. We find that the resulting quasistationary state is nonthermal. This result holds for both integrable and nonintegrable variants of the system.
Numerical solutions of 3-dimensional Navier-Stokes equations for closed bluff-bodies
NASA Technical Reports Server (NTRS)
Abolhassani, J. S.; Tiwari, S. N.
1985-01-01
The Navier-Stokes equations are solved numerically. These equations are unsteady, compressible, viscous, and three-dimensional without neglecting any terms. The time dependency of the governing equations allows the solution to progress naturally for an arbitrary initial guess to an asymptotic steady state, if one exists. The equations are transformed from physical coordinates to the computational coordinates, allowing the solution of the governing equations in a rectangular parallelepiped domain. The equations are solved by the MacCormack time-split technique which is vectorized and programmed to run on the CDc VPS 32 computer. The codes are written in 32-bit (half word) FORTRAN, which provides an approximate factor of two decreasing in computational time and doubles the memory size compared to the 54-bit word size.
Navier-Stokes solution on the CYBER-203 by a pseudospectral technique
NASA Technical Reports Server (NTRS)
Lambiotte, J. J.; Hussaini, M. Y.; Bokhari, S.; Orszag, S. A.
1983-01-01
A three-level, time-split, mixed spectral/finite difference method for the numerical solution of the three-dimensional, compressible Navier-Stokes equations has been developed and implemented on the Control Data Corporation (CDC) CYBER-203. This method uses a spectral representation for the flow variables in the streamwise and spanwise coordinates, and central differences in the normal direction. The five dependent variables are interleaved one horizontal plane at a time and the array of their values at the grid points of each horizontal plane is a typical vector in the computation. The code is organized so as to require, per time step, a single forward-backward pass through the entire data base. The one-and two-dimensional Fast Fourier Transforms are performed using software especially developed for the CYBER-203.
The Kadomtsev-Petviashvili equation under rapid forcing
NASA Astrophysics Data System (ADS)
Moroz, Irene M.
1997-06-01
We consider the initial value problem for the forced Kadomtsev-Petviashvili equation (KP) when the forcing is assumed to be fast compared to the evolution of the unforced equation. This suggests the introduction of two time scales. Solutions to the forced KP are sought by expanding the dependent variable in powers of a small parameter, which is inversely related to the forcing time scale. The unforced system describes weakly nonlinear, weakly dispersive, weakly two-dimensional wave propagation and is studied in two forms, depending upon whether gravity dominates surface tension or vice versa. We focus on the effect that the forcing has on the one-lump solution to the KPI equation (where surface tension dominates) and on the one- and two-line soliton solutions to the KPII equation (when gravity dominates). Solutions to second order in the expansion are computed analytically for some specific choices of the forcing function, which are related to the choice of initial data.
Role of small-norm components in extended random-phase approximation
NASA Astrophysics Data System (ADS)
Tohyama, Mitsuru
2017-09-01
The role of the small-norm amplitudes in extended random-phase approximation (RPA) theories such as the particle-particle and hole-hole components of one-body amplitudes and the two-body amplitudes other than two-particle/two-hole components are investigated for the one-dimensional Hubbard model using an extended RPA derived from the time-dependent density matrix theory. It is found that these amplitudes cannot be neglected in strongly interacting regions where the effects of ground-state correlations are significant.
Competitive or weak cooperative stochastic Lotka-Volterra systems conditioned on non-extinction.
Cattiaux, Patrick; Méléard, Sylvie
2010-06-01
We are interested in the long time behavior of a two-type density-dependent biological population conditioned on non-extinction, in both cases of competition or weak cooperation between the two species. This population is described by a stochastic Lotka-Volterra system, obtained as limit of renormalized interacting birth and death processes. The weak cooperation assumption allows the system not to blow up. We study the existence and uniqueness of a quasi-stationary distribution, that is convergence to equilibrium conditioned on non-extinction. To this aim we generalize in two-dimensions spectral tools developed for one-dimensional generalized Feller diffusion processes. The existence proof of a quasi-stationary distribution is reduced to the one for a d-dimensional Kolmogorov diffusion process under a symmetry assumption. The symmetry we need is satisfied under a local balance condition relying the ecological rates. A novelty is the outlined relation between the uniqueness of the quasi-stationary distribution and the ultracontractivity of the killed semi-group. By a comparison between the killing rates for the populations of each type and the one of the global population, we show that the quasi-stationary distribution can be either supported by individuals of one (the strongest one) type or supported by individuals of the two types. We thus highlight two different long time behaviors depending on the parameters of the model: either the model exhibits an intermediary time scale for which only one type (the dominant trait) is surviving, or there is a positive probability to have coexistence of the two species.
Role of Off-Line-of-Sight Propagation in Geomagnetic EMP Formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, Hans W.
The author’s synchrotron radiation based 3D geomagnetic EMP code MACSYNC has been used to explore the impact on pulse rise time and air conductivity of EMP propagation paths to the observer that are located off the direct line-of-sight (LOS) between gamma source and observer. This geometry is always present because, for an isotropic source, most the gammas are emitted at an angle with respect to the LOS. Computations for a 1 kt near-surface burst observed from space yield two principal findings: 1. The rise time is generated by the combined actions of a) electron spreading along the LOS due tomore » the Compton electron emission angular distribution folded with electron multiple scattering effects, and b) radiation arrival time spreading due to length differences for different off-LOS propagation paths. The pulse rise time does not depend on the rise time of the conductivity. The conductivity rise time determines the pulse amplitude. 2. One-dimensional legacy EMP codes are inherently incapable of producing the correct pulse shape because they cannot treat the dependence of the conductivity on two dimensions, i.e. the radius from the source and the angle of the propagation path with the LOS. This divergence from one-dimensionality begins at a small fraction of a nanosecond for a sea-level burst. This effect will also be present in high-altitude bursts, however, determination of its onset time and magnitude requires high-altitude computations which have not yet been done.« less
Two-dimensional model of resonant electron collisions with diatomic molecules and molecular cations
NASA Astrophysics Data System (ADS)
Vana, Martin; Hvizdos, David; Houfek, Karel; Curik, Roman; Greene, Chris H.; Rescigno, Thomas N.; McCurdy, C. William
2016-05-01
A simple model for resonant collisions of electrons with diatomic molecules with one electronic and one nuclear degree of freedom (2D model) which was solved numerically exactly within the time-independent approach was used to probe the local complex potential approximation and nonlocal approximation to nuclear dynamics of these collisions. This model was reformulated in the time-dependent picture and extended to model also electron collisions with molecular cations, especially with H2+.This model enables an assessment of approximate methods, such as the boomerang model or the frame transformation theory. We will present both time-dependent and time-independent results and show how we can use the model to extract deeper insight into the dynamics of the resonant collisions.
NASA Astrophysics Data System (ADS)
Caplan, R. M.
2013-04-01
We present a simple to use, yet powerful code package called NLSEmagic to numerically integrate the nonlinear Schrödinger equation in one, two, and three dimensions. NLSEmagic is a high-order finite-difference code package which utilizes graphic processing unit (GPU) parallel architectures. The codes running on the GPU are many times faster than their serial counterparts, and are much cheaper to run than on standard parallel clusters. The codes are developed with usability and portability in mind, and therefore are written to interface with MATLAB utilizing custom GPU-enabled C codes with the MEX-compiler interface. The packages are freely distributed, including user manuals and set-up files. Catalogue identifier: AEOJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOJ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 124453 No. of bytes in distributed program, including test data, etc.: 4728604 Distribution format: tar.gz Programming language: C, CUDA, MATLAB. Computer: PC, MAC. Operating system: Windows, MacOS, Linux. Has the code been vectorized or parallelized?: Yes. Number of processors used: Single CPU, number of GPU processors dependent on chosen GPU card (max is currently 3072 cores on GeForce GTX 690). Supplementary material: Setup guide, Installation guide. RAM: Highly dependent on dimensionality and grid size. For typical medium-large problem size in three dimensions, 4GB is sufficient. Keywords: Nonlinear Schröodinger Equation, GPU, high-order finite difference, Bose-Einstien condensates. Classification: 4.3, 7.7. Nature of problem: Integrate solutions of the time-dependent one-, two-, and three-dimensional cubic nonlinear Schrödinger equation. Solution method: The integrators utilize a fully-explicit fourth-order Runge-Kutta scheme in time and both second- and fourth-order differencing in space. The integrators are written to run on NVIDIA GPUs and are interfaced with MATLAB including built-in visualization and analysis tools. Restrictions: The main restriction for the GPU integrators is the amount of RAM on the GPU as the code is currently only designed for running on a single GPU. Unusual features: Ability to visualize real-time simulations through the interaction of MATLAB and the compiled GPU integrators. Additional comments: Setup guide and Installation guide provided. Program has a dedicated web site at www.nlsemagic.com. Running time: A three-dimensional run with a grid dimension of 87×87×203 for 3360 time steps (100 non-dimensional time units) takes about one and a half minutes on a GeForce GTX 580 GPU card.
NASA Technical Reports Server (NTRS)
Murphy, K. A.
1988-01-01
A parameter estimation algorithm is developed which can be used to estimate unknown time- or state-dependent delays and other parameters (e.g., initial condition) appearing within a nonlinear nonautonomous functional differential equation. The original infinite dimensional differential equation is approximated using linear splines, which are allowed to move with the variable delay. The variable delays are approximated using linear splines as well. The approximation scheme produces a system of ordinary differential equations with nice computational properties. The unknown parameters are estimated within the approximating systems by minimizing a least-squares fit-to-data criterion. Convergence theorems are proved for time-dependent delays and state-dependent delays within two classes, which say essentially that fitting the data by using approximations will, in the limit, provide a fit to the data using the original system. Numerical test examples are presented which illustrate the method for all types of delay.
NASA Technical Reports Server (NTRS)
Murphy, K. A.
1990-01-01
A parameter estimation algorithm is developed which can be used to estimate unknown time- or state-dependent delays and other parameters (e.g., initial condition) appearing within a nonlinear nonautonomous functional differential equation. The original infinite dimensional differential equation is approximated using linear splines, which are allowed to move with the variable delay. The variable delays are approximated using linear splines as well. The approximation scheme produces a system of ordinary differential equations with nice computational properties. The unknown parameters are estimated within the approximating systems by minimizing a least-squares fit-to-data criterion. Convergence theorems are proved for time-dependent delays and state-dependent delays within two classes, which say essentially that fitting the data by using approximations will, in the limit, provide a fit to the data using the original system. Numerical test examples are presented which illustrate the method for all types of delay.
Solution of 3-dimensional time-dependent viscous flows. Part 2: Development of the computer code
NASA Technical Reports Server (NTRS)
Weinberg, B. C.; Mcdonald, H.
1980-01-01
There is considerable interest in developing a numerical scheme for solving the time dependent viscous compressible three dimensional flow equations to aid in the design of helicopter rotors. The development of a computer code to solve a three dimensional unsteady approximate form of the Navier-Stokes equations employing a linearized block emplicit technique in conjunction with a QR operator scheme is described. Results of calculations of several Cartesian test cases are presented. The computer code can be applied to more complex flow fields such as these encountered on rotating airfoils.
The stochastic energy-Casimir method
NASA Astrophysics Data System (ADS)
Arnaudon, Alexis; Ganaba, Nader; Holm, Darryl D.
2018-04-01
In this paper, we extend the energy-Casimir stability method for deterministic Lie-Poisson Hamiltonian systems to provide sufficient conditions for stability in probability of stochastic dynamical systems with symmetries. We illustrate this theory with classical examples of coadjoint motion, including the rigid body, the heavy top, and the compressible Euler equation in two dimensions. The main result is that stable deterministic equilibria remain stable in probability up to a certain stopping time that depends on the amplitude of the noise for finite-dimensional systems and on the amplitude of the spatial derivative of the noise for infinite-dimensional systems. xml:lang="fr"
Theory of Stochastic Laplacian Growth
NASA Astrophysics Data System (ADS)
Alekseev, Oleg; Mineev-Weinstein, Mark
2017-07-01
We generalize the diffusion-limited aggregation by issuing many randomly-walking particles, which stick to a cluster at the discrete time unit providing its growth. Using simple combinatorial arguments we determine probabilities of different growth scenarios and prove that the most probable evolution is governed by the deterministic Laplacian growth equation. A potential-theoretical analysis of the growth probabilities reveals connections with the tau-function of the integrable dispersionless limit of the two-dimensional Toda hierarchy, normal matrix ensembles, and the two-dimensional Dyson gas confined in a non-uniform magnetic field. We introduce the time-dependent Hamiltonian, which generates transitions between different classes of equivalence of closed curves, and prove the Hamiltonian structure of the interface dynamics. Finally, we propose a relation between probabilities of growth scenarios and the semi-classical limit of certain correlation functions of "light" exponential operators in the Liouville conformal field theory on a pseudosphere.
Photoinduced High-Frequency Charge Oscillations in Dimerized Systems
NASA Astrophysics Data System (ADS)
Yonemitsu, Kenji
2018-04-01
Photoinduced charge dynamics in dimerized systems is studied on the basis of the exact diagonalization method and the time-dependent Schrödinger equation for a one-dimensional spinless-fermion model at half filling and a two-dimensional model for κ-(bis[ethylenedithio]tetrathiafulvalene)2X [κ-(BEDT-TTF)2X] at three-quarter filling. After the application of a one-cycle pulse of a specifically polarized electric field, the charge densities at half of the sites of the system oscillate in the same phase and those at the other half oscillate in the opposite phase. For weak fields, the Fourier transform of the time profile of the charge density at any site after photoexcitation has peaks for finite-sized systems that correspond to those of the steady-state optical conductivity spectrum. For strong fields, these peaks are suppressed and a new peak appears on the high-energy side, that is, the charge densities mainly oscillate with a single frequency, although the oscillation is eventually damped. In the two-dimensional case without intersite repulsion and in the one-dimensional case, this frequency corresponds to charge-transfer processes by which all the bonds connecting the two classes of sites are exploited. Thus, this oscillation behaves as an electronic breathing mode. The relevance of the new peak to a recently found reflectivity peak in κ-(BEDT-TTF)2X after photoexcitation is discussed.
Analytical and phenomenological studies of rotating turbulence
NASA Technical Reports Server (NTRS)
Mahalov, Alex; Zhou, YE
1995-01-01
A framework, which combines mathematical analysis, closure theory, and phenomenological treatment, is developed to study the spectral transfer process and reduction of dimensionality in turbulent flows that are subject to rotation. First, we outline a mathematical procedure that is particularly appropriate for problems with two disparate time scales. The approach which is based on the Green's method leads to the Poincare velocity variables and the Poincare transformation when applied to rotating turbulence. The effects of the rotation are now reflected in the modifications to the convolution of a nonlinear term. The Poincare transformed equations are used to obtain a time-dependent analog of the Taylor-Proudman theorem valid in the asymptotic limit when the non-dimensional parameter mu is identical to Omega(t) approaches infinity (Omega is the rotation rate and t is the time). The 'split' of the energy transfer in both direct and inverse directions is established. Secondly, we apply the Eddy-Damped-Quasinormal-Markovian (EDQNM) closure to the Poincare transformed Euler/Navier-Stokes equations. This closure leads to expressions for the spectral energy transfer. In particular, an unique triple velocity decorrelation time is derived with an explicit dependence on the rotation rate. This provides an important input for applying the phenomenological treatment of Zhou. In order to characterize the relative strength of rotation, another non-dimensional number, a spectral Rossby number, which is defined as the ratio of rotation and turbulence time scales, is introduced. Finally, the energy spectrum and the spectral eddy viscosity are deduced.
Extended inflation from higher dimensional theories
NASA Technical Reports Server (NTRS)
Holman, Richard; Kolb, Edward W.; Vadas, Sharon L.; Wang, Yun
1990-01-01
The possibility is considered that higher dimensional theories may, upon reduction to four dimensions, allow extended inflation to occur. Two separate models are analayzed. One is a very simple toy model consisting of higher dimensional gravity coupled to a scalar field whose potential allows for a first-order phase transition. The other is a more sophisticated model incorporating the effects of non-trivial field configurations (monopole, Casimir, and fermion bilinear condensate effects) that yield a non-trivial potential for the radius of the internal space. It was found that extended inflation does not occur in these models. It was also found that the bubble nucleation rate in these theories is time dependent unlike the case in the original version of extended inflation.
Shao, Xuan-Min
2016-04-12
The fundamental electromagnetic equations used by lightning researchers were introduced in a seminal paper by Uman, McLain, and Krider in 1975. However, these equations were derived for an infinitely thin, one-dimensional source current, and not for a general three-dimensional current distribution. In this paper, we introduce a corresponding pair of generalized equations that are determined from a three-dimensional, time-dependent current density distribution based on Jefimenko's original electric and magnetic equations. To do this, we derive the Jefimenko electric field equation into a new form that depends only on the time-dependent current density similar to that of Uman, McLain, and Krider,more » rather than on both the charge and current densities in its original form. The original Jefimenko magnetic field equation depends only on current, so no further derivation is needed. We show that the equations of Uman, McLain, and Krider can be readily obtained from the generalized equations if a one-dimensional source current is considered. For the purpose of practical applications, we discuss computational implementation of the new equations and present electric field calculations for a three-dimensional, conical-shape discharge.« less
Electron transport in the two-dimensional channel material - zinc oxide nanoflake
NASA Astrophysics Data System (ADS)
Lai, Jian-Jhong; Jian, Dunliang; Lin, Yen-Fu; Ku, Ming-Ming; Jian, Wen-Bin
2018-03-01
ZnO nanoflakes of 3-5 μm in lateral size and 15-20 nm in thickness are synthesized. The nanoflakes are used to make back-gated transistor devices. Electron transport in the ZnO nanoflake channel between source and drain electrodes are investigated. In the beginning, we argue and determine that electrons are in a two-dimensional system. We then apply Mott's two-dimensional variable range hopping model to analyze temperature and electric field dependences of resistivity. The disorder parameter, localization length, hopping distance, and hopping energy of the electron system in ZnO nanoflakes are obtained and, additionally, their temperature behaviors and dependences on room-temperature resistivity are presented. On the other hand, the basic transfer characteristics of the channel material are carried out, as well, and the carrier concentration, the mobility, and the Fermi wavelength of two-dimensional ZnO nanoflakes are estimated.
NASA Astrophysics Data System (ADS)
Ogura, Yuki; Tanaka, Yuji; Hase, Eiji; Yamashita, Toyonobu; Yasui, Takeshi
2018-02-01
We compare two-dimensional auto-correlation (2D-AC) analysis and two-dimensional Fourier transform (2D-FT) for evaluation of age-dependent structural change of facial dermal collagen fibers caused by intrinsic aging and extrinsic photo-aging. The age-dependent structural change of collagen fibers for female subjects' cheek skin in their 20s, 40s, and 60s were more noticeably reflected in 2D-AC analysis than in 2D-FT analysis. Furthermore, 2D-AC analysis indicated significantly higher correlation with the skin elasticity measured by Cutometer® than 2D-AC analysis. 2D-AC analysis of SHG image has a high potential for quantitative evaluation of not only age-dependent structural change of collagen fibers but also skin elasticity.
NASA Technical Reports Server (NTRS)
Nakagawa, Y.
1981-01-01
The method described as the method of nearcharacteristics by Nakagawa (1980) is renamed the method of projected characteristics. Making full use of properties of the projected characteristics, a new and simpler formulation is developed. As a result, the formulation for the examination of the general three-dimensional problems is presented. It is noted that since in practice numerical solutions must be obtained, the final formulation is given in the form of difference equations. The possibility of including effects of viscous and ohmic dissipations in the formulation is considered, and the physical interpretation is discussed. A systematic manner is then presented for deriving physically self-consistent, time-dependent boundary equations for MHD initial boundary problems. It is demonstrated that the full use of the compatibility equations (differential equations relating variations at two spatial locations and times) is required in determining the time-dependent boundary conditions. In order to provide a clear physical picture as an example, the evolution of axisymmetric global magnetic field by photospheric differential rotation is considered.
Hydrodynamics of confined colloidal fluids in two dimensions
NASA Astrophysics Data System (ADS)
Sané, Jimaan; Padding, Johan T.; Louis, Ard A.
2009-05-01
We apply a hybrid molecular dynamics and mesoscopic simulation technique to study the dynamics of two-dimensional colloidal disks in confined geometries. We calculate the velocity autocorrelation functions and observe the predicted t-1 long-time hydrodynamic tail that characterizes unconfined fluids, as well as more complex oscillating behavior and negative tails for strongly confined geometries. Because the t-1 tail of the velocity autocorrelation function is cut off for longer times in finite systems, the related diffusion coefficient does not diverge but instead depends logarithmically on the overall size of the system. The Langevin equation gives a poor approximation to the velocity autocorrelation function at both short and long times.
Nonequilibrium critical dynamics of the two-dimensional Ashkin-Teller model at the Baxter line
NASA Astrophysics Data System (ADS)
Fernandes, H. A.; da Silva, R.; Caparica, A. A.; de Felício, J. R. Drugowich
2017-04-01
We investigate the short-time universal behavior of the two-dimensional Ashkin-Teller model at the Baxter line by performing time-dependent Monte Carlo simulations. First, as preparatory results, we obtain the critical parameters by searching the optimal power-law decay of the magnetization. Thus, the dynamic critical exponents θm and θp, related to the magnetic and electric order parameters, as well as the persistence exponent θg, are estimated using heat-bath Monte Carlo simulations. In addition, we estimate the dynamic exponent z and the static critical exponents β and ν for both order parameters. We propose a refined method to estimate the static exponents that considers two different averages: one that combines an internal average using several seeds with another, which is taken over temporal variations in the power laws. Moreover, we also performed the bootstrapping method for a complementary analysis. Our results show that the ratio β /ν exhibits universal behavior along the critical line corroborating the conjecture for both magnetization and polarization.
A cross-diffusion system derived from a Fokker-Planck equation with partial averaging
NASA Astrophysics Data System (ADS)
Jüngel, Ansgar; Zamponi, Nicola
2017-02-01
A cross-diffusion system for two components with a Laplacian structure is analyzed on the multi-dimensional torus. This system, which was recently suggested by P.-L. Lions, is formally derived from a Fokker-Planck equation for the probability density associated with a multi-dimensional Itō process, assuming that the diffusion coefficients depend on partial averages of the probability density with exponential weights. A main feature is that the diffusion matrix of the limiting cross-diffusion system is generally neither symmetric nor positive definite, but its structure allows for the use of entropy methods. The global-in-time existence of positive weak solutions is proved and, under a simplifying assumption, the large-time asymptotics is investigated.
NASA Astrophysics Data System (ADS)
Sarmah, Ratan; Tiwari, Shubham
2018-03-01
An analytical solution is developed for predicting two-dimensional transient seepage into ditch drainage network receiving water from a non-uniform steady ponding field from the surface of the soil under the influence of source/sink in the flow domain. The flow domain is assumed to be saturated, homogeneous and anisotropic in nature and have finite extends in horizontal and vertical directions. The drains are assumed to be standing vertical and penetrating up to impervious layer. The water levels in the drains are unequal and invariant with time. The flow field is also assumed to be under the continuous influence of time-space dependent arbitrary source/sink term. The correctness of the proposed model is checked by developing a numerical code and also with the existing analytical solution for the simplified case. The study highlights the significance of source/sink influence in the subsurface flow. With the imposition of the source and sink term in the flow domain, the pathline and travel time of water particles started deviating from their original position and above that the side and top discharge to the drains were also observed to have a strong influence of the source/sink terms. The travel time and pathline of water particles are also observed to have a dependency on the height of water in the ditches and on the location of source/sink activation area.
Fokker-Planck description for the queue dynamics of large tick stocks.
Garèche, A; Disdier, G; Kockelkoren, J; Bouchaud, J-P
2013-09-01
Motivated by empirical data, we develop a statistical description of the queue dynamics for large tick assets based on a two-dimensional Fokker-Planck (diffusion) equation. Our description explicitly includes state dependence, i.e., the fact that the drift and diffusion depend on the volume present on both sides of the spread. "Jump" events, corresponding to sudden changes of the best limit price, must also be included as birth-death terms in the Fokker-Planck equation. All quantities involved in the equation can be calibrated using high-frequency data on the best quotes. One of our central findings is that the dynamical process is approximately scale invariant, i.e., the only relevant variable is the ratio of the current volume in the queue to its average value. While the latter shows intraday seasonalities and strong variability across stocks and time periods, the dynamics of the rescaled volumes is universal. In terms of rescaled volumes, we found that the drift has a complex two-dimensional structure, which is a sum of a gradient contribution and a rotational contribution, both stable across stocks and time. This drift term is entirely responsible for the dynamical correlations between the ask queue and the bid queue.
Generalized time-dependent Schrödinger equation in two dimensions under constraints
NASA Astrophysics Data System (ADS)
Sandev, Trifce; Petreska, Irina; Lenzi, Ervin K.
2018-01-01
We investigate a generalized two-dimensional time-dependent Schrödinger equation on a comb with a memory kernel. A Dirac delta term is introduced in the Schrödinger equation so that the quantum motion along the x-direction is constrained at y = 0. The wave function is analyzed by using Green's function approach for several forms of the memory kernel, which are of particular interest. Closed form solutions for the cases of Dirac delta and power-law memory kernels in terms of Fox H-function, as well as for a distributed order memory kernel, are obtained. Further, a nonlocal term is also introduced and investigated analytically. It is shown that the solution for such a case can be represented in terms of infinite series in Fox H-functions. Green's functions for each of the considered cases are analyzed and plotted for the most representative ones. Anomalous diffusion signatures are evident from the presence of the power-law tails. The normalized Green's functions obtained in this work are of broader interest, as they are an important ingredient for further calculations and analyses of some interesting effects in the transport properties in low-dimensional heterogeneous media.
Fokker-Planck description for the queue dynamics of large tick stocks
NASA Astrophysics Data System (ADS)
Garèche, A.; Disdier, G.; Kockelkoren, J.; Bouchaud, J.-P.
2013-09-01
Motivated by empirical data, we develop a statistical description of the queue dynamics for large tick assets based on a two-dimensional Fokker-Planck (diffusion) equation. Our description explicitly includes state dependence, i.e., the fact that the drift and diffusion depend on the volume present on both sides of the spread. “Jump” events, corresponding to sudden changes of the best limit price, must also be included as birth-death terms in the Fokker-Planck equation. All quantities involved in the equation can be calibrated using high-frequency data on the best quotes. One of our central findings is that the dynamical process is approximately scale invariant, i.e., the only relevant variable is the ratio of the current volume in the queue to its average value. While the latter shows intraday seasonalities and strong variability across stocks and time periods, the dynamics of the rescaled volumes is universal. In terms of rescaled volumes, we found that the drift has a complex two-dimensional structure, which is a sum of a gradient contribution and a rotational contribution, both stable across stocks and time. This drift term is entirely responsible for the dynamical correlations between the ask queue and the bid queue.
CAS2D: FORTRAN program for nonrotating blade-to-blade, steady, potential transonic cascade flows
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1980-01-01
An exact, full-potential-equation (FPE) model for the steady, irrotational, homentropic and homoenergetic flow of a compressible, homocompositional, inviscid fluid through two dimensional planar cascades of airfoils was derived, together with its appropriate boundary conditions. A computer program, CAS2D, was developed that numerically solves an artificially time-dependent form of the actual FPE. The governing equation was discretized by using type-dependent, rotated finite differencing and the finite area technique. The flow field was discretized by providing a boundary-fitted, nonuniform computational mesh. The mesh was generated by using a sequence of conforming mapping, nonorthogonal coordinate stretching, and local, isoparametric, bilinear mapping functions. The discretized form of the FPE was solved iteratively by using successive line overrelaxation. The possible isentropic shocks were correctly captured by adding explicitly an artificial viscosity in a conservative form. In addition, a three-level consecutive, mesh refinement feature makes CAS2D a reliable and fast algorithm for the analysis of transonic, two dimensional cascade flows.
Tunable spin-orbit coupling for ultracold atoms in two-dimensional optical lattices
NASA Astrophysics Data System (ADS)
Grusdt, Fabian; Li, Tracy; Bloch, Immanuel; Demler, Eugene
2017-06-01
Spin-orbit coupling (SOC) is at the heart of many exotic band structures and can give rise to many-body states with topological order. Here we present a general scheme based on a combination of microwave driving and lattice shaking for the realization of two-dimensional SOC with ultracold atoms in systems with inversion symmetry. We show that the strengths of Rashba and Dresselhaus SOC can be independently tuned in a spin-dependent square lattice. More generally, our method can be used to open gaps between different spin states without breaking time-reversal symmetry. We demonstrate that this allows for the realization of topological insulators with nontrivial spin textures closely related to the Kane-Mele model.
Relativistic parameters of senescence.
Stathatos, Marios A
2005-01-01
The laws of biochemistry and biology are governed by parameters whose description in mathematical formulas is based on the three-dimensional space. It is a fact, however, that the life span of a cell and its specific functions, though limited, can be extended or diminished depending on the genetic code but also, on the natural pressure of the environment. The plasticity exhibited by a cellular system has been attributed to the change of the three-dimensional structure of the cell, with time being a simple measure of this change. The model of biological relativity proposed here, considers time as a flexible fourth dimension that corresponds directly to the inertial status of the cells. Two types of clocks are defined: the relativistic biological clock (RBC) and the mechanical clock (MC). In contrast to the MCs that show the astrological reference time, the time shown by the RBCs delay because it depends on cellular activity. The maximum and the expected life span of the cells and/or the organisms can be therefore relied on time transformation. One of the most important factors that can affect time flow is the energy that is produced during metabolic work. Based on this observation, RBCs can be constructed following series of theoretical experiments in order to assess biological time and life span changes.
Fermion localization on a split brane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chumbes, A. E. R.; Vasquez, A. E. O.; Hott, M. B.
2011-05-15
In this work we analyze the localization of fermions on a brane embedded in five-dimensional, warped and nonwarped, space-time. In both cases we use the same nonlinear theoretical model with a nonpolynomial potential featuring a self-interacting scalar field whose minimum energy solution is a soliton (a kink) which can be continuously deformed into a two-kink. Thus a single brane splits into two branes. The behavior of spin 1/2 fermions wave functions on the split brane depends on the coupling of fermions to the scalar field and on the geometry of the space-time.
A two-dimensional time domain near zone to far zone transformation
NASA Technical Reports Server (NTRS)
Luebbers, Raymond J.; Ryan, Deirdre; Beggs, John H.; Kunz, Karl S.
1991-01-01
A time domain transformation useful for extrapolating three dimensional near zone finite difference time domain (FDTD) results to the far zone was presented. Here, the corresponding two dimensional transform is outlined. While the three dimensional transformation produced a physically observable far zone time domain field, this is not convenient to do directly in two dimensions, since a convolution would be required. However, a representative two dimensional far zone time domain result can be obtained directly. This result can then be transformed to the frequency domain using a Fast Fourier Transform, corrected with a simple multiplicative factor, and used, for example, to calculate the complex wideband scattering width of a target. If an actual time domain far zone result is required, it can be obtained by inverse Fourier transform of the final frequency domain result.
Topology of Large-Scale Structures of Galaxies in two Dimensions—Systematic Effects
NASA Astrophysics Data System (ADS)
Appleby, Stephen; Park, Changbom; Hong, Sungwook E.; Kim, Juhan
2017-02-01
We study the two-dimensional topology of galactic distribution when projected onto two-dimensional spherical shells. Using the latest Horizon Run 4 simulation data, we construct the genus of the two-dimensional field and consider how this statistic is affected by late-time nonlinear effects—principally gravitational collapse and redshift space distortion (RSD). We also consider systematic and numerical artifacts, such as shot noise, galaxy bias, and finite pixel effects. We model the systematics using a Hermite polynomial expansion and perform a comprehensive analysis of known effects on the two-dimensional genus, with a view toward using the statistic for cosmological parameter estimation. We find that the finite pixel effect is dominated by an amplitude drop and can be made less than 1% by adopting pixels smaller than 1/3 of the angular smoothing length. Nonlinear gravitational evolution introduces time-dependent coefficients of the zeroth, first, and second Hermite polynomials, but the genus amplitude changes by less than 1% between z = 1 and z = 0 for smoothing scales {R}{{G}}> 9 {Mpc}/{{h}}. Non-zero terms are measured up to third order in the Hermite polynomial expansion when studying RSD. Differences in the shapes of the genus curves in real and redshift space are small when we adopt thick redshift shells, but the amplitude change remains a significant ˜ { O }(10 % ) effect. The combined effects of galaxy biasing and shot noise produce systematic effects up to the second Hermite polynomial. It is shown that, when sampling, the use of galaxy mass cuts significantly reduces the effect of shot noise relative to random sampling.
Development and application of a gradient method for solving differential games
NASA Technical Reports Server (NTRS)
Roberts, D. A.; Montgomery, R. C.
1971-01-01
A technique for solving n-dimensional games is developed and applied to two pursuit-evasion games. The first is a two-dimensional game similar to the homicidal chauffeur but modified to resemble an airplane-helicopter engagement. The second is a five-dimensional game of two airplanes at constant altitude and with thrust and turning controls. The performance function to be optimized by the pursuer and evader was the distance between the evader and a given target point in front of the pursuer. The analytic solution to the first game reveals that both unique and nonunique solutions exist. A comparison between the gradient results and the analytic solution shows a dependence on the nominal controls in regions where nonunique solutions exist. In the unique solution region, the results from the two methods agree closely. The results for the five-dimensional two-airplane game are also shown to be dependent on the nominal controls selected and indicate that initial conditions are in a region of nonunique solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trent, D.S.; Eyler, L.L.; Budden, M.J.
This document describes the numerical methods, current capabilities, and the use of the TEMPEST (Version L, MOD 2) computer program. TEMPEST is a transient, three-dimensional, hydrothermal computer program that is designed to analyze a broad range of coupled fluid dynamic and heat transfer systems of particular interest to the Fast Breeder Reactor thermal-hydraulic design community. The full three-dimensional, time-dependent equations of motion, continuity, and heat transport are solved for either laminar or turbulent fluid flow, including heat diffusion and generation in both solid and liquid materials. 10 refs., 22 figs., 2 tabs.
Electromigration of intergranular voids in metal films for microelectronic interconnects
NASA Astrophysics Data System (ADS)
Averbuch, Amir; Israeli, Moshe; Ravve, Igor
2003-04-01
Voids and cracks often occur in the interconnect lines of microelectronic devices. They increase the resistance of the circuits and may even lead to a fatal failure. Voids may occur inside a single grain, but often they appear on the boundary between two grains. In this work, we model and analyze numerically the migration and evolution of an intergranular void subjected to surface diffusion forces and external voltage applied to the interconnect. The grain-void interface is considered one-dimensional, and the physical formulation of the electromigration and diffusion model results in two coupled fourth-order one-dimensional time-dependent PDEs. The boundary conditions are specified at the triple points, which are common to both neighboring grains and the void. The solution of these equations uses a finite difference scheme in space and a Runge-Kutta integration scheme in time, and is also coupled to the solution of a static Laplace equation describing the voltage distribution throughout the grain. Since the voltage distribution is required only along the interface line, the two-dimensional discretization of the grain interior is not needed, and the static problem is solved by the boundary element method at each time step. The motion of the intergranular void was studied for different ratios between the diffusion and the electric field forces, and for different initial configurations of the void.
Quasi-two-dimensional spin and phonon excitations in La 1.965Ba 0.035CuO 4
Wagman, J. J.; Parshall, D.; Stone, Matthew B.; ...
2015-06-03
Here, we present time-of-fight inelastic neutron scattering measurements of La 1.965Ba 0.035CuO 4 (LBCO), a lightly doped member of the high temperature superconducting La-based cuprate family. By using time-of-flight neutron instrumentation coupled with single crystal sample rotation we obtain a four-dimensional data set (three Q and one energy) that is both comprehensive and spans a large region of reciprocal space. Our measurements identify rich structure in the energy dependence of the highly dispersive spin excitations, which are centered at equivalent (1/2, 1/2, L) wave-vectors. These structures correlate strongly with several crossings of the spin excitations with the lightly dispersive phononsmore » found in this system. These eects are signicant and account for on the order of 25% of the total inelastic scattering for energies between ≈5 and 40meV at low |Q|. Interestingly, this scattering also presents little or no L-dependence. As the phonons and dispersive spin excitations centred at equivalent (1/2, 1/2, L) wave-vectors are common to all members of La-based 214 copper oxides, we conclude such strong quasi-two dimensional scattering enhancements are likely to occur in all such 214 families of materials, including those concentrations corresponding to superconducting ground states. Such a phenomenon appears to be a fundamental characteristic of these materials and is potentially related to superconducting pairing.« less
NASA Technical Reports Server (NTRS)
Lyster, P. M.; Liewer, P. C.; Decyk, V. K.; Ferraro, R. D.
1995-01-01
A three-dimensional electrostatic particle-in-cell (PIC) plasma simulation code has been developed on coarse-grain distributed-memory massively parallel computers with message passing communications. Our implementation is the generalization to three-dimensions of the general concurrent particle-in-cell (GCPIC) algorithm. In the GCPIC algorithm, the particle computation is divided among the processors using a domain decomposition of the simulation domain. In a three-dimensional simulation, the domain can be partitioned into one-, two-, or three-dimensional subdomains ("slabs," "rods," or "cubes") and we investigate the efficiency of the parallel implementation of the push for all three choices. The present implementation runs on the Intel Touchstone Delta machine at Caltech; a multiple-instruction-multiple-data (MIMD) parallel computer with 512 nodes. We find that the parallel efficiency of the push is very high, with the ratio of communication to computation time in the range 0.3%-10.0%. The highest efficiency (> 99%) occurs for a large, scaled problem with 64(sup 3) particles per processing node (approximately 134 million particles of 512 nodes) which has a push time of about 250 ns per particle per time step. We have also developed expressions for the timing of the code which are a function of both code parameters (number of grid points, particles, etc.) and machine-dependent parameters (effective FLOP rate, and the effective interprocessor bandwidths for the communication of particles and grid points). These expressions can be used to estimate the performance of scaled problems--including those with inhomogeneous plasmas--to other parallel machines once the machine-dependent parameters are known.
NASA Astrophysics Data System (ADS)
Blanchard, Antoine B. E.; Bergman, Lawrence A.; Vakakis, Alexander F.; Pearlstein, Arne J.
2016-11-01
We consider two-dimensional flow past a linearly-sprung cylinder allowed to undergo rectilinear motion normal to the mean flow, with an attached "nonlinear energy sink" consisting of a mass allowed to rotate about the cylinder axis, and whose rotational motion is linearly damped by a viscous damper. For Re < 50, where the flow is expected to be two-dimensional, we use different inlet transients to identify multiple long-time solutions, and to study how they depend on Re and a dimensionless spring constant. For fixed values of the ratio of cylinder density to fluid density, dimensionless damping coefficient, and ratio of the rotating mass to the total mass, we find that different inlet transients lead to different long-time solutions, including solutions that are steady and symmetric (with a motionless cylinder), time-periodic, quasi-periodic, and chaotic. The results show that over a wide range of the parameters, the steady symmetric motionless-cylinder solution is locally, but not globally, stable. Supported by NSF Grant CMMI-1363231.
NASA Astrophysics Data System (ADS)
Paasch, G.; Gobsch, G.; Schulze, D.; Handschack, S.
1989-04-01
For the quasi two-dimensional (Q2D) electron gas important experimental information is obtained from magnetotransport measurements with a perpendicular magnetic field. The energy spectrum consists of series of Landau levels for each electric subband. There still exist several open questions if two or more electric Subbands are populated. Results are presented here for this situation. The usual procedure for interpreting Shubnikov-de Haas (SdH) measurements for the case of several populated subbands is analyzed (connection with the saw-tooth like Fermi energy as a function of the magnetic field). The transverse magnetoresistance is calculated for the Q2D electron gas in InSb-bicrystals and at InGaAs-InP heterojunctions. All details of the experimental curves can be explained including an anomalous behaviour of the quantum Hall effect (QHE) in the second system. Basic assumptions of the theory are the broadening of the Landau levels and in addition a background of localized states in the second case. The dependence of the electronic structure on the perpendicular magnetic field is discussed qualitatively. First results of magnetic field dependent self-consistent calculations for inversion layers are presented. It is shown for the first time that this magnetic field dependence causes qualitative changes of the Landau level spectrum.
Numerical simulation of detonation reignition in H 2-O 2 mixtures in area expansions
NASA Astrophysics Data System (ADS)
Jones, D. A.; Kemister, G.; Tonello, N. A.; Oran, E. S.; Sichel, M.
Time-dependent, two-dimensional, numerical simulations of a transmitted detonation show reignition occuring by one of two mechanisms. The first mechanism involves the collision of triple points as they expand along a decaying shock front. In the second mechanism ignition results from the coalescence of a number of small, relatively high pressure regions left over from the decay of weakened transverse waves. The simulations were performed using an improved chemical kinetic model for stoichiometric H 2-O 2 mixtures. The initial conditions were a propagating, two-dimensional detonation resolved enough to show transverse wave structure. The calculations provide clarification of the reignition mechanism seen in previous H 2-O 2-Ar simulations, and again demonstrate that the transverse wave structure of the detonation front is critical to the reignition process.
Dimensional Effects on the Charge Density Waves in Ultrathin Films of TiSe 2
Chen, P.; Chan, Y. -H.; Wong, M. -H.; ...
2016-09-20
Charge density wave (CDW) formation in solids is a critical phenomenon involving the collective reorganization of the electrons and atoms in the system into a wave structure, and it is expected to be sensitive to the geometric constraint of the system at the nanoscale. Here, we study the CDW transition in TiSe 2, a quasi-two-dimensional layered material, to determine the effects of quantum confinement and changing dimensions in films ranging from a single layer to multilayers. Of key interest is the characteristic length scale for the transformation from a two-dimensional case to the three-dimensional limit. Angle-resolved photoemission (ARPES) measurements ofmore » films with thicknesses up to six layers reveal substantial variations in the energy structure of discrete quantum well states; however, the temperature-dependent band-gap renormalization converges at just three layers. The results indicate a layer-dependent mixture of two transition temperatures and a very-short-range CDW interaction within a three-dimensional framework.« less
NASA Astrophysics Data System (ADS)
Yearsley, J. R.
2017-12-01
The semi-Lagrangian numerical scheme employed by RBM, a model for simulating time-dependent, one-dimensional water quality constituents in advection-dominated rivers, is highly scalable both in time and space. Although the model has been used at length scales of 150 meters and time scales of three hours, the majority of applications have been at length scales of 1/16th degree latitude/longitude (about 5 km) or greater and time scales of one day. Applications of the method at these scales has proven successful for characterizing the impacts of climate change on water temperatures in global rivers and on the vulnerability of thermoelectric power plants to changes in cooling water temperatures in large river systems. However, local effects can be very important in terms of ecosystem impacts, particularly in the case of developing mixing zones for wastewater discharges with pollutant loadings limited by regulations imposed by the Federal Water Pollution Control Act (FWPCA). Mixing zone analyses have usually been decoupled from large-scale watershed influences by developing scenarios that represent critical scenarios for external processes associated with streamflow and weather conditions . By taking advantage of the particle-tracking characteristics of the numerical scheme, RBM can provide results at any point in time within the model domain. We develop a proof of concept for locations in the river network where local impacts such as mixing zones may be important. Simulated results from the semi-Lagrangian numerical scheme are treated as input to a finite difference model of the two-dimensional diffusion equation for water quality constituents such as water temperature or toxic substances. Simulations will provide time-dependent, two-dimensional constituent concentration in the near-field in response to long-term basin-wide processes. These results could provide decision support to water quality managers for evaluating mixing zone characteristics.
Numerical simulation of fluid flow around a scramaccelerator projectile
NASA Technical Reports Server (NTRS)
Pepper, Darrell W.; Humphrey, Joseph W.; Sobota, Thomas H.
1991-01-01
Numerical simulations of the fluid motion and temperature distribution around a 'scramaccelerator' projectile are obtained for Mach numbers in the 5-10 range. A finite element method is used to solve the equations of motion for inviscid and viscous two-dimensional or axisymmetric compressible flow. The time-dependent equations are solved explicitly, using bilinear isoparametric quadrilateral elements, mass lumping, and a shock-capturing Petrov-Galerkin formulation. Computed results indicate that maintaining on-design performance for controlling and stabilizing oblique detonation waves is critically dependent on projectile shape and Mach number.
Coevolution of patch-type dependent emigration and patch-type dependent immigration.
Weigang, Helene C
2017-08-07
The three phases of dispersal - emigration, transfer and immigration - are affecting each other and the former and latter decisions may depend on patch types. Despite the inevitable fact of the complexity of the dispersal process, patch-type dependencies of dispersal decisions modelled as emigration and immigration are usually missing in theoretical dispersal models. Here, I investigate the coevolution of patch-type dependent emigration and patch-type dependent immigration in an extended Hamilton-May model. The dispersing population inhabits a landscape structured into many patches of two types and disperses during a continuous-time season. The trait under consideration is a four dimensional vector consisting of two values for emigration probability from the patches and two values for immigration probability into the patches of each type. Using the adaptive dynamics approach I show that four qualitatively different dispersal strategies may evolve in different parameter regions, including a counterintuitive strategy, where patches of one type are fully dispersed from (emigration probability is one) but individuals nevertheless always immigrate into them during the dispersal season (immigration probability is one). I present examples of evolutionary branching in a wide parameter range, when the patches with high local death rate during the dispersal season guarantee a high expected disperser output. I find that two dispersal strategies can coexist after evolutionary branching: a strategy with full immigration only into the patches with high expected disperser output coexists with a strategy that immigrates into any patch. Stochastic simulations agree with the numerical predictions. Since evolutionary branching is also found when immigration evolves alone, the present study is adding coevolutionary constraints on the emigration traits and hence finds that the coevolution of a higher dimensional trait sometimes hinders evolutionary diversification. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Rodkiewicz, C. M.; Gupta, R. N.
1971-01-01
The laminar two-dimensional flow over a stepwise accelerated flat plate moving with hypersonic speed at zero angle of attack is analysed. The governing equations in the self-similar form are linearized and solved numerically for small times. The solutions obtained are the deviations of the velocity and the temperature profiles from those of steady state. The presented results may be used to find the first order boundary layer induced pressure on the plate.
NASA Astrophysics Data System (ADS)
Galperin, Boris; Mellor, George L.
1990-09-01
The three-dimensional model of Delaware Bay, River and adjacent continental shelf was described in Part 1. Here, Part 2 of this two-part paper demonstrates that the model is capable of realistic simulation of current and salinity distributions, tidal cycle variability, events of strong mixing caused by high winds and rapid salinity changes due to high river runoff. The 25-h average subtidal circulation strongly depends on the wind forcing. Monthly residual currents and salinity distributions demonstrate a classical two-layer estuarine circulation wherein relatively low salinity water flows out at the surface and compensating high salinity water from the shelf flows at the bottom. The salinity intrusion is most vigorous along deep channels in the Bay. Winds can generate salinity fronts inside and outside the Bay and enhance or weaken the two-layer circulation pattern. Since the portion of the continental shelf included in the model is limited, the model shelf circulation is locally wind-driven and excludes such effects as coastally trapped waves and interaction with Gulf Stream rings; nevertheless, a significant portion of the coastal elevation variability is hindcast by the model. Also, inclusion of the shelf improves simulation of salinity inside the Bay compared with simulations where the salinity boundary condition is specified at the mouth of the Bay.
Lenarda, P; Paggi, M
A comprehensive computational framework based on the finite element method for the simulation of coupled hygro-thermo-mechanical problems in photovoltaic laminates is herein proposed. While the thermo-mechanical problem takes place in the three-dimensional space of the laminate, moisture diffusion occurs in a two-dimensional domain represented by the polymeric layers and by the vertical channel cracks in the solar cells. Therefore, a geometrical multi-scale solution strategy is pursued by solving the partial differential equations governing heat transfer and thermo-elasticity in the three-dimensional space, and the partial differential equation for moisture diffusion in the two dimensional domains. By exploiting a staggered scheme, the thermo-mechanical problem is solved first via a fully implicit solution scheme in space and time, with a specific treatment of the polymeric layers as zero-thickness interfaces whose constitutive response is governed by a novel thermo-visco-elastic cohesive zone model based on fractional calculus. Temperature and relative displacements along the domains where moisture diffusion takes place are then projected to the finite element model of diffusion, coupled with the thermo-mechanical problem by the temperature and crack opening dependent diffusion coefficient. The application of the proposed method to photovoltaic modules pinpoints two important physical aspects: (i) moisture diffusion in humidity freeze tests with a temperature dependent diffusivity is a much slower process than in the case of a constant diffusion coefficient; (ii) channel cracks through Silicon solar cells significantly enhance moisture diffusion and electric degradation, as confirmed by experimental tests.
Magnetoconvection dynamics in a stratified layer. 1: Two-dimensional simulations and visualization
NASA Astrophysics Data System (ADS)
Lantz, Steven R.; Sudan, R. N.
1995-03-01
To gain insight in the problem of fluid convection below solar photosphere, time-dependent magnetohydrodynamic convection is studied by numerical simulation to the magneto-anelastic equations, a model appropiate for low Mach numbers. Numerical solutions to the equations are generated on a two-dimensional Cartesian mesh by a finite-difference, predictor-corrector algorithm. The thermodynamic properties of the fluid are held constant at the rigid, stress-free top and bottom boundaries of the computational box, while lateral boundaries are treated as periodic. In most runs the background polytropic fluid configuration is held fixed at Rayleigh number R = 5.44 times the critical value, Prandtl number P = 1.8, and aspect ratio a = 1, while the magnetic parameters are allowed to vary. The resulting dynamical behavior is shown to be strongly influenced by a horizontal magnetic field which is imposed at the bottom boundary. As the field strength increases from zero, an initially unsteady 'single-roll' state, featuring complex time dependence is replaced by a steady 'traveling-wave tilted state; then, an oscillatory or 'sloshing' state; then, a steady two-poll state with no tilting; and finally, a stationary state. Because the magnetic field is matched onto a potential field at the top boundary, it can penetrate into the nonconducting region above. By varying a magnetic diffusivity, the concentrations of weak magnetic fields at the top of these flows can be shown to be explainable in terms of an advection-diffusion balance.
NASA Astrophysics Data System (ADS)
Falvo, Cyril
2018-02-01
The theory of linear and non-linear infrared response of vibrational Holstein polarons in one-dimensional lattices is presented in order to identify the spectral signatures of self-trapping phenomena. Using a canonical transformation, the optical response is computed from the small polaron point of view which is valid in the anti-adiabatic limit. Two types of phonon baths are considered: optical phonons and acoustical phonons, and simple expressions are derived for the infrared response. It is shown that for the case of optical phonons, the linear response can directly probe the polaron density of states. The model is used to interpret the experimental spectrum of crystalline acetanilide in the C=O range. For the case of acoustical phonons, it is shown that two bound states can be observed in the two-dimensional infrared spectrum at low temperature. At high temperature, analysis of the time-dependence of the two-dimensional infrared spectrum indicates that bath mediated correlations slow down spectral diffusion. The model is used to interpret the experimental linear-spectroscopy of model α-helix and β-sheet polypeptides. This work shows that the Davydov Hamiltonian cannot explain the observations in the NH stretching range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, C.; Bhattacharjee, A.; Skiff, F.
2006-05-15
Landau damping and Bernstein-Greene-Kruskal (BGK) modes are among the most fundamental concepts in plasma physics. While the former describes the surprising damping of linear plasma waves in a collisionless plasma, the latter describes exact undamped nonlinear solutions of the Vlasov equation. There does exist a relationship between the two: Landau damping can be described as the phase mixing of undamped eigenmodes, the so-called Case-Van Kampen modes, which can be viewed as BGK modes in the linear limit. While these concepts have been around for a long time, unexpected new results are still being discovered. For Landau damping, we show thatmore » the textbook picture of phase mixing is altered profoundly in the presence of collision. In particular, the continuous spectrum of Case-Van Kampen modes is eliminated and replaced by a discrete spectrum, even in the limit of zero collision. Furthermore, we show that these discrete eigenmodes form a complete set of solutions. Landau-damped solutions are then recovered as true eigenmodes (which they are not in the collisionless theory). For BGK modes, our interest is motivated by recent discoveries of electrostatic solitary waves in magnetospheric plasmas. While one-dimensional BGK theory is quite mature, there appear to be no exact three-dimensional solutions in the literature (except for the limiting case when the magnetic field is sufficiently strong so that one can apply the guiding-center approximation). We show, in fact, that two- and three-dimensional solutions that depend only on energy do not exist. However, if solutions depend on both energy and angular momentum, we can construct exact three-dimensional solutions for the unmagnetized case, and two-dimensional solutions for the case with a finite magnetic field. The latter are shown to be exact, fully electromagnetic solutions of the steady-state Vlasov-Poisson-Ampere system.« less
Free-energy landscape for cage breaking of three hard disks.
Hunter, Gary L; Weeks, Eric R
2012-03-01
We investigate cage breaking in dense hard-disk systems using a model of three Brownian disks confined within a circular corral. This system has a six-dimensional configuration space, but can be equivalently thought to explore a symmetric one-dimensional free-energy landscape containing two energy minima separated by an energy barrier. The exact free-energy landscape can be calculated as a function of system size by a direct enumeration of states. Results of simulations show the average time between cage breaking events follows an Arrhenius scaling when the energy barrier is large. We also discuss some of the consequences of using a one-dimensional representation to understand dynamics through a multidimensional space, such as diffusion acquiring spatial dependence and discontinuities in spatial derivatives of free energy.
An interpretation of flare-induced and decayless coronal-loop oscillations as interference patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hindman, Bradley W.; Jain, Rekha, E-mail: hindman@solarz.colorado.edu
2014-04-01
We present an alternative model of coronal-loop oscillations, which considers that the waves are trapped in a two-dimensional waveguide formed by the entire arcade of field lines. This differs from the standard one-dimensional model which treats the waves as the resonant oscillations of just the visible bundle of field lines. Within the framework of our two-dimensional model, the two types of oscillations that have been observationally identified, flare-induced waves and 'decayless' oscillations, can both be attributed to MHD fast waves. The two components of the signal differ only because of the duration and spatial extent of the source that createsmore » them. The flare-induced waves are generated by strong localized sources of short duration, while the decayless background can be excited by a continuous, stochastic source. Further, the oscillatory signal arising from a localized, short-duration source can be interpreted as a pattern of interference fringes produced by waves that have traveled diverse routes of various pathlengths through the waveguide. The resulting amplitude of the fringes slowly decays in time with an inverse square root dependence. The details of the interference pattern depend on the shape of the arcade and the spatial variation of the Alfvén speed. The rapid decay of this wave component, which has previously been attributed to physical damping mechanisms that remove energy from resonant oscillations, occurs as a natural consequence of the interference process without the need for local dissipation.« less
Adjoint shape optimization for fluid-structure interaction of ducted flows
NASA Astrophysics Data System (ADS)
Heners, J. P.; Radtke, L.; Hinze, M.; Düster, A.
2018-03-01
Based on the coupled problem of time-dependent fluid-structure interaction, equations for an appropriate adjoint problem are derived by the consequent use of the formal Lagrange calculus. Solutions of both primal and adjoint equations are computed in a partitioned fashion and enable the formulation of a surface sensitivity. This sensitivity is used in the context of a steepest descent algorithm for the computation of the required gradient of an appropriate cost functional. The efficiency of the developed optimization approach is demonstrated by minimization of the pressure drop in a simple two-dimensional channel flow and in a three-dimensional ducted flow surrounded by a thin-walled structure.
Majorana zero modes in the hopping-modulated one-dimensional p-wave superconducting model.
Gao, Yi; Zhou, Tao; Huang, Huaixiang; Huang, Ran
2015-11-20
We investigate the one-dimensional p-wave superconducting model with periodically modulated hopping and show that under time-reversal symmetry, the number of the Majorana zero modes (MZMs) strongly depends on the modulation period. If the modulation period is odd, there can be at most one MZM. However if the period is even, the number of the MZMs can be zero, one and two. In addition, the MZMs will disappear as the chemical potential varies. We derive the condition for the existence of the MZMs and show that the topological properties in this model are dramatically different from the one with periodically modulated potential.
Empirical parameterization of setup, swash, and runup
Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H.
2006-01-01
Using shoreline water-level time series collected during 10 dynamically diverse field experiments, an empirical parameterization for extreme runup, defined by the 2% exceedence value, has been developed for use on natural beaches over a wide range of conditions. Runup, the height of discrete water-level maxima, depends on two dynamically different processes; time-averaged wave setup and total swash excursion, each of which is parameterized separately. Setup at the shoreline was best parameterized using a dimensional form of the more common Iribarren-based setup expression that includes foreshore beach slope, offshore wave height, and deep-water wavelength. Significant swash can be decomposed into the incident and infragravity frequency bands. Incident swash is also best parameterized using a dimensional form of the Iribarren-based expression. Infragravity swash is best modeled dimensionally using offshore wave height and wavelength and shows no statistically significant linear dependence on either foreshore or surf-zone slope. On infragravity-dominated dissipative beaches, the magnitudes of both setup and swash, modeling both incident and infragravity frequency components together, are dependent only on offshore wave height and wavelength. Statistics of predicted runup averaged over all sites indicate a - 17 cm bias and an rms error of 38 cm: the mean observed runup elevation for all experiments was 144 cm. On intermediate and reflective beaches with complex foreshore topography, the use of an alongshore-averaged beach slope in practical applications of the runup parameterization may result in a relative runup error equal to 51% of the fractional variability between the measured and the averaged slope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dustin Popp; Zander Mausolff; Sedat Goluoglu
We are proposing to use the code, TDKENO, to model TREAT. TDKENO solves the time dependent, three dimensional Boltzmann transport equation with explicit representation of delayed neutrons. Instead of directly integrating this equation, the neutron flux is factored into two components – a rapidly varying amplitude equation and a slowly varying shape equation and each is solved separately on different time scales. The shape equation is solved using the 3D Monte Carlo transport code KENO, from Oak Ridge National Laboratory’s SCALE code package. Using the Monte Carlo method to solve the shape equation is still computationally intensive, but the operationmore » is only performed when needed. The amplitude equation is solved deterministically and frequently, so the solution gives an accurate time-dependent solution without having to repeatedly We have modified TDKENO to incorporate KENO-VI so that we may accurately represent the geometries within TREAT. This paper explains the motivation behind using generalized geometry, and provides the results of our modifications. TDKENO uses the Improved Quasi-Static method to accomplish this. In this method, the neutron flux is factored into two components. One component is a purely time-dependent and rapidly varying amplitude function, which is solved deterministically and very frequently (small time steps). The other is a slowly varying flux shape function that weakly depends on time and is only solved when needed (significantly larger time steps).« less
Estimation of gloss from rough surface parameters
NASA Astrophysics Data System (ADS)
Simonsen, Ingve; Larsen, Åge G.; Andreassen, Erik; Ommundsen, Espen; Nord-Varhaug, Katrin
2005-12-01
Gloss is a quantity used in the optical industry to quantify and categorize materials according to how well they scatter light specularly. With the aid of phase perturbation theory, we derive an approximate expression for this quantity for a one-dimensional randomly rough surface. It is demonstrated that gloss depends in an exponential way on two dimensionless quantities that are associated with the surface randomness: the root-mean-square roughness times the perpendicular momentum transfer for the specular direction, and a correlation function dependent factor times a lateral momentum variable associated with the collection angle. Rigorous Monte Carlo simulations are used to access the quality of this approximation, and good agreement is observed over large regions of parameter space.
Infrared laser driven double proton transfer. An optimal control theory study
NASA Astrophysics Data System (ADS)
Abdel-Latif, Mahmoud K.; Kühn, Oliver
2010-02-01
Laser control of ultrafast double proton transfer is investigated for a two-dimensional model system describing stepwise and concerted transfer pathways. The pulse design has been done by employing optimal control theory in combination with the multiconfiguration time-dependent Hartree wave packet propagation. The obtained laser fields correspond to multiple pump-dump pulse sequences. Special emphasis is paid to the relative importance of stepwise and concerted transfer pathways for the driven wave packet and its dependence on the parameters of the model Hamiltonian as well as on the propagation time. While stepwise transfer is dominating in all cases considered, for high barrier systems concerted transfer proceeding via tunneling can make a contribution.
The Frequency Detuning Correction and the Asymmetry of Line Shapes: The Far Wings of H2O-H2O
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.; Hansen, James E. (Technical Monitor)
2002-01-01
A far-wing line shape theory which satisfies the detailed balance principle is applied to the H2O-H2O system. Within this formalism, two line shapes are introduced, corresponding to band-averages over the positive and negative resonance lines, respectively. Using the coordinate representation, the two line shapes can be obtained by evaluating 11-dimensional integrations whose integrands are a product of two factors. One depends on the interaction between the two molecules and is easy to evaluate. The other contains the density matrix of the system and is expressed as a product of two 3-dimensional distributions associated with the density matrices of the absorber and the perturber molecule, respectively. If most of the populated states are included in the averaging process, to obtain these distributions requires extensive computer CPU time, but only have to be computed once for a given temperature. The 11-dimensional integrations are evaluated using the Monte Carlo method, and in order to reduce the variance, the integration variables are chosen such that the sensitivity of the integrands on them is clearly distinguished.
Kimizuka, Hajime; Kurokawa, Shu; Yamaguchi, Akihiro; Sakai, Akira; Ogata, Shigenobu
2014-01-01
Predicting the equilibrium ordered structures at internal interfaces, especially in the case of nanometer-scale chemical heterogeneities, is an ongoing challenge in materials science. In this study, we established an ab-initio coarse-grained modeling technique for describing the phase-like behavior of a close-packed stacking-fault-type interface containing solute nanoclusters, which undergo a two-dimensional disorder-order transition, depending on the temperature and composition. Notably, this approach can predict the two-dimensional medium-range ordering in the nanocluster arrays realized in Mg-based alloys, in a manner consistent with scanning tunneling microscopy-based measurements. We predicted that the repulsively interacting solute-cluster system undergoes a continuous evolution into a highly ordered densely packed morphology while maintaining a high degree of six-fold orientational order, which is attributable mainly to an entropic effect. The uncovered interaction-dependent ordering properties may be useful for the design of nanostructured materials utilizing the self-organization of two-dimensional nanocluster arrays in the close-packed interfaces. PMID:25471232
Measures for the Dynamics in a Few-Body Quantum System with Harmonic Interactions
NASA Astrophysics Data System (ADS)
Nagy, I.; Pipek, J.; Glasser, M. L.
2018-01-01
We determine the exact time-dependent non-idempotent one-particle reduced density matrix and its spectral decomposition for a harmonically confined two-particle correlated one-dimensional system when the interaction terms in the Schrödinger Hamiltonian are changed abruptly. Based on this matrix in coordinate space we derive a precise condition for the equivalence of the purity and the overlap-square of the correlated and non-correlated wave functions as the model system with harmonic interactions evolves in time. This equivalence holds only if the interparticle interactions are affected, while the confinement terms are unaffected within the stability range of the system. Under this condition we analyze various time-dependent measures of entanglement and demonstrate that, depending on the magnitude of the changes made in the Hamiltonian, periodic, logarithmically increasing or constant value behavior of the von Neumann entropy can occur.
Modeling of a piezoelectric/piezomagnetic nano energy harvester based on two dimensional theory
NASA Astrophysics Data System (ADS)
Yan, Zhi
2018-01-01
This work presents a two dimensional theory for a piezoelectric/piezomagnetic bilayer nanoplate in coupled extensional and flexural vibrations with both flexoelectric and surface effects. The magneto-electro-elastic (MEE) coupling equations are derived from three-dimensional equations and Kirchhoff plate theory. Based on the developed theory, a piezoelectric/piezomagnetic nano energy harvester is proposed, which can generate electricity under time-harmonic applied magnetic field. The approximate solutions for the mechanical responses and voltage of the energy harvester are obtained using the weighted residual method. Results show that the properties of the proposed energy harvester are size-dependent due to the flexoelectric and surface effects, and such effects are more pronounced when the bilayer thickness is reduced to dozens of nanometers. It is also found that the magnetoelectric coupling coefficient and power density of the energy harvester are sensitive to the load resistance, the thickness fraction of the piezoelectric or the piezomagnetic layer and damping ratios. Moreover, results indicate that the flexoelectric effect could be made use to build a dielectric/piezomagnetic nano energy harvester. This work provides modeling techniques and numerical methods for investigating the size-dependent properties of MEE nanoplate-based energy harvester and could be helpful for designing nano energy harvesters using the principle of flexoelectricity.
The UCSD Time-dependent Tomography and IPS use for Exploring Space Weather Events
NASA Astrophysics Data System (ADS)
Yu, H. S.; Jackson, B. V.; Buffington, A.; Hick, P. P.; Tokumaru, M.; Odstrcil, D.; Kim, J.; Yun, J.
2016-12-01
The University of California, San Diego (UCSD) time-dependent, iterative, kinematic reconstruction technique has been used and expanded upon for over two decades. It provides some of the most-accurate predictions and three-dimensional (3D) analyses of heliospheric solar-wind parameters now available using interplanetary scintillation (IPS) data. The parameters provided include reconstructions of velocity, density, and three-component magnetic fields. Precise time-dependent results are now obtained at any solar distance in the inner heliosphere using ISEE (formerly STELab), Japan, IPS data sets, and can be used to drive 3D-MHD models including ENLIL. Using IPS data, these reconstructions provide a real-time prediction of the global solar wind parameters across the whole heliosphere with a time cadence of about one day (see http://ips.ucsd.edu). Here we compare the results (such as density, velocity, and magnetic fields) from the IPS tomography with different in-situ measurements and discuss several specific space weather events that demonstrate the issues resulting from these analyses.
Single polymer dynamics under large amplitude oscillatory extension
NASA Astrophysics Data System (ADS)
Zhou, Yuecheng; Schroeder, Charles M.
2016-09-01
Understanding the conformational dynamics of polymers in time-dependent flows is of key importance for controlling materials properties during processing. Despite this importance, however, it has been challenging to study polymer dynamics in controlled time-dependent or oscillatory extensional flows. In this work, we study the dynamics of single polymers in large-amplitude oscillatory extension (LAOE) using a combination of experiments and Brownian dynamics (BD) simulations. Two-dimensional LAOE flow is generated using a feedback-controlled stagnation point device known as the Stokes trap, thereby generating an oscillatory planar extensional flow with alternating principal axes of extension and compression. Our results show that polymers experience periodic cycles of compression, reorientation, and extension in LAOE, and dynamics are generally governed by a dimensionless flow strength (Weissenberg number Wi) and dimensionless frequency (Deborah number De). Single molecule experiments are compared to BD simulations with and without intramolecular hydrodynamic interactions (HI) and excluded volume (EV) interactions, and good agreement is obtained across a range of parameters. Moreover, transient bulk stress in LAOE is determined from simulations using the Kramers relation, which reveals interesting and unique rheological signatures for this time-dependent flow. We further construct a series of single polymer stretch-flow rate curves (defined as single molecule Lissajous curves) as a function of Wi and De, and we observe qualitatively different dynamic signatures (butterfly, bow tie, arch, and line shapes) across the two-dimensional Pipkin space defined by Wi and De. Finally, polymer dynamics spanning from the linear to nonlinear response regimes are interpreted in the context of accumulated fluid strain in LAOE.
Generation of dark solitons and their instability dynamics in two-dimensional condensates
NASA Astrophysics Data System (ADS)
Verma, Gunjan; Rapol, Umakant D.; Nath, Rejish
2017-04-01
We analyze numerically the formation and the subsequent dynamics of two-dimensional matter wave dark solitons in a Thomas-Fermi rubidium condensate using various techniques. An initially imprinted sharp phase gradient leads to the dynamical formation of a stationary soliton as well as very shallow gray solitons, whereas a smooth gradient only creates gray solitons. The depth and hence, the velocity of the soliton is provided by the spatial width of the phase gradient, and it also strongly influences the snake-instability dynamics of the two-dimensional solitons. The vortex dipoles stemming from the unstable soliton exhibit rich dynamics. Notably, the annihilation of a vortex dipole via a transient dark lump or a vortexonium state, the exchange of vortices between either a pair of vortex dipoles or a vortex dipole and a single vortex, and so on. For sufficiently large width of the initial phase gradient, the solitons may decay directly into vortexoniums instead of vortex pairs, and also the decay rate is augmented. Later, we discuss alternative techniques to generate dark solitons, which involve a Gaussian potential barrier and time-dependent interactions, both linear and periodic. The properties of the solitons can be controlled by tuning the amplitude or the width of the potential barrier. In the linear case, the number of solitons and their depths are determined by the quench time of the interactions. For the periodic modulation, a transient soliton lattice emerges with its periodicity depending on the modulation frequency, through a wave number selection governed by the local Bogoliubov spectrum. Interestingly, for sufficiently low barrier potential, both Faraday pattern and soliton lattice coexist. The snake instability dynamics of the soliton lattice is characteristically modified if the Faraday pattern is present.
The evolving quality of frictional contact with graphene.
Li, Suzhi; Li, Qunyang; Carpick, Robert W; Gumbsch, Peter; Liu, Xin Z; Ding, Xiangdong; Sun, Jun; Li, Ju
2016-11-24
Graphite and other lamellar materials are used as dry lubricants for macroscale metallic sliding components and high-pressure contacts. It has been shown experimentally that monolayer graphene exhibits higher friction than multilayer graphene and graphite, and that this friction increases with continued sliding, but the mechanism behind this remains subject to debate. It has long been conjectured that the true contact area between two rough bodies controls interfacial friction. The true contact area, defined for example by the number of atoms within the range of interatomic forces, is difficult to visualize directly but characterizes the quantity of contact. However, there is emerging evidence that, for a given pair of materials, the quality of the contact can change, and that this can also strongly affect interfacial friction. Recently, it has been found that the frictional behaviour of two-dimensional materials exhibits traits unlike those of conventional bulk materials. This includes the abovementioned finding that for few-layer two-dimensional materials the static friction force gradually strengthens for a few initial atomic periods before reaching a constant value. Such transient behaviour, and the associated enhancement of steady-state friction, diminishes as the number of two-dimensional layers increases, and was observed only when the two-dimensional material was loosely adhering to a substrate. This layer-dependent transient phenomenon has not been captured by any simulations. Here, using atomistic simulations, we reproduce the experimental observations of layer-dependent friction and transient frictional strengthening on graphene. Atomic force analysis reveals that the evolution of static friction is a manifestation of the natural tendency for thinner and less-constrained graphene to re-adjust its configuration as a direct consequence of its greater flexibility. That is, the tip atoms become more strongly pinned, and show greater synchrony in their stick-slip behaviour. While the quantity of atomic-scale contacts (true contact area) evolves, the quality (in this case, the local pinning state of individual atoms and the overall commensurability) also evolves in frictional sliding on graphene. Moreover, the effects can be tuned by pre-wrinkling. The evolving contact quality is critical for explaining the time-dependent friction of configurationally flexible interfaces.
NASA Astrophysics Data System (ADS)
Akazawa, Housei
2018-04-01
Morphological evolution of Ge layers on SiO2 substrates grown by photo-excited chemical vapor deposition from GeH4 was monitored in real time by recording (Ψ, Δ) angles of spectroscopic ellipsometry and ex-situ analyzed by atomic force microscopy (AFM). Distinct Ψ-Δ trajectory shapes were demonstrated to discriminate the two-dimensional (2D) and three-dimensional (3D) growth modes. While the trajectory of 2D growth is characterized by a one-turn spiral, that of 3D growth consisted of three sections corresponding to initial wetting of the SiO2 surface, creation of nucleation centers, and dot growth. The critical point where the system turns into 2D or 3D growth can be in situ identified in terms of the directions of the Ψ-Δ trajectories. AFM images revealed characteristic changes in the microstructure, including self-assembling dots and dots merging with one another. While the root-mean-square surface roughness increased linearly against film thickness, the maximum peak-to-valley height deviated once from linear dependence and later returned back to it, which reflected coarsening of dots and embedding of valleys between dots.
Vectorization of a particle simulation method for hypersonic rarefied flow
NASA Technical Reports Server (NTRS)
Mcdonald, Jeffrey D.; Baganoff, Donald
1988-01-01
An efficient particle simulation technique for hypersonic rarefied flows is presented at an algorithmic and implementation level. The implementation is for a vector computer architecture, specifically the Cray-2. The method models an ideal diatomic Maxwell molecule with three translational and two rotational degrees of freedom. Algorithms are designed specifically for compatibility with fine grain parallelism by reducing the number of data dependencies in the computation. By insisting on this compatibility, the method is capable of performing simulation on a much larger scale than previously possible. A two-dimensional simulation of supersonic flow over a wedge is carried out for the near-continuum limit where the gas is in equilibrium and the ideal solution can be used as a check on the accuracy of the gas model employed in the method. Also, a three-dimensional, Mach 8, rarefied flow about a finite-span flat plate at a 45 degree angle of attack was simulated. It utilized over 10 to the 7th particles carried through 400 discrete time steps in less than one hour of Cray-2 CPU time. This problem was chosen to exhibit the capability of the method in handling a large number of particles and a true three-dimensional geometry.
A versatile approach to the study of the transient response of a submerged thin shell
NASA Astrophysics Data System (ADS)
Leblond, C.; Sigrist, J.-F.
2010-01-01
The transient response of submerged two-dimensional thin shell subjected to weak acoustical or mechanical excitations is addressed in this paper. The proposed approach is first exposed in a detailed manner: it is based on Laplace transform in time, in vacuo eigenvector expansion with time-dependent coefficients for the structural dynamics and boundary-integral formulation for the fluid. The projection of the fluid pressure on the in vacuo eigenvectors leads to a fully coupled system involving the modal time-dependent displacement coefficients, which are the problem unknowns. They are simply determined by matrix inversion in the Laplace domain. Application of the method to the response of a two-dimensional immersed shell to a weak acoustical excitation is then exposed: the proposed test-case corresponds to the design of immersed structures subjected to underwater explosions, which is of paramount importance in naval shipbuilding. Comparison of a numerical calculation based on the proposed approach with an analytical solution is exposed; versatility of the method is also highlighted by referring to "classical" FEM/FEM or FEM/BEM simulations. As a conspicuous feature of the method, calculation of the fluid response functions corresponding to a given geometry has to be performed once, allowing various simulations for different material properties of the structure, as well as for various excitations on the structure. This versatile approach can therefore be efficiently and extensively used for design purposes.
Unsteady flow simulations around complex geometries using stationary or rotating unstructured grids
NASA Astrophysics Data System (ADS)
Sezer-Uzol, Nilay
In this research, the computational analysis of three-dimensional, unsteady, separated, vortical flows around complex geometries is studied by using stationary or moving unstructured grids. Two main engineering problems are investigated. The first problem is the unsteady simulation of a ship airwake, where helicopter operations become even more challenging, by using stationary unstructured grids. The second problem is the unsteady simulation of wind turbine rotor flow fields by using moving unstructured grids which are rotating with the whole three-dimensional rigid rotor geometry. The three dimensional, unsteady, parallel, unstructured, finite volume flow solver, PUMA2, is used for the computational fluid dynamics (CFD) simulations considered in this research. The code is modified to have a moving grid capability to perform three-dimensional, time-dependent rotor simulations. An instantaneous log-law wall model for Large Eddy Simulations is also implemented in PUMA2 to investigate the very large Reynolds number flow fields of rotating blades. To verify the code modifications, several sample test cases are also considered. In addition, interdisciplinary studies, which are aiming to provide new tools and insights to the aerospace and wind energy scientific communities, are done during this research by focusing on the coupling of ship airwake CFD simulations with the helicopter flight dynamics and control analysis, the coupling of wind turbine rotor CFD simulations with the aeroacoustic analysis, and the analysis of these time-dependent and large-scale CFD simulations with the help of a computational monitoring, steering and visualization tool, POSSE.
NASA Astrophysics Data System (ADS)
Dran, Martín; Arbó, Diego G.
2018-05-01
We analyze the doubly differential electron momentum distribution in above-threshold ionization of atomic hydrogen by a linearly polarized mid-infrared laser pulse. We reproduce side rings in the momentum distribution with forward-backward symmetry previously observed by Lemell et al. [Phys. Rev. A 87, 013421 (2013), 10.1103/PhysRevA.87.013421], whose origin, as far as we know, has not been explained so far. By developing a Fourier theory of moiré patterns, we demonstrate that such structures stem from the interplay between intra- and intercycle interference patterns which work as two separate grids in the two-dimensional momentum domain. We use a three-dimensional (3D) description based on the saddle-point approximation (SPA) to unravel the nature of these structures. When the periods of the two grids (intra- and intercycle) are similar, principal moiré patterns arise symmetrically as concentric rings in the forward and backward directions at high electron kinetic energy. Higher order moiré patterns are observed and characterized when the period of one grid is multiple of the other. We find a scale law for the position (in momentum space) of the center of the moiré rings in the tunneling regime. We verify the SPA predictions by comparison with time-dependent distorted-wave strong-field approximation calculations and the solutions of the full 3D time-dependent Schrödinger equation.
NASA Astrophysics Data System (ADS)
Dong, Haikuan; Fan, Zheyong; Shi, Libin; Harju, Ari; Ala-Nissila, Tapio
2018-03-01
Molecular dynamics (MD) simulations play an important role in studying heat transport in complex materials. The lattice thermal conductivity can be computed either using the Green-Kubo formula in equilibrium MD (EMD) simulations or using Fourier's law in nonequilibrium MD (NEMD) simulations. These two methods have not been systematically compared for materials with different dimensions and inconsistencies between them have been occasionally reported in the literature. Here we give an in-depth comparison of them in terms of heat transport in three allotropes of Si: three-dimensional bulk silicon, two-dimensional silicene, and quasi-one-dimensional silicon nanowire. By multiplying the correlation time in the Green-Kubo formula with an appropriate effective group velocity, we can express the running thermal conductivity in the EMD method as a function of an effective length and directly compare it to the length-dependent thermal conductivity in the NEMD method. We find that the two methods quantitatively agree with each other for all the systems studied, firmly establishing their equivalence in computing thermal conductivity.
NASA Astrophysics Data System (ADS)
Stopper, Daniel; Thorneywork, Alice L.; Dullens, Roel P. A.; Roth, Roland
2018-03-01
Using dynamical density functional theory (DDFT), we theoretically study Brownian self-diffusion and structural relaxation of hard disks and compare to experimental results on quasi two-dimensional colloidal hard spheres. To this end, we calculate the self-van Hove correlation function and distinct van Hove correlation function by extending a recently proposed DDFT-approach for three-dimensional systems to two dimensions. We find that the theoretical results for both self-part and distinct part of the van Hove function are in very good quantitative agreement with the experiments up to relatively high fluid packing fractions of roughly 0.60. However, at even higher densities, deviations between the experiment and the theoretical approach become clearly visible. Upon increasing packing fraction, in experiments, the short-time self-diffusive behavior is strongly affected by hydrodynamic effects and leads to a significant decrease in the respective mean-squared displacement. By contrast, and in accordance with previous simulation studies, the present DDFT, which neglects hydrodynamic effects, shows no dependence on the particle density for this quantity.
A 2-D/1-D transverse leakage approximation based on azimuthal, Fourier moments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stimpson, Shane G.; Collins, Benjamin S.; Downar, Thomas
Here, the MPACT code being developed collaboratively by Oak Ridge National Laboratory and the University of Michigan is the primary deterministic neutron transport solver within the Virtual Environment for Reactor Applications Core Simulator (VERA-CS). In MPACT, the two-dimensional (2-D)/one-dimensional (1-D) scheme is the most commonly used method for solving neutron transport-based three-dimensional nuclear reactor core physics problems. Several axial solvers in this scheme assume isotropic transverse leakages, but work with the axial S N solver has extended these leakages to include both polar and azimuthal dependence. However, explicit angular representation can be burdensome for run-time and memory requirements. The workmore » here alleviates this burden by assuming that the azimuthal dependence of the angular flux and transverse leakages are represented by a Fourier series expansion. At the heart of this is a new axial SN solver that takes in a Fourier expanded radial transverse leakage and generates the angular fluxes used to construct the axial transverse leakages used in the 2-D-Method of Characteristics calculations.« less
A 2-D/1-D transverse leakage approximation based on azimuthal, Fourier moments
Stimpson, Shane G.; Collins, Benjamin S.; Downar, Thomas
2017-01-12
Here, the MPACT code being developed collaboratively by Oak Ridge National Laboratory and the University of Michigan is the primary deterministic neutron transport solver within the Virtual Environment for Reactor Applications Core Simulator (VERA-CS). In MPACT, the two-dimensional (2-D)/one-dimensional (1-D) scheme is the most commonly used method for solving neutron transport-based three-dimensional nuclear reactor core physics problems. Several axial solvers in this scheme assume isotropic transverse leakages, but work with the axial S N solver has extended these leakages to include both polar and azimuthal dependence. However, explicit angular representation can be burdensome for run-time and memory requirements. The workmore » here alleviates this burden by assuming that the azimuthal dependence of the angular flux and transverse leakages are represented by a Fourier series expansion. At the heart of this is a new axial SN solver that takes in a Fourier expanded radial transverse leakage and generates the angular fluxes used to construct the axial transverse leakages used in the 2-D-Method of Characteristics calculations.« less
Modeling of Internet Influence on Group Emotion
NASA Astrophysics Data System (ADS)
Czaplicka, Agnieszka; Hołyst, Janusz A.
Long-range interactions are introduced to a two-dimensional model of agents with time-dependent internal variables ei = 0, ±1 corresponding to valencies of agent emotions. Effects of spontaneous emotion emergence and emotional relaxation processes are taken into account. The valence of agent i depends on valencies of its four nearest neighbors but it is also influenced by long-range interactions corresponding to social relations developed for example by Internet contacts to a randomly chosen community. Two types of such interactions are considered. In the first model the community emotional influence depends only on the sign of its temporary emotion. When the coupling parameter approaches a critical value a phase transition takes place and as result for larger coupling constants the mean group emotion of all agents is nonzero over long time periods. In the second model the community influence is proportional to magnitude of community average emotion. The ordered emotional phase was here observed for a narrow set of system parameters.
Time-dependent analysis of the mixed-field orientation of molecules without rotational symmetry
NASA Astrophysics Data System (ADS)
Thesing, Linda V.; Küpper, Jochen; González-Férez, Rosario
2017-06-01
We present a theoretical study of the mixed-field orientation of molecules without rotational symmetry. The time-dependent one-dimensional and three-dimensional orientation of a thermal ensemble of 6-chloropyridazine-3-carbonitrile molecules in combined linearly or elliptically polarized laser fields and tilted dc electric fields is computed. The results are in good agreement with recent experimental results of one-dimensional orientation for weak dc electric fields [J. L. Hansen, J. Chem. Phys. 139, 234313 (2013)]. Moreover, they predict that using elliptically polarized laser fields or strong dc fields, three-dimensional orientation is obtained. The field-dressed dynamics of excited rotational states is characterized by highly non-adiabatic effects. We analyze the sources of these non-adiabatic effects and investigate their impact on the mixed-field orientation for different field configurations in mixed-field-orientation experiments.
High frequency estimation of 2-dimensional cavity scattering
NASA Astrophysics Data System (ADS)
Dering, R. S.
1984-12-01
This thesis develops a simple ray tracing approximation for the high frequency scattering from a two-dimensional cavity. Whereas many other cavity scattering algorithms are very time consuming, this method is very swift. The analytical development of the ray tracing approach is performed in great detail, and it is shown how the radar cross section (RCS) depends on the cavity's length and width along with the radar wave's angle of incidence. This explains why the cavity's RCS oscillates as a function of incident angle. The RCS of a two dimensional cavity was measured experimentally, and these results were compared to computer calculations based on the high frequency ray tracing theory. The comparison was favorable in the sense that angular RCS minima and maxima were exactly predicted even though accuracy of the RCS magnitude decreased for incident angles far off-axis. Overall, once this method is extended to three dimensions, the technique shows promise as a fast first approximation of high frequency cavity scattering.
Cyclotron decay time of a two-dimensional electron gas from 0.4 to 100 K
NASA Astrophysics Data System (ADS)
Curtis, Jeremy A.; Tokumoto, Takahisa; Hatke, A. T.; Cherian, Judy G.; Reno, John L.; McGill, Stephen A.; Karaiskaj, Denis; Hilton, David J.
2016-04-01
We have studied the cyclotron decay time of a Landau-quantized two-dimensional electron gas as a function of temperature (0.4-100 K) at a fixed magnetic field (±1.25 T ) using terahertz time-domain spectroscopy in a gallium arsenide quantum well with a mobility of μd c=3.6 ×106cm2V-1s-1 and a carrier concentration of ns=2 ×1011cm-2 . We find a cyclotron decay time that is limited by superradiant decay of the cyclotron ensemble and a temperature dependence that may result from both dissipative processes as well as a decrease in ns below 1.5 K . Shubnikov-de Haas characterization determines a quantum lifetime, τq=1.1 ps , which is significantly faster than the corresponding dephasing time, τs=66.4 ps , in our cyclotron data. This is consistent with small-angle scattering as the dominant contribution in this sample, where scattering angles below θ ≤13∘ do not efficiently contribute to dephasing. Above 50 K , the cyclotron oscillations show a strong reduction in both the oscillation amplitude and lifetime that result from polar optical phonon scattering.
Special Holonomy and Two-Dimensional Supersymmetric Sigma-Models
NASA Astrophysics Data System (ADS)
Stojevic, Vid
2006-11-01
Two-dimensional sigma-models describing superstrings propagating on manifolds of special holonomy are characterized by symmetries related to covariantly constant forms that these manifolds hold, which are generally non-linear and close in a field dependent sense. The thesis explores various aspects of the special holonomy symmetries.
Bulur, Serkan; Hsiung, Ming C; Nanda, Navin C; Hardas, Shalaka; Mohamed, Ahmed; ElKaryoni, Ahmed; Srialluri, Swetha; Barssoum, Kirolos; Elsayed, Mahmoud; Wei, Jeng; Yin, Wei-Hsian
2016-11-01
We present a case of an adult with metastatic carcinoid heart disease, in whom live/real time three-dimensional transthoracic echocardiography provided incremental value over two-dimensional transthoracic echocardiography in assessing involvement of the aortic valve. © 2016, Wiley Periodicals, Inc.
Finite difference time domain electromagnetic scattering from frequency-dependent lossy materials
NASA Technical Reports Server (NTRS)
Luebbers, Raymond J.; Beggs, John H.
1991-01-01
Four different FDTD computer codes and companion Radar Cross Section (RCS) conversion codes on magnetic media are submitted. A single three dimensional dispersive FDTD code for both dispersive dielectric and magnetic materials was developed, along with a user's manual. The extension of FDTD to more complicated materials was made. The code is efficient and is capable of modeling interesting radar targets using a modest computer workstation platform. RCS results for two different plate geometries are reported. The FDTD method was also extended to computing far zone time domain results in two dimensions. Also the capability to model nonlinear materials was incorporated into FDTD and validated.
NASA Astrophysics Data System (ADS)
Chun, Sehun
2017-07-01
Applying the method of moving frames to Maxwell's equations yields two important advancements for scientific computing. The first is the use of upwind flux for anisotropic materials in Maxwell's equations, especially in the context of discontinuous Galerkin (DG) methods. Upwind flux has been available only to isotropic material, because of the difficulty of satisfying the Rankine-Hugoniot conditions in anisotropic media. The second is to solve numerically Maxwell's equations on curved surfaces without the metric tensor and composite meshes. For numerical validation, spectral convergences are displayed for both two-dimensional anisotropic media and isotropic spheres. In the first application, invisible two-dimensional metamaterial cloaks are simulated with a relatively coarse mesh by both the lossless Drude model and the piecewisely-parametered layered model. In the second application, extremely low frequency propagation on various surfaces such as spheres, irregular surfaces, and non-convex surfaces is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, T.; Lander, B.; Seifert, U.
2013-11-28
We discuss the stochastic thermodynamics of systems that are described by a time-dependent density field, for example, simple liquids and colloidal suspensions. For a time-dependent change of external parameters, we show that the Jarzynski relation connecting work with the change of free energy holds if the time evolution of the density follows the Kawasaki-Dean equation. Specifically, we study the work distributions for the compression and expansion of a two-dimensional colloidal model suspension implementing a practical coarse-graining scheme of the microscopic particle positions. We demonstrate that even if coarse-grained dynamics and density functional do not match, the fluctuation relations for themore » work still hold albeit for a different, apparent, change of free energy.« less
Do, Thanh Nhut; Gelin, Maxim F; Tan, Howe-Siang
2017-10-14
We derive general expressions that incorporate finite pulse envelope effects into a coherent two-dimensional optical spectroscopy (2DOS) technique. These expressions are simpler and less computationally intensive than the conventional triple integral calculations needed to simulate 2DOS spectra. The simplified expressions involving multiplications of arbitrary pulse spectra with 2D spectral response function are shown to be exactly equal to the conventional triple integral calculations of 2DOS spectra if the 2D spectral response functions do not vary with population time. With minor modifications, they are also accurate for 2D spectral response functions with quantum beats and exponential decay during population time. These conditions cover a broad range of experimental 2DOS spectra. For certain analytically defined pulse spectra, we also derived expressions of 2D spectra for arbitrary population time dependent 2DOS spectral response functions. Having simpler and more efficient methods to calculate experimentally relevant 2DOS spectra with finite pulse effect considered will be important in the simulation and understanding of the complex systems routinely being studied by using 2DOS.
What is integrability of discrete variational systems?
Boll, Raphael; Petrera, Matteo; Suris, Yuri B
2014-02-08
We propose a notion of a pluri-Lagrangian problem, which should be understood as an analogue of multi-dimensional consistency for variational systems. This is a development along the line of research of discrete integrable Lagrangian systems initiated in 2009 by Lobb and Nijhoff, however, having its more remote roots in the theory of pluriharmonic functions, in the Z -invariant models of statistical mechanics and their quasiclassical limit, as well as in the theory of variational symmetries going back to Noether. A d -dimensional pluri-Lagrangian problem can be described as follows: given a d -form [Formula: see text] on an m -dimensional space (called multi-time, m > d ), whose coefficients depend on a sought-after function x of m independent variables (called field), find those fields x which deliver critical points to the action functionals [Formula: see text] for any d -dimensional manifold Σ in the multi-time. We derive the main building blocks of the multi-time Euler-Lagrange equations for a discrete pluri-Lagrangian problem with d =2, the so-called corner equations, and discuss the notion of consistency of the system of corner equations. We analyse the system of corner equations for a special class of three-point two-forms, corresponding to integrable quad-equations of the ABS list. This allows us to close a conceptual gap of the work by Lobb and Nijhoff by showing that the corresponding two-forms are closed not only on solutions of (non-variational) quad-equations, but also on general solutions of the corresponding corner equations. We also find an example of a pluri-Lagrangian system not coming from a multi-dimensionally consistent system of quad-equations.
What is integrability of discrete variational systems?
Boll, Raphael; Petrera, Matteo; Suris, Yuri B.
2014-01-01
We propose a notion of a pluri-Lagrangian problem, which should be understood as an analogue of multi-dimensional consistency for variational systems. This is a development along the line of research of discrete integrable Lagrangian systems initiated in 2009 by Lobb and Nijhoff, however, having its more remote roots in the theory of pluriharmonic functions, in the Z-invariant models of statistical mechanics and their quasiclassical limit, as well as in the theory of variational symmetries going back to Noether. A d-dimensional pluri-Lagrangian problem can be described as follows: given a d-form on an m-dimensional space (called multi-time, m>d), whose coefficients depend on a sought-after function x of m independent variables (called field), find those fields x which deliver critical points to the action functionals for any d-dimensional manifold Σ in the multi-time. We derive the main building blocks of the multi-time Euler–Lagrange equations for a discrete pluri-Lagrangian problem with d=2, the so-called corner equations, and discuss the notion of consistency of the system of corner equations. We analyse the system of corner equations for a special class of three-point two-forms, corresponding to integrable quad-equations of the ABS list. This allows us to close a conceptual gap of the work by Lobb and Nijhoff by showing that the corresponding two-forms are closed not only on solutions of (non-variational) quad-equations, but also on general solutions of the corresponding corner equations. We also find an example of a pluri-Lagrangian system not coming from a multi-dimensionally consistent system of quad-equations. PMID:24511254
Sinobad, Tamara; Obradović-Djuricić, Kosovka; Nikolić, Zoran; Dodić, Slobodan; Lazić, Vojkan; Sinobad, Vladimir; Jesenko-Rokvić, Aleksandra
2014-03-01
Dimensional stability and accuracy of an impression after chemical disinfection by immersion in disinfectants are crucial for the accuracy of final prosthetic restorations. The aim of this study was to assess the deformation of addition and condensation silicone impressions after disinfection in antimicrobial solutions. A total of 120 impressions were made on the model of the upper arch representing three full metal-ceramic crown preparations. Four impression materials were used: two condensation silicones (Oranwash L - Zhermack and Xantopren L Blue - Heraeus Kulzer) and two addition silicones (Elite H-D + regular body - Zhermack and Flexitime correct flow - Heraeus Kulzer). After removal from the model the impressions were immediatel immersed in appropriate disinfectant (glutaraldehyde, benzalkonium chloride - Sterigum and 5.25% NaOC1) for a period of 10 min. The control group consisted of samples that were not treated with disinfectant solution. Consecutive measurements of identical impressions were realized with a Canon G9 (12 megapixels, 2 fps, 6x/24x), and automated with a computer Asus Lamborghini VX-2R Intel C2D 2.4 GHz, by using Remote Capture software package, so that time-depending series of images of the same impression were obtained. The dimensional changes of all the samples were significant both as a function of time and the applied disinfectant. The results show significant differences of the obtained dimensional changes between the group of condensation silicones and the group of addition silicones for the same time, and the same applied disinfectant (p = 0.026, F = 3.95). The greatest dimensional changes of addition and condensation silicone impressions appear in the first hour after their separation from the model.
Temporal enhancement of two-dimensional color doppler echocardiography
NASA Astrophysics Data System (ADS)
Terentjev, Alexey B.; Settlemier, Scott H.; Perrin, Douglas P.; del Nido, Pedro J.; Shturts, Igor V.; Vasilyev, Nikolay V.
2016-03-01
Two-dimensional color Doppler echocardiography is widely used for assessing blood flow inside the heart and blood vessels. Currently, frame acquisition time for this method varies from tens to hundreds of milliseconds, depending on Doppler sector parameters. This leads to low frame rates of resulting video sequences equal to tens of Hz, which is insufficient for some diagnostic purposes, especially in pediatrics. In this paper, we present a new approach for reconstruction of 2D color Doppler cardiac images, which results in the frame rate being increased to hundreds of Hz. This approach relies on a modified method of frame reordering originally applied to real-time 3D echocardiography. There are no previous publications describing application of this method to 2D Color Doppler data. The approach has been tested on several in-vivo cardiac 2D color Doppler datasets with approximate duration of 30 sec and native frame rate of 15 Hz. The resulting image sequences had equivalent frame rates to 500Hz.
Localized oscillatory states in magnetoconvection.
Buckley, Matthew C; Bushby, Paul J
2013-02-01
Localized states are found in many pattern forming systems. The aim of this paper is to investigate the occurrence of oscillatory localized states in two-dimensional Boussinesq magnetoconvection. Initially considering an idealized model, in which the vertical structure of the system has been simplified by a projection onto a small number of Fourier modes, we find that these states are restricted to the low ζ regime (where ζ represents the ratio of the magnetic to thermal diffusivities). These states always exhibit bistability with another nontrivial solution branch; in other words, they show no evidence of subcritical behavior. This is due to the weak flux expulsion that is exhibited by these time-dependent solutions. Using the results of this parameter survey, we locate corresponding states in a fully resolved two-dimensional system, although the mode of oscillation is more complex in this case. This is the first time that a localized oscillatory state, of this kind, has been found in a fully resolved magnetoconvection simulation.
Physics in space-time with scale-dependent metrics
NASA Astrophysics Data System (ADS)
Balankin, Alexander S.
2013-10-01
We construct three-dimensional space Rγ3 with the scale-dependent metric and the corresponding Minkowski space-time Mγ,β4 with the scale-dependent fractal (DH) and spectral (DS) dimensions. The local derivatives based on scale-dependent metrics are defined and differential vector calculus in Rγ3 is developed. We state that Mγ,β4 provides a unified phenomenological framework for dimensional flow observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on the special case of flat space-time M1/3,14 with the scale-dependent Cantor-dust-like distribution of admissible states, such that DH increases from DH=2 on the scale ≪ℓ0 to DH=4 in the infrared limit ≫ℓ0, where ℓ0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal features in heterogeneous medium), whereas DS≡4 in all scales. Possible applications of approach based on the scale-dependent metric to systems of different nature are briefly discussed.
Construction of Three Dimensional Solutions for the Maxwell Equations
NASA Technical Reports Server (NTRS)
Yefet, A.; Turkel, E.
1998-01-01
We consider numerical solutions for the three dimensional time dependent Maxwell equations. We construct a fourth order accurate compact implicit scheme and compare it to the Yee scheme for free space in a box.
NASA Astrophysics Data System (ADS)
Huang, Chi-Hsien; Igarashi, Makoto; Woné, Michel; Uraoka, Yukiharu; Fuyuki, Takashi; Takeguchi, Masaki; Yamashita, Ichiro; Samukawa, Seiji
2009-04-01
A high-density, large-area, and uniform two-dimensional (2D) Si-nanodisk array was successfully fabricated using the bio-nano-process, advanced etching techniques, including a treatment using nitrogen trifluoride and hydrogen radical (NF3 treatment) and a damage-free chlorine neutral beam (NB). By using the surface oxide formed by neutral beam oxidation (NBO) for the preparation of a 2D nanometer-sized iron core array as an etching mask, a well-ordered 2D Si-nanodisk array was obtained owing to the dangling bonds of the surface oxide. By changing the NF3 treatment time without changing the quantum effect of each nanodisk, we could control the gap between adjacent nanodisks. A device with two electrodes was fabricated to investigate the electron transport in a 2D Si-nanodisk array. Current fluctuation and time-dependent currents were clearly observed owing to the charging-discharging of the nanodisks adjacent to the current percolation path. The new structure may have great potential for future novel quantum effect devices.
Lai, Chintu
1977-01-01
Two-dimensional unsteady flows of homogeneous density in estuaries and embayments can be described by hyperbolic, quasi-linear partial differential equations involving three dependent and three independent variables. A linear combination of these equations leads to a parametric equation of characteristic form, which consists of two parts: total differentiation along the bicharacteristics and partial differentiation in space. For its numerical solution, the specified-time-interval scheme has been used. The unknown, partial space-derivative terms can be eliminated first by suitable combinations of difference equations, converted from the corresponding differential forms and written along four selected bicharacteristics and a streamline. Other unknowns are thus made solvable from the known variables on the current time plane. The computation is carried to the second-order accuracy by using trapezoidal rule of integration. Means to handle complex boundary conditions are developed for practical application. Computer programs have been written and a mathematical model has been constructed for flow simulation. The favorable computer outputs suggest further exploration and development of model worthwhile. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Braunmueller, F.; Tran, T. M.; Vuillemin, Q.; Alberti, S.; Genoud, J.; Hogge, J.-Ph.; Tran, M. Q.
2015-06-01
A new gyrotron simulation code for simulating the beam-wave interaction using a monomode time-dependent self-consistent model is presented. The new code TWANG-PIC is derived from the trajectory-based code TWANG by describing the electron motion in a gyro-averaged one-dimensional Particle-In-Cell (PIC) approach. In comparison to common PIC-codes, it is distinguished by its computation speed, which makes its use in parameter scans and in experiment interpretation possible. A benchmark of the new code is presented as well as a comparative study between the two codes. This study shows that the inclusion of a time-dependence in the electron equations, as it is the case in the PIC-approach, is mandatory for simulating any kind of non-stationary oscillations in gyrotrons. Finally, the new code is compared with experimental results and some implications of the violated model assumptions in the TWANG code are disclosed for a gyrotron experiment in which non-stationary regimes have been observed and for a critical case that is of interest in high power gyrotron development.
Transformed Fourier and Fick equations for the control of heat and mass diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guenneau, S.; Petiteau, D.; Zerrad, M.
We review recent advances in the control of diffusion processes in thermodynamics and life sciences through geometric transforms in the Fourier and Fick equations, which govern heat and mass diffusion, respectively. We propose to further encompass transport properties in the transformed equations, whereby the temperature is governed by a three-dimensional, time-dependent, anisotropic heterogeneous convection-diffusion equation, which is a parabolic partial differential equation combining the diffusion equation and the advection equation. We perform two dimensional finite element computations for cloaks, concentrators and rotators of a complex shape in the transient regime. We precise that in contrast to invisibility cloaks for waves,more » the temperature (or mass concentration) inside a diffusion cloak crucially depends upon time, its distance from the source, and the diffusivity of the invisibility region. However, heat (or mass) diffusion outside cloaks, concentrators and rotators is unaffected by their presence, whatever their shape or position. Finally, we propose simplified designs of layered cylindrical and spherical diffusion cloaks that might foster experimental efforts in thermal and biochemical metamaterials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braunmueller, F., E-mail: falk.braunmueller@epfl.ch; Tran, T. M.; Alberti, S.
A new gyrotron simulation code for simulating the beam-wave interaction using a monomode time-dependent self-consistent model is presented. The new code TWANG-PIC is derived from the trajectory-based code TWANG by describing the electron motion in a gyro-averaged one-dimensional Particle-In-Cell (PIC) approach. In comparison to common PIC-codes, it is distinguished by its computation speed, which makes its use in parameter scans and in experiment interpretation possible. A benchmark of the new code is presented as well as a comparative study between the two codes. This study shows that the inclusion of a time-dependence in the electron equations, as it is themore » case in the PIC-approach, is mandatory for simulating any kind of non-stationary oscillations in gyrotrons. Finally, the new code is compared with experimental results and some implications of the violated model assumptions in the TWANG code are disclosed for a gyrotron experiment in which non-stationary regimes have been observed and for a critical case that is of interest in high power gyrotron development.« less
NASA Astrophysics Data System (ADS)
Ivashchuk, V. D.; Kobtsev, A. A.
2018-02-01
A D-dimensional gravitational model with a Gauss-Bonnet term and the cosmological term Λ is studied. We assume the metrics to be diagonal cosmological ones. For certain fine-tuned Λ , we find a class of solutions with exponential time dependence of two scale factors, governed by two Hubble-like parameters H >0 and h, corresponding to factor spaces of dimensions 3 and l > 2, respectively and D = 1 + 3 + l. The fine-tuned Λ = Λ (x, l, α ) depends upon the ratio h/H = x, l and the ratio α = α _2/α _1 of two constants (α _2 and α _1) of the model. For fixed Λ , α and l > 2 the equation Λ (x,l,α ) = Λ is equivalent to a polynomial equation of either fourth or third order and may be solved in radicals (the example l =3 is presented). For certain restrictions on x we prove the stability of the solutions in a class of cosmological solutions with diagonal metrics. A subclass of solutions with small enough variation of the effective gravitational constant G is considered. It is shown that all solutions from this subclass are stable.
Probing in-plane anisotropy in few-layer ReS2 using low frequency noise measurement.
Mitra, Richa; Jariwala, Bhakti; Bhattacharya, Arnab; Das, Anindya
2018-02-19
ReS 2 , a layered two-dimensional material popular for its in-plane anisotropic properties, is emerging as one of the potential candidates for flexible electronics and ultrafast optical applications. It is an n-type semiconducting material having a layer independent bandgap of 1.55 eV. In this paper we have characterized the intrinsic electronic noise level of few-layer ReS 2 for the first time. Few-layer ReS 2 field effect transistor devices show a 1/f nature of noise for frequency ranging over three orders of magnitude. We have also observed that not only the electrical response of the material is anisotropic; the noise level is also dependent on direction. In fact the noise is found to be more sensitive towards the anisotropy. This fact has been explained by evoking the theory where the Hooge parameter is not a constant quantity, but has a distinct power law dependence on mobility along the two-axes direction. The anisotropy in 1/f noise measurement will pave the way to quantify the anisotropic nature of two-dimensional (2D) materials, which will be helpful for the design of low-noise transistors in future.
Probing in-plane anisotropy in few-layer ReS2 using low frequency noise measurement
NASA Astrophysics Data System (ADS)
Mitra, Richa; Jariwala, Bhakti; Bhattacharya, Arnab; Das, Anindya
2018-04-01
ReS2, a layered two-dimensional material popular for its in-plane anisotropic properties, is emerging as one of the potential candidates for flexible electronics and ultrafast optical applications. It is an n-type semiconducting material having a layer independent bandgap of 1.55 eV. In this paper we have characterized the intrinsic electronic noise level of few-layer ReS2 for the first time. Few-layer ReS2 field effect transistor devices show a 1/f nature of noise for frequency ranging over three orders of magnitude. We have also observed that not only the electrical response of the material is anisotropic; the noise level is also dependent on direction. In fact the noise is found to be more sensitive towards the anisotropy. This fact has been explained by evoking the theory where the Hooge parameter is not a constant quantity, but has a distinct power law dependence on mobility along the two-axes direction. The anisotropy in 1/f noise measurement will pave the way to quantify the anisotropic nature of two-dimensional (2D) materials, which will be helpful for the design of low-noise transistors in future.
Dutta, Prithwish; Pariari, Arnab; Mandal, Prabhat
2017-07-07
We report semiconductor to metal-like crossover in the temperature dependence of resistivity (ρ) due to the switching of charge transport from bulk to surface channel in three-dimensional topological insulator Bi 1.5 Sb 0.5 Te 1.7 Se 1.3 . Unlike earlier studies, a much sharper drop in ρ(T) is observed below the crossover temperature due to the dominant surface conduction. Remarkably, the resistivity of the conducting surface channel follows a rarely observable T 2 dependence at low temperature, as predicted theoretically for a two-dimensional Fermi liquid system. The field dependence of magnetization shows a cusp-like paramagnetic peak in the susceptibility (χ) at zero field over the diamagnetic background. The peak is found to be robust against temperature and χ decays linearly with the field from its zero-field value. This unique behavior of the χ is associated with the spin-momentum locked topological surface state in Bi 1.5 Sb 0.5 Te 1.7 Se 1.3 . The reconstruction of the surface state with time is clearly reflected through the reduction of the peak height with the age of the sample.
NASA Astrophysics Data System (ADS)
Regnier, D.; Dubray, N.; Verrière, M.; Schunck, N.
2018-04-01
The time-dependent generator coordinate method (TDGCM) is a powerful method to study the large amplitude collective motion of quantum many-body systems such as atomic nuclei. Under the Gaussian Overlap Approximation (GOA), the TDGCM leads to a local, time-dependent Schrödinger equation in a multi-dimensional collective space. In this paper, we present the version 2.0 of the code FELIX that solves the collective Schrödinger equation in a finite element basis. This new version features: (i) the ability to solve a generalized TDGCM+GOA equation with a metric term in the collective Hamiltonian, (ii) support for new kinds of finite elements and different types of quadrature to compute the discretized Hamiltonian and overlap matrices, (iii) the possibility to leverage the spectral element scheme, (iv) an explicit Krylov approximation of the time propagator for time integration instead of the implicit Crank-Nicolson method implemented in the first version, (v) an entirely redesigned workflow. We benchmark this release on an analytic problem as well as on realistic two-dimensional calculations of the low-energy fission of 240Pu and 256Fm. Low to moderate numerical precision calculations are most efficiently performed with simplex elements with a degree 2 polynomial basis. Higher precision calculations should instead use the spectral element method with a degree 4 polynomial basis. We emphasize that in a realistic calculation of fission mass distributions of 240Pu, FELIX-2.0 is about 20 times faster than its previous release (within a numerical precision of a few percents).
NASA Astrophysics Data System (ADS)
Kochukhov, O.; Ryabchikova, T. A.
2018-02-01
A series of recent theoretical atomic diffusion studies has address the challenging problem of predicting inhomogeneous vertical and horizontal chemical element distributions in the atmospheres of magnetic ApBp stars. Here we critically assess the most sophisticated of such diffusion models - based on a time-dependent treatment of the atomic diffusion in a magnetized stellar atmosphere - by direct comparison with observations as well by testing the widely used surface mapping tools with the spectral line profiles predicted by this theory. We show that the mean abundances of Fe and Cr are grossly underestimated by the time-dependent theoretical diffusion model, with discrepancies reaching a factor of 1000 for Cr. We also demonstrate that Doppler imaging inversion codes, based either on modelling of individual metal lines or line-averaged profiles simulated according to theoretical three-dimensional abundance distribution, are able to reconstruct correct horizontal chemical spot maps despite ignoring the vertical abundance variation. These numerical experiments justify a direct comparison of the empirical two-dimensional Doppler maps with theoretical diffusion calculations. This comparison is generally unfavourable for the current diffusion theory, as very few chemical elements are observed to form overabundance rings in the horizontal field regions as predicted by the theory and there are numerous examples of element accumulations in the vicinity of radial field zones, which cannot be explained by diffusion calculations.
Directional interlayer spin-valley transfer in two-dimensional heterostructures
Schaibley, John R.; Rivera, Pasqual; Yu, Hongyi; ...
2016-12-14
Van der Waals heterostructures formed by two different monolayer semiconductors have emerged as a promising platform for new optoelectronic and spin/valleytronic applications. In addition to its atomically thin nature, a two-dimensional semiconductor heterostructure is distinct from its three-dimensional counterparts due to the unique coupled spin-valley physics of its constituent monolayers. In this paper, we report the direct observation that an optically generated spin-valley polarization in one monolayer can be transferred between layers of a two-dimensional MoSe 2–WSe 2 heterostructure. Using non-degenerate optical circular dichroism spectroscopy, we show that charge transfer between two monolayers conserves spin-valley polarization and is only weaklymore » dependent on the twist angle between layers. Finally, our work points to a new spin-valley pumping scheme in nanoscale devices, provides a fundamental understanding of spin-valley transfer across the two-dimensional interface, and shows the potential use of two-dimensional semiconductors as a spin-valley generator in two-dimensional spin/valleytronic devices for storing and processing information.« less
Phase-field simulations of velocity selection in rapidly solidified binary alloys
NASA Astrophysics Data System (ADS)
Fan, Jun; Greenwood, Michael; Haataja, Mikko; Provatas, Nikolas
2006-09-01
Time-dependent simulations of two-dimensional isothermal Ni-Cu dendrites are simulated using a phase-field model solved with a finite-difference adaptive mesh refinement technique. Dendrite tip velocity selection is examined and found to exhibit a transition between two markedly different regimes as undercooling is increased. At low undercooling, the dendrite tip growth rate is consistent with the kinetics of the classical Stefan problem, where the interface is assume to be in local equilibrium. At high undercooling, the growth velocity selected approaches a linear dependence on melt undercooling, consistent with the continuous growth kinetics of Aziz and with a one-dimensional steady-state phase-field asymptotic analysis of Ahmad [Phys. Rev. E 58, 3436 (1998)]. Our simulations are also consistent with other previously observed behaviors of dendritic growth as undercooling is increased. These include the transition of dendritic morphology to absolute stability and nonequilibrium solute partitioning. Our results show that phase-field models of solidification, which inherently contain a nonzero interface width, can be used to study the dynamics of complex solidification phenomena involving both equilibrium and nonequilibrium interface growth kinetics.
Coherent photoluminescence excitation spectroscopy of semicrystalline polymeric semiconductors
NASA Astrophysics Data System (ADS)
Silva, Carlos; Grégoire, Pascal; Thouin, Félix
In polymeric semiconductors, the competition between through-bond (intrachain) and through-space (interchain) electronic coupling determines two-dimensional spatial coherence of excitons. The balance of intra- and interchain excitonic coupling depends very sensitively on solid-state microstructure of the polymer film (polycrystalline, semicrystalline with amorphous domains, etc.). Regioregular poly(3-hexylthiophene) has emerged as a model material because its photoluminescence (PL) spectral lineshape reveals intricate information on the magnitude of excitonic coupling, the extent of energetic disorder, and on the extent to which the disordered energy landscape is correlated. I discuss implementation of coherent two-dimensional electronic spectroscopy. We identify cross peaks between 0-0 and 0-1 excitation peaks, and we measure their time evolution, which we interpret within the context of a hybrid HJ aggregate model. By measurement of the homogeneous linewidth in diverse polymer microstructures, we address the nature of optical transitions within such hynbrid aggregate model. These depend strongly on sample processing, and I discuss the relationship between microstructure, steady-state absorption and PL spectral lineshape, and 2D coherent PL excitation spectral lineshapes.
Largely Tunable Band Structures of Few-Layer InSe by Uniaxial Strain.
Song, Chaoyu; Fan, Fengren; Xuan, Ningning; Huang, Shenyang; Zhang, Guowei; Wang, Chong; Sun, Zhengzong; Wu, Hua; Yan, Hugen
2018-01-31
Because of the strong quantum confinement effect, few-layer γ-InSe exhibits a layer-dependent band gap, spanning the visible and near infrared regions, and thus recently has been drawing tremendous attention. As a two-dimensional material, the mechanical flexibility provides an additional tuning knob for the electronic structures. Here, for the first time, we engineer the band structures of few-layer and bulk-like InSe by uniaxial tensile strain and observe a salient shift of photoluminescence peaks. The shift rate of the optical gap is approximately 90-100 meV per 1% strain for four- to eight-layer samples, which is much larger than that for the widely studied MoS 2 monolayer. Density functional theory calculations well reproduce the observed layer-dependent band gaps and the strain effect and reveal that the shift rate decreases with the increasing layer number for few-layer InSe. Our study demonstrates that InSe is a very versatile two-dimensional electronic and optoelectronic material, which is suitable for tunable light emitters, photodetectors, and other optoelectronic devices.
Kemaloğlu Öz, Tuğba; Elsayed, Mahmoud; Nanda, Navin C; Kalenderoğlu, Koray; Akyüz, Şükrü; Atasoy, Işıl; Ösken, Altuğ; Onuk, Tolga; Eren, Mehmet
2016-09-01
Intracardiac tuberculomas are extremely rare, and cardiac involvement in tuberculosis accounts for only 0.5% of extrapulmonary tuberculosis. We report for the first time incremental value of live/real time three-dimensional transesophageal echocardiography over two-dimensional transesophageal echocardiography in the assessment of a tuberculoma involving the left atrium and left atrial appendage. © 2016, Wiley Periodicals, Inc.
Exact dynamics of a one dimensional Bose gas in a periodic time-dependent harmonic trap
NASA Astrophysics Data System (ADS)
Scopa, Stefano; Unterberger, Jéremie; Karevski, Dragi
2018-05-01
We study the unitary dynamics of a 1D gas of hard-core bosons trapped into a harmonic potential which varies periodically in time with frequency . Such periodic systems can be classified into orbits of different monodromies corresponding to two different physical situations, namely the case in which the bosonic cloud remains stable during the time-evolution and the case where it turns out to be unstable. In the present work we derive in the large particle number limit exact results for the stroboscopic evolution of the energy and particle densities in both physical situations.
Martirosyan, A; Saakian, David B
2011-08-01
We apply the Hamilton-Jacobi equation (HJE) formalism to solve the dynamics of the chemical master equation (CME). We found exact analytical expressions (in large system-size limit) for the probability distribution, including explicit expression for the dynamics of variance of distribution. We also give the solution for some simple cases of the model with time-dependent rates. We derived the results of the Van Kampen method from the HJE approach using a special ansatz. Using the Van Kampen method, we give a system of ordinary differential equations (ODEs) to define the variance in a two-dimensional case. We performed numerics for the CME with stationary noise. We give analytical criteria for the disappearance of bistability in the case of stationary noise in one-dimensional CMEs.
NASA Technical Reports Server (NTRS)
Blanchard, D. L.; Chan, F. K.
1973-01-01
For a time-dependent, n-dimensional, special diagonal Hamilton-Jacobi equation a necessary and sufficient condition for the separation of variables to yield a complete integral of the form was established by specifying the admissible forms in terms of arbitrary functions. A complete integral was then expressed in terms of these arbitrary functions and also the n irreducible constants. As an application of the results obtained for the two-dimensional Hamilton-Jacobi equation, analysis was made for a comparatively wide class of dynamical problems involving a particle moving in Euclidean three-dimensional space under the action of external forces but constrained on a moving surface. All the possible cases in which this equation had a complete integral of the form were obtained and these are tubulated for reference.
Two-dimensional pH distributions and dynamics in bioturbated marine sediments
NASA Astrophysics Data System (ADS)
Zhu, Qingzhi; Aller, Robert C.; Fan, Yanzhen
2006-10-01
The seafloor is the site of intense biogeochemical and mineral dissolution-precipitation reactions which generate strong gradients in pH near the sediment-overlying water interface. These gradients are usually measured in one-dimension vertically with depth. Two-dimensional pH distributions in marine sediments were examined at high resolution (65 × 65 μm pixel) and analytical precision over areas of ˜150 to 225 cm 2 using a newly developed pH planar fluorosensor. Dramatic three-dimensional gradients, complex heterogeneity, and dynamic changes of pH occur in the surficial zone of deposits inhabited by macrofauna. pH can vary by ±2 units horizontally as well as vertically over millimeter scales. pH minima zones often form in association with redoxclines within a few millimeters of inner burrow walls, and become more pronounced with time if burrows remain stable and irrigated for extended periods. Microenvironmental pH minima also form locally around decaying biomass and relict burrow tracks, and dissipate with time (˜5 d). H + concentrations and fluxes in sandy mud show complex acid-base reaction distributions with net H + fluxes around burrows up to ˜12 nmol cm -2 d -1 and maximum net reaction rates varying between -90 (consumption) to 120 (production) μM d -1 (˜90 nmol cm -1 d -1 burrow length). Acid producing zones that surround irrigated burrows are largely balanced by acid titration zones along inner burrow walls and outer radial boundaries. The geometry and scaling of pH microenvironments are functions of diagenetic reaction rates and three-dimensional transport patterns determined by sediment properties, such as diffusive tortuosity, and by benthic community characteristics such as the abundance, mobility, and size of infauna. Previously, undocumented biogeochemical phenomena such as low pH regions associated with in-filled relict biogenic structures and burrowing tracks are readily demonstrated by two-dimensional and time-dependent images of pH and sedimentary structure.
Rayleigh-Taylor mixing with time-dependent acceleration
NASA Astrophysics Data System (ADS)
Abarzhi, Snezhana
2016-10-01
We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a time-dependent acceleration. The acceleration is a power-law function of time, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical regimes of self-similar RT mixing-acceleration-driven Rayleigh-Taylor-type and dissipation-driven Richtymer-Meshkov-type with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with time-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.
The application of holography as a real-time three-dimensional motion picture camera
NASA Technical Reports Server (NTRS)
Kurtz, R. L.
1973-01-01
A historical introduction to holography is presented, as well as a basic description of sideband holography for stationary objects. A brief theoretical development of both time-dependent and time-independent holography is also provided, along with an analytical and intuitive discussion of a unique holographic arrangement which allows the resolution of front surface detail from an object moving at high speeds. As an application of such a system, a real-time three-dimensional motion picture camera system is discussed and the results of a recent demonstration of the world's first true three-dimensional motion picture are given.
2016-01-01
PURPOSE The storage conditions of impressions affect the dimensional accuracy of the impression materials. The aim of the study was to assess the effects of storage time on dimensional accuracy of five different impression materials by cone beam computed tomography (CBCT). MATERIALS AND METHODS Polyether (Impregum), hydrocolloid (Hydrogum and Alginoplast), and silicone (Zetaflow and Honigum) impression materials were used for impressions taken from an acrylic master model. The impressions were poured and subjected to four different storage times: immediate use, and 1, 3, and 5 days of storage. Line 1 (between right and left first molar mesiobuccal cusp tips) and Line 2 (between right and left canine tips) were measured on a CBCT scanned model, and time dependent mean differences were analyzed by two-way univariate and Duncan's test (α=.05). RESULTS For Line 1, the total mean difference of Impregum and Hydrogum were statistically different from Alginoplast (P<.05), while Zetaflow and Honigum had smaller discrepancies. Alginoplast resulted in more difference than the other impressions (P<.05). For Line 2, the total mean difference of Impregum was statistically different from the other impressions. Significant differences were observed in Line 1 and Line 2 for the different storage periods (P<.05). CONCLUSION The dimensional accuracy of impression material is clinically acceptable if the impression material is stored in suitable conditions. PMID:27826388
Alkurt, Murat; Yeşıl Duymus, Zeynep; Dedeoglu, Numan
2016-10-01
The storage conditions of impressions affect the dimensional accuracy of the impression materials. The aim of the study was to assess the effects of storage time on dimensional accuracy of five different impression materials by cone beam computed tomography (CBCT). Polyether (Impregum), hydrocolloid (Hydrogum and Alginoplast), and silicone (Zetaflow and Honigum) impression materials were used for impressions taken from an acrylic master model. The impressions were poured and subjected to four different storage times: immediate use, and 1, 3, and 5 days of storage. Line 1 (between right and left first molar mesiobuccal cusp tips) and Line 2 (between right and left canine tips) were measured on a CBCT scanned model, and time dependent mean differences were analyzed by two-way univariate and Duncan's test (α=.05). For Line 1, the total mean difference of Impregum and Hydrogum were statistically different from Alginoplast ( P <.05), while Zetaflow and Honigum had smaller discrepancies. Alginoplast resulted in more difference than the other impressions ( P <.05). For Line 2, the total mean difference of Impregum was statistically different from the other impressions. Significant differences were observed in Line 1 and Line 2 for the different storage periods ( P <.05). The dimensional accuracy of impression material is clinically acceptable if the impression material is stored in suitable conditions.
MCNP Output Data Analysis with ROOT (MODAR)
NASA Astrophysics Data System (ADS)
Carasco, C.
2010-06-01
MCNP Output Data Analysis with ROOT (MODAR) is a tool based on CERN's ROOT software. MODAR has been designed to handle time-energy data issued by MCNP simulations of neutron inspection devices using the associated particle technique. MODAR exploits ROOT's Graphical User Interface and functionalities to visualize and process MCNP simulation results in a fast and user-friendly way. MODAR allows to take into account the detection system time resolution (which is not possible with MCNP) as well as detectors energy response function and counting statistics in a straightforward way. Program summaryProgram title: MODAR Catalogue identifier: AEGA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 155 373 No. of bytes in distributed program, including test data, etc.: 14 815 461 Distribution format: tar.gz Programming language: C++ Computer: Most Unix workstations and PC Operating system: Most Unix systems, Linux and windows, provided the ROOT package has been installed. Examples where tested under Suse Linux and Windows XP. RAM: Depends on the size of the MCNP output file. The example presented in the article, which involves three two-dimensional 139×740 bins histograms, allocates about 60 MB. These data are running under ROOT and include consumption by ROOT itself. Classification: 17.6 External routines: ROOT version 5.24.00 ( http://root.cern.ch/drupal/) Nature of problem: The output of an MCNP simulation is an ASCII file. The data processing is usually performed by copying and pasting the relevant parts of the ASCII file into Microsoft Excel. Such an approach is satisfactory when the quantity of data is small but is not efficient when the size of the simulated data is large, for example when time-energy correlations are studied in detail such as in problems involving the associated particle technique. In addition, since the finite time resolution of the simulated detector cannot be modeled with MCNP, systems in which time-energy correlation is crucial cannot be described in a satisfactory way. Finally, realistic particle energy deposit in detectors is calculated with MCNP in a two-step process involving type-5 then type-8 tallies. In the first step, the photon flux energy spectrum associated to a time region is selected and serves as a source energy distribution for the second step. Thus, several files must be manipulated before getting the result, which can be time consuming if one needs to study several time regions or different detectors performances. In the same way, modeling counting statistics obtained in a limited acquisition time requires several steps and can also be time consuming. Solution method: In order to overcome the previous limitations, the MODAR C++ code has been written to make use of CERN's ROOT data analysis software. MCNP output data are read from the MCNP output file with dedicated routines. Two-dimensional histograms are filled and can be handled efficiently within the ROOT framework. To keep a user friendly analysis tool, all processing and data display can be done by means of ROOT Graphical User Interface. Specific routines have been written to include detectors finite time resolution and energy response function as well as counting statistics in a straightforward way. Additional comments: The possibility of adding tallies has also been incorporated in MODAR in order to describe systems in which the signal from several detectors can be summed. Moreover, MODAR can be adapted to handle other problems involving two-dimensional data. Running time: The CPU time needed to smear a two-dimensional histogram depends on the size of the histogram. In the presented example, the time-energy smearing of one of the 139×740 two-dimensional histograms takes 3 minutes with a DELL computer equipped with INTEL Core 2.
NASA Astrophysics Data System (ADS)
Bratkovsky, A. M.; Alexandrov, A. S.
2002-03-01
The semiclassical Lifshitz-Kosevich-type description is given for the angular dependence of quantum oscillations with combination frequencies in a multiband quasi-two-dimensional Fermi liquid with a constant number of electrons. The analytical expressions are found for the Dingle, thermal, spin, and amplitude (Yamaji) reduction factors of the novel combination harmonics, where the latter two strongly oscillate with the direction of the field [1]. At the magic angles those factors reduce to the purely two-dimensional expressions given earlier. The combination harmonics are suppressed in the presence of the nonquantized background states, and they decay exponentially faster with temperature and/or disorder compared to the standard harmonics, providing an additional tool for electronic structure determination. The theory is applied to Sr2RuO4. [1] A.M. Bratkovsky and A.S. Alexandrov, Phys. Rev. B 65, xxxx (2002); cond-mat/0104520.
NASA Astrophysics Data System (ADS)
Uenishi, Koji
2018-06-01
We consider stability of fracture on a three-dimensional planar interface subjected to a loading stress that is locally peaked spatially, the level of which increases quasi-statically in time. Similar to the earlier study on the two-dimensional case (Uenishi and Rice, 2003; Rice and Uenishi, 2010), as the loading stress increases, a crack, or a region of displacement discontinuity (opening gap in tension or slip for shear fracture), develops on the interface where the stress is presumed to decrease according to a displacement-weakening constitutive relation. Upon reaching the instability point at which no further quasi-static solution for the extension of the crack on the interface exists, dynamic fracture follows. For the investigation of this instability point, we employ a dimensional analysis as well as an energy approach that gives a Rayleigh-Ritz approximation for the dependence of crack size and maximum displacement discontinuity on the level and quadratic shape of the loading stress distribution. We show that, if the linear displacement-weakening law is applied and the crack may be assumed of an elliptical form, the critical crack size at instability is independent of the curvature of the loading stress distribution and it is of the same order for all two- and three-dimensional cases.
A One-Dimensional Organic Lead Chloride Hybrid with Excitation-Dependent Broadband Emissions
Wu, Guanhong; Zhou, Chenkun; Ming, Wenmei; ...
2018-05-23
Organic–inorganic metal halide hybrids have emerged as a new class of materials with fascinating optical and electronic properties. The exceptional structure tunability has enabled the development of materials with various dimensionalities at the molecular level, from three-dimensional (3D) to 2D, 1D, and 0D. Here, we report a new 1D lead chloride hybrid, C 4N 2H 14PbCl 4, which exhibits unusual inverse excitation-dependent broadband emission from bluish-green to yellow. Density functional theory calculations were performed to better understand the mechanism of this excitation-dependent broadband emission. This 1D hybrid material is found to have two emission centers, corresponding to the self-trapped excitonsmore » (STEs) and vacancy-bound excitons. The excitation-dependent emission is due to different populations of these two types of excitons generated at different excitation wavelengths. Furthermore, this work shows the rich chemistry and physics of organic–inorganic metal halide hybrids and paves the way to achieving novel light emitters with excitation-dependent broadband emissions at room temperature.« less
A One-Dimensional Organic Lead Chloride Hybrid with Excitation-Dependent Broadband Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Guanhong; Zhou, Chenkun; Ming, Wenmei
Organic–inorganic metal halide hybrids have emerged as a new class of materials with fascinating optical and electronic properties. The exceptional structure tunability has enabled the development of materials with various dimensionalities at the molecular level, from three-dimensional (3D) to 2D, 1D, and 0D. Here, we report a new 1D lead chloride hybrid, C 4N 2H 14PbCl 4, which exhibits unusual inverse excitation-dependent broadband emission from bluish-green to yellow. Density functional theory calculations were performed to better understand the mechanism of this excitation-dependent broadband emission. This 1D hybrid material is found to have two emission centers, corresponding to the self-trapped excitonsmore » (STEs) and vacancy-bound excitons. The excitation-dependent emission is due to different populations of these two types of excitons generated at different excitation wavelengths. Furthermore, this work shows the rich chemistry and physics of organic–inorganic metal halide hybrids and paves the way to achieving novel light emitters with excitation-dependent broadband emissions at room temperature.« less
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.
1990-01-01
The current work is initiated in an effort to obtain an efficient, accurate, and robust algorithm for the numerical solution of the incompressible Navier-Stokes equations in two- and three-dimensional generalized curvilinear coordinates for both steady-state and time-dependent flow problems. This is accomplished with the use of the method of artificial compressibility and a high-order flux-difference splitting technique for the differencing of the convective terms. Time accuracy is obtained in the numerical solutions by subiterating the equations in psuedo-time for each physical time step. The system of equations is solved with a line-relaxation scheme which allows the use of very large pseudo-time steps leading to fast convergence for steady-state problems as well as for the subiterations of time-dependent problems. Numerous laminar test flow problems are computed and presented with a comparison against analytically known solutions or experimental results. These include the flow in a driven cavity, the flow over a backward-facing step, the steady and unsteady flow over a circular cylinder, flow over an oscillating plate, flow through a one-dimensional inviscid channel with oscillating back pressure, the steady-state flow through a square duct with a 90 degree bend, and the flow through an artificial heart configuration with moving boundaries. An adequate comparison with the analytical or experimental results is obtained in all cases. Numerical comparisons of the upwind differencing with central differencing plus artificial dissipation indicates that the upwind differencing provides a much more robust algorithm, which requires significantly less computing time. The time-dependent problems require on the order of 10 to 20 subiterations, indicating that the elliptical nature of the problem does require a substantial amount of computing effort.
Two- to three-dimensional crossover in a dense electron liquid in silicon
NASA Astrophysics Data System (ADS)
Matmon, Guy; Ginossar, Eran; Villis, Byron J.; Kölker, Alex; Lim, Tingbin; Solanki, Hari; Schofield, Steven R.; Curson, Neil J.; Li, Juerong; Murdin, Ben N.; Fisher, Andrew J.; Aeppli, Gabriel
2018-04-01
Doping of silicon via phosphine exposures alternating with molecular beam epitaxy overgrowth is a path to Si:P substrates for conventional microelectronics and quantum information technologies. The technique also provides a well-controlled material for systematic studies of two-dimensional lattices with a half-filled band. We show here that for a dense (ns=2.8 ×1014 cm-2) disordered two-dimensional array of P atoms, the full field magnitude and angle-dependent magnetotransport is remarkably well described by classic weak localization theory with no corrections due to interaction. The two- to three-dimensional crossover seen upon warming can also be interpreted using scaling concepts developed for anistropic three-dimensional materials, which work remarkably except when the applied fields are nearly parallel to the conducting planes.
NASA Astrophysics Data System (ADS)
Paul, Jagannath
Advent of ultrashort lasers made it possible to probe various scattering phenomena in materials that occur in a time scale on the order of few femtoseconds to several tens of picoseconds. Nonlinear optical spectroscopy techniques, such as pump-probe, transient four wave mixing (TFWM), etc., are very common to study the carrier dynamics in various material systems. In time domain, the transient FWM uses several ultrashort pulses separated by time delays to obtain the information of dephasing and population relaxation times, which are very important parameters that govern the carrier dynamics of materials. A recently developed multidimensional nonlinear optical spectroscopy is an enhanced version of TFWM which keeps track of two time delays simultaneously and correlate them in the frequency domain with the aid of Fourier transform in a two dimensional map. Using this technique, the nonlinear complex signal field is characterized both in amplitude and phase. Furthermore, this technique allows us to identify the coupling between resonances which are rather difficult to interpret from time domain measurements. This work focuses on the study of the coherent response of a two dimensional electron gas formed in a modulation doped GaAs/AlGaAs quantum well both at zero and at high magnetic fields. In modulation doped quantum wells, the excitons are formed as a result of the inter- actions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the formation of Mahan excitons, which is also referred to as Fermi edge singularity (FES). Polarization and temperature dependent rephasing 2DFT spectra in combination with TI-FWM measurements, provides insight into the dephasing mechanism of the heavy hole (HH) Mahan exciton. In addition to that strong quantum coherence between the HH and LH Mahan excitons is observed, which is rather surprising at this high doping concentration. The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence be destroyed as a result of the screening and electron-electron interactions. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum 2DFT spectra. Theoretical simulations based on the optical Bloch Equations (OBE) where many-body effects are included phenomenologically, corroborate the experimental results. Time-dependent density functional theory (TD-DFT) calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system. Furthermore, in semiconductors under the application of magnetic field, the energy states in conduction and valence bands become quantized and Landau levels are formed. We observe optical excitation originating from different Landau levels in the absorption spectra in an undoped and a modulation doped quantum wells. 2DFT measurements in magnetic field up to 25 Tesla have been performed and the spectra reveal distinct difference in the line shapes in the two samples. In addition, strong coherent coupling between landau levels is observed in the undoped sample. In order to gain deeper understanding of the observations, the experimental results are further supported with TD-DFT calculation.
Promotion of initiated cells by radiation-induced cell inactivation.
Heidenreich, W F; Paretzke, H G
2008-11-01
Cells on the way to carcinogenesis can have a growth advantage relative to normal cells. It has been hypothesized that a radiation-induced growth advantage of these initiated cells might be induced by an increased cell replacement probability of initiated cells after inactivation of neighboring cells by radiation. Here Monte Carlo simulations extend this hypothesis for larger clones: The effective clonal expansion rate decreases with clone size. This effect is stronger for the two-dimensional than for the three-dimensional situation. The clones are irregular, far from a circular shape. An exposure-rate dependence of the effective clonal expansion rate could come in part from a minimal recovery time of the initiated cells for symmetric cell division.
Three-dimensional control of crystal growth using magnetic fields
NASA Astrophysics Data System (ADS)
Dulikravich, George S.; Ahuja, Vineet; Lee, Seungsoo
1993-07-01
Two coupled systems of partial differential equations governing three-dimensional laminar viscous flow undergoing solidification or melting under the influence of arbitrarily oriented externally applied magnetic fields have been formulated. The model accounts for arbitrary temperature dependence of physical properties including latent heat release, effects of Joule heating, magnetic field forces, and mushy region existence. On the basis of this model a numerical algorithm has been developed and implemented using central differencing on a curvilinear boundary-conforming grid and Runge-Kutta explicit time-stepping. The numerical results clearly demonstrate possibilities for active and practically instantaneous control of melt/solid interface shape, the solidification/melting front propagation speed, and the amount and location of solid accrued.
NASA Technical Reports Server (NTRS)
Beratan, David N. (Inventor); Perry, Joseph W. (Inventor)
1991-01-01
A single material (not a multi-element structure) spatial light modulator may be written to, as well as read out from, using light. The device has tailorable rise and hold times dependent on the composition and concentration of the molecular species used as the active components. The spatial resolution of this device is limited only by light diffraction as in volume holograms. The device may function as a two-dimensional mask (transmission or reflection) or as a three-dimensional volume holographic medium. This device, based on optically-induced electron transfer, is able to perform incoherent to coherent image conversion or wavelength conversion over a wide spectral range (ultraviolet, visible, or near-infrared regions).
Building Reliable Forecasts of Solar Activity
NASA Technical Reports Server (NTRS)
Kitiashvili, Irina; Wray, Alan; Mansour, Nagi
2017-01-01
Solar ionizing radiation critically depends on the level of the Sun’s magnetic activity. For robust physics-based forecasts, we employ the procedure of data assimilation, which combines theoretical modeling and observational data such that uncertainties in both the model and the observations are taken into account. Currently we are working in two major directions: 1) development of a new long-term forecast procedure on time-scales of the 11-year solar cycle, using a 2-dimensional mean-field dynamo model and synoptic magnetograms; 2) development of 3-dimensional radiative MHD (Magnetohydrodynamic) simulations to investigate the origin and precursors of local manifestations of magnetic activity, such as the formation of magnetic structures and eruptive dynamics.
An implicit fast Fourier transform method for integration of the time dependent Schrodinger equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, M.E.; Ritchie, A.B.
1997-12-31
One finds that the conventional exponentiated split operator procedure is subject to difficulties when solving the time-dependent Schrodinger equation for Coulombic systems. By rearranging the kinetic and potential energy terms in the temporal propagator of the finite difference equations, one can find a propagation algorithm for three dimensions that looks much like the Crank-Nicholson and alternating direction implicit methods for one- and two-space-dimensional partial differential equations. The authors report investigations of this novel implicit split operator procedure. The results look promising for a purely numerical approach to certain electron quantum mechanical problems. A charge exchange calculation is presented as anmore » example of the power of the method.« less
NASA Astrophysics Data System (ADS)
Lü, Boqiang; Shi, Xiaoding; Zhong, Xin
2018-06-01
We are concerned with the Cauchy problem of the two-dimensional (2D) nonhomogeneous incompressible Navier–Stokes equations with vacuum as far-field density. It is proved that if the initial density decays not too slow at infinity, the 2D Cauchy problem of the density-dependent Navier–Stokes equations on the whole space admits a unique global strong solution. Note that the initial data can be arbitrarily large and the initial density can contain vacuum states and even have compact support. Furthermore, we also obtain the large time decay rates of the spatial gradients of the velocity and the pressure, which are the same as those of the homogeneous case.
NASA Astrophysics Data System (ADS)
Guérin, T.; Dean, D. S.
2017-01-01
We consider the time-dependent dispersion properties of overdamped tracer particles diffusing in a one-dimensional periodic potential under the influence of an additional constant tilting force F . The system is studied in the region where the force is close to the critical value Fc at which the barriers separating neighboring potential wells disappear. We show that, when F crosses the critical value, the shape of the mean-square displacement (MSD) curves is strongly modified. We identify a diffusive regime at intermediate-time scales with an effective diffusion coefficient which is much larger than the late-time diffusion coefficient for F >Fc , whereas for F
Thermoelectric transport in two-dimensional giant Rashba systems
NASA Astrophysics Data System (ADS)
Xiao, Cong; Li, Dingping; Ma, Zhongshui; Niu, Qian
Thermoelectric transport in strongly spin-orbit coupled two-dimensional Rashba systems is studied using the analytical solution of the linearized Boltzmann equation. To highlight the effects of inter-band scattering, we assume point-like potential impurities, and obtain the band-and energy-dependent transport relaxation times. Unconventional transport behaviors arise when the Fermi level lies near or below the band crossing point (BCP), such as the non-Drude electrical conducivity below the BCP, the failure of the standard Mott relation linking the Peltier coefficient to the electrical conductivity near the BCP, the enhancement of diffusion thermopower and figure of merit below the BCP, the zero-field Hall coefficient which is not inversely proportional to and not a monotonic function of the carrier density, the enhanced Nernst coefficient below the BCP, and the enhanced current-induced spin-polarization efficiency.
Time-dependent inertia analysis of vehicle mechanisms
NASA Astrophysics Data System (ADS)
Salmon, James Lee
Two methods for performing transient inertia analysis of vehicle hardware systems are developed in this dissertation. The analysis techniques can be used to predict the response of vehicle mechanism systems to the accelerations associated with vehicle impacts. General analytical methods for evaluating translational or rotational system dynamics are generated and evaluated for various system characteristics. The utility of the derived techniques are demonstrated by applying the generalized methods to two vehicle systems. Time dependent acceleration measured during a vehicle to vehicle impact are used as input to perform a dynamic analysis of an automobile liftgate latch and outside door handle. Generalized Lagrange equations for a non-conservative system are used to formulate a second order nonlinear differential equation defining the response of the components to the transient input. The differential equation is solved by employing the fourth order Runge-Kutta method. The events are then analyzed using commercially available two dimensional rigid body dynamic analysis software. The results of the two analytical techniques are compared to experimental data generated by high speed film analysis of tests of the two components performed on a high G acceleration sled at Ford Motor Company.
Revisiting the Scale-Invariant, Two-Dimensional Linear Regression Method
ERIC Educational Resources Information Center
Patzer, A. Beate C.; Bauer, Hans; Chang, Christian; Bolte, Jan; Su¨lzle, Detlev
2018-01-01
The scale-invariant way to analyze two-dimensional experimental and theoretical data with statistical errors in both the independent and dependent variables is revisited by using what we call the triangular linear regression method. This is compared to the standard least-squares fit approach by applying it to typical simple sets of example data…
Oscilloscope used as X-Y plotter or two-dimensional analyzer
NASA Technical Reports Server (NTRS)
Hansen, D.; Roy, N.
1967-01-01
Oscilloscope used as an X-Y plotter or two-dimensional analyzer tags each point with a yes or no, depending on a third parameter. The usual square-wave pulse is replaced on the scope by a single information-bearing dot which lengthens to a dash in response to a simultaneous event.
NASA Astrophysics Data System (ADS)
Vasanth, K. R.; Hanumagowda, B. N.; Santhosh Kumar, J.
2018-04-01
Squeeze film investigations focus upon film pressure, load bearing quantity and the minimum thickness of film. The combined effect of pressure viscous dependent and non- Newtonian couple stress in porous annular plate is studied. The modified equations of one dimensional pressure, load bearing quantity, non dimensional squeeze time are obtained. The conclusions obtained in the study are found to be in very good agreement compared to the previous results which are published. The load carrying capacity is increased due to the variation in the pressure dependent viscosity and also due to the couple stress effect. Finally this results in change in the squeeze film timings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tartakovsky, Alexandre M.; Meakin, Paul
2005-08-10
A numerical model based on smoothed particle hydrodynamics (SPH) has been developed and used to simulate the classical two-dimensional Rayleigh–Taylor instability and three-dimensional miscible flow in fracture apertures with complex geometries. To model miscible flow fluid particles with variable, composition dependent, masses were used. By basing the SPH equations on the particle number density artificial surface tension effects were avoided. The simulation results for the growth of a single perturbation driven by the Rayleigh – Taylor instability compare well with numerical results obtained by Fournier et al., and the growth of a perturbation with time can be represented quite wellmore » by a second-degree polynomial, in accord with the linear stability analysis of Duff et al. The dispersion coefficient found from SPH simulation of flow and diffusion in an ideal fracture was in excellent agreement with the value predicted by the theory of Taylor and Aris. The simulations of miscible flow in fracture apertures can be used to determination dispersion coefficients for transport in fractured media - a parameter used in large-scale simulations of contaminant transport.« less
ERIC Educational Resources Information Center
Widder, Mirela; Gorsky, Paul
2013-01-01
In schools, learning spatial geometry is usually dependent upon a student's ability to visualize three dimensional geometric configurations from two dimensional drawings. Such a process, however, often creates visual obstacles which are unique to spatial geometry. Useful software programs which realistically depict three dimensional geometric…
Fan, Yi; Boukerkour, Youcef; Blanc, Thibault; Umbanhowar, Paul B; Ottino, Julio M; Lueptow, Richard M
2012-11-01
Segregation and mixing of granular mixtures during heap formation has important consequences in industry and agriculture. This research investigates three different final particle configurations of bidisperse granular mixtures--stratified, segregated and mixed--during filling of quasi-two-dimensional silos. We consider a large number and wide range of control parameters, including particle size ratio, flow rate, system size, and heap rise velocity. The boundary between stratified and unstratified states is primarily controlled by the two-dimensional flow rate, with the critical flow rate for the transition depending weakly on particle size ratio and flowing layer length. In contrast, the transition from segregated to mixed states is controlled by the rise velocity of the heap, a control parameter not previously considered. The critical rise velocity for the transition depends strongly on the particle size ratio.
BRST-BFV method for nonstationary systems
NASA Astrophysics Data System (ADS)
García, J. Antonio; Vergara, J. David; Urrutia, Luis F.
1995-05-01
Starting from an associated reparametrization-invariant action, the generalization of the BRST-BFV method for the case of nonstationary systems is constructed. The extension of the Batalin-Tyutin conversional approach is also considered in the nonstationary case. In order to illustrate these ideas, the propagator for the time-dependent two-dimensional rotor is calculated by reformulating the problem as a system with only first-class constraints and subsequently using the BRST-BFV prescription previously obtained.
Thermal stability of single-side hydrogenated graphene
NASA Astrophysics Data System (ADS)
Openov, L. A.; Podlivaev, A. I.
2012-11-01
The temperature dependence of the time of hydrogen desorption from single-side hydrogenated graphene is calculated using molecular dynamics simulation. The activation energy ( E a = 0.75 ± 0.10 eV) and the frequency factor ( A = (2.5 ± 1.0) × 1015 s-1) of the desorption are found. This quasi-two-dimensional carbon-hydrogen system is shown to have a relatively low thermal stability, which makes it difficult to use it in practice.
Stability of the two-dimensional Fermi polaron
NASA Astrophysics Data System (ADS)
Griesemer, Marcel; Linden, Ulrich
2018-02-01
A system composed of an ideal gas of N fermions interacting with an impurity particle in two space dimensions is considered. The interaction between impurity and fermions is given in terms of two-body point interactions whose strength is determined by the two-body binding energy, which is a free parameter of the model. If the mass of the impurity is 1.225 times larger than the mass of a fermion, it is shown that the energy is bounded below uniformly in the number N of fermions. This result improves previous, N-dependent lower bounds, and it complements a recent, similar bound for the Fermi polaron in three space dimensions.
Kinetics of Surface-Mediated Fibrillization of Amyloid-β (12-28) Peptides.
Lin, Yi-Chih; Li, Chen; Fakhraai, Zahra
2018-04-17
Surfaces or interfaces are considered to be key factors in facilitating the formation of amyloid fibrils under physiological conditions. In this report, we study the kinetics of the surface-mediated fibrillization (SMF) of an amyloid-β fragment (Aβ 12-28 ) on mica. We employ a spin-coating-based drying procedure to control the exposure time of the substrate to a low-concentration peptide solution and then monitor the fibril growth as a function of time via atomic force microscopy (AFM). The evolution of surface-mediated fibril growth is quantitatively characterized in terms of the length histogram of imaged fibrils and their surface concentration. A two-dimensional (2D) kinetic model is proposed to numerically simulate the length evolution of surface-mediated fibrils by assuming a diffusion-limited aggregation (DLA) process along with size-dependent rate constants. We find that both monomer and fibril diffusion on the surface are required to obtain length histograms as a function of time that resemble those observed in experiments. The best-fit simulated data can accurately describe the key features of experimental length histograms and suggests that the mobility of loosely bound amyloid species is crucial in regulating the kinetics of SMF. We determine that the mobility exponent for the size dependence of the DLA rate constants is α = 0.55 ± 0.05, which suggests that the diffusion of loosely bound surface fibrils roughly depends on the inverse of the square root of their size. These studies elucidate the influence of deposition rate and surface diffusion on the formation of amyloid fibrils through SMF. The method used here can be broadly adopted to study the diffusion and aggregation of peptides or proteins on various surfaces to investigate the role of chemical interactions in two-dimensional fibril formation and diffusion.
Analytical solutions for the dynamics of two trapped interacting ultracold atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idziaszek, Zbigniew; Calarco, Tommaso; CNR-INFM BEC Center, I-38050 Povo
2006-08-15
We discuss exact solutions of the Schroedinger equation for the system of two ultracold atoms confined in an axially symmetric harmonic potential. We investigate different geometries of the trapping potential, in particular we study the properties of eigenenergies and eigenfunctions for quasi-one-dimensional and quasi-two-dimensional traps. We show that the quasi-one-dimensional and the quasi-two-dimensional regimes for two atoms can be already realized in the traps with moderately large (or small) ratios of the trapping frequencies in the axial and the transverse directions. Finally, we apply our theory to Feshbach resonances for trapped atoms. Introducing in our description an energy-dependent scattering lengthmore » we calculate analytically the eigenenergies for two trapped atoms in the presence of a Feshbach resonance.« less
Three-dimensional shear wave velocity structure in the Atlantic upper mantle
NASA Astrophysics Data System (ADS)
James, Esther Kezia Candace
Oceanic lithosphere constitutes the upper boundary layer of the Earth's convecting mantle. Its structure and evolution provide a vital window on the dynamics of the mantle and important clues to how the motions of Earth's surface plates are coupled to convection in the mantle below. The three-dimensional shear-velocity structure of the upper mantle beneath the Atlantic Ocean is investigated to gain insight into processes that drive formation of oceanic lithosphere. Travel times are measured for approximately 10,000 fundamental-mode Rayleigh waves, in the period range 30-130 seconds, traversing the Atlantic basin. Paths with >30% of their length through continental upper mantle are excluded to maximize sensitivity to the oceanic upper mantle. The lateral distribution of Rayleigh wave phase velocity in the Atlantic upper mantle is explored with two approaches. One, phase velocity is allowed to vary only as a function of seafloor age. Two, a general two-dimensional parameterization is utilized in order to capture perturbations to age-dependent structure. Phase velocity shows a strong dependence on seafloor age, and removing age-dependent velocity from the 2-D maps highlights areas of anomalously low velocity, almost all of which are proximal to locations of hotspot volcanism. Depth-dependent variations in vertically-polarized shear velocity (Vsv) are determined with two sets of 3-D models: a layered model that requires constant VSV in each depth layer, and a splined model that allows VSV to vary continuously with depth. At shallow depths (˜75 km) the seismic structure shows the expected dependence on seafloor age. At greater depths (˜200 km) high-velocity lithosphere is found only beneath the oldest seafloor; velocity variations beneath younger seafloor may result from temperature or compositional variations within the asthenosphere. The age-dependent phase velocities are used to constrain temperature in the mantle and show that, in contrast to previous results for the Pacific, phase velocities for the Atlantic are not consistent with a half-space cooling model but are best explained by a plate-cooling model with thickness of 75 km and mantle temperature of 1400°C. Comparison with data such as basalt chemistry and seafloor elevation helps to separate thermal and compositional effects on shear velocity.
The effect of shot noise on the start up of the fundamental and harmonics in free-electron lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freund, H. P.; Miner, W. H. Jr.; Giannessi, L.
2008-12-15
The problem of radiation start up in free-electron lasers (FELs) is important in the simulation of virtually all FEL configurations including oscillators and amplifiers in both seeded master oscillator power amplifier (MOPA) and self-amplified spontaneous emission (SASE) modes. Both oscillators and SASE FELs start up from spontaneous emission due to shot noise on the electron beam, which arises from the random fluctuations in the phase distribution of the electrons. The injected power in a MOPA is usually large enough to overwhelm the shot noise. However, this noise must be treated correctly in order to model the initial start up ofmore » the harmonics. In this paper, we discuss and compare two different shot noise models that are implemented in both one-dimensional wiggler-averaged (PERSEO) and non-wiggler-averaged (MEDUSA1D) simulation codes, and a three-dimensional non-wiggler-averaged (MEDUSA) formulation. These models are compared for examples describing both SASE and MOPA configurations in one dimension, in steady-state, and time-dependent simulations. Remarkable agreement is found between PERSEO and MEDUSA1D for the evolution of the fundamental and harmonics. In addition, three-dimensional correction factors have been included in the MEDUSA1D and PERSEO, which show reasonable agreement with MEDUSA for a sample MOPA in steady-state and time-dependent simulations.« less
Quantum field between moving mirrors: A three dimensional example
NASA Technical Reports Server (NTRS)
Hacyan, S.; Jauregui, Roco; Villarreal, Carlos
1995-01-01
The scalar quantum field uniformly moving plates in three dimensional space is studied. Field equations for Dirichlet boundary conditions are solved exactly. Comparison of the resulting wavefunctions with their instantaneous static counterpart is performed via Bogolubov coefficients. Unlike the one dimensional problem, 'particle' creation as well as squeezing may occur. The time dependent Casimir energy is also evaluated.
Gok, Gulay; Elsayed, Mahmoud; Thind, Munveer; Uygur, Begum; Abtahi, Firoozeh; Chahwala, Jugal R; Yıldırımtürk, Özlem; Kayacıoğlu, İlyas; Pehlivanoğlu, Seçkin; Nanda, Navin C
2015-07-01
We describe a case of primary cardiac malignant fibrous histiocytoma where live/real time three-dimensional transesophageal echocardiography added incremental value to the two-dimensional modalities. Specifically, the three-dimensional technique allowed us to delineate the true extent and infiltration of the tumor, to identify characteristics of the tumor mass suggestive of its malignant nature, and to quantitatively assess the total tumor burden. © 2015, Wiley Periodicals, Inc.
1984-12-30
as three dimensional, when the assumption is made that all SUTRA parameters and coefficients have a constant value in the third space direction. A...finite element. The type of element employed by SUTRA for two-dimensional simulation is a quadrilateral which has a finite thickness in the third ... space dimension. This type of a quad- rilateral element and a typical two-dimensional mesh is shown in Figure 3.1. - All twelve edges of the two
Single-particle excitations in periodically modulated two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Kushwaha, Manvir S.
2008-06-01
A theoretical investigation is made of the plasmon excitations in a two-dimensional electron gas subjected to a one-dimensional periodic potential. We embark on the single-particle excitations within a two-subband model in the framework of Bohm-Pines’ random-phase approximation. For such an anisotropic system with spatially modulated charge density, we observe the existence of interesting esthetic necktie gaps that are found to center at the zone boundaries within the intersubband single-particle excitations. We discuss the dependence of the size of necktie gaps on the modulation potential.
Two-dimensional electron gas in monolayer InN quantum wells
Pan, Wei; Dimakis, Emmanouil; Wang, George T.; ...
2014-11-24
We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in monolayer InN quantum wells embedded in GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5×10 15 cm -2 and 420 cm 2 /Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES.
Anand, Rishi; Gorev, Maxim V; Poghosyan, Hermine; Pothier, Lindsay; Matkins, John; Kotler, Gregory; Moroz, Sarah; Armstrong, James; Nemtsov, Sergei V; Orlov, Michael V
2016-08-01
To compare the efficacy and accuracy of rotational angiography with three-dimensional reconstruction (3DATG) image merged with electro-anatomical mapping (EAM) vs. CT-EAM. A prospective, randomized, parallel, two-center study conducted in 36 patients (25 men, age 65 ± 10 years) undergoing AF ablation (33 % paroxysmal, 67 % persistent) guided by 3DATG (group 1) vs. CT (group 2) image fusion with EAM. 3DATG was performed on the Philips Allura Xper FD 10 system. Procedural characteristics including time, radiation exposure, outcome, and navigation accuracy were compared between two groups. There was no significant difference between the groups in total procedure duration or time spent for various procedural steps. Minor differences in procedural characteristics were present between two centers. Segmentation and fusion time for 3DATG or CT-EAM was short and similar between both centers. Accuracy of navigation guided by either method was high and did not depend on left atrial size. Maintenance of sinus rhythm between the two groups was no different up to 24 months of follow-up. This study did not find superiority of 3DATG-EAM image merge to guide AF ablation when compared to CT-EAM fusion. Both merging techniques result in similar navigation accuracy.
NASA Astrophysics Data System (ADS)
Luo, Win-Jet; Yue, Cheng-Feng
2004-12-01
This paper investigates two-dimensional, time-dependent electroosmotic flows driven by an AC electric field via patchwise surface heterogeneities distributed along the microchannel walls. The time-dependent flow fields through the microchannel are simulated for various patchwise heterogeneous surface patterns using the backwards-Euler time stepping numerical method. Different heterogeneous surface patterns are found to create significantly different electrokinetic transport phenomena. It is shown that the presence of oppositely charged surface heterogeneities on the microchannel walls results in the formation of localized flow circulations within the bulk flow. These circulation regions grow and decay periodically in accordance with the applied periodic AC electric field intensity. The circulations provide an effective means of enhancing species mixing in the microchannel. A suitable design of the patchwise heterogeneous surface pattern permits the mixing channel length and the retention time required to attain a homogeneous solution to be reduced significantly.
NASA Astrophysics Data System (ADS)
Sohbatzadeh, F.; Soltani, H.
2018-04-01
The results of time-dependent one-dimensional modelling of a dielectric barrier discharge (DBD) in a nitrogen-oxygen-water vapor mixture at atmospheric pressure are presented. The voltage-current characteristics curves and the production of active species are studied. The discharge is driven by a sinusoidal alternating high voltage-power supply at 30 kV with frequency of 27 kHz. The electrodes and the dielectric are assumed to be copper and quartz, respectively. The current discharge consists of an electrical breakdown that occurs in each half-period. A detailed description of the electron attachment and detachment processes, surface charge accumulation, charged species recombination, conversion of negative and positive ions, ion production and losses, excitations and dissociations of molecules are taken into account. Time-dependent one-dimensional electron density, electric field, electric potential, electron temperature, densities of reactive oxygen species (ROS) and reactive nitrogen species (RNS) such as: O, O-, O+, {O}2^{ - } , {O}2^{ + } , O3, {N}, {N}2^{ + } , N2s and {N}2^{ - } are simulated versus time across the gas gap. The results of this work could be used in plasma-based pollutant degradation devices.
NASA Astrophysics Data System (ADS)
Deswal, Sunita; Kalkal, Kapil Kumar; Sheoran, Sandeep Singh
2016-09-01
A mathematical model of fractional order two-temperature generalized thermoelasticity with diffusion and initial stress is proposed to analyze the transient wave phenomenon in an infinite thermoelastic half-space. The governing equations are derived in cylindrical coordinates for a two dimensional axi-symmetric problem. The analytical solution is procured by employing the Laplace and Hankel transforms for time and space variables respectively. The solutions are investigated in detail for a time dependent heat source. By using numerical inversion method of integral transforms, we obtain the solutions for displacement, stress, temperature and diffusion fields in physical domain. Computations are carried out for copper material and displayed graphically. The effect of fractional order parameter, two-temperature parameter, diffusion, initial stress and time on the different thermoelastic and diffusion fields is analyzed on the basis of analytical and numerical results. Some special cases have also been deduced from the present investigation.
Scale size-dependent characteristics of the nightside aurora
NASA Astrophysics Data System (ADS)
Humberset, B. K.; Gjerloev, J. W.; Samara, M.; Michell, R. G.
2017-02-01
We have determined the spatiotemporal characteristics of the magnetosphere-ionosphere (M-I) coupling using auroral imaging. Observations at fixed positions for an extended period of time are provided by a ground-based all-sky imager measuring the 557.7 nm auroral emissions. We report on a single event of nightside aurora (˜22 magnetic local time) preceding a substorm onset. To determine the spatiotemporal characteristics, we perform an innovative analysis of an all-sky imager movie (19 min duration, images at 3.31 Hz) that combines a two-dimensional spatial fast Fourier transform with a temporal correlation. We find a scale size-dependent variability where the largest scale sizes are stable on timescales of minutes while the small scale sizes are more variable. When comparing two smaller time intervals of different types of auroral displays, we find a variation in their characteristics. The characteristics averaged over the event are in remarkable agreement with the spatiotemporal characteristics of the nightside field-aligned currents during moderately disturbed times. Thus, two different electrodynamical parameters of the M-I coupling show similar behavior. This gives independent support to the claim of a system behavior that uses repeatable solutions to transfer energy and momentum from the magnetosphere to the ionosphere.
Adiabatic state preparation of stripe phases with strongly magnetic atoms
NASA Astrophysics Data System (ADS)
Mazloom, Azadeh; Vermersch, Benoît; Baranov, Mikhail A.; Dalmonte, Marcello
2017-09-01
We propose a protocol for realizing the stripe phase in two spin models on a two-dimensional square lattice, which can be implemented with strongly magnetic atoms (Cr, Dy, Er, etc.) in optical lattices by encoding spin states into Zeeman sublevels of the ground-state manifold. The protocol is tested with cluster-mean-field time-dependent variational Ansätze, validated by comparison with exact results for small systems, which enable us to simulate the dynamics of systems with up to 64 sites during the state-preparation protocol. This allows us, in particular, to estimate the time required for preparation of the stripe phase with high fidelity under real experimental conditions.
Loukachevitch, V V; Aldushchenkov, A V
2005-01-01
It is proposed within the framework of Ramsey's method to register two-dimensional spectra, depending on the neutron phase and neutron energy, for measuring parity (P) and time (T) violating amplitudes of the interaction of polarized neutrons with polarized (139)La nuclei in region of the p-wave resonance. The form of the phase spectrum and corresponding expressions for the asymmetries are obtained on the basis of a formalism of a spin density matrix. It is shown that the ratio of the P,T,-violating to P-violating imaginary amplitudes can be obtained from the measurements of the neutron phase spectrum with polarized and unpolarized (139)La target.
Two-dimensional arbitrary nano-manipulation on a plasmonic metasurface.
Jiang, Min; Wang, Guanghui; Xu, Wenhao; Ji, Wenbin; Zou, Ningmu; Ho, Ho-Pui; Zhang, Xuping
2018-04-01
In this Letter, we report on a plasmonic nano-ellipse metasurface with the purpose of trapping and two-dimensional (2D) arbitrary transport of nanoparticles by means of rotating the polarization of an excitation beam. The locations of hot spots within a metasurface are polarization dependent, thus making it possible to turn on/off the adjacent hot spots and then convey the trapped target by rotating the incident polarization state. For the case of a metasurface with a unit cell of perpendicularly orientated nano-ellipses, the hot spots with higher intensities are located at both apexes of the nano-ellipse whose major axis is parallel to the direction of polarization. When the polarization gradually rotates to its counterpart direction, the trapped particle may move around the ellipse and transfer to the most adjacent ellipse, due to the unbalanced trap potentials around the nano-ellipse. Clockwise and counterclockwise rotation would guide the particle in a different direction, which makes it possible to convey the particle arbitrarily within the plasmonic metasurface by setting a time sequence of polarization rotation. As confirmed by the three-dimensional finite-difference time-domain analysis, our design offers a novel scheme of 2D arbitrary transport with nanometer accuracy, which could be used in many on-chip optofluidic applications.
Correia, Cláudia; Koshkin, Alexey; Carido, Madalena; Espinha, Nuno; Šarić, Tomo; Lima, Pedro A.; Alves, Paula M.
2016-01-01
To fully explore the potential of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), efficient methods for storage and shipment of these cells are required. Here, we evaluated the feasibility to cold store monolayers and aggregates of functional CMs obtained from different PSC lines using a fully defined clinical-compatible preservation formulation and investigated the time frame that hPSC-CMs could be subjected to hypothermic storage. We showed that two-dimensional (2D) monolayers of hPSC-CMs can be efficiently stored at 4°C for 3 days without compromising cell viability. However, cell viability decreased when the cold storage interval was extended to 7 days. We demonstrated that hPSC-CMs are more resistant to prolonged hypothermic storage-induced cell injury in three-dimensional aggregates than in 2D monolayers, showing high cell recoveries (>70%) after 7 days of storage. Importantly, hPSC-CMs maintained their typical (ultra)structure, gene and protein expression profile, electrophysiological profiles, and drug responsiveness. Significance The applicability of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) in the clinic/industry is highly dependent on the development of efficient methods for worldwide shipment of these cells. This study established effective clinically compatible strategies for cold (4°C) storage of hPSC-CMs cultured as two-dimensional (2D) monolayers and three-dimensional (3D) aggregates. Cell recovery of 2D monolayers of hPSC-CMs was found to be dependent on the time of storage, and 3D cell aggregates were more resistant to prolonged cold storage than 2D monolayers. Of note, it was demonstrated that 7 days of cold storage did not affect hPSC-CM ultrastructure, phenotype, or function. This study provides important insights into the cold preservation of PSC-CMs that could be valuable in improving global commercial distribution of hPSC-CMs. PMID:27025693
Correia, Cláudia; Koshkin, Alexey; Carido, Madalena; Espinha, Nuno; Šarić, Tomo; Lima, Pedro A; Serra, Margarida; Alves, Paula M
2016-05-01
To fully explore the potential of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), efficient methods for storage and shipment of these cells are required. Here, we evaluated the feasibility to cold store monolayers and aggregates of functional CMs obtained from different PSC lines using a fully defined clinical-compatible preservation formulation and investigated the time frame that hPSC-CMs could be subjected to hypothermic storage. We showed that two-dimensional (2D) monolayers of hPSC-CMs can be efficiently stored at 4°C for 3 days without compromising cell viability. However, cell viability decreased when the cold storage interval was extended to 7 days. We demonstrated that hPSC-CMs are more resistant to prolonged hypothermic storage-induced cell injury in three-dimensional aggregates than in 2D monolayers, showing high cell recoveries (>70%) after 7 days of storage. Importantly, hPSC-CMs maintained their typical (ultra)structure, gene and protein expression profile, electrophysiological profiles, and drug responsiveness. The applicability of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) in the clinic/industry is highly dependent on the development of efficient methods for worldwide shipment of these cells. This study established effective clinically compatible strategies for cold (4°C) storage of hPSC-CMs cultured as two-dimensional (2D) monolayers and three-dimensional (3D) aggregates. Cell recovery of 2D monolayers of hPSC-CMs was found to be dependent on the time of storage, and 3D cell aggregates were more resistant to prolonged cold storage than 2D monolayers. Of note, it was demonstrated that 7 days of cold storage did not affect hPSC-CM ultrastructure, phenotype, or function. This study provides important insights into the cold preservation of PSC-CMs that could be valuable in improving global commercial distribution of hPSC-CMs. ©AlphaMed Press.
Viscoelastic Transient of Confined Red Blood Cells
Prado, Gaël; Farutin, Alexander; Misbah, Chaouqi; Bureau, Lionel
2015-01-01
The unique ability of a red blood cell to flow through extremely small microcapillaries depends on the viscoelastic properties of its membrane. Here, we study in vitro the response time upon flow startup exhibited by red blood cells confined into microchannels. We show that the characteristic transient time depends on the imposed flow strength, and that such a dependence gives access to both the effective viscosity and the elastic modulus controlling the temporal response of red cells. A simple theoretical analysis of our experimental data, validated by numerical simulations, further allows us to compute an estimate for the two-dimensional membrane viscosity of red blood cells, ηmem2D ∼ 10−7 N⋅s⋅m−1. By comparing our results with those from previous studies, we discuss and clarify the origin of the discrepancies found in the literature regarding the determination of ηmem2D, and reconcile seemingly conflicting conclusions from previous works. PMID:25954871
Emergence of energy dependence in the fragmentation of heterogeneous materials
NASA Astrophysics Data System (ADS)
Pál, Gergő; Varga, Imre; Kun, Ferenc
2014-12-01
The most important characteristics of the fragmentation of heterogeneous solids is that the mass (size) distribution of pieces is described by a power law functional form. The exponent of the distribution displays a high degree of universality depending mainly on the dimensionality and on the brittle-ductile mechanical response of the system. Recently, experiments and computer simulations have reported an energy dependence of the exponent increasing with the imparted energy. These novel findings question the phase transition picture of fragmentation phenomena, and have also practical importance for industrial applications. Based on large scale computer simulations here we uncover a robust mechanism which leads to the emergence of energy dependence in fragmentation processes resolving controversial issues on the problem: studying the impact induced breakup of platelike objects with varying thickness in three dimensions we show that energy dependence occurs when a lower dimensional fragmenting object is embedded into a higher dimensional space. The reason is an underlying transition between two distinct fragmentation mechanisms controlled by the impact velocity at low plate thicknesses, while it is hindered for three-dimensional bulk systems. The mass distributions of the subsets of fragments dominated by the two cracking mechanisms proved to have an astonishing robustness at all plate thicknesses, which implies that the nonuniversality of the complete mass distribution is the consequence of blending the contributions of universal partial processes.
Analysis of Electrokinetic Mixing Using AC Electric Field and Patchwise Surface Heterogeneities
NASA Astrophysics Data System (ADS)
Luo, Win-Jet; Yarn, Kao-Feng; Hsu, Shou-Ping
2007-04-01
In this paper, the authors investigate the use of an applied AC electric field and microchannel surface heterogeneities to carry out the microfluidic mixing of two-dimensional, time-dependent electroosmotic flows. The time-dependent flow fields within the microchannel are simulated using the backwards-Euler time-stepping numerical method. The mixing efficiencies obtained in microchannels with two different patchwise surface heterogeneity patterns are investigated. In general, the results show that the application of an AC electric field significantly reduces the required mixing length compared with the use of a DC electric field. Furthermore, the presence of oppositely charged surface heterogeneities on the microchannel walls results in the formation of localized flow circulation regions within the bulk flow. These circulation regions grow and decay periodically in accordance with the periodic variation of the AC electric field intensity and provide an effective means of enhancing species mixing in the microchannel. Consequently, the use of an AC electric field together with patchwise surface heterogeneities permits a significant reduction in both the mixing channel length and the retention time required to attain a homogeneous solution.
The path integral on the pseudosphere
NASA Astrophysics Data System (ADS)
Grosche, C.; Steiner, F.
1988-02-01
A rigorous path integral treatment for the d-dimensional pseudosphere Λd-1 , a Riemannian manifold of constant negative curvature, is presented. The path integral formulation is based on a canonical approach using Weyl-ordering and the Hamiltonian path integral defined on midpoints. The time-dependent and energy-dependent Feynman kernels obtain different expressions in the even- and odd-dimensional cases, respectively. The special case of the three-dimensional pseudosphere, which is analytically equivalent to the Poincaré upper half plane, the Poincaré disc, and the hyperbolic strip, is discussed in detail including the energy spectrum and the normalised wave-functions.
First principles calculation of two dimensional antimony and antimony arsenide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pillai, Sharad Babu, E-mail: sbpillai001@gmail.com; Narayan, Som; Jha, Prafulla K.
2016-05-23
This work focuses on the strain dependence of the electronic properties of two dimensional antimony (Sb) material and its alloy with As (SbAs) using density functional theory based first principles calculations. Both systems show indirect bandgap semiconducting character which can be transformed into a direct bandgap material with the application of relatively small strain.
NASA Astrophysics Data System (ADS)
Lan, C. W.; Lee, I. F.; Yeh, B. C.
2003-07-01
Three-dimensional simulation, both pseudo-steady and time-dependent states, is carried out to illustrate the effects of magnetic fields on the flow and segregation in a vertical Bridgman crystal growth. With an axial magnetic field in a perfectly vertical growth, the calculated results are in good agreement with those obtained by a two-dimensional axisymmetric model. The asymptotic scaling of flow damping is also consistent with the boundary layer approximation regardless to the magnetic orientation. Radial and axial segregations are further discussed concluding that radial segregation could be severe if the flow damping is not adequate. Moreover, there is a regime of enhanced global dopant mixing due to the flow stretching by the axial field. Accordingly, the transversal field is more effective in pushing the growth to the diffusion-controlled limit and suppressing the asymmetric global flow due to ampule tilting.
Quantum metabolism explains the allometric scaling of metabolic rates.
Demetrius, Lloyd; Tuszynski, J A
2010-03-06
A general model explaining the origin of allometric laws of physiology is proposed based on coupled energy-transducing oscillator networks embedded in a physical d-dimensional space (d = 1, 2, 3). This approach integrates Mitchell's theory of chemi-osmosis with the Debye model of the thermal properties of solids. We derive a scaling rule that relates the energy generated by redox reactions in cells, the dimensionality of the physical space and the mean cycle time. Two major regimes are found corresponding to classical and quantum behaviour. The classical behaviour leads to allometric isometry while the quantum regime leads to scaling laws relating metabolic rate and body size that cover a broad range of exponents that depend on dimensionality and specific parameter values. The regimes are consistent with a range of behaviours encountered in micelles, plants and animals and provide a conceptual framework for a theory of the metabolic function of living systems.
Guérin, T; Dean, D S
2017-01-01
We consider the time-dependent dispersion properties of overdamped tracer particles diffusing in a one-dimensional periodic potential under the influence of an additional constant tilting force F. The system is studied in the region where the force is close to the critical value F_{c} at which the barriers separating neighboring potential wells disappear. We show that, when F crosses the critical value, the shape of the mean-square displacement (MSD) curves is strongly modified. We identify a diffusive regime at intermediate-time scales with an effective diffusion coefficient which is much larger than the late-time diffusion coefficient for F>F_{c}, whereas for F
Synthetic Modeling of Autonomous Learning with a Chaotic Neural Network
NASA Astrophysics Data System (ADS)
Funabashi, Masatoshi
We investigate the possible role of intermittent chaotic dynamics called chaotic itinerancy, in interaction with nonsupervised learnings that reinforce and weaken the neural connection depending on the dynamics itself. We first performed hierarchical stability analysis of the Chaotic Neural Network model (CNN) according to the structure of invariant subspaces. Irregular transition between two attractor ruins with positive maximum Lyapunov exponent was triggered by the blowout bifurcation of the attractor spaces, and was associated with riddled basins structure. We secondly modeled two autonomous learnings, Hebbian learning and spike-timing-dependent plasticity (STDP) rule, and simulated the effect on the chaotic itinerancy state of CNN. Hebbian learning increased the residence time on attractor ruins, and produced novel attractors in the minimum higher-dimensional subspace. It also augmented the neuronal synchrony and established the uniform modularity in chaotic itinerancy. STDP rule reduced the residence time on attractor ruins, and brought a wide range of periodicity in emerged attractors, possibly including strange attractors. Both learning rules selectively destroyed and preserved the specific invariant subspaces, depending on the neuron synchrony of the subspace where the orbits are situated. Computational rationale of the autonomous learning is discussed in connectionist perspective.
Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes
NASA Astrophysics Data System (ADS)
Avsar, Ahmet; Tan, Jun Y.; Kurpas, Marcin; Gmitra, Martin; Watanabe, Kenji; Taniguchi, Takashi; Fabian, Jaroslav; Özyilmaz, Barbaros
2017-09-01
Two-dimensional materials offer new opportunities for both fundamental science and technological applications, by exploiting the electron's spin. Although graphene is very promising for spin communication due to its extraordinary electron mobility, the lack of a bandgap restricts its prospects for semiconducting spin devices such as spin diodes and bipolar spin transistors. The recent emergence of two-dimensional semiconductors could help overcome this basic challenge. In this letter we report an important step towards making two-dimensional semiconductor spin devices. We have fabricated a spin valve based on ultrathin (~5 nm) semiconducting black phosphorus (bP), and established fundamental spin properties of this spin channel material, which supports all electrical spin injection, transport, precession and detection up to room temperature. In the non-local spin valve geometry we measure Hanle spin precession and observe spin relaxation times as high as 4 ns, with spin relaxation lengths exceeding 6 μm. Our experimental results are in a very good agreement with first-principles calculations and demonstrate that the Elliott-Yafet spin relaxation mechanism is dominant. We also show that spin transport in ultrathin bP depends strongly on the charge carrier concentration, and can be manipulated by the electric field effect.
Flor-Henry, Michel; McCabe, Tulene C; de Bruxelles, Guy L; Roberts, Michael R
2004-01-01
Background All living organisms emit spontaneous low-level bioluminescence, which can be increased in response to stress. Methods for imaging this ultra-weak luminescence have previously been limited by the sensitivity of the detection systems used. Results We developed a novel configuration of a cooled charge-coupled device (CCD) for 2-dimensional imaging of light emission from biological material. In this study, we imaged photon emission from plant leaves. The equipment allowed short integration times for image acquisition, providing high resolution spatial and temporal information on bioluminescence. We were able to carry out time course imaging of both delayed chlorophyll fluorescence from whole leaves, and of low level wound-induced luminescence that we showed to be localised to sites of tissue damage. We found that wound-induced luminescence was chlorophyll-dependent and was enhanced at higher temperatures. Conclusions The data gathered on plant bioluminescence illustrate that the equipment described here represents an improvement in 2-dimensional luminescence imaging technology. Using this system, we identify chlorophyll as the origin of wound-induced luminescence from leaves. PMID:15550176
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regnier, D.; Dubray, N.; Verriere, M.
The time-dependent generator coordinate method (TDGCM) is a powerful method to study the large amplitude collective motion of quantum many-body systems such as atomic nuclei. Under the Gaussian Overlap Approximation (GOA), the TDGCM leads to a local, time-dependent Schrödinger equation in a multi-dimensional collective space. In this study, we present the version 2.0 of the code FELIX that solves the collective Schrödinger equation in a finite element basis. This new version features: (i) the ability to solve a generalized TDGCM+GOA equation with a metric term in the collective Hamiltonian, (ii) support for new kinds of finite elements and different typesmore » of quadrature to compute the discretized Hamiltonian and overlap matrices, (iii) the possibility to leverage the spectral element scheme, (iv) an explicit Krylov approximation of the time propagator for time integration instead of the implicit Crank–Nicolson method implemented in the first version, (v) an entirely redesigned workflow. We benchmark this release on an analytic problem as well as on realistic two-dimensional calculations of the low-energy fission of 240Pu and 256Fm. Low to moderate numerical precision calculations are most efficiently performed with simplex elements with a degree 2 polynomial basis. Higher precision calculations should instead use the spectral element method with a degree 4 polynomial basis. Finally, we emphasize that in a realistic calculation of fission mass distributions of 240Pu, FELIX-2.0 is about 20 times faster than its previous release (within a numerical precision of a few percents).« less
Regnier, D.; Dubray, N.; Verriere, M.; ...
2017-12-20
The time-dependent generator coordinate method (TDGCM) is a powerful method to study the large amplitude collective motion of quantum many-body systems such as atomic nuclei. Under the Gaussian Overlap Approximation (GOA), the TDGCM leads to a local, time-dependent Schrödinger equation in a multi-dimensional collective space. In this study, we present the version 2.0 of the code FELIX that solves the collective Schrödinger equation in a finite element basis. This new version features: (i) the ability to solve a generalized TDGCM+GOA equation with a metric term in the collective Hamiltonian, (ii) support for new kinds of finite elements and different typesmore » of quadrature to compute the discretized Hamiltonian and overlap matrices, (iii) the possibility to leverage the spectral element scheme, (iv) an explicit Krylov approximation of the time propagator for time integration instead of the implicit Crank–Nicolson method implemented in the first version, (v) an entirely redesigned workflow. We benchmark this release on an analytic problem as well as on realistic two-dimensional calculations of the low-energy fission of 240Pu and 256Fm. Low to moderate numerical precision calculations are most efficiently performed with simplex elements with a degree 2 polynomial basis. Higher precision calculations should instead use the spectral element method with a degree 4 polynomial basis. Finally, we emphasize that in a realistic calculation of fission mass distributions of 240Pu, FELIX-2.0 is about 20 times faster than its previous release (within a numerical precision of a few percents).« less
THE EFFECT OF A DYNAMIC INNER HELIOSHEATH THICKNESS ON COSMIC-RAY MODULATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manuel, R.; Ferreira, S. E. S.; Potgieter, M. S., E-mail: rexmanuel@live.com
2015-02-01
The time-dependent modulation of galactic cosmic rays in the heliosphere is studied over different polarity cycles by computing 2.5 GV proton intensities using a two-dimensional, time-dependent modulation model. By incorporating recent theoretical advances in the relevant transport parameters in the model, we showed in previous work that this approach gave realistic computed intensities over a solar cycle. New in this work is that a time dependence of the solar wind termination shock (TS) position is implemented in our model to study the effect of a dynamic inner heliosheath thickness (the region between the TS and heliopause) on the solar modulationmore » of galactic cosmic rays. The study reveals that changes in the inner heliosheath thickness, arising from a time-dependent shock position, does affect cosmic-ray intensities everywhere in the heliosphere over a solar cycle, with the smallest effect in the innermost heliosphere. A time-dependent TS position causes a phase difference between the solar activity periods and the corresponding intensity periods. The maximum intensities in response to a solar minimum activity period are found to be dependent on the time-dependent TS profile. It is found that changing the width of the inner heliosheath with time over a solar cycle can shift the time of when the maximum or minimum cosmic-ray intensities occur at various distances throughout the heliosphere, but more significantly in the outer heliosphere. The time-dependent extent of the inner heliosheath, as affected by solar activity conditions, is thus an additional time-dependent factor to be considered in the long-term modulation of cosmic rays.« less
On-line estimation of error covariance parameters for atmospheric data assimilation
NASA Technical Reports Server (NTRS)
Dee, Dick P.
1995-01-01
A simple scheme is presented for on-line estimation of covariance parameters in statistical data assimilation systems. The scheme is based on a maximum-likelihood approach in which estimates are produced on the basis of a single batch of simultaneous observations. Simple-sample covariance estimation is reasonable as long as the number of available observations exceeds the number of tunable parameters by two or three orders of magnitude. Not much is known at present about model error associated with actual forecast systems. Our scheme can be used to estimate some important statistical model error parameters such as regionally averaged variances or characteristic correlation length scales. The advantage of the single-sample approach is that it does not rely on any assumptions about the temporal behavior of the covariance parameters: time-dependent parameter estimates can be continuously adjusted on the basis of current observations. This is of practical importance since it is likely to be the case that both model error and observation error strongly depend on the actual state of the atmosphere. The single-sample estimation scheme can be incorporated into any four-dimensional statistical data assimilation system that involves explicit calculation of forecast error covariances, including optimal interpolation (OI) and the simplified Kalman filter (SKF). The computational cost of the scheme is high but not prohibitive; on-line estimation of one or two covariance parameters in each analysis box of an operational bozed-OI system is currently feasible. A number of numerical experiments performed with an adaptive SKF and an adaptive version of OI, using a linear two-dimensional shallow-water model and artificially generated model error are described. The performance of the nonadaptive versions of these methods turns out to depend rather strongly on correct specification of model error parameters. These parameters are estimated under a variety of conditions, including uniformly distributed model error and time-dependent model error statistics.
Detection of Subtle Context-Dependent Model Inaccuracies in High-Dimensional Robot Domains.
Mendoza, Juan Pablo; Simmons, Reid; Veloso, Manuela
2016-12-01
Autonomous robots often rely on models of their sensing and actions for intelligent decision making. However, when operating in unconstrained environments, the complexity of the world makes it infeasible to create models that are accurate in every situation. This article addresses the problem of using potentially large and high-dimensional sets of robot execution data to detect situations in which a robot model is inaccurate-that is, detecting context-dependent model inaccuracies in a high-dimensional context space. To find inaccuracies tractably, the robot conducts an informed search through low-dimensional projections of execution data to find parametric Regions of Inaccurate Modeling (RIMs). Empirical evidence from two robot domains shows that this approach significantly enhances the detection power of existing RIM-detection algorithms in high-dimensional spaces.
On the reduction of 4d $$ \\mathcal{N}=1 $$ theories on $$ {\\mathbb{S}}^2 $$
Gadde, Abhijit; Razamat, Shlomo S.; Willett, Brian
2015-11-24
Here, we discuss reductions of generalmore » $$ \\mathcal{N}=1 $$ four dimensional gauge theories on $$ {\\mathbb{S}}^2 $$. The effective two dimensional theory one obtains depends on the details of the coupling of the theory to background fields, which can be translated to a choice of R-symmetry. We argue that, for special choices of R-symmetry, the resulting two dimensional theory has a natural interpretation as an $$ \\mathcal{N}(0,2) $$ gauge theory. As an application of our general observations, we discuss reductions of $$ \\mathcal{N}=1 $$ and $$ \\mathcal{N}=2 $$ dualities and argue that they imply certain two dimensional dualities.« less
Ertaş, Mehmet; Deviren, Bayram; Keskin, Mustafa
2012-11-01
Nonequilibrium magnetic properties in a two-dimensional kinetic mixed spin-2 and spin-5/2 Ising system in the presence of a time-varying (sinusoidal) magnetic field are studied within the effective-field theory (EFT) with correlations. The time evolution of the system is described by using Glauber-type stochastic dynamics. The dynamic EFT equations are derived by employing the Glauber transition rates for two interpenetrating square lattices. We investigate the time dependence of the magnetizations for different interaction parameter values in order to find the phases in the system. We also study the thermal behavior of the dynamic magnetizations, the hysteresis loop area, and dynamic correlation. The dynamic phase diagrams are presented in the reduced magnetic field amplitude and reduced temperature plane and we observe that the system exhibits dynamic tricritical and reentrant behaviors. Moreover, the system also displays a double critical end point (B), a zero-temperature critical point (Z), a critical end point (E), and a triple point (TP). We also performed a comparison with the mean-field prediction in order to point out the effects of correlations and found that some of the dynamic first-order phase lines, which are artifacts of the mean-field approach, disappeared.
A three-dimensional, time-dependent model of Mobile Bay
NASA Technical Reports Server (NTRS)
Pitts, F. H.; Farmer, R. C.
1976-01-01
A three-dimensional, time-variant mathematical model for momentum and mass transport in estuaries was developed and its solution implemented on a digital computer. The mathematical model is based on state and conservation equations applied to turbulent flow of a two-component, incompressible fluid having a free surface. Thus, bouyancy effects caused by density differences between the fresh and salt water, inertia from thare river and tidal currents, and differences in hydrostatic head are taken into account. The conservation equations, which are partial differential equations, are solved numerically by an explicit, one-step finite difference scheme and the solutions displayed numerically and graphically. To test the validity of the model, a specific estuary for which scaled model and experimental field data are available, Mobile Bay, was simulated. Comparisons of velocity, salinity and water level data show that the model is valid and a viable means of simulating the hydrodynamics and mass transport in non-idealized estuaries.
Simulation of Fluid Flow and Collection Efficiency for an SEA Multi-element Probe
NASA Technical Reports Server (NTRS)
Rigby, David L.; Struk, Peter M.; Bidwell, Colin
2014-01-01
Numerical simulations of fluid flow and collection efficiency for a Science Engineering Associates (SEA) multi-element probe are presented. Simulation of the flow field was produced using the Glenn-HT Navier-Stokes solver. Three dimensional unsteady results were produced and then time averaged for the collection efficiency results. Three grid densities were investigated to enable an assessment of grid dependence. Collection efficiencies were generated for three spherical particle sizes, 100, 20, and 5 micron in diameter, using the codes LEWICE3D and LEWICE2D. The free stream Mach number was 0.27, representing a velocity of approximately 86 ms. It was observed that a reduction in velocity of about 15-20 occurred as the flow entered the shroud of the probe.Collection efficiency results indicate a reduction in collection efficiency as particle size is reduced. The reduction with particle size is expected, however, the results tended to be lower than previous results generated for isolated two-dimensional elements. The deviation from the two-dimensional results is more pronounced for the smaller particles and is likely due to the effect of the protective shroud.
TOPAZ2D heat transfer code users manual and thermal property data base
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, A.B.; Edwards, A.L.
1990-05-01
TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependentmore » boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.« less
Deplacement effect of the laminar boundary layer and the pressure drag
NASA Technical Reports Server (NTRS)
Gortler, H
1951-01-01
The displacement effect of the boundary layer on the outer frictionless flow is discussed for both steady and unsteady flows. The analysis is restricted to cases in which the potential flow pressure distribution remains valid for the boundary-layer calculation. Formulas are given for the dependence of the pressure drag, friction drag, and total drag of circular cylinders on the time from the start of motion for cases in which the velocity varies as a power of the time. Formulas for the locations and for the time for the appearance of the separation point are given for two dimensional bodies of arbitrary shape.
Category 3: Sound Generation by Interacting with a Gust
NASA Technical Reports Server (NTRS)
Scott, James R.
2004-01-01
The cascade-gust interaction problem is solved employing a time-domain approach. The purpose of this problem is to test the ability of a CFD/CAA code to accurately predict the unsteady aerodynamic and aeroacoustic response of a single airfoil to a two-dimensional, periodic vortical gust.Nonlinear time dependent Euler equations are solved using higher order spatial differencing and time marching techniques. The solutions indicate the generation and propagation of expected mode orders for the given configuration and flow conditions. The blade passing frequency (BPF) is cut off for this cascade while higher harmonic, 2BPF and 3BPF, modes are cut on.
Quantum revival for elastic waves in thin plate
NASA Astrophysics Data System (ADS)
Dubois, Marc; Lefebvre, Gautier; Sebbah, Patrick
2017-05-01
Quantum revival is described as the time-periodic reconstruction of a wave packet initially localized in space and time. This effect is expected in finite-size systems which exhibit commensurable discrete spectrum such as the infinite quantum well. Here, we report on the experimental observation of full and fractional quantum revival for classical waves in a two dimensional cavity. We consider flexural waves propagating in thin plates, as their quadratic dispersion at low frequencies mimics the dispersion relation of quantum systems governed by Schrödinger equation. Time-dependent excitation and measurement are performed at ultrasonic frequencies and reveal a periodic reconstruction of the initial elastic wave packet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeHart, Mark D.; Mausolff, Zander; Weems, Zach
2016-08-01
One goal of the MAMMOTH M&S project is to validate the analysis capabilities within MAMMOTH. Historical data has shown limited value for validation of full three-dimensional (3D) multi-physics methods. Initial analysis considered the TREAT startup minimum critical core and one of the startup transient tests. At present, validation is focusing on measurements taken during the M8CAL test calibration series. These exercises will valuable in preliminary assessment of the ability of MAMMOTH to perform coupled multi-physics calculations; calculations performed to date are being used to validate the neutron transport solver Rattlesnake\\cite{Rattlesnake} and the fuels performance code BISON. Other validation projects outsidemore » of TREAT are available for single-physics benchmarking. Because the transient solution capability of Rattlesnake is one of the key attributes that makes it unique for TREAT transient simulations, validation of the transient solution of Rattlesnake using other time dependent kinetics benchmarks has considerable value. The Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD) has recently developed a computational benchmark for transient simulations. This benchmark considered both two-dimensional (2D) and 3D configurations for a total number of 26 different transients. All are negative reactivity insertions, typically returning to the critical state after some time.« less
Two-Dimensional, Time-Dependent Plasma Structures of a Hall Effect Thruster
2011-09-01
atmospheric pressure to 80 mtorr, is accomplished by a Leybold-Trivac rotary van vacuum pump and the second stage is completed by four 20 in CVI...Thruster”. Physics of Plasmas, 13, 2006. 3. Albarede, Luc, Vanessa Vial, Alexey Lazurenko, Andre Bouchoule, and Michel Dudeck. “Low Frequency Dynamical...Force Research Laboratory Space and Missile Division (AFRL/RZS) 5 Pollux Drive Edwards AFB, CA 93524 DSN 525-5230 AFRL/RZS Approval for public release
Numerical Simulation of Interaction of Human Vocal Folds and Fluid Flow
NASA Astrophysics Data System (ADS)
Kosík, A.; Feistauer, M.; Horáček, J.; Sváček, P.
Our goal is to simulate airflow in human vocal folds and their flow-induced vibrations. We consider two-dimensional viscous incompressible flow in a time-dependent domain. The fluid flow is described by the Navier-Stokes equations in the arbitrary Lagrangian-Eulerian formulation. The flow problem is coupled with the elastic behaviour of the solid bodies. The developed solution of the coupled problem based on the finite element method is demonstrated by numerical experiments.
Energetics and Dynamics of GaAs Epitaxial Growth via Quantum Wave Packet Studies
NASA Technical Reports Server (NTRS)
Dzegilenko, Fedor N.; Saini, Subhash (Technical Monitor)
1998-01-01
The dynamics of As(sub 2) molecule incorporation into the flat Ga-terminated GaAs(100) surface is studied computationally. The time-dependent Schrodinger equation is solved on a two-dimensional potential energy surface obtained using density functional theory calculations. The probabilities of trapping and subsequent dissociation of the molecular As(sub 2) bond are calculated as a function of beam translational energy and vibrational quantum number of As(sub 2).
Interactive Particle Visualization
NASA Astrophysics Data System (ADS)
Gribble, Christiaan P.
Particle-based simulation methods are used to model a wide range of complex phenomena and to solve time-dependent problems of various scales. Effective visualizations of the resulting state will communicate subtle changes in the three-dimensional structure, spatial organization, and qualitative trends within a simulation as it evolves. This chapter discusses two approaches to interactive particle visualization that satisfy these goals: one targeting desktop systems equipped with programmable graphics hardware, and the other targeting moderately sized multicore systems using packet-based ray tracing.
Aschaffenburg, Daniel J; Williams, Michael R C; Schmuttenmaer, Charles A
2016-05-07
Terahertz time-domain spectroscopic polarimetry has been used to measure the polarization state of all spectral components in a broadband THz pulse upon transmission through generalized anisotropic media consisting of two-dimensional arrays of lithographically defined Archimedean spirals. The technique allows a full determination of the frequency-dependent, complex-valued transmission matrix and eigenpolarizations of the spiral arrays. Measurements were made on a series of spiral array orientations. The frequency-dependent transmission matrix elements as well as the eigenpolarizations were determined, and the eigenpolarizations were found be to elliptically corotating, as expected from their symmetry. Numerical simulations are in quantitative agreement with measured spectra.
Anisotropy of stress correlation in two-dimensional liquids and a pseudospin model
Wu, Bin; Iwashita, Takuya; Egami, Takeshi
2015-11-04
Liquids are condensed matter in which atoms are strongly correlated in position and momentum. The atomic pair density function (PDF) is used often in describing such correlation. However, elucidation of many properties requires higher degrees of correlation than the pair correlation. For instance, viscosity depends upon the stress correlations in space and time. We examine the cross correlation between the stress correlation at the atomic level and the PDF for two-dimensional liquids. We introduce the concept of the stress-resolved pair distribution function (SRPDF) that uses the sign of atomic-level stress as a selection rule to include particles from density correlations.more » The connection between SRPDFs and stress correlation function is explained through an approximation in which the shear stress is replaced by a pseudospin. Lastly, we further assess the possibility of interpreting the long-range stress correlation as a consequence of short-range Ising-like pseudospin interactions.« less
Phonon-driven electron scattering and magnetothermoelectric effect in two-dimensional tin selenide
NASA Astrophysics Data System (ADS)
Yang, Kaike; Ren, Ji-Chang; Qiu, Hongfei; Wang, Jian-Sheng
2018-02-01
The bulk tin selenide (SnSe) is the best thermoelectric material currently with the highest figure-of-merit due to strong phonon-phonon interactions. We investigate the effect of electron-phonon coupling (EPC) on the transport properties of a two-dimensional (2D) SnSe sheet. We demonstrate that EPC plays a key role in the scattering rate when the constant relaxation time approximation is deficient. The EPC strength is especially large in contrast to that of pristine graphene. The scattering rate depends sensitively on the system temperatures and the carrier densities when the Fermi energy approaches the band edge. We also investigate the magnetothermoelectric effect of the 2D SnSe. It is found that at low temperatures there is enormous magnetoelectrical resistivity and magnetothermal resistivity above 200%, suggesting possible potential applications in device design. Our results agree qualitatively well with the experimental data.
SU-E-T-279: Realization of Three-Dimensional Conformal Dose Planning in Prostate Brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Z; Jiang, S; Yang, Z
2014-06-01
Purpose: Successful clinical treatment in prostate brachytherapy is largely dependent on the effectiveness of pre-surgery dose planning. Conventional dose planning method could hardly arrive at a satisfy result. In this abstract, a three-dimensional conformal localized dose planning method is put forward to ensure the accuracy and effectiveness of pre-implantation dose planning. Methods: Using Monte Carlo method, the pre-calculated 3-D dose map for single source is obtained. As for multiple seeds dose distribution, the maps are combined linearly to acquire the 3-D distribution. The 3-D dose distribution is exhibited in the form of isodose surface together with reconstructed 3-D organs groupmore » real-timely. Then it is possible to observe the dose exposure to target volume and normal tissues intuitively, thus achieving maximum dose irradiation to treatment target and minimum healthy tissues damage. In addition, the exfoliation display of different isodose surfaces can be realized applying multi-values contour extraction algorithm based on voxels. The needles could be displayed in the system by tracking the position of the implanted seeds in real time to conduct block research in optimizing insertion trajectory. Results: This study extends dose planning from two-dimensional to three-dimensional, realizing the three-dimensional conformal irradiation, which could eliminate the limitations of 2-D images and two-dimensional dose planning. A software platform is developed using VC++ and Visualization Toolkit (VTK) to perform dose planning. The 3-D model reconstruction time is within three seconds (on a Intel Core i5 PC). Block research could be conducted to avoid inaccurate insertion into sensitive organs or internal obstructions. Experiments on eight prostate cancer cases prove that this study could make the dose planning results more reasonable. Conclusion: The three-dimensional conformal dose planning method could improve the rationality of dose planning by safely reducing the large target margin and avoiding dose dead zones for prostate cancer treatment. 1) National Natural Science Foundation of People's Republic of China (No. 51175373); 2) New Century Educational Talents Plan of Chinese Education Ministry (NCET-10-0625); 3) Scientific and Technological Major Project, Tianjin (No. 12ZCDZSY10600)« less
NASA Technical Reports Server (NTRS)
Harp, J. L., Jr.; Oatway, T. P.
1975-01-01
A research effort was conducted with the goal of reducing computer time of a Navier Stokes Computer Code for prediction of viscous flow fields about lifting bodies. A two-dimensional, time-dependent, laminar, transonic computer code (STOKES) was modified to incorporate a non-uniform timestep procedure. The non-uniform time-step requires updating of a zone only as often as required by its own stability criteria or that of its immediate neighbors. In the uniform timestep scheme each zone is updated as often as required by the least stable zone of the finite difference mesh. Because of less frequent update of program variables it was expected that the nonuniform timestep would result in a reduction of execution time by a factor of five to ten. Available funding was exhausted prior to successful demonstration of the benefits to be derived from the non-uniform time-step method.
Hierarchical classification in high dimensional numerous class cases
NASA Technical Reports Server (NTRS)
Kim, Byungyong; Landgrebe, D. A.
1990-01-01
As progress in new sensor technology continues, increasingly high resolution imaging sensors are being developed. These sensors give more detailed and complex data for each picture element and greatly increase the dimensionality of data over past systems. Three methods for designing a decision tree classifier are discussed: a top down approach, a bottom up approach, and a hybrid approach. Three feature extraction techniques are implemented. Canonical and extended canonical techniques are mainly dependent upon the mean difference between two classes. An autocorrelation technique is dependent upon the correlation differences. The mathematical relationship between sample size, dimensionality, and risk value is derived.
Dusty Cloud Acceleration by Radiation Pressure in Rapidly Star-forming Galaxies
NASA Astrophysics Data System (ADS)
Zhang, Dong; Davis, Shane W.; Jiang, Yan-Fei; Stone, James M.
2018-02-01
We perform two-dimensional and three-dimensional radiation hydrodynamic simulations to study cold clouds accelerated by radiation pressure on dust in the environment of rapidly star-forming galaxies dominated by infrared flux. We utilize the reduced speed of light approximation to solve the frequency-averaged, time-dependent radiative transfer equation. We find that radiation pressure is capable of accelerating the clouds to hundreds of kilometers per second while remaining dense and cold, consistent with observations. We compare these results to simulations where acceleration is provided by entrainment in a hot wind, where the momentum injection of the hot flow is comparable to the momentum in the radiation field. We find that the survival time of the cloud accelerated by the radiation field is significantly longer than that of a cloud entrained in a hot outflow. We show that the dynamics of the irradiated cloud depends on the initial optical depth, temperature of the cloud, and intensity of the flux. Additionally, gas pressure from the background may limit cloud acceleration if the density ratio between the cloud and background is ≲ {10}2. In general, a 10 pc-scale optically thin cloud forms a pancake structure elongated perpendicular to the direction of motion, while optically thick clouds form a filamentary structure elongated parallel to the direction of motion. The details of accelerated cloud morphology and geometry can also be affected by other factors, such as the cloud lengthscale, reduced speed of light approximation, spatial resolution, initial cloud structure, and dimensionality of the run, but these have relatively little affect on the cloud velocity or survival time.
Magnetic field induced dynamical chaos.
Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra
2013-12-01
In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x-y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.
Time-Dependent Hartree-Fock Approach to Nuclear Pasta at Finite Temperature
NASA Astrophysics Data System (ADS)
Schuetrumpf, B.; Klatt, M. A.; Iida, K.; Maruhn, J. A.; Mecke, K.; Reinhard, P.-G.
2013-03-01
We present simulations of neutron-rich matter at subnuclear densities, like supernova matter, with the time-dependent Hartree-Fock approximation at temperatures of several MeV. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. This matter evolves into spherical, rod-like, and slab-like shapes and mixtures thereof. The simulations employ a full Skyrme interaction in a periodic three-dimensional grid. By an improved morphological analysis based on Minkowski functionals, all eight pasta shapes can be uniquely identified by the sign of only two valuations, namely the Euler characteristic and the integral mean curvature.
NASA Astrophysics Data System (ADS)
Karimi, Milad; Moradlou, Fridoun; Hajipour, Mojtaba
2018-10-01
This paper is concerned with a backward heat conduction problem with time-dependent thermal diffusivity factor in an infinite "strip". This problem is drastically ill-posed which is caused by the amplified infinitely growth in the frequency components. A new regularization method based on the Meyer wavelet technique is developed to solve the considered problem. Using the Meyer wavelet technique, some new stable estimates are proposed in the Hölder and Logarithmic types which are optimal in the sense of given by Tautenhahn. The stability and convergence rate of the proposed regularization technique are proved. The good performance and the high-accuracy of this technique is demonstrated through various one and two dimensional examples. Numerical simulations and some comparative results are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schröder, Markus, E-mail: Markus.Schroeder@pci.uni-heidelberg.de; Meyer, Hans-Dieter, E-mail: Hans-Dieter.Meyer@pci.uni-heidelberg.de
2014-07-21
We report energies and tunneling splittings of vibrational excited states of malonaldehyde which have been obtained using full dimensional quantum mechanical calculations. To this end we employed the multi configuration time-dependent Hartree method. The results have been obtained using a recently published potential energy surface [Y. Wang, B. J. Braams, J. M. Bowman, S. Carter, and D. P. Tew, J. Chem. Phys. 128, 224314 (2008)] which has been brought into a suitable form by a modified version of the n-mode representation which was used with two different arrangements of coordinates. The relevant terms of the expansion have been identified withmore » a Metropolis algorithm and a diffusion Monte-Carlo technique, respectively.« less
Exponents of non-linear clustering in scale-free one-dimensional cosmological simulations
NASA Astrophysics Data System (ADS)
Benhaiem, David; Joyce, Michael; Sicard, François
2013-03-01
One-dimensional versions of dissipationless cosmological N-body simulations have been shown to share many qualitative behaviours of the three-dimensional problem. Their interest lies in the fact that they can resolve a much greater range of time and length scales, and admit exact numerical integration. We use such models here to study how non-linear clustering depends on initial conditions and cosmology. More specifically, we consider a family of models which, like the three-dimensional Einstein-de Sitter (EdS) model, lead for power-law initial conditions to self-similar clustering characterized in the strongly non-linear regime by power-law behaviour of the two-point correlation function. We study how the corresponding exponent γ depends on the initial conditions, characterized by the exponent n of the power spectrum of initial fluctuations, and on a single parameter κ controlling the rate of expansion. The space of initial conditions/cosmology divides very clearly into two parts: (1) a region in which γ depends strongly on both n and κ and where it agrees very well with a simple generalization of the so-called stable clustering hypothesis in three dimensions; and (2) a region in which γ is more or less independent of both the spectrum and the expansion of the universe. The boundary in (n, κ) space dividing the `stable clustering' region from the `universal' region is very well approximated by a `critical' value of the predicted stable clustering exponent itself. We explain how this division of the (n, κ) space can be understood as a simple physical criterion which might indeed be expected to control the validity of the stable clustering hypothesis. We compare and contrast our findings to results in three dimensions, and discuss in particular the light they may throw on the question of `universality' of non-linear clustering in this context.
NASA Astrophysics Data System (ADS)
Riva, Fabio; Milanese, Lucio; Ricci, Paolo
2017-10-01
To reduce the computational cost of the uncertainty propagation analysis, which is used to study the impact of input parameter variations on the results of a simulation, a general and simple to apply methodology based on decomposing the solution to the model equations in terms of Chebyshev polynomials is discussed. This methodology, based on the work by Scheffel [Am. J. Comput. Math. 2, 173-193 (2012)], approximates the model equation solution with a semi-analytic expression that depends explicitly on time, spatial coordinates, and input parameters. By employing a weighted residual method, a set of nonlinear algebraic equations for the coefficients appearing in the Chebyshev decomposition is then obtained. The methodology is applied to a two-dimensional Braginskii model used to simulate plasma turbulence in basic plasma physics experiments and in the scrape-off layer of tokamaks, in order to study the impact on the simulation results of the input parameter that describes the parallel losses. The uncertainty that characterizes the time-averaged density gradient lengths, time-averaged densities, and fluctuation density level are evaluated. A reasonable estimate of the uncertainty of these distributions can be obtained with a single reduced-cost simulation.
Active colloidal propulsion over a crystalline surface
NASA Astrophysics Data System (ADS)
Choudhury, Udit; Straube, Arthur V.; Fischer, Peer; Gibbs, John G.; Höfling, Felix
2017-12-01
We study both experimentally and theoretically the dynamics of chemically self-propelled Janus colloids moving atop a two-dimensional crystalline surface. The surface is a hexagonally close-packed monolayer of colloidal particles of the same size as the mobile one. The dynamics of the self-propelled colloid reflects the competition between hindered diffusion due to the periodic surface and enhanced diffusion due to active motion. Which contribution dominates depends on the propulsion strength, which can be systematically tuned by changing the concentration of a chemical fuel. The mean-square displacements (MSDs) obtained from the experiment exhibit enhanced diffusion at long lag times. Our experimental data are consistent with a Langevin model for the effectively two-dimensional translational motion of an active Brownian particle in a periodic potential, combining the confining effects of gravity and the crystalline surface with the free rotational diffusion of the colloid. Approximate analytical predictions are made for the MSD describing the crossover from free Brownian motion at short times to active diffusion at long times. The results are in semi-quantitative agreement with numerical results of a refined Langevin model that treats translational and rotational degrees of freedom on the same footing.
Probing in-plane anisotropy in fewlayer ReS2 using low frequency noise measurement.
Mitra, Richa; Jariwala, Bhakti; Bhattacharya, Arnab; Das, Anindya
2018-01-31
ReS<sub>2</sub>, a layered two-dimensional material popular for its in-plane anisotropic properties is emerging as one of the potential candidates for flexible electronics and ultrafast optical applications. It is an n-type semiconducting material having a layer independent bandgap of 1.55 eV. In this paper we have characterized the intrinsic electronic noise level of fewlayer ReS<sub>2</sub> for the first time. Fewlayer ReS<sub>2</sub> FET devices show 1/f nature of noise for frequency ranging over three orders of magnitude. We have also observed that not only the electrical response of the material is anisotropic; the noise level is also direction dependent. In fact the noise is found to be more sensitive towards the anisotropy. This fact has been explained by evoking the theory where the Hooge parameter is not a constant quantity, but has a distinct power law dependence on mobility along the two axes direction. The anisotropy in 1/f noise measurement will pave the way to quantify the anisotropic nature of two-dimensional (2D) materials, which will be helpful for the design of low noise transistor in future. © 2018 IOP Publishing Ltd.
Unveiling the mechanism of the promising two-dimensional photoswitch - Hemithioindigo
NASA Astrophysics Data System (ADS)
Li, Donglin; Yang, Yonggang; Li, Chaozheng; Liu, Yufang
2018-07-01
The control of internal molecular motions by outside stimuli is a decisive task in the construction of functional molecules and molecular machines. Light-induced intramolecular rotations of photoswitches have attracted increasing research interests because of the high stability and high reversibility of photoswitches. Recently, Henry et al. reported an unprecedented two-dimensional controlled photoswitch, the hemithioindigo (HTI) derivative Z1, whose single bond rotation in dimethyl sulphoxide (DMSO) solvent and double bond rotation in cyclohexane solvent can be induced by visible light (J. Am. Chem. Soc. 2016, 138, 12,219). Here we investigate the intramolecular rotations of the HTI and Z1 in different polar solvents by time-dependent density functional theory (TDDFT) and Nonadiabatic dynamic simulations. Due to the steric hindrance between methyl and thioindigo fragment, the rotations of Z1 in the excited state are obstructed. Interestingly, the HTI exhibits two distinct rotation paths in DMSO and cyclohexane solvents at about 50 fs. The intermolecular hydrogen bonds between HTI and DMSO play an important role in the rotation of HTI in DMSO solvent. Therefore, the HTI is a more promising two-dimensional photoswitch compared with the Z1. Our finding is thus of fundamental importance to understand the mechanisms of this class of photoswitches and design complex molecular behavior.
Morse Monte Carlo Radiation Transport Code System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emmett, M.B.
1975-02-01
The report contains sections containing descriptions of the MORSE and PICTURE codes, input descriptions, sample problems, deviations of the physical equations and explanations of the various error messages. The MORSE code is a multipurpose neutron and gamma-ray transport Monte Carlo code. Time dependence for both shielding and criticality problems is provided. General three-dimensional geometry may be used with an albedo option available at any material surface. The PICTURE code provide aid in preparing correct input data for the combinatorial geometry package CG. It provides a printed view of arbitrary two-dimensional slices through the geometry. By inspecting these pictures one maymore » determine if the geometry specified by the input cards is indeed the desired geometry. 23 refs. (WRF)« less
Polymer photonic crystal slab waveguides
NASA Astrophysics Data System (ADS)
Liguda, C.; Böttger, G.; Kuligk, A.; Blum, R.; Eich, M.; Roth, H.; Kunert, J.; Morgenroth, W.; Elsner, H.; Meyer, H. G.
2001-04-01
We present details of the fabrication, calculations, and transmission measurements for finite two-dimensional (2D) polymer photonic crystal (PC) slab waveguides, which were fabricated from a benzocyclobutene polymer on a low refractive index substrate from Teflon. A square air hole lattice (500 nm lattice constant, 300 nm hole diameter) was realized by electron beam lithography and reactive ion etching. Polarization and wavelength dependent transmission results show TE-like and TM-like stop gaps at 1.3 μm excitation wavelengths and are in good agreement with the calculated data obtained by 2D and three-dimensional finite difference time domain methods. Transmission was suppressed by 15 dB in the center of the TE-like stop gap for a PC length of ten lattice constants.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.; Tuann, S. Y.; Lee, C. R.
1980-01-01
The free-surface model presented is for tidal estuaries and coastal regions where ambient tidal forces play an important role in the dispersal of heated water. The model is time dependent, three dimensional, and can handle irregular bottom topography. The vertical stretching coordinate is adopted for better treatment of kinematic condition at the water surface. The results include surface elevation, velocity, and temperature. The model was verified at the Anclote Anchorage site of Florida Power Company. Two data bases at four tidal stages for winter and summer conditions were used to verify the model. Differences between measured and predicted temperatures are on an average of less than 1 C.
NASA Astrophysics Data System (ADS)
Liu, N.; Liu, J. B.; Yao, K. L.
2017-12-01
We present first-principle spin-dependent quantum transport calculations in a molecular device constructed by one single-molecule magnet Mn(dmit)2 and two graphene nanoribbon electrodes. Our results show that the device could generate perfect spin-filtering performance in a certain bias range both in the parallel configuration (PC) and the antiparallel configuration (APC). At the same time, a magnetoresistance effect, up to a high value of 103%, can be realized. Moreover, visible negative differential resistance phenomenon is obtained for the spin-up current of the PC. These results suggest that our one-dimensional molecular device is a promising candidate for multi-functional spintronics devices.
Hidden magnetism in periodically modulated one dimensional dipolar fermions
NASA Astrophysics Data System (ADS)
Fazzini, S.; Montorsi, A.; Roncaglia, M.; Barbiero, L.
2017-12-01
The experimental realization of time-dependent ultracold lattice systems has paved the way towards the implementation of new Hubbard-like Hamiltonians. We show that in a one-dimensional two-components lattice dipolar Fermi gas the competition between long range repulsion and correlated hopping induced by periodically modulated on-site interaction allows for the formation of hidden magnetic phases, with degenerate protected edge modes. The magnetism, characterized solely by string-like nonlocal order parameters, manifests in the charge and/or in the spin degrees of freedom. Such behavior is enlighten by employing Luttinger liquid theory and numerical methods. The range of parameters for which hidden magnetism is present can be reached by means of the currently available experimental setups and probes.
Voss, Clifford I.; Provost, A.M.
2002-01-01
SUTRA (Saturated-Unsaturated Transport) is a computer program that simulates fluid movement and the transport of either energy or dissolved substances in a subsurface environment. This upgraded version of SUTRA adds the capability for three-dimensional simulation to the former code (Voss, 1984), which allowed only two-dimensional simulation. The code employs a two- or three-dimensional finite-element and finite-difference method to approximate the governing equations that describe the two interdependent processes that are simulated: 1) fluid density-dependent saturated or unsaturated ground-water flow; and 2) either (a) transport of a solute in the ground water, in which the solute may be subject to: equilibrium adsorption on the porous matrix, and both first-order and zero-order production or decay; or (b) transport of thermal energy in the ground water and solid matrix of the aquifer. SUTRA may also be used to simulate simpler subsets of the above processes. A flow-direction-dependent dispersion process for anisotropic media is also provided by the code and is introduced in this report. As the primary calculated result, SUTRA provides fluid pressures and either solute concentrations or temperatures, as they vary with time, everywhere in the simulated subsurface system. SUTRA flow simulation may be employed for two-dimensional (2D) areal, cross sectional and three-dimensional (3D) modeling of saturated ground-water flow systems, and for cross sectional and 3D modeling of unsaturated zone flow. Solute-transport simulation using SUTRA may be employed to model natural or man-induced chemical-species transport including processes of solute sorption, production, and decay. For example, it may be applied to analyze ground-water contaminant transport problems and aquifer restoration designs. In addition, solute-transport simulation with SUTRA may be used for modeling of variable-density leachate movement, and for cross sectional modeling of saltwater intrusion in aquifers at near-well or regional scales, with either dispersed or relatively sharp transition zones between freshwater and saltwater. SUTRA energy-transport simulation may be employed to model thermal regimes in aquifers, subsurface heat conduction, aquifer thermal-energy storage systems, geothermal reservoirs, thermal pollution of aquifers, and natural hydrogeologic convection systems. Mesh construction, which is quite flexible for arbitrary geometries, employs quadrilateral finite elements in 2D Cartesian or radial-cylindrical coordinate systems, and hexahedral finite elements in 3D systems. 3D meshes are currently restricted to be logically rectangular; in other words, they are similar to deformable finite-difference-style grids. Permeabilities may be anisotropic and may vary in both direction and magnitude throughout the system, as may most other aquifer and fluid properties. Boundary conditions, sources and sinks may be time dependent. A number of input data checks are made to verify the input data set. An option is available for storing intermediate results and restarting a simulation at the intermediate time. Output options include fluid velocities, fluid mass and solute mass or energy budgets, and time-varying observations at points in the system. Both the mathematical basis for SUTRA and the program structure are highly general, and are modularized to allow for straightforward addition of new methods or processes to the simulation. The FORTRAN-90 coding stresses clarity and modularity rather than efficiency, providing easy access for later modifications.
Glimm, Tilmann; Zhang, Jianying; Shen, Yun-Qiu; Newman, Stuart A
2012-03-01
We investigate a reaction-diffusion system consisting of an activator and an inhibitor in a two-dimensional domain. There is a morphogen gradient in the domain. The production of the activator depends on the concentration of the morphogen. Mathematically, this leads to reaction-diffusion equations with explicitly space-dependent terms. It is well known that in the absence of an external morphogen, the system can produce either spots or stripes via the Turing bifurcation. We derive first-order expansions for the possible patterns in the presence of an external morphogen and show how both stripes and spots are affected. This work generalizes previous one-dimensional results to two dimensions. Specifically, we consider the quasi-one-dimensional case of a thin rectangular domain and the case of a square domain. We apply the results to a model of skeletal pattern formation in vertebrate limbs. In the framework of reaction-diffusion models, our results suggest a simple explanation for some recent experimental findings in the mouse limb which are much harder to explain in positional-information-type models.
NASA Astrophysics Data System (ADS)
Zhao, Ke; Li, Hong-Yu; Liu, Ji-Cai; Wang, Chuan-Kui; Luo, Yi
2005-12-01
The dynamic behaviour of ultrashort (femtosecond) laser pulses in a molecular medium is studied by solving the full Maxwell-Bloch equations beyond the limits of the slowly varying envelope approximation and the rotating-wave approximation under the resonant and the non-resonant conditions. A one-dimensional asymmetric charge-transfer molecule, para-nitroaniline, is used as a model molecule whose electronic properties are calculated with the time-dependent hybrid density functional theory. Under the one-photon resonant condition, 4π pulse is separated into two sub-pulses. The weight of the second-harmonic component mainly contributed by the two-photon excitation becomes stronger with longer propagation time. Under the two-photon resonant condition, the separation of 4π pulse is not induced and many higher-order spectral components beyond the second-harmonic generation occur. Interestingly, when the pulse propagates for long enough, the carrier modification becomes so significant that a continuous spectrum is generated. The Fourier transform of the high-harmonic spectrum demonstrates that an even shorter laser pulse can be produced in both resonant and non-resonant propagations. The effects of permanent dipole moments on the pulse evolution are discussed.
Spin-orbit torque-driven magnetization switching in 2D-topological insulator heterostructure
NASA Astrophysics Data System (ADS)
Soleimani, Maryam; Jalili, Seifollah; Mahfouzi, Farzad; Kioussis, Nicholas
2017-02-01
Charge pumping and spin-orbit torque (SOT) are two reciprocal phenomena widely studied in ferromagnet (FM)/topological insulator (TI) heterostructures. However, the SOT and its corresponding switching phase diagram for a FM island in proximity to a two-dimensional topological insulator (2DTI) has not been explored yet. We have addressed these features, using the recently developed adiabatic expansion of time-dependent nonequilibrium Green's function (NEGF) in the presence of both precessing magnetization and bias voltage. We have calculated the angular and spatial dependence of different components of the SOT on the FM island. We determined the switching phase diagram of the FM for different orientations of the easy axis. The results can be used as a guideline for the future experiments on such systems.
High-Harmonic Generation in Solids with and without Topological Edge States
NASA Astrophysics Data System (ADS)
Bauer, Dieter; Hansen, Kenneth K.
2018-04-01
High-harmonic generation in the two topological phases of a finite, one-dimensional, periodic structure is investigated using a self-consistent time-dependent density functional theory approach. For harmonic photon energies smaller than the band gap, the harmonic yield is found to differ by up to 14 orders of magnitude for the two topological phases. This giant topological effect is explained by the degree of destructive interference in the harmonic emission of all valence-band (and edge-state) electrons, which strongly depends on whether or not topological edge states are present. The combination of strong-field laser physics with topological condensed matter opens up new possibilities to electronically control strong-field-based light or particle sources or—conversely—to steer by all optical means topological electronics.
Further analytical study of hybrid rocket combustion
NASA Technical Reports Server (NTRS)
Hung, W. S. Y.; Chen, C. S.; Haviland, J. K.
1972-01-01
Analytical studies of the transient and steady-state combustion processes in a hybrid rocket system are discussed. The particular system chosen consists of a gaseous oxidizer flowing within a tube of solid fuel, resulting in a heterogeneous combustion. Finite rate chemical kinetics with appropriate reaction mechanisms were incorporated in the model. A temperature dependent Arrhenius type fuel surface regression rate equation was chosen for the current study. The governing mathematical equations employed for the reacting gas phase and for the solid phase are the general, two-dimensional, time-dependent conservation equations in a cylindrical coordinate system. Keeping the simplifying assumptions to a minimum, these basic equations were programmed for numerical computation, using two implicit finite-difference schemes, the Lax-Wendroff scheme for the gas phase, and, the Crank-Nicolson scheme for the solid phase.
Han, Yong; Liu, Da-Jiang; Evans, James W
2014-08-13
Far-from-equilibrium shape and structure evolution during formation and post-assembly sintering of bimetallic nanoclusters is extremely sensitive to the periphery diffusion and intermixing kinetics. Precise characterization of the many distinct local-environment-dependent diffusion barriers is achieved for epitaxial nanoclusters using density functional theory to assess interaction energies both with atoms at adsorption sites and at transition states. Kinetic Monte Carlo simulation incorporating these barriers then captures structure evolution on the appropriate time scale for two-dimensional core-ring and intermixed Au-Ag nanoclusters on Ag(100).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yong; Liu, Da-Jiang; Evans, James W
2014-08-13
Far-from-equilibrium shape and structure evolution during formation and post-assembly sintering of bimetallic nanoclusters is extremely sensitive to the periphery diffusion and intermixing kinetics. Precise characterization of the many distinct local-environment-dependent diffusion barriers is achieved for epitaxial nanoclusters using density functional theory to assess interaction energies both with atoms at adsorption sites and at transition states. Kinetic Monte Carlo simulation incorporating these barriers then captures structure evolution on the appropriate time scale for two-dimensional core-ring and intermixed Au-Ag nanoclusters on Ag(100).
Spatial interference patterns in the dynamics of a 2D Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Bera, Jayanta; Roy, Utpal
2018-05-01
Bose-Einstein condensate has become a highly tunable physical system, which is proven to mimic a number of interesting physical phenomena in condensed matter physics. We study the dynamics of a two-dimensional Bose Einstein condensate (BEC) in the presence of a flat harmonic confinement and time-dependent sharp potential peak. Condensate density can be meticulously controlled with time by tuning the physically relevant parameters: frequency of the harmonic trap, width of the peaks, frequency of their oscillations, initial density etc. By engineering various trap profile, we solve the system, numerically, and explore the resulting spatial interference patters.
Scaling of near-wall flows in quasi-two-dimensional turbulent channels.
Samanta, D; Ingremeau, F; Cerbus, R; Tran, T; Goldburg, W I; Chakraborty, P; Kellay, H
2014-07-11
The law of the wall and the log law rule the near-wall mean velocity profile of three-dimensional turbulent flows. These well-known laws, which are validated by legions of experiments and simulations, may be universal. Here, using a soap-film channel, we report the first experimental test of these laws in quasi-two-dimensional turbulent channel flows under two disparate turbulent spectra. We find that despite the differences with three-dimensional flows, the laws prevail, albeit with notable distinctions: the two parameters of the log law are markedly distinct from their three-dimensional counterpart; further, one parameter (the von Kármán constant) is independent of the spectrum whereas the other (the offset of the log law) depends on the spectrum. Our results suggest that the classical theory of scaling in wall-bounded turbulence is incomplete wherein a key missing element is the link with the turbulent spectrum.
Current crowding mediated large contact noise in graphene field-effect transistors
Karnatak, Paritosh; Sai, T. Phanindra; Goswami, Srijit; Ghatak, Subhamoy; Kaushal, Sanjeev; Ghosh, Arindam
2016-01-01
The impact of the intrinsic time-dependent fluctuations in the electrical resistance at the graphene–metal interface or the contact noise, on the performance of graphene field-effect transistors, can be as adverse as the contact resistance itself, but remains largely unexplored. Here we have investigated the contact noise in graphene field-effect transistors of varying device geometry and contact configuration, with carrier mobility ranging from 5,000 to 80,000 cm2 V−1 s−1. Our phenomenological model for contact noise because of current crowding in purely two-dimensional conductors confirms that the contacts dominate the measured resistance noise in all graphene field-effect transistors in the two-probe or invasive four-probe configurations, and surprisingly, also in nearly noninvasive four-probe (Hall bar) configuration in the high-mobility devices. The microscopic origin of contact noise is directly linked to the fluctuating electrostatic environment of the metal–channel interface, which could be generic to two-dimensional material-based electronic devices. PMID:27929087
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurzmann, A., E-mail: annika.kurzmann@uni-due.de; Beckel, A.; Lorke, A.
2015-02-07
We have investigated the influence of a layer of charged self-assembled quantum dots (QDs) on the mobility of a nearby two-dimensional electron gas (2DEG). Time-resolved transconductance spectroscopy was used to separate the two contributions of the change in mobility, which are: (i) The electrons in the QDs act as Coulomb scatterers for the electrons in the 2DEG. (ii) The screening ability and, hence, the mobility of the 2DEG decreases when the charge carrier density is reduced by the charged QDs, i.e., the mobility itself depends on the charge carrier concentration. Surprisingly, we find a negligible influence of the Coulomb scatteringmore » on the mobility for a 2DEG, separated by a 30 nm tunneling barrier to the layer of QDs. This means that the mobility change is completely caused by depletion, i.e., reduction of the charge carrier density in the 2DEG, which indirectly influences the mobility.« less
Investigation of biogeophysical feedback on the African climate using a two-dimensional model
NASA Technical Reports Server (NTRS)
Xue, Yongkang; Liou, Kuo-Nan; Kasahara, Akira
1990-01-01
A numerical scheme is specifically designed to develop a time-dependent climate model to ensure the conservation of mass, momentum, energy, and water vapor, in order to study the biogeophysical feedback for the climate of Africa. A vegetation layer is incorporated in the present two-dimensional climate model. Using the coupled climate-vegetation model, two tests were performed involving the removal and expansion of the Sahara Desert. Results show that variations in the surface conditions produce a significant feedback to the climate system. It is noted that the simulation responses to the temperature and zonal wind in the case of an expanded desert agree with the climatological data for African dry years. Perturbed simulations have also been performed by changing the albedo only, without allowing the variation in the vegetation layer. It is shown that the variation in latent heat release is significant and is related to changes in the vegetation cover. As a result, precipitation and cloud cover are reduced.
The consensus in the two-feature two-state one-dimensional Axelrod model revisited
NASA Astrophysics Data System (ADS)
Biral, Elias J. P.; Tilles, Paulo F. C.; Fontanari, José F.
2015-04-01
The Axelrod model for the dissemination of culture exhibits a rich spatial distribution of cultural domains, which depends on the values of the two model parameters: F, the number of cultural features and q, the common number of states each feature can assume. In the one-dimensional model with F = q = 2, which is closely related to the constrained voter model, Monte Carlo simulations indicate the existence of multicultural absorbing configurations in which at least one macroscopic domain coexist with a multitude of microscopic ones in the thermodynamic limit. However, rigorous analytical results for the infinite system starting from the configuration where all cultures are equally likely show convergence to only monocultural or consensus configurations. Here we show that this disagreement is due simply to the order that the time-asymptotic limit and the thermodynamic limit are taken in the simulations. In addition, we show how the consensus-only result can be derived using Monte Carlo simulations of finite chains.
NASA Technical Reports Server (NTRS)
Thompson, J. F.; Thames, F. C.; Mastin, C. W.
1977-01-01
A method is presented for automatic numerical generation of a general curvilinear coordinate system with coordinate lines coincident with all boundaries of a general multi-connected two-dimensional region containing any number of arbitrarily shaped bodies. No restrictions are placed on the shape of the boundaries, which may even be time-dependent, and the approach is not restricted in principle to two dimensions. With this procedure the numerical solution of a partial differential system may be done on a fixed rectangular field with a square mesh with no interpolation required regardless of the shape of the physical boundaries, regardless of the spacing of the curvilinear coordinate lines in the physical field, and regardless of the movement of the coordinate system in the physical plane. A number of examples of coordinate systems and application thereof to the solution of partial differential equations are given. The FORTRAN computer program and instructions for use are included.
Current crowding mediated large contact noise in graphene field-effect transistors
NASA Astrophysics Data System (ADS)
Karnatak, Paritosh; Sai, T. Phanindra; Goswami, Srijit; Ghatak, Subhamoy; Kaushal, Sanjeev; Ghosh, Arindam
2016-12-01
The impact of the intrinsic time-dependent fluctuations in the electrical resistance at the graphene-metal interface or the contact noise, on the performance of graphene field-effect transistors, can be as adverse as the contact resistance itself, but remains largely unexplored. Here we have investigated the contact noise in graphene field-effect transistors of varying device geometry and contact configuration, with carrier mobility ranging from 5,000 to 80,000 cm2 V-1 s-1. Our phenomenological model for contact noise because of current crowding in purely two-dimensional conductors confirms that the contacts dominate the measured resistance noise in all graphene field-effect transistors in the two-probe or invasive four-probe configurations, and surprisingly, also in nearly noninvasive four-probe (Hall bar) configuration in the high-mobility devices. The microscopic origin of contact noise is directly linked to the fluctuating electrostatic environment of the metal-channel interface, which could be generic to two-dimensional material-based electronic devices.
Two-dimensional particle-in-cell plasma source ion implantation of a prolate spheroid target
NASA Astrophysics Data System (ADS)
Liu, Cheng-Sen; Han, Hong-Ying; Peng, Xiao-Qing; Chang, Ye; Wang, De-Zhen
2010-03-01
A two-dimensional particle-in-cell simulation is used to study the time-dependent evolution of the sheath surrounding a prolate spheroid target during a high voltage pulse in plasma source ion implantation. Our study shows that the potential contour lines pack more closely in the plasma sheath near the vertex of the major axis, i.e. where a thinner sheath is formed, and a non-uniform total ion dose distribution is incident along the surface of the prolate spheroid target due to the focusing of ions by the potential structure. Ion focusing takes place not only at the vertex of the major axis, where dense potential contour lines exist, but also at the vertex of the minor axis, where sparse contour lines exist. This results in two peaks of the received ion dose, locating at the vertices of the major and minor axes of the prolate spheroid target, and an ion dose valley, staying always between the vertices, rather than at the vertex of the minor axis.
Two-dimensional Manifold with Point-like Defects
NASA Astrophysics Data System (ADS)
Gani, V. A.; Dmitriev, A. E.; Rubin, S. G.
We study a class of two-dimensional compact extra spaces isomorphic to the sphere S 2 in the framework of multidimensional gravitation. We show that there exists a family of stationary metrics that depend on the initial (boundary) conditions. All these geometries have a singular point. We also discuss the possibility for these deformed extra spaces to be considered as dark matter candidates.
Experimental researches on quantum transport in semiconductor two-dimensional electron systems
Kawaji, Shinji
2008-01-01
The author reviews contribution of Gakushuin University group to the progress of the quantum transport in semiconductor two-dimensional electron systems (2DES) for forty years from the birth of the 2DES in middle of the 1960s till the finding of temperature dependent collapse of the quantized Hall resistance in the beginning of this century. PMID:18941299
NASA Astrophysics Data System (ADS)
Jeon, S.; Lim, H. B.; Choi, N.; Lee, J.; Ahn, Y. K.; Kim, Y. P.
2016-12-01
Organic aerosols contain thousands of organic compounds and contribute to 20-90% of the total fine aerosol mass. For analyzing organic aerosols, a wide range of analytical techniques have been used such as gas chromatography mass spectrometer (GC/MS), liquid chromatography mass spectrometer (LC/MS), aerosol mass spectrometer (AMS), etc. Among them, comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometer (GCxGC/TOF-MS) can provide higher chemical resolution than AMS and analyze more mass fractions of organic aerosols than GC/MS. In this study, we suggest a new data processing method using GCxGC/TOF-MS data for analyzing organic compounds in the ambient aerosols. TSP samples were collected on the roof of the Asan engineering building, Ewha Womans University, Seoul, South Korea (37.56 °N, 126.94 °E, 20 m above ground level). A total of 67 samples were obtained during summer (August 2013) and winter (January and February 2014) with a PUF sampler (Tisch, TE-1000) on quartz fiber filter. Filters were extracted using accelerated solvent extractor with a mixture of dichloromethane and methanol (3:1, v/v). Total extracts were blown down to 0.5 mL using a nitrogen evaporator (Turbo Vap Ⅱ, caliper Life Sciences). Organic compounds in the TSP samples were separated into 6 chemical groups, depending on their retention time in two dimensions for their volatility and polarity. All area of peaks in each group was summed and variance of total area in each group was compared depending on season and diurnal cycle.
Active Subspaces of Airfoil Shape Parameterizations
NASA Astrophysics Data System (ADS)
Grey, Zachary J.; Constantine, Paul G.
2018-05-01
Design and optimization benefit from understanding the dependence of a quantity of interest (e.g., a design objective or constraint function) on the design variables. A low-dimensional active subspace, when present, identifies important directions in the space of design variables; perturbing a design along the active subspace associated with a particular quantity of interest changes that quantity more, on average, than perturbing the design orthogonally to the active subspace. This low-dimensional structure provides insights that characterize the dependence of quantities of interest on design variables. Airfoil design in a transonic flow field with a parameterized geometry is a popular test problem for design methodologies. We examine two particular airfoil shape parameterizations, PARSEC and CST, and study the active subspaces present in two common design quantities of interest, transonic lift and drag coefficients, under each shape parameterization. We mathematically relate the two parameterizations with a common polynomial series. The active subspaces enable low-dimensional approximations of lift and drag that relate to physical airfoil properties. In particular, we obtain and interpret a two-dimensional approximation of both transonic lift and drag, and we show how these approximation inform a multi-objective design problem.
Si-H bond dynamics in hydrogenated amorphous silicon
NASA Astrophysics Data System (ADS)
Scharff, R. Jason; McGrane, Shawn D.
2007-08-01
The ultrafast structural dynamics of the Si-H bond in the rigid solvent environment of an amorphous silicon thin film is investigated using two-dimensional infrared four-wave mixing techniques. The two-dimensional infrared (2DIR) vibrational correlation spectrum resolves the homogeneous line shapes ( <2.5cm-1 linewidth) of the 0→1 and 1→2 vibrational transitions within the extensively inhomogeneously broadened ( 78cm-1 linewidth) Si-H vibrational band. There is no spectral diffusion evident in correlation spectra obtained at 0.2, 1, and 4ps waiting times. The Si-H stretching mode anharmonic shift is determined to be 84cm-1 and decreases slightly with vibrational frequency. The 1→2 linewidth increases with vibrational frequency. Frequency dependent vibrational population times measured by transient grating spectroscopy are also reported. The narrow homogeneous line shape, large inhomogeneous broadening, and lack of spectral diffusion reported here present the ideal backdrop for using a 2DIR probe following electronic pumping to measure the transient structural dynamics implicated in the Staebler-Wronski degradation [Appl. Phys. Lett. 31, 292 (1977)] in a-Si:H based solar cells.
TEMPEST. Transient 3-D Thermal-Hydraulic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eyler, L.L.
TEMPEST is a transient, three-dimensional, hydrothermal program that is designed to analyze a range of coupled fluid dynamic and heat transfer systems of particular interest to the Fast Breeder Reactor (FBR) thermal-hydraulic design community. The full three-dimensional, time-dependent equations of motion, continuity, and heat transport are solved for either laminar or turbulent fluid flow, including heat diffusion and generation in both solid and liquid materials. The equations governing mass, momentum, and energy conservation for incompressible flows and small density variations (Boussinesq approximation) are solved using finite-difference techniques. Analyses may be conducted in either cylindrical or Cartesian coordinate systems. Turbulence ismore » treated using a two-equation model. Two auxiliary plotting programs, SEQUEL and MANPLOT, for use with TEMPEST output are included. SEQUEL may be operated in batch or interactive mode; it generates data required for vector plots, contour plots of scalar quantities, line plots, grid and boundary plots, and time-history plots. MANPLOT reads the SEQUEL-generated data and creates the hardcopy plots. TEMPEST can be a valuable hydrothermal design analysis tool in areas outside the intended FBR thermal-hydraulic design community.« less
Phonon-drag magnetothermopower in Rashba spin-split two-dimensional electron systems.
Biswas, Tutul; Ghosh, Tarun Kanti
2013-10-16
We study the phonon-drag contribution to the thermoelectric power in a quasi-two-dimensional electron system confined in GaAs/AlGaAs heterostructure in the presence of both Rashba spin-orbit interaction and perpendicular magnetic field at very low temperature. It is observed that the peaks in the phonon-drag thermopower split into two when the Rashba spin-orbit coupling constant is strong. This splitting is a direct consequence of the Rashba spin-orbit interaction. We show the dependence of phonon-drag thermopower on both magnetic field and temperature numerically. A power-law dependence of phonon-drag magnetothermopower on the temperature in the Bloch-Gruneisen regime is found. We also extract the exponent of the temperature dependence of phonon-drag thermopower for different parameters like electron density, magnetic field, and the spin-orbit coupling constant.
NASA Astrophysics Data System (ADS)
Golinski, M. R.
2006-07-01
Ecologists have observed that environmental noise affects population variance in the logistic equation for one-species growth. Interactions between deterministic and stochastic dynamics in a one-dimensional system result in increased variance in species population density over time. Since natural populations do not live in isolation, the present paper simulates a discrete-time two-species competition model with environmental noise to determine the type of colored population noise generated by extreme conditions in the long-term population dynamics of competing populations. Discrete Fourier analysis is applied to the simulation results and the calculated Hurst exponent ( H) is used to determine how the color of population noise for the two species corresponds to extreme conditions in population dynamics. To interpret the biological meaning of the color of noise generated by the two-species model, the paper determines the color of noise generated by three reference models: (1) A two-dimensional discrete-time white noise model (0⩽ H<1/2); (2) A two-dimensional fractional Brownian motion model (H=1/2); and (3) A two-dimensional discrete-time model with noise for unbounded growth of two uncoupled species (1/2< H⩽1).
Molecular vibrational states during a collision
NASA Technical Reports Server (NTRS)
Recamier, Jose A.; Jauregui, Rocio
1995-01-01
Alternative algebraic techniques to approximate a given Hamiltonian by a harmonic oscillator are described both for time-independent and time-dependent systems. We apply them to the description of a one dimensional atom-diatom collision. From the resulting evolution operator, we evaluate vibrational transition probabilities as well as other time-dependent properties. As expected, the ground vibrational state becomes a squeezed state during the collision.
1980-07-01
41 3.2 EXPERIMENTAL DETERMINATION OF THE DEPENDENCE OF RAYLEIGH WAVE AMPLITUDE ON PROPERTIES OF THE SOURCE MATERIAL ...Surface Wave Observations ...... ................ 48 3.3.3 Surface Wave Dependence on Source Material Properties ..... ................ .. 51 SYSTEMS...with various aspects of the problem of estimating yield from single station recordings of surface waves. The material in these four summaries has been
NASA Astrophysics Data System (ADS)
Bénech, B.; Koffi, E.; Druilhet, A.; Durand, P.; Bessemoulin, P.; Campins, J.; Jansa, A.; Terliuc, B.
1998-01-01
regarding (a) the perturbation of the surface pressure field, which resembles the predicted bipolar distribution; (b) the dependence of the drag on Fr1, which enables the assessment of the linear theory and the definition of the conditions of applicability of two models [(i) a two-dimensional model, for which it was possible to define quantitatively the effective blocked area, and (ii) a three-dimensional model, for which a scaling function that combines the direction of incidence, the mountain shape, and the Coriolis effect was found almost constant, with an average value of 0.2 for all the cases under study]; (c) the extension of the area affected by the blocking effect, estimated to be 4.5-5 times the width of the barrier and the drift of the strong deceleration point due to the Coriolis effect; (d) the dependence of the wind velocities on Fr1 at the edges of the barrier; and (e) the asymmetric flow deviation induced by the Coriolis effect and biased by the departure of the flow from normal incidence.
Bioheat model evaluations of laser effects on tissues: role of water evaporation and diffusion
NASA Astrophysics Data System (ADS)
Nagulapally, Deepthi; Joshi, Ravi P.; Thomas, Robert J.
2011-03-01
A two-dimensional, time-dependent bioheat model is applied to evaluate changes in temperature and water content in tissues subjected to laser irradiation. Our approach takes account of liquid-to-vapor phase changes and a simple diffusive flow of water within the biotissue. An energy balance equation considers blood perfusion, metabolic heat generation, laser absorption, and water evaporation. The model also accounts for the water dependence of tissue properties (both thermal and optical), and variations in blood perfusion rates based on local tissue injury. Our calculations show that water diffusion would reduce the local temperature increases and hot spots in comparison to simple models that ignore the role of water in the overall thermal and mass transport. Also, the reduced suppression of perfusion rates due to tissue heating and damage with water diffusion affect the necrotic depth. Two-dimensional results for the dynamic temperature, water content, and damage distributions will be presented for skin simulations. It is argued that reduction in temperature gradients due to water diffusion would mitigate local refractive index variations, and hence influence the phenomenon of thermal lensing. Finally, simple quantitative evaluations of pressure increases within the tissue due to laser absorption are presented.
NASA Astrophysics Data System (ADS)
Shinzawa, Hideyuki; Mizukado, Junji
2018-05-01
Hydrogen/deuterium (H/D) exchange of gelatinized starch was probed by in-situ near-infrared (NIR) monitoring coupled with two-dimensional (2D) correlation spectroscopy. Gelatinized starch undergoes spontaneous H/D exchange in D2O. During the substitution, the exchange rate essentially becomes different depending on solvent accessibility of various parts of the molecule. Thus, by analyzing the change in the NIR feature observed during the substitution, it becomes possible to sort out local structure and dynamics of the system. 2D correlation analysis of the time-dependent NIR spectra reveals the presence of different local structure of the starch, each having different solvent accessibility. For example, during the H/D exchange, the D2O is first absorbed by starch molecules especially around the surface area between the starch and water, where the water molecules are weakly interacted with the starch molecules. This absorption is quickly followed by the development of HDO species. Further absorption of the D2O results in the penetration of the molecules inside the starch and eventually develops the relatively strong interaction between the HDO and starch molecules because of the presence of dominant starch molecules.
Computation of high Reynolds number internal/external flows
NASA Technical Reports Server (NTRS)
Cline, M. C.; Wilmoth, R. G.
1981-01-01
A general, user oriented computer program, called VNAP2, has been developed to calculate high Reynolds number, internal/external flows. VNAP2 solves the two-dimensional, time-dependent Navier-Stokes equations. The turbulence is modeled with either a mixing-length, a one transport equation, or a two transport equation model. Interior grid points are computed using the explicit MacCormack scheme with special procedures to speed up the calculation in the fine grid. All boundary conditions are calculated using a reference plane characteristic scheme with the viscous terms treated as source terms. Several internal, and internal/external flow calculations are presented.
Computation of high Reynolds number internal/external flows
NASA Technical Reports Server (NTRS)
Cline, M. C.; Wilmoth, R. G.
1981-01-01
A general, user oriented computer program, called VNAP2, was developed to calculate high Reynolds number, internal/ external flows. The VNAP2 program solves the two dimensional, time dependent Navier-Stokes equations. The turbulence is modeled with either a mixing-length, a one transport equation, or a two transport equation model. Interior grid points are computed using the explicit MacCormack Scheme with special procedures to speed up the calculation in the fine grid. All boundary conditions are calculated using a reference plane characteristic scheme with the viscous terms treated as source terms. Several internal, external, and internal/external flow calculations are presented.
Computation of high Reynolds number internal/external flows
NASA Technical Reports Server (NTRS)
Cline, M. C.; Wilmoth, R. G.
1981-01-01
A general, user oriented computer program, called VNAF2, developed to calculate high Reynolds number internal/external flows is described. The program solves the two dimensional, time dependent Navier-Stokes equations. Turbulence is modeled with either a mixing length, a one transport equation, or a two transport equation model. Interior grid points are computed using the explicit MacCormack scheme with special procedures to speed up the calculation in the fine grid. All boundary conditions are calculated using a reference plane characteristic scheme with the viscous terms treated as source terms. Several internal, external, and internal/external flow calculations are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawai, Kotaro, E-mail: s135016@stn.nagaokaut.ac.jp; Sakamoto, Moritsugu; Noda, Kohei
2016-03-28
A diffractive optical element with a three-dimensional liquid crystal (LC) alignment structure for advanced control of polarized beams was fabricated by a highly efficient one-step photoalignment method. This study is of great significance because different two-dimensional continuous and complex alignment patterns can be produced on two alignment films by simultaneously irradiating an empty glass cell composed of two unaligned photocrosslinkable polymer LC films with three-beam polarized interference beam. The polarization azimuth, ellipticity, and rotation direction of the diffracted beams from the resultant LC grating widely varied depending on the two-dimensional diffracted position and the polarization states of the incident beams.more » These polarization diffraction properties are well explained by theoretical analysis based on Jones calculus.« less
NASA Technical Reports Server (NTRS)
Aftosmis, M. J.; Berger, M. J.; Murman, S. M.; Kwak, Dochan (Technical Monitor)
2002-01-01
The proposed paper will present recent extensions in the development of an efficient Euler solver for adaptively-refined Cartesian meshes with embedded boundaries. The paper will focus on extensions of the basic method to include solution adaptation, time-dependent flow simulation, and arbitrary rigid domain motion. The parallel multilevel method makes use of on-the-fly parallel domain decomposition to achieve extremely good scalability on large numbers of processors, and is coupled with an automatic coarse mesh generation algorithm for efficient processing by a multigrid smoother. Numerical results are presented demonstrating parallel speed-ups of up to 435 on 512 processors. Solution-based adaptation may be keyed off truncation error estimates using tau-extrapolation or a variety of feature detection based refinement parameters. The multigrid method is extended to for time-dependent flows through the use of a dual-time approach. The extension to rigid domain motion uses an Arbitrary Lagrangian-Eulerlarian (ALE) formulation, and results will be presented for a variety of two- and three-dimensional example problems with both simple and complex geometry.
A New Perspective on Surface Weather Maps
ERIC Educational Resources Information Center
Meyer, Steve
2006-01-01
A two-dimensional weather map is actually a physical representation of three-dimensional atmospheric conditions at a specific point in time. Abstract thinking is required to visualize this two-dimensional image in three-dimensional form. But once that visualization is accomplished, many of the meteorological concepts and processes conveyed by the…
Dynamical initial-state model for relativistic heavy-ion collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Chun; Schenke, Bjorn
We present a fully three-dimensional model providing initial conditions for energy and net-baryon density distributions in heavy ion collisions at arbitrary collision energy. The model includes the dynamical deceleration of participating nucleons or valence quarks, depending on the implementation. The duration of the deceleration continues until the string spanned between colliding participants is assumed to thermalize, which is either after a fixed proper time, or a uctuating time depending on sampled final rapidities. Energy is deposited in space-time along the string, which in general will span a range of space-time rapidities and proper times. We study various observables obtained directlymore » from the initial state model, including net-baryon rapidity distributions, 2-particle rapidity correlations, as well as the rapidity decorrelation of the transverse geometry. Their dependence on the model implementation and parameter values is investigated. Here, we also present the implementation of the model with 3+1 dimensional hydrodynamics, which involves the addition of source terms that deposit energy and net-baryon densities produced by the initial state model at proper times greater than the initial time for the hydrodynamic simulation.« less
Dynamical initial-state model for relativistic heavy-ion collisions
Shen, Chun; Schenke, Bjorn
2018-02-15
We present a fully three-dimensional model providing initial conditions for energy and net-baryon density distributions in heavy ion collisions at arbitrary collision energy. The model includes the dynamical deceleration of participating nucleons or valence quarks, depending on the implementation. The duration of the deceleration continues until the string spanned between colliding participants is assumed to thermalize, which is either after a fixed proper time, or a uctuating time depending on sampled final rapidities. Energy is deposited in space-time along the string, which in general will span a range of space-time rapidities and proper times. We study various observables obtained directlymore » from the initial state model, including net-baryon rapidity distributions, 2-particle rapidity correlations, as well as the rapidity decorrelation of the transverse geometry. Their dependence on the model implementation and parameter values is investigated. Here, we also present the implementation of the model with 3+1 dimensional hydrodynamics, which involves the addition of source terms that deposit energy and net-baryon densities produced by the initial state model at proper times greater than the initial time for the hydrodynamic simulation.« less
Three-dimensional particle-particle simulations: Dependence of relaxation time on plasma parameter
NASA Astrophysics Data System (ADS)
Zhao, Yinjian
2018-05-01
A particle-particle simulation model is applied to investigate the dependence of the relaxation time on the plasma parameter in a three-dimensional unmagnetized plasma. It is found that the relaxation time increases linearly as the plasma parameter increases within the range of the plasma parameter from 2 to 10; when the plasma parameter equals 2, the relaxation time is independent of the total number of particles, but when the plasma parameter equals 10, the relaxation time slightly increases as the total number of particles increases, which indicates the transition of a plasma from collisional to collisionless. In addition, ions with initial Maxwell-Boltzmann (MB) distribution are found to stay in the MB distribution during the whole simulation time, and the mass of ions does not significantly affect the relaxation time of electrons. This work also shows the feasibility of the particle-particle model when using GPU parallel computing techniques.
A Computer Program for the Computation of Running Gear Temperatures Using Green's Function
NASA Technical Reports Server (NTRS)
Koshigoe, S.; Murdock, J. W.; Akin, L. S.; Townsend, D. P.
1996-01-01
A new technique has been developed to study two dimensional heat transfer problems in gears. This technique consists of transforming the heat equation into a line integral equation with the use of Green's theorem. The equation is then expressed in terms of eigenfunctions that satisfy the Helmholtz equation, and their corresponding eigenvalues for an arbitrarily shaped region of interest. The eigenfunction are obtalned by solving an intergral equation. Once the eigenfunctions are found, the temperature is expanded in terms of the eigenfunctions with unknown time dependent coefficients that can be solved by using Runge Kutta methods. The time integration is extremely efficient. Therefore, any changes in the time dependent coefficients or source terms in the boundary conditions do not impose a great computational burden on the user. The method is demonstrated by applying it to a sample gear tooth. Temperature histories at representative surface locatons are given.
Comparative analysis of peak-detection techniques for comprehensive two-dimensional chromatography.
Latha, Indu; Reichenbach, Stephen E; Tao, Qingping
2011-09-23
Comprehensive two-dimensional gas chromatography (GC×GC) is a powerful technology for separating complex samples. The typical goal of GC×GC peak detection is to aggregate data points of analyte peaks based on their retention times and intensities. Two techniques commonly used for two-dimensional peak detection are the two-step algorithm and the watershed algorithm. A recent study [4] compared the performance of the two-step and watershed algorithms for GC×GC data with retention-time shifts in the second-column separations. In that analysis, the peak retention-time shifts were corrected while applying the two-step algorithm but the watershed algorithm was applied without shift correction. The results indicated that the watershed algorithm has a higher probability of erroneously splitting a single two-dimensional peak than the two-step approach. This paper reconsiders the analysis by comparing peak-detection performance for resolved peaks after correcting retention-time shifts for both the two-step and watershed algorithms. Simulations with wide-ranging conditions indicate that when shift correction is employed with both algorithms, the watershed algorithm detects resolved peaks with greater accuracy than the two-step method. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Naine, Tarun Bharath; Gundawar, Manoj Kumar
2017-09-01
We demonstrate a very powerful correlation between the discrete probability of distances of neighboring cells and thermal wave propagation rate, for a system of cells spread on a one-dimensional chain. A gamma distribution is employed to model the distances of neighboring cells. In the absence of an analytical solution and the differences in ignition times of adjacent reaction cells following non-Markovian statistics, invariably the solution for thermal wave propagation rate for a one-dimensional system with randomly distributed cells is obtained by numerical simulations. However, such simulations which are based on Monte-Carlo methods require several iterations of calculations for different realizations of distribution of adjacent cells. For several one-dimensional systems, differing in the value of shaping parameter of the gamma distribution, we show that the average reaction front propagation rates obtained by a discrete probability between two limits, shows excellent agreement with those obtained numerically. With the upper limit at 1.3, the lower limit depends on the non-dimensional ignition temperature. Additionally, this approach also facilitates the prediction of burning limits of heterogeneous thermal mixtures. The proposed method completely eliminates the need for laborious, time intensive numerical calculations where the thermal wave propagation rates can now be calculated based only on macroscopic entity of discrete probability.
NASA Astrophysics Data System (ADS)
Begnaud, M. L.; Anderson, D. N.; Phillips, W. S.; Myers, S. C.; Ballard, S.
2016-12-01
The Regional Seismic Travel Time (RSTT) tomography model has been developed to improve travel time predictions for regional phases (Pn, Sn, Pg, Lg) in order to increase seismic location accuracy, especially for explosion monitoring. The RSTT model is specifically designed to exploit regional phases for location, especially when combined with teleseismic arrivals. The latest RSTT model (version 201404um) has been released (http://www.sandia.gov/rstt). Travel time uncertainty estimates for RSTT are determined using one-dimensional (1D), distance-dependent error models, that have the benefit of being very fast to use in standard location algorithms, but do not account for path-dependent variations in error, and structural inadequacy of the RSTTT model (e.g., model error). Although global in extent, the RSTT tomography model is only defined in areas where data exist. A simple 1D error model does not accurately model areas where RSTT has not been calibrated. We are developing and validating a new error model for RSTT phase arrivals by mathematically deriving this multivariate model directly from a unified model of RSTT embedded into a statistical random effects model that captures distance, path and model error effects. An initial method developed is a two-dimensional path-distributed method using residuals. The goals for any RSTT uncertainty method are for it to be both readily useful for the standard RSTT user as well as improve travel time uncertainty estimates for location. We have successfully tested using the new error model for Pn phases and will demonstrate the method and validation of the error model for Sn, Pg, and Lg phases.
Integrability and chemical potential in the (3 + 1)-dimensional Skyrme model
NASA Astrophysics Data System (ADS)
Alvarez, P. D.; Canfora, F.; Dimakis, N.; Paliathanasis, A.
2017-10-01
Using a remarkable mapping from the original (3 + 1)dimensional Skyrme model to the Sine-Gordon model, we construct the first analytic examples of Skyrmions as well as of Skyrmions-anti-Skyrmions bound states within a finite box in 3 + 1 dimensional flat space-time. An analytic upper bound on the number of these Skyrmions-anti-Skyrmions bound states is derived. We compute the critical isospin chemical potential beyond which these Skyrmions cease to exist. With these tools, we also construct topologically protected time-crystals: time-periodic configurations whose time-dependence is protected by their non-trivial winding number. These are striking realizations of the ideas of Shapere and Wilczek. The critical isospin chemical potential for these time-crystals is determined.
Characterization of chaotic electroconvection near flat electrodes under oscillatory voltages
NASA Astrophysics Data System (ADS)
Kim, Jeonglae; Davidson, Scott; Mani, Ali
2017-11-01
Onset of hydrodynamic instability and chaotic electroconvection in aqueous systems are studied by directly solving the two-dimensional coupled Poisson-Nernst-Planck and Navier-Stokes equations. An aqueous binary electrolyte is bounded by two planar electrodes where time-harmonic voltage is applied at a constant oscillation frequency. The governing equations are solved using a fully-conservative second-order-accurate finite volume discretization and a second-order implicit Euler time advancement. At a sufficiently high amplitude of applied voltage, the system exhibits chaotic behaviors involving strong hydrodynamic mixing and enhanced electroconvection. The system responses are characterized as a function of oscillation frequency, voltage magnitude, and the ratio of diffusivities of two ion species. Our results indicate that electroconvection is most enhanced for frequencies on the order of inverse system RC time scale. We will discuss the dependence of this optimal frequency on the asymmetry of the diffusion coefficients of ionic species. Supported by the Stanford's Precourt Institute.
Two-Dimensional Transport Studies for the Composition and Structure of the Io Plasma Torus
NASA Technical Reports Server (NTRS)
Smyth, William H.
2003-01-01
The overall objective of this project is to investigate the roles of local and spatially extended plasma sources created by Io, plasma torus chemistry, and plasma convective and diffusive transport in producing the long-lived S(+), S(++) and O(+) radial ribbon structures of the plasma torus, their System III longitude and local-time asymmetries, their energy sources and their possible time variability. To accomplish this objective, two-dimensional [radial (L) and System III longitude] plasma transport equations for the flux-tube plasma content and energy content will be solved that include the convective motions for both the east-west electric field and co-rotational velocity-lag profile near Io s orbit, radial diffusion, and the spacetime dependent flux-tube production and loss created by both neutral-plasma and plasma-ion reaction chemistry in the plasma torus. For neutral-plasma chemistry, the project will for the first time undertake the calculation of realistic three-dimensional, spatially-extended, and time-varying contributions to the flux-tube ion-production and loss that are produced by Io's corona and extended neutral clouds. The unknown two-dimensional spatial nature of diffusion in the plasma transport will be isolated and better defined in the investigation by the collective consideration of the foregoing different physical processes. For energy transport, the energy flow from hot pickup ions (and a new electron source) to thermal ions and electrons will be included in investigating the System III longitude and local-time temperature asymmetries in the plasma torus. The research is central to the scope of the NASA Sun-Earth Connection Roadmap in Quest II Campaign 4 "Comparative Planetary Space Environments" by addressing key questions for understanding the magnetosphere of planets with high rotation rates and large internal plasma sources and, in addition, is of considerable importance to the NASA Solar System Exploration Science Theme. In this regard, Jupiter is the most extreme example with its rapid rotation and with its inner Galilean satellite Io providing the dominant plasma source for the magnetosphere.
Wang, Bing; Fang, Aiqin; Heim, John; Bogdanov, Bogdan; Pugh, Scott; Libardoni, Mark; Zhang, Xiang
2010-01-01
A novel peak alignment algorithm using a distance and spectrum correlation optimization (DISCO) method has been developed for two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC/TOF-MS) based metabolomics. This algorithm uses the output of the instrument control software, ChromaTOF, as its input data. It detects and merges multiple peak entries of the same metabolite into one peak entry in each input peak list. After a z-score transformation of metabolite retention times, DISCO selects landmark peaks from all samples based on both two-dimensional retention times and mass spectrum similarity of fragment ions measured by Pearson’s correlation coefficient. A local linear fitting method is employed in the original two-dimensional retention time space to correct retention time shifts. A progressive retention time map searching method is used to align metabolite peaks in all samples together based on optimization of the Euclidean distance and mass spectrum similarity. The effectiveness of the DISCO algorithm is demonstrated using data sets acquired under different experiment conditions and a spiked-in experiment. PMID:20476746
NASA Astrophysics Data System (ADS)
Ahn, Surl-Hee; Grate, Jay W.; Darve, Eric F.
2017-08-01
Molecular dynamics simulations are useful in obtaining thermodynamic and kinetic properties of bio-molecules, but they are limited by the time scale barrier. That is, we may not obtain properties' efficiently because we need to run microseconds or longer simulations using femtosecond time steps. To overcome this time scale barrier, we can use the weighted ensemble (WE) method, a powerful enhanced sampling method that efficiently samples thermodynamic and kinetic properties. However, the WE method requires an appropriate partitioning of phase space into discrete macrostates, which can be problematic when we have a high-dimensional collective space or when little is known a priori about the molecular system. Hence, we developed a new WE-based method, called the "Concurrent Adaptive Sampling (CAS) algorithm," to tackle these issues. The CAS algorithm is not constrained to use only one or two collective variables, unlike most reaction coordinate-dependent methods. Instead, it can use a large number of collective variables and adaptive macrostates to enhance the sampling in the high-dimensional space. This is especially useful for systems in which we do not know what the right reaction coordinates are, in which case we can use many collective variables to sample conformations and pathways. In addition, a clustering technique based on the committor function is used to accelerate sampling the slowest process in the molecular system. In this paper, we introduce the new method and show results from two-dimensional models and bio-molecules, specifically penta-alanine and a triazine trimer.
Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments
NASA Astrophysics Data System (ADS)
Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.
2018-04-01
We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three-dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb2 Pt2 Pb , a metal where itinerant electrons coexist with localized moments of Yb ions which can be described in terms of effective S =1 /2 spins with a dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the two interacting subsystems. We characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasilinear temperature dependence.
Observation of quantum interferences via light-induced conical intersections in diatomic molecules
Natan, Adi; Ware, Matthew R.; Prabhudesai, Vaibhav S.; ...
2016-04-07
We observe energy-dependent angle-resolved diffraction patterns in protons from strong-field dissociation of the molecular hydrogen ion H + 2. The interference is a characteristic of dissociation around a laser-induced conical intersection (LICI), which is a point of contact between two surfaces in the dressed 2-dimensional Born-Oppenheimer potential energy landscape of a diatomic molecule in a strong laser field. The interference magnitude and angular period depend strongly on the energy difference between the initial state and the LICI, consistent with coherent diffraction around a cone-shaped potential barrier whose width and thickness depend on the relative energy of the initial state andmore » the cone apex. As a result, these findings are supported by numerical solutions of the time-dependent Schrodinger equation for similar experimental conditions.« less
Observation of quantum interferences via light-induced conical intersections in diatomic molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natan, Adi; Ware, Matthew R.; Prabhudesai, Vaibhav S.
We observe energy-dependent angle-resolved diffraction patterns in protons from strong-field dissociation of the molecular hydrogen ion H + 2. The interference is a characteristic of dissociation around a laser-induced conical intersection (LICI), which is a point of contact between two surfaces in the dressed 2-dimensional Born-Oppenheimer potential energy landscape of a diatomic molecule in a strong laser field. The interference magnitude and angular period depend strongly on the energy difference between the initial state and the LICI, consistent with coherent diffraction around a cone-shaped potential barrier whose width and thickness depend on the relative energy of the initial state andmore » the cone apex. As a result, these findings are supported by numerical solutions of the time-dependent Schrodinger equation for similar experimental conditions.« less
NASA Astrophysics Data System (ADS)
Stark, David; Yin, Lin; Albright, Brian; Guo, Fan
2017-10-01
The often cost-prohibitive nature of three-dimensional (3D) kinetic simulations of laser-plasma interactions has resulted in heavy use of two-dimensional (2D) simulations to extract physics. However, depending on whether the polarization is modeled as 2D-S or 2D-P (laser polarization in and out of the simulation plane, respectively), different results arise. In laser-ion acceleration in the transparency regime, VPIC particle-in-cell simulations show that 2D-S and 2D-P capture different physics that appears in 3D simulations. The electron momentum distribution is virtually two-dimensional in 2D-P, unlike the more isotropic distributions in 2D-S and 3D, leading to greater heating in the simulation plane. As a result, target expansion time scales and density thresholds for the onset of relativistic transparency differ dramatically between 2D-S and 2D-P. The artificial electron heating in 2D-P exaggerates the effectiveness of target-normal sheath acceleration (TNSA) into its dominant acceleration mechanism, whereas 2D-S and 3D both have populations accelerated preferentially during transparency to higher energies than those of TNSA. Funded by the LANL Directed Research and Development Program.
Fractional calculus phenomenology in two-dimensional plasma models
NASA Astrophysics Data System (ADS)
Gustafson, Kyle; Del Castillo Negrete, Diego; Dorland, Bill
2006-10-01
Transport processes in confined plasmas for fusion experiments, such as ITER, are not well-understood at the basic level of fully nonlinear, three-dimensional kinetic physics. Turbulent transport is invoked to describe the observed levels in tokamaks, which are orders of magnitude greater than the theoretical predictions. Recent results show the ability of a non-diffusive transport model to describe numerical observations of turbulent transport. For example, resistive MHD modeling of tracer particle transport in pressure-gradient driven turbulence for a three-dimensional plasma reveals that the superdiffusive (2̂˜t^α where α> 1) radial transport in this system is described quantitatively by a fractional diffusion equation Fractional calculus is a generalization involving integro-differential operators, which naturally describe non-local behaviors. Our previous work showed the quantitative agreement of special fractional diffusion equation solutions with numerical tracer particle flows in time-dependent linearized dynamics of the Hasegawa-Mima equation (for poloidal transport in a two-dimensional cold-ion plasma). In pursuit of a fractional diffusion model for transport in a gyrokinetic plasma, we now present numerical results from tracer particle transport in the nonlinear Hasegawa-Mima equation and a planar gyrokinetic model. Finite Larmor radius effects will be discussed. D. del Castillo Negrete, et al, Phys. Rev. Lett. 94, 065003 (2005).
Directed Abelian algebras and their application to stochastic models.
Alcaraz, F C; Rittenberg, V
2008-10-01
With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma_(tau)=32 ). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma_(tau)=1.780+/-0.005 .
Two-dimensional NMR spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, T.C.
1987-06-01
This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t/sub 0/; an evolution period, t/sub 1/; and a detection period, t/sub 2/.
Route to chaos in porous-medium thermal convection
NASA Astrophysics Data System (ADS)
Kimura, S.; Schubert, G.; Straus, J. M.
1986-05-01
The transition to chaos in two-dimensional single-cell time-dependent convection in a square cross section of porous material saturated with fluid and heated from below is investigated theoretically by means of pseudospectral numerical simulations. The results are presented graphically and discussed in terms of the time-averaged Nusselt number, the oscillation mechanism, and similarities to Hele-Shaw convection. As the Rayleigh number (R) increases, the system is found to proceed from the steady state to a simply periodic state, a quasi-periodic state with two basic frequencies, a second simply periodic state, and finally to chaos. The transitions occur at R = 4 pi squared, 380-400, 500-520, 560-570, and 850-1000. The intermediate and chaotic regimes are characterized in detail.
NASA Astrophysics Data System (ADS)
Liu, Changying; Wu, Xinyuan
2017-07-01
In this paper we explore arbitrarily high-order Lagrange collocation-type time-stepping schemes for effectively solving high-dimensional nonlinear Klein-Gordon equations with different boundary conditions. We begin with one-dimensional periodic boundary problems and first formulate an abstract ordinary differential equation (ODE) on a suitable infinity-dimensional function space based on the operator spectrum theory. We then introduce an operator-variation-of-constants formula which is essential for the derivation of our arbitrarily high-order Lagrange collocation-type time-stepping schemes for the nonlinear abstract ODE. The nonlinear stability and convergence are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix under some suitable smoothness assumptions. With regard to the two dimensional Dirichlet or Neumann boundary problems, our new time-stepping schemes coupled with discrete Fast Sine / Cosine Transformation can be applied to simulate the two-dimensional nonlinear Klein-Gordon equations effectively. All essential features of the methodology are present in one-dimensional and two-dimensional cases, although the schemes to be analysed lend themselves with equal to higher-dimensional case. The numerical simulation is implemented and the numerical results clearly demonstrate the advantage and effectiveness of our new schemes in comparison with the existing numerical methods for solving nonlinear Klein-Gordon equations in the literature.
An exact solution for the solidification of a liquid slab of binary mixture
NASA Technical Reports Server (NTRS)
Antar, B. N.; Collins, F. G.; Aumalia, A. E.
1986-01-01
The time dependent temperature and concentration profiles of a one dimensional finite slab of a binary liquid alloy is investigated during solidification. The governing equations are reduced to a set of coupled, nonlinear initial value problems using the method outlined by Meyer. Two methods will be used to solve these equations. The first method uses a Runge-Kutta-Fehlberg integrator to solve the equations numerically. The second method comprises of finding closed form solutions of the equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Priimak, Dmitri
2014-12-01
We present a finite difference numerical algorithm for solving two dimensional spatially homogeneous Boltzmann transport equation which describes electron transport in a semiconductor superlattice subject to crossed time dependent electric and constant magnetic fields. The algorithm is implemented both in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPU. We compare performances and merits of one implementation versus another and discuss various software optimisation techniques.
Solution of non-continuum flows using BGK-type model with enforced relaxation of moments
NASA Astrophysics Data System (ADS)
Alekseenko, Alexander; Gimelshein, Sergey; Nguyen, Truong; Vedula, Prakash
2016-11-01
A BGK-type model with velocity dependent collision frequency and enforced relaxation rates for selected moments is applied to simulation of one- and two-dimensional super sonic flows. Relaxation rates of the moments are estimated by evaluating the full Boltzmann collision integral several times during the simulation. The solutions show improvements in velocity and temperature profiles as compared to the classical ES-BGK model. However, enforcement of relaxation rates for high order moments increases stiffness of the model.
An idealised study of the effects of small scales on chemistry in a two-dimensional turbulent flow.
NASA Astrophysics Data System (ADS)
Chaalal, F. Ait; Bartello, P.; Bourqui, M.
2009-04-01
The non-linear nature of stratospheric chemical reactions makes them sensitive to mixing and diffusion. Most stratospheric Climate-Chemistry Models neglect the effects of sub-grid flow structures on chemistry. Several previous studies have pointed out that such unresolved small scales could significantly affect the chemistry. However this problem has not been thoroughly studied from a theoretical point of view. To fulfill this gap, we investigate the interactions between advection, diffusion and chemistry for a simple bimolecular reaction between two initially unmixed reactants, within the framework of two-dimensional isotropic and homogenous turbulence. This is a highly simplified representation of quasi-isentropic mixing in the stratosphere. Our goal here is to describe and understand how the production rate of the product species is affected by the size of the smallest scales of the tracer field, as determined by the tracer diffusion coefficient ΰ. The spatial average of the prognostic equation for the product's concentration involves the covariance of the reactants. The time evolution of this covariance depends in turn on a dissipative term, and on second and third order chemical terms. The set of equations is not closed and any finite resolution model would need a parameterization of the dissipation and a closure hypothesis on the chemical terms. To study these terms, we perform ensembles of direct numerical simulations using a pseudo-spectral two-dimensional periodic model. The ensembles span different initial conditions of the flow and different tracer diffusion coefficients ΰ. Our results show a strong dependence of the total production on the diffusion coefficient. This production scales like ΰp(t) , where p(t) is a positive decreasing function of time. This scaling is very similar to the one found by Tan et al. (1998) for atmospheric flows on the deactivation of chlorine by nitrogen oxide at the southern edge of the winter time polar vortex. Furthermore, the time derivative of the reactants' covariance is found to be only very weakly dependent on the chemical reaction rate, for both slow and fast chemistries compared to the advection. The variations of the dissipation and of the chemical terms with the reaction speed compensate each other. As a consequence, the calculation of the product's concentration using the covariance of the dissipation without chemistry is a good approximation of the effect of diffusion with chemistry. Reference Tan, DGH; Haynes, PH; MacKenzie, AR; et al., Effects of fluid-dynamical stirring and mixing on the deactivation of stratospheric chlorine, Journal of Geophysical Research-Atmospheres, Volume: 103 Issue: D1 Pages: 1585-1605 (1998).
Johnson, Tim; Versteeg, Roelof; Thomle, Jon; ...
2015-08-01
Our paper describes and demonstrates two methods of providing a priori information to the surface-based time-lapse three-dimensional electrical resistivity tomography (ERT) problem for monitoring stage-driven or tide-driven surface water intrusion into aquifers. First, a mesh boundary is implemented that conforms to the known location of the water table through time, thereby enabling the inversion to place a sharp bulk conductivity contrast at that boundary without penalty. Moreover, a nonlinear inequality constraint is used to allow only positive or negative transient changes in EC to occur within the saturated zone, dependent on the relative contrast in fluid electrical conductivity between surfacemore » water and groundwater. A 3-D field experiment demonstrates that time-lapse imaging results using traditional smoothness constraints are unable to delineate river water intrusion. The water table and inequality constraints provide the inversion with the additional information necessary to resolve the spatial extent of river water intrusion through time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Tim; Versteeg, Roelof; Thomle, Jon
Our paper describes and demonstrates two methods of providing a priori information to the surface-based time-lapse three-dimensional electrical resistivity tomography (ERT) problem for monitoring stage-driven or tide-driven surface water intrusion into aquifers. First, a mesh boundary is implemented that conforms to the known location of the water table through time, thereby enabling the inversion to place a sharp bulk conductivity contrast at that boundary without penalty. Moreover, a nonlinear inequality constraint is used to allow only positive or negative transient changes in EC to occur within the saturated zone, dependent on the relative contrast in fluid electrical conductivity between surfacemore » water and groundwater. A 3-D field experiment demonstrates that time-lapse imaging results using traditional smoothness constraints are unable to delineate river water intrusion. The water table and inequality constraints provide the inversion with the additional information necessary to resolve the spatial extent of river water intrusion through time.« less
Liu, Xianzhe; Choy, Edwin; Harmon, David; Yang, Shuhua; Yang, Cao; Mankin, Henry; Hornicek, Francis J; Duan, Zhenfeng
2011-06-01
Osteosarcoma is the most common type of primary bone cancer in children and adolescents. Treatment options for osteosarcoma may include surgery, chemotherapy, and radiotherapy. Unfortunately, many patients eventually relapse, resulting in an unsatisfactory outcome. The serine/threonine-specific polo-like kinase 1 (PLK1) is a kinase that plays an important role in mitosis and the maintenance of genomic stability. PLK1 has been found to be highly expressed in the malignant cells of osteosarcoma. Here, we describe the in-vitro and in-vivo effects of BI 2536, a small-molecule inhibitor of PLK1, which through inhibiting PLK1 enzymatic activity, causes mitotic arrest and eventually induces cancer cell apoptosis. In this study, we show that the PLK1 inhibitor, BI 2536, inhibits proliferation and induces apoptosis in two-dimensional and three-dimensional cultures of osteosarcoma cell lines, KHOS and U-2OS. A proliferation assay performed both in two-dimensional and three-dimensional culture showed that the growth of both cell lines was inhibited by BI 2536. Cell cycle analysis showed that the cells treated with BI 2536 were mainly arrested in the G2/M phase. Immunofluorescence and western blotting analysis confirmed that the administration of BI 2536 led to significant decrease of PLK1 and Mcl-1 protein expression levels in dose-dependent and time-dependent manners. Furthermore, BI 2536-induced apoptosis in the osteosarcoma cell lines was shown by poly (ADP-ribose) polymerase cleavage and caspase assay. Finally, in mouse osteosarcoma xenografts, BI 2536-treated mice had significantly smaller tumors compared with the control mice. These findings offer evidence of the potential role for targeting PLK1 in osteosarcoma therapy.
Data center thermal management
Hamann, Hendrik F.; Li, Hongfei
2016-02-09
Historical high-spatial-resolution temperature data and dynamic temperature sensor measurement data may be used to predict temperature. A first formulation may be derived based on the historical high-spatial-resolution temperature data for determining a temperature at any point in 3-dimensional space. The dynamic temperature sensor measurement data may be calibrated based on the historical high-spatial-resolution temperature data at a corresponding historical time. Sensor temperature data at a plurality of sensor locations may be predicted for a future time based on the calibrated dynamic temperature sensor measurement data. A three-dimensional temperature spatial distribution associated with the future time may be generated based on the forecasted sensor temperature data and the first formulation. The three-dimensional temperature spatial distribution associated with the future time may be projected to a two-dimensional temperature distribution, and temperature in the future time for a selected space location may be forecasted dynamically based on said two-dimensional temperature distribution.
Valley excitons in two-dimensional semiconductors
Yu, Hongyi; Cui, Xiaodong; Xu, Xiaodong; ...
2014-12-30
Monolayer group-VIB transition metal dichalcogenides have recently emerged as a new class of semiconductors in the two-dimensional limit. The attractive properties include: the visible range direct band gap ideal for exploring optoelectronic applications; the intriguing physics associated with spin and valley pseudospin of carriers which implies potentials for novel electronics based on these internal degrees of freedom; the exceptionally strong Coulomb interaction due to the two-dimensional geometry and the large effective masses. The physics of excitons, the bound states of electrons and holes, has been one of the most actively studied topics on these two-dimensional semiconductors, where the excitons exhibitmore » remarkably new features due to the strong Coulomb binding, the valley degeneracy of the band edges, and the valley dependent optical selection rules for interband transitions. Here we give a brief overview of the experimental and theoretical findings on excitons in two-dimensional transition metal dichalcogenides, with focus on the novel properties associated with their valley degrees of freedom.« less
Large-Amplitude, High-Rate Roll Oscillations of a 65 deg Delta Wing at High Incidence
NASA Technical Reports Server (NTRS)
Chaderjian, Neal M.; Schiff, Lewis B.
2000-01-01
The IAR/WL 65 deg delta wing experimental results provide both detail pressure measurements and a wide range of flow conditions covering from simple attached flow, through fully developed vortex and vortex burst flow, up to fully-stalled flow at very high incidence. Thus, the Computational Unsteady Aerodynamics researchers can use it at different level of validating the corresponding code. In this section a range of CFD results are provided for the 65 deg delta wing at selected flow conditions. The time-dependent, three-dimensional, Reynolds-averaged, Navier-Stokes (RANS) equations are used to numerically simulate the unsteady vertical flow. Two sting angles and two large- amplitude, high-rate, forced-roll motions and a damped free-to-roll motion are presented. The free-to-roll motion is computed by coupling the time-dependent RANS equations to the flight dynamic equation of motion. The computed results are compared with experimental pressures, forces, moments and roll angle time history. In addition, surface and off-surface flow particle streaks are also presented.
NASA Astrophysics Data System (ADS)
Hoover, Wm. G.; Hoover, Carol G.
2012-02-01
We compare the Gram-Schmidt and covariant phase-space-basis-vector descriptions for three time-reversible harmonic oscillator problems, in two, three, and four phase-space dimensions respectively. The two-dimensional problem can be solved analytically. The three-dimensional and four-dimensional problems studied here are simultaneously chaotic, time-reversible, and dissipative. Our treatment is intended to be pedagogical, for use in an updated version of our book on Time Reversibility, Computer Simulation, and Chaos. Comments are very welcome.
Thermal conductivity of disordered two-dimensional binary alloys.
Zhou, Yang; Guo, Zhi-Xin; Cao, Hai-Yuan; Chen, Shi-You; Xiang, Hong-Jun; Gong, Xin-Gao
2016-10-20
Using non-equilibrium molecular dynamics simulations, we have studied the effect of disorder on the thermal conductivity of two-dimensional (2D) C 1-x N x alloys. We find that the thermal conductivity not only depends on the substitution concentration of nitrogen, but also strongly depends on the disorder distribution. A general linear relationship is revealed between the thermal conductivity and the participation ratio of phonons in 2D alloys. Localization mode analysis further indicates that the thermal conductivity variation in the ordered alloys can be attributed to the number of inequivalent atoms. As for the disordered alloys, we find that the thermal conductivity variation can be described by a simple linear formula with the disorder degree and the substitution concentration. The present study suggests some general guidance for phonon manipulation and thermal engineering in low dimensional alloys.
Time-dependent Models of Magnetospheric Accretion onto Young Stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, C. E.; Espaillat, C. C.; Owen, J. E.
Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that ifmore » the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.« less
Orientation-dependent integral equation theory for a two-dimensional model of water
NASA Astrophysics Data System (ADS)
Urbič, T.; Vlachy, V.; Kalyuzhnyi, Yu. V.; Dill, K. A.
2003-03-01
We develop an integral equation theory that applies to strongly associating orientation-dependent liquids, such as water. In an earlier treatment, we developed a Wertheim integral equation theory (IET) that we tested against NPT Monte Carlo simulations of the two-dimensional Mercedes Benz model of water. The main approximation in the earlier calculation was an orientational averaging in the multidensity Ornstein-Zernike equation. Here we improve the theory by explicit introduction of an orientation dependence in the IET, based upon expanding the two-particle angular correlation function in orthogonal basis functions. We find that the new orientation-dependent IET (ODIET) yields a considerable improvement of the predicted structure of water, when compared to the Monte Carlo simulations. In particular, ODIET predicts more long-range order than the original IET, with hexagonal symmetry, as expected for the hydrogen bonded ice in this model. The new theoretical approximation still errs in some subtle properties; for example, it does not predict liquid water's density maximum with temperature or the negative thermal expansion coefficient.
Linear stability of three-dimensional boundary layers - Effects of curvature and non-parallelism
NASA Technical Reports Server (NTRS)
Malik, M. R.; Balakumar, P.
1993-01-01
In this paper we study the effect of in-plane (wavefront) curvature on the stability of three-dimensional boundary layers. It is found that this effect is stabilizing or destabilizing depending upon the sign of the crossflow velocity profile. We also investigate the effects of surface curvature and nonparallelism on crossflow instability. Computations performed for an infinite-swept cylinder show that while convex curvature stabilizes the three-dimensional boundary layer, nonparallelism is, in general, destabilizing and the net effect of the two depends upon meanflow and disturbance parameters. It is also found that concave surface curvature further destabilizes the crossflow instability.