Sample records for two-dimensional time resolved

  1. Development of soft x-ray time-resolved photoemission spectroscopy system with a two-dimensional angle-resolved time-of-flight analyzer at SPring-8 BL07LSU

    NASA Astrophysics Data System (ADS)

    Ogawa, Manami; Yamamoto, Susumu; Kousa, Yuka; Nakamura, Fumitaka; Yukawa, Ryu; Fukushima, Akiko; Harasawa, Ayumi; Kondoh, Hiroshi; Tanaka, Yoshihito; Kakizaki, Akito; Matsuda, Iwao

    2012-02-01

    We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.

  2. Development of soft x-ray time-resolved photoemission spectroscopy system with a two-dimensional angle-resolved time-of-flight analyzer at SPring-8 BL07LSU.

    PubMed

    Ogawa, Manami; Yamamoto, Susumu; Kousa, Yuka; Nakamura, Fumitaka; Yukawa, Ryu; Fukushima, Akiko; Harasawa, Ayumi; Kondoh, Hiroshi; Tanaka, Yoshihito; Kakizaki, Akito; Matsuda, Iwao

    2012-02-01

    We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.

  3. Comparative analysis of peak-detection techniques for comprehensive two-dimensional chromatography.

    PubMed

    Latha, Indu; Reichenbach, Stephen E; Tao, Qingping

    2011-09-23

    Comprehensive two-dimensional gas chromatography (GC×GC) is a powerful technology for separating complex samples. The typical goal of GC×GC peak detection is to aggregate data points of analyte peaks based on their retention times and intensities. Two techniques commonly used for two-dimensional peak detection are the two-step algorithm and the watershed algorithm. A recent study [4] compared the performance of the two-step and watershed algorithms for GC×GC data with retention-time shifts in the second-column separations. In that analysis, the peak retention-time shifts were corrected while applying the two-step algorithm but the watershed algorithm was applied without shift correction. The results indicated that the watershed algorithm has a higher probability of erroneously splitting a single two-dimensional peak than the two-step approach. This paper reconsiders the analysis by comparing peak-detection performance for resolved peaks after correcting retention-time shifts for both the two-step and watershed algorithms. Simulations with wide-ranging conditions indicate that when shift correction is employed with both algorithms, the watershed algorithm detects resolved peaks with greater accuracy than the two-step method. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Simultaneous observation of glutamate, gamma-aminobutyric acid, and glutamine in human brain at 4.7 T using localized two-dimensional constant-time correlation spectroscopy.

    PubMed

    Watanabe, H; Takaya, N; Mitsumori, F

    2008-06-01

    Localized two-dimensional constant-time correlation spectroscopy (CT-COSY) was used to resolve glutamate (Glu), gamma-aminobutyric acid (GABA), and glutamine (Gln) in the human brain at 4.7 T. In this method, three-dimensional localization was achieved using three radio frequency pulses of the CT-COSY module for slice selection. As this sequence could decouple JHH along the F1 direction, peak resolution of metabolites was improved even on a magnitude-mode display. In experiments on a phantom containing N-acetylaspartate, creatine, Glu, Gln, and GABA with a constant time delay (Tct) of 110 ms, cross peaks of Glu, Gln, and GABA were obtained on a spectrum processed with standard sine-bell windows, which emphasize sine-dependent signals along the t2 direction. In contrast, diagonal peaks of Glu C4H at 2.35 ppm, GABA C2H at 2.28 ppm, and Gln C4H at 2.44 ppm were resolved on a spectrum processed with Gaussian windows, which emphasize cosine-dependent signals along t2. Human brain spectra were obtained from a 27 mL voxel within the parieto-occipital region using a volume transverse electromagnetic (TEM) coil for both transmission and reception. Tct was 110 ms; the total scan time was 30 min. Diagonal peaks of Glu C4H, GABA C2H, and Gln C4H were also resolved on the spectrum processed with Gaussian windows. These results show that the localized two-dimensional CT-COSY method featuring 1H decoupling along the F1 direction could resolve Glu, GABA, and Gln signals in the human brain. Copyright (c) 2008 John Wiley & Sons, Ltd.

  5. Electron heating and thermal relaxation of gold nanorods revealed by two-dimensional electronic spectroscopy.

    PubMed

    Lietard, Aude; Hsieh, Cho-Shuen; Rhee, Hanju; Cho, Minhaeng

    2018-03-01

    To elucidate the complex interplay between the size and shape of gold nanorods and their electronic, photothermal, and optical properties for molecular imaging, photothermal therapy, and optoelectronic devices, it is a prerequisite to characterize ultrafast electron dynamics in gold nanorods. Time-resolved transient absorption (TA) studies of plasmonic electrons in various nanostructures have revealed the time scales for electron heating, lattice vibrational excitation, and phonon relaxation processes in condensed phases. However, because linear spectroscopic and time-resolved TA signals are vulnerable to inhomogeneous line-broadening, pure dephasing and direct electron heating effects are difficult to observe. Here we show that femtosecond two-dimensional electronic spectroscopy, with its unprecedented time resolution and phase sensitivity, can be used to collect direct experimental evidence for ultrafast electron heating, anomalously strong coherent and transient electronic plasmonic responses, and homogenous dephasing processes resulting from electron-vibration couplings even for polydisperse gold nanorods.

  6. Capturing the crystalline phase of two-dimensional nanocrystal superlattices in action.

    PubMed

    Jiang, Zhang; Lin, Xiao-Min; Sprung, Michael; Narayanan, Suresh; Wang, Jin

    2010-03-10

    Critical photonic, electronic, and magnetic applications of two-dimensional nanocrystal superlattices often require nanostructures in perfect single-crystal phases with long-range order and limited defects. Here we discovered a crystalline phase with quasi-long-range positional order for two-dimensional nanocrystal superlattice domains self-assembled at the liquid-air interface during droplet evaporation, using in situ time-resolved X-ray scattering along with rigorous theories on two dimensional crystal structures. Surprisingly, it was observed that drying these superlattice domains preserved only an orientational order but not a long-range positional order, also supported by quantitative analysis of transmission electron microscopy images.

  7. Display dimensionality and conflict geometry effects on maneuver preferences for resolving in-flight conflicts.

    PubMed

    Thomas, Lisa C; Wickens, Christopher D

    2008-08-01

    Two experiments explored the effects of display dimensionality, conflict geometry, and time pressure on pilot maneuvering preferences for resolving en route conflicts. With the presence of a cockpit display of traffic information (CDTI) that provides graphical airspace information, pilots can use a variety of conflict resolution maneuvers in response to how they perceive the conflict. Inconsistent preference findings from previous research on conflict resolution using CDTIs may be attributable to inherent ambiguities in 3-D perspective displays and/or a limited range of conflict geometries. Pilots resolved predicted conflicts using CDTIs with three levels of display dimensionality; the first had two 2-D orthogonal views, the second depicted the airspace in two alternating 3-D perspective views, and the third had a pilot-controlled swiveling viewpoint. Pilots demonstrated the same preferences that have been observed in previous research for vertical over lateral maneuvers in low workload and climbs over descents for level-flight conflicts. With increasing workload the two 3-D perspective displays, but not the 2-D displays, resulted in an increased preference for lateral over vertical maneuvers. Increased time pressure resulted in increased vertical maneuvers, an effect again limited to the two 3-D perspective displays. Resolution preferences were more affected by workload and time pressure when the 3-D perspective displays were used, as compared with the 2-D displays, although overall preferences were milder than in previous studies. Investigating maneuver preferences using the strategic flight planning paradigm employed in this study may be the key to better ensure pilot acceptance of computer-generated resolution maneuvers.

  8. Daylight time-resolved photographs of lightning.

    PubMed

    Qrville, R E; Lala, G G; Idone, V P

    1978-07-07

    Lightning dart leaders and return strokes have been recorded in daylight with both good spatial resolution and good time resolution as part of the Thunder-storm Research International Program. The resulting time-resolved photographs are apparently equivalent to the best data obtained earlier only at night. Average two-dimensional return stroke velocities in four subsequent strokes between the ground and a height of 1400 meters were approximately 1.3 x 10(8) meters per second. The estimated systematic error is 10 to 15 percent.

  9. Two-dimensional electronic spectra of the photosynthetic apparatus of green sulfur bacteria

    NASA Astrophysics Data System (ADS)

    Kramer, Tobias; Rodriguez, Mirta

    2017-03-01

    Advances in time resolved spectroscopy have provided new insight into the energy transmission in natural photosynthetic complexes. Novel theoretical tools and models are being developed in order to explain the experimental results. We provide a model calculation for the two-dimensional electronic spectra of Cholorobaculum tepidum which correctly describes the main features and transfer time scales found in recent experiments. From our calculation one can infer the coupling of the antenna chlorosome with the environment and the coupling between the chlorosome and the Fenna-Matthews-Olson complex. We show that environment assisted transport between the subunits is the required mechanism to reproduce the experimental two-dimensional electronic spectra.

  10. Time-dependent photon migration imaging

    NASA Astrophysics Data System (ADS)

    Sevick, Eva M.; Wang, NaiGuang; Chance, Britton

    1992-02-01

    Recently, the application of both time- and frequency-resolved fluorescence techniques for the determination of photon migration characteristics in strongly scattering media has been used to characterize the optical properties in strongly scattering media. Specifically, Chance and coworkers have utilized measurement of photon migration characteristics to determine tissue hemoglobin absorbance and ultimately oxygenation status in homogeneous tissues. In this study, we present simulation results and experimental measurements for both techniques to show the capacity of time-dependent photon migration characteristics to image optically obscure absorbers located in strongly scattering media. The applications of time-dependent photon imaging in the biomedical community include imaging of light absorbing hematomas, tumors, hypoxic tissue volumes, and other tissue abnormalities. Herein, we show that the time-resolved parameter of mean photon path length, , and the frequency- resolved parameter of phase-shift, (theta) , can be used similarly to obtain three dimensional information of absorber position from two-dimensional measurements. Finally, we show that unlike imaging techniques that monitor the intensity of light without regard to the migration characteristics, the resolution of time-dependent photon migration measurements is enhanced by tissue scattering, further potentiating their use for biomedical imaging.

  11. Recent Advances in 3D Time-Resolved Contrast-Enhanced MR Angiography

    PubMed Central

    Riederer, Stephen J.; Haider, Clifton R.; Borisch, Eric A.; Weavers, Paul T.; Young, Phillip M.

    2015-01-01

    Contrast-enhanced MR angiography (CE-MRA) was first introduced for clinical studies approximately 20 years ago. Early work provided 3 to 4 mm spatial resolution with acquisition times in the 30 sec range. Since that time there has been continuing effort to provide improved spatial resolution with reduced acquisition time, allowing high resolution three-dimensional (3D) time-resolved studies. The purpose of this work is to describe how this has been accomplished. Specific technical enablers have been: improved gradients allowing reduced repetition times, improved k-space sampling and reconstruction methods, parallel acquisition particularly in two directions, and improved and higher count receiver coil arrays. These have collectively made high resolution time-resolved studies readily available for many anatomic regions. Depending on the application, approximate 1 mm isotropic resolution is now possible with frame times of several seconds. Clinical applications of time-resolved CE-MRA are briefly reviewed. PMID:26032598

  12. Two Dimensional Mechanism for Insect Hovering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jane Wang, Z.

    2000-09-04

    Resolved computation of two dimensional insect hovering shows for the first time that a two dimensional hovering motion can generate enough lift to support a typical insect weight. The computation reveals a two dimensional mechanism of creating a downward dipole jet of counterrotating vortices, which are formed from leading and trailing edge vortices. The vortex dynamics further elucidates the role of the phase relation between the wing translation and rotation in lift generation and explains why the instantaneous forces can reach a periodic state after only a few strokes. The model predicts the lower limits in Reynolds number and amplitudemore » above which the averaged forces are sufficient. (c) 2000 The American Physical Society.« less

  13. Tight-binding model of the photosystem II reaction center: application to two-dimensional electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Gelzinis, Andrius; Valkunas, Leonas; Fuller, Franklin D.; Ogilvie, Jennifer P.; Mukamel, Shaul; Abramavicius, Darius

    2013-07-01

    We propose an optimized tight-binding electron-hole model of the photosystem II (PSII) reaction center (RC). Our model incorporates two charge separation pathways and spatial correlations of both static disorder and fast fluctuations of energy levels. It captures the main experimental features observed in time-resolved two-dimensional (2D) optical spectra at 77 K: peak pattern, lineshapes and time traces. Analysis of 2D spectra kinetics reveals that specific regions of the 2D spectra of the PSII RC are sensitive to the charge transfer states. We find that the energy disorder of two peripheral chlorophylls is four times larger than the other RC pigments.

  14. Time-dependent first-principles study of angle-resolved secondary electron emission from atomic sheets

    NASA Astrophysics Data System (ADS)

    Ueda, Yoshihiro; Suzuki, Yasumitsu; Watanabe, Kazuyuki

    2018-02-01

    Angle-resolved secondary electron emission (ARSEE) spectra were analyzed for two-dimensional atomic sheets using a time-dependent first-principles simulation of electron scattering. We demonstrate that the calculated ARSEE spectra capture the unoccupied band structure of the atomic sheets. The excitation dynamics that lead to SEE have also been revealed by the time-dependent Kohn-Sham decomposition scheme. In the present study, the mechanism for the experimentally observed ARSEE from atomic sheets is elucidated with respect to both energetics and the dynamical aspects of SEE.

  15. Comprehensive two-dimensional gas chromatography with flame ionization and time-of-flight mass spectrometry detection: qualitative and quantitative analysis of West Australian sandalwood oil.

    PubMed

    Shellie, Robert; Marriott, Philip; Morrison, Paul

    2004-09-01

    The use of gas chromatography (GC)-mass spectrometry (MS), GC-time-of-flight MS (TOFMS), comprehensive two-dimensional GC (GCxGC)-flame ionization detection (FID), and GCxGC-TOFMS is discussed for the characterization of the eight important representative components, including Z-alpha-santalol, epi-alpha-bisabolol, Z-alpha-trans-bergamotol, epi-beta-santalol, Z-beta-santalol, E,E-farnesol, Z-nuciferol, and Z-lanceol, in the oil of west Australian sandalwood (Santalum spicatum). Single-column GC-MS lacks the resolving power to separate all of the listed components as pure peaks and allow precise analytical measurement of individual component abundances. With enhanced peak resolution capabilities in GCxGC, these components are sufficiently well resolved to be quantitated using flame ionization detection, following initial characterization of components by using GCxGC-TOFMS.

  16. New two-dimensional space-resolving flux detection technique for measurement of hohlraum inner radiation in Shenguang-III prototype.

    PubMed

    Ren, Kuan; Liu, Shenye; Du, Huabing; Hou, Lifei; Jing, Longfei; Zhao, Yang; Yang, Zhiwen; Wei, Minxi; Deng, Keli; Yao, Li; Yang, Guohong; Li, Sanwei; Lan, Ke; Liu, Jie; Zhu, Xiaoli; Ding, Yongkun; Yi, Lin

    2015-10-01

    The space-resolving measurement of X-ray flux from a specific area (laser spot, re-emitting wall, or capsule) inside the hohlraum is an ongoing and critical problem in indirectly driven inertial-confinement fusion experiments. In this work, we developed a new two-dimensional space-resolving flux detection technique to measure the X-ray flux from specific areas inside the hohlraum by using the time- and space-resolving flux detector (SRFD). In two typical hohlraum experiments conducted at the Shenguang-III prototype laser facility, the X-ray flux and radiation temperature from an area 0.2 mm in diameter inside the hohlraum were measured through the laser entrance hole (LEH). The different flux intensities and radiation temperatures detected using the SRFD from the inner area of the LEH were compared with the result measured using the flat-response X-ray detector from the entire LEH. This comparison was also analyzed theoretically. The inner area detected using the SRFD was found to be the re-emitting wall area alone. This important improvement in space-resolving X-ray flux measurement will enhance the current X-ray flux space characterization techniques, thereby furthering the quantitative understanding of X-ray flux space behavior in the hohlraum.

  17. New two-dimensional space-resolving flux detection technique for measurement of hohlraum inner radiation in Shenguang-III prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Kuan; Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900; Liu, Shenye, E-mail: lsye1029@163.com

    2015-10-15

    The space-resolving measurement of X-ray flux from a specific area (laser spot, re-emitting wall, or capsule) inside the hohlraum is an ongoing and critical problem in indirectly driven inertial-confinement fusion experiments. In this work, we developed a new two-dimensional space-resolving flux detection technique to measure the X-ray flux from specific areas inside the hohlraum by using the time- and space-resolving flux detector (SRFD). In two typical hohlraum experiments conducted at the Shenguang-III prototype laser facility, the X-ray flux and radiation temperature from an area 0.2 mm in diameter inside the hohlraum were measured through the laser entrance hole (LEH). Themore » different flux intensities and radiation temperatures detected using the SRFD from the inner area of the LEH were compared with the result measured using the flat-response X-ray detector from the entire LEH. This comparison was also analyzed theoretically. The inner area detected using the SRFD was found to be the re-emitting wall area alone. This important improvement in space-resolving X-ray flux measurement will enhance the current X-ray flux space characterization techniques, thereby furthering the quantitative understanding of X-ray flux space behavior in the hohlraum.« less

  18. Space-resolved measurements of neutrons and ions emitted by a plasma focus

    NASA Astrophysics Data System (ADS)

    Jaeger, U.

    1980-05-01

    Space-resolved measurements of neutrons and of accelerated charged particles emitted by a plasma focus device are presented. The neutron source was measured with one and two dimensional paraffin collimators. The spatial resolution is 5 mn along the axis and the radius, with a time resolution of 10 ns. In order to make quantitative statements about the neutron yield, neutron scattering, absorption, and nuclear reactions were taken into account. Part of the neutron measurement was carried out together with time and space resolved measurements of the electron density to study possible correlations between n sub e and y sub n.

  19. Probing energy transfer events in the light harvesting complex 2 (LH2) of Rhodobacter sphaeroides with two-dimensional spectroscopy.

    PubMed

    Fidler, Andrew F; Singh, Ved P; Long, Phillip D; Dahlberg, Peter D; Engel, Gregory S

    2013-10-21

    Excitation energy transfer events in the photosynthetic light harvesting complex 2 (LH2) of Rhodobacter sphaeroides are investigated with polarization controlled two-dimensional electronic spectroscopy. A spectrally broadened pulse allows simultaneous measurement of the energy transfer within and between the two absorption bands at 800 nm and 850 nm. The phased all-parallel polarization two-dimensional spectra resolve the initial events of energy transfer by separating the intra-band and inter-band relaxation processes across the two-dimensional map. The internal dynamics of the 800 nm region of the spectra are resolved as a cross peak that grows in on an ultrafast time scale, reflecting energy transfer between higher lying excitations of the B850 chromophores into the B800 states. We utilize a polarization sequence designed to highlight the initial excited state dynamics which uncovers an ultrafast transfer component between the two bands that was not observed in the all-parallel polarization data. We attribute the ultrafast transfer component to energy transfer from higher energy exciton states to lower energy states of the strongly coupled B850 chromophores. Connecting the spectroscopic signature to the molecular structure, we reveal multiple relaxation pathways including a cyclic transfer of energy between the two rings of the complex.

  20. Two-dimensional time-resolved X-ray diffraction study of liquid/solid fraction and solid particle size in Fe-C binary system with an electrostatic levitator furnace

    NASA Astrophysics Data System (ADS)

    Yonemura, M.; Okada, J.; Watanabe, Y.; Ishikawa, T.; Nanao, S.; Shobu, T.; Toyokawa, H.

    2013-03-01

    Liquid state provides functions such as matter transport or a reaction field and plays an important role in manufacturing processes such as refining, forging or welding. However, experimental procedures are significantly difficult for an observation of solidification process of iron and iron-based alloys in order to identify rapid transformations subjected to fast temperature evolution. Therefore, in order to study the solidification in iron and iron-based alloys, we considered a combination of high energy X-ray diffraction measurements and an electrostatic levitation method (ESL). In order to analyze the liquid/solid fraction, the solidification of melted spherical specimens was measured at a time resolution of 0.1 seconds during rapid cooling using the two-dimensional time-resolved X-ray diffraction. Furthermore, the observation of particle sizes and phase identification was performed on a trial basis using X-ray small angle scattering with X-ray diffraction.

  1. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)

    1999-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: ##EQU1## wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absoption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  2. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Gayen, Swapan K. (Inventor)

    2000-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absorption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  3. Reaction-time-resolved measurements of laser-induced fluorescence in a shock tube with a single laser pulse

    NASA Astrophysics Data System (ADS)

    Zabeti, S.; Fikri, M.; Schulz, C.

    2017-11-01

    Shock tubes allow for the study of ultra-fast gas-phase reactions on the microsecond time scale. Because the repetition rate of the experiments is low, it is crucial to gain as much information as possible from each individual measurement. While reaction-time-resolved species concentration and temperature measurements with fast absorption methods are established, conventional laser-induced fluorescence (LIF) measurements with pulsed lasers provide data only at a single reaction time. Therefore, fluorescence methods have rarely been used in shock-tube diagnostics. In this paper, a novel experimental concept is presented that allows reaction-time-resolved LIF measurements with one single laser pulse using a test section that is equipped with several optical ports. After the passage of the shock wave, the reactive mixture is excited along the center of the tube with a 266-nm laser beam directed through a window in the end wall of the shock tube. The emitted LIF signal is collected through elongated sidewall windows and focused onto the entrance slit of an imaging spectrometer coupled to an intensified CCD camera. The one-dimensional spatial resolution of the measurement translates into a reaction-time-resolved measurement while the species information can be gained from the spectral axis of the detected two-dimensional image. Anisole pyrolysis was selected as the benchmark reaction to demonstrate the new apparatus.

  4. Modelling Time-Resolved Two-Dimensional Electronic Spectroscopy of the Primary Photoisomerization Event in Rhodopsin

    PubMed Central

    2015-01-01

    Time-resolved two-dimensional (2D) electronic spectra (ES) tracking the evolution of the excited state manifolds of the retinal chromophore have been simulated along the photoisomerization pathway in bovine rhodopsin, using a state-of-the-art hybrid QM/MM approach based on multiconfigurational methods. Simulations of broadband 2D spectra provide a useful picture of the overall detectable 2D signals from the near-infrared (NIR) to the near-ultraviolet (UV). Evolution of the stimulated emission (SE) and excited state absorption (ESA) 2D signals indicates that the S1 → SN (with N ≥ 2) ESAs feature a substantial blue-shift only after bond inversion and partial rotation along the cis → trans isomerization angle, while the SE rapidly red-shifts during the photoinduced skeletal relaxation of the polyene chain. Different combinations of pulse frequencies are proposed in order to follow the evolution of specific ESA signals. These include a two-color 2DVis/NIR setup especially suited for tracking the evolution of the S1 → S2 transitions that can be used to discriminate between different photochemical mechanisms of retinal photoisomerization as a function of the environment. The reported results are consistent with the available time-resolved pump–probe experimental data, and may be used for the design of more elaborate transient 2D electronic spectroscopy techniques. PMID:24794143

  5. Source localization of narrow band signals in multipath environments, with application to marine mammals

    NASA Astrophysics Data System (ADS)

    Valtierra, Robert Daniel

    Passive acoustic localization has benefited from many major developments and has become an increasingly important focus point in marine mammal research. Several challenges still remain. This work seeks to address several of these challenges such as tracking the calling depths of baleen whales. In this work, data from an array of widely spaced Marine Acoustic Recording Units (MARUs) was used to achieve three dimensional localization by combining the methods Time Difference of Arrival (TDOA) and Direct-Reflected Time Difference of Arrival (DRTD) along with a newly developed autocorrelation technique. TDOA was applied to data for two dimensional (latitude and longitude) localization and depth was resolved using DRTD. Previously, DRTD had been limited to pulsed broadband signals, such as sperm whale or dolphin echolocation, where individual direct and reflected signals are separated in time. Due to the length of typical baleen whale vocalizations, individual multipath signal arrivals can overlap making time differences of arrival difficult to resolve. This problem can be solved using an autocorrelation, which can extract reflection information from overlapping signals. To establish this technique, a derivation was made to model the autocorrelation of a direct signal and its overlapping reflection. The model was exploited to derive performance limits allowing for prediction of the minimum resolvable direct-reflected time difference for a known signal type. The dependence on signal parameters (sweep rate, call duration) was also investigated. The model was then verified using both recorded and simulated data from two analysis cases for North Atlantic right whales (NARWs, Eubalaena glacialis) and humpback whales (Megaptera noveaengliae). The newly developed autocorrelation technique was then combined with DRTD and tested using data from playback transmissions to localize an acoustic transducer at a known depth and location. The combined DRTD-autocorrelation methods enabled calling depth and range estimations of a vocalizing NARW and humpback whale in two separate cases. The DRTD-autocorrelation method was then combined with TDOA to create a three dimensional track of a NARW in the Stellwagen Bank National Marine Sanctuary. Results from these experiments illustrated the potential of the combined methods to successfully resolve baleen calling depths in three dimensions.

  6. Three-dimensional vortex patterns in a starting flow

    NASA Astrophysics Data System (ADS)

    Freymuth, P.; Finaish, F.; Bank, W.

    1985-12-01

    Freymuth et al. (1983, 1984, 1985) have conducted investigations involving chordwise vortical-pattern visualizations in a starting flow of constant acceleration around an airfoil. Detailed resolution of vortical shapes in two dimensions could be obtained. No visualization in the third spanwise dimension is needed as long as the flow remains two-dimensional. However, some time after flow startup, chordwise vortical patterns become blurred, indicating the onset of turbulence. The present investigation is concerned with an extension of the flow visualization from a chordwise cross section to the spanwise dimension. The investigation has the objective to look into the two-dimensionality of the initial vortical developments and to resolve three-dimensional effects during the transition to turbulence. Attention is given to the visualization method, the chordwise vs spanwise visualization in the two-dimensional regime, the spanwise visualization of transition, and the visualization of vortical patterns behind the trailing edge.

  7. Use of 15N reverse gradient two-dimensional nuclear magnetic resonance spectroscopy to follow metabolic activity in Nicotiana plumbaginifolia cell-suspension cultures.

    PubMed

    Mesnard, F; Azaroual, N; Marty, D; Fliniaux, M A; Robins, R J; Vermeersch, G; Monti, J P

    2000-02-01

    Nitrogen metabolism was monitored in suspension cultured cells of Nicotiana plumbaginifolia Viv. using nuclear magnetic resonance (NMR) spectroscopy following the feeding of (15NH4)2SO4 and K15NO3. By using two-dimensional 15N-1H NMR with heteronuclear single-quantum-coherence spectroscopy and heteronuclear multiple-bond-coherence spectroscopy sequences, an enhanced resolution of the incorporation of 15N label into a range of compounds could be detected. Thus, in addition to the amino acids normally observed in one-dimensional 15N NMR (glutamine, aspartate, alanine), several other amino acids could be resolved, notably serine, glycine and proline. Furthermore, it was found that the peak normally assigned to the non-protein amino-acid gamma-aminobutyric acid in the one-dimensional 15N NMR spectrum was resolved into a several components. A peak of N-acetylated compounds was resolved, probably composed of the intermediates in arginine biosynthesis, N-acetylglutamate and N-acetylornithine and, possibly, the intermediate of putrescine degradation into gamma-aminobutyric acid, N-acetylputrescine. The occurrence of 15N-label in agmatine and the low detection of labelled putrescine indicate that crucial intermediates of the pathway from glutamate to polyamines and/or the tobacco alkaloids could be monitored. For the first time, labelling of the peptide glutathione and of the nucleotide uridine could be seen.

  8. Localized oscillatory states in magnetoconvection.

    PubMed

    Buckley, Matthew C; Bushby, Paul J

    2013-02-01

    Localized states are found in many pattern forming systems. The aim of this paper is to investigate the occurrence of oscillatory localized states in two-dimensional Boussinesq magnetoconvection. Initially considering an idealized model, in which the vertical structure of the system has been simplified by a projection onto a small number of Fourier modes, we find that these states are restricted to the low ζ regime (where ζ represents the ratio of the magnetic to thermal diffusivities). These states always exhibit bistability with another nontrivial solution branch; in other words, they show no evidence of subcritical behavior. This is due to the weak flux expulsion that is exhibited by these time-dependent solutions. Using the results of this parameter survey, we locate corresponding states in a fully resolved two-dimensional system, although the mode of oscillation is more complex in this case. This is the first time that a localized oscillatory state, of this kind, has been found in a fully resolved magnetoconvection simulation.

  9. Accelerated time-resolved three-dimensional MR velocity mapping of blood flow patterns in the aorta using SENSE and k-t BLAST.

    PubMed

    Stadlbauer, Andreas; van der Riet, Wilma; Crelier, Gerard; Salomonowitz, Erich

    2010-07-01

    To assess the feasibility and potential limitations of the acceleration techniques SENSE and k-t BLAST for time-resolved three-dimensional (3D) velocity mapping of aortic blood flow. Furthermore, to quantify differences in peak velocity versus heart phase curves. Time-resolved 3D blood flow patterns were investigated in eleven volunteers and two patients suffering from aortic diseases with accelerated PC-MR sequences either in combination with SENSE (R=2) or k-t BLAST (6-fold). Both sequences showed similar data acquisition times and hence acceleration efficiency. Flow-field streamlines were calculated and visualized using the GTFlow software tool in order to reconstruct 3D aortic blood flow patterns. Differences between the peak velocities from single-slice PC-MRI experiments using SENSE 2 and k-t BLAST 6 were calculated for the whole cardiac cycle and averaged for all volunteers. Reconstruction of 3D flow patterns in volunteers revealed attenuations in blood flow dynamics for k-t BLAST 6 compared to SENSE 2 in terms of 3D streamlines showing fewer and less distinct vortices and reduction in peak velocity, which is caused by temporal blurring. Solely by time-resolved 3D MR velocity mapping in combination with SENSE detected pathologic blood flow patterns in patients with aortic diseases. For volunteers, we found a broadening and flattering of the peak velocity versus heart phase diagram between the two acceleration techniques, which is an evidence for the temporal blurring of the k-t BLAST approach. We demonstrated the feasibility of SENSE and detected potential limitations of k-t BLAST when used for time-resolved 3D velocity mapping. The effects of higher k-t BLAST acceleration factors have to be considered for application in 3D velocity mapping. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  10. Phase contrast MR angiography techniques.

    PubMed

    Dumoulin, C L

    1995-08-01

    Phase contrast MR methods encode information from macroscopic motion into the phase of the MR signal. Phase contrast methods can be applied with small and large fields-of-view, can give quantitative measures of velocity, and provide excellent suppression of signals from stationary tissue. Unlike time-of-flight methods, phase contrast methods directly measure flow and thus are not hindered by the artifactual appearance of tissue having short T1. Phase contrast angiograms can be two-dimensional (thin slice or projectile), three-dimensional, and/or time resolved and have applications throughout the body.

  11. Miniature near-infrared dual-axes confocal microscope utilizing a two-dimensional microelectromechanical systems scanner

    PubMed Central

    Liu, Jonathan T. C.; Mandella, Michael J.; Ra, Hyejun; Wong, Larry K.; Solgaard, Olav; Kino, Gordon S.; Piyawattanametha, Wibool; Contag, Christopher H.; Wang, Thomas D.

    2007-01-01

    The first, to our knowledge, miniature dual-axes confocal microscope has been developed, with an outer diameter of 10 mm, for subsurface imaging of biological tissues with 5–7 μm resolution. Depth-resolved en face images are obtained at 30 frames per second, with a field of view of 800 × 100 μm, by employing a two-dimensional scanning microelectromechanical systems mirror. Reflectance and fluorescence images are obtained with a laser source at 785 nm, demonstrating the ability to perform real-time optical biopsy. PMID:17215937

  12. Multiple-step relayed correlation spectroscopy: sequential resonance assignments in oligosaccharides.

    PubMed Central

    Homans, S W; Dwek, R A; Fernandes, D L; Rademacher, T W

    1984-01-01

    A general property of the high-resolution proton NMR spectra of oligosaccharides is the appearance of low-field well-resolved resonances corresponding to the anomeric (H1) and H2 protons. The remaining skeletal protons resonate in the region 3-4 ppm, giving rise to an envelope of poorly resolved resonances. Assignments can be made from the H1 and H2 protons to their J-coupled neighbors (H2 and H3) within this main envelope by using 1H-1H correlated spectroscopy. However, the tight coupling (J congruent to delta) between further protons results in poor spectral dispersion with consequent assignment ambiguities. We describe here three-step two-dimensional relayed correlation spectroscopy and show how it can be used to correlate the resolved anomeric (H1) and H2 protons with remote (H4, H5) protons directly through a linear network of couplings using sequential magnetization transfer around the oligosaccharide rings. Resonance assignments are then obtained by inspection of cross-peaks that appear in well-resolved regions of the two-dimensional spectrum. This offers a general solution to the assignment problem in oligosaccharides and, importantly, these assignments will subsequently allow for the three-dimensional solution conformation to be determined by using one-dimensional and two-dimensional nuclear Overhauser experiments. PMID:6593701

  13. Resolvent approach for two-dimensional scattering problems. Application to the nonstationary Schrödinger problem and the KPI equation

    NASA Astrophysics Data System (ADS)

    Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.; Polivanov, M. C.

    1992-11-01

    The resolvent operator of the linear problem is determined as the full Green function continued in the complex domain in two variables. An analog of the known Hilbert identity is derived. We demonstrate the role of this identity in the study of two-dimensional scattering. Considering the nonstationary Schrödinger equation as an example, we show that all types of solutions of the linear problems, as well as spectral data known in the literature, are given as specific values of this unique function — the resolvent function. A new form of the inverse problem is formulated.

  14. Chemometrics comparison of gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry Daphnia magna metabolic profiles exposed to salinity.

    PubMed

    Parastar, Hadi; Garreta-Lara, Elba; Campos, Bruno; Barata, Carlos; Lacorte, Silvia; Tauler, Roma

    2018-06-01

    The performances of gas chromatography with mass spectrometry and of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry are examined through the comparison of Daphnia magna metabolic profiles. Gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with mass spectrometry were used to compare the concentration changes of metabolites under saline conditions. In this regard, a chemometric strategy based on wavelet compression and multivariate curve resolution-alternating least squares is used to compare the performances of gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry for the untargeted metabolic profiling of Daphnia magna in control and salinity-exposed samples. Examination of the results confirmed the outperformance of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry over gas chromatography with mass spectrometry for the detection of metabolites in D. magna samples. The peak areas of multivariate curve resolution-alternating least squares resolved elution profiles in every sample analyzed by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry were arranged in a new data matrix that was then modeled by partial least squares discriminant analysis. The control and salt-exposed daphnids samples were discriminated and the most relevant metabolites were estimated using variable importance in projection and selectivity ratio values. Salinity de-regulated 18 metabolites from metabolic pathways involved in protein translation, transmembrane cell transport, carbon metabolism, secondary metabolism, glycolysis, and osmoregulation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fast multi-dimensional NMR by minimal sampling

    NASA Astrophysics Data System (ADS)

    Kupče, Ēriks; Freeman, Ray

    2008-03-01

    A new scheme is proposed for very fast acquisition of three-dimensional NMR spectra based on minimal sampling, instead of the customary step-wise exploration of all of evolution space. The method relies on prior experiments to determine accurate values for the evolving frequencies and intensities from the two-dimensional 'first planes' recorded by setting t1 = 0 or t2 = 0. With this prior knowledge, the entire three-dimensional spectrum can be reconstructed by an additional measurement of the response at a single location (t1∗,t2∗) where t1∗ and t2∗ are fixed values of the evolution times. A key feature is the ability to resolve problems of overlap in the acquisition dimension. Applied to a small protein, agitoxin, the three-dimensional HNCO spectrum is obtained 35 times faster than systematic Cartesian sampling of the evolution domain. The extension to multi-dimensional spectroscopy is outlined.

  16. High-throughput screening in two dimensions: binding intensity and off-rate on a peptide microarray.

    PubMed

    Greving, Matthew P; Belcher, Paul E; Cox, Conor D; Daniel, Douglas; Diehnelt, Chris W; Woodbury, Neal W

    2010-07-01

    We report a high-throughput two-dimensional microarray-based screen, incorporating both target binding intensity and off-rate, which can be used to analyze thousands of compounds in a single binding assay. Relative binding intensities and time-resolved dissociation are measured for labeled tumor necrosis factor alpha (TNF-alpha) bound to a peptide microarray. The time-resolved dissociation is fitted to a one-component exponential decay model, from which relative dissociation rates are determined for all peptides with binding intensities above background. We show that most peptides with the slowest off-rates on the microarray also have the slowest off-rates when measured by surface plasmon resonance (SPR). 2010 Elsevier Inc. All rights reserved.

  17. Use of three-dimensional time-resolved phase-contrast magnetic resonance imaging with vastly undersampled isotropic projection reconstruction to assess renal blood flow in a renal cell carcinoma patient treated with sunitinib: a case report.

    PubMed

    Takayama, Tatsuya; Takehara, Yasuo; Sugiyama, Masataka; Sugiyama, Takayuki; Ishii, Yasuo; Johnson, Kevin E; Wieben, Oliver; Wakayama, Tetsuya; Sakahara, Harumi; Ozono, Seiichiro

    2014-08-14

    New imaging modalities to assess the efficacy of drugs that have molecular targets remain under development. Here, we describe for the first time the use of time-resolved three-dimensional phase-contrast magnetic resonance imaging to monitor changes in blood supply to a tumor during sunitinib treatment in a patient with localized renal cell carcinoma. A 43-year-old Japanese woman with a tumor-bearing but functional single kidney presented at our hospital in July 2012. Computed tomography and magnetic resonance imaging revealed a cT1aN0M0 renal cell carcinoma embedded in the upper central region of the left kidney. She was prescribed sunitinib as neoadjuvant therapy for 8 months, and then underwent partial nephrectomy. Tumor monitoring during this time was done using time-resolved three-dimensional phase-contrast magnetic resonance imaging, a recent technique which specifically measures blood flow in the various vessels of the kidney. This imaging allowed visualization of the redistribution of renal blood flow during treatment, and showed that flow to the tumor was decreased and flows to other areas increased. Of note, this change occurred in the absence of any change in tumor size. The ability of time-resolved three-dimensional phase-contrast magnetic resonance imaging to provide quantitative information on blood supply to tumors may be useful in monitoring the efficacy of sunitinib treatment.

  18. Extended resolvent and inverse scattering with an application to KPI

    NASA Astrophysics Data System (ADS)

    Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.; Prinari, B.

    2003-08-01

    We present in detail an extended resolvent approach for investigating linear problems associated to 2+1 dimensional integrable equations. Our presentation is based as an example on the nonstationary Schrödinger equation with potential being a perturbation of the one-soliton potential by means of a decaying two-dimensional function. Modification of the inverse scattering theory as well as properties of the Jost solutions and spectral data as follows from the resolvent approach are given.

  19. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources.

    PubMed

    Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E

    2016-05-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).

  20. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    PubMed Central

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G.; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E.

    2016-01-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits). PMID:27140147

  1. Time resolved interferometric study of the plasma plume induced shock wave in confined geometry: Two-dimensional mapping of the ambient and plasma density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Kaushik; Singh, R. K.; Kumar, Ajai, E-mail: ajai@ipr.res.in

    2016-04-15

    An experimental investigation of the laser produced plasma induced shock wave in the presence of confining walls placed along the axial as well as the lateral direction has been performed. A time resolved Mach Zehnder interferometer is set up to track the primary as well as the reflected shock waves and its effect on the evolving plasma plume has been studied. An attempt has been made to discriminate the electronic and medium density contributions towards the changes in the refractive index of the medium. Two dimensional spatial distributions for both ambient medium density and plasma density (electron density) have beenmore » obtained by employing customised inversion technique and algorithm on the recorded interferograms. The observed density pattern of the surrounding medium in the presence of confining walls is correlated with the reflected shock wave propagation in the medium. Further, the shock wave plasma interaction and the subsequent changes in the shape and density of the plasma plume in confined geometry are briefly described.« less

  2. Advanced flow MRI: emerging techniques and applications

    PubMed Central

    Markl, M.; Schnell, S.; Wu, C.; Bollache, E.; Jarvis, K.; Barker, A. J.; Robinson, J. D.; Rigsby, C. K.

    2016-01-01

    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented. PMID:26944696

  3. Femtosecond timing measurement and control using ultrafast organic thin films

    NASA Astrophysics Data System (ADS)

    Naruse, Makoto; Mitsu, Hiroyuki; Furuki, Makoto; Iwasa, Izumi; Sato, Yasuhiro; Tatsuura, Satoshi; Tian, Minquan

    2003-12-01

    We show a femtosecond timing measurement and control technique using a squarylium dye J-aggregate film, which is an organic thin film that acts as an ultrafast two-dimensional optical switch. Optical pulse timing is directly mapped to space-domain position on the film, and the large area and ultrafast response offer a femtosecond-resolved, large dynamic range, real-time, multichannel timing measurement capability. A timing fluctuation (jitter, wander, and skew) reduction architecture is presented and experimentally demonstrated.

  4. Watching hydrogen-bond dynamics in a β-turn by transient two-dimensional infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kolano, Christoph; Helbing, Jan; Kozinski, Mariusz; Sander, Wolfram; Hamm, Peter

    2006-11-01

    X-ray crystallography and nuclear magnetic resonance measurements provide us with atomically resolved structures of an ever-growing number of biomolecules. These static structural snapshots are important to our understanding of biomolecular function, but real biomolecules are dynamic entities that often exploit conformational changes and transient molecular interactions to perform their tasks. Nuclear magnetic resonance methods can follow such structural changes, but only on millisecond timescales under non-equilibrium conditions. Time-resolved X-ray crystallography has recently been used to monitor the photodissociation of CO from myoglobin on a subnanosecond timescale, yet remains challenging to apply more widely. In contrast, two-dimensional infrared spectroscopy, which maps vibrational coupling between molecular groups and hence their relative positions and orientations, is now routinely used to study equilibrium processes on picosecond timescales. Here we show that the extension of this method into the non-equilibrium regime allows us to observe in real time in a short peptide the weakening of an intramolecular hydrogen bond and concomitant opening of a β-turn. We find that the rate of this process is two orders of magnitude faster than the `folding speed limit' established for contact formation between protein side chains.

  5. Space and time resolved representation of a vacuum arc light emission

    NASA Astrophysics Data System (ADS)

    Georgescu, N.; Sandolache, G.; Zoita, V.

    1999-04-01

    An optoelectronic multichannel detection system for the study of the visible light emission of a vacuum circuit breaker arc is described. The system consists of two multiple slit collimator assemblies coupled directly to the arc discharge chamber and an electronic detection part. The light emitted by the arc is collected by the two collimator assemblies and is transmitted through optical fibres to the electronic detection part. By using a new, simple computational method two-dimensional plots of the vacuum arc light emission at different times are obtained.

  6. Trion fine structure and coupled spin–valley dynamics in monolayer tungsten disulfide

    PubMed Central

    Plechinger, Gerd; Nagler, Philipp; Arora, Ashish; Schmidt, Robert; Chernikov, Alexey; del Águila, Andrés Granados; Christianen, Peter C.M.; Bratschitsch, Rudolf; Schüller, Christian; Korn, Tobias

    2016-01-01

    Monolayer transition-metal dichalcogenides have recently emerged as possible candidates for valleytronic applications, as the spin and valley pseudospin are directly coupled and stabilized by a large spin splitting. The optical properties of these two-dimensional crystals are dominated by tightly bound electron–hole pairs (excitons) and more complex quasiparticles such as charged excitons (trions). Here we investigate monolayer WS2 samples via photoluminescence and time-resolved Kerr rotation. In photoluminescence and in energy-dependent Kerr rotation measurements, we are able to resolve two different trion states, which we interpret as intravalley and intervalley trions. Using time-resolved Kerr rotation, we observe a rapid initial valley polarization decay for the A exciton and the trion states. Subsequently, we observe a crossover towards exciton–exciton interaction-related dynamics, consistent with the formation and decay of optically dark A excitons. By contrast, resonant excitation of the B exciton transition leads to a very slow decay of the Kerr signal. PMID:27586517

  7. Particle visualization in high-power impulse magnetron sputtering. II. Absolute density dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britun, Nikolay, E-mail: nikolay.britun@umons.ac.be; Palmucci, Maria; Konstantinidis, Stephanos

    2015-04-28

    Time-resolved characterization of an Ar-Ti high-power impulse magnetron sputtering discharge has been performed. The present, second, paper of the study is related to the discharge characterization in terms of the absolute density of species using resonant absorption spectroscopy. The results on the time-resolved density evolution of the neutral and singly-ionized Ti ground state atoms as well as the metastable Ti and Ar atoms during the discharge on- and off-time are presented. Among the others, the questions related to the inversion of population of the Ti energy sublevels, as well as to re-normalization of the two-dimensional density maps in terms ofmore » the absolute density of species, are stressed.« less

  8. Particle visualization in high-power impulse magnetron sputtering. I. 2D density mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britun, Nikolay, E-mail: nikolay.britun@umons.ac.be; Palmucci, Maria; Konstantinidis, Stephanos

    2015-04-28

    Time-resolved characterization of an Ar-Ti high-power impulse magnetron sputtering discharge has been performed. This paper deals with two-dimensional density mapping in the discharge volume obtained by laser-induced fluorescence imaging. The time-resolved density evolution of Ti neutrals, singly ionized Ti atoms (Ti{sup +}), and Ar metastable atoms (Ar{sup met}) in the area above the sputtered cathode is mapped for the first time in this type of discharges. The energetic characteristics of the discharge species are additionally studied by Doppler-shift laser-induced fluorescence imaging. The questions related to the propagation of both the neutral and ionized discharge particles, as well as to theirmore » spatial density distributions, are discussed.« less

  9. Resolving runaway electron distributions in space, time, and energy

    NASA Astrophysics Data System (ADS)

    Paz-Soldan, C.; Cooper, C. M.; Aleynikov, P.; Eidietis, N. W.; Lvovskiy, A.; Pace, D. C.; Brennan, D. P.; Hollmann, E. M.; Liu, C.; Moyer, R. A.; Shiraki, D.

    2018-05-01

    Areas of agreement and disagreement with present-day models of runaway electron (RE) evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase-space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally resolved measurements find qualitative agreement with modeling on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. Possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.

  10. Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole

    Here, we demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security.

  11. Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole L.

    We demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security applications.

  12. Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes

    DOE PAGES

    Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole; ...

    2017-06-19

    Here, we demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security.

  13. Femtosecond to picosecond transient effects in WSe 2 observed by pump-probe angle-resolved photoemission spectroscopy.

    PubMed

    Liu, Ro-Ya; Ogawa, Yu; Chen, Peng; Ozawa, Kenichi; Suzuki, Takeshi; Okada, Masaru; Someya, Takashi; Ishida, Yukiaki; Okazaki, Kozo; Shin, Shik; Chiang, Tai-Chang; Matsuda, Iwao

    2017-11-22

    Time-dependent responses of materials to an ultrashort optical pulse carry valuable information about the electronic and lattice dynamics; this research area has been widely studied on novel two-dimensional materials such as graphene, transition metal dichalcogenides (TMDs) and topological insulators (TIs). We report herein a time-resolved and angle-resolved photoemission spectroscopy (TRARPES) study of WSe 2 , a layered semiconductor of interest for valley electronics. The results for below-gap optical pumping reveal energy-gain and -loss Floquet replica valence bands that appear instantaneously in concert with the pump pulse. Energy shift, broadening, and complex intensity variation and oscillation at twice the phonon frequency for the valence bands are observed at time scales ranging from the femtosecond to the picosecond and beyond. The underlying physics is rich, including ponderomotive interaction, dressing of the electronic states, creation of coherent phonon pairs, and diffusion of charge carriers - effects operating at vastly different time domains.

  14. Time-resolved computed tomography of the liver: retrospective, multi-phase image reconstruction derived from volumetric perfusion imaging.

    PubMed

    Fischer, Michael A; Leidner, Bertil; Kartalis, Nikolaos; Svensson, Anders; Aspelin, Peter; Albiin, Nils; Brismar, Torkel B

    2014-01-01

    To assess feasibility and image quality (IQ) of a new post-processing algorithm for retrospective extraction of an optimised multi-phase CT (time-resolved CT) of the liver from volumetric perfusion imaging. Sixteen patients underwent clinically indicated perfusion CT using 4D spiral mode of dual-source 128-slice CT. Three image sets were reconstructed: motion-corrected and noise-reduced (MCNR) images derived from 4D raw data; maximum and average intensity projections (time MIP/AVG) of the arterial/portal/portal-venous phases and all phases (total MIP/ AVG) derived from retrospective fusion of dedicated MCNR split series. Two readers assessed the IQ, detection rate and evaluation time; one reader assessed image noise and lesion-to-liver contrast. Time-resolved CT was feasible in all patients. Each post-processing step yielded a significant reduction of image noise and evaluation time, maintaining lesion-to-liver contrast. Time MIPs/AVGs showed the highest overall IQ without relevant motion artefacts and best depiction of arterial and portal/portal-venous phases respectively. Time MIPs demonstrated a significantly higher detection rate for arterialised liver lesions than total MIPs/AVGs and the raw data series. Time-resolved CT allows data from volumetric perfusion imaging to be condensed into an optimised multi-phase liver CT, yielding a superior IQ and higher detection rate for arterialised liver lesions than the raw data series. • Four-dimensional computed tomography is limited by motion artefacts and poor image quality. • Time-resolved-CT facilitates 4D-CT data visualisation, segmentation and analysis by condensing raw data. • Time-resolved CT demonstrates better image quality than raw data images. • Time-resolved CT improves detection of arterialised liver lesions in cirrhotic patients.

  15. Portable laser synthesizer for high-speed multi-dimensional spectroscopy

    DOEpatents

    Demos, Stavros G [Livermore, CA; Shverdin, Miroslav Y [Sunnyvale, CA; Shirk, Michael D [Brentwood, CA

    2012-05-29

    Portable, field-deployable laser synthesizer devices designed for multi-dimensional spectrometry and time-resolved and/or hyperspectral imaging include a coherent light source which simultaneously produces a very broad, energetic, discrete spectrum spanning through or within the ultraviolet, visible, and near infrared wavelengths. The light output is spectrally resolved and each wavelength is delayed with respect to each other. A probe enables light delivery to a target. For multidimensional spectroscopy applications, the probe can collect the resulting emission and deliver this radiation to a time gated spectrometer for temporal and spectral analysis.

  16. Accelerated echo planar J-resolved spectroscopic imaging in prostate cancer: a pilot validation of non-linear reconstruction using total variation and maximum entropy.

    PubMed

    Nagarajan, Rajakumar; Iqbal, Zohaib; Burns, Brian; Wilson, Neil E; Sarma, Manoj K; Margolis, Daniel A; Reiter, Robert E; Raman, Steven S; Thomas, M Albert

    2015-11-01

    The overlap of metabolites is a major limitation in one-dimensional (1D) spectral-based single-voxel MRS and multivoxel-based MRSI. By combining echo planar spectroscopic imaging (EPSI) with a two-dimensional (2D) J-resolved spectroscopic (JPRESS) sequence, 2D spectra can be recorded in multiple locations in a single slice of prostate using four-dimensional (4D) echo planar J-resolved spectroscopic imaging (EP-JRESI). The goal of the present work was to validate two different non-linear reconstruction methods independently using compressed sensing-based 4D EP-JRESI in prostate cancer (PCa): maximum entropy (MaxEnt) and total variation (TV). Twenty-two patients with PCa with a mean age of 63.8 years (range, 46-79 years) were investigated in this study. A 4D non-uniformly undersampled (NUS) EP-JRESI sequence was implemented on a Siemens 3-T MRI scanner. The NUS data were reconstructed using two non-linear reconstruction methods, namely MaxEnt and TV. Using both TV and MaxEnt reconstruction methods, the following observations were made in cancerous compared with non-cancerous locations: (i) higher mean (choline + creatine)/citrate metabolite ratios; (ii) increased levels of (choline + creatine)/spermine and (choline + creatine)/myo-inositol; and (iii) decreased levels of (choline + creatine)/(glutamine + glutamate). We have shown that it is possible to accelerate the 4D EP-JRESI sequence by four times and that the data can be reliably reconstructed using the TV and MaxEnt methods. The total acquisition duration was less than 13 min and we were able to detect and quantify several metabolites. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Graphene-enhanced infrared near-field microscopy.

    PubMed

    Li, Peining; Wang, Tao; Böckmann, Hannes; Taubner, Thomas

    2014-08-13

    Graphene is a promising two-dimensional platform for widespread nanophotonic applications. Recent theories have predicted that graphene can also enhance evanescent fields for subdiffraction-limited imaging. Here, for the first time we experimentally demonstrate that monolayer graphene offers a 7-fold enhancement of evanescent information, improving conventional infrared near-field microscopy to resolve buried structures at a 500 nm depth with λ/11-resolution.

  18. Dependence of spin dephasing on initial spin polarization in a high-mobility two-dimensional electron system

    NASA Astrophysics Data System (ADS)

    Stich, D.; Zhou, J.; Korn, T.; Schulz, R.; Schuh, D.; Wegscheider, W.; Wu, M. W.; Schüller, C.

    2007-11-01

    We have studied the spin dynamics of a high-mobility two-dimensional electron system in a GaAs/Al0.3Ga0.7As single quantum well by time-resolved Faraday rotation and time-resolved Kerr rotation in dependence on the initial degree of spin polarization, P , of the electrons. By increasing the initial spin polarization from the low- P regime to a significant P of several percent, we find that the spin dephasing time, T2* , increases from about 20to200ps . Moreover, T2* increases with temperature at small spin polarization but decreases with temperature at large spin polarization. All these features are in good agreement with theoretical predictions by Weng and Wu [Phys. Rev. B 68, 075312 (2003)]. Measurements as a function of spin polarization at fixed electron density are performed to further confirm the theory. A fully microscopic calculation is performed by setting up and numerically solving the kinetic spin Bloch equations, including the D’yakonov-Perel’ and the Bir-Aronov-Pikus mechanisms, with all the scattering explicitly included. We reproduce all principal features of the experiments, i.e., a dramatic decrease of spin dephasing with increasing P and the temperature dependences at different spin polarizations.

  19. A higher-order conservation element solution element method for solving hyperbolic differential equations on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Bilyeu, David

    This dissertation presents an extension of the Conservation Element Solution Element (CESE) method from second- to higher-order accuracy. The new method retains the favorable characteristics of the original second-order CESE scheme, including (i) the use of the space-time integral equation for conservation laws, (ii) a compact mesh stencil, (iii) the scheme will remain stable up to a CFL number of unity, (iv) a fully explicit, time-marching integration scheme, (v) true multidimensionality without using directional splitting, and (vi) the ability to handle two- and three-dimensional geometries by using unstructured meshes. This algorithm has been thoroughly tested in one, two and three spatial dimensions and has been shown to obtain the desired order of accuracy for solving both linear and non-linear hyperbolic partial differential equations. The scheme has also shown its ability to accurately resolve discontinuities in the solutions. Higher order unstructured methods such as the Discontinuous Galerkin (DG) method and the Spectral Volume (SV) methods have been developed for one-, two- and three-dimensional application. Although these schemes have seen extensive development and use, certain drawbacks of these methods have been well documented. For example, the explicit versions of these two methods have very stringent stability criteria. This stability criteria requires that the time step be reduced as the order of the solver increases, for a given simulation on a given mesh. The research presented in this dissertation builds upon the work of Chang, who developed a fourth-order CESE scheme to solve a scalar one-dimensional hyperbolic partial differential equation. The completed research has resulted in two key deliverables. The first is a detailed derivation of a high-order CESE methods on unstructured meshes for solving the conservation laws in two- and three-dimensional spaces. The second is the code implementation of these numerical methods in a computer code. For code development, a one-dimensional solver for the Euler equations was developed. This work is an extension of Chang's work on the fourth-order CESE method for solving a one-dimensional scalar convection equation. A generic formulation for the nth-order CESE method, where n ≥ 4, was derived. Indeed, numerical implementation of the scheme confirmed that the order of convergence was consistent with the order of the scheme. For the two- and three-dimensional solvers, SOLVCON was used as the basic framework for code implementation. A new solver kernel for the fourth-order CESE method has been developed and integrated into the framework provided by SOLVCON. The main part of SOLVCON, which deals with unstructured meshes and parallel computing, remains intact. The SOLVCON code for data transmission between computer nodes for High Performance Computing (HPC). To validate and verify the newly developed high-order CESE algorithms, several one-, two- and three-dimensional simulations where conducted. For the arbitrary order, one-dimensional, CESE solver, three sets of governing equations were selected for simulation: (i) the linear convection equation, (ii) the linear acoustic equations, (iii) the nonlinear Euler equations. All three systems of equations were used to verify the order of convergence through mesh refinement. In addition the Euler equations were used to solve the Shu-Osher and Blastwave problems. These two simulations demonstrated that the new high-order CESE methods can accurately resolve discontinuities in the flow field.For the two-dimensional, fourth-order CESE solver, the Euler equation was employed in four different test cases. The first case was used to verify the order of convergence through mesh refinement. The next three cases demonstrated the ability of the new solver to accurately resolve discontinuities in the flows. This was demonstrated through: (i) the interaction between acoustic waves and an entropy pulse, (ii) supersonic flow over a circular blunt body, (iii) supersonic flow over a guttered wedge. To validate and verify the three-dimensional, fourth-order CESE solver, two different simulations where selected. The first used the linear convection equations to demonstrate fourth-order convergence. The second used the Euler equations to simulate supersonic flow over a spherical body to demonstrate the scheme's ability to accurately resolve shocks. All test cases used are well known benchmark problems and as such, there are multiple sources available to validate the numerical results. Furthermore, the simulations showed that the high-order CESE solver was stable at a CFL number near unity.

  20. Evaluating Clouds in Long-Term Cloud-Resolving Model Simulations with Observational Data

    NASA Technical Reports Server (NTRS)

    Zeng, Xiping; Tao, Wei-Kuo; Zhang, Minghua; Peters-Lidard, Christa; Lang, Stephen; Simpson, Joanne; Kumar, Sujay; Xie, Shaocheng; Eastman, Joseph L.; Shie, Chung-Lin; hide

    2006-01-01

    Two 20-day, continental midlatitude cases are simulated with a three-dimensional (3D) cloud-resolving model (CRM) and compared to Atmospheric Radiation Measurement (ARM) data. This evaluation of long-term cloud-resolving model simulations focuses on the evaluation of clouds and surface fluxes. All numerical experiments, as compared to observations, simulate surface precipitation well but over-predict clouds, especially in the upper troposphere. The sensitivity of cloud properties to dimensionality and other factors is studied to isolate the origins of the over prediction of clouds. Due to the difference in buoyancy damping between 2D and 3D models, surface precipitation fluctuates rapidly with time, and spurious dehumidification occurs near the tropopause in the 2D CRM. Surface fluxes from a land data assimilation system are compared with ARM observations. They are used in place of the ARM surface fluxes to test the sensitivity of simulated clouds to surface fluxes. Summertime simulations show that surface fluxes from the assimilation system bring about a better simulation of diurnal cloud variation in the lower troposphere.

  1. Excitation transfer and trapping kinetics in plant photosystem I probed by two-dimensional electronic spectroscopy.

    PubMed

    Akhtar, Parveen; Zhang, Cheng; Liu, Zhengtang; Tan, Howe-Siang; Lambrev, Petar H

    2018-03-01

    Photosystem I is a robust and highly efficient biological solar engine. Its capacity to utilize virtually every absorbed photon's energy in a photochemical reaction generates great interest in the kinetics and mechanisms of excitation energy transfer and charge separation. In this work, we have employed room-temperature coherent two-dimensional electronic spectroscopy and time-resolved fluorescence spectroscopy to follow exciton equilibration and excitation trapping in intact Photosystem I complexes as well as core complexes isolated from Pisum sativum. We performed two-dimensional electronic spectroscopy measurements with low excitation pulse energies to record excited-state kinetics free from singlet-singlet annihilation. Global lifetime analysis resolved energy transfer and trapping lifetimes closely matches the time-correlated single-photon counting data. Exciton energy equilibration in the core antenna occurred on a timescale of 0.5 ps. We further observed spectral equilibration component in the core complex with a 3-4 ps lifetime between the bulk Chl states and a state absorbing at 700 nm. Trapping in the core complex occurred with a 20 ps lifetime, which in the supercomplex split into two lifetimes, 16 ps and 67-75 ps. The experimental data could be modelled with two alternative models resulting in equally good fits-a transfer-to-trap-limited model and a trap-limited model. However, the former model is only possible if the 3-4 ps component is ascribed to equilibration with a "red" core antenna pool absorbing at 700 nm. Conversely, if these low-energy states are identified with the P 700 reaction centre, the transfer-to-trap-model is ruled out in favour of a trap-limited model.

  2. Motor Oil Classification Based on Time-Resolved Fluorescence

    PubMed Central

    Mu, Taotao; Chen, Siying; Zhang, Yinchao; Guo, Pan; Chen, He; Meng, Fandong

    2014-01-01

    A time-resolved fluorescence (TRF) technique is presented for classifying motor oils. The system is constructed with a third harmonic Nd:YAG laser, a spectrometer, and an intensified charge coupled device (ICCD) camera. Steady-state and time-resolved fluorescence (TRF) measurements are reported for several motor oils. It is found that steady-state fluorescence is insufficient to distinguish the motor oil samples. Then contour diagrams of TRF intensities (CDTRFIs) are acquired to serve as unique fingerprints to identify motor oils by using the distinct TRF of motor oils. CDTRFIs are preferable to steady-state fluorescence spectra for classifying different motor oils, making CDTRFIs a particularly choice for the development of fluorescence-based methods for the discrimination and characterization of motor oils. The two-dimensional fluorescence contour diagrams contain more information, not only the changing shapes of the LIF spectra but also the relative intensity. The results indicate that motor oils can be differentiated based on the new proposed method, which provides reliable methods for analyzing and classifying motor oils. PMID:24988439

  3. Precipitation Processes developed during ARM (1997), TOGA COARE (1992), GATE (1974), SCSMEX (1998), and KWAJEX (1999), Consistent 2D, semi-3D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Hou, A.; Atlas, R.; Starr, D.; Sud, Y.

    2003-01-01

    Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D). A few 3D CRMs have been used to study the response of clouds to large-scale forcing. In these 3D simulations, the model domain was small, and the integration time was 6 hours. The major objectives of this paper are: (1) to assess the performance of the super-parameterization technique (i.e. is 2D or semi-3D CRM appropriate for the super-parameterization?); (2) calculate and examine the surface energy (especially radiation) and water budgets; (3) identify the differences and similarities in the organization and entrainment rates of convection between simulated 2D and 3D cloud systems.

  4. Quantitative characterization of solid epoxy resins using comprehensive two dimensional liquid chromatography coupled with electrospray ionization-time of flight mass spectrometry.

    PubMed

    Julka, Samir; Cortes, Hernan; Harfmann, Robert; Bell, Bruce; Schweizer-Theobaldt, Andreas; Pursch, Matthias; Mondello, Luigi; Maynard, Shawn; West, David

    2009-06-01

    A comprehensive multidimensional liquid chromatography system coupled to Electrospray Ionization-Mass Spectrometry (LCxLC-ESI-MS) was developed for detailed characterization and quantitation of solid epoxy resin components. The two orthogonal modes of separation selected were size exclusion chromatography (SEC) in the first dimension and liquid chromatography at critical conditions (LCCC) in the second dimension. Different components present in the solid epoxy resins were separated and quantitated for the first time based on the functional groups and molecular weight heterogeneity. Coupling LCxLC separations with mass spectrometry enabled the identification of components resolved in the two-dimensional space. Several different functional group families of compounds were separated and identified, including epoxy-epoxy and epoxy-alpha-glycol functional oligomers, and their individual molecular weight ranges were determined. Repeatability obtained ranged from 0.5% for the main product to 21% for oligomers at the 0.4% concentration level.

  5. Flame propagation in two-dimensional solids: Particle-resolved studies with complex plasmas

    NASA Astrophysics Data System (ADS)

    Yurchenko, S. O.; Yakovlev, E. V.; Couëdel, L.; Kryuchkov, N. P.; Lipaev, A. M.; Naumkin, V. N.; Kislov, A. Yu.; Ovcharov, P. V.; Zaytsev, K. I.; Vorob'ev, E. V.; Morfill, G. E.; Ivlev, A. V.

    2017-10-01

    Using two-dimensional (2D) complex plasmas as an experimental model system, particle-resolved studies of flame propagation in classical 2D solids are carried out. Combining experiments, theory, and molecular dynamics simulations, we demonstrate that the mode-coupling instability operating in 2D complex plasmas reveals all essential features of combustion, such as an activated heat release, two-zone structure of the self-similar temperature profile ("flame front"), as well as thermal expansion of the medium and temperature saturation behind the front. The presented results are of relevance for various fields ranging from combustion and thermochemistry, to chemical physics and synthesis of materials.

  6. Development of new flux splitting schemes. [computational fluid dynamics algorithms

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Steffen, Christopher J., Jr.

    1992-01-01

    Maximizing both accuracy and efficiency has been the primary objective in designing a numerical algorithm for computational fluid dynamics (CFD). This is especially important for solutions of complex three dimensional systems of Navier-Stokes equations which often include turbulence modeling and chemistry effects. Recently, upwind schemes have been well received for their capability in resolving discontinuities. With this in mind, presented are two new flux splitting techniques for upwind differencing. The first method is based on High-Order Polynomial Expansions (HOPE) of the mass flux vector. The second new flux splitting is based on the Advection Upwind Splitting Method (AUSM). The calculation of the hypersonic conical flow demonstrates the accuracy of the splitting in resolving the flow in the presence of strong gradients. A second series of tests involving the two dimensional inviscid flow over a NACA 0012 airfoil demonstrates the ability of the AUSM to resolve the shock discontinuity at transonic speed. A third case calculates a series of supersonic flows over a circular cylinder. Finally, the fourth case deals with tests of a two dimensional shock wave/boundary layer interaction.

  7. Charge Separation at Mixed-Dimensional Single and Multilayer MoS2/Silicon Nanowire Heterojunctions.

    PubMed

    Henning, Alex; Sangwan, Vinod K; Bergeron, Hadallia; Balla, Itamar; Sun, Zhiyuan; Hersam, Mark C; Lauhon, Lincoln J

    2018-05-16

    Layered two-dimensional (2-D) semiconductors can be combined with other low-dimensional semiconductors to form nonplanar mixed-dimensional van der Waals (vdW) heterojunctions whose charge transport behavior is influenced by the heterojunction geometry, providing a new degree of freedom to engineer device functions. Toward that end, we investigated the photoresponse of Si nanowire/MoS 2 heterojunction diodes with scanning photocurrent microscopy and time-resolved photocurrent measurements. Comparison of n-Si/MoS 2 isotype heterojunctions with p-Si/MoS 2 heterojunction diodes under varying biases shows that the depletion region in the p-n heterojunction promotes exciton dissociation and carrier collection. We measure an instrument-limited response time of 1 μs, which is 10 times faster than the previously reported response times for planar Si/MoS 2 devices, highlighting the advantages of the 1-D/2-D heterojunction. Finite element simulations of device models provide a detailed understanding of how the electrostatics affect charge transport in nanowire/vdW heterojunctions and inform the design of future vdW heterojunction photodetectors and transistors.

  8. Effect of membrane microheterogeneity and domain size on fluorescence resonance energy transfer.

    PubMed

    Towles, Kevin B; Brown, Angela C; Wrenn, Steven P; Dan, Nily

    2007-07-15

    Studies of multicomponent membranes suggest lateral inhomogeneity in the form of membrane domains, but the size of small (nanoscale) domains in situ cannot be determined with current techniques. In this article, we present a model that enables extraction of membrane domain size from time-resolved fluorescence resonance energy transfer (FRET) data. We expand upon a classic approach to the infinite phase separation limit and formulate a model that accounts for the presence of disklike domains of finite dimensions within a two-dimensional infinite planar bilayer. The model was tested against off-lattice Monte Carlo calculations of a model membrane in the liquid-disordered (l(d)) and liquid-ordered (l(o)) coexistence regime. Simulated domain size was varied from 5 to 50 nm, and two fluorophores, preferentially partitioning into opposite phases, were randomly mixed to obtain the simulated time-resolved FRET data. The Monte Carlo data show clear differences in the efficiency of energy transfer as a function of domain size. The model fit of the data yielded good agreement for the domain size, especially in cases where the domain diameter is <20 nm. Thus, data analysis using the proposed model enables measurement of nanoscale membrane domains using time-resolved FRET.

  9. Two-Dimensional Dirac Fermions Protected by Space-Time Inversion Symmetry in Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Kim, Jimin; Baik, Seung Su; Jung, Sung Won; Sohn, Yeongsup; Ryu, Sae Hee; Choi, Hyoung Joon; Yang, Bohm-Jung; Kim, Keun Su

    2017-12-01

    We report the realization of novel symmetry-protected Dirac fermions in a surface-doped two-dimensional (2D) semiconductor, black phosphorus. The widely tunable band gap of black phosphorus by the surface Stark effect is employed to achieve a surprisingly large band inversion up to ˜0.6 eV . High-resolution angle-resolved photoemission spectra directly reveal the pair creation of Dirac points and their movement along the axis of the glide-mirror symmetry. Unlike graphene, the Dirac point of black phosphorus is stable, as protected by space-time inversion symmetry, even in the presence of spin-orbit coupling. Our results establish black phosphorus in the inverted regime as a simple model system of 2D symmetry-protected (topological) Dirac semimetals, offering an unprecedented opportunity for the discovery of 2D Weyl semimetals.

  10. Time-Resolved and Spectroscopic Three-Dimensional Optical Breast Tomography

    DTIC Science & Technology

    2009-03-01

    polarization sensitive imaging 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON R. R...project; • Development of a near-infrared center of intensity time gated imaging approach; and • Polarization sensitive imaging. We provide an...spectroscopic imaging arrangement, and a multi-source illumination and multi- detector signal acquisition arrangement. 5 5.1.1. Time-resolved transillumination

  11. Profiling analysis of low molecular weight heparins by multiple heart-cutting two dimensional chromatography with quadruple time-of-flight mass spectrometry.

    PubMed

    Ouyang, Yilan; Zeng, Yangyang; Rong, Yinxiu; Song, Yue; Shi, Lv; Chen, Bo; Yang, Xinlei; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing

    2015-09-01

    Low molecular weight heparins (LMWHs) are polydisperse and microheterogenous mixtures of polysaccharides used as anticoagulant drugs. Profiling analysis is important for obtaining deeper insights into the structure of LMWHs. Previous oligosaccharide mapping methods are relatively low resolution and are unable to show an entire picture of the structural complexity of LMWHs. In the current study a profiling method was developed relying on multiple heart-cutting, two-dimensional, ultrahigh performance liquid chromatography with quadruple time-of-flight mass spectrometry. This represents an efficient, automated, and robust approach for profiling LMWHs. Using size-exclusion chromatography and ion-pairing reversed-phase chromatography in a two-dimensional separation, LMW components of different sizes and LMW components of the same size but with different charges and polarities can be resolved, providing a more complete picture of a LMWH. Structural information on each component was then obtained with quadrupole time-of-flight mass spectrometry. More than 80 and 120 oligosaccharides were observed and unambiguously assigned from the LMWHs, nadroparin and enoxaparin, respectively. This method might be useful for quality control of LMWHs and as a powerful tool for heparin-related glycomics.

  12. Overview of online two-dimensional liquid chromatography based on cell membrane chromatography for screening target components from traditional Chinese medicines.

    PubMed

    Muhammad, Saqib; Han, Shengli; Xie, Xiaoyu; Wang, Sicen; Aziz, Muhammad Majid

    2017-01-01

    Cell membrane chromatography is a simple, specific, and time-saving technique for studying drug-receptor interactions, screening of active components from complex mixtures, and quality control of traditional Chinese medicines. However, the short column life, low sensitivity, low column efficiency (so cannot resolve satisfactorily mixture of compounds), low peak capacity, and inefficient in structure identification were bottleneck in its application. Combinations of cell membrane chromatography with multidimensional chromatography such as two-dimensional liquid chromatography and high sensitivity detectors like mass have significantly reduced many of the above-mentioned shortcomings. This paper provides an overview of the current advances in online two-dimensional-based cell membrane chromatography for screening target components from traditional Chinese medicines with particular emphasis on the instrumentation, preparation of cell membrane stationary phase, advantages, and disadvantages compared to alternative approaches. The last section of the review summarizes the applications of the online two-dimensional high-performance liquid chromatography based cell membrane chromatography reported since its emergence to date (2010-June 2016). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Development of an unstructured solution adaptive method for the quasi-three-dimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Jiang, Yi-Tsann

    1993-01-01

    A general solution adaptive scheme-based on a remeshing technique is developed for solving the two-dimensional and quasi-three-dimensional Euler and Favre-averaged Navier-Stokes equations. The numerical scheme is formulated on an unstructured triangular mesh utilizing an edge-based pointer system which defines the edge connectivity of the mesh structure. Jameson's four-stage hybrid Runge-Kutta scheme is used to march the solution in time. The convergence rate is enhanced through the use of local time stepping and implicit residual averaging. As the solution evolves, the mesh is regenerated adaptively using flow field information. Mesh adaptation parameters are evaluated such that an estimated local numerical error is equally distributed over the whole domain. For inviscid flows, the present approach generates a complete unstructured triangular mesh using the advancing front method. For turbulent flows, the approach combines a local highly stretched structured triangular mesh in the boundary layer region with an unstructured mesh in the remaining regions to efficiently resolve the important flow features. One-equation and two-equation turbulence models are incorporated into the present unstructured approach. Results are presented for a wide range of flow problems including two-dimensional multi-element airfoils, two-dimensional cascades, and quasi-three-dimensional cascades. This approach is shown to gain flow resolution in the refined regions while achieving a great reduction in the computational effort and storage requirements since solution points are not wasted in regions where they are not required.

  14. Development of an unstructured solution adaptive method for the quasi-three-dimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Jiang, Yi-Tsann; Usab, William J., Jr.

    1993-01-01

    A general solution adaptive scheme based on a remeshing technique is developed for solving the two-dimensional and quasi-three-dimensional Euler and Favre-averaged Navier-Stokes equations. The numerical scheme is formulated on an unstructured triangular mesh utilizing an edge-based pointer system which defines the edge connectivity of the mesh structure. Jameson's four-stage hybrid Runge-Kutta scheme is used to march the solution in time. The convergence rate is enhanced through the use of local time stepping and implicit residual averaging. As the solution evolves, the mesh is regenerated adaptively using flow field information. Mesh adaptation parameters are evaluated such that an estimated local numerical error is equally distributed over the whole domain. For inviscid flows, the present approach generates a complete unstructured triangular mesh using the advancing front method. For turbulent flows, the approach combines a local highly stretched structured triangular mesh in the boundary layer region with an unstructured mesh in the remaining regions to efficiently resolve the important flow features. One-equation and two-equation turbulence models are incorporated into the present unstructured approach. Results are presented for a wide range of flow problems including two-dimensional multi-element airfoils, two-dimensional cascades, and quasi-three-dimensional cascades. This approach is shown to gain flow resolution in the refined regions while achieving a great reduction in the computational effort and storage requirements since solution points are not wasted in regions where they are not required.

  15. Layer-by-Layer Evolution of a Two-Dimensional Electron Gas Near an Oxide Interface

    NASA Astrophysics Data System (ADS)

    Chang, Young Jun; Moreschini, Luca; Bostwick, Aaron; Gaines, Geoffrey A.; Kim, Yong Su; Walter, Andrew L.; Freelon, Byron; Tebano, Antonello; Horn, Karsten; Rotenberg, Eli

    2013-09-01

    We report the momentum-resolved measurement of a two-dimensional electron gas at the LaTiO3/SrTiO3 interface by angle-resolved photoemission spectroscopy (ARPES). Thanks to an advanced sample preparation technique, the orbital character of the conduction electrons and the electronic correlations can be accessed quantitatively as each unit cell layer is added. We find that all of these quantities change dramatically with distance from the interface. These findings open the way to analogous studies on other heterostructures, which are traditionally a forbidden field for ARPES.

  16. Resolving runaway electron distributions in space, time, and energy

    DOE PAGES

    Paz-Soldan, Carlos; Cooper, C. M.; Aleynikov, P.; ...

    2018-05-01

    Areas of agreement and disagreement with present-day models of RE evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially-resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally-resolved measurements find qualitative agreement with modelingmore » on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. As a result, possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.« less

  17. Resolving runaway electron distributions in space, time, and energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paz-Soldan, Carlos; Cooper, C. M.; Aleynikov, P.

    Areas of agreement and disagreement with present-day models of RE evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially-resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally-resolved measurements find qualitative agreement with modelingmore » on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. As a result, possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.« less

  18. Bandgap modulation in photoexcited topological insulator Bi{sub 2}Te{sub 3} via atomic displacements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hada, Masaki, E-mail: hadamasaki@okayama-u.ac.jp; Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503; PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012

    2016-07-14

    The atomic and electronic dynamics in the topological insulator (TI) Bi{sub 2}Te{sub 3} under strong photoexcitation were characterized with time-resolved electron diffraction and time-resolved mid-infrared spectroscopy. Three-dimensional TIs characterized as bulk insulators with an electronic conduction surface band have shown a variety of exotic responses in terms of electronic transport when observed under conditions of applied pressure, magnetic field, or circularly polarized light. However, the atomic motions and their correlation between electronic systems in TIs under strong photoexcitation have not been explored. The artificial and transient modification of the electronic structures in TIs via photoinduced atomic motions represents a novelmore » mechanism for providing a comparable level of bandgap control. The results of time-domain crystallography indicate that photoexcitation induces two-step atomic motions: first bismuth and then tellurium center-symmetric displacements. These atomic motions in Bi{sub 2}Te{sub 3} trigger 10% bulk bandgap narrowing, which is consistent with the time-resolved mid-infrared spectroscopy results.« less

  19. Time-domain multiple-quantum NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weitekamp, Daniel P.

    1982-11-01

    The development of time-domain multiple-quantum nuclear magnetic resonance is reviewed through mid 1982 and some prospects for future development are indicated. Particular attention is given to the problem of obtaining resolved, interpretable, many-quantum spectra for anisotropic magnetically isolated systems of coupled spins. New results are presented on a number of topics including the optimization of multiple-quantum-line intensities, analysis of noise in two-dimensional spectroscopy, and the use of order-selective excitation for cross polarization between nuclear-spin species.

  20. Quantum theoretical study of electron solvation dynamics in ice layers on a Cu(111) surface.

    PubMed

    Andrianov, I; Klamroth, T; Saalfrank, P; Bovensiepen, U; Gahl, C; Wolf, M

    2005-06-15

    Recent experiments using time- and angle-resolved two-photon photoemission (2PPE) spectroscopy at metal/polar adsorbate interfaces succeeded in time-dependent analysis of the process of electron solvation. A fully quantum mechanical, two-dimensional simulation of this process, which explicitly includes laser excitation, is presented here, confirming the origin of characteristic features, such as the experimental observation of an apparently negative dispersion. The inference of the spatial extent of the localized electron states from the angular dependence of the 2PPE spectra has been found to be non-trivial and system-dependent.

  1. Spatiotemporal Imaging of the Acoustic Field Emitted by a Single Copper Nanowire

    NASA Astrophysics Data System (ADS)

    Jean, Cyril; Belliard, Laurent; Cornelius, Thomas W.; Thomas, Olivier; Pennec, Yan; Cassinelli, Marco; Toimil-Molares, Maria Eugenia; Perrin, Bernard

    2016-10-01

    The monochromatic and geometrically anisotropic acoustic field generated by 400 nm and 120 nm diameter copper nanowires simply dropped on a 10 $\\mu$m silicon membrane is investigated in transmission using three-dimensional time-resolved femtosecond pump-probe experiments. Two pump-probe time-resolved experiments are carried out at the same time on both side of the silicon substrate. In reflection, the first radial breathing mode of the nanowire is excited and detected. In transmission, the longitudinal and shear waves are observed. The longitudinal signal is followed by a monochromatic component associated with the relaxation of the nanowire's first radial breathing mode. Finite Difference Time Domain (FDTD) simulations are performed and accurately reproduce the diffracted field. A shape anisotropy resulting from the large aspect ratio of the nanowire is detected in the acoustic field. The orientation of the underlying nanowires is thus acoustically deduced.

  2. On the formation of anions: frequency-, angle-, and time-resolved photoelectron imaging of the menadione radical anion† †Electronic supplementary information (ESI) available: A summary of the ground-state geometries and molecular orbitals from the ab initio calculations; fitted residuals from the FA-PI simulation; plots of all spectra included in the frequency-resolved two-dimensional figure; and example time-resolved PE spectra from the 3.10 + 1.55 eV pump-probe experiments. See DOI: 10.1039/c4sc03491k Click here for additional data file.

    PubMed Central

    Bull, James N.; West, Christopher W.

    2015-01-01

    Frequency-, angle-, and time-resolved photoelectron imaging of gas-phase menadione (vitamin K3) radical anions was used to show that quasi-bound resonances of the anion can act as efficient doorway states to produce metastable ground electronic state anions on a sub-picosecond timescale. Several anion resonances have been experimentally observed and identified with the assistance of ab initio calculations, and ground state anion recovery was observed across the first 3 eV above threshold. Time-resolved measurements revealed the mechanism of electronic ground state anion formation, which first involves a cascade of very fast internal conversion processes to a bound electronic state that, in turn, decays by slower internal conversion to the ground state. Autodetachment processes from populated resonances are inefficient compared with electronic relaxation through internal conversion. The mechanistic understanding gained provides insight into the formation of radical anions in biological and astrochemical systems. PMID:29560245

  3. A three-dimensional spin-diffusion model for micromagnetics

    PubMed Central

    Abert, Claas; Ruggeri, Michele; Bruckner, Florian; Vogler, Christoph; Hrkac, Gino; Praetorius, Dirk; Suess, Dieter

    2015-01-01

    We solve a time-dependent three-dimensional spin-diffusion model coupled to the Landau-Lifshitz-Gilbert equation numerically. The presented model is validated by comparison to two established spin-torque models: The model of Slonzewski that describes spin-torque in multi-layer structures in the presence of a fixed layer and the model of Zhang and Li that describes current driven domain-wall motion. It is shown that both models are incorporated by the spin-diffusion description, i.e., the nonlocal effects of the Slonzewski model are captured as well as the spin-accumulation due to magnetization gradients as described by the model of Zhang and Li. Moreover, the presented method is able to resolve the time dependency of the spin-accumulation. PMID:26442796

  4. Time-dependent changes in the growth of ultrathin ionic liquid films on Ag(111).

    PubMed

    Lexow, Matthias; Talwar, Timo; Heller, Bettina S J; May, Benjamin; Bhuin, Radha G; Maier, Florian; Steinrück, Hans-Peter

    2018-05-09

    Various amounts of the ionic liquids (ILs) [C1C1Im][Tf2N] and [C8C1Im][Tf2N] were deposited in vacuo by physical vapour deposition (PVD) on single crystalline Ag(111) at room temperature and subsequently monitored by angle-resolved X-ray photoelectron spectroscopy (ARXPS) as a function of time. For very low coverages of up to one closed molecular layer, an initial wetting layer was rapidly formed for both ILs. Deposition of higher amounts of [C1C1Im][Tf2N] revealed an initial three-dimensional film morphology. On the time scale of hours, characteristic changes of the XPS signals were observed. These are interpreted as island spreading and a transformation towards a nearly two dimensional [C1C1Im][Tf2N] film as the final state. In contrast, a film morphology close to 2D was found from the very beginning for [C8C1Im][Tf2N] deposited on Ag(111) demonstrating the influence of the alkyl chain length on the growth kinetics. These studies also highlight the suitability of time-resolved ARXPS for the investigation of IL/solid interfaces, which play a crucial role in IL thin film applications such as in catalysis, sensor, lubrication, and coating technologies.

  5. Evolution of low-aspect-ratio rectangular synthetic jets in a quiescent environment

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Feng, Li-Hao; Wang, Jin-Jun; Li, Tian

    2018-06-01

    An experimental study was conducted on the evolution of low-aspect-ratio (AR) rectangular synthetic jets using time-resolved two-dimensional particle image velocimetry and stereoscopic particle image velocimetry. Five orifice ARs ranging from 1 to 5 were found to have an obvious effect on the axis switching of vortex rings and the near-field flow physics at a uniform Reynolds number of 166 and non-dimensional stroke length of 4.5. Compared with conventional continuous jets, rectangular synthetic jets displayed more times of axis switching and the first axis-switching location was closer to the jet exit. Two types of different streamwise vortices, SV-I and SV-II, were detected in the near field as the characteristic products of axis switching. Influenced by the axis switching and streamwise vortices, significant entrainment and mixing enhancement was demonstrated for low-AR rectangular synthetic jets.

  6. Magnetic Resonance Angiography in the Diagnosis of Cerebral Arteriovenous Malformation and Dural Arteriovenous Fistulas: Comparison of Time-Resolved Magnetic Resonance Angiography and Three Dimensional Time-of-Flight Magnetic Resonance Angiography

    PubMed Central

    Cheng, Yu-Ching; Chen, Hung-Chieh; Wu, Chen-Hao; Wu, Yi-Ying; Sun, Ming-His; Chen, Wen-Hsien; Chai, Jyh-Wen; Chi-Chang Chen, Clayton

    2016-01-01

    Background Traditional digital subtraction angiography (DSA) is currently the gold standard diagnostic method for the diagnosis and evaluation of cerebral arteriovenous malformation (AVM) and dural arteriovenous fistulas (dAVF). Objectives The aim of this study was to analyze different less invasive magnetic resonance angiography (MRA) images, time-resolved MRA (TR-MRA) and three-dimensional time-of-flight MRA (3D TOF MRA) to identify their diagnostic accuracy and to determine which approach is most similar to DSA. Patients and Methods A total of 41 patients with AVM and dAVF at their initial evaluation or follow-up after treatment were recruited in this study. We applied time-resolved angiography using keyhole (4D-TRAK) MRA to perform TR-MRA and 3D TOF MRA examinations simultaneously followed by DSA, which was considered as a standard reference. Two experienced neuroradiologists reviewed the images to compare the diagnostic accuracy, arterial feeder and venous drainage between these two MRA images. Inter-observer agreement for different MRA images was assessed by Kappa coefficient and the differences of diagnostic accuracy between MRA images were evaluated by the Wilcoxon rank sum test. Results Almost all vascular lesions (92.68%) were correctly diagnosed using 4D-TRAK MRA. However, 3D TOF MRA only diagnosed 26 patients (63.41%) accurately. There were statistically significant differences regarding lesion diagnostic accuracy (P = 0.008) and venous drainage identification (P < 0.0001) between 4D-TRAK MRA and 3D TOF MRA. The results indicate that 4D-TRAK MRA is superior to 3D TOF MRA in the assessment of lesions. Conclusion Compared with 3D TOF MRA, 4D-TRAK MRA proved to be a more reliable screening modality and follow-up method for the diagnosis of cerebral AVM and dAVF. PMID:27679690

  7. Polarimetric optical imaging of scattering surfaces.

    PubMed

    Barter, J D; Lee, P H

    1996-10-20

    A polarimetric optical specular event detector (OSED) has been developed to provide spatially and temporally resolved polarimetric data of backscattering in the visible from water wave surfaces. The OSED acquires simultaneous, two-dimensionally resolved images of the remote target in two orthogonal planes of polarization. With the use of plane-polarized illumination the OSED presently can measure, in an ensemble of breaking waves, the equivalent four-element polarization matrix common to polarimetric radars. Upgrade to full Stokes parameter state of polarization measurements is straightforward with the use of present single-aperture, multi-imager CCD camera technology. The OSED is used in conjunction with a coherent pulse-chirped radar (PCR), which also measures the four-element polarization matrix, to provide direct time-correlated identification of backscattering mechanisms operative during wave-breaking events which heretofore have not been described theoretically. We describe the instrument and its implementation, and examples of spatially resolved polarimetric data are displayed as correlated with the PCR backscatter cross section and polarization ratio records.

  8. Two-dimensional time-resolved ultra-high speed imaging of K-alpha emission from short-pulse-laser interactions to observe electron recirculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagel, S. R.; Chen, H.; Park, J.

    Time resolved x-ray images with 7 ps resolution are recorded on relativistic short-pulse laser-plasma experiments using the dilation x-ray imager, a high-speed x-ray framing camera, sensitive to x-rays in the range of ≈1-17 keV. Furthermore, this capability enables a series of 2D x-ray images to be recorded at picosecond scales, which allows for the investigation of fast electron transport within the target with unprecedented temporal resolution. With an increase in the Kα-emission spot size over time we found that targets were thinner than the recirculation limit and is absent for thicker targets. Together with the observed polarization dependence of themore » spot size increase, this indicates that electron recirculation is relevant for the x-ray production in thin targets.« less

  9. Two-dimensional time-resolved ultra-high speed imaging of K-alpha emission from short-pulse-laser interactions to observe electron recirculation

    DOE PAGES

    Nagel, S. R.; Chen, H.; Park, J.; ...

    2017-04-04

    Time resolved x-ray images with 7 ps resolution are recorded on relativistic short-pulse laser-plasma experiments using the dilation x-ray imager, a high-speed x-ray framing camera, sensitive to x-rays in the range of ≈1-17 keV. Furthermore, this capability enables a series of 2D x-ray images to be recorded at picosecond scales, which allows for the investigation of fast electron transport within the target with unprecedented temporal resolution. With an increase in the Kα-emission spot size over time we found that targets were thinner than the recirculation limit and is absent for thicker targets. Together with the observed polarization dependence of themore » spot size increase, this indicates that electron recirculation is relevant for the x-ray production in thin targets.« less

  10. AGN Space Telescope and Optical Reverberation Mapping Project. IV. Velocity-Delay Mapping of Broad Emission Lines in NGC 5548

    NASA Astrophysics Data System (ADS)

    Horne, Keith D.; Agn Storm Team

    2015-01-01

    Two-dimensional velocity-delay maps of AGN broad emission line regions can be recovered by modelling observations of reverberating emission-line profiles on the assumption that the line profile variations are driven by changes in ionising radiation from a compact source near the black hole. The observable light travel time delay resolves spatial structure on iso-delay paraboloids, while the doppler shift resolves kinematic structure along the observer's line-of-sight. Velocity-delay maps will be presented and briefly discussed for the Lyman alpha, CIV and Hbeta line profiles based on the HST and ground-based spectrophotometric monitoring of NGC 5548 during the 2014 AGN STORM campaign.

  11. An Implicit Characteristic Based Method for Electromagnetics

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Briley, W. Roger

    2001-01-01

    An implicit characteristic-based approach for numerical solution of Maxwell's time-dependent curl equations in flux conservative form is introduced. This method combines a characteristic based finite difference spatial approximation with an implicit lower-upper approximate factorization (LU/AF) time integration scheme. This approach is advantageous for three-dimensional applications because the characteristic differencing enables a two-factor approximate factorization that retains its unconditional stability in three space dimensions, and it does not require solution of tridiagonal systems. Results are given both for a Fourier analysis of stability, damping and dispersion properties, and for one-dimensional model problems involving propagation and scattering for free space and dielectric materials using both uniform and nonuniform grids. The explicit Finite Difference Time Domain Method (FDTD) algorithm is used as a convenient reference algorithm for comparison. The one-dimensional results indicate that for low frequency problems on a highly resolved uniform or nonuniform grid, this LU/AF algorithm can produce accurate solutions at Courant numbers significantly greater than one, with a corresponding improvement in efficiency for simulating a given period of time. This approach appears promising for development of dispersion optimized LU/AF schemes for three dimensional applications.

  12. Hand-held optoacoustic probe for three-dimensional imaging of human morphology and function

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. Luís.; Razansky, Daniel

    2014-03-01

    We report on a hand-held imaging probe for real-time optoacoustic visualization of deep tissues in three dimensions. The proposed solution incorporates a two-dimensional array of ultrasonic sensors densely distributed on a spherical surface, whereas illumination is performed coaxially through a cylindrical cavity in the array. Visualization of three-dimensional tomographic data at a frame rate of 10 images per second is enabled by parallel recording of 256 time-resolved signals for each individual laser pulse along with a highly efficient GPUbased real-time reconstruction. A liquid coupling medium (water), enclosed in a transparent membrane, is used to guarantee transmission of the optoacoustically generated waves to the ultrasonic detectors. Excitation at multiple wavelengths further allows imaging spectrally distinctive tissue chromophores such as oxygenated and deoxygenated haemoglobin. The performance is showcased by video-rate tracking of deep tissue vasculature and three-dimensional measurements of blood oxygenenation in a healthy human volunteer. The flexibility provided by the hand-held hardware design, combined with the real-time operation, makes the developed platform highly usable for both small animal research and clinical imaging in multiple indications, including cancer, inflammation, skin and cardiovascular diseases, diagnostics of lymphatic system and breast

  13. Efficient Fourier-based algorithms for time-periodic unsteady problems

    NASA Astrophysics Data System (ADS)

    Gopinath, Arathi Kamath

    2007-12-01

    This dissertation work proposes two algorithms for the simulation of time-periodic unsteady problems via the solution of Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations. These algorithms use a Fourier representation in time and hence solve for the periodic state directly without resolving transients (which consume most of the resources in a time-accurate scheme). In contrast to conventional Fourier-based techniques which solve the governing equations in frequency space, the new algorithms perform all the calculations in the time domain, and hence require minimal modifications to an existing solver. The complete space-time solution is obtained by iterating in a fifth pseudo-time dimension. Various time-periodic problems such as helicopter rotors, wind turbines, turbomachinery and flapping-wings can be simulated using the Time Spectral method. The algorithm is first validated using pitching airfoil/wing test cases. The method is further extended to turbomachinery problems, and computational results verified by comparison with a time-accurate calculation. The technique can be very memory intensive for large problems, since the solution is computed (and hence stored) simultaneously at all time levels. Often, the blade counts of a turbomachine are rescaled such that a periodic fraction of the annulus can be solved. This approximation enables the solution to be obtained at a fraction of the cost of a full-scale time-accurate solution. For a viscous computation over a three-dimensional single-stage rescaled compressor, an order of magnitude savings is achieved. The second algorithm, the reduced-order Harmonic Balance method is applicable only to turbomachinery flows, and offers even larger computational savings than the Time Spectral method. It simulates the true geometry of the turbomachine using only one blade passage per blade row as the computational domain. In each blade row of the turbomachine, only the dominant frequencies are resolved, namely, combinations of neighbor's blade passing. An appropriate set of frequencies can be chosen by the analyst/designer based on a trade-off between accuracy and computational resources available. A cost comparison with a time-accurate computation for an Euler calculation on a two-dimensional multi-stage compressor obtained an order of magnitude savings, and a RANS calculation on a three-dimensional single-stage compressor achieved two orders of magnitude savings, with comparable accuracy.

  14. Resolving the chemical heterogeneity of natural organic matter: new insights from comprehensive two-dimensional liquid chromatography.

    PubMed

    Duarte, Regina M B O; Barros, Ana C; Duarte, Armando C

    2012-08-03

    For the purpose of resolving the chemical heterogeneity of natural organic matter (NOM), comprehensive two-dimensional liquid chromatography (LC×LC) was employed for the first time to map the hydrophobicity versus molecular weight (MW) distribution of two well-known complex organic mixtures: Suwannee River Fulvic Acids (SR-FA) and Pony Lake Fulvic Acids (PL-FA). Two methods have been developed using either a conventional reversed-phase (RP) silica column or a mixed-mode hydrophilic interaction column operating under aqueous RP mode in the first dimension, and a size-exclusion column in the second dimension. The LC×LC fractions were screened on-line by UV at 254 nm, molecular fluorescence at excitation/emission wavelengths (λ(Exc)/λ(Em)) of 240/450 nm, and by evaporative light scattering. The MW distributions of these two NOM samples were further characterized by number (Mn) and weight (Mw) average MW, and by polydispersity (Mw/Mn). Findings suggest that the combination of two independent separation mechanisms is promising in extend the range of NOM separation. For the cases where NOM separation was accomplished, smaller Mw group fractions seem to be related to a more hydrophobic nature. Regardless of the detection method, the complete range of MW distribution provided by both comprehensive LC×LC methods was found to be lower than those reported in the literature. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Numerical simulation of detonation reignition in H 2-O 2 mixtures in area expansions

    NASA Astrophysics Data System (ADS)

    Jones, D. A.; Kemister, G.; Tonello, N. A.; Oran, E. S.; Sichel, M.

    Time-dependent, two-dimensional, numerical simulations of a transmitted detonation show reignition occuring by one of two mechanisms. The first mechanism involves the collision of triple points as they expand along a decaying shock front. In the second mechanism ignition results from the coalescence of a number of small, relatively high pressure regions left over from the decay of weakened transverse waves. The simulations were performed using an improved chemical kinetic model for stoichiometric H 2-O 2 mixtures. The initial conditions were a propagating, two-dimensional detonation resolved enough to show transverse wave structure. The calculations provide clarification of the reignition mechanism seen in previous H 2-O 2-Ar simulations, and again demonstrate that the transverse wave structure of the detonation front is critical to the reignition process.

  16. Inference of Vohradský's Models of Genetic Networks by Solving Two-Dimensional Function Optimization Problems

    PubMed Central

    Kimura, Shuhei; Sato, Masanao; Okada-Hatakeyama, Mariko

    2013-01-01

    The inference of a genetic network is a problem in which mutual interactions among genes are inferred from time-series of gene expression levels. While a number of models have been proposed to describe genetic networks, this study focuses on a mathematical model proposed by Vohradský. Because of its advantageous features, several researchers have proposed the inference methods based on Vohradský's model. When trying to analyze large-scale networks consisting of dozens of genes, however, these methods must solve high-dimensional non-linear function optimization problems. In order to resolve the difficulty of estimating the parameters of the Vohradský's model, this study proposes a new method that defines the problem as several two-dimensional function optimization problems. Through numerical experiments on artificial genetic network inference problems, we showed that, although the computation time of the proposed method is not the shortest, the method has the ability to estimate parameters of Vohradský's models more effectively with sufficiently short computation times. This study then applied the proposed method to an actual inference problem of the bacterial SOS DNA repair system, and succeeded in finding several reasonable regulations. PMID:24386175

  17. Four-dimensional volume-of-interest reconstruction for cone-beam computed tomography-guided radiation therapy.

    PubMed

    Ahmad, Moiz; Balter, Peter; Pan, Tinsu

    2011-10-01

    Data sufficiency are a major problem in four-dimensional cone-beam computed tomography (4D-CBCT) on linear accelerator-integrated scanners for image-guided radiotherapy. Scan times must be in the range of 4-6 min to avoid undersampling artifacts. Various image reconstruction algorithms have been proposed to accommodate undersampled data acquisitions, but these algorithms are computationally expensive, may require long reconstruction times, and may require algorithm parameters to be optimized. The authors present a novel reconstruction method, 4D volume-of-interest (4D-VOI) reconstruction which suppresses undersampling artifacts and resolves lung tumor motion for undersampled 1-min scans. The 4D-VOI reconstruction is much less computationally expensive than other 4D-CBCT algorithms. The 4D-VOI method uses respiration-correlated projection data to reconstruct a four-dimensional (4D) image inside a VOI containing the moving tumor, and uncorrelated projection data to reconstruct a three-dimensional (3D) image outside the VOI. Anatomical motion is resolved inside the VOI and blurred outside the VOI. The authors acquired a 1-min. scan of an anthropomorphic chest phantom containing a moving water-filled sphere. The authors also used previously acquired 1-min scans for two lung cancer patients who had received CBCT-guided radiation therapy. The same raw data were used to test and compare the 4D-VOI reconstruction with the standard 4D reconstruction and the McKinnon-Bates (MB) reconstruction algorithms. Both the 4D-VOI and the MB reconstructions suppress nearly all the streak artifacts compared with the standard 4D reconstruction, but the 4D-VOI has 3-8 times greater contrast-to-noise ratio than the MB reconstruction. In the dynamic chest phantom study, the 4D-VOI and the standard 4D reconstructions both resolved a moving sphere with an 18 mm displacement. The 4D-VOI reconstruction shows a motion blur of only 3 mm, whereas the MB reconstruction shows a motion blur of 13 mm. With graphics processing unit hardware used to accelerate computations, the 4D-VOI reconstruction required a 40-s reconstruction time. 4D-VOI reconstruction effectively reduces undersampling artifacts and resolves lung tumor motion in 4D-CBCT. The 4D-VOI reconstruction is computationally inexpensive compared with more sophisticated iterative algorithms. Compared with these algorithms, our 4D-VOI reconstruction is an attractive alternative in 4D-CBCT for reconstructing target motion without generating numerous streak artifacts.

  18. Four-dimensional volume-of-interest reconstruction for cone-beam computed tomography-guided radiation therapy

    PubMed Central

    Ahmad, Moiz; Balter, Peter; Pan, Tinsu

    2011-01-01

    Purpose: Data sufficiency are a major problem in four-dimensional cone-beam computed tomography (4D-CBCT) on linear accelerator-integrated scanners for image-guided radiotherapy. Scan times must be in the range of 4–6 min to avoid undersampling artifacts. Various image reconstruction algorithms have been proposed to accommodate undersampled data acquisitions, but these algorithms are computationally expensive, may require long reconstruction times, and may require algorithm parameters to be optimized. The authors present a novel reconstruction method, 4D volume-of-interest (4D-VOI) reconstruction which suppresses undersampling artifacts and resolves lung tumor motion for undersampled 1-min scans. The 4D-VOI reconstruction is much less computationally expensive than other 4D-CBCT algorithms. Methods: The 4D-VOI method uses respiration-correlated projection data to reconstruct a four-dimensional (4D) image inside a VOI containing the moving tumor, and uncorrelated projection data to reconstruct a three-dimensional (3D) image outside the VOI. Anatomical motion is resolved inside the VOI and blurred outside the VOI. The authors acquired a 1-min. scan of an anthropomorphic chest phantom containing a moving water-filled sphere. The authors also used previously acquired 1-min scans for two lung cancer patients who had received CBCT-guided radiation therapy. The same raw data were used to test and compare the 4D-VOI reconstruction with the standard 4D reconstruction and the McKinnon-Bates (MB) reconstruction algorithms. Results: Both the 4D-VOI and the MB reconstructions suppress nearly all the streak artifacts compared with the standard 4D reconstruction, but the 4D-VOI has 3–8 times greater contrast-to-noise ratio than the MB reconstruction. In the dynamic chest phantom study, the 4D-VOI and the standard 4D reconstructions both resolved a moving sphere with an 18 mm displacement. The 4D-VOI reconstruction shows a motion blur of only 3 mm, whereas the MB reconstruction shows a motion blur of 13 mm. With graphics processing unit hardware used to accelerate computations, the 4D-VOI reconstruction required a 40-s reconstruction time. Conclusions: 4D-VOI reconstruction effectively reduces undersampling artifacts and resolves lung tumor motion in 4D-CBCT. The 4D-VOI reconstruction is computationally inexpensive compared with more sophisticated iterative algorithms. Compared with these algorithms, our 4D-VOI reconstruction is an attractive alternative in 4D-CBCT for reconstructing target motion without generating numerous streak artifacts. PMID:21992381

  19. MIR and NIR group spectra of n-alkanes and 1-chloroalkanes.

    PubMed

    Kwaśniewicz, Michał; Czarnecki, Mirosław A

    2015-05-15

    Numerous attempts were undertaken to resolve the absorption originating from different parts of alkanes. The separation of the contributions from the terminal and midchain methylene units was observed only in the spectra of solid alkanes at low temperatures. On the other hand, for liquid alkanes this effect was not reported as yet. In this study, ATR-IR, Raman and NIR spectra of eight n-alkanes and seven 1-chloroalkanes in the liquid phase were measured from 1000 to 12,000cm(-1). The spectra were analyzed by using two-dimensional (2D) correlation approach and chemometrics methods. It was shown that in 2D asynchronous contour plots, constructed from the spectra of n-alkanes and 1-chloroalkanes, the methylene band was resolved into two components. These two components were assigned to the terminal and midchain methylene groups. For the first time, the contributions from these two molecular fragments were resolved in the spectra of liquid n-alkanes and 1-chloroalkanes. MCR-ALS resolved these spectra into two components that were assigned to the ethyl and midchain methylene groups. These components represent the group spectra that can be used for assignment, spectral analysis and prediction of unknown spectra. The spectral prediction based on the group spectra provides very good results for n-alkanes, especially in the first and second overtone regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The Central Limit Theorem for Supercritical Oriented Percolation in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Tzioufas, Achillefs

    2018-04-01

    We consider the cardinality of supercritical oriented bond percolation in two dimensions. We show that, whenever the the origin is conditioned to percolate, the process appropriately normalized converges asymptotically in distribution to the standard normal law. This resolves a longstanding open problem pointed out to in several instances in the literature. The result applies also to the continuous-time analog of the process, viz. the basic one-dimensional contact process. We also derive general random-indices central limit theorems for associated random variables as byproducts of our proof.

  1. The Central Limit Theorem for Supercritical Oriented Percolation in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Tzioufas, Achillefs

    2018-06-01

    We consider the cardinality of supercritical oriented bond percolation in two dimensions. We show that, whenever the the origin is conditioned to percolate, the process appropriately normalized converges asymptotically in distribution to the standard normal law. This resolves a longstanding open problem pointed out to in several instances in the literature. The result applies also to the continuous-time analog of the process, viz. the basic one-dimensional contact process. We also derive general random-indices central limit theorems for associated random variables as byproducts of our proof.

  2. Spin-split silicon states at step edges of Si(553)-Au

    NASA Astrophysics Data System (ADS)

    Biedermann, K.; Regensburger, S.; Fauster, Th.; Himpsel, F. J.; Erwin, S. C.

    2012-06-01

    The quasi-one-dimensional Si(553)-Au surface is investigated with time-resolved two-photon photoemission and laser-based photoemission. Several occupied and unoccupied states inside and outside the bulk band gap of silicon were found near the center of the surface Brillouin zone. A nondispersing unoccupied state 0.62 eV above the Fermi level with a lifetime of 125 fs matches the spin-split silicon step-edge state predicted by density functional theory calculations. Two occupied bands can be associated with the bands calculated for nonpolarized step-edge atoms.

  3. On the Sensitivity of Atmospheric Ensembles to Cloud Microphysics in Long-Term Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Zeng, Xiping; Tao, Wei-Kuo; Lang, Stephen; Hou, Arthur Y.; Zhang, Minghua; Simpson, Joanne

    2008-01-01

    Month-long large-scale forcing data from two field campaigns are used to drive a cloud-resolving model (CRM) and produce ensemble simulations of clouds and precipitation. Observational data are then used to evaluate the model results. To improve the model results, a new parameterization of the Bergeron process is proposed that incorporates the number concentration of ice nuclei (IN). Numerical simulations reveal that atmospheric ensembles are sensitive to IN concentration and ice crystal multiplication. Two- (2D) and three-dimensional (3D) simulations are carried out to address the sensitivity of atmospheric ensembles to model dimensionality. It is found that the ensembles with high IN concentration are more sensitive to dimensionality than those with low IN concentration. Both the analytic solutions of linear dry models and the CRM output show that there are more convective cores with stronger updrafts in 3D simulations than in 2D, which explains the differing sensitivity of the ensembles to dimensionality at different IN concentrations.

  4. In-SITU, Time-resolved Raman Spectro-micro-topography of an Operating Lithium Ion Battery

    NASA Technical Reports Server (NTRS)

    Luo, Yu; Cai, Wen-Bin; Xing, Xue-Kun; Scherson, Daniel A.

    2003-01-01

    A Raman microscope has been coupled to a computer-controlled, two-dimensional linear translator attached to a custom-designed, sealed optical chamber to allow in situ acquisition of space-, and time-resolved spectra of an operating thin graphite/LiCoO2 Li-ion battery. This unique arrangement made it possible to collect continuously series of Raman spectra from a sharply defined edge of the battery exposing the anode (A), separator (S), and cathode (C), during charge and discharge, while the device was moved back and forth under the fixed focused laser beam along an axis normal to the layered A/S/C plane. Clear spectral evidence was obtained for changes in the amount of Li(+) within particles of graphite in the anode, and, to a lesser extent, of LiCoO2 in the cathode, during battery discharge both as a function of position and time. Analysis of time-resolved Raman spectro-micro-topography (SMT) measurements of the type described in this work are expected to open new prospects for assessing the validity of theoretical models aimed at simulating the flow of Li(+) within Li-ion batteries under operating conditions.

  5. Peripheral Vasculature: High-Temporal- and High-Spatial-Resolution Three-dimensional Contrast-enhanced MR Angiography1

    PubMed Central

    Haider, Clifton R.; Glockner, James F.; Stanson, Anthony W.; Riederer, Stephen J.

    2009-01-01

    Purpose: To prospectively evaluate the feasibility of performing high-spatial-resolution (1-mm isotropic) time-resolved three-dimensional (3D) contrast material–enhanced magnetic resonance (MR) angiography of the peripheral vasculature with Cartesian acquisition with projection-reconstruction–like sampling (CAPR) and eightfold accelerated two-dimensional (2D) sensitivity encoding (SENSE). Materials and Methods: All studies were approved by the institutional review board and were HIPAA compliant; written informed consent was obtained from all participants. There were 13 volunteers (mean age, 41.9; range, 27–53 years). The CAPR sequence was adapted to provide 1-mm isotropic spatial resolution and a 5-second frame time. Use of different receiver coil element sizes for those placed on the anterior-to-posterior versus left-to-right sides of the field of view reduced signal-to-noise ratio loss due to acceleration. Results from eight volunteers were rated independently by two radiologists according to prominence of artifact, arterial to venous separation, vessel sharpness, continuity of arterial signal intensity in major arteries (anterior and posterior tibial, peroneal), demarcation of origin of major arteries, and overall diagnostic image quality. MR angiographic results in two patients with peripheral vascular disease were compared with their results at computed tomographic angiography. Results: The sequence exhibited no image artifact adversely affecting diagnostic image quality. Temporal resolution was evaluated to be sufficient in all cases, even with known rapid arterial to venous transit. The vessels were graded to have excellent sharpness, continuity, and demarcation of the origins of the major arteries. Distal muscular branches and the communicating and perforating arteries were routinely seen. Excellent diagnostic quality rating was given for 15 (94%) of 16 evaluations. Conclusion: The feasibility of performing high-diagnostic-quality time-resolved 3D contrast-enhanced MR angiography of the peripheral vasculature by using CAPR and eightfold accelerated 2D SENSE has been demonstrated. © RSNA, 2009 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.2533081744/-/DC1 PMID:19789238

  6. Optical Manipulation and Detection of Emergent Phenomena in Topological Insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gedik, Nuh

    The three-dimensional topological insulator (TI) is a new quantum phase of matter that exhibits quantum-Hall-like properties, even in the absence of an external magnetic field. These materials are insulators in the bulk but have a topologically protected conducting state at the surface. Charge carriers on these surface states behave like a two-dimensional gas of massless helical Dirac fermions for which the spin is ideally locked perpendicular to the momentum. The purpose of this project is to probe the unique collective electronic behaviors of topological insulators by developing and using advanced time resolved spectroscopic techniques with state-of-the-art temporal and spatial resolutions.more » The nature of these materials requires development of specialized ultrafast techniques (such as time resolved ARPES that also has spin detection capability, ultrafast electron diffraction that has sub-100 fs time resolution and THz magneto-spectroscopy). The focus of this report is to detail our achievements in terms of establishing state of the art experimental facilities. Below, we will describe achievements under this award for the entire duration of five years. We will focus on detailing the development of ultrafast technqiues here. The details of the science that was done with these technqiues can be found in the publications referencing this grant.« less

  7. Inertial objects in complex flows

    NASA Astrophysics Data System (ADS)

    Syed, Rayhan; Ho, George; Cavas, Samuel; Bao, Jialun; Yecko, Philip

    2017-11-01

    Chaotic Advection and Finite Time Lyapunov Exponents both describe stirring and transport in complex and time-dependent flows, but FTLE analysis has been largely limited to either purely kinematic flow models or high Reynolds number flow field data. The neglect of dynamic effects in FTLE and Lagrangian Coherent Structure studies has stymied detailed information about the role of pressure, Coriolis effects and object inertia. We present results of laboratory and numerical experiments on time-dependent and multi-gyre Stokes flows. In the lab, a time-dependent effectively two-dimensional low Re flow is used to distinguish transport properties of passive tracer from those of small paramagnetic spheres. Companion results of FTLE calculations for inertial particles in a time-dependent multi-gyre flow are presented, illustrating the critical roles of density, Stokes number and Coriolis forces on their transport. Results of Direct Numerical Simulations of fully resolved inertial objects (spheroids) immersed in a three dimensional (ABC) flow show the role of shape and finite size in inertial transport at small finite Re. We acknowledge support of NSF DMS-1418956.

  8. Optimized resolved rate control of seven-degree-of-freedom Laboratory Telerobotic Manipulator (LTM) with application to three-dimensional graphics simulation

    NASA Technical Reports Server (NTRS)

    Barker, L. Keith; Mckinney, William S., Jr.

    1989-01-01

    The Laboratory Telerobotic Manipulator (LTM) is a seven-degree-of-freedom robot arm. Two of the arms were delivered to Langley Research Center for ground-based research to assess the use of redundant degree-of-freedom robot arms in space operations. Resolved-rate control equations for the LTM are derived. The equations are based on a scheme developed at the Oak Ridge National Laboratory for computing optimized joint angle rates in real time. The optimized joint angle rates actually represent a trade-off, as the hand moves, between small rates (least-squares solution) and those rates which work toward satisfying a specified performance criterion of joint angles. In singularities where the optimization scheme cannot be applied, alternate control equations are devised. The equations developed were evaluated using a real-time computer simulation to control a 3-D graphics model of the LTM.

  9. Pulsatile turbulent flow through pipe bends at high Dean and Womersley numbers

    NASA Astrophysics Data System (ADS)

    Kalpakli, Athanasia; Örlü, Ramis; Tillmark, Nils; Alfredsson, P. Henrik

    2011-12-01

    Turbulent pulsatile flows through pipe bends are prevalent in internal combustion engine components which consist of bent pipe sections and branching conduits. Nonetheless, most of the studies related to pulsatile flows in pipe bends focus on incompressible, low Womersley and low Dean number flows, primarily because they aim in modeling blood flow, while internal combustion engine related flows have mainly been addressed in terms of integral quantities and consist of single point measurements. The present study aims at bridging the gap between these two fields by means of time-resolved stereoscopic particle image velocimetry measurements in a pipe bend with conditions that are close to those encountered in exhaust manifolds. The time/phase-resolved three-dimensional cross-sectional flow-field 3 pipe diameters downstream the pipe bend is captured and the interplay between different secondary motions throughout a pulse cycle is discussed.

  10. Towards on-chip time-resolved thermal mapping with micro-/nanosensor arrays

    PubMed Central

    2012-01-01

    In recent years, thin-film thermocouple (TFTC) array emerged as a versatile candidate in micro-/nanoscale local temperature sensing for its high resolution, passive working mode, and easy fabrication. However, some key issues need to be taken into consideration before real instrumentation and industrial applications of TFTC array. In this work, we will demonstrate that TFTC array can be highly scalable from micrometers to nanometers and that there are potential applications of TFTC array in integrated circuits, including time-resolvable two-dimensional thermal mapping and tracing the heat source of a device. Some potential problems and relevant solutions from a view of industrial applications will be discussed in terms of material selection, multiplexer reading, pattern designing, and cold-junction compensation. We show that the TFTC array is a powerful tool for research fields such as chip thermal management, lab-on-a-chip, and other novel electrical, optical, or thermal devices. PMID:22931306

  11. Frontiers in Chemical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowlan, Pamela Renee

    2016-05-02

    These are slides dealing with frontiers in chemical physics. The following topics are covered: Time resolving chemistry with ultrashort pulses in the 0.1-40 THz spectral range; Example: Mid-infrared absorption spectrum of the intermediate state CH 2OO; Tracking reaction dynamics through changes in the spectra; Single-shot measurement of the mid-IR absorption dynamics; Applying 2D coherent mid-IR spectroscopy to learn more about transition states; Time resolving chemical reactions at a catalysis using mid-IR and THz pulses; Studying topological insulators requires a surface sensitive probe; Nonlinear phonon dynamics in Bi 2Se 3; THz-pump, SHG-probe as a surface sensitive coherent 2D spectroscopy; Nanometer andmore » femtosecond spatiotemporal resolution mid-IR spectroscopy; Coherent two-dimensional THz/mid-IR spectroscopy with 10nm spatial resolution; Pervoskite oxides as catalysts; Functionalized graphene for catalysis; Single-shot spatiotemporal measurements; Spatiotemporal pulse measurement; Intense, broad-band THz/mid-IR generation with organic crystals.« less

  12. Sub-10 fs Time-Resolved Vibronic Optical Microscopy

    PubMed Central

    2016-01-01

    We introduce femtosecond wide-field transient absorption microscopy combining sub-10 fs pump and probe pulses covering the complete visible (500–650 nm) and near-infrared (650–950 nm) spectrum with diffraction-limited optical resolution. We demonstrate the capabilities of our system by reporting the spatially- and spectrally-resolved transient electronic response of MAPbI3–xClx perovskite films and reveal significant quenching of the transient bleach signal at grain boundaries. The unprecedented temporal resolution enables us to directly observe the formation of band-gap renormalization, completed in 25 fs after photoexcitation. In addition, we acquire hyperspectral Raman maps of TIPS pentacene films with sub-400 nm spatial and sub-15 cm–1 spectral resolution covering the 100–2000 cm–1 window. Our approach opens up the possibility of studying ultrafast dynamics on nanometer length and femtosecond time scales in a variety of two-dimensional and nanoscopic systems. PMID:27934055

  13. Backtracking Depth-Resolved Microstructures for Crystal Plasticity Identification—Part 1: Backtracking Microstructures

    NASA Astrophysics Data System (ADS)

    Shi, Qiwei; Latourte, Félix; Hild, François; Roux, Stéphane

    2017-12-01

    In situ mechanical tests performed on polycrystalline materials in a scanning electron microscope suffer from the lack of information on depth-resolved three-dimensional microstructures. The latter ones can be accessed with focused ion beam technology only postmortem, because it is destructive. The present study considers the challenge of backtracking this deformed microstructure to the reference state. This theoretical question is tackled on a numerical (synthetic) test case. A two-dimensional microstructure with one dimension along the depth is considered, and deformed using a crystal plasticity law. The proposed numerical strategy is shown to retrieve accurately the reference state.

  14. Time-resolved particle image velocimetry measurements of the 3D single-mode Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Xu, Qian; Krivets, Vitaliy V.; Sewell, Everest G.; Jacobs, Jeffrey W.

    2016-11-01

    A vertical shock tube is used to perform experiments on the single-mode three-dimensional Richtmyer-Meshkov Instability (RMI). The light gas (Air) and the heavy gas (SF6) enter from the top and the bottom of the shock tube driven section to form the interface. The initial perturbation is then generated by oscillating the gases vertically. Both gases are seeded with particles generated through vaporizing propylene glycol. An incident shock wave (M 1.2) impacts the interface to create an impulsive acceleration. The seeded particles are illuminated by a dual cavity 75W, Nd: YLF laser. Three high-speed CMOS cameras record time sequences of image pairs at a rate of 2 kHz. The initial perturbation used is that of a single, square-mode perturbation with either a single spike or a single bubble positioned at the center of the shock tube. The full time dependent velocity field is obtained allowing the determination of the circulation versus time. In addition, the evolution of time dependent amplitude is also determined. The results are compared with PIV measurements from previous two-dimensional single mode experiments along with PLIF measurements from previous three-dimensional single mode experiments.

  15. Model Prediction of Self-Rotating Excitons in Two-Dimensional Transition-Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Trushin, Maxim; Goerbig, Mark Oliver; Belzig, Wolfgang

    2018-05-01

    Using the quasiclassical concept of Berry curvature we demonstrate that a Dirac exciton—a pair of Dirac quasiparticles bound by Coulomb interactions—inevitably possesses an intrinsic angular momentum making the exciton effectively self-rotating. The model is applied to excitons in two-dimensional transition metal dichalcogenides, in which the charge carriers are known to be described by a Dirac-like Hamiltonian. We show that the topological self-rotation strongly modifies the exciton spectrum and, as a consequence, resolves the puzzle of the overestimated two-dimensional polarizability employed to fit earlier spectroscopic measurements.

  16. High-speed absorption recovery in quantum well diodes by diffusive electrical conduction

    NASA Astrophysics Data System (ADS)

    Livescu, G.; Miller, D. A. B.; Sizer, T.; Burrows, D. J.; Cunningham, J. E.

    1989-02-01

    Picosecond time-resolved electroabsorption measurements in GaAs quantum well p-i-n diode structures are presented. While the dynamics of the vertical transport is not completely understood at present, the data reveal the importance of the 'lateral' propagatin of the photoexcited voltage pulse over the area of the doped regions. A two-dimensional 'diffusive conduction' mechanism is proposed which predicts a fast relaxation of the electrical pulse, with time constants ranging from 50 fs to 500 ps, determined by the size of the exciting spot, the resistivity of the doped regions, and the capacitance of the intrinsic region.

  17. Helicity conservation under quantum reconnection of vortex rings.

    PubMed

    Zuccher, Simone; Ricca, Renzo L

    2015-12-01

    Here we show that under quantum reconnection, simulated by using the three-dimensional Gross-Pitaevskii equation, self-helicity of a system of two interacting vortex rings remains conserved. By resolving the fine structure of the vortex cores, we demonstrate that the total length of the vortex system reaches a maximum at the reconnection time, while both writhe helicity and twist helicity remain separately unchanged throughout the process. Self-helicity is computed by two independent methods, and topological information is based on the extraction and analysis of geometric quantities such as writhe, total torsion, and intrinsic twist of the reconnecting vortex rings.

  18. Numerical study of the small scale structures in Boussinesq convection

    NASA Technical Reports Server (NTRS)

    Weinan, E.; Shu, Chi-Wang

    1992-01-01

    Two-dimensional Boussinesq convection is studied numerically using two different methods: a filtered pseudospectral method and a high order accurate Essentially Nonoscillatory (ENO) scheme. The issue whether finite time singularity occurs for initially smooth flows is investigated. The numerical results suggest that the collapse of the bubble cap is unlikely to occur in resolved calculations. The strain rate corresponding to the intensification of the density gradient across the front saturates at the bubble cap. We also found that the cascade of energy to small scales is dominated by the formulation of thin and sharp fronts across which density jumps.

  19. Fermi surface ridge at second and third Umklapp positron annihilations in Y Ba2Cu3O(7-delta)

    NASA Astrophysics Data System (ADS)

    Adam, G.; Adam, S.; Barbiellini, B.; Hoffmann, L.; Manuel, A. A.; Massidda, S.; Peter, M.

    1993-06-01

    Results of statistical noise smoothing of the electron momentum distribution obtained by two-dimensional angular correlation of the electron-positron annihilation radiation technique on untwinned YBa2Cu3O(7-delta) single crystals are reported. Two distinct signatures of the sheet of Fermi surface related to the CuO chains (the ridge) are resolved. The first occurs at second Umklapp processes, in agreement with previous evidence. The second one, identified for the first time, occurs at third Umklapp processes. Comparison with FLAPW calculations confirms this result.

  20. Fermi surface ridge at second and third UMKLAPP positron annihilations in YBa 2Cu 3O 7- δ

    NASA Astrophysics Data System (ADS)

    Adam, Gh.; Adam, S.; Barbiellini, B.; Hoffmann, L.; Manuel, A. A.; Peter, M.; Massida, S.

    1993-12-01

    Results of statistical noise smoothing of the electron momentum distribution got by two-dimensional angular correlation of the electron-positron annihilation radiation technique on untwinned YBa 2Cu 3O 7- δ single crystals are reported. Two distinct signatures of the sheet of Fermi surface related to the CuO chains (the ridge) are resolved. The first occurs at second Umklapp processes, in agreement with previous evidence. The second one, identified for the first time, occurs at third Umklapp processes. Comparison with FLAPW calculations confirms this result.

  1. Electronic properties of novel topological quantum materials studied by angle-resolved photoemission spectroscopy (ARPES)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yun

    The discovery of quantum Hall e ect has motivated the use of topology instead of broken symmetry to classify the states of matter. Quantum spin Hall e ect has been proposed to have a separation of spin currents as an analogue of the charge currents separation in quantum Hall e ect, leading us to the era of topological insulators. Three-dimensional analogue of the Dirac state in graphene has brought us the three-dimensional Dirac states. Materials with three-dimensional Dirac states could potentially be the parent compounds for Weyl semimetals and topological insulators when time-reversal or space inversion symmetry is broken. Inmore » addition to the single Dirac point linking the two dispersion cones in the Dirac/Weyl semimetals, Dirac points can form a line in the momentum space, resulting in a topological node line semimetal. These fascinating novel topological quantum materials could provide us platforms for studying the relativistic physics in condensed matter systems and potentially lead to design of new electronic devices that run faster and consume less power than traditional, silicon based transistors. In this thesis, we present the electronic properties of novel topological quantum materials studied by angle-resolved photoemission spectroscopy (ARPES).« less

  2. Comparison of a vertically-averaged and a vertically-resolved model for hyporheic flow beneath a pool-riffle bedform

    NASA Astrophysics Data System (ADS)

    Ibrahim, Ahmad; Steffler, Peter; She, Yuntong

    2018-02-01

    The interaction between surface water and groundwater through the hyporheic zone is recognized to be important as it impacts the water quantity and quality in both flow systems. Three-dimensional (3D) modeling is the most complete representation of a real-world hyporheic zone. However, 3D modeling requires extreme computational power and efforts; the sophistication is often significantly compromised by not being able to obtain the required input data accurately. Simplifications are therefore often needed. The objective of this study was to assess the accuracy of the vertically-averaged approximation compared to a more complete vertically-resolved model of the hyporheic zone. The groundwater flow was modeled by either a simple one-dimensional (1D) Dupuit approach or a two-dimensional (2D) horizontal/vertical model in boundary fitted coordinates, with the latter considered as a reference model. Both groundwater models were coupled with a 1D surface water model via the surface water depth. Applying the two models to an idealized pool-riffle sequence showed that the 1D Dupuit approximation gave comparable results in determining the characteristics of the hyporheic zone to the reference model when the stratum thickness is not very large compared to the surface water depth. Conditions under which the 1D model can provide reliable estimate of the seepage discharge, upwelling/downwelling discharges and locations, the hyporheic flow, and the residence time were determined.

  3. Resolution of co-eluting compounds of Cannabis Sativa in comprehensive two-dimensional gas chromatography/mass spectrometry detection with Multivariate Curve Resolution-Alternating Least Squares.

    PubMed

    Omar, Jone; Olivares, Maitane; Amigo, José Manuel; Etxebarria, Nestor

    2014-04-01

    Comprehensive Two Dimensional Gas Chromatography - Mass Spectrometry (GC × GC/qMS) analysis of Cannabis sativa extracts shows a high complexity due to the large variety of terpenes and cannabinoids and to the fact that the complete resolution of the peaks is not straightforwardly achieved. In order to support the resolution of the co-eluted peaks in the sesquiterpene and the cannabinoid chromatographic region the combination of Multivariate Curve Resolution and Alternating Least Squares algorithms was satisfactorily applied. As a result, four co-eluting areas were totally resolved in the sesquiterpene region and one in the cannabinoid region in different samples of Cannabis sativa. The comparison of the mass spectral profiles obtained for each resolved peak with theoretical mass spectra allowed the identification of some of the co-eluted peaks. Finally, the classification of the studied samples was achieved based on the relative concentrations of the resolved peaks. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Pathways of energy transfer in LHCII revealed by room-temperature 2D electronic spectroscopy.

    PubMed

    Wells, Kym L; Lambrev, Petar H; Zhang, Zhengyang; Garab, Gyözö; Tan, Howe-Siang

    2014-06-21

    We present here the first room-temperature 2D electronic spectroscopy study of energy transfer in the plant light-harvesting complex II, LHCII. Two-dimensional electronic spectroscopy has been used to study energy transfer dynamics in LHCII trimers from the chlorophyll b Qy band to the chlorophyll a Qy band. Observing cross-peak regions corresponding to couplings between different excitonic states reveals partially resolved fine structure at the exciton level that cannot be isolated by pump-probe or linear spectroscopy measurements alone. Global analysis of the data has been performed to identify the pathways and time constants of energy transfer. The measured waiting time (Tw) dependent 2D spectra are found to be composed of 2D decay-associated spectra with three timescales (0.3 ps, 2.3 ps and >20 ps). Direct and multistep cascading pathways from the high-energy chlorophyll b states to the lowest-energy chlorophyll a states have been resolved occurring on time scales of hundreds of femtoseconds to picoseconds.

  5. Investigation of RNA Hairpin Loop Folding with Time-Resolved Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Stancik, Aaron Lee

    Ribonucleic acids (RNAs) are a group of functional biopolymers central to the molecular underpinnings of life. To complete the many processes they mediate, RNAs must fold into precise three-dimensional structures. Hairpin loops are the most ubiquitous and basic structural elements present in all folded RNAs, and are the foundation upon which all complex tertiary structures are built. A hairpin loop forms when a single stranded RNA molecule folds back on itself creating a helical stem of paired bases capped by a loop. This work investigates the formation of UNCG hairpin loops with the sequence 5'-GC(UNCG)GC-3' (N = A, U, G, or C) using both equilibrium infrared (IR) and time-resolved IR spectroscopy. Equilibrium IR melting data were used to determine thermodynamic parameters. Melting temperatures ranged from 50 to 60°C, and enthalpies of unfolding were on the order of 100 kJ/mol. In the time-resolved work, temperature jumps of up to 20°C at 2.5°C increments were obtained with transient relaxation kinetics spanning nanoseconds to hundreds of microseconds. The relaxation kinetics for all of the oligomers studied were fit to first or second order exponentials. Multiple vibrational transitions were probed on each oligomer for fully folded and partially denatured structures. In the time-resolved limit, in contrast to equilibrium melting, RNA does not fold according to two-state behavior. These results are some of the first to show that RNA hairpins fold according to a rugged energy landscape, which contradicts their relatively simple nature. In addition, this work has proven that time-resolved IR spectroscopy is a powerful and novel tool for investigating the earliest events of RNA folding, the formation of the hairpin loop.

  6. One-dimensional transient radiative transfer by lattice Boltzmann method.

    PubMed

    Zhang, Yong; Yi, Hongliang; Tan, Heping

    2013-10-21

    The lattice Boltzmann method (LBM) is extended to solve transient radiative transfer in one-dimensional slab containing scattering media subjected to a collimated short laser irradiation. By using a fully implicit backward differencing scheme to discretize the transient term in the radiative transfer equation, a new type of lattice structure is devised. The accuracy and computational efficiency of this algorithm are examined firstly. Afterwards, effects of the medium properties such as the extinction coefficient, the scattering albedo and the anisotropy factor, and the shapes of laser pulse on time-resolved signals of transmittance and reflectance are investigated. Results of the present method are found to compare very well with the data from the literature. For an oblique incidence, the LBM results in this paper are compared with those by Monte Carlo method generated by ourselves. In addition, transient radiative transfer in a two-Layer inhomogeneous media subjected to a short square pulse irradiation is investigated. At last, the LBM is further extended to study the transient radiative transfer in homogeneous medium with a refractive index discontinuity irradiated by the short pulse laser. Several trends on the time-resolved signals different from those for refractive index of 1 (i.e. refractive-index-matched boundary) are observed and analysed.

  7. Time resolved flow-field measurements of a turbulent mixing layer over a rectangular cavity

    NASA Astrophysics Data System (ADS)

    Bian, Shiyao; Driscoll, James F.; Elbing, Brian R.; Ceccio, Steven L.

    2011-07-01

    High Reynolds number, low Mach number, turbulent shear flow past a rectangular, shallow cavity has been experimentally investigated with the use of dual-camera cinematographic particle image velocimetry (CPIV). The CPIV had a 3 kHz sampling rate, which was sufficient to monitor the time evolution of large-scale vortices as they formed, evolved downstream and impinged on the downstream cavity wall. The time-averaged flow properties (velocity and vorticity fields, streamwise velocity profiles and momentum and vorticity thickness) were in agreement with previous cavity flow studies under similar operating conditions. The time-resolved results show that the separated shear layer quickly rolled-up and formed eddies immediately downstream of the separation point. The vortices convect downstream at approximately half the free-stream speed. Vorticity strength intermittency as the structures approach the downstream edge suggests an increase in the three-dimensionality of the flow. Time-resolved correlations reveal that the in-plane coherence of the vortices decays within 2-3 structure diameters, and quasi-periodic flow features are present with a vortex passage frequency of ~1 kHz. The power spectra of the vertical velocity fluctuations within the shear layer revealed a peak at a non-dimensional frequency corresponding to that predicted using linear, inviscid instability theory.

  8. Engineering Weyl Superfluid in Ultracold Fermionic Gases by One-Dimensional Optical Superlattices

    NASA Astrophysics Data System (ADS)

    Huang, Beibing

    2018-01-01

    In this paper, we theoretically demonstrate by using one-dimensional superlattices to couple two-dimensional time-reversal-breaking gapped topological superfluid models, an anomalous Weyl superfluid (WS) can be obtained. This new phase features its unique Fermi arc states (FAS) on the surfaces. In the conventional WS, FAS exist only for a part of the line connecting the projections of Weyl points and extending to the border and/or center of surface Brillouin zone. But for the anomalous WS, FAS exist for the whole line. As a proof of principle, we self-consistently at the mean-field level claim the achievement of the anomalous WS in the model with a dichromatic superlattice. In addition, inversion symmetry and band inversion in this model are analyzed to provide the unique features of identifying the anomalous WS experimentally by the momentum-resolved radio-frequency spectroscopy.

  9. Electronic structure and relaxation dynamics in a superconducting topological material

    DOE PAGES

    Neupane, Madhab; Ishida, Yukiaki; Sankar, Raman; ...

    2016-03-03

    Topological superconductors host new states of quantum matter which show a pairing gap in the bulk and gapless surface states providing a platform to realize Majorana fermions. Recently, alkaline-earth metal Sr intercalated Bi2Se3 has been reported to show superconductivity with a Tc~3K and a large shielding fraction. Here we report systematic normal state electronic structure studies of Sr0.06Bi2Se3 (Tc~2.5K) by performing photoemission spectroscopy. Using angle-resolved photoemission spectroscopy (ARPES), we observe a quantum well confined two-dimensional (2D) state coexisting with a topological surface state in Sr0.06Bi2Se3. Furthermore, our time-resolved ARPES reveals the relaxation dynamics showing different decay mechanism between the excitedmore » topological surface states and the two-dimensional states. Our experimental observation is understood by considering the intra-band scattering for topological surface states and an additional electron phonon scattering for the 2D states, which is responsible for the superconductivity. Our first-principles calculations agree with the more effective scattering and a shorter lifetime of the 2D states. In conclusion, our results will be helpful in understanding low temperature superconducting states of these topological materials.« less

  10. Synthesis, structure and photoluminescence properties of amine-templated open-framework bismuth sulfates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marri, Subba R.; Behera, J.N., E-mail: jnbehera@niser.ac.in

    2014-02-15

    Two organically-templated bismuth sulfates of the compositions, [C{sub 6}N{sub 2}H{sub 14}] [Bi(SO{sub 4}){sub 2}(NO{sub 3})], (1) and [C{sub 4}N{sub 2}H{sub 12}]{sub 4}[Bi{sub 4}(SO{sub 4}){sub 10}(H{sub 2}O){sub 4}], (2), with open architecture have been synthesized and their structures determined by single crystal X-ray diffraction. 1 has a corrugated layered structure with 8-membered aperture wherein the SO{sub 4} tetrahedra and the BiO{sub 8} polyhedra join together to form (4, 4) net sheets of the metal centers while 2 has a three-dimensional structure possessing 8- and 12-membered channels. Both the compounds show good fluorescence properties exhibiting blue luminescence. Time-resolved fluorescence behavior of 1more » and 2 shows mean fluorescence life time of 0.9 and 1.0 ns, respectively. - Graphical abstract: Two open-framework bismuth sulfates with the layered and three-dimensional structures have been synthesized and characterized. Both the compounds show good fluorescence properties exhibiting blue luminescence. Display Omitted - Highlights: • Two organically-templated bismuth sulfates with open architecture have been synthesized and characterized. • One has a corrugated layered structure while the other one has a three-dimensional structure possessing channels. • They are novel in that open-framework three-dimensional main group metal sulfates are first to be reported. • They show good fluorescence properties exhibiting blue luminescence.« less

  11. Probing Thermomechanics at the Nanoscale: Impulsively Excited Pseudosurface Acoustic Waves in Hypersonic Phononic Crystals

    PubMed Central

    2011-01-01

    High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system’s initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system’s excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths. PMID:21910426

  12. On seismic resolution of lateral heterogeneity in the Earth's outermost core

    NASA Astrophysics Data System (ADS)

    Garnero, Edward J.; Helmberger, Donald V.

    1995-03-01

    Issues concerning resolution of seismically determined outermost core properties are presented with an example from three earthquakes in the Fiji-Tonga region. Travel time behavior of the commonly used family of S mKS waves, which travel as S in the mantle, P in the core, reflecting m - 1 times at the underside of the core-mantle boundary (CMB), are analyzed over a large distance range (125-165°). Data having wavepaths through an area of known D″ heterogeneity (±2%) exhibit systematic anomalies in S mKS differential times. Two-dimensional wave propagation experiments demonstrate how large-scale lower-mantle velocity perturbations can explain long-wavelength behavior of such anomalous S mKS times, though heterogeneity on smaller scales may be responsible for the observed scatter about these trends. If lower-mantle heterogeneity is not properly accounted for in deriving a core model, misfit of the mantle model maps directly into core structure. The existence of outermost core heterogeneity is difficult to resolve at present, owing to uncertainties in global lower-mantle structure. Resolving a one-dimensional chemically stratified outermost core also remains difficult, owing to the same uncertainties. Inclusion of the slowly accruing broadband data should help in this regard. Restricting study to higher multiples of S mKS ( m = 2, 3, 4) can help reduce the effect of mantle heterogeneity, because of the closeness of the mantle legs of the wavepaths. S mKS waves are ideal in providing additional information on the details of lower-mantle heterogeneity.

  13. Anisotropy of stress correlation in two-dimensional liquids and a pseudospin model

    DOE PAGES

    Wu, Bin; Iwashita, Takuya; Egami, Takeshi

    2015-11-04

    Liquids are condensed matter in which atoms are strongly correlated in position and momentum. The atomic pair density function (PDF) is used often in describing such correlation. However, elucidation of many properties requires higher degrees of correlation than the pair correlation. For instance, viscosity depends upon the stress correlations in space and time. We examine the cross correlation between the stress correlation at the atomic level and the PDF for two-dimensional liquids. We introduce the concept of the stress-resolved pair distribution function (SRPDF) that uses the sign of atomic-level stress as a selection rule to include particles from density correlations.more » The connection between SRPDFs and stress correlation function is explained through an approximation in which the shear stress is replaced by a pseudospin. Lastly, we further assess the possibility of interpreting the long-range stress correlation as a consequence of short-range Ising-like pseudospin interactions.« less

  14. Tunable Crystallinity and Charge Transfer in Two-Dimensional G-Quadruplex Organic Frameworks.

    PubMed

    Wu, Yi-Lin; Bobbitt, N Scott; Logsdon, Jenna L; Powers-Riggs, Natalia E; Nelson, Jordan N; Liu, Xiaolong; Wang, Timothy C; Snurr, Randall Q; Hupp, Joseph T; Farha, Omar K; Hersam, Mark C; Wasielewski, Michael R

    2018-04-03

    DNA G-quadruplex structures were recently discovered to provide reliable scaffolding for two-dimensional organic frameworks due to the strong hydrogen-bonding ability of guanine. Herein, 2,7-diaryl pyrene building blocks with high HOMO energies and large optical gaps are incorporated into G-quadruplex organic frameworks. The adjustable substitution on the aryl groups provides an opportunity to elucidate the framework formation mechanism; molecular non-planarity is found to be beneficial for restricting interlayer slippage, and the framework crystallinity is highest when intermolecular interaction and non-planarity strike a fine balance. When guanine-functionalized pyrenes are co-crystallized with naphthalene diimide, charge-transfer (CT) complexes are obtained. The photophysical properties of the pyrene-only and CT frameworks are characterized by UV/Vis and steady-state and time-resolved photoluminescence spectroscopies, and by EPR spectroscopy for the CT complex frameworks. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Energy transport in a shear flow of particles in a two-dimensional dusty plasma.

    PubMed

    Feng, Yan; Goree, J; Liu, Bin

    2012-11-01

    A shear flow of particles in a laser-driven two-dimensional (2D) dusty plasma is observed in a study of viscous heating and thermal conduction. Video imaging and particle tracking yields particle velocity data, which we convert into continuum data, presented as three spatial profiles: mean particle velocity (i.e., flow velocity), mean-square particle velocity, and mean-square fluctuations of particle velocity. These profiles and their derivatives allow a spatially resolved determination of each term in the energy and momentum continuity equations, which we use for two purposes. First, by balancing these terms so that their sum (i.e., residual) is minimized while varying viscosity η and thermal conductivity κ as free parameters, we simultaneously obtain values for η and κ in the same experiment. Second, by comparing the viscous heating and thermal conduction terms, we obtain a spatially resolved characterization of the viscous heating.

  16. General theoretical description of angle-resolved photoemission spectroscopy of van der Waals structures

    NASA Astrophysics Data System (ADS)

    Amorim, B.

    2018-04-01

    We develop a general theory to model the angle-resolved photoemission spectroscopy (ARPES) of commensurate and incommensurate van der Waals (vdW) structures, formed by lattice mismatched and/or misaligned stacked layers of two-dimensional materials. The present theory is based on a tight-binding description of the structure and the concept of generalized umklapp processes, going beyond previous descriptions of ARPES in incommensurate vdW structures, which are based on continuous, low-energy models, being limited to structures with small lattice mismatch/misalignment. As applications of the general formalism, we study the ARPES bands and constant energy maps for two structures: twisted bilayer graphene and twisted bilayer MoS2. The present theory should be useful in correctly interpreting experimental results of ARPES of vdW structures and other systems displaying competition between different periodicities, such as two-dimensional materials weakly coupled to a substrate and materials with density wave phases.

  17. Two-Dimensional Liquid Chromatography Analysis of Polystyrene/Polybutadiene Block Copolymers.

    PubMed

    Lee, Sanghoon; Choi, Heejae; Chang, Taihyun; Staal, Bastiaan

    2018-05-15

    A detailed characterization of a commercial polystyrene/polybutadiene block copolymer material (Styrolux) was carried out using two-dimensional liquid chromatography (2D-LC). The Styrolux is prepared by statistical linking reaction of two different polystyrene- block-polybutadienyl anion precursors with a multivalent linking agent. Therefore, it is a mixture of a number of branched block copolymers different in molecular weight, composition, and chain architecture. While individual LC analysis, including size exclusion chromatography, interaction chromatography, or liquid chromatography at critical condition, is not good enough to resolve all the polymer species, 2D-LC separations coupling two chromatography methods were able to resolve all polymer species present in the sample; at least 13 block copolymer species and a homopolystyrene blended. Four different 2D-LC analyses combining a different pair of two LC methods provide their characteristic separation results. The separation characteristics of the 2D-LC separations are compared to elucidate the elution characteristics of the block copolymer species.

  18. Two-dimensional multi-frequency imaging of a tumor inclusion in a homogeneous breast phantom using the harmonic motion Doppler imaging method.

    PubMed

    Tafreshi, Azadeh Kamali; Top, Can Barış; Gençer, Nevzat Güneri

    2017-06-21

    Harmonic motion microwave Doppler imaging (HMMDI) is a novel imaging modality for imaging the coupled electrical and mechanical properties of body tissues. In this paper, we used two experimental systems with different receiver configurations to obtain HMMDI images from tissue-mimicking phantoms at multiple vibration frequencies between 15 Hz and 35 Hz. In the first system, we used a spectrum analyzer to obtain the Doppler data in the frequency domain, while in the second one, we used a homodyne receiver that was designed to acquire time-domain data. The developed phantoms mimicked the elastic and dielectric properties of breast fat tissue, and included a [Formula: see text] mm cylindrical inclusion representing the tumor. A focused ultrasound probe was mechanically scanned in two lateral dimensions to obtain two-dimensional HMMDI images of the phantoms. The inclusions were resolved inside the fat phantom using both experimental setups. The image resolution increased with increasing vibration frequency. The designed receiver showed higher sensitivity than the spectrum analyzer measurements. The results also showed that time-domain data acquisition should be used to fully exploit the potential of the HMMDI method.

  19. Two-dimensional multi-frequency imaging of a tumor inclusion in a homogeneous breast phantom using the harmonic motion Doppler imaging method

    NASA Astrophysics Data System (ADS)

    Kamali Tafreshi, Azadeh; Barış Top, Can; Güneri Gençer, Nevzat

    2017-06-01

    Harmonic motion microwave Doppler imaging (HMMDI) is a novel imaging modality for imaging the coupled electrical and mechanical properties of body tissues. In this paper, we used two experimental systems with different receiver configurations to obtain HMMDI images from tissue-mimicking phantoms at multiple vibration frequencies between 15 Hz and 35 Hz. In the first system, we used a spectrum analyzer to obtain the Doppler data in the frequency domain, while in the second one, we used a homodyne receiver that was designed to acquire time-domain data. The developed phantoms mimicked the elastic and dielectric properties of breast fat tissue, and included a 14~\\text{mm}× 9 mm cylindrical inclusion representing the tumor. A focused ultrasound probe was mechanically scanned in two lateral dimensions to obtain two-dimensional HMMDI images of the phantoms. The inclusions were resolved inside the fat phantom using both experimental setups. The image resolution increased with increasing vibration frequency. The designed receiver showed higher sensitivity than the spectrum analyzer measurements. The results also showed that time-domain data acquisition should be used to fully exploit the potential of the HMMDI method.

  20. Investigation of unsteadiness in Shock-particle cloud interaction: Fully resolved two-dimensional simulation and one-dimensional modeling

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh-Nik, Zahra; Regele, Jonathan D.

    2015-11-01

    Dense compressible particle-laden flow, which has a complex nature, exists in various engineering applications. Shock waves impacting a particle cloud is a canonical problem to investigate this type of flow. It has been demonstrated that large flow unsteadiness is generated inside the particle cloud from the flow induced by the shock passage. It is desirable to develop models for the Reynolds stress to capture the energy contained in vortical structures so that volume-averaged models with point particles can be simulated accurately. However, the previous work used Euler equations, which makes the prediction of vorticity generation and propagation innacurate. In this work, a fully resolved two dimensional (2D) simulation using the compressible Navier-Stokes equations with a volume penalization method to model the particles has been performed with the parallel adaptive wavelet-collocation method. The results still show large unsteadiness inside and downstream of the particle cloud. A 1D model is created for the unclosed terms based upon these 2D results. The 1D model uses a two-phase simple low dissipation AUSM scheme (TSLAU) developed by coupled with the compressible two phase kinetic energy equation.

  1. Pressure distribution under flexible polishing tools. II - Cylindrical (conical) optics

    NASA Astrophysics Data System (ADS)

    Mehta, Pravin K.

    1990-10-01

    A previously developed eigenvalue model is extended to determine polishing pressure distribution by rectangular tools with unequal stiffness in two directions on cylindrical optics. Tool misfit is divided into two simplified one-dimensional problems and one simplified two-dimensional problem. Tools with nonuniform cross-sections are treated with a new one-dimensional eigenvalue algorithm, permitting evaluation of tool designs where the edge is more flexible than the interior. This maintains edge pressure variations within acceptable parameters. Finite element modeling is employed to resolve upper bounds, which handle pressure changes in the two-dimensional misfit element. Paraboloids and hyperboloids from the NASA AXAF system are treated with the AXAFPOD software for this method, and are verified with NASTRAN finite element analyses. The maximum deviation from the one-dimensional azimuthal pressure variation is predicted to be 10 percent and 20 percent for paraboloids and hyperboloids, respectively.

  2. Time-resolved brightness measurements by streaking

    NASA Astrophysics Data System (ADS)

    Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.

    2018-03-01

    Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.

  3. Numerical solution of the Black-Scholes equation using cubic spline wavelets

    NASA Astrophysics Data System (ADS)

    Černá, Dana

    2016-12-01

    The Black-Scholes equation is used in financial mathematics for computation of market values of options at a given time. We use the θ-scheme for time discretization and an adaptive scheme based on wavelets for discretization on the given time level. Advantages of the proposed method are small number of degrees of freedom, high-order accuracy with respect to variables representing prices and relatively small number of iterations needed to resolve the problem with a desired accuracy. We use several cubic spline wavelet and multi-wavelet bases and discuss their advantages and disadvantages. We also compare an isotropic and anisotropic approach. Numerical experiments are presented for the two-dimensional Black-Scholes equation.

  4. Communication: nanosecond folding dynamics of an alpha helix: time-dependent 2D-IR cross peaks observed using polarization-sensitive dispersed pump-probe spectroscopy.

    PubMed

    Panman, Matthijs R; van Dijk, Chris N; Meuzelaar, Heleen; Woutersen, S

    2015-01-28

    We present a simple method to measure the dynamics of cross peaks in time-resolved two-dimensional vibrational spectroscopy. By combining suitably weighted dispersed pump-probe spectra, we eliminate the diagonal contribution to the 2D-IR response, so that the dispersed pump-probe signal contains the projection of only the cross peaks onto one of the axes of the 2D-IR spectrum. We apply the method to investigate the folding dynamics of an alpha-helical peptide in a temperature-jump experiment and find characteristic folding and unfolding time constants of 260 ± 30 and 580 ± 70 ns at 298 K.

  5. Conceptual design of novel IP-conveyor-belt Weissenberg-mode data-collection system with multi-readers for macromolecular crystallography. A comparison between Galaxy and Super Galaxy.

    PubMed

    Sakabe, N; Sakabe, K; Sasaki, K

    2004-01-01

    Galaxy is a Weissenberg-type high-speed high-resolution and highly accurate fully automatic data-collection system using two cylindrical IP-cassettes each with a radius of 400 mm and a width of 450 mm. It was originally developed for static three-dimensional analysis using X-ray diffraction and was installed on bending-magnet beamline BL6C at the Photon Factory. It was found, however, that Galaxy was also very useful for time-resolved protein crystallography on a time scale of minutes. This has prompted us to design a new IP-conveyor-belt Weissenberg-mode data-collection system called Super Galaxy for time-resolved crystallography with improved time and crystallographic resolution over that achievable with Galaxy. Super Galaxy was designed with a half-cylinder-shaped cassette with a radius of 420 mm and a width of 690 mm. Using 1.0 A incident X-rays, these dimensions correspond to a maximum resolutions of 0.71 A in the vertical direction and 1.58 A in the horizontal. Upper and lower screens can be used to set the frame size of the recorded image. This function is useful not only to reduce the frame exchange time but also to save disk space on the data server. The use of an IP-conveyor-belt and many IP-readers make Super Galaxy well suited for time-resolved, monochromatic X-ray crystallography at a very intense third-generation SR beamline. Here, Galaxy and a conceptual design for Super Galaxy are described, and their suitability for use as data-collection systems for macromolecular time-resolved monochromatic X-ray crystallography are compared.

  6. Recording 2-D Nutation NQR Spectra by Random Sampling Method

    PubMed Central

    Sinyavsky, Nikolaj; Jadzyn, Maciej; Ostafin, Michal; Nogaj, Boleslaw

    2010-01-01

    The method of random sampling was introduced for the first time in the nutation nuclear quadrupole resonance (NQR) spectroscopy where the nutation spectra show characteristic singularities in the form of shoulders. The analytic formulae for complex two-dimensional (2-D) nutation NQR spectra (I = 3/2) were obtained and the condition for resolving the spectral singularities for small values of an asymmetry parameter η was determined. Our results show that the method of random sampling of a nutation interferogram allows significant reduction of time required to perform a 2-D nutation experiment and does not worsen the spectral resolution. PMID:20949121

  7. Multigrid schemes for viscous hypersonic flows

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Radespiel, R.

    1993-01-01

    Several multigrid schemes are considered for the numerical computation of viscous hypersonic flows. For each scheme, the basic solution algorithm employs upwind spatial discretization with explicit multistage time stepping. Two-level versions of the various multigrid algorithms are applied to the two-dimensional advection equation, and Fourier analysis is used to determine their damping properties. The capabilities of the multigrid methods are assessed by solving two different hypersonic flow problems. Some new multigrid schemes, based on semicoarsening strategies, are shown to be quite effective in relieving the stiffness caused by the high-aspect-ratio cells required to resolve high Reynolds number flows. These schemes exhibit good convergence rates for Reynolds numbers up to 200 x 10(exp 6).

  8. Laboratory-size three-dimensional water-window x-ray microscope with Wolter type I mirror optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohsuka, Shinji; The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu-City, 431-1202; Ohba, Akira

    2016-01-28

    We constructed a laboratory-size three-dimensional water-window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques. It consists of an electron-impact x-ray source emitting oxygen Kα x-rays, Wolter type I grazing incidence mirror optics, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit better than 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm-scale three-dimensional fine structures were resolved.

  9. Scale separation for multi-scale modeling of free-surface and two-phase flows with the conservative sharp interface method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, L.H., E-mail: Luhui.Han@tum.de; Hu, X.Y., E-mail: Xiangyu.Hu@tum.de; Adams, N.A., E-mail: Nikolaus.Adams@tum.de

    In this paper we present a scale separation approach for multi-scale modeling of free-surface and two-phase flows with complex interface evolution. By performing a stimulus-response operation on the level-set function representing the interface, separation of resolvable and non-resolvable interface scales is achieved efficiently. Uniform positive and negative shifts of the level-set function are used to determine non-resolvable interface structures. Non-resolved interface structures are separated from the resolved ones and can be treated by a mixing model or a Lagrangian-particle model in order to preserve mass. Resolved interface structures are treated by the conservative sharp-interface model. Since the proposed scale separationmore » approach does not rely on topological information, unlike in previous work, it can be implemented in a straightforward fashion into a given level set based interface model. A number of two- and three-dimensional numerical tests demonstrate that the proposed method is able to cope with complex interface variations accurately and significantly increases robustness against underresolved interface structures.« less

  10. Turbulence imaging and applications using beam emission spectroscopy on DIII-D (invited)

    NASA Astrophysics Data System (ADS)

    McKee, G. R.; Fenzi, C.; Fonck, R. J.; Jakubowski, M.

    2003-03-01

    Two-dimensional measurements of density fluctuations are obtained in the radial and poloidal plane of the DIII-D tokamak with the Beam Emission Spectroscopy (BES) diagnostic system. The goals are to visualize the spatial structure and time evolution of turbulent eddies, as well as to obtain the 2D statistical properties of turbulence. The measurements are obtained with an array of localized BES spatial channels configured to image a midplane region of the plasma. 32 channels have been deployed, each with a spatial resolution of about 1 cm in the radial and poloidal directions, thus providing measurements of turbulence in the wave number range 0

  11. FESTR: Finite-Element Spectral Transfer of Radiation spectroscopic modeling and analysis code

    DOE PAGES

    Hakel, Peter

    2016-10-01

    Here we report on the development of a new spectral postprocessor of hydrodynamic simulations of hot, dense plasmas. Based on given time histories of one-, two-, and three-dimensional spatial distributions of materials, and their local temperature and density conditions, spectroscopically-resolved signals are computed. The effects of radiation emission and absorption by the plasma on the emergent spectra are simultaneously taken into account. This program can also be used independently of hydrodynamic calculations to analyze available experimental data with the goal of inferring plasma conditions.

  12. Shock compression response of cold-rolled Ni/Al multilayer composites

    DOE PAGES

    Specht, Paul E.; Weihs, Timothy P.; Thadhani, Naresh N.

    2017-01-06

    Uniaxial strain, plate-on-plate impact experiments were performed on cold-rolled Ni/Al multilayer composites and the resulting Hugoniot was determined through time-resolved measurements combined with impedance matching. The experimental Hugoniot agreed with that previously predicted by two dimensional (2D) meso-scale calculations. Additional 2D meso-scale simulations were performed using the same computational method as the prior study to reproduce the experimentally measured free surface velocities and stress profiles. Finally, these simulations accurately replicated the experimental profiles, providing additional validation for the previous computational work.

  13. FESTR: Finite-Element Spectral Transfer of Radiation spectroscopic modeling and analysis code

    NASA Astrophysics Data System (ADS)

    Hakel, Peter

    2016-10-01

    We report on the development of a new spectral postprocessor of hydrodynamic simulations of hot, dense plasmas. Based on given time histories of one-, two-, and three-dimensional spatial distributions of materials, and their local temperature and density conditions, spectroscopically-resolved signals are computed. The effects of radiation emission and absorption by the plasma on the emergent spectra are simultaneously taken into account. This program can also be used independently of hydrodynamic calculations to analyze available experimental data with the goal of inferring plasma conditions.

  14. Conceptual design and proof-of-principle testing of the real-time multispectral imaging system MANTIS

    NASA Astrophysics Data System (ADS)

    Vijvers, W. A. J.; Mumgaard, R. T.; Andrebe, Y.; Classen, I. G. J.; Duval, B. P.; Lipschultz, B.

    2017-12-01

    The Multispectral Advanced Narrowband Tokamak Imaging System (MANTIS) is proposed to resolve the steep temperature and density gradients in the scrape-off layer of tokamaks in real-time. The initial design is to deliver two-dimensional distributions of key plasma parameters of the TCV tokamak to a real-time control system in order to enable novel control strategies, while providing new insights into power exhaust physics in the full offline analysis. This paper presents the conceptual system design, the mechanical and optical design of a prototype that was built to assess the optical performance, and the results of the first proof-of-principle tests of the prototype. These demonstrate a central resolving power of 50-46 line pairs per millimeter (CTF50) in the first four channels. For the additional channels, the sharpness is a factor two worse for the odd channels (likely affected by sub-optimal alignment), while the even channels continue the trend observed for the first four channels of 3% degradation per channel. This is explained by the self-cancellation of off-axis aberrations, which is an attractive property of the chosen optical design. The results show that at least a 10-channel real-time multispectral imaging system is feasible.

  15. Direct reconstruction in CT-analogous pharmacokinetic diffuse fluorescence tomography: two-dimensional simulative and experimental validations

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Zhang, Yanqi; Zhang, Limin; Li, Jiao; Zhou, Zhongxing; Zhao, Huijuan; Gao, Feng

    2016-04-01

    We present a generalized strategy for direct reconstruction in pharmacokinetic diffuse fluorescence tomography (DFT) with CT-analogous scanning mode, which can accomplish one-step reconstruction of the indocyanine-green pharmacokinetic-rate images within in vivo small animals by incorporating the compartmental kinetic model into an adaptive extended Kalman filtering scheme and using an instantaneous sampling dataset. This scheme, compared with the established indirect and direct methods, eliminates the interim error of the DFT inversion and relaxes the expensive requirement of the instrument for obtaining highly time-resolved date-sets of complete 360 deg projections. The scheme is validated by two-dimensional simulations for the two-compartment model and pilot phantom experiments for the one-compartment model, suggesting that the proposed method can estimate the compartmental concentrations and the pharmacokinetic-rates simultaneously with a fair quantitative and localization accuracy, and is well suitable for cost-effective and dense-sampling instrumentation based on the highly-sensitive photon counting technique.

  16. The effect of charged quantum dots on the mobility of a two-dimensional electron gas: How important is the Coulomb scattering?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurzmann, A., E-mail: annika.kurzmann@uni-due.de; Beckel, A.; Lorke, A.

    2015-02-07

    We have investigated the influence of a layer of charged self-assembled quantum dots (QDs) on the mobility of a nearby two-dimensional electron gas (2DEG). Time-resolved transconductance spectroscopy was used to separate the two contributions of the change in mobility, which are: (i) The electrons in the QDs act as Coulomb scatterers for the electrons in the 2DEG. (ii) The screening ability and, hence, the mobility of the 2DEG decreases when the charge carrier density is reduced by the charged QDs, i.e., the mobility itself depends on the charge carrier concentration. Surprisingly, we find a negligible influence of the Coulomb scatteringmore » on the mobility for a 2DEG, separated by a 30 nm tunneling barrier to the layer of QDs. This means that the mobility change is completely caused by depletion, i.e., reduction of the charge carrier density in the 2DEG, which indirectly influences the mobility.« less

  17. Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy

    PubMed Central

    Caram, Justin R.; Zheng, Haibin; Dahlberg, Peter D.; Rolczynski, Brian S.; Griffin, Graham B.; Dolzhnikov, Dmitriy S.; Talapin, Dmitri V.; Engel, Gregory S.

    2014-01-01

    Development of optoelectronic technologies based on quantum dots depends on measuring, optimizing, and ultimately predicting charge carrier dynamics in the nanocrystal. In such systems, size inhomogeneity and the photoexcited population distribution among various excitonic states have distinct effects on electron and hole relaxation, which are difficult to distinguish spectroscopically. Two-dimensional electronic spectroscopy can help to untangle these effects by resolving excitation energy and subsequent nonlinear response in a single experiment. Using a filament-generated continuum as a pump and probe source, we collect two-dimensional spectra with sufficient spectral bandwidth to follow dynamics upon excitation of the lowest three optical transitions in a polydisperse ensemble of colloidal CdSe quantum dots. We first compare to prior transient absorption studies to confirm excitation-state-dependent dynamics such as increased surface-trapping upon excitation of hot electrons. Second, we demonstrate fast band-edge electron-hole pair solvation by ligand and phonon modes, as the ensemble relaxes to the photoluminescent state on a sub-picosecond time-scale. Third, we find that static disorder due to size polydispersity dominates the nonlinear response upon excitation into the hot electron manifold; this broadening mechanism stands in contrast to that of the band-edge exciton. Finally, we demonstrate excitation-energy dependent hot-carrier relaxation rates, and we describe how two-dimensional electronic spectroscopy can complement other transient nonlinear techniques. PMID:24588185

  18. Monolithic Microfluidic Mixing-Spraying Devices for Time-Resolved Cryo-Electron Microscopy

    PubMed Central

    Lu, Zonghuan; Shaikh, Tanvir R.; Barnard, David; Meng, Xing; Mohamed, Hisham; Yassin, Aymen; Mannella, Carmen A.; Agrawal, Rajendra K.; Lu, Toh-Ming

    2009-01-01

    The goal of time-resolved cryo-electron microscopy is to determine structural models for transient functional states of large macromolecular complexes such as ribosomes and viruses. The challenge of time-resolved cryo-electron microscopy is to rapidly mix reactants, and then, following a defined time interval, to rapidly deposit them as a thin film and freeze the sample to the vitreous state. Here we describe a methodology in which reaction components are mixed and allowed to react, and are then sprayed onto an EM grid as it is being plunged into cryogen. All steps are accomplished by a monolithic, microfabricated silicon device that incorporates a mixer, reaction channel, and pneumatic sprayer in a single chip. We have found that microdroplets produced by air atomization spread to sufficiently thin films on a millisecond time scale provided that the carbon supporting film is made suitably hydrophilic. The device incorporates two T-mixers flowing into a single channel of four butterfly-shaped mixing elements that ensure effective mixing, followed by a microfluidic reaction channel whose length can be varied to achieve the desired reaction time. The reaction channel is flanked by two ports connected to compressed humidified nitrogen gas (at 50 psi) to generate the spray. The monolithic mixer-sprayer is incorporated into a computer-controlled plunging apparatus. To test the mixing performance and the suitability of the device for preparation of biological macromolecules for cryo-EM, ribosomes and ferritin were mixed in the device and sprayed onto grids. Three-dimensional reconstructions of the ribosomes demonstrated retention of native structure, and 30S and 50S subunits were shown to be capable of reassociation into ribosomes after passage through the device. PMID:19683579

  19. The fast Padé transform in magnetic resonance spectroscopy for potential improvements in early cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Belkic, Dzevad; Belkic, Karen

    2005-09-01

    The convergence rates of the fast Padé transform (FPT) and the fast Fourier transform (FFT) are compared. These two estimators are used to process a time-signal encoded at 4 T by means of one-dimensional magnetic resonance spectroscopy (MRS) for healthy human brain. It is found systematically that at any level of truncation of the full signal length, the clinically relevant resonances that determine concentrations of metabolites in the investigated tissue are significantly better resolved in the FPT than in the FFT. In particular, the FPT has a better resolution than the FFT for the same signal length. Moreover, the FPT can achieve the same resolution as the FFT by using twice shorter signals. Implications of these findings for two-dimensional magnetic resonance spectroscopy as well as for two- and three-dimensional magnetic resonance spectroscopic imaging are highlighted. Self-contained cross-validation of all the results from the FPT is secured by using two conceptually different, equivalent algorithms (inside and outside the unit-circle), that are both valid in the entire complex frequency plane. The difference between the results from these two variants of the FPT is indistinguishable from the background noise. This constitutes robust error analysis of proven validity. The FPT shows promise in applications of MRS for early cancer detection.

  20. Molecular phylogeny of the hominoid primates as indicated by two-dimensional protein electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, D.; Giri, P.R.; O'Brien, J.O.

    1987-05-01

    A molecular phylogeny for the hominoid primates was constructed by using genetic distances from a survey of 383 radiolabeled fibroblast polypeptides resolved by two-dimensional electrophoresis (2DE). An internally consistent matrix of Nei genetic distances was generated on the basis of variants in electrophoretic position. The derived phylogenetic tree indicated a branching sequence, from oldest to most recent, of cercopithecoids (Macaca fascicularis), gibbon-siamang, orangutan, gorilla, and human-chimpanzee. A cladistic analysis of 240 electrophoretic characters that varied between ape species produced an identical tree. Genetic distance measures obtained by 2DE are largely consistent with those generated by other molecular procedures. In addition,more » the 2DE data set appears to resolve the human-chimpanzee-gorilla trichotomy in favor of a more recent association of chimpanzees and humans.« less

  1. Sub-grid scale models for discontinuous Galerkin methods based on the Mori-Zwanzig formalism

    NASA Astrophysics Data System (ADS)

    Parish, Eric; Duraisamy, Karthk

    2017-11-01

    The optimal prediction framework of Chorin et al., which is a reformulation of the Mori-Zwanzig (M-Z) formalism of non-equilibrium statistical mechanics, provides a framework for the development of mathematically-derived closure models. The M-Z formalism provides a methodology to reformulate a high-dimensional Markovian dynamical system as a lower-dimensional, non-Markovian (non-local) system. In this lower-dimensional system, the effects of the unresolved scales on the resolved scales are non-local and appear as a convolution integral. The non-Markovian system is an exact statement of the original dynamics and is used as a starting point for model development. In this work, we investigate the development of M-Z-based closures model within the context of the Variational Multiscale Method (VMS). The method relies on a decomposition of the solution space into two orthogonal subspaces. The impact of the unresolved subspace on the resolved subspace is shown to be non-local in time and is modeled through the M-Z-formalism. The models are applied to hierarchical discontinuous Galerkin discretizations. Commonalities between the M-Z closures and conventional flux schemes are explored. This work was supported in part by AFOSR under the project ''LES Modeling of Non-local effects using Statistical Coarse-graining'' with Dr. Jean-Luc Cambier as the technical monitor.

  2. Prior-knowledge Fitting of Accelerated Five-dimensional Echo Planar J-resolved Spectroscopic Imaging: Effect of Nonlinear Reconstruction on Quantitation.

    PubMed

    Iqbal, Zohaib; Wilson, Neil E; Thomas, M Albert

    2017-07-24

    1 H Magnetic Resonance Spectroscopic imaging (SI) is a powerful tool capable of investigating metabolism in vivo from mul- tiple regions. However, SI techniques are time consuming, and are therefore difficult to implement clinically. By applying non-uniform sampling (NUS) and compressed sensing (CS) reconstruction, it is possible to accelerate these scans while re- taining key spectral information. One recently developed method that utilizes this type of acceleration is the five-dimensional echo planar J-resolved spectroscopic imaging (5D EP-JRESI) sequence, which is capable of obtaining two-dimensional (2D) spectra from three spatial dimensions. The prior-knowledge fitting (ProFit) algorithm is typically used to quantify 2D spectra in vivo, however the effects of NUS and CS reconstruction on the quantitation results are unknown. This study utilized a simulated brain phantom to investigate the errors introduced through the acceleration methods. Errors (normalized root mean square error >15%) were found between metabolite concentrations after twelve-fold acceleration for several low concentra- tion (<2 mM) metabolites. The Cramér Rao lower bound% (CRLB%) values, which are typically used for quality control, were not reflective of the increased quantitation error arising from acceleration. Finally, occipital white (OWM) and gray (OGM) human brain matter were quantified in vivo using the 5D EP-JRESI sequence with eight-fold acceleration.

  3. High-resolution, time-resolved MRA provides superior definition of lower-extremity arterial segments compared to 2D time-of-flight imaging.

    PubMed

    Thornton, F J; Du, J; Suleiman, S A; Dieter, R; Tefera, G; Pillai, K R; Korosec, F R; Mistretta, C A; Grist, T M

    2006-08-01

    To evaluate a novel time-resolved contrast-enhanced (CE) projection reconstruction (PR) magnetic resonance angiography (MRA) method for identifying potential bypass graft target vessels in patients with Class II-IV peripheral vascular disease. Twenty patients (M:F = 15:5, mean age = 58 years, range = 48-83 years), were recruited from routine MRA referrals. All imaging was performed on a 1.5 T MRI system with fast gradients (Signa LX; GE Healthcare, Waukesha, WI). Images were acquired with a novel technique that combined undersampled PR with a time-resolved acquisition to yield an MRA method with high temporal and spatial resolution. The method is called PR hyper time-resolved imaging of contrast kinetics (PR-hyperTRICKS). Quantitative and qualitative analyses were used to compare two-dimensional (2D) time-of-flight (TOF) and PR-hyperTRICKS in 13 arterial segments per lower extremity. Statistical analysis was performed with the Wilcoxon signed-rank test. Fifteen percent (77/517) of the vessels were scored as missing or nondiagnostic with 2D TOF, but were scored as diagnostic with PR-hyperTRICKS. Image quality was superior with PR-hyperTRICKS vs. 2D TOF (on a four-point scale, mean rank = 3.3 +/- 1.2 vs. 2.9 +/- 1.2, P < 0.0001). PR-hyperTRICKS produced images with high contrast-to-noise ratios (CNR) and high spatial and temporal resolution. 2D TOF images were of inferior quality due to moderate spatial resolution, inferior CNR, greater flow-related artifacts, and absence of temporal resolution. PR-hyperTRICKS provides superior preoperative assessment of lower limb ischemia compared to 2D TOF.

  4. Integration of polarization-multiplexing and phase-shifting in nanometric two dimensional self-mixing measurement.

    PubMed

    Tao, Yufeng; Xia, Wei; Wang, Ming; Guo, Dongmei; Hao, Hui

    2017-02-06

    Integration of phase manipulation and polarization multiplexing was introduced to self-mixing interferometry (SMI) for high-sensitive measurement. Light polarizations were used to increase measuring path number and predict manifold merits for potential applications. Laser source was studied as a microwave-photonic resonator optically-injected by double reflected lights on a two-feedback-factor analytical model. Independent external paths exploited magnesium-oxide doped lithium niobate crystals at perpendicular polarizations to transfer interferometric phases into amplitudes of harmonics. Theoretical resolutions reached angstrom level. By integrating two techniques, this SMI outperformed the conventional single-path SMIs by simultaneous dual-targets measurement on single laser tube with high sensitivity and low speckle noise. In experimental demonstration, by nonlinear filtering method, a custom-made phase-resolved algorithm real-time figured out instantaneous two-dimensional displacements with nanometer resolution. Experimental comparisons to lock-in technique and a commercial Ploytec-5000 laser Doppler velocity meter validated this two-path SMI in micron range without optical cross-talk. Moreover, accuracy subjected to slewing rates of crystals could be flexibly adjusted.

  5. An upwind method for the solution of the 3D Euler and Navier-Stokes equations on adaptively refined meshes

    NASA Astrophysics Data System (ADS)

    Aftosmis, Michael J.

    1992-10-01

    A new node based upwind scheme for the solution of the 3D Navier-Stokes equations on adaptively refined meshes is presented. The method uses a second-order upwind TVD scheme to integrate the convective terms, and discretizes the viscous terms with a new compact central difference technique. Grid adaptation is achieved through directional division of hexahedral cells in response to evolving features as the solution converges. The method is advanced in time with a multistage Runge-Kutta time stepping scheme. Two- and three-dimensional examples establish the accuracy of the inviscid and viscous discretization. These investigations highlight the ability of the method to produce crisp shocks, while accurately and economically resolving viscous layers. The representation of these and other structures is shown to be comparable to that obtained by structured methods. Further 3D examples demonstrate the ability of the adaptive algorithm to effectively locate and resolve multiple scale features in complex 3D flows with many interacting, viscous, and inviscid structures.

  6. A radially resolved kinetic model for nonlocal electron ripple diffusion losses in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Scott

    A relatively simple radially resolved kinetic model is applied to the ripple diffusion problem for electrons in tokamaks. The distribution function f(r,v) is defined on a two-dimensional grid, where r is the radial coordinate and v is the velocity coordinate. Particle transport in the radial direction is from ripple and banana diffusion and transport in the velocity direction is described by the Fokker-Planck equation. Particles and energy are replaced by source functions that are adjusted to maintain a constant central density and temperature. The relaxed profiles of f(r,v) show that the electron distribution function at the wall contains suprathermal electronsmore » that have diffused from the interior that enhance ripple transport. The transport at the periphery is therefore nonlocal. The energy replacement times from the computational model are near to the experimental replacement times for tokamak discharges in the compilation by Pfeiffer and Waltz [Nucl. Fusion 19, 51 (1979)].« less

  7. Depth-resolved dual-beamlet vibrometry based on Fourier domain low coherence interferometry

    PubMed Central

    Choudhury, Niloy; Chen, Fangyi; Wang, Ruikang K.; Jacques, Steven L.; Nuttall, Alfred L.

    2013-01-01

    Abstract. We present an optical vibrometer based on delay-encoded, dual-beamlet phase-sensitive Fourier domain interferometric system to provide depth-resolved subnanometer scale vibration information from scattering biological specimens. System characterization, calibration, and preliminary vibrometry with biological specimens were performed. The proposed system has the potential to provide both amplitude and direction of vibration of tissue microstructures on a single two-dimensional plane. PMID:23455961

  8. Si-H bond dynamics in hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Scharff, R. Jason; McGrane, Shawn D.

    2007-08-01

    The ultrafast structural dynamics of the Si-H bond in the rigid solvent environment of an amorphous silicon thin film is investigated using two-dimensional infrared four-wave mixing techniques. The two-dimensional infrared (2DIR) vibrational correlation spectrum resolves the homogeneous line shapes ( <2.5cm-1 linewidth) of the 0→1 and 1→2 vibrational transitions within the extensively inhomogeneously broadened ( 78cm-1 linewidth) Si-H vibrational band. There is no spectral diffusion evident in correlation spectra obtained at 0.2, 1, and 4ps waiting times. The Si-H stretching mode anharmonic shift is determined to be 84cm-1 and decreases slightly with vibrational frequency. The 1→2 linewidth increases with vibrational frequency. Frequency dependent vibrational population times measured by transient grating spectroscopy are also reported. The narrow homogeneous line shape, large inhomogeneous broadening, and lack of spectral diffusion reported here present the ideal backdrop for using a 2DIR probe following electronic pumping to measure the transient structural dynamics implicated in the Staebler-Wronski degradation [Appl. Phys. Lett. 31, 292 (1977)] in a-Si:H based solar cells.

  9. Microscopic observation of magnon bound states and their dynamics.

    PubMed

    Fukuhara, Takeshi; Schauß, Peter; Endres, Manuel; Hild, Sebastian; Cheneau, Marc; Bloch, Immanuel; Gross, Christian

    2013-10-03

    The existence of bound states of elementary spin waves (magnons) in one-dimensional quantum magnets was predicted almost 80 years ago. Identifying signatures of magnon bound states has so far remained the subject of intense theoretical research, and their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting in which to find such bound states by tracking the spin dynamics with single-spin and single-site resolution following a local excitation. Here we use in situ correlation measurements to observe two-magnon bound states directly in a one-dimensional Heisenberg spin chain comprising ultracold bosonic atoms in an optical lattice. We observe the quantum dynamics of free and bound magnon states through time-resolved measurements of two spin impurities. The increased effective mass of the compound magnon state results in slower spin dynamics as compared to single-magnon excitations. We also determine the decay time of bound magnons, which is probably limited by scattering on thermal fluctuations in the system. Our results provide a new way of studying fundamental properties of quantum magnets and, more generally, properties of interacting impurities in quantum many-body systems.

  10. A new Lagrangian random choice method for steady two-dimensional supersonic/hypersonic flow

    NASA Technical Reports Server (NTRS)

    Loh, C. Y.; Hui, W. H.

    1991-01-01

    Glimm's (1965) random choice method has been successfully applied to compute steady two-dimensional supersonic/hypersonic flow using a new Lagrangian formulation. The method is easy to program, fast to execute, yet it is very accurate and robust. It requires no grid generation, resolves slipline and shock discontinuities crisply, can handle boundary conditions most easily, and is applicable to hypersonic as well as supersonic flow. It represents an accurate and fast alternative to the existing Eulerian methods. Many computed examples are given.

  11. Monitoring Recombination During Meiosis in Budding Yeast.

    PubMed

    Owens, Shannon; Tang, Shangming; Hunter, Neil

    2018-01-01

    Homologous recombination is fundamental to sexual reproduction, facilitating accurate segregation of homologous chromosomes at the first division of meiosis, and creating novel allele combinations that fuel evolution. Following initiation of meiotic recombination by programmed DNA double-strand breaks (DSBs), homologous pairing and DNA strand exchange form joint molecule (JM) intermediates that are ultimately resolved into crossover and noncrossover repair products. Physical monitoring of the DNA steps of meiotic recombination in Saccharomyces cerevisiae (budding yeast) cultures undergoing synchronous meiosis has provided seminal insights into the molecular basis of meiotic recombination and affords a powerful tool for dissecting the molecular roles of recombination factors. This chapter describes a suit of electrophoretic and Southern hybridization techniques used to detect and quantify the DNA intermediates of meiotic recombination at recombination hotspots in budding yeast. DSBs and recombination products (crossovers and noncrossovers) are resolved using one-dimensional electrophoresis and distinguished by restriction site polymorphisms between the parental chromosomes. Psoralen cross-linking is used to stabilize branched JMs, which are resolved from linear species by native/native two-dimensional electrophoresis. Native/denaturing two-dimensional electrophoresis is employed to determine the component DNA strands of JMs and to measure the processing of DSBs. These techniques are generally applicable to any locus where the frequency of recombination is high enough to detect intermediates by Southern hybridization. © 2018 Elsevier Inc. All rights reserved.

  12. Comprehensive lipidomic analysis of human plasma using multidimensional liquid- and gas-phase separations: Two-dimensional liquid chromatography-mass spectrometry vs. liquid chromatography-trapped-ion-mobility-mass spectrometry.

    PubMed

    Baglai, Anna; Gargano, Andrea F G; Jordens, Jan; Mengerink, Ynze; Honing, Maarten; van der Wal, Sjoerd; Schoenmakers, Peter J

    2017-12-29

    Recent advancements in separation science have resulted in the commercialization of multidimensional separation systems that provide higher peak capacities and, hence, enable a more-detailed characterization of complex mixtures. In particular, two powerful analytical tools are increasingly used by analytical scientists, namely online comprehensive two-dimensional liquid chromatography (LC×LC, having a second-dimension separation in the liquid phase) and liquid chromatography-ion mobility-spectrometry (LC-IMS, second dimension separation in the gas phase). The goal of the current study was a general assessment of the liquid-chromatography-trapped-ion-mobility-mass spectrometry (LC-TIMS-MS) and comprehensive two-dimensional liquid chromatography-mass spectrometry (LC×LC-MS) platforms for untargeted lipid mapping in human plasma. For the first time trapped-ion-mobility spectrometry (TIMS) was employed for the separation of the major lipid classes and ion-mobility-derived collision-cross-section values were determined for a number of lipid standards. The general effects of a number of influencing parameters have been inspected and possible directions for improvements are discussed. We aimed to provide a general indication and practical guidelines for the analyst to choose an efficient multidimensional separation platform according to the particular requirements of the application. Analysis time, orthogonality, peak capacity, and an indicative measure for the resolving power are discussed as main characteristics for multidimensional separation systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography.

    PubMed

    Yu, Young-Sang; Farmand, Maryam; Kim, Chunjoong; Liu, Yijin; Grey, Clare P; Strobridge, Fiona C; Tyliszczak, Tolek; Celestre, Rich; Denes, Peter; Joseph, John; Krishnan, Harinarayan; Maia, Filipe R N C; Kilcoyne, A L David; Marchesini, Stefano; Leite, Talita Perciano Costa; Warwick, Tony; Padmore, Howard; Cabana, Jordi; Shapiro, David A

    2018-03-02

    Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a set of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices.

  14. High-Resolution Two-Dimensional Optical Spectroscopy of Electron Spins

    NASA Astrophysics Data System (ADS)

    Salewski, M.; Poltavtsev, S. V.; Yugova, I. A.; Karczewski, G.; Wiater, M.; Wojtowicz, T.; Yakovlev, D. R.; Akimov, I. A.; Meier, T.; Bayer, M.

    2017-07-01

    Multidimensional coherent optical spectroscopy is one of the most powerful tools for investigating complex quantum mechanical systems. While it was conceived decades ago in magnetic resonance spectroscopy using microwaves and radio waves, it has recently been extended into the visible and UV spectral range. However, resolving MHz energy splittings with ultrashort laser pulses still remains a challenge. Here, we analyze two-dimensional Fourier spectra for resonant optical excitation of resident electrons to localized trions or donor-bound excitons in semiconductor nanostructures subject to a transverse magnetic field. Particular attention is devoted to Raman coherence spectra, which allow one to accurately evaluate tiny splittings of the electron ground state and to determine the relaxation times in the electron spin ensemble. A stimulated steplike Raman process induced by a sequence of two laser pulses creates a coherent superposition of the ground-state doublet which can be retrieved only optically because of selective excitation of the same subensemble with a third pulse. This provides the unique opportunity to distinguish between different complexes that are closely spaced in energy in an ensemble. The related experimental demonstration is based on photon-echo measurements in an n -type CdTe /(Cd ,Mg )Te quantum-well structure detected by a heterodyne technique. The difference in the sub-μ eV range between the Zeeman splittings of donor-bound electrons and electrons localized at potential fluctuations can be resolved even though the homogeneous linewidth of the optical transitions is larger by 2 orders of magnitude.

  15. Four-dimensional electrical conductivity monitoring of stage-driven river water intrusion: Accounting for water table effects using a transient mesh boundary and conditional inversion constraints

    DOE PAGES

    Johnson, Tim; Versteeg, Roelof; Thomle, Jon; ...

    2015-08-01

    Our paper describes and demonstrates two methods of providing a priori information to the surface-based time-lapse three-dimensional electrical resistivity tomography (ERT) problem for monitoring stage-driven or tide-driven surface water intrusion into aquifers. First, a mesh boundary is implemented that conforms to the known location of the water table through time, thereby enabling the inversion to place a sharp bulk conductivity contrast at that boundary without penalty. Moreover, a nonlinear inequality constraint is used to allow only positive or negative transient changes in EC to occur within the saturated zone, dependent on the relative contrast in fluid electrical conductivity between surfacemore » water and groundwater. A 3-D field experiment demonstrates that time-lapse imaging results using traditional smoothness constraints are unable to delineate river water intrusion. The water table and inequality constraints provide the inversion with the additional information necessary to resolve the spatial extent of river water intrusion through time.« less

  16. Four-dimensional electrical conductivity monitoring of stage-driven river water intrusion: Accounting for water table effects using a transient mesh boundary and conditional inversion constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Tim; Versteeg, Roelof; Thomle, Jon

    Our paper describes and demonstrates two methods of providing a priori information to the surface-based time-lapse three-dimensional electrical resistivity tomography (ERT) problem for monitoring stage-driven or tide-driven surface water intrusion into aquifers. First, a mesh boundary is implemented that conforms to the known location of the water table through time, thereby enabling the inversion to place a sharp bulk conductivity contrast at that boundary without penalty. Moreover, a nonlinear inequality constraint is used to allow only positive or negative transient changes in EC to occur within the saturated zone, dependent on the relative contrast in fluid electrical conductivity between surfacemore » water and groundwater. A 3-D field experiment demonstrates that time-lapse imaging results using traditional smoothness constraints are unable to delineate river water intrusion. The water table and inequality constraints provide the inversion with the additional information necessary to resolve the spatial extent of river water intrusion through time.« less

  17. Increasing the efficiency and accuracy of time-resolved electronic spectra calculations with on-the-fly ab initio quantum dynamics methods

    NASA Astrophysics Data System (ADS)

    Vanicek, Jiri

    2014-03-01

    Rigorous quantum-mechanical calculations of coherent ultrafast electronic spectra remain difficult. I will present several approaches developed in our group that increase the efficiency and accuracy of such calculations: First, we justified the feasibility of evaluating time-resolved spectra of large systems by proving that the number of trajectories needed for convergence of the semiclassical dephasing representation/phase averaging is independent of dimensionality. Recently, we further accelerated this approximation with a cellular scheme employing inverse Weierstrass transform and optimal scaling of the cell size. The accuracy of potential energy surfaces was increased by combining the dephasing representation with accurate on-the-fly ab initio electronic structure calculations, including nonadiabatic and spin-orbit couplings. Finally, the inherent semiclassical approximation was removed in the exact quantum Gaussian dephasing representation, in which semiclassical trajectories are replaced by communicating frozen Gaussian basis functions evolving classically with an average Hamiltonian. Among other examples I will present an on-the-fly ab initio semiclassical dynamics calculation of the dispersed time-resolved stimulated emission spectrum of the 54-dimensional azulene. This research was supported by EPFL and by the Swiss National Science Foundation NCCR MUST (Molecular Ultrafast Science and Technology) and Grant No. 200021124936/1.

  18. Time resolved optical diagnostics of ZnO plasma plumes in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Shyam L.; Singh, Ravi Pratap; Thareja, Raj K.

    2013-10-15

    We report dynamical evolution of laser ablated ZnO plasma plumes using interferometry and shadowgraphy; 2-D fast imaging and optical emission spectroscopy in air ambient at atmospheric pressure. Recorded interferograms using Nomarski interferometer and shadowgram images at various time delays show the presence of electrons and neutrals in the ablated plumes. The inference drawn from sign change of fringe shifts is consistent with two dimensional images of the plume and optical emission spectra at varying time delays with respect to ablating pulse. Zinc oxide plasma plumes are created by focusing 1.06 μm radiation on to ZnO target in air and 532more » nm is used as probe beam.« less

  19. Low resolution 1H NMR assignment of proton populations in pound cake and its polymeric ingredients.

    PubMed

    Luyts, A; Wilderjans, E; Waterschoot, J; Van Haesendonck, I; Brijs, K; Courtin, C M; Hills, B; Delcour, J A

    2013-08-15

    Based on a model system approach, five different proton populations were distinguished in pound cake crumb using one dimensional low resolution (1)H NMR spectroscopy. In free induction decay (FID) measurements, proton populations were assigned to (i) non-exchanging CH protons of crystalline starch, proteins and crystalline fat and (ii) non-exchanging CH protons of amorphous starch and gluten, which are in little contact with water. In Carr-Purcell-Meiboom-Gill (CPMG) measurements, three proton populations were distinguished. The CPMG population with the lowest mobility and the FID population with the highest mobility represent the same proton population. The two CPMG proton populations with the highest mobility were assigned to exchanging protons (i.e., protons of water, starch, gluten, egg proteins and sugar) and protons of lipids (i.e., protons of egg yolk lipids and amorphous lipid fraction of margarine) respectively. Based on their spin-lattice relaxation times (T1), two dimensional (1)H NMR spectroscopy further resolved the two proton populations with the highest mobility into three and two proton populations, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Stereoscopic Planar Laser-Induced Fluorescence Imaging at 500 kHz

    NASA Technical Reports Server (NTRS)

    Medford, Taylor L.; Danehy, Paul M.; Jones, Stephen B.; Jiang, N.; Webster, M.; Lempert, Walter; Miller, J.; Meyer, T.

    2011-01-01

    A new measurement technique for obtaining time- and spatially-resolved image sequences in hypersonic flows is developed. Nitric-oxide planar laser-induced fluorescence (NO PLIF) has previously been used to investigate transition from laminar to turbulent flow in hypersonic boundary layers using both planar and volumetric imaging capabilities. Low flow rates of NO were typically seeded into the flow, minimally perturbing the flow. The volumetric imaging was performed at a measurement rate of 10 Hz using a thick planar laser sheet that excited NO fluorescence. The fluorescence was captured by a pair of cameras having slightly different views of the flow. Subsequent stereoscopic reconstruction of these images allowed the three-dimensional flow structures to be viewed. In the current paper, this approach has been extended to 50,000 times higher repetition rates. A laser operating at 500 kHz excites the seeded NO molecules, and a camera, synchronized with the laser and fitted with a beam-splitting assembly, acquires two separate images of the flow. The resulting stereoscopic images provide three-dimensional flow visualizations at 500 kHz for the first time. The 200 ns exposure time in each frame is fast enough to freeze the flow while the 500 kHz repetition rate is fast enough to time-resolve changes in the flow being studied. This method is applied to visualize the evolving hypersonic flow structures that propagate downstream of a discrete protuberance attached to a flat plate. The technique was demonstrated in the NASA Langley Research Center s 31-Inch Mach 10 Air Tunnel facility. Different tunnel Reynolds number conditions, NO flow rates and two different cylindrical protuberance heights were investigated. The location of the onset of flow unsteadiness, an indicator of transition, was observed to move downstream during the tunnel runs, coinciding with an increase in the model temperature.

  1. A Numerical Study of Tropical Sea-Air Interactions Using a Cloud Resolving Model Coupled with an Ocean Mixed-Layer Model

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Tao, Wei-Kuo; Johnson, Dan; Simpson, Joanne; Li, Xiaofan; Sui, Chung-Hsiung; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Coupling a cloud resolving model (CRM) with an ocean mixed layer (OML) model can provide a powerful tool for better understanding impacts of atmospheric precipitation on sea surface temperature (SST) and salinity. The objective of this study is twofold. First, by using the three dimensional (3-D) CRM-simulated (the Goddard Cumulus Ensemble model, GCE) diabatic source terms, radiation (longwave and shortwave), surface fluxes (sensible and latent heat, and wind stress), and precipitation as input for the OML model, the respective impact of individual component on upper ocean heat and salt budgets are investigated. Secondly, a two-way air-sea interaction between tropical atmospheric climates (involving atmospheric radiative-convective processes) and upper ocean boundary layer is also examined using a coupled two dimensional (2-D) GCE and OML model. Results presented here, however, only involve the first aspect. Complete results will be presented at the conference.

  2. Two-dimensional fluorescence correlation spectroscopy: resolution of fluorescence of tryptophan residues in horse heart myoglobin.

    PubMed

    Nakashima, Kenichi; Yuda, Kazuki; Ozaki, Yukihiro; Noda, Isao

    2003-11-01

    Generalized two-dimensional (2D) fluorescence correlation spectroscopy has been used to resolve fluorescence of two tryptophan (Trp) residues in horse heart myoglobin. Fluorescence quenching is employed as a perturbation mode for causing intensity changes in the fluorescence (quenching perturbation). Two kinds of quenchers, iodide ion and acrylamide, are used for inducing fluorescence intensity change. This technique works because the Trp residue located at the 7th position (W7) is known to be easily accessible to the quencher, whereas that located at the 14th position (W14) is not. By this technique, the fluorescence spectra of the two Trp residues were clearly resolved. From asynchronous maps, it was also shown that the quenching of W7 fluorescence is brought about prior to the quenching of W14 fluorescence. This result is consistent with the structure of horse heart myoglobin that was proposed earlier. Furthermore, it was elucidated that the present 2D analysis is not interfered with by Raman bands of the solvents, which sometimes brings difficulty into conventional fluorescence analysis.

  3. Comprehensive two-dimensional liquid chromatography tandem diode array detector (DAD) and accurate mass QTOF-MS for the analysis of flavonoids and iridoid glycosides in Hedyotis diffusa.

    PubMed

    Li, Duxin; Schmitz, Oliver J

    2015-01-01

    The analysis of chemical constituents in Chinese herbal medicines (CHMs) is a challenge because of numerous compounds with various polarities and functional groups. Liquid chromatography coupled with quadrupole time-of-flight (QTOF) mass spectrometry (LC/MS) is of particular interest in the analysis of herbal components. One of the main attributes of QTOF that makes it an attractive analytical technique is its accurate mass measurement for both precursor and product ions. For the separation of CHMs, comprehensive two-dimensional chromatography (LCxLC) provides much higher resolving power than traditional one-dimensional separation. Therefore, a LCxLC-QTOF-MS system was developed and applied to the analysis of flavonoids and iridoid glycosides in aqueous extracts of Hedyotis diffusa (Rubiaceae). Shift gradient was applied in the two-dimensional separation in the LCxLC system to increase the orthogonality and effective peak distribution area of the analysis. Tentative identification of compounds was done by accurate mass interpretation and validation by UV spectrum. A clear classification of flavonol glycosides (FGs), acylated FGs, and iridoid glycosides (IGs) was shown in different regions of the LCxLC contour plot. In total, five FGs, four acylated FGs, and three IGs were tentatively identified. In addition, several novel flavonoids were found, which demonstrates that LCxLC-QTOF-MS detection also has great potential in herbal medicine analysis.

  4. Correlating nuclear frequencies by two-dimensional ELDOR-detected NMR spectroscopy.

    PubMed

    Kaminker, Ilia; Wilson, Tiffany D; Savelieff, Masha G; Hovav, Yonatan; Zimmermann, Herbert; Lu, Yi; Goldfarb, Daniella

    2014-03-01

    ELDOR (Electron Double Resonance)-detected NMR (EDNMR) is a pulse EPR experiment that is used to measure the transition frequencies of nuclear spins coupled to electron spins. These frequencies are further used to determine hyperfine and quadrupolar couplings, which are signatures of the electronic and spatial structures of paramagnetic centers. In recent years, EDNMR has been shown to be particularly useful at high fields/high frequencies, such as W-band (∼95 GHz, ∼3.5 T), for low γ quadrupolar nuclei. Although at high fields the nuclear Larmor frequencies are usually well resolved, the limited resolution of EDNMR still remains a major concern. In this work we introduce a two dimensional, triple resonance, correlation experiment based on the EDNMR pulse sequence, which we term 2D-EDNMR. This experiment allows circumventing the resolution limitation by spreading the signals in two dimensions and the observed correlations help in the assignment of the signals. First we demonstrate the utility of the 2D-EDNMR experiment on a nitroxide spin label, where we observe correlations between (14)N nuclear frequencies. Negative cross-peaks appear between lines belonging to different MS electron spin manifolds. We resolved two independent correlation patterns for nuclear frequencies arising from the EPR transitions corresponding to the (14)N mI=0 and mI=-1 nuclear spin states, which severely overlap in the one dimensional EDNMR spectrum. The observed correlations could be accounted for by considering changes in the populations of energy levels that S=1/2, I=1 spin systems undergo during the pulse sequence. In addition to these negative cross-peaks, positive cross-peaks appear as well. We present a theoretical model based on the Liouville equation and use it to calculate the time evolution of populations of the various energy levels during the 2D-EDNMR experiment and generated simulated 2D-EDMR spectra. These calculations show that the positive cross-peaks appear due to off resonance effects and/or nuclear relaxation effects. These results suggest that the 2D-EDNMR experiment can be also useful for relaxation pathway studies. Finally we present preliminary results demonstrating that 2D-EDNMR can resolve overlapping (33)S and (14)N signals of type 1 Cu(II) center in (33)S enriched Azurin. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Picosecond time scale dynamics of short pulse laser-driven shocks in tin

    NASA Astrophysics Data System (ADS)

    Grigsby, W.; Bowes, B. T.; Dalton, D. A.; Bernstein, A. C.; Bless, S.; Downer, M. C.; Taleff, E.; Colvin, J.; Ditmire, T.

    2009-05-01

    The dynamics of high strain rate shock waves driven by a subnanosecond laser pulse in thin tin slabs have been investigated. These shocks, with pressure up to 1 Mbar, have been diagnosed with an 800 nm wavelength ultrafast laser pulse in a pump-probe configuration, which measured reflectivity and two-dimensional interferometry of the expanding rear surface. Time-resolved rear surface expansion data suggest that we reached pressures necessary to shock melt tin upon compression. Reflectivity measurements, however, show an anomalously high drop in the tin reflectivity for free standing foils, which can be attributed to microparticle formation at the back surface when the laser-driven shock releases.

  6. Three-dimensional ghost imaging lidar via sparsity constraint

    NASA Astrophysics Data System (ADS)

    Gong, Wenlin; Zhao, Chengqiang; Yu, Hong; Chen, Mingliang; Xu, Wendong; Han, Shensheng

    2016-05-01

    Three-dimensional (3D) remote imaging attracts increasing attentions in capturing a target’s characteristics. Although great progress for 3D remote imaging has been made with methods such as scanning imaging lidar and pulsed floodlight-illumination imaging lidar, either the detection range or application mode are limited by present methods. Ghost imaging via sparsity constraint (GISC), enables the reconstruction of a two-dimensional N-pixel image from much fewer than N measurements. By GISC technique and the depth information of targets captured with time-resolved measurements, we report a 3D GISC lidar system and experimentally show that a 3D scene at about 1.0 km range can be stably reconstructed with global measurements even below the Nyquist limit. Compared with existing 3D optical imaging methods, 3D GISC has the capability of both high efficiency in information extraction and high sensitivity in detection. This approach can be generalized in nonvisible wavebands and applied to other 3D imaging areas.

  7. An Investigation of the Compatibility of Radiation and Convection Heat Flux Measurements

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1996-01-01

    A method for determining time-resolved absorbed surface heat flux and surface temperature in radiation and convection environments is described. The method is useful for verification of aerodynamic, heat transfer and durability models. A practical heat flux gage fabrication procedure and a simple one-dimensional inverse heat conduction model and calculation procedure are incorporated in this method. The model provides an estimate of the temperature and heat flux gradient in the direction of heat transfer through the gage. This paper discusses several successful time-resolved tests of this method in hostile convective heating and cooling environments.

  8. Two-dimensional time-resolved x-ray diffraction study of dual phase rapid solidification in steels

    NASA Astrophysics Data System (ADS)

    Yonemura, Mitsuharu; Osuki, Takahiro; Terasaki, Hidenori; Komizo, Yuichi; Sato, Masugu; Toyokawa, Hidenori; Nozaki, Akiko

    2010-01-01

    The high intensity heat source used for fusion welding creates steep thermal gradients of 100 °C/s from 1800 °C. Further, the influence of preferred orientation is important for the observation of a directional solidification that follows the dendrite growth along the ⟨100⟩ direction toward the moving heat source. In the present study, we observed the rapid solidification of weld metal at a time resolution of 0.01-0.1 s by a two-dimensional time-resolved x-ray diffraction (2DTRXRD) system for real welding. The diffraction rings were dynamically observed by 2DTRXRD with synchrotron energy of 18 keV while the arc passes over the irradiation area of the x-rays. The arc power output was 10 V-150 A, and the scan speed of the arc was 1.0 mm/s. The temperature rise in instruments was suppressed by a water-cooled copper plate under the specimen. Further, the temperature distribution of the weld metal was measured by a thermocouple and correlated with the diffraction patterns. Consequently, solidification and solid phase transformation of low carbon steels and stainless steels were observed during rapid cooling by 2DTRXRD. In the low carbon steel, the microstructure is formed in a two step process, (i) formation of crystallites and (ii) increase of crystallinity. In stainless steel, the irregular interface layer of δ/γ in the quenched metal after solidification is expected to show the easy movement of dendrites at a lower temperature. In carbide precipitation stainless steel, it is easy for NbC to grow on δ phase with a little undercooling. Further, a mistlike pattern, which differs from the halo pattern, in the fusion zone gave some indication of the possibilities to observe the nucleation and the early solidification by 2DTRXRD.

  9. Time-resolved lidar fluorosensor for sea pollution detection

    NASA Technical Reports Server (NTRS)

    Ferrario, A.; Pizzolati, P. L.; Zanzottera, E.

    1986-01-01

    A contemporary time and spectral analysis of oil fluorescence is useful for the detection and the characterization of oil spills on the sea surface. Nevertheless the fluorosensor lidars, which were realized up to now, have only partial capability to perform this double analysis. The main difficulties are the high resolution required (of the order of 1 nanosecond) and the complexity of the detection system for the recording of a two-dimensional matrix of data for each laser pulse. An airborne system whose major specifications were: time range, 30 to 75 ns; time resolution, 1 ns; spectral range, 350 to 700 nm; and spectral resolution, 10 nm was designed and constructed. The designed system of a short pulse ultraviolet laser source and a streak camera based detector are described.

  10. Room-temperature ultrafast nonlinear spectroscopy of a single molecule

    NASA Astrophysics Data System (ADS)

    Liebel, Matz; Toninelli, Costanza; van Hulst, Niek F.

    2018-01-01

    Single-molecule spectroscopy aims to unveil often hidden but potentially very important contributions of single entities to a system's ensemble response. Albeit contributing tremendously to our ever growing understanding of molecular processes, the fundamental question of temporal evolution, or change, has thus far been inaccessible, thus painting a static picture of a dynamic world. Here, we finally resolve this dilemma by performing ultrafast time-resolved transient spectroscopy on a single molecule. By tracing the femtosecond evolution of excited electronic state spectra of single molecules over hundreds of nanometres of bandwidth at room temperature, we reveal their nonlinear ultrafast response in an effective three-pulse scheme with fluorescence detection. A first excitation pulse is followed by a phase-locked de-excitation pulse pair, providing spectral encoding with 25 fs temporal resolution. This experimental realization of true single-molecule transient spectroscopy demonstrates that two-dimensional electronic spectroscopy of single molecules is experimentally within reach.

  11. Shock compression response of cold-rolled Ni/Al multilayer composites

    NASA Astrophysics Data System (ADS)

    Specht, Paul E.; Weihs, Timothy P.; Thadhani, Naresh N.

    2017-01-01

    Uniaxial strain, plate-on-plate impact experiments were performed on cold-rolled Ni/Al multilayer composites and the resulting Hugoniot was determined through time-resolved measurements combined with impedance matching. The experimental Hugoniot agreed with that previously predicted by two dimensional (2D) meso-scale calculations [Specht et al., J. Appl. Phys. 111, 073527 (2012)]. Additional 2D meso-scale simulations were performed using the same computational method as the prior study to reproduce the experimentally measured free surface velocities and stress profiles. These simulations accurately replicated the experimental profiles, providing additional validation for the previous computational work.

  12. Stereoscopic Imaging in Hypersonics Boundary Layers using Planar Laser-Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Bathel, Brett; Inman, Jennifer A.; Alderfer, David W.; Jones, Stephen B.

    2008-01-01

    Stereoscopic time-resolved visualization of three-dimensional structures in a hypersonic flow has been performed for the first time. Nitric Oxide (NO) was seeded into hypersonic boundary layer flows that were designed to transition from laminar to turbulent. A thick laser sheet illuminated and excited the NO, causing spatially-varying fluorescence. Two cameras in a stereoscopic configuration were used to image the fluorescence. The images were processed in a computer visualization environment to provide stereoscopic image pairs. Two methods were used to display these image pairs: a cross-eyed viewing method which can be viewed by naked eyes, and red/blue anaglyphs, which require viewing through red/blue glasses. The images visualized three-dimensional information that would be lost if conventional planar laser-induced fluorescence imaging had been used. Two model configurations were studied in NASA Langley Research Center's 31-Inch Mach 10 Air Wind tunnel. One model was a 10 degree half-angle wedge containing a small protuberance to force the flow to transition. The other model was a 1/3-scale, truncated Hyper-X forebody model with blowing through a series of holes to force the boundary layer flow to transition to turbulence. In the former case, low flowrates of pure NO seeded and marked the boundary layer fluid. In the latter, a trace concentration of NO was seeded into the injected N2 gas. The three-dimensional visualizations have an effective time resolution of about 500 ns, which is fast enough to freeze this hypersonic flow. The 512x512 resolution of the resulting images is much higher than high-speed laser-sheet scanning systems with similar time response, which typically measure 10-20 planes.

  13. High-density two-dimensional electron system induced by oxygen vacancies in ZnO

    NASA Astrophysics Data System (ADS)

    Rödel, T. C.; Dai, J.; Fortuna, F.; Frantzeskakis, E.; Le Fèvre, P.; Bertran, F.; Kobayashi, M.; Yukawa, R.; Mitsuhashi, T.; Kitamura, M.; Horiba, K.; Kumigashira, H.; Santander-Syro, A. F.

    2018-05-01

    We realize a two-dimensional electron system (2DES) in ZnO by simply depositing pure aluminum on its surface in ultrahigh vacuum and characterize its electronic structure by using angle-resolved photoemission spectroscopy. The aluminum oxidizes into alumina by creating oxygen vacancies that dope the bulk conduction band of ZnO and confine the electrons near its surface. The electron density of the 2DES is up to two orders of magnitude higher than those obtained in ZnO heterostructures. The 2DES shows two s -type subbands, that we compare with the d -like 2DESs in titanates, with clear signatures of many-body interactions that we analyze through a self-consistent extraction of the system self-energy and a modeling as a coupling of a two-dimensional Fermi liquid with a Debye distribution of phonons.

  14. One-dimensional surface-plasmon gratings for the excitation of intersubband polaritons in suspended membranes

    NASA Astrophysics Data System (ADS)

    Degl'Innocenti, R.; Zanotto, S.; Tredicucci, A.; Biasiol, G.; Sorba, L.

    2011-12-01

    We present the observation of the strong light-matter coupling regime between intersubband transitions of semiconductor quantum wells and the plasmonic-like resonances of a one dimensional metallic grating. Polariton spectra have been recorded in transmission employing a suspended membrane sample and are consistent with theoretical calculations. This arrangement, avoiding the complexity of dispersive substrate, is particularly attractive for the development of time-resolved pump-probe experiments.

  15. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yuqing; Cai, Shuhui; Yang, Yu

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this methodmore » are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.« less

  16. Zero dimensional model of atmospheric SMD discharge and afterglow in humid air

    NASA Astrophysics Data System (ADS)

    Smith, Ryan; Kemaneci, Efe; Offerhaus, Bjoern; Stapelmann, Katharina; Peter Brinkmann, Ralph

    2016-09-01

    A novel mesh-like Surface Micro Discharge (SMD) device designed for surface wound treatment is simulated by multiple time-scaled zero-dimensional models. The chemical dynamics of the discharge are resolved in time at atmospheric pressure in humid conditions. Simulated are the particle densities of electrons, 26 ionic species, and 26 reactive neutral species including: O3, NO, and HNO3. The total of 53 described species are constrained by 624 reactions within the simulated plasma discharge volume. The neutral species are allowed to diffuse into a diffusive gas regime which is of primary interest. Two interdependent zero-dimensional models separated by nine orders of magnitude in temporal resolution are used to accomplish this; thereby reducing the computational load. Through variation of control parameters such as: ignition frequency, deposited power density, duty cycle, humidity level, and N2 content, the ideal operation conditions for the SMD device can be predicted. The described model has been verified by matching simulation parameters and comparing results to that of previous works. Current operating conditions of the experimental mesh-like SMD were matched and results are compared to the simulations. Work supported by SFB TR 87.

  17. High-speed technique based on a parallel projection correlation procedure for digital image correlation

    NASA Astrophysics Data System (ADS)

    Zaripov, D. I.; Renfu, Li

    2018-05-01

    The implementation of high-efficiency digital image correlation methods based on a zero-normalized cross-correlation (ZNCC) procedure for high-speed, time-resolved measurements using a high-resolution digital camera is associated with big data processing and is often time consuming. In order to speed-up ZNCC computation, a high-speed technique based on a parallel projection correlation procedure is proposed. The proposed technique involves the use of interrogation window projections instead of its two-dimensional field of luminous intensity. This simplification allows acceleration of ZNCC computation up to 28.8 times compared to ZNCC calculated directly, depending on the size of interrogation window and region of interest. The results of three synthetic test cases, such as a one-dimensional uniform flow, a linear shear flow and a turbulent boundary-layer flow, are discussed in terms of accuracy. In the latter case, the proposed technique is implemented together with an iterative window-deformation technique. On the basis of the results of the present work, the proposed technique is recommended to be used for initial velocity field calculation, with further correction using more accurate techniques.

  18. Spectrographic imaging system

    DOEpatents

    Morris, Michael D.; Treado, Patrick J.

    1991-01-01

    An imaging system for providing spectrographically resolved images. The system incorporates a one-dimensional spatial encoding mask which enables an image to be projected onto a two-dimensional image detector after spectral dispersion of the image. The dimension of the image which is lost due to spectral dispersion on the two-dimensional detector is recovered through employing a reverse transform based on presenting a multiplicity of different spatial encoding patterns to the image. The system is especially adapted for detecting Raman scattering of monochromatic light transmitted through or reflected from physical samples. Preferably, spatial encoding is achieved through the use of Hadamard mask which selectively transmits or blocks portions of the image from the sample being evaluated.

  19. Ultrafast energy- and momentum-resolved dynamics of magnetic correlations in the photo-doped Mott insulator Sr2IrO4.

    PubMed

    Dean, M P M; Cao, Y; Liu, X; Wall, S; Zhu, D; Mankowsky, R; Thampy, V; Chen, X M; Vale, J G; Casa, D; Kim, Jungho; Said, A H; Juhas, P; Alonso-Mori, R; Glownia, J M; Robert, A; Robinson, J; Sikorski, M; Song, S; Kozina, M; Lemke, H; Patthey, L; Owada, S; Katayama, T; Yabashi, M; Tanaka, Yoshikazu; Togashi, T; Liu, J; Rayan Serrao, C; Kim, B J; Huber, L; Chang, C-L; McMorrow, D F; Först, M; Hill, J P

    2016-06-01

    Measuring how the magnetic correlations evolve in doped Mott insulators has greatly improved our understanding of the pseudogap, non-Fermi liquids and high-temperature superconductivity. Recently, photo-excitation has been used to induce similarly exotic states transiently. However, the lack of available probes of magnetic correlations in the time domain hinders our understanding of these photo-induced states and how they could be controlled. Here, we implement magnetic resonant inelastic X-ray scattering at a free-electron laser to directly determine the magnetic dynamics after photo-doping the Mott insulator Sr2IrO4. We find that the non-equilibrium state, 2 ps after the excitation, exhibits strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. These two-dimensional (2D) in-plane Néel correlations recover within a few picoseconds, whereas the three-dimensional (3D) long-range magnetic order restores on a fluence-dependent timescale of a few hundred picoseconds. The marked difference in these two timescales implies that the dimensionality of magnetic correlations is vital for our understanding of ultrafast magnetic dynamics.

  20. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices

    NASA Astrophysics Data System (ADS)

    Spektor, G.; Kilbane, D.; Mahro, A. K.; Frank, B.; Ristok, S.; Gal, L.; Kahl, P.; Podbiel, D.; Mathias, S.; Giessen, H.; Meyer zu Heringdorf, F.-J.; Orenstein, M.; Aeschlimann, M.

    2017-03-01

    The ability of light to carry and deliver orbital angular momentum (OAM) in the form of optical vortices has attracted much interest. The physical properties of light with a helical wavefront can be confined onto two-dimensional surfaces with subwavelength dimensions in the form of plasmonic vortices, opening avenues for thus far unknown light-matter interactions. Because of their extreme rotational velocity, the ultrafast dynamics of such vortices remained unexplored. Here we show the detailed spatiotemporal evolution of nanovortices using time-resolved two-photon photoemission electron microscopy. We observe both long- and short-range plasmonic vortices confined to deep subwavelength dimensions on the scale of 100 nanometers with nanometer spatial resolution and subfemtosecond time-step resolution. Finally, by measuring the angular velocity of the vortex, we directly extract the OAM magnitude of light.

  1. Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates

    PubMed Central

    Chen, Jin; Venugopal, Vivek; Intes, Xavier

    2011-01-01

    Time-resolved fluorescence optical tomography allows 3-dimensional localization of multiple fluorophores based on lifetime contrast while providing a unique data set for improved resolution. However, to employ the full fluorescence time measurements, a light propagation model that accurately simulates weakly diffused and multiple scattered photons is required. In this article, we derive a computationally efficient Monte Carlo based method to compute time-gated fluorescence Jacobians for the simultaneous imaging of two fluorophores with lifetime contrast. The Monte Carlo based formulation is validated on a synthetic murine model simulating the uptake in the kidneys of two distinct fluorophores with lifetime contrast. Experimentally, the method is validated using capillaries filled with 2.5nmol of ICG and IRDye™800CW respectively embedded in a diffuse media mimicking the average optical properties of mice. Combining multiple time gates in one inverse problem allows the simultaneous reconstruction of multiple fluorophores with increased resolution and minimal crosstalk using the proposed formulation. PMID:21483610

  2. Selection and evaluation of optimal two-dimensional CAIPIRINHA kernels applied to time-resolved three-dimensional CE-MRA.

    PubMed

    Weavers, Paul T; Borisch, Eric A; Riederer, Stephen J

    2015-06-01

    To develop and validate a method for choosing the optimal two-dimensional CAIPIRINHA kernel for subtraction contrast-enhanced MR angiography (CE-MRA) and estimate the degree of image quality improvement versus that of some reference acceleration parameter set at R ≥ 8. A metric based on patient-specific coil calibration information was defined for evaluating optimality of CAIPIRINHA kernels as applied to subtraction CE-MRA. Evaluation in retrospective studies using archived coil calibration data from abdomen, calf, foot, and hand CE-MRA exams was accomplished with an evaluation metric comparing the geometry factor (g-factor) histograms. Prospective calf, foot, and hand CE-MRA studies were evaluated with vessel signal-to-noise ratio (SNR). Retrospective studies show g-factor improvement for the selected CAIPIRINHA kernels was significant in the feet, moderate in the abdomen, and modest in the calves and hands. Prospective CE-MRA studies using optimal CAIPIRINHA show reduced noise amplification with identical acquisition time in studies of the feet, with minor improvements in the hands and calves. A method for selection of the optimal CAIPIRINHA kernel for high (R ≥ 8) acceleration CE-MRA exams given a specific patient and receiver array was demonstrated. CAIPIRINHA optimization appears valuable in accelerated CE-MRA of the feet and to a lesser extent in the abdomen. © 2014 Wiley Periodicals, Inc.

  3. Irreversibility and carriers control in two-dimensional electron gas at LaTiO3/SrTiO3 interface

    NASA Astrophysics Data System (ADS)

    Bergeal, N.; Biscaras, J.; Hurand, S.; Feuillet-Palma, C.; Lesueur, J.; Rastogi, A.; Budhani, R. C.; Reyren, N.; Lesne, E.; Leboeuf, D.; Proust, C.

    2013-03-01

    It has been shown recently that a two-dimensional electron gas 2DEG could form at the interface of two insulators such as LaAlO3 and SrTiO3, or LaTiO3 (a Mott insulator) and SrTiO3. We present low temperature transport measurements on LaTiO3/SrTiO3 and LaAlO3/SrTiO3 hetero-structures, whose properties can be modulated by field effect using a metallic gate on the back of the substrate. Here we show that when the carrier density is electrostatically increased beyond a critical value, the added electrons escape into the SrTiO3 leading to an irreversible doping regime where all the electronic properties of the 2DEG saturate (carrier density, resistivity, superconducting transition...). The dynamic of leakage was studied using time resolved measurement. Based on a complete self-consistent description of the confinement well, a thermal model for the carriers escape has been developed, which quantitatively accounts for the data.

  4. Three-Dimensional Reconstruction of Cloud-to-Ground Lightning Using High-Speed Video and VHF Broadband Interferometer

    NASA Astrophysics Data System (ADS)

    Li, Yun; Qiu, Shi; Shi, Lihua; Huang, Zhengyu; Wang, Tao; Duan, Yantao

    2017-12-01

    The time resolved three-dimensional (3-D) spatial reconstruction of lightning channels using high-speed video (HSV) images and VHF broadband interferometer (BITF) data is first presented in this paper. Because VHF and optical radiations in step formation process occur with time separation no more than 1 μs, the observation data of BITF and HSV at two different sites provide the possibility of reconstructing the time resolved 3-D channel of lightning. With the proposed procedures for 3-D reconstruction of leader channels, dart leaders as well as stepped leaders with complex multiple branches can be well reconstructed. The differences between 2-D speeds and 3-D speeds of leader channels are analyzed by comparing the development of leader channels in 2-D and 3-D space. Since return stroke (RS) usually follows the path of previous leader channels, the 3-D speeds of the return strokes are first estimated by combination with the 3-D structure of the preceding leaders and HSV image sequences. For the fourth RS, the ratios of the 3-D to 2-D RS speeds increase with height, and the largest ratio of the 3-D to 2-D return stroke speeds can reach 2.03, which is larger than the result of triggered lightning reported by Idone. Since BITF can detect lightning radiation in a 360° view, correlated BITF and HSV observations increase the 3-D detection probability than dual-station HSV observations, which is helpful to obtain more events and deeper understanding of the lightning process.

  5. A third-order moving mesh cell-centered scheme for one-dimensional elastic-plastic flows

    NASA Astrophysics Data System (ADS)

    Cheng, Jun-Bo; Huang, Weizhang; Jiang, Song; Tian, Baolin

    2017-11-01

    A third-order moving mesh cell-centered scheme without the remapping of physical variables is developed for the numerical solution of one-dimensional elastic-plastic flows with the Mie-Grüneisen equation of state, the Wilkins constitutive model, and the von Mises yielding criterion. The scheme combines the Lagrangian method with the MMPDE moving mesh method and adaptively moves the mesh to better resolve shock and other types of waves while preventing the mesh from crossing and tangling. It can be viewed as a direct arbitrarily Lagrangian-Eulerian method but can also be degenerated to a purely Lagrangian scheme. It treats the relative velocity of the fluid with respect to the mesh as constant in time between time steps, which allows high-order approximation of free boundaries. A time dependent scaling is used in the monitor function to avoid possible sudden movement of the mesh points due to the creation or diminishing of shock and rarefaction waves or the steepening of those waves. A two-rarefaction Riemann solver with elastic waves is employed to compute the Godunov values of the density, pressure, velocity, and deviatoric stress at cell interfaces. Numerical results are presented for three examples. The third-order convergence of the scheme and its ability to concentrate mesh points around shock and elastic rarefaction waves are demonstrated. The obtained numerical results are in good agreement with those in literature. The new scheme is also shown to be more accurate in resolving shock and rarefaction waves than an existing third-order cell-centered Lagrangian scheme.

  6. Rapid two-dimensional ALSOFAST-HSQC experiment for metabolomics and fluxomics studies: application to a 13C-enriched cancer cell model treated with gold nanoparticles.

    PubMed

    Schätzlein, Martina Palomino; Becker, Johanna; Schulze-Sünninghausen, David; Pineda-Lucena, Antonio; Herance, José Raul; Luy, Burkhard

    2018-04-01

    Isotope labeling enables the use of 13 C-based metabolomics techniques with strongly improved resolution for a better identification of relevant metabolites and tracing of metabolic fluxes in cell and animal models, as required in fluxomics studies. However, even at high NMR-active isotope abundance, the acquisition of one-dimensional 13 C and classical two-dimensional 1 H, 13 C-HSQC experiments remains time consuming. With the aim to provide a shorter, more efficient alternative, herein we explored the ALSOFAST-HSQC experiment with its rapid acquisition scheme for the analysis of 13 C-labeled metabolites in complex biological mixtures. As an initial step, the parameters of the pulse sequence were optimized to take into account the specific characteristics of the complex samples. We then applied the fast two-dimensional experiment to study the effect of different kinds of antioxidant gold nanoparticles on a HeLa cancer cell model grown on 13 C glucose-enriched medium. As a result, 1 H, 13 C-2D correlations could be obtained in a couple of seconds to few minutes, allowing a simple and reliable identification of various 13 C-enriched metabolites and the determination of specific variations between the different sample groups. Thus, it was possible to monitor glucose metabolism in the cell model and study the antioxidant effect of the coated gold nanoparticles in detail. Finally, with an experiment time of only half an hour, highly resolved 1 H, 13 C-HSQC spectra using the ALSOFAST-HSQC pulse sequence were acquired, revealing the isotope-position-patterns of the corresponding 13 C-nuclei from carbon multiplets. Graphical abstract Fast NMR applied to metabolomics and fluxomics studies with gold nanoparticles.

  7. Dimensional Effects on the Charge Density Waves in Ultrathin Films of TiSe 2

    DOE PAGES

    Chen, P.; Chan, Y. -H.; Wong, M. -H.; ...

    2016-09-20

    Charge density wave (CDW) formation in solids is a critical phenomenon involving the collective reorganization of the electrons and atoms in the system into a wave structure, and it is expected to be sensitive to the geometric constraint of the system at the nanoscale. Here, we study the CDW transition in TiSe 2, a quasi-two-dimensional layered material, to determine the effects of quantum confinement and changing dimensions in films ranging from a single layer to multilayers. Of key interest is the characteristic length scale for the transformation from a two-dimensional case to the three-dimensional limit. Angle-resolved photoemission (ARPES) measurements ofmore » films with thicknesses up to six layers reveal substantial variations in the energy structure of discrete quantum well states; however, the temperature-dependent band-gap renormalization converges at just three layers. The results indicate a layer-dependent mixture of two transition temperatures and a very-short-range CDW interaction within a three-dimensional framework.« less

  8. Impacts of Large-Scale Circulation on Convection: A 2-D Cloud Resolving Model Study

    NASA Technical Reports Server (NTRS)

    Li, X; Sui, C.-H.; Lau, K.-M.

    1999-01-01

    Studies of impacts of large-scale circulation on convection, and the roles of convection in heat and water balances over tropical region are fundamentally important for understanding global climate changes. Heat and water budgets over warm pool (SST=29.5 C) and cold pool (SST=26 C) were analyzed based on simulations of the two-dimensional cloud resolving model. Here the sensitivity of heat and water budgets to different sizes of warm and cold pools is examined.

  9. 3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River

    USGS Publications Warehouse

    Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.

    2011-01-01

    Detailed mapping of bathymetry and three-dimensional water velocities using a boat-mounted single-beam sonar and acoustic Doppler current profiler (ADCP) was carried out in the vicinity of two submerged wing dikes located in the Lower Missouri River near Columbia, Missouri. During high spring flows the wing dikes become submerged, creating a unique combination of vertical flow separation and overtopping (plunging) flow conditions, causing large-scale three-dimensional turbulent flow structures to form. On three different days and for a range of discharges, sampling transects at 5 and 20 m spacing were completed, covering the area adjacent to and upstream and downstream from two different wing dikes. The objectives of this research are to evaluate whether an ADCP can identify and measure large-scale flow features such as recirculating flow and vortex shedding that develop in the vicinity of a submerged wing dike; and whether or not moving-boat (single-transect) data are sufficient for resolving complex three-dimensional flow fields. Results indicate that spatial averaging from multiple nearby single transects may be more representative of an inherently complex (temporally and spatially variable) three-dimensional flow field than repeated single transects. Results also indicate a correspondence between the location of calculated vortex cores (resolved from the interpolated three-dimensional flow field) and the nearby scour holes, providing new insight into the connections between vertically oriented coherent structures and local scour, with the unique perspective of flow and morphology in a large river.

  10. 2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes

    PubMed Central

    Chiatti, Olivio; Riha, Christian; Lawrenz, Dominic; Busch, Marco; Dusari, Srujana; Sánchez-Barriga, Jaime; Mogilatenko, Anna; Yashina, Lada V.; Valencia, Sergio; Ünal, Akin A.; Rader, Oliver; Fischer, Saskia F.

    2016-01-01

    Low-field magnetotransport measurements of topological insulators such as Bi2Se3 are important for revealing the nature of topological surface states by quantum corrections to the conductivity, such as weak-antilocalization. Recently, a rich variety of high-field magnetotransport properties in the regime of high electron densities (∼1019 cm−3) were reported, which can be related to additional two-dimensional layered conductivity, hampering the identification of the topological surface states. Here, we report that quantum corrections to the electronic conduction are dominated by the surface states for a semiconducting case, which can be analyzed by the Hikami-Larkin-Nagaoka model for two coupled surfaces in the case of strong spin-orbit interaction. However, in the metallic-like case this analysis fails and additional two-dimensional contributions need to be accounted for. Shubnikov-de Haas oscillations and quantized Hall resistance prove as strong indications for the two-dimensional layered metallic behavior. Temperature-dependent magnetotransport properties of high-quality Bi2Se3 single crystalline exfoliated macro and micro flakes are combined with high resolution transmission electron microscopy and energy-dispersive x-ray spectroscopy, confirming the structure and stoichiometry. Angle-resolved photoemission spectroscopy proves a single-Dirac-cone surface state and a well-defined bulk band gap in topological insulating state. Spatially resolved core-level photoelectron microscopy demonstrates the surface stability. PMID:27270569

  11. The Cascadia Paradox: Understanding Mantle Flow in the Cascadia Subduction System

    NASA Astrophysics Data System (ADS)

    Long, M. D.

    2015-12-01

    The pattern of mantle flow in subduction systems, and the processes that control the mantle flow field, is a fundamental but still poorly understood aspect of subduction dynamics. Mantle flow plays a key role in controlling the transport of volatiles and melt in the wedge, deformation of the overriding plate, mass transfer between the upper and lower mantle, and the morphology and dynamics of slabs. The Cascadia subduction zone provides a compelling system in which to understand the controls on mantle flow, particularly given the dense geophysical observations provided by EarthScope, GeoPRISMS, the Cascadia Initiative, and related efforts. Cascadia is a particularly intriguing system because observations of seismic anisotropy, which provide relatively direct constraints on mantle flow, seem to yield contradictory views of the mantle flow field in different parts of the system. Observations of seismic anisotropy on the overriding plate apparently require a significant component of three-dimensional, toroidal flow around the slab edge, while new observations from offshore stations are compellingly explained with a simple two-dimensional entrained flow model. Recent evidence from seismic tomography for the fragmentation of the Cascadia slab at depth provides a further puzzle: how can a fragmented slab provide a driving force for either two-dimensional entrained flow or three-dimensional toroidal flow due to slab rollback? I will present a synthesis of recent observations of seismic anisotropy in the Cascadia subduction system, and how they can be integrated with constraints from geodynamical modeling, geochemistry, and the history and timing of Pacific Northwest volcanism. I will discuss the compelling but contradictory evidence for each of the endmember mantle flow models (two-dimensional entrained flow vs. three-dimensional toroidal flow) and explore possible avenues for resolving the Cascadia Paradox.

  12. Contrast-enhanced MR Angiography of the Abdomen with Highly Accelerated Acquisition Techniques

    PubMed Central

    Mostardi, Petrice M.; Glockner, James F.; Young, Phillip M.

    2011-01-01

    Purpose: To demonstrate that highly accelerated (net acceleration factor [Rnet] ≥ 10) acquisition techniques can be used to generate three-dimensional (3D) subsecond timing images, as well as diagnostic-quality high-spatial-resolution contrast material–enhanced (CE) renal magnetic resonance (MR) angiograms with a single split dose of contrast material. Materials and Methods: All studies were approved by the institutional review board and were HIPAA compliant; written consent was obtained from all participants. Twenty-two studies were performed in 10 female volunteers (average age, 47 years; range, 27–62 years) and six patients with renovascular disease (three women; average age, 48 years; range, 37–68 years; three men; average age, 60 years; range, 50–67 years; composite average age, 54 years; range, 38–68 years). The two-part protocol consisted of a low-dose (2 mL contrast material) 3D timing image with approximate 1-second frame time, followed by a high-spatial-resolution (1.0–1.6-mm isotropic voxels) breath-hold 3D renal MR angiogram (18 mL) over the full abdominal field of view. Both acquisitions used two-dimensional (2D) sensitivity encoding acceleration factor (R) of eight and 2D homodyne (HD) acceleration (RHD) of 1.4–1.8 for Rnet = R · RHD of 10 or higher. Statistical analysis included determination of mean values and standard deviations of image quality scores performed by two experienced reviewers with use of eight evaluation criteria. Results: The 2-mL 3D time-resolved image successfully portrayed progressive arterial filling in all 22 studies and provided an anatomic overview of the vasculature. Successful timing was also demonstrated in that the renal MR angiogram showed adequate or excellent portrayal of the main renal arteries in 21 of 22 studies. Conclusion: Two-dimensional acceleration techniques with Rnet of 10 or higher can be used in CE MR angiography to acquire (a) a 3D image series with 1-second frame time, allowing accurate bolus timing, and (b) a high-spatial-resolution renal angiogram. © RSNA, 2011 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11110242/-/DC1 PMID:21900616

  13. Stall behavior of a scaled three-dimensional wind turbine blade

    NASA Astrophysics Data System (ADS)

    Mulleners, Karen; Melius, Matthew; Cal, Raul Bayoan

    2014-11-01

    The power generation of a wind turbine is influenced by many factors including the unsteady incoming flow characteristics, pitch regulation, and the geometry of the various turbine components. Within the framework of maximizing energy extraction, it is important to understand and tailor the aerodynamics of a wind turbine. In the interest of seeking further understanding into the complex flow over wind turbine blades, a three-dimensional scaled blade model has been designed and manufactured to be dynamically similar to a rotating full-scale NREL 5MW wind turbine blade. A wind tunnel experiment has been carried out in the 2.2 m × 1.8 m cross-section closed loop wind tunnel at DLR in Göttingen by means of time-resolved stereoscopic PIV. An extensive coherent structure analysis of the time-resolved velocity field over the suction side of the blade was performed to study stall characteristics under a geometrically induced pressure gradient. In particular, the radial extent and propagation of stalled flow regions were characterized for various static angles of attack.

  14. Direct measurement of the transition from edge to core power coupling in a light-ion helicon source

    NASA Astrophysics Data System (ADS)

    Piotrowicz, P. A.; Caneses, J. F.; Showers, M. A.; Green, D. L.; Goulding, R. H.; Caughman, J. B. O.; Biewer, T. M.; Rapp, J.; Ruzic, D. N.

    2018-05-01

    We present time-resolved measurements of an edge-to-core power transition in a light-ion (deuterium) helicon discharge in the form of infra-red camera imaging of a thin stainless steel target plate on the Proto-Material Exposure eXperiment device. The time-resolved images measure the two-dimensional distribution of power deposition in the helicon discharge. The discharge displays a mode transition characterized by a significant increase in the on-axis electron density and core power coupling, suppression of edge power coupling, and the formation of a fast-wave radial eigenmode. Although the self-consistent mechanism that drives this transition is not yet understood, the edge-to-core power transition displays characteristics that are consistent with the discharge entering a slow-wave anti-resonant regime. RF magnetic field measurements made across the plasma column, together with the power deposition results, provide direct evidence to support the suppression of the slow-wave in favor of core plasma production by the fast-wave in a light-ion helicon source.

  15. Direct measurement of the transition from edge to core power coupling in a light-ion helicon source

    DOE PAGES

    Piotrowicz, Pawel A.; Caneses, Juan F.; Showers, Melissa A.; ...

    2018-05-02

    Here, we present time-resolved measurements of an edge-to-core power transition in a light-ion (deuterium) helicon discharge in the form of infra-red camera imaging of a thin stainless steel target plate on the Proto-Material Exposure eXperiment device. The time-resolved images measure the two-dimensional distribution of power deposition in the helicon discharge. The discharge displays a mode transition characterized by a significant increase in the on-axis electron density and core power coupling, suppression of edge power coupling, and the formation of a fast-wave radial eigenmode. Although the self-consistent mechanism that drives this transition is not yet understood, the edge-to-core power transition displaysmore » characteristics that are consistent with the discharge entering a slow-wave anti-resonant regime. RF magnetic field measurements made across the plasma column, together with the power deposition results, provide direct evidence to support the suppression of the slow-wave in favor of core plasma production by the fast-wave in a light-ion helicon source.« less

  16. Direct measurement of the transition from edge to core power coupling in a light-ion helicon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piotrowicz, Pawel A.; Caneses, Juan F.; Showers, Melissa A.

    Here, we present time-resolved measurements of an edge-to-core power transition in a light-ion (deuterium) helicon discharge in the form of infra-red camera imaging of a thin stainless steel target plate on the Proto-Material Exposure eXperiment device. The time-resolved images measure the two-dimensional distribution of power deposition in the helicon discharge. The discharge displays a mode transition characterized by a significant increase in the on-axis electron density and core power coupling, suppression of edge power coupling, and the formation of a fast-wave radial eigenmode. Although the self-consistent mechanism that drives this transition is not yet understood, the edge-to-core power transition displaysmore » characteristics that are consistent with the discharge entering a slow-wave anti-resonant regime. RF magnetic field measurements made across the plasma column, together with the power deposition results, provide direct evidence to support the suppression of the slow-wave in favor of core plasma production by the fast-wave in a light-ion helicon source.« less

  17. Laser range profile of cones

    NASA Astrophysics Data System (ADS)

    Zhou, Wenzhen; Gong, Yanjun; Wang, Mingjun; Gong, Lei

    2016-10-01

    technology. Laser one-dimensional range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser about cone is given in this paper. This paper demonstrates the analytical model of laser one-dimensional range profile of cone based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cones are given. Laser one-dimensional range profiles of cone, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser one-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. Laser one-dimensional range profiles of different pulse width of cone is given in this paper. The influences of surface material, pulse width, attitude on the one-dimensional range are analyzed. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. The two-dimensional range profile of roughness target can provide range resolved information. An analytical model of two-dimensional laser range profile of cone is proposed. The simulations of two-dimensional laser range profiles of some cones are given. Laser two-dimensional range profiles of cone, whose surface mater with diffuse lambertian reflectance, is given in this paper. Laser two-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. The influence of pulse width, surface material on laser two-dimensional range profile is analyzed. Laser one-dimensional range profile and laser two-dimensional range profile are called as laser range profile (LRP).

  18. Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography

    DOE PAGES

    Yu, Young-Sang; Farmand, Maryam; Kim, Chunjoong; ...

    2018-03-02

    Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here in this paper, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a setmore » of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices.« less

  19. Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Young-Sang; Farmand, Maryam; Kim, Chunjoong

    Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here in this paper, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a setmore » of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices.« less

  20. Industry-relevant magnetron sputtering and cathodic arc ultra-high vacuum deposition system for in situ x-ray diffraction studies of thin film growth using high energy synchrotron radiation.

    PubMed

    Schroeder, J L; Thomson, W; Howard, B; Schell, N; Näslund, L-Å; Rogström, L; Johansson-Jõesaar, M P; Ghafoor, N; Odén, M; Nothnagel, E; Shepard, A; Greer, J; Birch, J

    2015-09-01

    We present an industry-relevant, large-scale, ultra-high vacuum (UHV) magnetron sputtering and cathodic arc deposition system purposefully designed for time-resolved in situ thin film deposition/annealing studies using high-energy (>50 keV), high photon flux (>10(12) ph/s) synchrotron radiation. The high photon flux, combined with a fast-acquisition-time (<1 s) two-dimensional (2D) detector, permits time-resolved in situ structural analysis of thin film formation processes. The high-energy synchrotron-radiation based x-rays result in small scattering angles (<11°), allowing large areas of reciprocal space to be imaged with a 2D detector. The system has been designed for use on the 1-tonne, ultra-high load, high-resolution hexapod at the P07 High Energy Materials Science beamline at PETRA III at the Deutsches Elektronen-Synchrotron in Hamburg, Germany. The deposition system includes standard features of a typical UHV deposition system plus a range of special features suited for synchrotron radiation studies and industry-relevant processes. We openly encourage the materials research community to contact us for collaborative opportunities using this unique and versatile scientific instrument.

  1. Subharmonic resonances in high-order wave mixing in the quantized atomic motion in a one-dimensional optical lattice

    NASA Astrophysics Data System (ADS)

    Lopez, J. P.; de Almeida, A. J. F.; Tabosa, J. W. R.

    2018-03-01

    We report on the observation of subharmonic resonances in high-order wave mixing associated with the quantized vibrational levels of atoms trapped in a one-dimensional optical lattice created by two intense nearly counterpropagating coupling beams. These subharmonic resonances, occurring at ±1 /2 and ±1 /3 of the frequency separation between adjacent vibrational levels, are observed through phase-match angularly resolved six- and eight-wave mixing processes. We investigate how these resonances evolve with the intensity of the incident probe beam, which couples with one of the coupling beams to create anharmonic coherence gratings between adjacent vibrational levels. Our experimental results also show evidence of high-order processes associated with coherence involving nonadjacent vibrational levels. Moreover, we also demonstrate that these induced high-order coherences can be stored in the medium and the associated optical information retrieved after a controlled storage time.

  2. Magnetization switching in nanoscale ferromagnetic grains: MFM observables from Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richards, H.L.; Sides, S.W.; Novotny, M.A.

    1996-12-31

    Recently experimental techniques, such as magnetic force microscopy (MFM), have enabled the magnetic state of individual sub-micron particles to be resolved. Motivated by these experimental developments, the authors use Monte Carlo simulations of two-dimensional kinetic Ising ferromagnets to study the magnetic relaxation in a negative applied field of a grain with an initial magnetization m{sub 0} = + 1. They use classical droplet theory to predict the functional forms for some quantities which can be observed by MFM. An example is the probability that the magnetization is positive, which is a function of time, field, grain size, and grain dimensionality.more » The qualitative agreement between experiments and their simulations of switching in individual single-domain ferromagnets indicates that the switching mechanism in such particles may involve local nucleation and subsequent growth of droplets of the stable phase.« less

  3. Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors

    PubMed Central

    Mahjouri-Samani, Masoud; Lin, Ming-Wei; Wang, Kai; Lupini, Andrew R.; Lee, Jaekwang; Basile, Leonardo; Boulesbaa, Abdelaziz; Rouleau, Christopher M.; Puretzky, Alexander A.; Ivanov, Ilia N.; Xiao, Kai; Yoon, Mina; Geohegan, David B.

    2015-01-01

    The formation of semiconductor heterojunctions and their high-density integration are foundations of modern electronics and optoelectronics. To enable two-dimensional crystalline semiconductors as building blocks in next-generation electronics, developing methods to deterministically form lateral heterojunctions is crucial. Here we demonstrate an approach for the formation of lithographically patterned arrays of lateral semiconducting heterojunctions within a single two-dimensional crystal. Electron beam lithography is used to pattern MoSe2 monolayer crystals with SiO2, and the exposed locations are selectively and totally converted to MoS2 using pulsed laser vaporization of sulfur to form MoSe2/MoS2 heterojunctions in predefined patterns. The junctions and conversion process are studied by Raman and photoluminescence spectroscopy, atomically resolved scanning transmission electron microscopy and device characterization. This demonstration of lateral heterojunction arrays within a monolayer crystal is an essential step for the integration of two-dimensional semiconductor building blocks with different electronic and optoelectronic properties for high-density, ultrathin devices. PMID:26198727

  4. Progress with multigrid schemes for hypersonic flow problems

    NASA Technical Reports Server (NTRS)

    Radespiel, R.; Swanson, R. C.

    1991-01-01

    Several multigrid schemes are considered for the numerical computation of viscous hypersonic flows. For each scheme, the basic solution algorithm uses upwind spatial discretization with explicit multistage time stepping. Two level versions of the various multigrid algorithms are applied to the two dimensional advection equation, and Fourier analysis is used to determine their damping properties. The capabilities of the multigrid methods are assessed by solving three different hypersonic flow problems. Some new multigrid schemes based on semicoarsening strategies are shown to be quite effective in relieving the stiffness caused by the high aspect ratio cells required to resolve high Reynolds number flows. These schemes exhibit good convergence rates for Reynolds numbers up to 200 x 10(exp 6) and Mach numbers up to 25.

  5. Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability

    DOE PAGES

    Gallis, Michail A.; Koehler, Timothy P.; Torczynski, John R.; ...

    2015-08-14

    The Rayleigh-Taylor instability (RTI) is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Here, fully resolved two-dimensional DSMC RTI simulations are performed to quantify the growth of flat and single-mode perturbed interfaces between two atmospheric-pressure monatomic gases as a function of the Atwood number and the gravitational acceleration. The DSMC simulations reproduce all qualitative features of the RTI and are in reasonable quantitative agreement with existing theoretical and empirical models in the linear, nonlinear, and self-similar regimes. At late times, the instability is seen to exhibit a self-similar behavior, in agreement with experimental observations. Formore » the conditions simulated, diffusion can influence the initial instability growth significantly.« less

  6. Interface- and discontinuity-aware numerical schemes for plasma 3-T radiation diffusion in two and three dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, William W., E-mail: dai@lanl.gov; Scannapieco, Anthony J.

    2015-11-01

    A set of numerical schemes is developed for two- and three-dimensional time-dependent 3-T radiation diffusion equations in systems involving multi-materials. To resolve sub-cell structure, interface reconstruction is implemented within any cell that has more than one material. Therefore, the system of 3-T radiation diffusion equations is solved on two- and three-dimensional polyhedral meshes. The focus of the development is on the fully coupling between radiation and material, the treatment of nonlinearity in the equations, i.e., in the diffusion terms and source terms, treatment of the discontinuity across cell interfaces in material properties, the formulations for both transient and steady states,more » the property for large time steps, and second order accuracy in both space and time. The discontinuity of material properties between different materials is correctly treated based on the governing physics principle for general polyhedral meshes and full nonlinearity. The treatment is exact for arbitrarily strong discontinuity. The scheme is fully nonlinear for the full nonlinearity in the 3-T diffusion equations. Three temperatures are fully coupled and are updated simultaneously. The scheme is general in two and three dimensions on general polyhedral meshes. The features of the scheme are demonstrated through numerical examples for transient problems and steady states. The effects of some simplifications of numerical schemes are also shown through numerical examples, such as linearization, simple average of diffusion coefficient, and approximate treatment for the coupling between radiation and material.« less

  7. Estimating Angle-of-Arrival and Time-of-Flight for Multipath Components Using WiFi Channel State Information.

    PubMed

    Ahmed, Afaz Uddin; Arablouei, Reza; Hoog, Frank de; Kusy, Branislav; Jurdak, Raja; Bergmann, Neil

    2018-05-29

    Channel state information (CSI) collected during WiFi packet transmissions can be used for localization of commodity WiFi devices in indoor environments with multipath propagation. To this end, the angle of arrival (AoA) and time of flight (ToF) for all dominant multipath components need to be estimated. A two-dimensional (2D) version of the multiple signal classification (MUSIC) algorithm has been shown to solve this problem using 2D grid search, which is computationally expensive and is therefore not suited for real-time localisation. In this paper, we propose using a modified matrix pencil (MMP) algorithm instead. Specifically, we show that the AoA and ToF estimates can be found independently of each other using the one-dimensional (1D) MMP algorithm and the results can be accurately paired to obtain the AoA⁻ToF pairs for all multipath components. Thus, the 2D estimation problem reduces to running 1D estimation multiple times, substantially reducing the computational complexity. We identify and resolve the problem of degenerate performance when two or more multipath components have the same AoA. In addition, we propose a packet aggregation model that uses the CSI data from multiple packets to improve the performance under noisy conditions. Simulation results show that our algorithm achieves two orders of magnitude reduction in the computational time over the 2D MUSIC algorithm while achieving similar accuracy. High accuracy and low computation complexity of our approach make it suitable for applications that require location estimation to run on resource-constrained embedded devices in real time.

  8. Analysis of Massively Separated Flows of Aircraft Using Detached Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Morton, Scott

    2002-08-01

    An important class of turbulent flows of aerodynamic interest are those characterized by massive separation, e.g., the flow around an aircraft at high angle of attack. Numerical simulation is an important tool for analysis, though traditional models used in the solution of the Reynolds-averaged Navier-Stokes (RANS) equations appear unable to accurately account for the time-dependent and three-dimensional motions governing flows with massive separation. Large-eddy simulation (LES) is able to resolve these unsteady three-dimensional motions, yet is cost prohibitive for high Reynolds number wall-bounded flows due to the need to resolve the small scale motions in the boundary layer. Spalart et. al. proposed a hybrid technique, Detached-Eddy Simulation (DES), which takes advantage of the often adequate performance of RANS turbulence models in the "thin," typically attached regions of the flow. In the separated regions of the flow the technique becomes a Large Eddy Simulation, directly resolving the time-dependent and unsteady features that dominate regions of massive separation. The current work applies DES to a 70 degree sweep delta wing at 27 degrees angle of attack, a geometrically simple yet challenging flowfield that exhibits the unsteady three-dimensional massively separated phenomena of vortex breakdown. After detailed examination of this basic flowfield, the method is demonstrated on three full aircraft of interest characterized by massive separation, the F-16 at 45 degrees angle of attack, the F-15 at 65 degree angle of attack (with comparison to flight test), and the C-130 in a parachute drop condition at near stall speed with cargo doors open.

  9. Effects of antithrombotic drugs in patients with left ventricular thrombi: assessment with indium-111 platelet imaging and two-dimensional echocardiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratton, J.R.; Ritchie, J.L.

    Patients with left ventricular thrombi not caused by recent myocardial infarction were prospectively studied by indium-111 platelet imaging and two-dimensional echocardiography to determine the reproducibility of these techniques and the short-term effects of sulfinpyrazone (200 mg four times daily), aspirin (325 mg three times daily) plus dipyridamole (75 mg three times daily), and full-dose warfarin. At baseline, all patients underwent indium-111 platelet imaging and echocardiography, and the results were positive for thrombus. In six patients on no antithrombotic drug therapy, repeat platelet scans and echocardiographic studies at 6.0 +/- 3.3 weeks remained positive and were unchanged. In seven patients studiedmore » on sulfinpyrazone, three platelet scans became negative, two became equivocal, and two were unchanged; the presence and size of thrombus was constant by echocardiography in all seven patients. Of the six patients studied on aspirin plus dipyridamole, one platelet scan became negative, those of three became equivocal, and two were unchanged; all echocardiographic findings remained positive, but one patient had decreased thrombus size. Among four warfarin-treated patients, three had resolution of platelet deposition and one was unchanged; by echocardiography, thrombus resolved in one patient, was decreased in size in one, and was unchanged in two. We conclude that, in the absence of antithrombotic drug therapy, platelet imaging and echocardiographic findings are stable in patients with left ventricular thrombi not caused by recent myocardial infarction. Sulfinpyrazone, aspirin plus dipyridamole, and warfarin all interrupt platelet deposition in some patients with chronic left ventricular thrombi.« less

  10. A rotationally biased upwind difference scheme for the Euler equations

    NASA Technical Reports Server (NTRS)

    Davis, S. F.

    1983-01-01

    The upwind difference schemes of Godunov, Osher, Roe and van Leer are able to resolve one dimensional steady shocks for the Euler equations within one or two mesh intervals. Unfortunately, this resolution is lost in two dimensions when the shock crosses the computing grid at an oblique angle. To correct this problem, a numerical scheme was developed which automatically locates the angle at which a shock might be expected to cross the computing grid and then constructs separate finite difference formulas for the flux components normal and tangential to this direction. Numerical results which illustrate the ability of this method to resolve steady oblique shocks are presented.

  11. A Spatially Resolving X-ray Crystal Spectrometer for Measurement of Ion-temperature and Rotation-velocity Profiles on the AlcatorC-Mod Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, K. W.; Bitter, M. L.; Scott, S. D.

    2009-03-24

    A new spatially resolving x-ray crystal spectrometer capable of measuring continuous spatial profiles of high resolution spectra (λ/dλ > 6000) of He-like and H-like Ar Kα lines with good spatial (~1 cm) and temporal (~10 ms) resolutions has been installed on the Alcator C-Mod tokamak. Two spherically bent crystals image the spectra onto four two-dimensional Pilatus II pixel detectors. Tomographic inversion enables inference of local line emissivity, ion temperature (Ti), and toroidal plasma rotation velocity (vφ) from the line Doppler widths and shifts. The data analysis techniqu

  12. Time-Resolved Intrafraction Target Translations and Rotations During Stereotactic Liver Radiation Therapy: Implications for Marker-based Localization Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertholet, Jenny, E-mail: jennbe@rm.dk; Worm, Esben S.; Fledelius, Walther

    Purpose: Image guided liver stereotactic body radiation therapy (SBRT) often relies on implanted fiducial markers. The target localization accuracy decreases with increased marker-target distance. This may occur partly because of liver rotations. The aim of this study was to examine time-resolved translations and rotations of liver marker constellations and investigate if time-resolved intrafraction rotational corrections can improve localization accuracy in liver SBRT. Methods and Materials: Twenty-nine patients with 3 implanted markers received SBRT in 3 to 6 fractions. The time-resolved trajectory of each marker was estimated from the projections of 1 to 3 daily cone beam computed tomography scans andmore » used to calculate the translation and rotation of the marker constellation. In all cone beam computed tomography projections, the time-resolved position of each marker was predicted from the position of another surrogate marker by assuming that the marker underwent either (1) the same translation as the surrogate marker; or (2) the same translation as the surrogate marker corrected by the rotation of the marker constellation. The localization accuracy was quantified as the root-mean-square error (RMSE) between the estimated and the actual marker position. For comparison, the RMSE was also calculated when the marker's position was estimated as its mean position for all the projections. Results: The mean translational and rotational range (2nd-98th percentile) was 2.0 mm/3.9° (right-left), 9.2 mm/2.9° (superior-inferior), 4.0 mm/4.0° (anterior-posterior), and 10.5 mm (3-dimensional). Rotational corrections decreased the mean 3-dimensional RMSE from 0.86 mm to 0.54 mm (P<.001) and halved the RMSE increase per millimeter increase in marker distance. Conclusions: Intrafraction rotations during liver SBRT reduce the accuracy of marker-guided target localization. Rotational correction can improve the localization accuracy with a factor of approximately 2 for large marker-target distances.« less

  13. Light-matter interaction in doped microcavities

    NASA Astrophysics Data System (ADS)

    Averkiev, N. S.; Glazov, M. M.

    2007-07-01

    We discuss theoretically the light-matter coupling in a microcavity containing a quantum well with a two-dimensional electron gas. The high density limit where the bound exciton states are absent is considered. The matrix element of an interband optical absorption demonstrates the Mahan singularity [Phys. Rev. B153, 882 (1967); 163, 612 (1967)] due to strong Coulomb effect between the electrons and a photocreated hole. We extend the nonlocal dielectric response theory to calculate the quantum well reflection and transmission coefficients as well as the microcavity transmission spectra. The new eigenmodes of the system are discussed. Their implications for the steady state and time-resolved spectroscopy experiments are analyzed.

  14. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    NASA Astrophysics Data System (ADS)

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-01

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  15. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source.

    PubMed

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-01

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  16. Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation

    DOE PAGES

    Zhang, Peng; Lee, Seungah; Yu, Hyunung; ...

    2015-06-15

    Super-resolution imaging of fluorescence-free plasmonic nanoparticles (NPs) was achieved using enhanced dark-field (EDF) illumination based on wavelength-modulation. Indistinguishable adjacent EDF images of 103-nm gold nanoparticles (GNPs), 40-nm gold nanorods (GNRs), and 80-nm silver nanoparticles (SNPs) were modulated at their wavelengths of specific localized surface plasmon scattering. The coordinates (x, y) of each NP were resolved by fitting their point spread functions with a two-dimensional Gaussian. The measured localization precisions of GNPs, GNRs, and SNPs were 2.5 nm, 5.0 nm, and 2.9 nm, respectively. From the resolved coordinates of NPs and the corresponding localization precisions, super-resolution images were reconstructed. Depending onmore » the spontaneous polarization of GNR scattering, the orientation angle of GNRs in two-dimensions was resolved and provided more elaborate localization information. This novel fluorescence-free super-resolution method was applied to live HeLa cells to resolve NPs and provided remarkable subdiffraction limit images.« less

  17. Active region dimensionality and quantum efficiencies of InGaN LEDs from temperature dependent photoluminescence transients

    NASA Astrophysics Data System (ADS)

    Can, Nuri; Okur, Serdal; Monavarian, Morteza; Zhang, Fan; Avrutin, Vitaliy; Morkoç, Hadis; Teke, Ali; Özgür, Ümit

    2015-03-01

    Temperature dependent recombination dynamics in c-plane InGaN light emitting diodes (LEDs) with different well thicknesses, 1.5, 2, and 3 nm, were investigated to determine the active region dimensionality and its effect on the internal quantum efficiencies. It was confirmed for all LEDs that the photoluminescence (PL) transients are governed by radiative recombination at low temperatures while nonradiative recombination dominates at room temperature. At photoexcited carrier densities of 3 - 4.5 x 1016 cm-3 , the room-temperature Shockley-Read-Hall (A) and the bimolecular (B) recombination coefficients (A, B) were deduced to be (9.2x107 s-1, 8.8x10-10 cm3s-1), (8.5x107 s-1, 6.6x10-10 cm3s-1), and (6.5x107 s-1, 1.4x10-10 cm3s-1) for the six period 1.5, 2, and 3 nm well-width LEDs, respectively. From the temperature dependence of the radiative lifetimes, τrad α Tn/2, the dimensionality n of the active region was found to decrease consistently with decreasing well width. The 3 nm wide wells exhibited ~T1.5 dependence, suggesting a three-dimensional nature, whereas the 1.5 nm wells were confirmed to be two-dimensional (~T1) and the 2 nm wells close to being two-dimensional. We demonstrate that a combination of temperature dependent PL and time-resolved PL techniques can be used to evaluate the dimensionality as well as the quantum efficiencies of the LED active regions for a better understanding of the relationship between active-region design and the efficiency limiting processes in InGaN LEDs.

  18. Confocal Microscopy Imaging with an Optical Transition Edge Sensor

    NASA Astrophysics Data System (ADS)

    Fukuda, D.; Niwa, K.; Hattori, K.; Inoue, S.; Kobayashi, R.; Numata, T.

    2018-05-01

    Fluorescence color imaging at an extremely low excitation intensity was performed using an optical transition edge sensor (TES) embedded in a confocal microscope for the first time. Optical TES has the ability to resolve incident single photon energy; therefore, the wavelength of each photon can be measured without spectroscopic elements such as diffraction gratings. As target objects, animal cells labeled with two fluorescent dyes were irradiated with an excitation laser at an intensity below 1 μW. In our confocal system, an optical fiber-coupled TES device is used to detect photons instead of the pinhole and photomultiplier tube used in typical confocal microscopes. Photons emitted from the dyes were collected by the objective lens, and sent to the optical TES via the fiber. The TES measures the wavelength of each photon arriving in an exposure time of 70 ms, and a fluorescent photon spectrum is constructed. This measurement is repeated by scanning the target sample, and finally a two-dimensional RGB-color image is obtained. The obtained image showed that the photons emitted from the dyes of mitochondria and cytoskeletons were clearly resolved at a detection intensity level of tens of photons. TES exhibits ideal performance as a photon detector with a low dark count rate (< 1 Hz) and wavelength resolving power. In the single-mode fiber-coupled system, the confocal microscope can be operated in the super-resolution mode. These features are very promising to realize high-sensitivity and high-resolution photon spectral imaging, and would help avoid cell damage and photobleaching of fluorescence dyes.

  19. Extension of modified power method to two-dimensional problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Peng; Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919; Lee, Hyunsuk

    2016-09-01

    In this study, the generalized modified power method was extended to two-dimensional problems. A direct application of the method to two-dimensional problems was shown to be unstable when the number of requested eigenmodes is larger than a certain problem dependent number. The root cause of this instability has been identified as the degeneracy of the transfer matrix. In order to resolve this instability, the number of sub-regions for the transfer matrix was increased to be larger than the number of requested eigenmodes; and a new transfer matrix was introduced accordingly which can be calculated by the least square method. Themore » stability of the new method has been successfully demonstrated with a neutron diffusion eigenvalue problem and the 2D C5G7 benchmark problem. - Graphical abstract:.« less

  20. Voltage- and Light-Controlled Spin Properties of a Two-Dimensional Hole Gas in p-Type GaAs/AlAs Resonant Tunneling Diodes

    NASA Astrophysics Data System (ADS)

    Galeti, H. V. A.; Galvão Gobato, Y.; Brasil, M. J. S. P.; Taylor, D.; Henini, M.

    2018-03-01

    We have investigated the spin properties of a two-dimensional hole gas (2DHG) formed at the contact layer of a p-type GaAs/AlAs resonant tunneling diode (RTD). We have measured the polarized-resolved photoluminescence of the RTD as a function of bias voltage, laser intensity and external magnetic field up to 15T. By tuning the voltage and the laser intensity, we are able to change the spin-splitting from the 2DHG from almost 0 meV to 5 meV and its polarization degree from - 40% to + 50% at 15T. These results are attributed to changes of the local electric field applied to the two-dimensional gas which affects the valence band and the hole Rashba spin-orbit effect.

  1. Nonlinear Optical Spectroscopy of Two-Dimensional Materials

    NASA Astrophysics Data System (ADS)

    Cui, Qiannan

    Nonlinear optical properties of two-dimensional (2D) materials, such as transition metal dichalcogenides (TMDs), graphene, black phosphorus, and so on, play a key role of understanding nanoscale light-matter interactions, as well as developing nanophotonics applications from solar cells to quantum computation. With ultrafast lasers, we experimentally study nonlinear optical properties of 2D materials. Employing transient absorption microscopy, we study several members of 2D materials, such as WSe2, TiS3 and ReS2. The dynamical saturable absorption process of 2D excitons is spatiotemporally resolved. Intrinsic parameters of these 2D materials, such as exciton lifetime, exciton diffusion coefficient, and exciton mobility, are effectively measured. Especially, in-plane anisotropy of transient absorption and diffusive transport is observed for 2D excitons in monolayer ReS2, demonstrating the in-plane degree of freedom. Furthermore, with quantum interference and control nanoscopy, we all-optically inject, detect and manipulate nanoscale ballistic charge currents in a ReS2 thin film. By tuning the phase difference between one photon absorption and two photon absorption transition paths, sub-picosecond timescale of ballistic currents is coherently controlled for the first time in TMDs. In addition, the spatial resolution is two-order of magnitude smaller than optical diffraction limit. The second-order optical nonlinearity of 2D monolayers is resolved by second harmonic generation (SHG) microscopy. We measure the second-order susceptibility of monolayer MoS 2. The angular dependence of SHG in monolayer MoS2 shows strong symmetry dependence on its crystal lattice structure. Hence, second harmonic generation microscopy can serve as a powerful tool to noninvasively determine the crystalline directions of 2D monolayers. The real and imaginary parts of third-order optical nonlinearity of 2D monolayers are resolved by third harmonic generation (THG) microscopy and two-photon transient absorption microscopy, respectively. With third harmonic generation microscopy, we observe strong and anisotropic THG in monolayer and multilayer ReS2. Comparing with 2D materials with hexagonal lattice, such as MoS2, the third-order susceptibility is higher by one order of magnitude in ReS2 with a distorted 1T structure. The in-plane anisotropy of THG is attributed to the lattice distortion in ReS2 after comparing with a symmetry analysis. With two-photon transient absorption microscopy, we observe a giant two-photon absorption coefficient of monolayer WS2.

  2. Two-color field enhancement at an STM junction for spatiotemporally resolved photoemission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Xiang; Jin, Wencan; Yang, Hao

    Here, we report measurements and numerical simulations of ultrafast laser-excited carrier flow across a scanning tunneling microscope (STM) junction. The current from a nanoscopic tungsten tip across a ~1 nm vacuum gap to a silver surface is driven by a two-color excitation scheme that uses an optical delay-modulation technique to extract the two-color signal from background contributions. The role of optical field enhancements in driving the current is investigated using density functional theory and full three-dimensional finite-difference time-domain computations. We find that simulated field-enhanced two-photon photoemission (2PPE) currents are in excellent agreement with the observed exponential decay of the two-colormore » photoexcited current with increasing tip–surface separation, as well as its optical-delay dependence. The results suggest an approach to 2PPE with simultaneous subpicosecond temporal and nanometer spatial resolution.« less

  3. Two-color field enhancement at an STM junction for spatiotemporally resolved photoemission

    DOE PAGES

    Meng, Xiang; Jin, Wencan; Yang, Hao; ...

    2017-06-30

    Here, we report measurements and numerical simulations of ultrafast laser-excited carrier flow across a scanning tunneling microscope (STM) junction. The current from a nanoscopic tungsten tip across a ~1 nm vacuum gap to a silver surface is driven by a two-color excitation scheme that uses an optical delay-modulation technique to extract the two-color signal from background contributions. The role of optical field enhancements in driving the current is investigated using density functional theory and full three-dimensional finite-difference time-domain computations. We find that simulated field-enhanced two-photon photoemission (2PPE) currents are in excellent agreement with the observed exponential decay of the two-colormore » photoexcited current with increasing tip–surface separation, as well as its optical-delay dependence. The results suggest an approach to 2PPE with simultaneous subpicosecond temporal and nanometer spatial resolution.« less

  4. Adaptive Decomposition of Highly Resolved Time Series into Local and Non‐local Components

    EPA Science Inventory

    Highly time-resolved air monitoring data are widely being collected over long time horizons in order to characterizeambient and near-source air quality trends. In many applications, it is desirable to split the time-resolved data into two ormore components (e.g., local and region...

  5. Are X-rays the key to integrated computational materials engineering?

    DOE PAGES

    Ice, Gene E.

    2015-11-01

    The ultimate dream of materials science is to predict materials behavior from composition and processing history. Owing to the growing power of computers, this long-time dream has recently found expression through worldwide excitement in a number of computation-based thrusts: integrated computational materials engineering, materials by design, computational materials design, three-dimensional materials physics and mesoscale physics. However, real materials have important crystallographic structures at multiple length scales, which evolve during processing and in service. Moreover, real materials properties can depend on the extreme tails in their structural and chemical distributions. This makes it critical to map structural distributions with sufficient resolutionmore » to resolve small structures and with sufficient statistics to capture the tails of distributions. For two-dimensional materials, there are high-resolution nondestructive probes of surface and near-surface structures with atomic or near-atomic resolution that can provide detailed structural, chemical and functional distributions over important length scales. Furthermore, there are no nondestructive three-dimensional probes with atomic resolution over the multiple length scales needed to understand most materials.« less

  6. Selective self-assembly and light emission tuning of layered hybrid perovskites on patterned graphene.

    PubMed

    Guerra, Valentino L P; Kovaříček, Petr; Valeš, Václav; Drogowska, Karolina; Verhagen, Tim; Vejpravova, Jana; Horák, Lukáš; Listorti, Andrea; Colella, Silvia; Kalbáč, Martin

    2018-02-15

    The emission of light in two-dimensional (2-D) layered hybrid organic lead halide perovskites, namely (R-NH 3 ) 2 PbX 4 , can be effectively tuned using specific building blocks for the perovskite formation. Herein this behaviour is combined with a non-covalent graphene functionalization allowing excellent selectivity and spatial resolution of the perovskite film growth, promoting the formation of hybrid 2-D perovskite : graphene heterostructures with uniform coverage of up to centimeter scale graphene sheets and arbitrary shapes down to 5 μm. Using cryo-Raman microspectroscopy, highly resolved spectra of the perovskite phases were obtained and the Raman mapping served as a convenient spatially resolved technique for monitoring the distribution of the perovskite and graphene constituents on the substrate. In addition, the stability of the perovskite phase with respect to the thermal variation was inspected in situ by X-ray diffraction. Finally, time-resolved photoluminescence characterization demonstrated that the optical properties of the perovskite films grown on graphene are not hampered. Our study thus opens the door to smart fabrication routes for (opto)-electronic devices based on 2-D perovskites in contact with graphene with complex architectures.

  7. Development and testing of 2-dimensional photon counter

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The development of a commercially available two dimensional photon counter into an operational system for speckle imaging of astronomical objects is described. The system includes digital recording for field observations. The counter has a bialkali photocathode with a field size of 18 by 18 mm over which it resolves about 100 by 100 pixels. The system records photon positions as 16 bit words at rates up to 14,400 per second. Field tests at observatories verifying the operation of the system are described.

  8. Time-Spectral Rotorcraft Simulations on Overset Grids

    NASA Technical Reports Server (NTRS)

    Leffell, Joshua I.; Murman, Scott M.; Pulliam, Thomas H.

    2014-01-01

    The Time-Spectral method is derived as a Fourier collocation scheme and applied to NASA's overset Reynolds-averaged Navier-Stokes (RANS) solver OVERFLOW. The paper outlines the Time-Spectral OVERFLOWimplementation. Successful low-speed laminar plunging NACA 0012 airfoil simulations demonstrate the capability of the Time-Spectral method to resolve the highly-vortical wakes typical of more expensive three-dimensional rotorcraft configurations. Dealiasing, in the form of spectral vanishing viscosity (SVV), facilitates the convergence of Time-Spectral calculations of high-frequency flows. Finally, simulations of the isolated V-22 Osprey tiltrotor for both hover and forward (edgewise) flight validate the three-dimensional Time-Spectral OVERFLOW implementation. The Time-Spectral hover simulation matches the time-accurate calculation using a single harmonic. Significantly more temporal modes and SVV are required to accurately compute the forward flight case because of its more active, high-frequency wake.

  9. Observation of Structure of Surfaces and Interfaces by Synchrotron X-ray Diffraction: Atomic-Scale Imaging and Time-Resolved Measurements

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Yusuke; Shirasawa, Tetsuroh; Voegeli, Wolfgang; Takahashi, Toshio

    2018-06-01

    The recent developments in synchrotron optics, X-ray detectors, and data analysis algorithms have enhanced the capability of the surface X-ray diffraction technique. This technique has been used to clarify the atomic arrangement around surfaces in a non-contact and nondestructive manner. An overview of surface X-ray diffraction, from the historical development to recent topics, is presented. In the early stage of this technique, surface reconstructions of simple semiconductors or metals were studied. Currently, the surface or interface structures of complicated functional materials are examined with sub-Å resolution. As examples, the surface structure determination of organic semiconductors and of a one-dimensional structure on silicon are presented. A new frontier is time-resolved interfacial structure analysis. A recent observation of the structure and dynamics of the electric double layer of ionic liquids, and an investigation of the structural evolution in the wettability transition on a TiO2 surface that utilizes a newly designed time-resolved surface diffractometer, are presented.

  10. Three-dimensional turbulence-resolving modeling of the Venusian cloud layer and induced gravity waves

    NASA Astrophysics Data System (ADS)

    Lefèvre, Maxence; Spiga, Aymeric; Lebonnois, Sébastien

    2017-01-01

    The impact of the cloud convective layer of the atmosphere of Venus on the global circulation remains unclear. The recent observations of gravity waves at the top of the cloud by the Venus Express mission provided some answers. These waves are not resolved at the scale of global circulation models (GCM); therefore, we developed an unprecedented 3-D turbulence-resolving large-eddy simulations (LES) Venusian model using the Weather Research and Forecast terrestrial model. The forcing consists of three different heating rates: two radiative ones for solar and infrared and one associated with the adiabatic cooling/warming of the global circulation. The rates are extracted from the Laboratoire de Météorlogie Dynamique Venus GCM using two different cloud models. Thus, we are able to characterize the convection and associated gravity waves in function of latitude and local time. To assess the impact of the global circulation on the convective layer, we used rates from a 1-D radiative-convective model. The resolved layer, taking place between 1.0 × 105 and 3.8 × 104 Pa (48-53 km), is organized as polygonal closed cells of about 10 km wide with vertical wind of several meters per second. The convection emits gravity waves both above and below the convective layer leading to temperature perturbations of several tenths of kelvin with vertical wavelength between 1 and 3 km and horizontal wavelength from 1 to 10 km. The thickness of the convective layer and the amplitudes of waves are consistent with observations, though slightly underestimated. The global dynamics heating greatly modify the convective layer.

  11. Metallic rare-earth silicide nanowires on silicon surfaces.

    PubMed

    Dähne, Mario; Wanke, Martina

    2013-01-09

    The formation, atomic structure, and electronic properties of self-assembled rare-earth silicide nanowires on silicon surfaces were studied by scanning tunneling microscopy and angle-resolved photoelectron spectroscopy. Metallic dysprosium and erbium silicide nanowires were observed on both the Si(001) and Si(557) surfaces. It was found that they consist of hexagonal rare-earth disilicides for both surface orientations. On Si(001), the nanowires are characterized by a one-dimensional band structure, while the electronic dispersion is two-dimensional for the nanowires formed on Si(557). This behavior is explained by the different orientations of the hexagonal c axis of the silicide leading to different conditions for the carrier confinement. By considering this carrier confinement it is demonstrated how the one-dimensional band structure of the nanowires on Si(001) can be derived from the two-dimensional one of the silicide monolayer on Si(111).

  12. Ostwald ripening of faceted Si particles in an Al-Si-Cu melt

    DOE PAGES

    Shahani, A. J.; Xiao, X.; Skinner, K.; ...

    2016-07-04

    The microstructural evolution of an Al-Si-Cu alloy during Ostwald ripening is imaged via synchrotron-based, four-dimensional (i.e., space and time resolved) X-ray tomography. Samples of composition Al-32 wt%Si-15 wt%Cu were annealed isothermally at 650 °C, in the two-phase solid-liquid regime, while tomographic projections were collected in situ over the course of five hours. Advances in experimental methods and computational approaches enable us to characterize the local interfacial curvatures and velocities during ripening. The sequence of three-dimensional reconstructions and interfacial shape distributions shows highly faceted Si particles in a copper-enriched liquid, that become increasingly isotropic or rounded over time. In addition, wemore » find that the coarsening rate constant is approximately the same in the binary and ternary systems. By coupling these experimental measurements with CALPHAD modeling and ab initio molecular dynamics simulation, we assess the influence of Cu on the coarsening process. Lastly, we find the unusual “pinning” of microstructure at the junction between rough and smooth interfaces and suggest a mechanism for this behavior.« less

  13. Two-dimensional electronic transport and surface electron accumulation in MoS2.

    PubMed

    Siao, M D; Shen, W C; Chen, R S; Chang, Z W; Shih, M C; Chiu, Y P; Cheng, C-M

    2018-04-12

    Because the surface-to-volume ratio of quasi-two-dimensional materials is extremely high, understanding their surface characteristics is crucial for practically controlling their intrinsic properties and fabricating p-type and n-type layered semiconductors. Van der Waals crystals are expected to have an inert surface because of the absence of dangling bonds. However, here we show that the surface of high-quality synthesized molybdenum disulfide (MoS 2 ) is a major n-doping source. The surface electron concentration of MoS 2 is nearly four orders of magnitude higher than that of its inner bulk. Substantial thickness-dependent conductivity in MoS 2 nanoflakes was observed. The transfer length method suggested the current transport in MoS 2 following a two-dimensional behavior rather than the conventional three-dimensional mode. Scanning tunneling microscopy and angle-resolved photoemission spectroscopy measurements confirmed the presence of surface electron accumulation in this layered material. Notably, the in situ-cleaved surface exhibited a nearly intrinsic state without electron accumulation.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, P.; Pai, Woei Wu; Chan, Y. -H.

    Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here in this paper we report a study of TiTe 2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe 2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermimore » level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe 2 , despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.« less

  15. The Efficacy of Multidimensional Constraint Keys in Database Query Performance

    ERIC Educational Resources Information Center

    Cardwell, Leslie K.

    2012-01-01

    This work is intended to introduce a database design method to resolve the two-dimensional complexities inherent in the relational data model and its resulting performance challenges through abstract multidimensional constructs. A multidimensional constraint is derived and utilized to implement an indexed Multidimensional Key (MK) to abstract a…

  16. Synchronous parallel spatially resolved stochastic cluster dynamics

    DOE PAGES

    Dunn, Aaron; Dingreville, Rémi; Martínez, Enrique; ...

    2016-04-23

    In this work, a spatially resolved stochastic cluster dynamics (SRSCD) model for radiation damage accumulation in metals is implemented using a synchronous parallel kinetic Monte Carlo algorithm. The parallel algorithm is shown to significantly increase the size of representative volumes achievable in SRSCD simulations of radiation damage accumulation. Additionally, weak scaling performance of the method is tested in two cases: (1) an idealized case of Frenkel pair diffusion and annihilation, and (2) a characteristic example problem including defect cluster formation and growth in α-Fe. For the latter case, weak scaling is tested using both Frenkel pair and displacement cascade damage.more » To improve scaling of simulations with cascade damage, an explicit cascade implantation scheme is developed for cases in which fast-moving defects are created in displacement cascades. For the first time, simulation of radiation damage accumulation in nanopolycrystals can be achieved with a three dimensional rendition of the microstructure, allowing demonstration of the effect of grain size on defect accumulation in Frenkel pair-irradiated α-Fe.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinis, Panagiotis

    We present a comparative study of two methods for thereduction of the dimensionality of a system of ordinary differentialequations that exhibits time-scale separation. Both methods lead to areduced system of stochastic differential equations. The novel feature ofthese methods is that they allow the use, in the reduced system, ofhigher order terms in the resolved variables. The first method, proposedby Majda, Timofeyev and Vanden-Eijnden, is based on an asymptoticstrategy developed by Kurtz. The second method is a short-memoryapproximation of the Mori-Zwanzig projection formalism of irreversiblestatistical mechanics, as proposed by Chorin, Hald and Kupferman. Wepresent conditions under which the reduced models arisingmore » from the twomethods should have similar predictive ability. We apply the two methodsto test cases that satisfy these conditions. The form of the reducedmodels and the numerical simulations show that the two methods havesimilar predictive ability as expected.« less

  18. Three-dimensional Numerical Simulations of Rayleigh-Taylor Unstable Flames in Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Zingale, M.; Woosley, S. E.; Rendleman, C. A.; Day, M. S.; Bell, J. B.

    2005-10-01

    Flame instabilities play a dominant role in accelerating the burning front to a large fraction of the speed of sound in a Type Ia supernova. We present a three-dimensional numerical simulation of a Rayleigh-Taylor unstable carbon flame, following its evolution through the transition to turbulence. A low-Mach number hydrodynamics method is used, freeing us from the harsh time step restrictions imposed by sound waves. We fully resolve the thermal structure of the flame and its reaction zone, eliminating the need for a flame model. A single density is considered, 1.5×107 g cm-3, and half-carbon, half-oxygen fuel: conditions under which the flame propagated in the flamelet regime in our related two-dimensional study. We compare to a corresponding two-dimensional simulation and show that while fire polishing keeps the small features suppressed in two dimensions, turbulence wrinkles the flame on far smaller scales in the three-dimensional case, suggesting that the transition to the distributed burning regime occurs at higher densities in three dimensions. Detailed turbulence diagnostics are provided. We show that the turbulence follows a Kolmogorov spectrum and is highly anisotropic on the large scales, with a much larger integral scale in the direction of gravity. Furthermore, we demonstrate that it becomes more isotropic as it cascades down to small scales. On the basis of the turbulent statistics and the flame properties of our simulation, we compute the Gibson scale. We show the progress of the turbulent flame through a classic combustion regime diagram, indicating that the flame just enters the distributed burning regime near the end of our simulation.

  19. Ultrafast energy- and momentum-resolved dynamics of magnetic correlations in the photo-doped Mott insulator Sr 2IrO 4

    DOE PAGES

    Dean, M. P. M.; Cao, Y.; Liu, X.; ...

    2016-05-09

    Measuring how the magnetic correlations evolve in doped Mott insulators has greatly improved our understanding of the pseudogap, non-Fermi liquids and high-temperature superconductivity 1, 2, 3, 4. Recently, photo-excitation has been used to induce similarly exotic states transiently 5, 6, 7. However, the lack of available probes of magnetic correlations in the time domain hinders our understanding of these photo-induced states and how they could be controlled. Here, we implement magnetic resonant inelastic X-ray scattering at a free-electron laser to directly determine the magnetic dynamics after photo-doping the Mott insulator Sr 2IrO 4. We find that the non-equilibrium state, 2more » ps after the excitation, exhibits strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. These two-dimensional (2D) in-plane Néel correlations recover within a few picoseconds, whereas the three-dimensional (3D) long-range magnetic order restores on a fluence-dependent timescale of a few hundred picoseconds. In conclusion, the marked difference in these two timescales implies that the dimensionality of magnetic correlations is vital for our understanding of ultrafast magnetic dynamics.« less

  20. Two-dimensional profiling of carriers in terahertz quantum cascade lasers using calibrated scanning spreading resistance microscopy and scanning capacitance microscopy.

    PubMed

    Dhar, R S; Ban, D

    2013-07-01

    The distribution of charge carriers inside the active region of a terahertz (THz) quantum cascade laser (QCL) has been measured with scanning spreading resistance microscopy (SSRM) and scanning capacitance microscopy (SCM). Individual quantum well-barrier modules with a 35.7-nm single module thickness in the active region of the device have been resolved for the first time using high-resolution SSRM and SCM techniques at room temperature. SSRM and SCM measurements on the quantum well-barrier structure were calibrated utilizing known GaAs dopant staircase samples. Doping concentrations derived from SSRM and SCM measurements were found to be in quantitative agreement with the designed average doping values of the n-type active region in the terahertz quantum cascade laser. The secondary ion mass spectroscopy provides a partial picture of internal device parameters, and we have demonstrated with our results the efficacy of uniting calibrated SSRM and SCM to delineate quantitatively the transverse cross-sectional structure of complex two-dimensional terahertz quantum cascade laser devices. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  1. Mechanism for Broadband White-Light Emission from Two-Dimensional (110) Hybrid Perovskites.

    PubMed

    Hu, Te; Smith, Matthew D; Dohner, Emma R; Sher, Meng-Ju; Wu, Xiaoxi; Trinh, M Tuan; Fisher, Alan; Corbett, Jeff; Zhu, X-Y; Karunadasa, Hemamala I; Lindenberg, Aaron M

    2016-06-16

    The recently discovered phenomenon of broadband white-light emission at room temperature in the (110) two-dimensional organic-inorganic perovskite (N-MEDA)[PbBr4] (N-MEDA = N(1)-methylethane-1,2-diammonium) is promising for applications in solid-state lighting. However, the spectral broadening mechanism and, in particular, the processes and dynamics associated with the emissive species are still unclear. Herein, we apply a suite of ultrafast spectroscopic probes to measure the primary events directly following photoexcitation, which allows us to resolve the evolution of light-induced emissive states associated with white-light emission at femtosecond resolution. Terahertz spectra show fast free carrier trapping and transient absorption spectra show the formation of self-trapped excitons on femtosecond time-scales. Emission-wavelength-dependent dynamics of the self-trapped exciton luminescence are observed, indicative of an energy distribution of photogenerated emissive states in the perovskite. Our results are consistent with photogenerated carriers self-trapped in a deformable lattice due to strong electron-phonon coupling, where permanent lattice defects and correlated self-trapped states lend further inhomogeneity to the excited-state potential energy surface.

  2. A One-Pot/Single-Analysis Approach to Substrate Scope Investigations Using Comprehensive Two-Dimensional Gas Chromatography (GC×GC).

    PubMed

    O'Neil, Gregory W; Nelson, Robert K; Wright, Alicia M; Reddy, Christopher M

    2016-05-06

    A representative substrate scope investigation for an enantioselective catalytic ketone-reduction has been performed as a single reaction on a mixture containing equimolar amounts of nine (9) prototypical compounds. The resulting analyte pool containing 18 potential products from nine different reactions could all be completely resolved in a single chromatographic injection using comprehensive two-dimensional gas chromatography (GC×GC) with time-of-flight mass spectrometry, allowing for simultaneous determination of percent conversion and enantiomeric excess for each substrate. The results obtained for an enantioselective iron-catalyzed asymmetric transfer hydrogenation using this one-pot/single-analysis approach were similar to those reported for the individualized reactions, demonstrating the utility of this strategy for streamlining substrate scope investigations. Moreover, for this particular catalyst, activity and selectivity were not greatly affected by the presence of other ketones or enantioenriched reduced products. This approach allows for faster and greener analyses that are central to new reaction development, as well as an opportunity to gain further insights into other established transformations.

  3. O(2) Hopf bifurcation of viscous shock waves in a channel

    NASA Astrophysics Data System (ADS)

    Pogan, Alin; Yao, Jinghua; Zumbrun, Kevin

    2015-07-01

    Extending work of Texier and Zumbrun in the semilinear non-reflection symmetric case, we study O(2) transverse Hopf bifurcation, or "cellular instability", of viscous shock waves in a channel, for a class of quasilinear hyperbolic-parabolic systems including the equations of thermoviscoelasticity. The main difficulties are to (i) obtain Fréchet differentiability of the time- T solution operator by appropriate hyperbolic-parabolic energy estimates, and (ii) handle O(2) symmetry in the absence of either center manifold reduction (due to lack of spectral gap) or (due to nonstandard quasilinear hyperbolic-parabolic form) the requisite framework for treatment by spatial dynamics on the space of time-periodic functions, the two standard treatments for this problem. The latter issue is resolved by Lyapunov-Schmidt reduction of the time- T map, yielding a four-dimensional problem with O(2) plus approximate S1 symmetry, which we treat "by hand" using direct Implicit Function Theorem arguments. The former is treated by balancing information obtained in Lagrangian coordinates with that from associated constraints. Interestingly, this argument does not apply to gas dynamics or magnetohydrodynamics (MHD), due to the infinite-dimensional family of Lagrangian symmetries corresponding to invariance under arbitrary volume-preserving diffeomorphisms.

  4. Pilot Assessment of Brain Metabolism in Perinatally HIV-Infected Youths Using Accelerated 5D Echo Planar J-Resolved Spectroscopic Imaging.

    PubMed

    Iqbal, Zohaib; Wilson, Neil E; Keller, Margaret A; Michalik, David E; Church, Joseph A; Nielsen-Saines, Karin; Deville, Jaime; Souza, Raissa; Brecht, Mary-Lynn; Thomas, M Albert

    2016-01-01

    To measure cerebral metabolite levels in perinatally HIV-infected youths and healthy controls using the accelerated five dimensional (5D) echo planar J-resolved spectroscopic imaging (EP-JRESI) sequence, which is capable of obtaining two dimensional (2D) J-resolved spectra from three spatial dimensions (3D). After acquisition and reconstruction of the 5D EP-JRESI data, T1-weighted MRIs were used to classify brain regions of interest for HIV patients and healthy controls: right frontal white (FW), medial frontal gray (FG), right basal ganglia (BG), right occipital white (OW), and medial occipital gray (OG). From these locations, respective J-resolved and TE-averaged spectra were extracted and fit using two different quantitation methods. The J-resolved spectra were fit using prior knowledge fitting (ProFit) while the TE-averaged spectra were fit using the advanced method for accurate robust and efficient spectral fitting (AMARES). Quantitation of the 5D EP-JRESI data using the ProFit algorithm yielded significant metabolic differences in two spatial locations of the perinatally HIV-infected youths compared to controls: elevated NAA/(Cr+Ch) in the FW and elevated Asp/(Cr+Ch) in the BG. Using the TE-averaged data quantified by AMARES, an increase of Glu/(Cr+Ch) was shown in the FW region. A strong negative correlation (r < -0.6) was shown between tCh/(Cr+Ch) quantified using ProFit in the FW and CD4 counts. Also, strong positive correlations (r > 0.6) were shown between Asp/(Cr+Ch) and CD4 counts in the FG and BG. The complimentary results using ProFit fitting of J-resolved spectra and AMARES fitting of TE-averaged spectra, which are a subset of the 5D EP-JRESI acquisition, demonstrate an abnormal energy metabolism in the brains of perinatally HIV-infected youths. This may be a result of the HIV pathology and long-term combinational anti-retroviral therapy (cART). Further studies of larger perinatally HIV-infected cohorts are necessary to confirm these findings.

  5. Dynamic stall reattachment revisited

    NASA Astrophysics Data System (ADS)

    Mulleners, Karen

    2017-11-01

    Dynamic stall on pitching airfoils is an important practical problem that affects for example rotary wing aircraft and wind turbines. It also comprises a number of interesting fundamental fluid dynamical phenomena such as unsteady flow separation, vortex formation and shedding, unsteady flow reattachment, and dynamic hysteresis. Following up on past efforts focussing on the separation development, we now revisited the flow reattachment or stall recovery process. Experimental time-resolved velocity field and surface pressure data for a two-dimensional sinusoidally pitching airfoil with various reduced frequencies was analysed using different Eulerian, Lagrangian, and modal decomposition methods. This complementary analysis resulted in the identification of the chain of events that play a role in the flow reattachment process, a detailed description of that role, and characterisation of the individual events by the governing time-scales and flow features.

  6. Detailed analysis and group-type separation of natural fats and oils using comprehensive two-dimensional gas chromatography.

    PubMed

    Mondello, Luigi; Casilli, Alessandro; Tranchida, Peter Quinto; Dugo, Paola; Dugo, Giovanni

    2003-11-26

    Comprehensive gas chromatography (GC x GC) is an adequate methodology for the separation and identification of very complex samples. It is based on the coupling of two capillary columns that each give a different but substantial contribution to the unprecedented resolving power of this technique. The 2D space chromatograms that derive from GC x GC analysis have great potential for identification. This is due to the fact that the contour plot positions, pinpointed by two retention time coordinates, give characteristic patterns for specific families of compounds that can be mathematically translated. This investigation concerned the application of this principle to fatty acid methyl esters that were grouped on an equal double bond number basis. The ester samples were derived from various lipids and all underwent bidimensional analysis on two sets of columns. Peak attribution was supported by mass spectra, linear retention indices and information reported in the literature.

  7. The power of in situ pulsed laser deposition synchrotron characterization for the detection of domain formation during growth of Ba0.5Sr0.5TiO3 on MgO.

    PubMed

    Bauer, Sondes; Lazarev, Sergey; Molinari, Alan; Breitenstein, Andreas; Leufke, Philipp; Kruk, Robert; Hahn, Horst; Baumbach, Tilo

    2014-03-01

    A highly sophisticated pulsed laser deposition (PLD) chamber has recently been installed at the NANO beamline at the synchrotron facility ANKA (Karlsruhe, Germany), which allows for comprehensive studies on the PLD growth process of dielectric, ferroelectric and ferromagnetic thin films in epitaxial oxide heterostructures or even multilayer systems by combining in situ reflective high-energy diffraction with the in situ synchrotron high-resolution X-ray diffraction and surface diffraction methods. The modularity of the in situ PLD chamber offers the opportunity to explore the microstructure of the grown thin films as a function of the substrate temperature, gas pressure, laser fluence and target-substrate separation distance. Ba0.5Sr0.5TiO3 grown on MgO represents the first system that is grown in this in situ PLD chamber and studied by in situ X-ray reflectivity, in situ two-dimensional reciprocal space mapping of symmetric X-ray diffraction and acquisition of time-resolved diffraction profiles during the ablation process. In situ PLD synchrotron investigation has revealed the occurrence of structural distortion as well as domain formation and misfit dislocation which all depend strongly on the film thickness. The microstructure transformation has been accurately detected with a time resolution of 1 s. The acquisition of two-dimensional reciprocal space maps during the PLD growth has the advantage of simultaneously monitoring the changes of the crystalline structure as well as the formation of defects. The stability of the morphology during the PLD growth is demonstrated to be remarkably affected by the film thickness. A critical thickness for the domain formation in Ba0.5Sr0.5TiO3 grown on MgO could be determined from the acquisition of time-resolved diffraction profiles during the PLD growth. A splitting of the diffraction peak into two distinguishable peaks has revealed a morphology change due to modification of the internal strain during growth.

  8. The Challenge of Learning Physics Before Mathematics: A Case Study of Curriculum Change in Taiwan

    NASA Astrophysics Data System (ADS)

    Chiu, Mei-Shiu

    2016-12-01

    The aim of this study was to identify challenges in implementing a physics-before- 10 mathematics curriculum. Obviously, students need to learn necessary mathematics skills in order to develop advanced physics knowledge. In the 2010 high school curriculum in Taiwan, however, grade 11 science students study two-dimensional motion in physics without prior learning experiences of trigonometry in mathematics. The perspectives of three curriculum developers, 22 mathematics and physics teachers, two principals, and 45 science students were obtained by interview. The results of qualitative data analysis revealed six challenges and suggested likely solutions. The national level includes political and social challenges, resolved by respecting teachers as professionals; the teacher level includes knowledge and teaching challenges, resolved by increasing teacher trans-literal capacities; and the student level includes learning and justice challenges, resolved by focusing on students' diverse developments in cross-domain learning.

  9. Direct simulation Monte Carlo investigation of the Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallis, M. A.; Koehler, T. P.; Torczynski, J. R.

    In this paper, the Rayleigh-Taylor instability (RTI) is investigated using the direct simulation Monte Carlo (DSMC) method of molecular gas dynamics. Here, fully resolved two-dimensional DSMC RTI simulations are performed to quantify the growth of flat and single-mode perturbed interfaces between two atmospheric-pressure monatomic gases as a function of the Atwood number and the gravitational acceleration. The DSMC simulations reproduce many qualitative features of the growth of the mixing layer and are in reasonable quantitative agreement with theoretical and empirical models in the linear, nonlinear, and self-similar regimes. In some of the simulations at late times, the instability enters themore » self-similar regime, in agreement with experimental observations. Finally, for the conditions simulated, diffusion can influence the initial instability growth significantly.« less

  10. Direct simulation Monte Carlo investigation of the Rayleigh-Taylor instability

    DOE PAGES

    Gallis, M. A.; Koehler, T. P.; Torczynski, J. R.; ...

    2016-08-31

    In this paper, the Rayleigh-Taylor instability (RTI) is investigated using the direct simulation Monte Carlo (DSMC) method of molecular gas dynamics. Here, fully resolved two-dimensional DSMC RTI simulations are performed to quantify the growth of flat and single-mode perturbed interfaces between two atmospheric-pressure monatomic gases as a function of the Atwood number and the gravitational acceleration. The DSMC simulations reproduce many qualitative features of the growth of the mixing layer and are in reasonable quantitative agreement with theoretical and empirical models in the linear, nonlinear, and self-similar regimes. In some of the simulations at late times, the instability enters themore » self-similar regime, in agreement with experimental observations. Finally, for the conditions simulated, diffusion can influence the initial instability growth significantly.« less

  11. Probing temperature-driven flow lines in a gated two-dimensional electron gas with tunable spin-splitting.

    PubMed

    Wang, Yi-Ting; Kim, Gil-Ho; Huang, C F; Lo, Shun-Tsung; Chen, Wei-Jen; Nicholls, J T; Lin, Li-Hung; Ritchie, D A; Chang, Y H; Liang, C-T; Dolan, B P

    2012-10-10

    We study the temperature flow of conductivities in a gated GaAs two-dimensional electron gas (2DEG) containing self-assembled InAs dots and compare the results with recent theoretical predictions. By changing the gate voltage, we are able to tune the 2DEG density and thus vary disorder and spin-splitting. Data for both the spin-resolved and spin-degenerate phase transitions are presented, the former collapsing to the latter with decreasing gate voltage and/or decreasing spin-splitting. The experimental results support a recent theory, based on modular symmetry, which predicts how the critical Hall conductivity varies with spin-splitting.

  12. A generalized orthogonal coordinate system for describing families of axisymmetric and two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Gnoffo, P. A.

    1977-01-01

    A generalized curvilinear orthogonal coordinate system is presented which can be used for approximating various axisymmetric and two-dimensional body shapes of interest to aerodynamicists. Such body shapes include spheres, ellipses, spherically capped cones, flat-faced cylinders with rounded corners, circular disks, and planetary probe vehicles. A set of transformation equations is also developed whereby a uniform velocity field approaching a body at any angle of attack can be resolved in the transformed coordinate system. The Navier-Stokes equations are written in terms of a generalized orthogonal coordinate system to show the resultant complexity of the governing equations.

  13. Absence of giant spin splitting in the two-dimensional electron liquid at the surface of SrTiO3 (001)

    NASA Astrophysics Data System (ADS)

    McKeown Walker, S.; Riccò, S.; Bruno, F. Y.; de la Torre, A.; Tamai, A.; Golias, E.; Varykhalov, A.; Marchenko, D.; Hoesch, M.; Bahramy, M. S.; King, P. D. C.; Sánchez-Barriga, J.; Baumberger, F.

    2016-06-01

    We reinvestigate the putative giant spin splitting at the surface of SrTiO3 reported by Santander-Syro et al. [Nat. Mater. 13, 1085 (2014), 10.1038/nmat4107]. Our spin- and angle-resolved photoemission experiments on fractured (001) oriented surfaces supporting a two-dimensional electron liquid with high carrier density show no detectable spin polarization in the photocurrent. We demonstrate that this result excludes a giant spin splitting while it is consistent with the unconventional Rashba-like splitting seen in band structure calculations that reproduce the experimentally observed ladder of quantum confined subbands.

  14. Optical Diagnostic System For Observation Of Laser-Produced Shock Waves

    NASA Astrophysics Data System (ADS)

    Wilke, Mark D.; Stone, Sidney N.

    1980-11-01

    Several standard plasma and gas dynamic diagnostic techniques have been integrated into a system for observing the formation and propagation of high-power Nd:glass-laser generated one- and two-dimensional shockwaves in air from 0.1 torr to atmospheric pres-sures. Diagnostics include either single-frame, two-wavelength holographic ruby-laser interferometry or single-frame, single-wavelength interferometry with ten frames of shadow-graphy. Streaks or ten frames of the early luminous shocked region also are taken on all shots, as well as time-resolved luminosity measurements using high-speed biplanar vacuum photodiodes with various wavelength interference filters. Shadowgraphy frames are 200-ns long at 1-μs intervals, while emission frames are variable with a maximum 10-ns exposure and 50-ns interval. Both the streak mode and emission measurements with the vacuum diode allow subnanosecond time resolution. The interferometry provides 20-ns exposures from 500 ns to late times. Methods for reducing and interpreting the data have been, or are currently being, developed. Interactive computer programs for digitizing the fringe patterns provide fringe-shift profiles for Abel inversion. This has provided neutral gas and electron density information in the spherical, one-dimensional cases. Diagrams and photographs of the experiment will be shown as well as examples of the data that have been taken. Methods for data reduction will be outlined and some of the results shown.

  15. Noninterferometric Two-Dimensional Fourier-Transform Spectroscopy of Multilevel Systems

    NASA Astrophysics Data System (ADS)

    Davis, J. A.; Dao, L. V.; Do, M. T.; Hannaford, P.; Nugent, K. A.; Quiney, H. M.

    2008-06-01

    We demonstrate a technique that determines the phase of the photon-echo emission from spectrally resolved intensity data without requiring phase-stabilized input pulses. The full complex polarization of the emission is determined from spectral intensity measurements. The validity of this technique is demonstrated using simulated data, and is then applied to the analysis of two-color data obtained from the light-harvesting molecule lycopene.

  16. Sea Butterfly Swimming: Time-resolved Tomographic PIV measurements

    NASA Astrophysics Data System (ADS)

    Murphy, David; Zheng, Lingxiao; Mittal, Rajat; Webster, Donald; Yen, Jeannette

    2011-11-01

    The planktonic sea butterfly Limacina helicina swims by flapping its flexible, wing-like parapodia. The appendage stroke kinematics of this shell-bearing pteropod are three-dimensional and likely contain elements of both drag-based (rowing) and lift-based (flapping) propulsion. Unsteady lift-generating mechanisms such as clap-and-fling may also be present. Upstroke and downstroke motions both propel the animal upward and roll it forwards and backwards, resulting in a sawtooth trajectory. We present time-resolved, tomographic PIV measurements of flow generated by free-swimming pteropods (Limacina helicina) moving upwards with average swimming speeds of 5 - 17 mm/s. The pteropods beat their appendages with a stroke frequency of 4 - 5 Hz. With a size range of 1 - 2 mm, the animals filmed in this study operate in a viscous environment with a Reynolds number of 5 to 20. The volumetric flow measurements provide insight into the three dimensional nature of the flow and into the relative importance of drag- and lift-based propulsion at this low Reynolds number. Preliminary results from Navier-Stokes simulations of the flow associated with the swimming of this organism will also be presented.

  17. Magnetic Interactions at the Nanoscale in Trilayer Titanates

    NASA Astrophysics Data System (ADS)

    Cao, Yanwei; Yang, Zhenzhong; Kareev, M.; Liu, Xiaoran; Meyers, D.; Middey, S.; Choudhury, D.; Shafer, P.; Guo, Jiandong; Freeland, J. W.; Arenholz, E.; Gu, Lin; Chakhalian, J.

    2016-02-01

    We report on the phase diagram of competing magnetic interactions at the nanoscale in engineered ultrathin trilayer heterostructures of LaTiO3 /SrTiO3/YTiO3 , in which the interfacial inversion symmetry is explicitly broken. Combined atomic layer resolved scanning transmission electron microscopy with electron energy loss spectroscopy and electrical transport have confirmed the formation of a spatially separated two-dimensional electron liquid and high density two-dimensional localized magnetic moments at the LaTiO3 /SrTiO3 and SrTiO3 /YTiO3 interfaces, respectively. Resonant soft x-ray linear dichroism spectroscopy has demonstrated the presence of orbital polarization of the conductive LaTiO3 /SrTiO3 and localized SrTiO3 /YTiO3 electrons. Our results provide a route with prospects for exploring new magnetic interfaces, designing a tunable two-dimensional d -electron Kondo lattice, and potential spin Hall applications.

  18. A two-dimensional intensified photodiode array for imaging spectroscopy

    NASA Technical Reports Server (NTRS)

    Tennyson, P. D.; Dymond, K.; Moos, H. W.; Feldman, P. D.; Mackey, E. F.

    1986-01-01

    The Johns Hopkins University is currently developing an instrument to fly aboard NASA's Space Shuttle as a Spartan payload in the late 1980s. This Spartan free flyer will obtain spatially resolved spectra of faint extended emission line objects in the wavelength range 750-1150 A at about 2-A resolution. The use of two-dimensional photon counting detectors will give simultaneous coverage of the 400 A spectral range and the 9 arc-minute spatial resolution along the spectrometer slit. The progress towards the flight detector is reported here with preliminary results from a laboratory breadboard detector, and a comparison with the one-dimensional detector developed for the Hopkins Ultraviolet Telescope. A hardware digital centroiding algorithm has been successfully implemented. The system is ultimately capable of 15-micron resolution in two dimensions at the image plane and can handle continuous counting rates of up to 8000 counts/s.

  19. Precipitation Processes Developed During ARM (1997), TOGA COARE (1992) GATE (1974), SCSMEX (1998), and KWAJEX (1999): Consistent 3D, Semi-3D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Hou, A.; Atlas, R.; Starr, D.; Sud, Y.

    2003-01-01

    Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D) have been used to study the response of clouds to large-scale forcing. IN these 3D simulators, the model domain was small, and the integration time was 6 hours. Only recently have 3D experiments been performed for multi-day periods for tropical clouds systems with large horizontal domains at the National Center of Atmospheric Research (NCAR) and at NASA Goddard Space Center. At Goddard, a 3D cumulus Ensemble (GCE) model was used to simulate periods during TOGA COARE, GATE, SCSMEX, ARM, and KWAJEX using a 512 by 512 km domain (with 2-km resolution). The result indicate that surface precipitation and latent heating profiles are very similar between the 2D and 3D GCE model simulation. The major objective of this paper are: (1) to assess the performance of the super-parametrization technique, (2) calculate and examine the surface energy (especially radiation) and water budget, and (3) identify the differences and similarities in the organization and entrainment rates of convection between simulated 2D and 3D cloud systems.

  20. Precipitation processes developed during TOGA COARE (1992), GATE (1974), SCSMEX (1998), and KWAJEX (1999): 3D Cloud Resolving Model Simulation

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.

    2006-01-01

    Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D). A few 3D CRMs have been used to study the response of clouds to large-scale forcing. In these 3D simulations, the model domain was small, and the integration time was 6 hours. Only recently have 3D experiments been performed for multi-day periods for tropical cloud systems with large horizontal domains at the National Center for Atmospheric Research (NCAR), NOAA GFDL, the U.K. Met. Office, Colorado State University and NASA Goddard Space Flight Center. An improved 3D Goddard Cumulus Ensemble (GCE) model was recently used to simulate periods during TOGA COARE (December 19-27, 1992), GATE (september 1-7, 1974), SCSMEX (May 18-26, June 2-11, 1998) and KWAJEX (August 7-13, August 18-21, and August 29-September 12, 1999) using a 512 by 512 km domain and 41 vertical layers. The major objectives of this paper are: (1) to identify the differences and similarities in the simulated precipitation processes and their associated surface and water energy budgets in TOGA COARE, GATE, KWAJEX, and SCSMEX, and (2) to asses the impact of microphysics, radiation budget and surface fluxes on the organization of convection in tropics.

  1. Critical Intermediate Structure That Directs the Crystalline Texture and Surface Morphology of Organo-Lead Trihalide Perovskite.

    PubMed

    Chia, Hao-Chung; Sheu, Hwo-Shuenn; Hsiao, Yu-Yun; Li, Shao-Sian; Lan, Yi-Kang; Lin, Chung-Yao; Chang, Je-Wei; Kuo, Yen-Chien; Chen, Chia-Hao; Weng, Shih-Chang; Su, Chun-Jen; Su, An-Chung; Chen, Chun-Wei; Jeng, U-Ser

    2017-10-25

    We have identified an often observed yet unresolved intermediate structure in a popular processing with dimethylformamide solutions of lead chloride and methylammonium iodide for perovskite solar cells. With subsecond time-resolved grazing-incidence X-ray scattering and X-ray photoemission spectroscopy, supplemental with ab initio calculation, the resolved intermediate structure (CH 3 NH 3 ) 2 PbI 2 Cl 2 ·CH 3 NH 3 I features two-dimensional (2D) perovskite bilayers of zigzagged lead-halide octahedra and sandwiched CH 3 NH 3 I layers. Such intermediate structure reveals a hidden correlation between the intermediate phase and the composition of the processing solution. Most importantly, the 2D perovskite lattice of the intermediate phase is largely crystallographically aligned with the [110] planes of the three-dimensional perovskite cubic phase; consequently, with sublimation of Cl ions from the organo-lead octahedral terminal corners in prolonged annealing, the zigzagged octahedral layers of the intermediate phase can merge with the intercalated methylammonium iodide layers for templated growth of perovskite crystals. Regulated by annealing temperature and the activation energies of the intermediate and perovskite, deduced from analysis of temperature-dependent structural kinetics, the intermediate phase is found to selectively mature first and then melt along the layering direction for epitaxial conversion into perovskite crystals. The unveiled epitaxial conversion under growth kinetics controls might be general for solution-processed and intermediate-templated perovskite formation.

  2. Single-Photon Detectors for Time-of-Flight Range Imaging

    NASA Astrophysics Data System (ADS)

    Stoppa, David; Simoni, Andrea

    We live in a three-dimensional (3D) world and thanks to the stereoscopic vision provided by our two eyes, in combination with the powerful neural network of the brain we are able to perceive the distance of the objects. Nevertheless, despite the huge market volume of digital cameras, solid-state image sensors can capture only a two-dimensional (2D) projection, of the scene under observation, losing a variable of paramount importance, i.e., the scene depth. On the contrary, 3D vision tools could offer amazing possibilities of improvement in many areas thanks to the increased accuracy and reliability of the models representing the environment. Among the great variety of distance measuring techniques and detection systems available, this chapter will treat only the emerging niche of solid-state, scannerless systems based on the TOF principle and using a detector SPAD-based pixels. The chapter is organized into three main parts. At first, TOF systems and measuring techniques will be described. In the second part, most meaningful sensor architectures for scannerless TOF distance measurements will be analyzed, focusing onto the circuital building blocks required by time-resolved image sensors. Finally, a performance summary is provided and a perspective view for the near future developments of SPAD-TOF sensors is given.

  3. Two-dimensional CFD modeling of wave rotor flow dynamics

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; Chima, Rodrick V.

    1994-01-01

    A two-dimensional Navier-Stokes solver developed for detailed study of wave rotor flow dynamics is described. The CFD model is helping characterize important loss mechanisms within the wave rotor. The wave rotor stationary ports and the moving rotor passages are resolved on multiple computational grid blocks. The finite-volume form of the thin-layer Navier-Stokes equations with laminar viscosity are integrated in time using a four-stage Runge-Kutta scheme. Roe's approximate Riemann solution scheme or the computationally less expensive advection upstream splitting method (AUSM) flux-splitting scheme is used to effect upwind-differencing of the inviscid flux terms, using cell interface primitive variables set by MUSCL-type interpolation. The diffusion terms are central-differenced. The solver is validated using a steady shock/laminar boundary layer interaction problem and an unsteady, inviscid wave rotor passage gradual opening problem. A model inlet port/passage charging problem is simulated and key features of the unsteady wave rotor flow field are identified. Lastly, the medium pressure inlet port and high pressure outlet port portion of the NASA Lewis Research Center experimental divider cycle is simulated and computed results are compared with experimental measurements. The model accurately predicts the wave timing within the rotor passages and the distribution of flow variables in the stationary inlet port region.

  4. Two-dimensional CFD modeling of wave rotor flow dynamics

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; Chima, Rodrick V.

    1993-01-01

    A two-dimensional Navier-Stokes solver developed for detailed study of wave rotor flow dynamics is described. The CFD model is helping characterize important loss mechanisms within the wave rotor. The wave rotor stationary ports and the moving rotor passages are resolved on multiple computational grid blocks. The finite-volume form of the thin-layer Navier-Stokes equations with laminar viscosity are integrated in time using a four-stage Runge-Kutta scheme. The Roe approximate Riemann solution scheme or the computationally less expensive Advection Upstream Splitting Method (AUSM) flux-splitting scheme are used to effect upwind-differencing of the inviscid flux terms, using cell interface primitive variables set by MUSCL-type interpolation. The diffusion terms are central-differenced. The solver is validated using a steady shock/laminar boundary layer interaction problem and an unsteady, inviscid wave rotor passage gradual opening problem. A model inlet port/passage charging problem is simulated and key features of the unsteady wave rotor flow field are identified. Lastly, the medium pressure inlet port and high pressure outlet port portion of the NASA Lewis Research Center experimental divider cycle is simulated and computed results are compared with experimental measurements. The model accurately predicts the wave timing within the rotor passage and the distribution of flow variables in the stationary inlet port region.

  5. A Highly Resolved Large-Eddy Simulation of a Wind Turbine using an Actuator Line Model with Optimal Body Force Projection

    DOE PAGES

    Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles

    2016-10-03

    When representing the blade aerodynamics with rotating actuator lines, the computed forces have to be projected back to the CFD flow field as a volumetric body force. That has been done in the past with a geometrically simple uniform three-dimensional Gaussian at each point along the blade. Here, we argue that the body force can be shaped in a way that better predicts the blade local flow field, the blade load distribution, and the formation of the tip/root vortices. In previous work, we have determined the optimal scales of circular and elliptical Gaussian kernels that best reproduce the local flowmore » field in two-dimensions. Lastly, in this work we extend the analysis and applications by considering the full three-dimensional blade to test our hypothesis in a highly resolved Large Eddy Simulation.« less

  6. A Highly Resolved Large-Eddy Simulation of a Wind Turbine using an Actuator Line Model with Optimal Body Force Projection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles

    When representing the blade aerodynamics with rotating actuator lines, the computed forces have to be projected back to the CFD flow field as a volumetric body force. That has been done in the past with a geometrically simple uniform three-dimensional Gaussian at each point along the blade. Here, we argue that the body force can be shaped in a way that better predicts the blade local flow field, the blade load distribution, and the formation of the tip/root vortices. In previous work, we have determined the optimal scales of circular and elliptical Gaussian kernels that best reproduce the local flowmore » field in two-dimensions. Lastly, in this work we extend the analysis and applications by considering the full three-dimensional blade to test our hypothesis in a highly resolved Large Eddy Simulation.« less

  7. Study of Near-Surface Models in Large-Eddy Simulations of a Neutrally Stratified Atmospheric Boundary Layer

    NASA Technical Reports Server (NTRS)

    Senocak, I.; Ackerman, A. S.; Kirkpatrick, M. P.; Stevens, D. E.; Mansour, N. N.

    2004-01-01

    Large-eddy simulation (LES) is a widely used technique in armospheric modeling research. In LES, large, unsteady, three dimensional structures are resolved and small structures that are not resolved on the computational grid are modeled. A filtering operation is applied to distinguish between resolved and unresolved scales. We present two near-surface models that have found use in atmospheric modeling. We also suggest a simpler eddy viscosity model that adopts Prandtl's mixing length model (Prandtl 1925) in the vicinity of the surface and blends with the dynamic Smagotinsky model (Germano et al, 1991) away from the surface. We evaluate the performance of these surface models by simulating a neutraly stratified atmospheric boundary layer.

  8. Four-dimensional (4D) tracking of high-temperature microparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhehui, E-mail: zwang@lanl.gov; Liu, Q.; Waganaar, W.

    High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. Velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.

  9. Four-dimensional (4D) tracking of high-temperature microparticles

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Liu, Q.; Waganaar, W.; Fontanese, J.; James, D.; Munsat, T.

    2016-11-01

    High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. Velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.

  10. Four-dimensional (4D) tracking of high-temperature microparticles

    DOE PAGES

    Wang, Zhehui; Liu, Qiuguang; Waganaar, Bill; ...

    2016-07-08

    High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. As a result, velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.

  11. Four-dimensional (4D) tracking of high-temperature microparticles.

    PubMed

    Wang, Zhehui; Liu, Q; Waganaar, W; Fontanese, J; James, D; Munsat, T

    2016-11-01

    High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. Velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.

  12. Accelerated simulation of stochastic particle removal processes in particle-resolved aerosol models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, J.H.; Michelotti, M.D.; Riemer, N.

    2016-10-01

    Stochastic particle-resolved methods have proven useful for simulating multi-dimensional systems such as composition-resolved aerosol size distributions. While particle-resolved methods have substantial benefits for highly detailed simulations, these techniques suffer from high computational cost, motivating efforts to improve their algorithmic efficiency. Here we formulate an algorithm for accelerating particle removal processes by aggregating particles of similar size into bins. We present the Binned Algorithm for particle removal processes and analyze its performance with application to the atmospherically relevant process of aerosol dry deposition. We show that the Binned Algorithm can dramatically improve the efficiency of particle removals, particularly for low removalmore » rates, and that computational cost is reduced without introducing additional error. In simulations of aerosol particle removal by dry deposition in atmospherically relevant conditions, we demonstrate about 50-times increase in algorithm efficiency.« less

  13. A model reduction approach to numerical inversion for a parabolic partial differential equation

    NASA Astrophysics Data System (ADS)

    Borcea, Liliana; Druskin, Vladimir; Mamonov, Alexander V.; Zaslavsky, Mikhail

    2014-12-01

    We propose a novel numerical inversion algorithm for the coefficients of parabolic partial differential equations, based on model reduction. The study is motivated by the application of controlled source electromagnetic exploration, where the unknown is the subsurface electrical resistivity and the data are time resolved surface measurements of the magnetic field. The algorithm presented in this paper considers inversion in one and two dimensions. The reduced model is obtained with rational interpolation in the frequency (Laplace) domain and a rational Krylov subspace projection method. It amounts to a nonlinear mapping from the function space of the unknown resistivity to the small dimensional space of the parameters of the reduced model. We use this mapping as a nonlinear preconditioner for the Gauss-Newton iterative solution of the inverse problem. The advantage of the inversion algorithm is twofold. First, the nonlinear preconditioner resolves most of the nonlinearity of the problem. Thus the iterations are less likely to get stuck in local minima and the convergence is fast. Second, the inversion is computationally efficient because it avoids repeated accurate simulations of the time-domain response. We study the stability of the inversion algorithm for various rational Krylov subspaces, and assess its performance with numerical experiments.

  14. Contrast-enhanced time-resolved 4D MRA of congenital heart and vessel anomalies: image quality and diagnostic value compared with 3D MRA.

    PubMed

    Vogt, Florian M; Theysohn, Jens M; Michna, Dariusz; Hunold, Peter; Neudorf, Ulrich; Kinner, Sonja; Barkhausen, Jörg; Quick, Harald H

    2013-09-01

    To evaluate time-resolved interleaved stochastic trajectories (TWIST) contrast-enhanced 4D magnetic resonance angiography (MRA) and compare it with 3D FLASH MRA in patients with congenital heart and vessel anomalies. Twenty-six patients with congenital heart and vessel anomalies underwent contrast-enhanced MRA with both 3D FLASH and 4D TWIST MRA. Images were subjectively evaluated regarding total image quality, artefacts, diagnostic value and added diagnostic value of 4D dynamic imaging. Quantitative comparison included signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and vessel sharpness measurements. Three-dimensional FLASH MRA was judged to be significantly better in terms of image quality (4.0 ± 0.6 vs 3.4 ± 0.6, P < 0.05) and artefacts (3.8 ± 0.4 vs 3.3 ± 0.5, P < 0.05); no difference in diagnostic value was found (4.2 ± 0.4 vs 4.0 ± 0.4); important additional functional information was found in 21/26 patients. SNR and CNR were higher in the pulmonary trunk in 4D TWIST, but slightly higher in the systemic arteries in 3D FLASH. No difference in vessel sharpness delineation was found. Although image quality was inferior compared with 3D FLASH MRA, 4D TWIST MRA yields robust images and added diagnostic value through dynamic acquisition was found. Thus, 4D TWIST MRA is an attractive alternative to 3D FLASH MRA. • New magnetic resonance angiography (MRA) techniques are increasingly introduced for congenital cardiovascular problems. • Time-resolved angiography with interleaved stochastic trajectories (TWIST) is an example. • Four-dimensional TWIST MRA provided inferior image quality compared to 3D FLASH MRA but without significant difference in vessel sharpness. • Four-dimensional TWIST MRA gave added diagnostic value.

  15. Structural phase transitions and time-resolved dynamics of solid-supported interfacial methanol observed by reflection electron diffraction

    NASA Astrophysics Data System (ADS)

    Yang, Ding-Shyue; He, Xing; Wu, Chengyi

    Due to their large scattering cross sections with matter, electrons are suitable for contactless probing of solid-supported surface assemblies, especially in a reflection geometry. Direct visualization of assembly structures through electron diffraction further enables studies of ultrafast structural dynamics through the pump-probe scheme as well as discoveries of hidden phase changes in equilibrium that have been obscure in spectroscopic measurements. In this presentation, we report our first observation of unique two-stage transformations of interfacial methanol on smooth hydrophobic surfaces. The finding may reconcile the inconsistent previous reports of the crystallization temperature using various indirect methods. Dynamically, energy transfer across a solid-molecule interface following photoexcitation of the substrate is found to be highly dependent on the structure of interfacial methanol. If it is only 2-dimensionally ordered, as the film thickness increases, a prolonged time in the decrease of diffraction intensity is seen, signifying an inefficient vibrational coupling in the surface normal direction. Implications of the dynamics results and an outlook of interfacial studies using time-resolved and averaged electron diffraction will be discussed. We gratefully acknowledge the support from the R. A. Welch Foundation (Grant No. E-1860), the Donors of the American Chemical Society Petroleum Research Fund (ACS-PRF), and the University of Houston.

  16. Characterizing individual scattering events by measuring the amplitude and phase of the electric field diffusing through a random medium.

    PubMed

    Jian, Zhongping; Pearce, Jeremy; Mittleman, Daniel M

    2003-07-18

    We describe observations of the amplitude and phase of an electric field diffusing through a three-dimensional random medium, using terahertz time-domain spectroscopy. These measurements are spatially resolved with a resolution smaller than the speckle spot size and temporally resolved with a resolution better than one optical cycle. By computing correlation functions between fields measured at different positions and with different temporal delays, it is possible to obtain information about individual scattering events experienced by the diffusing field. This represents a new method for characterizing a multiply scattered wave.

  17. Dielectric response of branched copper phthalocyanine

    NASA Astrophysics Data System (ADS)

    Hamam, Khalil J.; Al-Amar, Mohammad M.; Mezei, Gellert; Guda, Ramakrishna; Burns, Clement A.

    2017-09-01

    The dielectric constant of pressed pellets and thin films of branched copper phthalocyanine (CuPc) was investigated as a function of frequency from 0.1 kHz to 1 MHz and temperature from 20 °C to 100 °C. Surface morphology was studied using a scanning electron microscope. The high-frequency values of the dielectric constant of pellets and thin films are ~3.5 and ~5.8, respectively. The response was only weakly dependent on frequency and temperature. The branched structure of the CuPc molecules helped to cancel out the effects of low-frequency polarization mechanisms. A planar delocalized charge system with two-dimensional localization was found using time-resolved photoluminescence measurements.

  18. Evaluation of different protein extraction methods for banana (Musa spp.) root proteome analysis by two-dimensional electrophoresis.

    PubMed

    Vaganan, M Mayil; Sarumathi, S; Nandakumar, A; Ravi, I; Mustaffa, M M

    2015-02-01

    Four protocols viz., the trichloroacetic acid-acetone (TCA), phenol-ammonium acetate (PAA), phenol/SDS-ammonium acetate (PSA) and trisbase-acetone (TBA) were evaluated with modifications for protein extraction from banana (Grand Naine) roots, considered as recalcitrant tissues for proteomic analysis. The two-dimensional electrophoresis (2-DE) separated proteins were compared based on protein yield, number of resolved proteins, sum of spot quantity, average spot intensity and proteins resolved in 4-7 pI range. The PAA protocol yielded more proteins (0.89 mg/g of tissues) and protein spots (584) in 2-DE gel than TCA and other protocols. Also, the PAA protocol was superior in terms of sum of total spot quantity and average spot intensity than TCA and other protocols, suggesting phenol as extractant and ammonium acetate as precipitant of proteins were the most suitable for banana rooteomics analysis by 2-DE. In addition, 1:3 ratios of root tissue to extraction buffer and overnight protein precipitation were most efficient to obtain maximum protein yield.

  19. Polarized two-photon photoselection in EGFP: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Masters, T. A.; Marsh, R. J.; Blacker, T. S.; Armoogum, D. A.; Larijani, B.; Bain, A. J.

    2018-04-01

    In this work, we present a complete theoretical description of the excited state order created by two-photon photoselection from an isotropic ground state; this encompasses both the conventionally measured quadrupolar (K = 2) and the "hidden" degree of hexadecapolar (K = 4) transition dipole alignment, their dependence on the two-photon transition tensor and emission transition dipole moment orientation. Linearly and circularly polarized two-photon absorption (TPA) and time-resolved single- and two-photon fluorescence anisotropy measurements are used to determine the structure of the transition tensor in the deprotonated form of enhanced green fluorescent protein. For excitation wavelengths between 800 nm and 900 nm, TPA is best described by a single element, almost completely diagonal, two-dimensional (planar) transition tensor whose principal axis is collinear to that of the single-photon S0 → S1 transition moment. These observations are in accordance with assignments of the near-infrared two-photon absorption band in fluorescent proteins to a vibronically enhanced S0 → S1 transition.

  20. Polarized two-photon photoselection in EGFP: Theory and experiment.

    PubMed

    Masters, T A; Marsh, R J; Blacker, T S; Armoogum, D A; Larijani, B; Bain, A J

    2018-04-07

    In this work, we present a complete theoretical description of the excited state order created by two-photon photoselection from an isotropic ground state; this encompasses both the conventionally measured quadrupolar (K = 2) and the "hidden" degree of hexadecapolar (K = 4) transition dipole alignment, their dependence on the two-photon transition tensor and emission transition dipole moment orientation. Linearly and circularly polarized two-photon absorption (TPA) and time-resolved single- and two-photon fluorescence anisotropy measurements are used to determine the structure of the transition tensor in the deprotonated form of enhanced green fluorescent protein. For excitation wavelengths between 800 nm and 900 nm, TPA is best described by a single element, almost completely diagonal, two-dimensional (planar) transition tensor whose principal axis is collinear to that of the single-photon S 0 → S 1 transition moment. These observations are in accordance with assignments of the near-infrared two-photon absorption band in fluorescent proteins to a vibronically enhanced S 0 → S 1 transition.

  1. Characterization of crude oil biomarkers using comprehensive two-dimensional gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Mogollón, Noroska Gabriela Salazar; Prata, Paloma Santana; Dos Reis, Jadson Zeni; Neto, Eugênio Vaz Dos Santos; Augusto, Fabio

    2016-09-01

    Oil samples from Recôncavo basin (NE Brazil), previously analyzed by traditional techniques such as gas chromatography coupled to tandem mass spectrometry, were evaluated using comprehensive two-dimensional gas chromatography coupled to quadrupole mass spectrometry and comprehensive two-dimensional gas chromatography coupled to tandem mass spectrometry along with simplified methods of samples preparation to evaluate the differences and advantages of these analytical techniques to better understand the development of the organic matter in this basin without altering the normal distribution of the compounds in the samples. As a result, the geochemical parameters calculated by comprehensive two-dimensional gas chromatography coupled to tandem mass spectrometry described better the origin, maturity, and biodegradation of both samples probably by increased selectivity, resolution, and sensitivity inherent of the multidimensional technique. Additionally, the detection of the compounds such as, the C(14α-) homo-26-nor-17α-hopane series, diamoretanes, nor-spergulanes, C19 -C26 A-nor-steranes and 4α-methylsteranes resolved and detected by comprehensive two-dimensional gas chromatography coupled to tandem mass spectrometry were key to classify and differentiate these lacustrine samples according to their maturity and deposition conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Differential Laser Doppler based Non-Contact Sensor for Dimensional Inspection with Error Propagation Evaluation

    PubMed Central

    Mekid, Samir; Vacharanukul, Ketsaya

    2006-01-01

    To achieve dynamic error compensation in CNC machine tools, a non-contact laser probe capable of dimensional measurement of a workpiece while it is being machined has been developed and presented in this paper. The measurements are automatically fed back to the machine controller for intelligent error compensations. Based on a well resolved laser Doppler technique and real time data acquisition, the probe delivers a very promising dimensional accuracy at few microns over a range of 100 mm. The developed optical measuring apparatus employs a differential laser Doppler arrangement allowing acquisition of information from the workpiece surface. In addition, the measurements are traceable to standards of frequency allowing higher precision.

  3. Four-Dimensional Respiratory Motion-Resolved Whole Heart Coronary MR Angiography

    PubMed Central

    Piccini, Davide; Feng, Li; Bonanno, Gabriele; Coppo, Simone; Yerly, Jérôme; Lim, Ruth P.; Schwitter, Juerg; Sodickson, Daniel K.; Otazo, Ricardo; Stuber, Matthias

    2016-01-01

    Purpose Free-breathing whole-heart coronary MR angiography (MRA) commonly uses navigators to gate respiratory motion, resulting in lengthy and unpredictable acquisition times. Conversely, self-navigation has 100% scan efficiency, but requires motion correction over a broad range of respiratory displacements, which may introduce image artifacts. We propose replacing navigators and self-navigation with a respiratory motion-resolved reconstruction approach. Methods Using a respiratory signal extracted directly from the imaging data, individual signal-readouts are binned according to their respiratory states. The resultant series of undersampled images are reconstructed using an extradimensional golden-angle radial sparse parallel imaging (XD-GRASP) algorithm, which exploits sparsity along the respiratory dimension. Whole-heart coronary MRA was performed in 11 volunteers and four patients with the proposed methodology. Image quality was compared with that obtained with one-dimensional respiratory self-navigation. Results Respiratory-resolved reconstruction effectively suppressed respiratory motion artifacts. The quality score for XD-GRASP reconstructions was greater than or equal to self-navigation in 80/88 coronary segments, reaching diagnostic quality in 61/88 segments versus 41/88. Coronary sharpness and length were always superior for the respiratory-resolved datasets, reaching statistical significance (P < 0.05) in most cases. Conclusion XD-GRASP represents an attractive alternative for handling respiratory motion in free-breathing whole heart MRI and provides an effective alternative to self-navigation. PMID:27052418

  4. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits

    NASA Astrophysics Data System (ADS)

    Sohn, Donggyu B.; Kim, Seunghwi; Bahl, Gaurav

    2018-02-01

    Achieving non-reciprocal light propagation via stimuli that break time-reversal symmetry, without magneto-optics, remains a major challenge for integrated nanophotonic devices. Recently, optomechanical microsystems in which light and vibrational modes are coupled through ponderomotive forces have demonstrated strong non-reciprocal effects through a variety of techniques, but always using optical pumping. None of these approaches has demonstrated bandwidth exceeding that of the mechanical system, and all of them require optical power; these are both fundamental and practical issues. Here, we resolve both challenges by breaking time-reversal symmetry using a two-dimensional acoustic pump that simultaneously provides a non-zero overlap integral for light-sound interaction and also satisfies the necessary phase-matching. We use this technique to produce a non-reciprocal modulator (a frequency shifting isolator) by means of indirect interband scattering. We demonstrate mode conversion asymmetry up to 15 dB and efficiency as high as 17% over a bandwidth exceeding 1 GHz.

  5. Stereo-photography of streamers in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nijdam, S.; Moerman, J. S.; Briels, T. M. P.

    2008-03-10

    Standard photographs of streamer discharges show a two-dimensional projection. Here, we present stereophotographic images that resolve their three-dimensional structure. We describe the stereoscopic setup and evaluation, and we present results for positive streamer discharges in air at 0.2-1 bar in a point-plane geometry with a gap distance of 14 cm and a voltage pulse of 47 kV. In this case, an approximately Gaussian distribution of branching angles of 43 deg. {+-}12 deg. is found; these angles do not significantly depend on the distance from the needle or on the gas pressure.

  6. Ejection mechanisms in the sublayer of a turbulent channel

    NASA Technical Reports Server (NTRS)

    Jimenez, Javier; Moin, P.; Moser, R.; Keefe, L.

    1988-01-01

    The structure of the vorticity field in the viscous wall layer of a turbulent channel is studied by examining the results of a fully resolved direct numerical simulation. It is shown that this region is dominated by intense three-dimensional shear layers in which the dominant vorticity component is spanwise. The advection and reproduction processes of these structures are examined and shown to be consistent with the classical generation mechanism for two-dimensional Tollmien-Schlichting waves. This process is fundamentally different from the usually accepted mechanism involving hairpin vortices.

  7. Random phase detection in multidimensional NMR.

    PubMed

    Maciejewski, Mark W; Fenwick, Matthew; Schuyler, Adam D; Stern, Alan S; Gorbatyuk, Vitaliy; Hoch, Jeffrey C

    2011-10-04

    Despite advances in resolution accompanying the development of high-field superconducting magnets, biomolecular applications of NMR require multiple dimensions in order to resolve individual resonances, and the achievable resolution is typically limited by practical constraints on measuring time. In addition to the need for measuring long evolution times to obtain high resolution, the need to distinguish the sign of the frequency constrains the ability to shorten measuring times. Sign discrimination is typically accomplished by sampling the signal with two different receiver phases or by selecting a reference frequency outside the range of frequencies spanned by the signal and then sampling at a higher rate. In the parametrically sampled (indirect) time dimensions of multidimensional NMR experiments, either method imposes an additional factor of 2 sampling burden for each dimension. We demonstrate that by using a single detector phase at each time sample point, but randomly altering the phase for different points, the sign ambiguity that attends fixed single-phase detection is resolved. Random phase detection enables a reduction in experiment time by a factor of 2 for each indirect dimension, amounting to a factor of 8 for a four-dimensional experiment, albeit at the cost of introducing sampling artifacts. Alternatively, for fixed measuring time, random phase detection can be used to double resolution in each indirect dimension. Random phase detection is complementary to nonuniform sampling methods, and their combination offers the potential for additional benefits. In addition to applications in biomolecular NMR, random phase detection could be useful in magnetic resonance imaging and other signal processing contexts.

  8. Simultaneous one-dimensional fluorescence lifetime measurements of OH and CO in premixed flames

    NASA Astrophysics Data System (ADS)

    Jonsson, Malin; Ehn, Andreas; Christensen, Moah; Aldén, Marcus; Bood, Joakim

    2014-04-01

    A method for simultaneous measurements of fluorescence lifetimes of two species along a line is described. The experimental setup is based on picosecond laser pulses from two tunable optical parametric generator/optical parametric amplifier systems together with a streak camera. With an appropriate optical time delay between the two laser pulses, whose wavelengths are tuned to excite two different species, laser-induced fluorescence can be both detected temporally and spatially resolved by the streak camera. Hence, our method enables one-dimensional imaging of fluorescence lifetimes of two species in the same streak camera recording. The concept is demonstrated for fluorescence lifetime measurements of CO and OH in a laminar methane/air flame on a Bunsen-type burner. Measurements were taken in flames with four different equivalence ratios, namely ϕ = 0.9, 1.0, 1.15, and 1.25. The measured one-dimensional lifetime profiles generally agree well with lifetimes calculated from quenching cross sections found in the literature and quencher concentrations predicted by the GRI 3.0 mechanism. For OH, there is a systematic deviation of approximately 30 % between calculated and measured lifetimes. It is found that this is mainly due to the adiabatic assumption regarding the flame and uncertainty in H2O quenching cross section. This emphasizes the strength of measuring the quenching rates rather than relying on models. The measurement concept might be useful for single-shot measurements of fluorescence lifetimes of several species pairs of vital importance in combustion processes, hence allowing fluorescence signals to be corrected for quenching and ultimately yield quantitative concentration profiles.

  9. Direct measurement of radiative scattering of surface plasmon polariton resonance from metallic arrays by polarization-resolved reflectivity spectroscopy

    NASA Astrophysics Data System (ADS)

    Lo, H. Y.; Chan, C. Y.; Ong, H. C.

    2012-11-01

    We have measured the radiative scattering from two-dimensional metallic arrays by using polarization-resolved reflectivity spectroscopy. We find the reflectivity spectra follow the Fano-like model that can be derived from temporal coupled mode theory and Jones matrix calculus. By orthogonally orienting the incident polarizer and the detection analyzer, reflectivity dips flip into peaks and the radiative scattering efficiency can be determined accordingly. The dependence of total radiative scattering efficiency on wavelength and hole diameter is found to agree well with Rayleigh scattering by single hole.

  10. Real-time observation of intramolecular proton transfer in the electronic ground state of chloromalonaldehyde: an ab initio study of time-resolved photoelectron spectra.

    PubMed

    do N Varella, Márcio T; Arasaki, Yasuki; Ushiyama, Hiroshi; Takatsuka, Kazuo; Wang, Kwanghsi; McKoy, Vincent

    2007-02-07

    The authors report on studies of time-resolved photoelectron spectra of intramolecular proton transfer in the ground state of chloromalonaldehyde, employing ab initio photoionization matrix elements and effective potential surfaces of reduced dimensionality, wherein the couplings of proton motion to the other molecular vibrational modes are embedded by averaging over classical trajectories. In the simulations, population is transferred from the vibrational ground state to vibrationally hot wave packets by pumping to an excited electronic state and dumping with a time-delayed pulse. These pump-dump-probe simulations demonstrate that the time-resolved photoelectron spectra track proton transfer in the electronic ground state well and, furthermore, that the geometry dependence of the matrix elements enhances the tracking compared with signals obtained with the Condon approximation. Photoelectron kinetic energy distributions arising from wave packets localized in different basins are also distinguishable and could be understood, as expected, on the basis of the strength of the optical couplings in different regions of the ground state potential surface and the Franck-Condon overlaps of the ground state wave packets with the vibrational eigenstates of the ion potential surface.

  11. Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere

    NASA Technical Reports Server (NTRS)

    Hager, B. H.

    1981-01-01

    Commonly used one dimensional geoid models predict that the isostatic geoid anomaly over old ocean basins for the boundary layer thermal model of the lithosphere is a factor of two greater than that for the plate model. Calculations presented, using the spherical analogues of the plate and boundary layer thermal models, show that for the actual global distribution of plate ages, one dimensional models are not accurate and a spherical, fully three dimensional treatment is necessary. The maximum difference in geoid heights predicted for the two models is only about two meters. The thermal structure of old lithosphere is unlikely to be resolvable using global geoid anomalies. Stripping the effects of plate aging and a hypothetical uniform, 35 km, isostatically-compensated continental crust from the observed geoid emphasizes that the largest-amplitude geoid anomaly is the geoid low of almost 120 m over West Antarctica, a factor of two greater than the low of 60 m over Ceylon.

  12. Surfactant effect on drop coalescence and film drainage hydrodynamics

    NASA Astrophysics Data System (ADS)

    Weheliye, Weheliye; Chinaud, Maxime; Voulgaropoulos, Victor; Angeli, Panagiota

    2015-11-01

    Coalescence of a drop on an aqueous-organic interface is studied in two test geometries A rectangular acrylic vessel and a Hele-Shaw cell (two parallel plates placed 2mm apart) are investigated for the experiments. Time resolved Particle Image Velocimetry (PIV) measurements provide information on the hydrodynamics during the bouncing stage of the droplet and on the vortices generated at the bulk fluid after the droplet has coalesced. The velocity field inside the droplet during its coalescence is presented. By localizing the rupture point of the coalescence in the quasi two dimensional cell, the film drainage dynamics are discussed by acquiring its flow velocity by PIV measurements with a straddling camera. The effect of surface tension forces in the coalescence of the droplet is investigated by introducing surface active agents at various concentrations extending on both sides of the critical micelle concentration.

  13. A 3D visualization and simulation of the individual human jaw.

    PubMed

    Muftić, Osman; Keros, Jadranka; Baksa, Sarajko; Carek, Vlado; Matković, Ivo

    2003-01-01

    A new biomechanical three-dimensional (3D) model for the human mandible based on computer-generated virtual model is proposed. Using maps obtained from the special kinds of photos of the face of the real subject, it is possible to attribute personality to the virtual character, while computer animation offers movements and characteristics within the confines of space and time of the virtual world. A simple two-dimensional model of the jaw cannot explain the biomechanics, where the muscular forces through occlusion and condylar surfaces are in the state of 3D equilibrium. In the model all forces are resolved into components according to a selected coordinate system. The muscular forces act on the jaw, along with the necessary force level for chewing as some kind of mandible balance, preventing dislocation and loading of nonarticular tissues. In the work is used new approach to computer-generated animation of virtual 3D characters (called "Body SABA"), using in one object package of minimal costs and easy for operation.

  14. Femtosecond/picosecond time-resolved fluorescence study of hydrophilic polymer fine particles.

    PubMed

    Nanjo, Daisuke; Hosoi, Haruko; Fujino, Tatsuya; Tahara, Tahei; Korenaga, Takashi

    2007-03-22

    Femtosecond/picosecond time-resolved fluorescence study of hydrophilic polymer fine particles (polyacrylamide, PAAm) was reported. Ultrafast fluorescence dynamics of polymer/water solution was monitored using a fluorescent probe molecule (C153). In the femtosecond time-resolved fluorescence measurement at 480 nm, slowly decay components having lifetimes of tau(1) approximately 53 ps and tau(2) approximately 5 ns were observed in addition to rapid fluorescence decay. Picosecond time-resolved fluorescence spectra of C153/PAAm/H2O solution were also measured. In the time-resolved fluorescence spectra of C153/PAAm/H2O, a peak shift from 490 to 515 nm was measured, which can be assigned to the solvation dynamics of polymer fine particles. The fluorescence peak shift was related to the solvation response function and two time constants were determined (tau(3) approximately 50 ps and tau(4) approximately 467 ps). Therefore, the tau(1) component observed in the femtosecond time-resolved fluorescence measurement was assigned to the solvation dynamics that was observed only in the presence of polymer fine particles. Rotational diffusion measurements were also carried out on the basis of the picosecond time-resolved fluorescence spectra. In the C153/PAAm/H2O solution, anisotropy decay having two different time constants was also derived (tau(6) approximately 76 ps and tau(7) approximately 676 ps), indicating the presence of two different microscopic molecular environments around the polymer surface. Using the Stokes-Einstein-Debye (SED) equation, microscopic viscosity around the polymer surface was evaluated. For the area that gave a rotational diffusion time of tau(6) approximately 76 ps, the calculated viscosity is approximately 1.1 cP and for tau(7) approximately 676 ps, it is approximately 10 cP. The calculated viscosity values clearly revealed that there are two different molecular environments around the polyacrylamide fine particles.

  15. Time-Resolved Three-Dimensional Contrast-Enhanced Magnetic Resonance Angiography in Patients with Chronic Expanding and Stable Aortic Dissections.

    PubMed

    Trojan, Michael; Rengier, Fabian; Kotelis, Drosos; Müller-Eschner, Matthias; Partovi, Sasan; Fink, Christian; Karmonik, Christof; Böckler, Dittmar; Kauczor, Hans-Ulrich; von Tengg-Kobligk, Hendrik

    2017-01-01

    To prospectively evaluate our hypothesis that three-dimensional time-resolved contrast-enhanced magnetic resonance angiography (TR-MRA) is able to detect hemodynamic alterations in patients with chronic expanding aortic dissection compared to stable aortic dissections. 20 patients with chronic or residual aortic dissection in the descending aorta and patent false lumen underwent TR-MRA of the aorta at 1.5 T and repeated follow-up imaging (mean follow-up 5.4 years). 7 patients showed chronic aortic expansion and 13 patients had stable aortic diameters. Regions of interest were placed in the nondissected ascending aorta and the false lumen of the descending aorta at the level of the diaphragm (FL-diaphragm level) resulting in respective time-intensity curves. For the FL-diaphragm level, time-to-peak intensity and full width at half maximum were significantly shorter in the expansion group compared to the stable group ( p = 0.027 and p = 0.003), and upward and downward slopes of time-intensity curves were significantly steeper ( p = 0.015 and p = 0.005). The delay of peak intensity in the FL-diaphragm level compared to the nondissected ascending aorta was significantly shorter in the expansion group compared to the stable group ( p = 0.01). 3D TR-MRA detects significant alterations of hemodynamics within the patent false lumen of chronic expanding aortic dissections compared to stable aortic dissections.

  16. Three-dimensional turbulence-resolving modeling of the Venusian cloud layer and induced gravity waves

    NASA Astrophysics Data System (ADS)

    Lefèvre, Maxence; Spiga, Aymeric; Lebonnois, Sébastien

    2017-04-01

    The impact of the cloud convective layer of the atmosphere of Venus on the global circulation remains unclear. The recent observations of gravity waves at the top of the cloud by the Venus Express mission provided some answers. These waves are not resolved at the scale of global circulation models (GCM), therefore we developed an unprecedented 3D turbulence-resolving Large-Eddy Simulations (LES) Venusian model (Lefèvre et al, 2016 JGR Planets) using the Weather Research and Forecast terrestrial model. The forcing consists of three different heating rates : two radiative ones for solar and infrared and one associated with the adiabatic cooling/warming of the global circulation. The rates are extracted from the Laboratoire de Météorlogie Dynamique (LMD) Venus GCM using two different cloud models. Thus we are able to characterize the convection and associated gravity waves in function of latitude and local time. To assess the impact of the global circulation on the convective layer, we used rates from a 1D radiative-convective model. The resolved layer, taking place between 1.0 105 and 3.8 104 Pa (48-53 km), is organized as polygonal closed cells of about 10 km wide with vertical wind of several meters per second. The convection emits gravity waves both above and below the convective layer leading to temperature perturbations of several tenths of Kelvin with vertical wavelength between 1 and 3 km and horizontal wavelength from 1 to 10 km. The thickness of the convective layer and the amplitudes of waves are consistent with observations, though slightly underestimated. The global dynamics heating greatly modify the convective layer.

  17. Depth- and momentum- resolved electronic structure at buried oxide interfaces from standing-wave angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Fadley, Charles

    2015-03-01

    It is clear that interfaces in complex oxide heterostructures often represent emergent materials that possess surprising properties not associated with the parent oxides, such as two-dimensional electron gases (2DEGs), superconductivity, and magnetism. A detailed knowledge of the composition, atomic structure, and electronic structure through such interfaces is thus critical. Photomission (PES) and angle-resolved photoemission (ARPES) represent techniques of choice for such studies, but have certain limitations in being too surface sensitive and in not being able to focus specifically on buried interfaces or heterostructure layers. In this talk, I will discuss combining two newer elements of PES/ARPES to deal with this challenge: - the use of soft x-rays in the ca. few hundred-to-2000 eV regime, or even into the true hard x-ray regime, to probe more deeply into the structure, and - tailoring of the x-ray intensity profile into a strong standing wave (SW) through reflection from a multilayer heterostructure to provide much enhanced depth resolution. The relative advantages of soft/hard x-ray PES and ARPES and their complementarity to conventional VUV ARPES in the ca. 5-150 eV regime will be considered. As illustrative examples, by combining SW-PES and SW-ARPES, it has been possible to measure for the first time the detailed concentration profiles and momentum-resolved electronic structure at the SrTiO3/La0.67Sr0.33MnO3 interface and to directly measure the depth profile of the 2DEG at SrTiO3/GdTiO3 interfaces. Future directions for such measurements will also be discussed. Supported by US DOE Contract No. DE-AC02-05CH11231, ARO-MURI Grant W911-NF-09-1-0398, and the PALM-APTCOM Project (France).

  18. Spatially aggregated multiclass pattern classification in functional MRI using optimally selected functional brain areas.

    PubMed

    Zheng, Weili; Ackley, Elena S; Martínez-Ramón, Manel; Posse, Stefan

    2013-02-01

    In previous works, boosting aggregation of classifier outputs from discrete brain areas has been demonstrated to reduce dimensionality and improve the robustness and accuracy of functional magnetic resonance imaging (fMRI) classification. However, dimensionality reduction and classification of mixed activation patterns of multiple classes remain challenging. In the present study, the goals were (a) to reduce dimensionality by combining feature reduction at the voxel level and backward elimination of optimally aggregated classifiers at the region level, (b) to compare region selection for spatially aggregated classification using boosting and partial least squares regression methods and (c) to resolve mixed activation patterns using probabilistic prediction of individual tasks. Brain activation maps from interleaved visual, motor, auditory and cognitive tasks were segmented into 144 functional regions. Feature selection reduced the number of feature voxels by more than 50%, leaving 95 regions. The two aggregation approaches further reduced the number of regions to 30, resulting in more than 75% reduction of classification time and misclassification rates of less than 3%. Boosting and partial least squares (PLS) were compared to select the most discriminative and the most task correlated regions, respectively. Successful task prediction in mixed activation patterns was feasible within the first block of task activation in real-time fMRI experiments. This methodology is suitable for sparsifying activation patterns in real-time fMRI and for neurofeedback from distributed networks of brain activation. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Analytical Applications Of High-Resolution Molecular Fluorescence Spectroscopy In Low Temperature Solid Matrices

    NASA Astrophysics Data System (ADS)

    Hofstraat, Johannes W.; van Zeijl, W. J.; Smedes, F.; Ariese, Freek; Gooijer, Cees; Velthorst, Nel H.; Locher, R.; Renn, Alois; Wild, Urs P.

    1989-05-01

    High-resolution fluorescence spectroscopy may be used to obtain highly specific, vibrationally resolved spectral signatures of molecules. Two techniques are presented that both make use of low temperature, solid matrices. In Shpol'skii spectroscopy highly resolved spectra are obtained by employing n-alkanes as solvents that form neat crystalline matrices at low temperatures in which the guest molecules occupy well defined substitutional sites. Fluorescence line-narrowing spectroscopy is based on the application of selective (mostly laser-) excitation of the guest molecules. Principles and analytical applications of both techniques will be discussed. Specific attention will be paid to the determination of pyrene in bird meat by means of Shpol'skii spectroscopy and to the possibilities of applying two-dimensional fluorescence line-narrowing spectroscopy.

  20. In-situ straining and time-resolved electron tomography data acquisition in a transmission electron microscope.

    PubMed

    Hata, S; Miyazaki, S; Gondo, T; Kawamoto, K; Horii, N; Sato, K; Furukawa, H; Kudo, H; Miyazaki, H; Murayama, M

    2017-04-01

    This paper reports the preliminary results of a new in-situ three-dimensional (3D) imaging system for observing plastic deformation behavior in a transmission electron microscope (TEM) as a directly relevant development of the recently reported straining-and-tomography holder [Sato K et al. (2015) Development of a novel straining holder for transmission electron microscopy compatible with single tilt-axis electron tomography. Microsc. 64: 369-375]. We designed an integrated system using the holder and newly developed straining and image-acquisition software and then developed an experimental procedure for in-situ straining and time-resolved electron tomography (ET) data acquisition. The software for image acquisition and 3D visualization was developed based on the commercially available ET software TEMographyTM. We achieved time-resolved 3D visualization of nanometer-scale plastic deformation behavior in a Pb-Sn alloy sample, thus demonstrating the capability of this system for potential applications in materials science. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Time resolved PIV and flow visualization of 3D sheet cavitation

    NASA Astrophysics Data System (ADS)

    Foeth, E. J.; van Doorne, C. W. H.; van Terwisga, T.; Wieneke, B.

    2006-04-01

    Time-resolved PIV was applied to study fully developed sheet cavitation on a hydrofoil with a spanwise varying angle of attack. The hydrofoil was designed to have a three-dimensional cavitation pattern closely related to propeller cavitation, studied for its adverse effects as vibration, noise, and erosion production. For the PIV measurements, fluorescent tracer particles were applied in combination with an optical filter, in order to remove the reflections of the laser lightsheet by the cavitation. An adaptive mask was developed to find the interface between the vapor and liquid phase. The velocity at the interface of the cavity was found to be very close to the velocity predicted by a simple streamline model. For a visualization of the global flow dynamics, the laser beam was expanded and used to illuminate the entire hydrofoil and cavitation structure. The time-resolved recordings reveal the growth of the attached cavity and the cloud shedding. Our investigation proves the viability of accurate PIV measurements around developed sheet cavitation. The presented results will further be made available as a benchmark for the validation of numerical simulations of this complicated flow.

  2. State-resolved three-dimensional electron-momentum correlation in nonsequential double ionization of benzene

    NASA Astrophysics Data System (ADS)

    Winney, Alexander H.; Lin, Yun Fei; Lee, Suk Kyoung; Adhikari, Pradip; Li, Wen

    2016-03-01

    We report state-resolved electron-momentum correlation measurement of strong-field nonsequential double ionization in benzene. With a novel coincidence detection apparatus, highly efficient triple coincidence (electron-electron dication) and quadruple coincidence (electron-electron-cation-cation) are used to resolve the final ionic states and to characterize three-dimensional (3D) electron-momentum correlation. The primary states associated with dissociative and nondissociative dications are assigned. A 3D momentum anticorrelation is observed for the electrons in coincidence with dissociative benzene dication states whereas such a correlation is absent for nondissociative dication states.

  3. Three-dimensional imaging of threading dislocations in GaN crystals using two-photon excitation photoluminescence

    NASA Astrophysics Data System (ADS)

    Tanikawa, Tomoyuki; Ohnishi, Kazuki; Kanoh, Masaya; Mukai, Takashi; Matsuoka, Takashi

    2018-03-01

    The three-dimensional imaging of threading dislocations in GaN films was demonstrated using two-photon excitation photoluminescence. The threading dislocations were shown as dark lines. The spatial resolutions near the surface were about 0.32 and 3.2 µm for the in-plane and depth directions, respectively. The threading dislocations with a density less than 108 cm-2 were resolved, although the aberration induced by the refractive index mismatch was observed. The decrease in threading dislocation density was clearly observed by increasing the GaN film thickness. This can be considered a novel method for characterizing threading dislocations in GaN films without any destructive preparations.

  4. Spatially resolved measurements of two-dimensional turbulent structures in DIII-D plasmas

    DOE PAGES

    Zemedkun, Samuel E.; Che, S.; Chen, Y.; ...

    2015-12-21

    Here, two-dimensional observations of spatially-coherent electron temperature fluctuations at drift wave scales (k ~1 cm -1) have been made using the electron cyclotron emission imaging (ECEI) diagnostic on the DIII-D tokamak. These measurements enable the extraction of spectral properties, including poloidal dispersion relations. Temperature fluctuation levels are found to be ˜ T e/< T e > = 1.2%, and the phase velocity of the fluctuations is found to be constant across frequencies, consistent with modes having real frequencies low compared to the rotation-induced Doppler shifts. Comparisons with radially global linear gyrokinetic simulations suggest that the observed modes may be trappedmore » electron modes (TEM).« less

  5. The relationship between three-dimensional imaging and group decision making: an exploratory study.

    PubMed

    Litynski, D M; Grabowski, M; Wallace, W A

    1997-07-01

    This paper describes an empirical investigation of the effect of three dimensional (3-D) imaging on group performance in a tactical planning task. The objective of the study is to examine the role that stereoscopic imaging can play in supporting face-to-face group problem solving and decision making-in particular, the alternative generation and evaluation processes in teams. It was hypothesized that with the stereoscopic display, group members would better visualize the information concerning the task environment, producing open communication and information exchanges. The experimental setting was a tactical command and control task, and the quality of the decisions and nature of the group decision process were investigated with three treatments: 1) noncomputerized, i.e., topographic maps with depth cues; 2) two-dimensional (2-D) imaging; and 3) stereoscopic imaging. The results were mixed on group performance. However, those groups with the stereoscopic displays generated more alternatives and spent less time on evaluation. In addition, the stereoscopic decision aid did not interfere with the group problem solving and decision-making processes. The paper concludes with a discussion of potential benefits, and the need to resolve demonstrated weaknesses of the technology.

  6. Integrative two-dimensional correlation spectroscopy (i2DCOS) for the intuitive identification of adulterated herbal materials

    NASA Astrophysics Data System (ADS)

    Chen, Jianbo; Wang, Yue; Rong, Lixin; Wang, Jingjuan

    2018-07-01

    IR, Raman and other separation-free and label-free spectroscopic techniques have been the promising methods for the rapid and low-cost quality control of complex mixtures such as food and herb. However, as the overlapped signals from different ingredients usually make it difficult to extract useful information, chemometrics tools are often needed to find out spectral features of interest. With designed perturbations, two-dimensional correlation spectroscopy (2DCOS) is a powerful technique to resolve the overlapped spectral bands and enhance the apparent spectral resolution. In this research, the integrative two-dimensional correlation spectroscopy (i2DCOS) is defined for the first time overcome some disadvantages of synchronous and asynchronous correlation spectra for identification. The integrative 2D correlation spectra weight the asynchronous cross peaks by the corresponding synchronous cross peaks, which combines the signal-to-noise ratio advantage of synchronous correlation spectra and the spectral resolution advantage of asynchronous correlation spectra. The feasibility of the integrative 2D correlation spectra for the quality control of complex mixtures is examined by the identification of adulterated Fritillariae Bulbus powders. Compared with model-based pattern recognition and multivariate calibration methods, i2DCOS can provide intuitive identification results but not require the number of samples. The results show the potential of i2DCOS in the intuitive quality control of herbs and other complex mixtures, especially when the number of samples is not large.

  7. Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sarpkaya, Ibrahim; Zhang, Zhengyi; Walden-Newman, William; Wang, Xuesi; Hone, James; Wong, Chee W.; Strauf, Stefan

    2013-07-01

    The bright exciton emission of carbon nanotubes is appealing for optoelectronic devices and fundamental studies of light-matter interaction in one-dimensional nanostructures. However, to date, the photophysics of excitons in carbon nanotubes is largely affected by extrinsic effects. Here we perform time-resolved photoluminescence measurements over 14 orders of magnitude for ultra-clean carbon nanotubes bridging an air gap over pillar posts. Our measurements demonstrate a new regime of intrinsic exciton photophysics with prolonged spontaneous emission times up to T1=18 ns, about two orders of magnitude better than prior measurements and in agreement with values hypothesized by theorists about a decade ago. Furthermore, we establish for the first time exciton decoherence times of individual nanotubes in the time domain and find fourfold prolonged values up to T2=2.1 ps compared with ensemble measurements. These first observations motivate new discussions about the magnitude of the intrinsic dephasing mechanism while the prolonged exciton dynamics is promising for applications.

  8. Emergence of charge density waves and a pseudogap in single-layer TiTe 2

    DOE PAGES

    Chen, P.; Pai, Woei Wu; Chan, Y. -H.; ...

    2017-09-11

    Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here in this paper we report a study of TiTe 2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe 2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermimore » level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe 2 , despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.« less

  9. Scales of variability of black carbon plumes and their dependence on resolution of ECHAM6-HAM

    NASA Astrophysics Data System (ADS)

    Weigum, Natalie; Stier, Philip; Schutgens, Nick; Kipling, Zak

    2015-04-01

    Prediction of the aerosol effect on climate depends on the ability of three-dimensional numerical models to accurately estimate aerosol properties. However, a limitation of traditional grid-based models is their inability to resolve variability on scales smaller than a grid box. Past research has shown that significant aerosol variability exists on scales smaller than these grid-boxes, which can lead to discrepancies between observations and aerosol models. The aim of this study is to understand how a global climate model's (GCM) inability to resolve sub-grid scale variability affects simulations of important aerosol features. This problem is addressed by comparing observed black carbon (BC) plume scales from the HIPPO aircraft campaign to those simulated by ECHAM-HAM GCM, and testing how model resolution affects these scales. This study additionally investigates how model resolution affects BC variability in remote and near-source regions. These issues are examined using three different approaches: comparison of observed and simulated along-flight-track plume scales, two-dimensional autocorrelation analysis, and 3-dimensional plume analysis. We find that the degree to which GCMs resolve variability can have a significant impact on the scales of BC plumes, and it is important for models to capture the scales of aerosol plume structures, which account for a large degree of aerosol variability. In this presentation, we will provide further results from the three analysis techniques along with a summary of the implication of these results on future aerosol model development.

  10. Comparisons of angularly and spectrally resolved Bremsstrahlung measurements to two-dimensional multi-stage simulations of short-pulse laser-plasma interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C. D.; Kemp, A. J.; Pérez, F.

    2013-05-15

    A 2-D multi-stage simulation model incorporating realistic laser conditions and a fully resolved electron distribution handoff has been developed and compared to angularly and spectrally resolved Bremsstrahlung measurements from high-Z planar targets. For near-normal incidence and 0.5-1 × 10{sup 20} W/cm{sup 2} intensity, particle-in-cell (PIC) simulations predict the existence of a high energy electron component consistently directed away from the laser axis, in contrast with previous expectations for oblique irradiation. Measurements of the angular distribution are consistent with a high energy component when directed along the PIC predicted direction, as opposed to between the target normal and laser axis asmore » previously measured.« less

  11. Characteristics of strain-sensitive photonic crystal cavities in a flexible substrate.

    PubMed

    No, You-Shin; Choi, Jae-Hyuck; Kim, Kyoung-Ho; Park, Hong-Gyu

    2016-11-14

    High-index semiconductor photonic crystal (PhC) cavities in a flexible substrate support strong and tunable optical resonances that can be used for highly sensitive and spatially localized detection of mechanical deformations in physical systems. Here, we report theoretical studies and fundamental understandings of resonant behavior of an optical mode excited in strain-sensitive rod-type PhC cavities consisting of high-index dielectric nanorods embedded in a low-index flexible polymer substrate. Using the three-dimensional finite-difference time-domain simulation method, we calculated two-dimensional transverse-electric-like photonic band diagrams and the three-dimensional dispersion surfaces near the first Γ-point band edge of unidirectionally strained PhCs. A broken rotational symmetry in the PhCs modifies the photonic band structures and results in the asymmetric distributions and different levels of changes in normalized frequencies near the first Γ-point band edge in the reciprocal space, which consequently reveals strain-dependent directional optical losses and selected emission patterns. The calculated electric fields, resonant wavelengths, and quality factors of the band-edge modes in the strained PhCs show an excellent agreement with the results of qualitative analysis of modified dispersion surfaces. Furthermore, polarization-resolved time-averaged Poynting vectors exhibit characteristic dipole-like emission patterns with preferentially selected linear polarizations, originating from the asymmetric band structures in the strained PhCs.

  12. Characterization of Rare Reverse Flow Events in Adverse Pressure Gradient Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Kaehler, Christian J.; Bross, Matthew; Fuchs, Thomas

    2017-11-01

    Time-resolved tomographic flow fields measured in the viscous sublayer region of a turbulent boundary layer subjected to an adverse pressure gradient (APG) are examined with the aim to resolve and characterize reverse flow events at Reτ = 5000. The fields were measured using a novel high resolution tomographic particle tracking technique. It is shown that this technique is able to fully resolve mean and time dependent features of the complex three-dimensional flow with high accuracy down to very near-wall distances ( 10 μm). From time resolved Lagrangian particle trajectories, statistical information as well as instantaneous topological features of near-wall flow events are deduced. Similar to the zero pressure gradient case (ZPG), it was found that individual events with reverse flow components still occur relatively rarely under the action of the pressure gradient investigated here. However, reverse flow events comprised of many individual events, are shown to appear in relatively organized groupings in both spanwise and streamise directions. Furthermore, instantaneous measurements of reverse flow events show that these events are associated with the motion of low-momentum streaks in the near-wall region. This work is supported by the Priority Programme SPP 1881 Turbulent Superstructures and the individual project Grant KA1808/8-2 of the Deutsche Forschungsgemeinschaft.

  13. Comprehensive two-dimensional liquid chromatography for polyphenol analysis in foodstuffs.

    PubMed

    Cacciola, Francesco; Farnetti, Sara; Dugo, Paola; Marriott, Philip John; Mondello, Luigi

    2017-01-01

    Polyphenols are a class of plant secondary metabolites that are recently drawing a special interest because of their broad spectrum of pharmacological effects. As they are characterized by an enormous structural variability, the identification of these molecules in food samples is a difficult task, and sometimes having only a limited number of commercially available reference materials is not of great help. One-dimensional liquid chromatography is the most widely applied analytical approach for their analysis. In particular, the hyphenation of liquid chromatography to mass spectrometry has come to play an influential role by allowing relatively fast tentative identification and accurate quantification of polyphenolic compounds at trace levels in vegetable media. However, when dealing with very complex real-world food samples, a single separation system often does not provide sufficient resolving power for attaining rewarding results. Comprehensive two-dimensional liquid chromatography is a technique of great analytical impact, since it offers much higher peak capacities than separations in a single dimension. In the present review, we describe applications in the field of comprehensive two-dimensional liquid chromatography for polyphenol analysis in real-world food samples. Comprehensive two-dimensional liquid chromatography applications to nonfood matrices fall outside the scope of the current report and will not be discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Time-resolved contrast-enhanced MRA (TWIST) with gadofosveset trisodium in the classification of soft-tissue vascular anomalies in the head and neck in children following updated 2014 ISSVA classification: first report on systematic evaluation of MRI and TWIST in a cohort of 47 children.

    PubMed

    Higgins, L J; Koshy, J; Mitchell, S E; Weiss, C R; Carson, K A; Huisman, T A G M; Tekes, A

    2016-01-01

    To evaluate the relative accuracy of contrast-enhanced time-resolved angiography with interleaved stochastic trajectories versus conventional contrast-enhanced magnetic resonance imaging (MRI) following International Society for the Study of Vascular Anomalies updated 2014-based classification of soft-tissue vascular anomalies in the head and neck in children. Time-resolved angiography with interleaved stochastic trajectories versus conventional contrast-enhanced MRI of children with diagnosis of soft-tissue vascular anomalies in the head and neck referred for MRI between 2008 and 2014 were retrospectively reviewed. Forty-seven children (0-18 years) were evaluated. Two paediatric neuroradiologists evaluated time-resolved MRA and conventional MRI in two different sessions (30 days apart). Blood-pool endovascular MRI contrast agent gadofosveset trisodium was used. The present cohort had the following diagnoses: infantile haemangioma (n=6), venous malformation (VM; n=23), lymphatic malformation (LM; n=16), arteriovenous malformation (AVM; n=2). Time-resolved MRA alone accurately classified 38/47 (81%) and conventional MRI 42/47 (89%), respectively. Although time-resolved MRA alone is slightly superior to conventional MRI alone for diagnosis of infantile haemangioma, conventional MRI is slightly better for diagnosis of venous and LMs. Neither time-resolved MRA nor conventional MRI was sufficient for accurate diagnosis of AVM in this cohort. Conventional MRI combined with time-resolved MRA accurately classified 44/47 cases (94%). Time-resolved MRA using gadofosveset trisodium can accurately classify soft-tissue vascular anomalies in the head and neck in children. The addition of time-resolved MRA to existing conventional MRI protocols provides haemodynamic information, assisting the diagnosis of vascular anomalies in the paediatric population at one-third of the dose of other MRI contrast agents. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  15. Aircraft mishap investigation with radiology-assisted autopsy: helicopter crash with control injury.

    PubMed

    Folio, R Les; Harcke, H Theodore; Luzi, Scott A

    2009-04-01

    Radiology-assisted autopsy traditionally has been plain film-based, but now is being augmented by computed tomography (CT). The authors present a two-fatality rotary wing crash scenario illustrating application of advanced radiographic techniques that can guide and supplement the forensic pathologist's physical autopsy. The radiographic findings also have the potential for use by the aircraft mishap investigation board. Prior to forensic autopsy, the two crash fatalities were imaged with conventional two-dimensional radiographs (digital technique) and with multidetector CT The CT data were used for multiplanar two-dimensional and three-dimensional (3D) image reconstruction. The forensic pathologist was provided with information about skeletal fractures, metal fragment location, and other pathologic findings of potential use in the physical autopsy. The radiologic autopsy served as a supplement to the physical autopsy and did not replace the traditional autopsy in these cases. Both individuals sustained severe blunt force trauma with multiple fractures of the skull, face, chest, pelvis, and extremities. Individual fractures differed; however, one individual showed hand and lower extremity injuries similar to those associated with control of the aircraft at the time of impact. The concept of "control injury" has been challenged by Campman et al., who found that control surface injuries have a low sensitivity and specificity for establishing who the pilot was in an accident. The application of new post mortem imaging techniques may help to resolve control injury questions. In addition, the combination of injuries in our cases may contribute to further understanding of control surface injury patterns in helicopter mishaps.

  16. A convergent series expansion for hyperbolic systems of conservation laws

    NASA Technical Reports Server (NTRS)

    Harabetian, E.

    1985-01-01

    The discontinuities piecewise analytic initial value problem for a wide class of conservation laws is considered which includes the full three-dimensional Euler equations. The initial interaction at an arbitrary curved surface is resolved in time by a convergent series. Among other features the solution exhibits shock, contact, and expansion waves as well as sound waves propagating on characteristic surfaces. The expansion waves correspond to he one-dimensional rarefactions but have a more complicated structure. The sound waves are generated in place of zero strength shocks, and they are caused by mismatches in derivatives.

  17. Time dependent three-dimensional body frame quantal wave packet treatment of the H + H2 exchange reaction on the Liu-Siegbahn-Truhlar-Horowitz (LSTH) surface

    NASA Technical Reports Server (NTRS)

    Neuhauser, Daniel; Baer, Michael; Judson, Richard S.; Kouri, Donald J.

    1989-01-01

    The first successful application of the three-dimensional quantum body frame wave packet approach to reactive scattering is reported for the H + H2 exchange reaction on the LSTH potential surface. The method used is based on a procedure for calculating total reaction probabilities from wave packets. It is found that converged, vibrationally resolved reactive probabilities can be calculated with a grid that is not much larger than required for the pure inelastic calculation. Tabular results are presented for several energies.

  18. Systems Imaging of the Immune Synapse.

    PubMed

    Ambler, Rachel; Ruan, Xiangtao; Murphy, Robert F; Wülfing, Christoph

    2017-01-01

    Three-dimensional live cell imaging of the interaction of T cells with antigen-presenting cells (APCs) visualizes the subcellular distributions of signaling intermediates during T cell activation at thousands of resolved positions within a cell. These information-rich maps of local protein concentrations are a valuable resource in understanding T cell signaling. Here, we describe a protocol for the efficient acquisition of such imaging data and their computational processing to create four-dimensional maps of local concentrations. This protocol allows quantitative analysis of T cell signaling as it occurs inside live cells with resolution in time and space across thousands of cells.

  19. Circularly polarized vacuum field in three-dimensional chiral photonic crystals probed by quantum dot emission

    NASA Astrophysics Data System (ADS)

    Takahashi, S.; Ota, Y.; Tajiri, T.; Tatebayashi, J.; Iwamoto, S.; Arakawa, Y.

    2017-11-01

    The modification of a circularly polarized vacuum field in three-dimensional chiral photonic crystals was measured by spontaneous emission from quantum dots in the structures. Due to the circularly polarized eigenmodes along the helical axis in the GaAs-based mirror-asymmetric structures we studied, we observed highly circularly polarized emission from the quantum dots. Both spectroscopic and time-resolved measurements confirmed that the obtained circularly polarized light was influenced by a large difference in the photonic density of states between the orthogonal components of the circular polarization in the vacuum field.

  20. A fast data acquisition system for the study of transient events by high repetition rate time-of-flight mass spectrometry

    NASA Technical Reports Server (NTRS)

    Lincoln, K. A.; Bechtel, R. D.

    1986-01-01

    Recent advances in commercially available data acquisition electronics embodying high speed A/D conversion coupled to increased memory storage have now made practical (at least within time intervals of a third of a millisecond or more) the capturing of all of the data generated by a high repetition rate time-of-flight mass spectrometer producing complete spectra every 25 to 35 microseconds. Such a system was assembled and interfaced with a personal computer for control and management of data. The applications are described for recording time-resolved spectra of individual vapor plumes induced from the pulsed-laser heating of material. Each laser pulse triggers the system to generate automatically a 3-dimensional (3-D) presentation of the time-resolved spectra with m/z labeling of the major mass peaks, plus an intensity versus time display of both the laser pulse and the resulting vapor pulse. The software also permits storing of data and its presentation in various additional forms.

  1. Visualization of Two-Phase Fluid Distribution Using Laser Induced Exciplex Fluorescence

    NASA Astrophysics Data System (ADS)

    Kim, J. U.; Darrow, J.; Schock, H.; Golding, B.; Nocera, D.; Keller, P.

    1998-03-01

    Laser-induced exciplex (excited state complex) fluorescence has been used to generate two-dimensional images of dispersed liquid and vapor phases with spectrally resolved two-color emissions. In this method, the vapor phase is tagged by the monomer fluorescence while the liquid phase is tracked by the exciplex fluorescence. A new exciplex visualization system consisting of DMA and 1,4,6-TMN in an isooctane solvent was developed.(J.U. Kim et al., Chem. Phys. Lett. 267, 323-328 (1997)) The direct ca

  2. A GPU-accelerated implicit meshless method for compressible flows

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Le; Ma, Zhi-Hua; Chen, Hong-Quan; Cao, Cheng

    2018-05-01

    This paper develops a recently proposed GPU based two-dimensional explicit meshless method (Ma et al., 2014) by devising and implementing an efficient parallel LU-SGS implicit algorithm to further improve the computational efficiency. The capability of the original 2D meshless code is extended to deal with 3D complex compressible flow problems. To resolve the inherent data dependency of the standard LU-SGS method, which causes thread-racing conditions destabilizing numerical computation, a generic rainbow coloring method is presented and applied to organize the computational points into different groups by painting neighboring points with different colors. The original LU-SGS method is modified and parallelized accordingly to perform calculations in a color-by-color manner. The CUDA Fortran programming model is employed to develop the key kernel functions to apply boundary conditions, calculate time steps, evaluate residuals as well as advance and update the solution in the temporal space. A series of two- and three-dimensional test cases including compressible flows over single- and multi-element airfoils and a M6 wing are carried out to verify the developed code. The obtained solutions agree well with experimental data and other computational results reported in the literature. Detailed analysis on the performance of the developed code reveals that the developed CPU based implicit meshless method is at least four to eight times faster than its explicit counterpart. The computational efficiency of the implicit method could be further improved by ten to fifteen times on the GPU.

  3. 4D Magnetic Resonance Velocimetry in a 3D printed brain aneurysm

    NASA Astrophysics Data System (ADS)

    Amili, Omid; Schiavazzi, Daniele; Coletti, Filippo

    2016-11-01

    Cerebral aneurysms are of great clinical importance. It is believed that hemodynamics play a critical role in the development, growth, and rupture of brain arteries with such condition. The flow structure in the aneurysm sac is complex, unsteady, and three-dimensional. Therefore the time-resolved measurement of the three-dimensional three-component velocity field is crucial to predict the clinical outcome. In this study magnetic resonance velocimetry is used to assess the fluid dynamics inside a 3D printed model of a giant intracranial aneurysm. We reach sub-millimeter resolution while resolving sixteen instances within the cardiac cycle. The physiological flow waveform is imposed using an in-house built pump in a flow circuit where the cardiovascular impedance is matched. The flow evolution over time is reconstructed in detail. The complex flow structure is characterized by vortical and helical motions that reside in the aneurysm for most part of the cycle. The 4D pressured distribution is also reconstructed from the velocity field. The present case study was used in a previous CFD challenge, therefore these results may provide useful experimental comparison for simulations performed by other research groups.

  4. The quest for four-dimensional imaging in plant cell biology: it's just a matter of time

    PubMed Central

    Domozych, David S.

    2012-01-01

    Background Analysis of plant cell dynamics over time, or four-dimensional imaging (4-DI), represents a major goal of plant science. The ability to resolve structures in the third dimension within the cell or tissue during developmental events or in response to environmental or experimental stresses (i.e. 4-DI) is critical to our understanding of gene expression, post-expression modulations of macromolecules and sub-cellular system interactions. Scope Microscopy-based technologies have been profoundly integral to this type of investigation, and new and refined microscopy technologies now allow for the visualization of cell dynamics with unprecedented resolution, contrast and experimental versatility. However, certain realities of light and electron microscopy, choice of specimen and specimen preparation techniques limit the scope of readily attaining 4-DI. Today, the plant microscopist must use a combinatorial strategy whereby multiple microscopy-based investigations are used. Modern fluorescence, confocal laser scanning, transmission electron and scanning electron microscopy provide effective conduits for synthesizing data detailing live cell dynamics and highly resolved snapshots of specific cell structures that will ultimately lead to 4-DI. This review provides a synopsis of such technologies available. PMID:22628381

  5. Cardiac Light-Sheet Fluorescent Microscopy for Multi-Scale and Rapid Imaging of Architecture and Function

    NASA Astrophysics Data System (ADS)

    Fei, Peng; Lee, Juhyun; Packard, René R. Sevag; Sereti, Konstantina-Ioanna; Xu, Hao; Ma, Jianguo; Ding, Yichen; Kang, Hanul; Chen, Harrison; Sung, Kevin; Kulkarni, Rajan; Ardehali, Reza; Kuo, C.-C. Jay; Xu, Xiaolei; Ho, Chih-Ming; Hsiai, Tzung K.

    2016-03-01

    Light Sheet Fluorescence Microscopy (LSFM) enables multi-dimensional and multi-scale imaging via illuminating specimens with a separate thin sheet of laser. It allows rapid plane illumination for reduced photo-damage and superior axial resolution and contrast. We hereby demonstrate cardiac LSFM (c-LSFM) imaging to assess the functional architecture of zebrafish embryos with a retrospective cardiac synchronization algorithm for four-dimensional reconstruction (3-D space + time). By combining our approach with tissue clearing techniques, we reveal the entire cardiac structures and hypertrabeculation of adult zebrafish hearts in response to doxorubicin treatment. By integrating the resolution enhancement technique with c-LSFM to increase the resolving power under a large field-of-view, we demonstrate the use of low power objective to resolve the entire architecture of large-scale neonatal mouse hearts, revealing the helical orientation of individual myocardial fibers. Therefore, our c-LSFM imaging approach provides multi-scale visualization of architecture and function to drive cardiovascular research with translational implication in congenital heart diseases.

  6. A Two-Dimensional Manganese Gallium Nitride Surface Structure Showing Ferromagnetism at Room Temperature.

    PubMed

    Ma, Yingqiao; Chinchore, Abhijit V; Smith, Arthur R; Barral, María Andrea; Ferrari, Valeria

    2018-01-10

    Practical applications of semiconductor spintronic devices necessitate ferromagnetic behavior at or above room temperature. In this paper, we demonstrate a two-dimensional manganese gallium nitride surface structure (MnGaN-2D) which is atomically thin and shows ferromagnetic domain structure at room temperature as measured by spin-resolved scanning tunneling microscopy and spectroscopy. Application of small magnetic fields proves that the observed magnetic domains follow a hysteretic behavior. Two initially oppositely oriented MnGaN-2D domains are rotated into alignment with only 120 mT and remain mostly in alignment at remanence. The measurements are further supported by first-principles theoretical calculations which reveal highly spin-polarized and spin-split surface states with spin polarization of up to 95% for manganese local density of states.

  7. Dimensional regularization of the IR divergences in the Fokker action of point-particle binaries at the fourth post-Newtonian order

    NASA Astrophysics Data System (ADS)

    Bernard, Laura; Blanchet, Luc; Bohé, Alejandro; Faye, Guillaume; Marsat, Sylvain

    2017-11-01

    The Fokker action of point-particle binaries at the fourth post-Newtonian (4PN) approximation of general relativity has been determined previously. However two ambiguity parameters associated with infrared (IR) divergencies of spatial integrals had to be introduced. These two parameters were fixed by comparison with gravitational self-force (GSF) calculations of the conserved energy and periastron advance for circular orbits in the test-mass limit. In the present paper together with a companion paper, we determine both these ambiguities from first principle, by means of dimensional regularization. Our computation is thus entirely defined within the dimensional regularization scheme, for treating at once the IR and ultra-violet (UV) divergencies. In particular, we obtain crucial contributions coming from the Einstein-Hilbert part of the action and from the nonlocal tail term in arbitrary dimensions, which resolve the ambiguities.

  8. Time-resolved seismic tomography detects magma intrusions at Mount Etna.

    PubMed

    Patanè, D; Barberi, G; Cocina, O; De Gori, P; Chiarabba, C

    2006-08-11

    The continuous volcanic and seismic activity at Mount Etna makes this volcano an important laboratory for seismological and geophysical studies. We used repeated three-dimensional tomography to detect variations in elastic parameters during different volcanic cycles, before and during the October 2002-January 2003 flank eruption. Well-defined anomalous low P- to S-wave velocity ratio volumes were revealed. Absent during the pre-eruptive period, the anomalies trace the intrusion of volatile-rich (>/=4 weight percent) basaltic magma, most of which rose up only a few months before the onset of eruption. The observed time changes of velocity anomalies suggest that four-dimensional tomography provides a basis for more efficient volcano monitoring and short- and midterm eruption forecasting of explosive activity.

  9. A method for the computational modeling of the physics of heart murmurs

    NASA Astrophysics Data System (ADS)

    Seo, Jung Hee; Bakhshaee, Hani; Garreau, Guillaume; Zhu, Chi; Andreou, Andreas; Thompson, William R.; Mittal, Rajat

    2017-05-01

    A computational method for direct simulation of the generation and propagation of blood flow induced sounds is proposed. This computational hemoacoustic method is based on the immersed boundary approach and employs high-order finite difference methods to resolve wave propagation and scattering accurately. The current method employs a two-step, one-way coupled approach for the sound generation and its propagation through the tissue. The blood flow is simulated by solving the incompressible Navier-Stokes equations using the sharp-interface immersed boundary method, and the equations corresponding to the generation and propagation of the three-dimensional elastic wave corresponding to the murmur are resolved with a high-order, immersed boundary based, finite-difference methods in the time-domain. The proposed method is applied to a model problem of aortic stenosis murmur and the simulation results are verified and validated by comparing with known solutions as well as experimental measurements. The murmur propagation in a realistic model of a human thorax is also simulated by using the computational method. The roles of hemodynamics and elastic wave propagation on the murmur are discussed based on the simulation results.

  10. Ultrafast electron kinetics in short pulse laser-driven dense hydrogen

    DOE PAGES

    Zastrau, U.; Sperling, P.; Fortmann-Grote, C.; ...

    2015-09-25

    Dense cryogenic hydrogen is heated by intense femtosecond infrared laser pulses at intensities ofmore » $${10}^{15}-{10}^{16}\\;$$ W cm–2. Three-dimensional particle-in-cell (PIC) simulations predict that this heating is limited to the skin depth, causing an inhomogeneously heated outer shell with a cold core and two prominent temperatures of about $25$ and $$40\\;\\mathrm{eV}$$ for simulated delay times up to $$+70\\;\\mathrm{fs}$$ after the laser pulse maximum. Experimentally, the time-integrated emitted bremsstrahlung in the spectral range of 8–18 nm was corrected for the wavelength-dependent instrument efficiency. The resulting spectrum cannot be fit with a single temperature bremsstrahlung model, and the best fit is obtained using two temperatures of about 13 and $$30\\;$$eV. The lower temperatures in the experiment can be explained by missing energy-loss channels in the simulations, as well as the inclusion of hot, non-Maxwellian electrons in the temperature calculation. In conclusion, we resolved the time-scale for laser-heating of hydrogen, and PIC results for laser–matter interaction were successfully tested against the experiment data.« less

  11. Simple and rapid system for two-dimensional gel electrophoresis technique: A laboratory exercise for high school students.

    PubMed

    Maurye, Praveen; Basu, Arpita; Biswas, Jayanta Kumar; Bandyopadhyay, Tapas Kumar; Naskar, Malay

    2018-02-28

    Polyacrylamide gel electrophoresis (PAGE) is the most classical technique favored worldwide for resolution of macromolecules in many biochemistry laboratories due to its incessant advanced developments and wide modifications. These ever-growing advancements in the basic laboratory equipments lead to emergence of many expensive, complex, and tricky laboratory equipments. Practical courses of biochemistry at high school or undergraduate levels are often affected by these complications. Two dimensional gel electrophoresis technique (2D-PAGE) used for resolving thousands of proteins in a gel is a combination of isoelectric focusing (first dimension gel electrophoresis technique) and sodium-dodecylsulphate PAGE (second dimension gel electrophoresis technique or SDS-PAGE). Two different laboratory equipments are needed to carry out effective 2D-PAGE technique, which also invites extra burden to the school laboratory. Here, we describe a low cost, time saving and simple gel cassette for protein 2D-PAGE technique that uses easily fabricated components and routine off-the-shelf materials. The performance of the apparatus was verified in a practical exercise by a group of high school students with positive outcomes. © 2018 by The International Union of Biochemistry and Molecular Biology, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, Colin M.; Yu, Hongyi; Jones, Aaron M.

    In monolayer semiconductor transition metal dichalcogenides, the exciton–phonon interaction strongly affects the photocarrier dynamics. Here, we report on an unusual oscillatory enhancement of the neutral exciton photoluminescence with the excitation laser frequency in monolayer MoSe 2. The frequency of oscillation matches that of the M-point longitudinal acoustic phonon, LA(M), suggesting the significance of zone-edge acoustic phonons and hence the deformation potential in exciton-phonon coupling in MoSe 2. Moreover, oscillatory behavior is observed in the steady-state emission linewidth and in time-resolved PLE data, which reveals variation with excitation energy in the exciton lifetime. These results clearly expose the key role playedmore » by phonons in the exciton formation and relaxation dynamics of two-dimensional van der Waals semiconductors.« less

  13. An efficient approach to the analysis of rail surface irregularities accounting for dynamic train-track interaction and inelastic deformations

    NASA Astrophysics Data System (ADS)

    Andersson, Robin; Torstensson, Peter T.; Kabo, Elena; Larsson, Fredrik

    2015-11-01

    A two-dimensional computational model for assessment of rolling contact fatigue induced by discrete rail surface irregularities, especially in the context of so-called squats, is presented. Dynamic excitation in a wide frequency range is considered in computationally efficient time-domain simulations of high-frequency dynamic vehicle-track interaction accounting for transient non-Hertzian wheel-rail contact. Results from dynamic simulations are mapped onto a finite element model to resolve the cyclic, elastoplastic stress response in the rail. Ratcheting under multiple wheel passages is quantified. In addition, low cycle fatigue impact is quantified using the Jiang-Sehitoglu fatigue parameter. The functionality of the model is demonstrated by numerical examples.

  14. Parallel and Multivalued Logic by the Two-Dimensional Photon-Echo Response of a Rhodamine–DNA Complex

    PubMed Central

    2015-01-01

    Implementing parallel and multivalued logic operations at the molecular scale has the potential to improve the miniaturization and efficiency of a new generation of nanoscale computing devices. Two-dimensional photon-echo spectroscopy is capable of resolving dynamical pathways on electronic and vibrational molecular states. We experimentally demonstrate the implementation of molecular decision trees, logic operations where all possible values of inputs are processed in parallel and the outputs are read simultaneously, by probing the laser-induced dynamics of populations and coherences in a rhodamine dye mounted on a short DNA duplex. The inputs are provided by the bilinear interactions between the molecule and the laser pulses, and the output values are read from the two-dimensional molecular response at specific frequencies. Our results highlights how ultrafast dynamics between multiple molecular states induced by light–matter interactions can be used as an advantage for performing complex logic operations in parallel, operations that are faster than electrical switching. PMID:25984269

  15. Magnetic Interactions at the Nanoscale in Trilayer Titanates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yanwei; Yang, Zhenzhong; Kareev, M.

    2016-02-17

    We report on the phase diagram of competing magnetic interactions at the nanoscale in engineered ultrathin trilayer heterostructures of LaTiO3/SrTiO3/YTiO3, in which the interfacial inversion symmetry is explicitly broken. Combined atomic layer resolved scanning transmission electron microscopy with electron energy loss spectroscopy and electrical transport have confirmed the formation of a spatially separated two-dimensional electron liquid and high density two-dimensional localized magnetic moments at the LaTiO3/SrTiO3 and SrTiO3/YTiO3 interfaces, respectively. Resonant soft x-ray linear dichroism spectroscopy has demonstrated the presence of orbital polarization of the conductive LaTiO3/SrTiO3 and localized SrTiO3/YTiO3 electrons. Our results provide a route with prospects for exploringmore » new magnetic interfaces, designing a tunable two-dimensional d-electron Kondo lattice, and potential spin Hall applications.« less

  16. Observation of a two-dimensional liquid of Fröhlich polarons at the bare SrTiO3 surface

    PubMed Central

    Chen, Chaoyu; Avila, José; Frantzeskakis, Emmanouil; Levy, Anna; Asensio, Maria C.

    2015-01-01

    The polaron is a quasi-particle formed by a conduction electron (or hole) together with its self-induced polarization in a polar semiconductor or an ionic crystal. Among various polarizable examples of complex oxides, strontium titanate (SrTiO3) is one of the most studied. Here we examine the carrier type and the interplay of inner degrees of freedom (for example, charge, lattice, orbital) in SrTiO3. We report the experimental observation of Fröhlich polarons, or large polarons, at the bare SrTiO3 surface prepared by vacuum annealing. Systematic analyses of angle-resolved photoemission spectroscopy and X-ray absorption spectra show that these Fröhlich polarons are two-dimensional and only exist with inversion symmetry breaking by two-dimensional oxygen vacancies. Our discovery provides a rare solvable field theoretical model, and suggests the relevance of large (bi)polarons for superconductivity in perovskite oxides, as well as in high-temperature superconductors. PMID:26489376

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yaping; Williams, Brent J.; Goldstein, Allen H.

    Here, we present a rapid method for apportioning the sources of atmospheric organic aerosol composition measured by gas chromatography–mass spectrometry methods. Here, we specifically apply this new analysis method to data acquired on a thermal desorption aerosol gas chromatograph (TAG) system. Gas chromatograms are divided by retention time into evenly spaced bins, within which the mass spectra are summed. A previous chromatogram binning method was introduced for the purpose of chromatogram structure deconvolution (e.g., major compound classes) (Zhang et al., 2014). Here we extend the method development for the specific purpose of determining aerosol samples' sources. Chromatogram bins are arrangedmore » into an input data matrix for positive matrix factorization (PMF), where the sample number is the row dimension and the mass-spectra-resolved eluting time intervals (bins) are the column dimension. Then two-dimensional PMF can effectively do three-dimensional factorization on the three-dimensional TAG mass spectra data. The retention time shift of the chromatogram is corrected by applying the median values of the different peaks' shifts. Bin width affects chemical resolution but does not affect PMF retrieval of the sources' time variations for low-factor solutions. A bin width smaller than the maximum retention shift among all samples requires retention time shift correction. A six-factor PMF comparison among aerosol mass spectrometry (AMS), TAG binning, and conventional TAG compound integration methods shows that the TAG binning method performs similarly to the integration method. However, the new binning method incorporates the entirety of the data set and requires significantly less pre-processing of the data than conventional single compound identification and integration. In addition, while a fraction of the most oxygenated aerosol does not elute through an underivatized TAG analysis, the TAG binning method does have the ability to achieve molecular level resolution on other bulk aerosol components commonly observed by the AMS.« less

  18. Pump-probe experiments at the TEMPO beamline using the low-α operation mode of Synchrotron SOLEIL.

    PubMed

    Silly, Mathieu G; Ferté, Tom; Tordeux, Marie Agnes; Pierucci, Debora; Beaulieu, Nathan; Chauvet, Christian; Pressacco, Federico; Sirotti, Fausto; Popescu, Horia; Lopez-Flores, Victor; Tortarolo, Marina; Sacchi, Maurizio; Jaouen, Nicolas; Hollander, Philippe; Ricaud, Jean Paul; Bergeard, Nicolas; Boeglin, Christine; Tudu, Bharati; Delaunay, Renaud; Luning, Jan; Malinowski, Gregory; Hehn, Michel; Baumier, Cédric; Fortuna, Franck; Krizmancic, Damjan; Stebel, Luigi; Sergo, Rudi; Cautero, Giuseppe

    2017-07-01

    The SOLEIL synchrotron radiation source is regularly operated in special filling modes dedicated to pump-probe experiments. Among others, the low-α mode operation is characterized by shorter pulse duration and represents the natural bridge between 50 ps synchrotron pulses and femtosecond experiments. Here, the capabilities in low-α mode of the experimental set-ups developed at the TEMPO beamline to perform pump-probe experiments with soft X-rays based on photoelectron or photon detection are presented. A 282 kHz repetition-rate femtosecond laser is synchronized with the synchrotron radiation time structure to induce fast electronic and/or magnetic excitations. Detection is performed using a two-dimensional space resolution plus time resolution detector based on microchannel plates equipped with a delay line. Results of time-resolved photoelectron spectroscopy, circular dichroism and magnetic scattering experiments are reported, and their respective advantages and limitations in the framework of high-time-resolution pump-probe experiments compared and discussed.

  19. An effective placental cotyledons proteins extraction method for 2D gel electrophoresis.

    PubMed

    Tan, Niu J; Daim, Leona D J; Jamil, Amilia A M; Mohtarrudin, Norhafizah; Thilakavathy, Karuppiah

    2017-03-01

    Effective protein extraction is essential especially in producing a well-resolved proteome on 2D gels. A well-resolved placental cotyledon proteome, with good reproducibility, have allowed researchers to study the proteins underlying the physiology and pathophysiology of pregnancy. The aim of this study is to determine the best protein extraction protocol for the extraction of protein from placental cotyledons tissues for a two-dimensional gel electrophoresis (2D-GE). Based on widely used protein extraction strategies, 12 different extraction methodologies were carefully selected, which included one chemical extraction, two mechanical extraction coupled protein precipitations, and nine chemical extraction coupled protein precipitations. Extracted proteins were resolved in a one-dimensional gel electrophoresis and 2D-GE; then, it was compared with set criteria: extraction efficacy, protein resolution, reproducibility, and recovery efficiency. Our results revealed that a better profile was obtained by chemical extraction in comparison to mechanical extraction. We further compared chemical extraction coupled protein precipitation methodologies, where the DNase/lithium chloride-dense sucrose homogenization coupled dichloromethane-methanol precipitation (DNase/LiCl-DSH-D/MPE) method showed good protein extraction efficiency. This, however, was carried out with the best protein resolution and proteome reproducibility on 2D-gels. DNase/LiCl-DSH-D/MPE was efficient in the extraction of proteins from placental cotyledons tissues. In addition, this methodology could hypothetically allow the protein extraction of any tissue that contains highly abundant lipid and glycogen. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Spatially resolving density-dependent screening around a single charged atom in graphene

    NASA Astrophysics Data System (ADS)

    Wong, Dillon; Corsetti, Fabiano; Wang, Yang; Brar, Victor W.; Tsai, Hsin-Zon; Wu, Qiong; Kawakami, Roland K.; Zettl, Alex; Mostofi, Arash A.; Lischner, Johannes; Crommie, Michael F.

    2017-05-01

    Electrons in two-dimensional graphene sheets behave as interacting chiral Dirac fermions and have unique screening properties due to their symmetry and reduced dimensionality. By using a combination of scanning tunneling spectroscopy measurements and theoretical modeling we have characterized how graphene's massless charge carriers screen individual charged calcium atoms. A backgated graphene device configuration has allowed us to directly visualize how the screening length for this system can be tuned with carrier density. Our results provide insight into electron-impurity and electron-electron interactions in a relativistic setting with important consequences for other graphene-based electronic devices.

  1. Noninvasive metabolic imaging of engineered 3D human adipose tissue in a perfusion bioreactor.

    PubMed

    Ward, Andrew; Quinn, Kyle P; Bellas, Evangelia; Georgakoudi, Irene; Kaplan, David L

    2013-01-01

    The efficacy and economy of most in vitro human models used in research is limited by the lack of a physiologically-relevant three-dimensional perfused environment and the inability to noninvasively quantify the structural and biochemical characteristics of the tissue. The goal of this project was to develop a perfusion bioreactor system compatible with two-photon imaging to noninvasively assess tissue engineered human adipose tissue structure and function in vitro. Three-dimensional (3D) vascularized human adipose tissues were engineered in vitro, before being introduced to a perfusion environment and tracked over time by automated quantification of endogenous markers of metabolism using two-photon excited fluorescence (TPEF). Depth-resolved image stacks were analyzed for redox ratio metabolic profiling and compared to prior analyses performed on 3D engineered adipose tissue in static culture. Traditional assessments with H&E staining were used to qualitatively measure extracellular matrix generation and cell density with respect to location within the tissue. The distribution of cells within the tissue and average cellular redox ratios were different between static and perfusion cultures, while the trends of decreased redox ratio and increased cellular proliferation with time in both static and perfusion cultures were similar. These results establish a basis for noninvasive optical tracking of tissue structure and function in vitro, which can be applied to future studies to assess tissue development or drug toxicity screening and disease progression.

  2. Four-dimensional respiratory motion-resolved whole heart coronary MR angiography.

    PubMed

    Piccini, Davide; Feng, Li; Bonanno, Gabriele; Coppo, Simone; Yerly, Jérôme; Lim, Ruth P; Schwitter, Juerg; Sodickson, Daniel K; Otazo, Ricardo; Stuber, Matthias

    2017-04-01

    Free-breathing whole-heart coronary MR angiography (MRA) commonly uses navigators to gate respiratory motion, resulting in lengthy and unpredictable acquisition times. Conversely, self-navigation has 100% scan efficiency, but requires motion correction over a broad range of respiratory displacements, which may introduce image artifacts. We propose replacing navigators and self-navigation with a respiratory motion-resolved reconstruction approach. Using a respiratory signal extracted directly from the imaging data, individual signal-readouts are binned according to their respiratory states. The resultant series of undersampled images are reconstructed using an extradimensional golden-angle radial sparse parallel imaging (XD-GRASP) algorithm, which exploits sparsity along the respiratory dimension. Whole-heart coronary MRA was performed in 11 volunteers and four patients with the proposed methodology. Image quality was compared with that obtained with one-dimensional respiratory self-navigation. Respiratory-resolved reconstruction effectively suppressed respiratory motion artifacts. The quality score for XD-GRASP reconstructions was greater than or equal to self-navigation in 80/88 coronary segments, reaching diagnostic quality in 61/88 segments versus 41/88. Coronary sharpness and length were always superior for the respiratory-resolved datasets, reaching statistical significance (P < 0.05) in most cases. XD-GRASP represents an attractive alternative for handling respiratory motion in free-breathing whole heart MRI and provides an effective alternative to self-navigation. Magn Reson Med 77:1473-1484, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  3. Multiple heteroatom substitution to graphene nanoribbon

    PubMed Central

    Meyer, Ernst

    2018-01-01

    Substituting heteroatoms into nanostructured graphene elements, such as graphene nanoribbons, offers the possibility for atomic engineering of electronic properties. To characterize these substitutions, functionalized atomic force microscopy (AFM)—a tool to directly resolve chemical structures—is one of the most promising tools, yet the chemical analysis of heteroatoms has been rarely performed. We synthesized multiple heteroatom-substituted graphene nanoribbons and showed that AFM can directly resolve elemental differences and can be correlated to the van der Waals radii, as well as the modulated local electron density caused by the substitution. This elemental-sensitive measurement takes an important step in the analysis of functionalized two-dimensional carbon materials. PMID:29662955

  4. Electrically tunable spin filtering for electron tunneling between spin-resolved quantum Hall edge states and a quantum dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiyama, H., E-mail: kiyama@meso.t.u-tokyo.ac.jp; Fujita, T.; Teraoka, S.

    2014-06-30

    Spin filtering with electrically tunable efficiency is achieved for electron tunneling between a quantum dot and spin-resolved quantum Hall edge states by locally gating the two-dimensional electron gas (2DEG) leads near the tunnel junction to the dot. The local gating can change the potential gradient in the 2DEG and consequently the edge state separation. We use this technique to electrically control the ratio of the dot–edge state tunnel coupling between opposite spins and finally increase spin filtering efficiency up to 91%, the highest ever reported, by optimizing the local gating.

  5. A spatially resolving x-ray crystal spectrometer for measurement of ion-temperature and rotation-velocity profiles on the Alcator C-Mod tokamak.

    PubMed

    Hill, K W; Bitter, M L; Scott, S D; Ince-Cushman, A; Reinke, M; Rice, J E; Beiersdorfer, P; Gu, M-F; Lee, S G; Broennimann, Ch; Eikenberry, E F

    2008-10-01

    A new spatially resolving x-ray crystal spectrometer capable of measuring continuous spatial profiles of high resolution spectra (lambda/d lambda>6000) of He-like and H-like Ar K alpha lines with good spatial (approximately 1 cm) and temporal (approximately 10 ms) resolutions has been installed on the Alcator C-Mod tokamak. Two spherically bent crystals image the spectra onto four two-dimensional Pilatus II pixel detectors. Tomographic inversion enables inference of local line emissivity, ion temperature (T(i)), and toroidal plasma rotation velocity (upsilon(phi)) from the line Doppler widths and shifts. The data analysis techniques, T(i) and upsilon(phi) profiles, analysis of fusion-neutron background, and predictions of performance on other tokamaks, including ITER, will be presented.

  6. Can Positron 2D-ACAR Resolve the Electronic Structure of HIGH-Tc Superconductors?

    NASA Astrophysics Data System (ADS)

    Chan, L. P.; Lynn, K. G.; Harshman, D. R.

    We examine the ability of the positron Two-Dimensional Angular Correlation Annihilation Radiation (2D-ACAR) technique to resolve the electronic structures of high-Tc cuprate superconductors. Following a short description of the technique, discussions of the theoretical assumptions, data analysis and experimental considerations, in relation to the high-Tc superconductors, are given. We briefly review recent 2D-ACAR experiments on YBa2Cu3O7-x, Bi2Sr2CaCuO8+δ and La2-xSrxCuO4. The 2D-ACAR technique is useful in resolving the band crossings associated with the layers of the superconductors that are preferentially sampled by the positrons. Together with other Fermi surface measurements (namely angle-resolved photoemission), 2D-ACAR can resolve some of the electronic structures of high-Tc cuprate superconductors. In addition, 2D-ACAR measurements of YBa2Cu3O7-x and Bi2Sr2CaCuO8+δ also reveal an interesting temperature dependence in the fine structures, and a change in the positron lifetime in the former.

  7. Local density of states in two-dimensional topological superconductors under a magnetic field: Signature of an exterior Majorana bound state

    NASA Astrophysics Data System (ADS)

    Suzuki, Shu-Ichiro; Kawaguchi, Yuki; Tanaka, Yukio

    2018-04-01

    We study quasiparticle states on a surface of a topological insulator (TI) with proximity-induced superconductivity under an external magnetic field. An applied magnetic field creates two Majorana bound states: a vortex Majorana state localized inside a vortex core and an exterior Majorana state localized along a circle centered at the vortex core. We calculate the spin-resolved local density of states (LDOS) and demonstrate that the shrinking of the radius of the exterior Majorana state, predicted in R. S. Akzyanov et al., Phys. Rev. B 94, 125428 (2016), 10.1103/PhysRevB.94.125428, under a strong magnetic field can be seen in LDOS without smeared out by nonzero-energy states. The spin-resolved LDOS further reveals that the spin of the exterior Majorana state is strongly spin-polarized. Accordingly, the induced odd-frequency spin-triplet pairs are found to be spin-polarized as well. In order to detect the exterior Majorana states, however, the Fermi energy should be closed to the Dirac point to avoid contributions from continuum levels. We also study a different two-dimensional topological-superconducting system where a two-dimensional electron gas with the spin-orbit coupling is sandwiched between an s -wave superconductor and a ferromagnetic insulator. We show that the radius of an exterior Majorana state can be tuned by an applied magnetic field. However, on the contrary to the results at a TI surface, neither the exterior Majorana state nor the induced odd-frequency spin-triplet pairs are spin-polarized. We conclude that the spin polarization of the Majorana state is attributed to the spin-polarized Landau level, which is characteristic for systems with the Dirac-like dispersion.

  8. Performance of Orbital Neutron Instruments for Spatially Resolved Hydrogen Measurements of Airless Planetary Bodies

    PubMed Central

    Elphic, Richard C.; Feldman, William C.; Funsten, Herbert O.; Prettyman, Thomas H.

    2010-01-01

    Abstract Orbital neutron spectroscopy has become a standard technique for measuring planetary surface compositions from orbit. While this technique has led to important discoveries, such as the deposits of hydrogen at the Moon and Mars, a limitation is its poor spatial resolution. For omni-directional neutron sensors, spatial resolutions are 1–1.5 times the spacecraft's altitude above the planetary surface (or 40–600 km for typical orbital altitudes). Neutron sensors with enhanced spatial resolution have been proposed, and one with a collimated field of view is scheduled to fly on a mission to measure lunar polar hydrogen. No quantitative studies or analyses have been published that evaluate in detail the detection and sensitivity limits of spatially resolved neutron measurements. Here, we describe two complementary techniques for evaluating the hydrogen sensitivity of spatially resolved neutron sensors: an analytic, closed-form expression that has been validated with Lunar Prospector neutron data, and a three-dimensional modeling technique. The analytic technique, called the Spatially resolved Neutron Analytic Sensitivity Approximation (SNASA), provides a straightforward method to evaluate spatially resolved neutron data from existing instruments as well as to plan for future mission scenarios. We conclude that the existing detector—the Lunar Exploration Neutron Detector (LEND)—scheduled to launch on the Lunar Reconnaissance Orbiter will have hydrogen sensitivities that are over an order of magnitude poorer than previously estimated. We further conclude that a sensor with a geometric factor of ∼ 100 cm2 Sr (compared to the LEND geometric factor of ∼ 10.9 cm2 Sr) could make substantially improved measurements of the lunar polar hydrogen spatial distribution. Key Words: Planetary instrumentation—Planetary science—Moon—Spacecraft experiments—Hydrogen. Astrobiology 10, 183–200. PMID:20298147

  9. Effects of spatial and temporal resolution on simulated feedbacks from polygonal tundra.

    NASA Astrophysics Data System (ADS)

    Coon, E.; Atchley, A. L.; Painter, S. L.; Karra, S.; Moulton, J. D.; Wilson, C. J.; Liljedahl, A.

    2014-12-01

    Earth system land models typically resolve permafrost regions at spatial resolutions grossly larger than the scales of topographic variation. This observation leads to two critical questions: How much error is introduced by this lack of resolution, and what is the effect of this approximation on other coupled components of the Earth system, notably the energy balance and carbon cycle? Here we use the Arctic Terrestrial Simulator (ATS) to run micro-topography resolving simulations of polygonal ground, driven by meteorological data from Barrow, AK, to address these questions. ATS couples surface and subsurface processes, including thermal hydrology, surface energy balance, and a snow model. Comparisons are made between one-dimensional "column model" simulations (similar to, for instance, CLM or other land models typically used in Earth System models) and higher-dimensional simulations which resolve micro-topography, allowing for distributed surface runoff, horizontal flow in the subsurface, and uneven snow distribution. Additionally, we drive models with meteorological data averaged over different time scales from daily to weekly moving windows. In each case, we compare fluxes important to the surface energy balance including albedo, latent and sensible heat fluxes, and land-to-atmosphere long-wave radiation. Results indicate that spatial topography variation and temporal variability are important in several ways. Snow distribution greatly affects the surface energy balance, fundamentally changing the partitioning of incoming solar radiation between the subsurface and the atmosphere. This has significant effects on soil moisture and temperature, with implications for vegetation and decomposition. Resolving temporal variability is especially important in spring, when early warm days can alter the onset of snowmelt by days to weeks. We show that high-resolution simulations are valuable in evaluating current land models, especially in areas of polygonal ground. This work was supported by LANL Laboratory Directed Research and Development Project LDRD201200068DR and by the The Next-Generation Ecosystem Experiments (NGEE Arctic) project. NGEE-Arctic is supported by the Office of Biological and Environmental Research in the DOE Office of Science. LA-UR-14-26227.

  10. Termination of the spin-resolved integer quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Wong, L. W.; Jiang, H. W.; Palm, E.; Schaff, W. J.

    1997-03-01

    We report a magnetotransport study of the termination of the spin-resolved integer quantum Hall effect by controlled disorder in a gated GaAs/AlxGa1-xAs heterostructure. We have found that, for a given Nth Landau level, the difference in filling factors of a pair of spin-split resistivity peaks δνN=\\|νN↑-νN↓\\| changes rapidly from one to zero near a critical density nc. Scaling analysis shows that δνN collapses onto a single curve independent of N when plotted against the parameter (n-nc)/nc for five Landau levels. The effect of increasing the Zeeman energy is also examined by tilting the direction of magnetic field relative to the plane of the two-dimensional electron gas. Our experiment suggests the termination of the spin-resolved quantum Hall effect is a phase transition.

  11. Assessment of the pseudo-tracking approach for the calculation of material acceleration and pressure fields from time-resolved PIV: part II. Spatio-temporal filtering

    NASA Astrophysics Data System (ADS)

    van Gent, P. L.; Schrijer, F. F. J.; van Oudheusden, B. W.

    2018-04-01

    The present study characterises the spatio-temporal filtering associated with pseudo-tracking. A combined theoretical and numerical assessment is performed that uses the relatively simple flow case of a two-dimensional Taylor vortex as analytical test case. An additional experimental assessment considers the more complex flow of a low-speed axisymmetric base flow, for which time-resolved tomographic PIV measurements and microphone measurements were obtained. The results of these assessments show how filtering along Lagrangian tracks leads to amplitude modulation of flow structures. A cut-off track length and spatial resolution are specified to support future applications of the pseudo-tracking approach. The experimental results show a fair agreement between PIV and microphone pressure data in terms of fluctuation levels and pressure frequency spectra. The coherence and correlation between microphone and PIV pressure measurements were found to be substantial and almost independent of the track length, indicating that the low-frequency behaviour of the flow could be reproduced regardless of the track length. It is suggested that a spectral analysis can be used inform the selection of a suitable track length and to estimate the local error margin of reconstructed pressure values.

  12. Recent Advances in Fluorescence Lifetime Analytical Microsystems: Contact Optics and CMOS Time-Resolved Electronics.

    PubMed

    Wei, Liping; Yan, Wenrong; Ho, Derek

    2017-12-04

    Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices.

  13. Recent Advances in Fluorescence Lifetime Analytical Microsystems: Contact Optics and CMOS Time-Resolved Electronics

    PubMed Central

    Yan, Wenrong; Ho, Derek

    2017-01-01

    Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices. PMID:29207568

  14. Time-Resolved Three-Dimensional Contrast-Enhanced Magnetic Resonance Angiography in Patients with Chronic Expanding and Stable Aortic Dissections

    PubMed Central

    Trojan, Michael; Kotelis, Drosos; Müller-Eschner, Matthias; Partovi, Sasan; Fink, Christian; Karmonik, Christof; Böckler, Dittmar; Kauczor, Hans-Ulrich; von Tengg-Kobligk, Hendrik

    2017-01-01

    Objective To prospectively evaluate our hypothesis that three-dimensional time-resolved contrast-enhanced magnetic resonance angiography (TR-MRA) is able to detect hemodynamic alterations in patients with chronic expanding aortic dissection compared to stable aortic dissections. Materials and Methods 20 patients with chronic or residual aortic dissection in the descending aorta and patent false lumen underwent TR-MRA of the aorta at 1.5 T and repeated follow-up imaging (mean follow-up 5.4 years). 7 patients showed chronic aortic expansion and 13 patients had stable aortic diameters. Regions of interest were placed in the nondissected ascending aorta and the false lumen of the descending aorta at the level of the diaphragm (FL-diaphragm level) resulting in respective time-intensity curves. Results For the FL-diaphragm level, time-to-peak intensity and full width at half maximum were significantly shorter in the expansion group compared to the stable group (p = 0.027 and p = 0.003), and upward and downward slopes of time-intensity curves were significantly steeper (p = 0.015 and p = 0.005). The delay of peak intensity in the FL-diaphragm level compared to the nondissected ascending aorta was significantly shorter in the expansion group compared to the stable group (p = 0.01). Conclusions 3D TR-MRA detects significant alterations of hemodynamics within the patent false lumen of chronic expanding aortic dissections compared to stable aortic dissections. PMID:29317855

  15. Nonlinear two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase.

    PubMed

    Lu, Jian; Zhang, Yaqing; Hwang, Harold Y; Ofori-Okai, Benjamin K; Fleischer, Sharly; Nelson, Keith A

    2016-10-18

    Ultrafast 2D spectroscopy uses correlated multiple light-matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum; its extension to the terahertz regime of the electromagnetic spectrum, where a rich variety of material degrees of freedom reside, remains an experimental challenge. We report a demonstration of ultrafast 2D terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by multiple terahertz field-dipole interactions. The nonlinear time domain orientation signals are mapped into the frequency domain in 2D rotational spectra that reveal J-state-resolved nonlinear rotational dynamics. The approach enables direct observation of correlated rotational transitions and may reveal rotational coupling and relaxation pathways in the ground electronic and vibrational state.

  16. Study on the Coupling Mechanism of the Orthogonal Dipoles with Surface Plasmon in Green LED by Cathodoluminescence.

    PubMed

    Feng, Yulong; Chen, Zhizhong; Jiang, Shuang; Li, Chengcheng; Chen, Yifan; Zhan, Jinglin; Chen, Yiyong; Nie, Jingxin; Jiao, Fei; Kang, Xiangning; Li, Shunfeng; Yu, Tongjun; Zhang, Guoyi; Shen, Bo

    2018-04-16

    We analyzed the coupling behavior between the localized surface plasmon (LSP) and quantum wells (QWs) using cathodoluminescence (CL) in a green light-emitting diodes (LED) with Ag nanoparticles (NPs) filled in photonic crystal (PhC) holes. Photoluminescence (PL) suppression and CL enhancement were obtained for the same green LED sample with the Ag NP array. Time-resolved PL (TRPL) results indicate strong coupling between the LSP and the QWs. Three-dimensional (3D) finite difference time domain (FDTD) simulation was performed using a three-body model consisting of two orthogonal dipoles and a single Ag NP. The LSP–QWs coupling effect was separated from the electron-beam (e-beam)–LSP–QW system by linear approximation. The energy dissipation was significantly reduced by the z-dipole introduction under the e-beam excitation. In this paper, the coupling mechanism is discussed and a novel emission structure is proposed.

  17. Enhanced polarization of (11-22) semi-polar InGaN nanorod array structure

    NASA Astrophysics Data System (ADS)

    Athanasiou, M.; Smith, R. M.; Hou, Y.; Zhang, Y.; Gong, Y.; Wang, T.

    2015-10-01

    By means of a cost effective nanosphere lithography technique, an InGaN/GaN multiple quantum well structure grown on (11-22) semipolar GaN has been fabricated into two dimensional nanorod arrays which form a photonic crystal (PhC) structure. Such a PhC structure demonstrates not only significantly increased emission intensity, but also an enhanced polarization ratio of the emission. This is due to an effective inhibition of the emission in slab modes and then redistribution to the vertical direction, thus minimizing the light scattering processes that lead to randomizing of the optical polarization. The PhC structure is designed based on a standard finite-difference-time-domain simulation, and then optically confirmed by detailed time-resolved photoluminescence measurements. The results presented pave the way for the fabrication of semipolar InGaN/GaN based emitters with both high efficiency and highly polarized emission.

  18. Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory.

    PubMed

    Schaeffer, D B; Fox, W; Haberberger, D; Fiksel, G; Bhattacharjee, A; Barnak, D H; Hu, S X; Germaschewski, K

    2017-07-14

    We present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number M_{ms}≈12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on time scales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magnetic barrier between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration.

  19. High-speed femtosecond pump-probe spectroscopy with a smart pixel detector array.

    PubMed

    Bourquin, S; Prasankumar, R P; Kärtner, F X; Fujimoto, J G; Lasser, T; Salathé, R P

    2003-09-01

    A new femtosecond pump-probe spectroscopy technique is demonstrated that permits the high-speed, parallel acquisition of pump-probe measurements at multiple wavelengths. This is made possible by use of a novel, two-dimensional smart pixel detector array that performs amplitude demodulation in real time on each pixel. This detector array can not only achieve sensitivities comparable with lock-in amplification but also simultaneously performs demodulation of probe transmission signals at multiple wavelengths, thus permitting rapid time- and wavelength-resolved femtosecond pump-probe spectroscopy. Measurements on a thin sample of bulk GaAs are performed across 58 simultaneous wavelengths. Differential probe transmission changes as small as approximately 2 x 10(-4) can be measured over a 5-ps delay scan in only approximately 3 min. This technology can be applied to a wide range of pump-probe measurements in condensed matter, chemistry, and biology.

  20. Navier-Stokes Simulation of UH-60A Rotor/Wake Interaction Using Adaptive Mesh Refinement

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.

    2017-01-01

    Time-dependent Navier-Stokes simulations have been carried out for a flexible UH-60A rotor in forward flight, where the rotor wake interacts with the rotor blades. These flow conditions involved blade vortex interaction and dynamic stall, two common conditions that occur as modern helicopter designs strive to achieve greater flight speeds and payload capacity. These numerical simulations utilized high-order spatial accuracy and delayed detached eddy simulation. Emphasis was placed on understanding how improved rotor wake resolution affects the prediction of the normal force, pitching moment, and chord force of the rotor. Adaptive mesh refinement was used to highly resolve the turbulent rotor wake in a computationally efficient manner. Moreover, blade vortex interaction was found to trigger dynamic stall. Time-dependent flow visualization was utilized to provide an improved understanding of the numerical and physical mechanisms involved with three-dimensional dynamic stall.

  1. Emergence of charge density waves and a pseudogap in single-layer TiTe2.

    PubMed

    Chen, P; Pai, Woei Wu; Chan, Y-H; Takayama, A; Xu, C-Z; Karn, A; Hasegawa, S; Chou, M Y; Mo, S-K; Fedorov, A-V; Chiang, T-C

    2017-09-11

    Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here we report a study of TiTe 2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe 2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermi level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe 2 , despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.Due to reduced dimensionality, the properties of 2D materials are often different from their 3D counterparts. Here, the authors identify the emergence of a unique charge density wave (CDW) order in monolayer TiTe 2 that challenges the current understanding of CDW formation.

  2. Electron-phonon coupling in graphene placed between magnetic Li and Si layers on cobalt

    NASA Astrophysics Data System (ADS)

    Usachov, Dmitry Yu.; Fedorov, Alexander V.; Vilkov, Oleg Yu.; Ogorodnikov, Ilya I.; Kuznetsov, Mikhail V.; Grüneis, Alexander; Laubschat, Clemens; Vyalikh, Denis V.

    2018-02-01

    Using angle-resolved photoemission spectroscopy (ARPES), we study the electronic structure and electron-phonon coupling in a Li-doped graphene monolayer decoupled from the Co(0001) substrate by intercalation of silicon. Based on the photoelectron diffraction measurements, we disclose the structural properties of the Si/Co interface. Our density functional theory calculations demonstrate that in the studied Li/graphene/Si/Co system the magnetism of Co substrate induces notable magnetic moments on Li and Si atoms. At the same time graphene remains almost nonmagnetic and clamped between two magnetically active atomic layers with antiparallel magnetizations. ARPES maps of the graphene Fermi surface reveal strong electron doping, which may lead to superconductivity mediated by electron-phonon coupling (EPC). Analysis of the spectral function of photoelectrons reveals apparent anisotropy of EPC in the k space. These properties make the studied system tempting for studying the relation between superconductivity and magnetism in two-dimensional materials.

  3. Transition paths in single-molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Cossio, Pilar; Hummer, Gerhard; Szabo, Attila

    2018-03-01

    In a typical single-molecule force spectroscopy experiment, the ends of the molecule of interest are connected by long polymer linkers to a pair of mesoscopic beads trapped in the focus of two laser beams. At constant force load, the total extension, i.e., the end-to-end distance of the molecule plus linkers, is measured as a function of time. In the simplest systems, the measured extension fluctuates about two values characteristic of folded and unfolded states, with occasional transitions between them. We have recently shown that molecular (un)folding rates can be recovered from such trajectories, with a small linker correction, as long as the characteristic time of the bead fluctuations is shorter than the residence time in the unfolded (folded) state. Here, we show that accurate measurements of the molecular transition path times require an even faster apparatus response. Transition paths, the trajectory segments in which the molecule (un)folds, are properly resolved only if the beads fluctuate more rapidly than the end-to-end distance of the molecule. Therefore, over a wide regime, the measured rates may be meaningful but not the transition path times. Analytic expressions for the measured mean transition path times are obtained for systems diffusing anisotropically on a two-dimensional free energy surface. The transition path times depend on the properties both of the molecule and of the pulling device.

  4. Study on the conformation changes of Lysozyme induced by Hypocrellin A: The mechanism investigation

    NASA Astrophysics Data System (ADS)

    Ma, Fei; Huang, He-Yong; Zhou, Lin; Yang, Chao; Zhou, Jia-Hong; Liu, Zheng-Ming

    2012-11-01

    The interactions between Lysozyme and Hypocrellin A are investigated in details using time-resolved fluorescence, fourier transform infrared spectroscopy (FTIR), circular dichroism spectroscopy (CD), three-dimensional fluorescence spectra, and thermal gravimetric analysis (TGA) techniques. The results of time-resolved fluorescence suggest that the quenching mechanism is static quenching. FTIR and CD spectroscopy provide evidences of the reducing of α-helix after interaction. Hypocrellin A could change the micro-environmental of Lysozyme according to hydrophobic interaction between the aromatic ring and the hydrophobic amino acid residues, and the altered polypeptide backbone structures induce the reduction of α-helical structures. Moreover, TGA study further demonstrates the structure changes of Lysozyme on the effect of Hypocrellin A. This study could provide some important information for the derivatives of HA in pharmacy, pharmacology and biochemistry.

  5. Nonaxisymmetric evolution in protostellar disks

    NASA Technical Reports Server (NTRS)

    Laughlin, Gregory; Bodenheimer, Peter

    1994-01-01

    We present a two-dimensional, multigridded hydrodynamical simulation of the collapse of an axisymmetric, rotating, 1 solar mass protostellar cloud, which forms a resolved, hydrotastic disk. The code includes the effects of physical viscosity, radiative transfer and radiative acceleration but not magnetic fields. We examine how the disk is affected by the inclusion of turbulent viscosity by comparing a viscous simulation with an inviscid model evolved from the same initial conditions, and we derive a disk evolutionary timescale on the order of 300,000 years if alpha = 0.01. Effects arising from non-axisymmetric gravitational instabilities in the protostellar disk are followed with a three-dimensional SPH code, starting from the two-dimensional structure. We find that the disk is prone to a series of spiral instabilities with primary azimulthal mode number m = 1 and m = 2. The torques induced by these nonaxisymmetric structures elicit material transport of angular momentum and mass through the disk, readjusting the surface density profile toward more stable configurations. We present a series of analyses which characterize both the development and the likely source of the instabilities. We speculate that an evolving disk which maintains a minimum Toomre Q-value approximately 1.4 will have a total evolutionary span of several times 10(exp 5) years, comparable to, but somewhat shorter than the evolutionary timescale resulting from viscous turbulence alone. We compare the evolution resulting from nonaxisymmetric instabilities with solutions of a one-dimensional viscous diffusion equation applied to the initial surface density and temperature profile. We find that an effective alpha-value of 0.03 is a good fit to the results of the simulation. However, the effective alpha will depend on the minimum Q in the disk at the time the instability is activated. We argue that the major fraction of the transport characterized by the value of alpha is due to the action of gravitational torques, and does not arise from inherent viscosity within the smoothed particle hydrodynamics method.

  6. Detection of experimental brain tumors using time-resolved laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Thompson, Reid C.; Black, Keith L.; Kateb, Babak; Marcu, Laura

    2002-05-01

    Time-Resolved Laser-Induced Fluorescence Spectroscopy (TR-LIFS) has the potential to provide a non- invasive characterization and detection of tumors. We utilized TR-LIFS to detect gliomas in-vivo in the rat C6 glioma model. Time-resolved emission spectra of both normal brain and tumor were analyzed to determine if unique fluorescence signatures could be used to distinguish the two. Fluorescence parameters derived from both spectral and time domain were used for tissue characterization. Our results show that in the rat C6 glioma model, TR-LIFS can be used to differentiate brain tumors from normal tissue (gray and white mater) based upon time- resolved fluorescence signatures seen in brain tumors.

  7. A two-dimensional time domain near zone to far zone transformation

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Ryan, Deirdre; Beggs, John H.; Kunz, Karl S.

    1991-01-01

    A time domain transformation useful for extrapolating three dimensional near zone finite difference time domain (FDTD) results to the far zone was presented. Here, the corresponding two dimensional transform is outlined. While the three dimensional transformation produced a physically observable far zone time domain field, this is not convenient to do directly in two dimensions, since a convolution would be required. However, a representative two dimensional far zone time domain result can be obtained directly. This result can then be transformed to the frequency domain using a Fast Fourier Transform, corrected with a simple multiplicative factor, and used, for example, to calculate the complex wideband scattering width of a target. If an actual time domain far zone result is required, it can be obtained by inverse Fourier transform of the final frequency domain result.

  8. Lattice-Assisted Spectroscopy: A Generalized Scanning Tunneling Microscope for Ultracold Atoms.

    PubMed

    Kantian, A; Schollwöck, U; Giamarchi, T

    2015-10-16

    We propose a scheme to measure the frequency-resolved local particle and hole spectra of any optical lattice-confined system of correlated ultracold atoms that offers single-site addressing and imaging, which is now an experimental reality. Combining perturbation theory and time-dependent density matrix renormalization group simulations, we quantitatively test and validate this approach of lattice-assisted spectroscopy on several one-dimensional example systems, such as the superfluid and Mott insulator, with and without a parabolic trap, and finally on edge states of the bosonic Su-Schrieffer-Heeger model. We highlight extensions of our basic scheme to obtain an even wider variety of interesting and important frequency resolved spectra.

  9. Matrix-Assisted Three-Dimensional Printing of Cellulose Nanofibers for Paper Microfluidics.

    PubMed

    Shin, Sungchul; Hyun, Jinho

    2017-08-09

    A cellulose nanofiber (CNF), one of the most attractive green bioresources, was adopted for construction of microfluidic devices using matrix-assisted three-dimensional (3D) printing. CNF hydrogels can support structures printed using CAD design in a 3D hydrogel environment with the appropriate combination of rheological properties between the CNF hydrogel and ink materials. Amazingly, the structure printed freely in the bulky CNF hydrogels was able to retain its highly resolved 3D features in an ultrathin two-dimensional (2D) paper using a simple drying process. The dimensional change in the CNF hydrogels from 3D to 2D resulted from simple dehydration of the CNFs and provided transparent, stackable paper-based 3D channel devices. As a proof of principle, the rheological properties of the CNF hydrogels, the 3D structure of the ink, the formation of channels by evacuation of the ink, and the highly localized selectivity of the devices are described.

  10. An adaptive method for a model of two-phase reactive flow on overlapping grids

    NASA Astrophysics Data System (ADS)

    Schwendeman, D. W.

    2008-11-01

    A two-phase model of heterogeneous explosives is handled computationally by a new numerical approach that is a modification of the standard Godunov scheme. The approach generates well-resolved and accurate solutions using adaptive mesh refinement on overlapping grids, and treats rationally the nozzling terms that render the otherwise hyperbolic model incapable of a conservative representation. The evolution and structure of detonation waves for a variety of one and two-dimensional configurations will be discussed with a focus given to problems of detonation diffraction and failure.

  11. Full Quantum Dynamics Simulation of a Realistic Molecular System Using the Adaptive Time-Dependent Density Matrix Renormalization Group Method.

    PubMed

    Yao, Yao; Sun, Ke-Wei; Luo, Zhen; Ma, Haibo

    2018-01-18

    The accurate theoretical interpretation of ultrafast time-resolved spectroscopy experiments relies on full quantum dynamics simulations for the investigated system, which is nevertheless computationally prohibitive for realistic molecular systems with a large number of electronic and/or vibrational degrees of freedom. In this work, we propose a unitary transformation approach for realistic vibronic Hamiltonians, which can be coped with using the adaptive time-dependent density matrix renormalization group (t-DMRG) method to efficiently evolve the nonadiabatic dynamics of a large molecular system. We demonstrate the accuracy and efficiency of this approach with an example of simulating the exciton dissociation process within an oligothiophene/fullerene heterojunction, indicating that t-DMRG can be a promising method for full quantum dynamics simulation in large chemical systems. Moreover, it is also shown that the proper vibronic features in the ultrafast electronic process can be obtained by simulating the two-dimensional (2D) electronic spectrum by virtue of the high computational efficiency of the t-DMRG method.

  12. An Aeroacoustic Characterization of a Multi-Element High-Lift Airfoil

    NASA Astrophysics Data System (ADS)

    Pascioni, Kyle A.

    The leading edge slat of a high-lift system is known to be a large contributor to the overall radiated acoustic field from an aircraft during the approach phase of the flight path. This is due to the unsteady flow field generated in the slat-cove and near the leading edge of the main element. In an effort to understand the characteristics of the flow-induced source mechanisms, a suite of experimental measurements has been performed on a two-dimensional multi-element airfoil, namely, the MD-30P30N. Particle image velocimetry provide mean flow field and turbulence statistics to illustrate the differences associated with a change in angle of attack. Phase-averaged quantities prove shear layer instabilities to be linked to narrowband peaks found in the acoustic spectrum. Unsteady surface pressure are also acquired, displaying strong narrowband peaks and large spanwise coherence at low angles of attack, whereas the spectrum becomes predominately broadband at high angles. Nonlinear frequency interaction is found to occur at low angles of attack, while being negligible at high angles. To localize and quantify the noise sources, phased microphone array measurements are per- formed on the two dimensional high-lift configuration. A Kevlar wall test section is utilized to allow the mean aerodynamic flow field to approach distributions similar to a free-air configuration, while still capable of measuring the far field acoustic signature. However, the inclusion of elastic porous sidewalls alters both aerodynamic and acoustic characteristics. Such effects are considered and accounted for. Integrated spectra from Delay and Sum and DAMAS beamforming effectively suppress background facility noise and additional noise generated at the tunnel wall/airfoil junction. Finally, temporally-resolved estimates of a low-dimensional representation of the velocity vector fields are obtained through the use of proper orthogonal decomposition and spectral linear stochastic estimation. An estimate of the pressure field is then extracted by Poissons equation. From this, Curles analogy projects the time-resolved pressure forces on the airfoil surface to further establish the connection between the dominating unsteady flow structures and the propagated noise.

  13. Low Dimensional Study of a Supersonic Multi-Stream Jet Flow

    NASA Astrophysics Data System (ADS)

    Tenney, Andrew; Berry, Matthew; Aycock-Rizzo, Halley; Glauser, Mark; Lewalle, Jacques

    2017-11-01

    In this study, the near field of a two stream supersonic jet flow is examined using low dimensional tools. The flow issues from a multi-stream nozzle as described in A near-field investigation of a supersonic, multi-stream jet: locating turbulence mechanisms through velocity and density measurements by Magstadt et al., with the bulk flow Mach number, M1, being 1.6, and the second stream Mach number, M2, reaching the sonic condition. The flow field is visualized using Particle Image Velocimetry (PIV), with frames captured at a rate of 4Hz. Time-resolved pressure measurements are made just aft of the nozzle exit, as well as in the far-field, 86.6 nozzle hydraulic diameters away from the exit plane. The methodologies used in the analysis of this flow include Proper Orthogonal Decomposition (POD), and the continuous wavelet transform. The results from this ``no deck'' case are then compared to those found in the study conducted by Berry et al. From this comparison, we draw conclusions about the effects of the presence of an aft deck on the low dimensional flow description, and near field spectral content. Supported by AFOSR Grant FA9550-15-1-0435, and AFRL, through an SBIR Grant with Spectral Energies, LLC.

  14. Two-color vibrational, femtosecond, fully resonant electronically enhanced CARS (FREE-CARS) of gas-phase nitric oxide.

    PubMed

    Stauffer, Hans U; Roy, Sukesh; Schmidt, Jacob B; Wrzesinski, Paul J; Gord, James R

    2016-09-28

    A resonantly enhanced, two-color, femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) approach is demonstrated and used to explore the nature of the frequency- and time-dependent signals produced by gas-phase nitric oxide (NO). Through careful selection of the input pulse wavelengths, this fully resonant electronically enhanced CARS (FREE-CARS) scheme allows rovibronic-state-resolved observation of time-dependent rovibrational wavepackets propagating on the vibrationally excited ground-state potential energy surface of this diatomic species. Despite the use of broadband, ultrafast time-resolved input pulses, high spectral resolution of gas-phase rovibronic transitions is observed in the FREE-CARS signal, dictated by the electronic dephasing timescales of these states. Analysis and computational simulation of the time-dependent spectra observed as a function of pump-Stokes and Stokes-probe delays provide insight into the rotationally resolved wavepacket motion observed on the excited-state and vibrationally excited ground-state potential energy surfaces of NO, respectively.

  15. Vectorial point spread function and optical transfer function in oblique plane imaging.

    PubMed

    Kim, Jeongmin; Li, Tongcang; Wang, Yuan; Zhang, Xiang

    2014-05-05

    Oblique plane imaging, using remote focusing with a tilted mirror, enables direct two-dimensional (2D) imaging of any inclined plane of interest in three-dimensional (3D) specimens. It can image real-time dynamics of a living sample that changes rapidly or evolves its structure along arbitrary orientations. It also allows direct observations of any tilted target plane in an object of which orientational information is inaccessible during sample preparation. In this work, we study the optical resolution of this innovative wide-field imaging method. Using the vectorial diffraction theory, we formulate the vectorial point spread function (PSF) of direct oblique plane imaging. The anisotropic lateral resolving power caused by light clipping from the tilted mirror is theoretically analyzed for all oblique angles. We show that the 2D PSF in oblique plane imaging is conceptually different from the inclined 2D slice of the 3D PSF in conventional lateral imaging. Vectorial optical transfer function (OTF) of oblique plane imaging is also calculated by the fast Fourier transform (FFT) method to study effects of oblique angles on frequency responses.

  16. Long-range propagation of nonlinear infrasound waves through an absorbing atmosphere.

    PubMed

    de Groot-Hedlin, C D

    2016-04-01

    The Navier-Stokes equations are solved using a finite-difference, time-domain (FDTD) approach for axi-symmetric environmental models, allowing three-dimensional acoustic propagation to be simulated using a two-dimensional Cylindrical coordinate system. A method to stabilize the FDTD algorithm in a viscous medium at atmospheric densities characteristic of the lower thermosphere is described. The stabilization scheme slightly alters the governing equations but results in quantifiable dispersion characteristics. It is shown that this method leaves sound speeds and attenuation unchanged at frequencies that are well resolved by the temporal sampling rate but strongly attenuates higher frequencies. Numerical experiments are performed to assess the effect of source strength on the amplitudes and spectral content of signals recorded at ground level at a range of distances from the source. It is shown that the source amplitudes have a stronger effect on a signal's dominant frequency than on its amplitude. Applying the stabilized code to infrasound propagation through realistic atmospheric profiles shows that nonlinear propagation alters the spectral content of low amplitude thermospheric signals, demonstrating that nonlinear effects are significant for all detectable thermospheric returns.

  17. Indirect drive ablative Rayleigh-Taylor experiments with rugby hohlraums on OMEGA

    NASA Astrophysics Data System (ADS)

    Casner, A.; Galmiche, D.; Huser, G.; Jadaud, J.-P.; Liberatore, S.; Vandenboomgaerde, M.

    2009-09-01

    Results of ablative Rayleigh-Taylor instability growth experiments performed in indirect drive on the OMEGA laser facility [T. R. Boehly, D. L. Brown, S. Craxton et al., Opt. Commun. 133, 495 (1997)] are reported. These experiments aim at benchmarking hydrocodes simulations and ablator instabilities growth in conditions relevant to ignition in the framework of the Laser MégaJoule [C. Cavailler, Plasma Phys. Controlled Fusion 47, 389 (2005)]. The modulated samples under study were made of germanium-doped plastic (CHGe), which is the nominal ablator for future ignition experiments. The incident x-ray drive was provided using rugby-shaped hohlraums [M. Vandenboomgaerde, J. Bastian, A. Casner et al., Phys. Rev. Lett. 99, 065004 (2007)] and was characterized by means of absolute time-resolved soft x-ray power measurements through a dedicated diagnostic hole, shock breakout data and one-dimensional and two-dimensional (2D) side-on radiographies. All these independent x-ray drive diagnostics lead to an actual on-foil flux that is about 50% smaller than laser-entrance-hole measurements. The experimentally inferred flux is used to simulate experimental optical depths obtained from face-on radiographies for an extensive set of initial conditions: front-side single-mode (wavelength λ =35, 50, and 70 μm) and two-mode perturbations (wavelength λ =35 and 70 μm, in phase or in opposite phase). Three-dimensional pattern growth is also compared with the 2D case. Finally the case of the feedthrough mechanism is addressed with rear-side modulated foils.

  18. Time-resolved studies of energy transfer from meso-tetrakis(N-methylpyridinium-4-yl)- porphyrin to 3,3'-diethyl-2,2'-thiatricarbocyanine iodide along deoxyribonucleic acid Chain.

    PubMed

    Kakiuchi, Toshifumi; Ito, Fuyuki; Nagamura, Toshihiko

    2008-04-03

    The excitation energy transfer from meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) to 3,3'-diethyl-2,2'-thiatricarbocyanine iodide (DTTCI) along the deoxyribonucleic acid (DNA) double strand was investigated by the steady-state absorption and fluorescence measurements and time-resolved fluorescence measurements. The steady-state fluorescence spectra showed that the near-infrared fluorescence of DTTCI was strongly enhanced up to 86 times due to the energy transfer from the excited TMPyP molecule in DNA buffer solution. Furthermore, we elucidated the mechanism of fluorescence quenching and enhancement by the direct observation of energy transfer using the time-resolved measurements. The fluorescence quenching of TMPyP chiefly consists of a static component due to the formation of complex and dynamic components due to the excitation energy transfer. In a heterogeneous one-dimensional system such as a DNA chain, it was proved that the energy transfer process only carries out within the critical distance based on the Förster theory and within a threshold value estimated from the modified Stern-Volmer equation. The present results showed that DNA chain is one of the most powerful tools for nanoassemblies and will give a novel concepts of material design.

  19. A density functional global optimisation study of neutral 8-atom Cu-Ag and Cu-Au clusters

    NASA Astrophysics Data System (ADS)

    Heard, Christopher J.; Johnston, Roy L.

    2013-02-01

    The effect of doping on the energetics and dimensionality of eight atom coinage metal subnanometre particles is fully resolved using a genetic algorithm in tandem with on the fly density functional theory calculations to determine the global minima (GM) for Cu n Ag(8- n) and Cu n Au(8- n) clusters. Comparisons are made to previous ab initio work on mono- and bimetallic clusters, with excellent agreement found. Charge transfer and geometric arguments are considered to rationalise the stability of the particular permutational isomers found. An interesting transition between three dimensional and two dimensional GM structures is observed for copper-gold clusters, which is sharper and appears earlier in the doping series than is known for gold-silver particles.

  20. The geometry of structural equilibrium

    PubMed Central

    2017-01-01

    Building on a long tradition from Maxwell, Rankine, Klein and others, this paper puts forward a geometrical description of structural equilibrium which contains a procedure for the graphic analysis of stress resultants within general three-dimensional frames. The method is a natural generalization of Rankine’s reciprocal diagrams for three-dimensional trusses. The vertices and edges of dual abstract 4-polytopes are embedded within dual four-dimensional vector spaces, wherein the oriented area of generalized polygons give all six components (axial and shear forces with torsion and bending moments) of the stress resultants. The relevant quantities may be readily calculated using four-dimensional Clifford algebra. As well as giving access to frame analysis and design, the description resolves a number of long-standing problems with the incompleteness of Rankine’s description of three-dimensional trusses. Examples are given of how the procedure may be applied to structures of engineering interest, including an outline of a two-stage procedure for addressing the equilibrium of loaded gridshell rooves. PMID:28405361

  1. Novel Visualization Approaches in Environmental Mineralogy

    NASA Astrophysics Data System (ADS)

    Anderson, C. D.; Lopano, C. L.; Hummer, D. R.; Heaney, P. J.; Post, J. E.; Kubicki, J. D.; Sofo, J. O.

    2006-05-01

    Communicating the complexities of atomic scale reactions between minerals and fluids is fraught with intrinsic challenges. For example, an increasing number of techniques are now available for the interrogation of dynamical processes at the mineral-fluid interface. However, the time-dependent behavior of atomic interactions between a solid and a liquid is often not adequately captured by two-dimensional line drawings or images. At the same time, the necessity for describing these reactions to general audiences is growing more urgent, as funding agencies are amplifying their encouragement to scientists to reach across disciplines and to justify their studies to public audiences. To overcome the shortcomings of traditional graphical representations, the Center for Environmental Kinetics Analysis is creating three-dimensional visualizations of experimental and simulated mineral reactions. These visualizations are then displayed on a stereo 3D projection system called the GeoWall. Made possible (and affordable) by recent improvements in computer and data projector technology, the GeoWall system uses a combination of computer software and hardware, polarizing filters and polarizing glasses, to present visualizations in true 3D. The three-dimensional views greatly improve comprehension of complex multidimensional data, and animations of time series foster better understanding of the underlying processes. The visualizations also offer an effective means to communicate the complexities of environmental mineralogy to colleagues, students and the public. Here we present three different kinds of datasets that demonstrate the effectiveness of the GeoWall in clarifying complex environmental reactions at the atomic scale. First, a time-resolved series of diffraction patterns obtained during the hydrothermal synthesis of metal oxide phases from precursor solutions can be viewed as a surface with interactive controls for peak scaling and color mapping. Second, the results of Rietveld analysis of cation exchange reactions in Mn oxides has provided three-dimensional difference Fourier maps. When stitched together in a temporal series, these offer an animated view of changes in atomic configurations during the process of exchange. Finally, molecular dynamical simulations are visualized as three-dimensional reactions between vibrating atoms in both the solid and the aqueous phases.

  2. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering

    NASA Astrophysics Data System (ADS)

    Jo, Youngju; Jung, Jaehwang; Lee, Jee Woong; Shin, Della; Park, Hyunjoo; Nam, Ki Tae; Park, Ji-Ho; Park, Yongkeun

    2014-05-01

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from -70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.

  3. Light scattering microscopy measurements of single nuclei compared with GPU-accelerated FDTD simulations

    NASA Astrophysics Data System (ADS)

    Stark, Julian; Rothe, Thomas; Kieß, Steffen; Simon, Sven; Kienle, Alwin

    2016-04-01

    Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns.

  4. Phonon-assisted oscillatory exciton dynamics in monolayer MoSe 2

    DOE PAGES

    Chow, Colin M.; Yu, Hongyi; Jones, Aaron M.; ...

    2017-10-13

    In monolayer semiconductor transition metal dichalcogenides, the exciton–phonon interaction strongly affects the photocarrier dynamics. Here, we report on an unusual oscillatory enhancement of the neutral exciton photoluminescence with the excitation laser frequency in monolayer MoSe 2. The frequency of oscillation matches that of the M-point longitudinal acoustic phonon, LA(M), suggesting the significance of zone-edge acoustic phonons and hence the deformation potential in exciton-phonon coupling in MoSe 2. Moreover, oscillatory behavior is observed in the steady-state emission linewidth and in time-resolved PLE data, which reveals variation with excitation energy in the exciton lifetime. These results clearly expose the key role playedmore » by phonons in the exciton formation and relaxation dynamics of two-dimensional van der Waals semiconductors.« less

  5. Ultrafast Doublon Dynamics in Photoexcited 1 T -TaS2

    NASA Astrophysics Data System (ADS)

    Ligges, M.; Avigo, I.; Golež, D.; Strand, H. U. R.; Beyazit, Y.; Hanff, K.; Diekmann, F.; Stojchevska, L.; Kalläne, M.; Zhou, P.; Rossnagel, K.; Eckstein, M.; Werner, P.; Bovensiepen, U.

    2018-04-01

    Strongly correlated materials exhibit intriguing properties caused by intertwined microscopic interactions that are hard to disentangle in equilibrium. Employing nonequilibrium time-resolved photoemission spectroscopy on the quasi-two-dimensional transition-metal dichalcogenide 1 T -Ta S2 , we identify a spectroscopic signature of doubly occupied sites (doublons) that reflects fundamental Mott physics. Doublon-hole recombination is estimated to occur on timescales of electronic hopping ℏ/J ≈14 fs . Despite strong electron-phonon coupling, the dynamics can be explained by purely electronic effects captured by the single-band Hubbard model under the assumption of weak hole doping, in agreement with our static sample characterization. This sensitive interplay of static doping and vicinity to the metal-insulator transition suggests a way to modify doublon relaxation on the few-femtosecond timescale.

  6. Effect of Annealing on Exciton Diffusion in a High Performance Small Molecule Organic Photovoltaic Material.

    PubMed

    Long, Yun; Hedley, Gordon J; Ruseckas, Arvydas; Chowdhury, Mithun; Roland, Thomas; Serrano, Luis A; Cooke, Graeme; Samuel, Ifor D W

    2017-05-03

    Singlet exciton diffusion was studied in the efficient organic photovoltaic electron donor material DTS(FBTTh 2 ) 2 . Three complementary time-resolved fluorescence measurements were performed: quenching in planar heterojunctions with an electron acceptor, exciton-exciton annihilation, and fluorescence depolarization. The average exciton diffusivity increases upon annealing from 1.6 × 10 -3 to 3.6 × 10 -3 cm 2 s -1 , resulting in an enhancement of the mean two-dimensional exciton diffusion length (L D = (4Dτ) 1/2 ) from 15 to 27 nm. About 30% of the excitons get trapped very quickly in as-cast films. The high exciton diffusion coefficient of the material leads to it being able to harvest excitons efficiently from large donor domains in bulk heterojunctions.

  7. Effect of Annealing on Exciton Diffusion in a High Performance Small Molecule Organic Photovoltaic Material

    PubMed Central

    2017-01-01

    Singlet exciton diffusion was studied in the efficient organic photovoltaic electron donor material DTS(FBTTh2)2. Three complementary time-resolved fluorescence measurements were performed: quenching in planar heterojunctions with an electron acceptor, exciton–exciton annihilation, and fluorescence depolarization. The average exciton diffusivity increases upon annealing from 1.6 × 10–3 to 3.6 × 10–3 cm2 s–1, resulting in an enhancement of the mean two-dimensional exciton diffusion length (LD = (4Dτ)1/2) from 15 to 27 nm. About 30% of the excitons get trapped very quickly in as-cast films. The high exciton diffusion coefficient of the material leads to it being able to harvest excitons efficiently from large donor domains in bulk heterojunctions. PMID:28358189

  8. Light scattering microscopy measurements of single nuclei compared with GPU-accelerated FDTD simulations.

    PubMed

    Stark, Julian; Rothe, Thomas; Kieß, Steffen; Simon, Sven; Kienle, Alwin

    2016-04-07

    Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns.

  9. Model for the interpretation of nuclear magnetic resonance relaxometry of hydrated porous silicate materials

    NASA Astrophysics Data System (ADS)

    Faux, D. A.; Cachia, S.-H. P.; McDonald, P. J.; Bhatt, J. S.; Howlett, N. C.; Churakov, S. V.

    2015-03-01

    Nuclear magnetic resonance (NMR) relaxation experimentation is an effective technique for probing the dynamics of proton spins in porous media, but interpretation requires the application of appropriate spin-diffusion models. Molecular dynamics (MD) simulations of porous silicate-based systems containing a quasi-two-dimensional water-filled pore are presented. The MD simulations suggest that the residency time of the water on the pore surface is in the range 0.03-12 ns, typically 2-5 orders of magnitude less than values determined from fits to experimental NMR measurements using the established surface-layer (SL) diffusion models of Korb and co-workers [Phys. Rev. E 56, 1934 (1997), 10.1103/PhysRevE.56.1934]. Instead, MD identifies four distinct water layers in a tobermorite-based pore containing surface Ca2 + ions. Three highly structured water layers exist within 1 nm of the surface and the central region of the pore contains a homogeneous region of bulklike water. These regions are referred to as layer 1 and 2 (L1, L2), transition layer (TL), and bulk (B), respectively. Guided by the MD simulations, a two-layer (2L) spin-diffusion NMR relaxation model is proposed comprising two two-dimensional layers of slow- and fast-moving water associated with L2 and layers TL+B, respectively. The 2L model provides an improved fit to NMR relaxation times obtained from cementitious material compared to the SL model, yields diffusion correlation times in the range 18-75 ns and 28-40 ps in good agreement with MD, and resolves the surface residency time discrepancy. The 2L model, coupled with NMR relaxation experimentation, provides a simple yet powerful method of characterizing the dynamical properties of proton-bearing porous silicate-based systems such as porous glasses, cementitious materials, and oil-bearing rocks.

  10. Quadriceps strength and weight acceptance strategies continue to improve two years after anterior cruciate ligament reconstruction

    PubMed Central

    Roewer, Ben D.; Di Stasi, Stephanie L.; Snyder-Mackler, Lynn

    2011-01-01

    The anterior cruciate ligament (ACL) is the most commonly-injured knee ligament during sporting activities. After injury, most individuals experience episodes of the knee giving way during daily activities (non-copers). Non-copers demonstrate asymmetrical quadriceps strength and movement patterns which could have long-term deleterious effects on the integrity of the knee joint. The purpose of this study was to determine if non-copers resolve their strength and movement asymmetries within two years after surgery. 26 non-copers were recruited to undergo pre-operative quadriceps strength testing and 3-dimensional gait analysis. Subjects underwent surgery to reconstruct the ligament followed by physical therapy focused on restoring normal range of motion, quadriceps strength, and function. Subjects returned for quadriceps strength testing and gait analysis six months and two years after surgery. Acutely after injury, quadriceps strength was asymmetric between limbs, but resolved six months after surgery. Asymmetric knee angles, knee moments, and knee and hip power profiles were also observed acutely after injury and persisted six months after surgery despite subjects achieving symmetrical quadriceps strength. Two years after surgery, quadriceps strength in the involved limb continued to improve and most kinematic and kinetic asymmetries resolved. These findings suggest that adequate quadriceps strength does not immediately resolve gait asymmetries in non-copers. They also suggest that non-copers have the capacity to improve their quadriceps strength and gait symmetry long after ACL reconstruction. PMID:21592482

  11. Method of composing two-dimensional scanned spectra observed by the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Cai, Yun-Fang; Xu, Zhi; Chen, Yu-Chao; Xu, Jun; Li, Zheng-Gang; Fu, Yu; Ji, Kai-Fan

    2018-04-01

    In this paper we illustrate the technique used by the New Vacuum Solar Telescope (NVST) to increase the spatial resolution of two-dimensional (2D) solar spectroscopy observations involving two dimensions of space and one of wavelength. Without an image stabilizer at the NVST, large scale wobble motion is present during the spatial scanning, whose instantaneous amplitude can reach 1.3″ due to the Earth’s atmosphere and the precision of the telescope guiding system, and seriously decreases the spatial resolution of 2D spatial maps composed with scanned spectra. We make the following effort to resolve this problem: the imaging system (e.g., the TiO-band) is used to record and detect the displacement vectors of solar image motion during the raster scan, in both the slit and scanning directions. The spectral data (e.g., the Hα line) which are originally obtained in time sequence are corrected and re-arranged in space according to those displacement vectors. Raster scans are carried out in several active regions with different seeing conditions (two rasters are illustrated in this paper). Given a certain spatial sampling and temporal resolution, the spatial resolution of the composed 2D map could be close to that of the slit-jaw image. The resulting quality after correction is quantitatively evaluated with two methods. A physical quantity, such as the line-of-sight velocities in multiple layers of the solar atmosphere, is also inferred from the re-arranged spectrum, demonstrating the advantage of this technique.

  12. Exploring time-resolved photoluminescence for nanowires using a three-dimensional computational transient model.

    PubMed

    Ren, Dingkun; Scofield, Adam C; Farrell, Alan C; Rong, Zixuan; Haddad, Michael A; Laghumavarapu, Ramesh B; Liang, Baolai; Huffaker, Diana L

    2018-04-26

    Time-resolved photoluminescence (TRPL) has been implemented experimentally to measure the carrier lifetime of semiconductors for decades. For the characterization of nanowires, the rich information embedded in TRPL curves has not been fully interpreted and meaningfully mapped to the respective material properties. This is because their three-dimensional (3-D) geometries result in more complicated mechanisms of carrier recombination than those in thin films and analytical solutions cannot be found for those nanostructures. In this work, we extend the intrinsic power of TRPL by developing a full 3-D transient model, which accounts for different material properties and drift-diffusion, to simulate TRPL curves for nanowires. To show the capability of the model, we perform TRPL measurements on a set of GaAs nanowire arrays grown on silicon substrates and then fit the measured data by tuning various material properties, including carrier mobility, Shockley-Read-Hall recombination lifetime, and surface recombination velocity at the GaAs-Si heterointerface. From the resultant TRPL simulations, we numerically identify the lifetime characteristics of those material properties. In addition, we computationally map the spatial and temporal electron distributions in nanowire segments and reveal the underlying carrier dynamics. We believe this study provides a theoretical foundation for interpretation of TRPL measurements to unveil the complex carrier recombination mechanisms in 3-D nanostructured materials.

  13. A Short Note on the Scaling Function Constant Problem in the Two-Dimensional Ising Model

    NASA Astrophysics Data System (ADS)

    Bothner, Thomas

    2018-02-01

    We provide a simple derivation of the constant factor in the short-distance asymptotics of the tau-function associated with the 2-point function of the two-dimensional Ising model. This factor was first computed by Tracy (Commun Math Phys 142:297-311, 1991) via an exponential series expansion of the correlation function. Further simplifications in the analysis are due to Tracy and Widom (Commun Math Phys 190:697-721, 1998) using Fredholm determinant representations of the correlation function and Wiener-Hopf approximation results for the underlying resolvent operator. Our method relies on an action integral representation of the tau-function and asymptotic results for the underlying Painlevé-III transcendent from McCoy et al. (J Math Phys 18:1058-1092, 1977).

  14. Cell culture imaging using microimpedance tomography.

    PubMed

    Linderholm, Pontus; Marescot, Laurent; Loke, Meng Heng; Renaud, Philippe

    2008-01-01

    We present a novel, inexpensive, and fast microimpedance tomography system for two-dimensional imaging of cell and tissue cultures. The system is based on four-electrode measurements using 16 planar microelectrodes (5 microm x 4 mm) integrated into a culture chamber. An Agilent 4294A impedance analyzer combined with a front-end amplifier is used for the impedance measurements. Two-dimensional images are obtained using a reconstruction algorithm. This system is capable of accurately resolving the shape and position of a human hair, yielding vertical cross sections of the object. Human epithelial stem cells (YF 29) are also grown directly on the device surface. Tissue growth can be followed over several days. A rapid resistivity decrease caused by permeabilized cell membranes is also monitored, suggesting that this technique can be used in electroporation studies.

  15. Beam alignment based on two-dimensional power spectral density of a near-field image.

    PubMed

    Wang, Shenzhen; Yuan, Qiang; Zeng, Fa; Zhang, Xin; Zhao, Junpu; Li, Kehong; Zhang, Xiaolu; Xue, Qiao; Yang, Ying; Dai, Wanjun; Zhou, Wei; Wang, Yuanchen; Zheng, Kuixing; Su, Jingqin; Hu, Dongxia; Zhu, Qihua

    2017-10-30

    Beam alignment is crucial to high-power laser facilities and is used to adjust the laser beams quickly and accurately to meet stringent requirements of pointing and centering. In this paper, a novel alignment method is presented, which employs data processing of the two-dimensional power spectral density (2D-PSD) for a near-field image and resolves the beam pointing error relative to the spatial filter pinhole directly. Combining this with a near-field fiducial mark, the operation of beam alignment is achieved. It is experimentally demonstrated that this scheme realizes a far-field alignment precision of approximately 3% of the pinhole size. This scheme adopts only one near-field camera to construct the alignment system, which provides a simple, efficient, and low-cost way to align lasers.

  16. Two-Dimensional Electronic-Vibrational Spectroscopy of Chlorophyll a and b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Nicholas H. C.; Fleming, Graham R.

    2016-03-03

    Presented are two-dimensional electronic-vibrational (2DEV) spectra of isolated chlorophyll a and b in deuterated ethanol. We excite the Q-band electronic transitions and measure the effects on the carbonyl and C=C double-bond stretch region of the infrared spectrum. With the aid of density functional theory calculations, we provide assignments for the major features of the spectrum. We show how the 2DEV spectra can be used to readily distinguish different solvation states of the chlorophyll, with features corresponding to the minority pentacoordinate magnesium (Mg) species being resolved along each dimension of the 2DEV spectra from the dominant hexacoordinate Mg species. These assignmentsmore » represent a crucial first step toward the application of 2DEV spectroscopy to chlorophyll-containing pigment-protein complexes.« less

  17. Preliminary Study on J-Resolved NMR Method Usability for Toxic Kidney's Injury Assessment.

    PubMed

    Doskocz, Marek; Marchewka, Zofia; Jeż, Magdalena; Passowicz-Muszyńska, Ewa; Długosz, Anna

    2015-01-01

    Nowadays, the Nuclear Magnetic Resonance (NMR) techniques are tested for metabolomic urine profile in order to detect early damage of kidney. The purpose of this investigation was the initial assessment of two-dimensional J-resolved NMR urine spectra analysis usability for early kidney injuries detection. The amino acids (AA) and acids profile change after the exposure to nephrotoxic agent (the cisplatin infusion) was examined. The material was the urine of patients with non-small-cell lung cancer, treated with cisplatin in Pulmonology and Lung Cancers Clinic in Wrocław. The urine of healthy volunteers was also examined. The identification of metabolites in urine was based on two-dimensional JRES signals in spectra, described in Human Metabolites Database (HMD). The molar concentration of metabolites was calculated from the volume under the signals. The analysis was focused on amino acids and organic acids (lactid acid and pyruvic acid) profiles. Any specific amino acids were identified after cisplatin infusion in comparison to the state before infusion. However, the differences in concentration were observed over 2-fold increase in valine, isoleucine and leucine, over 3-fold in alanine. Also, the concentration of pyruvic and lactic acids increased significantly (p≤0.05, p≤0.01). There were no specific amino acids identified in response to the infusion of cisplatin; however, some changes in the concentrations of amino acids and other small molecules were found. The analysis of two-dimensional JRES spectra showed an increase of alanine, leucine, isoleucine and valine concentration after the application of cisplatin. It seems that it is worth developing the JRES method based on special computer program.

  18. Three-dimensional through-time radial GRAPPA for renal MR angiography.

    PubMed

    Wright, Katherine L; Lee, Gregory R; Ehses, Philipp; Griswold, Mark A; Gulani, Vikas; Seiberlich, Nicole

    2014-10-01

    To achieve high temporal and spatial resolution for contrast-enhanced time-resolved MR angiography exams (trMRAs), fast imaging techniques such as non-Cartesian parallel imaging must be used. In this study, the three-dimensional (3D) through-time radial generalized autocalibrating partially parallel acquisition (GRAPPA) method is used to reconstruct highly accelerated stack-of-stars data for time-resolved renal MRAs. Through-time radial GRAPPA has been recently introduced as a method for non-Cartesian GRAPPA weight calibration, and a similar concept can also be used in 3D acquisitions. By combining different sources of calibration information, acquisition time can be reduced. Here, different GRAPPA weight calibration schemes are explored in simulation, and the results are applied to reconstruct undersampled stack-of-stars data. Simulations demonstrate that an accurate and efficient approach to 3D calibration is to combine a small number of central partitions with as many temporal repetitions as exam time permits. These findings were used to reconstruct renal trMRA data with an in-plane acceleration factor as high as 12.6 with respect to the Nyquist sampling criterion, where the lowest root mean squared error value of 16.4% was achieved when using a calibration scheme with 8 partitions, 16 repetitions, and a 4 projection × 8 read point segment size. 3D through-time radial GRAPPA can be used to successfully reconstruct highly accelerated non-Cartesian data. By using in-plane radial undersampling, a trMRA can be acquired with a temporal footprint less than 4s/frame with a spatial resolution of approximately 1.5 mm × 1.5 mm × 3 mm. © 2014 Wiley Periodicals, Inc.

  19. Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection.

    PubMed

    Jiménez-Banzo, Ana; Ragàs, Xavier; Kapusta, Peter; Nonell, Santi

    2008-09-01

    Two recent advances in optoelectronics, namely novel near-IR sensitive photomultipliers and inexpensive yet powerful diode-pumped solid-state lasers working at kHz repetition rate, enable the time-resolved detection of singlet oxygen (O2(a1Deltag)) phosphorescence in photon counting mode, thereby boosting the time-resolution, sensitivity, and dynamic range of this well-established detection technique. Principles underlying this novel approach and selected examples of applications are provided in this perspective, which illustrate the advantages over the conventional analog detection mode.

  20. Time-resolved two-window measurement of Wigner functions for coherent backscatter from a turbid medium

    NASA Astrophysics Data System (ADS)

    Reil, Frank; Thomas, John E.

    2002-05-01

    For the first time we are able to observe the time-resolved Wigner function of enhanced backscatter from a random medium using a novel two-window technique. This technique enables us to directly verify the phase-conjugating properties of random media. An incident divergent beam displays a convergent enhanced backscatter cone. We measure the joint position and momentum (x, p) distributions of the light field as a function of propagation time in the medium. The two-window technique allows us to independently control the resolutions for position and momentum, thereby surpassing the uncertainty limit associated with Fourier transform pairs. By using a low-coherence light source in a heterodyne detection scheme, we observe enhanced backscattering resolved by path length in the random medium, providing information about the evolution of optical coherence as a function of penetration depth in the random medium.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, J.; Chen, T; Yang, C

    Low-dimensional nanoparticles have a strong ability to induce the crystallization of polymer matrices. One-dimensional carbon nanotubes (CNTs) and two-dimensional graphene nanosheets (GNSs), both of which are both carbon-based nanoparticles, provide a good opportunity to investigate the effects of differently dimensional nanoparticles on the crystallization behavior of a polymer. For this purpose, respective nanocomposites of CNTs and GNSs with poly(L-lactide) (PLLA) as matrix were prepared by solution coagulation. Time-resolved Fourier-transform infrared spectroscopy (FTIR) and synchrotron wide-angle X-ray diffraction (WAXD) were performed to probe chain conformational changes and to determine the crystallization kinetics during the isothermal crystallization of the PLLA nanocomposites andmore » neat PLLA, especially in the early stages. Both CNTs and GNSs could serve as nucleating agents in accelerating the crystallization kinetics of PLLA; however, the ability of CNTs to induce crystallization was stronger than that of GNSs. On increasing the content of CNTs from 0.05 to 0.1 wt %, the induction period was shortened and the crystallization rate was enhanced, but the reverse situation was found for GNSs nanocomposites. In the case of neat PLLA, -CH{sub 3} interchain interactions preceded -(COC + CH{sub 3}) interchain interactions during the crystallization. Conversely, in the CNTs and GNSs nanocomposites, the conformational ordering began with -(COC + CH{sub 3}) interchain interactions, which resulted directly in a reduced induction period. Interchain interactions of this type could be explained in terms of surface-induced conformational order (SICO). Finally, the effect of the dimensionality of the nanoparticles on the crystallization behavior of PLLA is discussed.« less

  2. Direct numerical simulation of particulate flows with an overset grid method

    NASA Astrophysics Data System (ADS)

    Koblitz, A. R.; Lovett, S.; Nikiforakis, N.; Henshaw, W. D.

    2017-08-01

    We evaluate an efficient overset grid method for two-dimensional and three-dimensional particulate flows for small numbers of particles at finite Reynolds number. The rigid particles are discretised using moving overset grids overlaid on a Cartesian background grid. This allows for strongly-enforced boundary conditions and local grid refinement at particle surfaces, thereby accurately capturing the viscous boundary layer at modest computational cost. The incompressible Navier-Stokes equations are solved with a fractional-step scheme which is second-order-accurate in space and time, while the fluid-solid coupling is achieved with a partitioned approach including multiple sub-iterations to increase stability for light, rigid bodies. Through a series of benchmark studies we demonstrate the accuracy and efficiency of this approach compared to other boundary conformal and static grid methods in the literature. In particular, we find that fully resolving boundary layers at particle surfaces is crucial to obtain accurate solutions to many common test cases. With our approach we are able to compute accurate solutions using as little as one third the number of grid points as uniform grid computations in the literature. A detailed convergence study shows a 13-fold decrease in CPU time over a uniform grid test case whilst maintaining comparable solution accuracy.

  3. Three-dimensional invisibility cloaks functioning at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Zhou, Fan; Liang, Dachuan; Gu, Jianqiang; Han, Jiaguang; Sun, Cheng; Zhang, Weili

    2014-05-01

    Quasi-three-dimensional invisibility cloaks, comprised of either homogeneous or inhomogeneous media, are experimentally demonstrated in the terahertz regime. The inhomogeneous cloak was lithographically fabricated using a scalable Projection Microstereolithography process. The triangular cloaking structure has a total thickness of 4.4 mm, comprised of 220 layers of 20 μm thickness. The cloak operates at a broad frequency range between 0.3 and 0.6 THz, and is placed over an α-lactose monohydrate absorber with rectangular shape. Characterized using angular-resolved reflection terahertz time-domain spectroscopy, the results indicate that the terahertz invisibility cloak has successfully concealed both the geometrical and spectroscopic signatures of the absorber, making it undetectable to the observer. The homogeneous cloaking device made from birefringent crystalline sapphire features a large concealed volume, low loss, and broad bandwidth. It is capable of hiding objects with a dimension nearly an order of magnitude larger than that of its lithographic counterpart, but without involving complex and time-consuming cleanroom processing. The cloak device was made from two 20-mm-thick high-purity sapphire prisms. The cloaking region has a maximum height 1.75 mm with a volume of approximately 5% of the whole sample. The reflected TM beam from the cloak shows nearly the same profile as that reflected by a flat mirror.

  4. Tracking coherent structures in massively-separated and turbulent flows

    NASA Astrophysics Data System (ADS)

    Rockwood, Matthew; Huang, Yangzi; Green, Melissa

    2018-01-01

    Coherent vortex structures are tracked in simulations of massively-separated and turbulent flows. Topological Lagrangian saddle points are found using intersections of the positive and negative finite-time Lyapunov exponent ridges, and these points are then followed in order to track individual coherent structure motion both in a complex interacting three-dimensional flow (turbulent channel) and during vortex formation (two-dimensional bluff body shedding). For a simulation of wall-bounded turbulence in a channel flow, tracking Lagrangian saddles shows that the average structure convection speed exhibits a similar trend as a previously published result based on velocity and pressure correlations, giving validity to the method. When this tracking method is applied in a study of a circular cylinder in cross-flow it shows that Lagrangian saddles rapidly accelerate away from the cylinder surface as the vortex sheds. This saddle behavior is compared with the time-resolved static pressure distribution on the circular cylinder, yielding locations on a cylinder surface where common sensors could detect this phenomenon, which is not available from force measurements or vortex circulation calculations. The current method of tracking coherent structures yields insight into the behavior of the coherent structures in both of the diverse flows presented, highlighting the breadth of its potential application.

  5. Compressive sensing for single-shot two-dimensional coherent spectroscopy

    NASA Astrophysics Data System (ADS)

    Harel, E.; Spencer, A.; Spokoyny, B.

    2017-02-01

    In this work, we explore the use of compressive sensing for the rapid acquisition of two-dimensional optical spectra that encodes the electronic structure and ultrafast dynamics of condensed-phase molecular species. Specifically, we have developed a means to combine multiplexed single-element detection and single-shot and phase-resolved two-dimensional coherent spectroscopy. The method described, which we call Single Point Array Reconstruction by Spatial Encoding (SPARSE) eliminates the need for costly array detectors while speeding up acquisition by several orders of magnitude compared to scanning methods. Physical implementation of SPARSE is facilitated by combining spatiotemporal encoding of the nonlinear optical response and signal modulation by a high-speed digital micromirror device. We demonstrate the approach by investigating a well-characterized cyanine molecule and a photosynthetic pigment-protein complex. Hadamard and compressive sensing algorithms are demonstrated, with the latter achieving compression factors as high as ten. Both show good agreement with directly detected spectra. We envision a myriad of applications in nonlinear spectroscopy using SPARSE with broadband femtosecond light sources in so-far unexplored regions of the electromagnetic spectrum.

  6. FireStem2D – A Two-Dimensional Heat Transfer Model for Simulating Tree Stem Injury in Fires

    PubMed Central

    Chatziefstratiou, Efthalia K.; Bohrer, Gil; Bova, Anthony S.; Subramanian, Ravishankar; Frasson, Renato P. M.; Scherzer, Amy; Butler, Bret W.; Dickinson, Matthew B.

    2013-01-01

    FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by resolving stem moisture loss, temperatures through the stem, degree of bark charring, and necrotic depth around the stem. We present the results of numerical parameterization and model evaluation experiments for FireStem2D that simulate laboratory stem-heating experiments of 52 tree sections from 25 trees. We also conducted a set of virtual sensitivity analysis experiments to test the effects of unevenness of heating around the stem and with aboveground height using data from two studies: a low-intensity surface fire and a more intense crown fire. The model allows for improved understanding and prediction of the effects of wildland fire on injury and mortality of trees of different species and sizes. PMID:23894599

  7. Probing density and spin correlations in two-dimensional Hubbard model with ultracold fermions

    NASA Astrophysics Data System (ADS)

    Chan, Chun Fai; Drewes, Jan Henning; Gall, Marcell; Wurz, Nicola; Cocchi, Eugenio; Miller, Luke; Pertot, Daniel; Brennecke, Ferdinand; Koehl, Michael

    2017-04-01

    Quantum gases of interacting fermionic atoms in optical lattices is a promising candidate to study strongly correlated quantum phases of the Hubbard model such as the Mott-insulator, spin-ordered phases, or in particular d-wave superconductivity. We experimentally realise the two-dimensional Hubbard model by loading a quantum degenerate Fermi gas of 40 K atoms into a three-dimensional optical lattice geometry. High-resolution absorption imaging in combination with radiofrequency spectroscopy is applied to spatially resolve the atomic distribution in a single 2D layer. We investigate in local measurements of spatial correlations in both the density and spin sector as a function of filling, temperature and interaction strength. In the density sector, we compare the local density fluctuations and the global thermodynamic quantities, and in the spin sector, we observe the onset of non-local spin correlation, signalling the emergence of the anti-ferromagnetic phase. We would report our recent experimental endeavours to investigate further down in temperature in the spin sector.

  8. Effect of a skin-deep surface zone on the formation of a two-dimensional electron gas at a semiconductor surface

    NASA Astrophysics Data System (ADS)

    Olszowska, Natalia; Lis, Jakub; Ciochon, Piotr; Walczak, Łukasz; Michel, Enrique G.; Kolodziej, Jacek J.

    2016-09-01

    Two-dimensional electron gases (2DEGs) at surfaces and interfaces of semiconductors are described straightforwardly with a one-dimensional (1D) self-consistent Poisson-Schrödinger scheme. However, their band energies have not been modeled correctly in this way. Using angle-resolved photoelectron spectroscopy we study the band structures of 2DEGs formed at sulfur-passivated surfaces of InAs(001) as a model system. Electronic properties of these surfaces are tuned by changing the S coverage, while keeping a high-quality interface, free of defects and with a constant doping density. In contrast to earlier studies we show that the Poisson-Schrödinger scheme predicts the 2DEG band energies correctly but it is indispensable to take into account the existence of the physical surface. The surface substantially influences the band energies beyond simple electrostatics, by setting nontrivial boundary conditions for 2DEG wave functions.

  9. Spatio-temporal phase retrieval in speckle interferometry with Hilbert transform and two-dimensional phase unwrapping

    NASA Astrophysics Data System (ADS)

    Li, Xiangyu; Huang, Zhanhua; Zhu, Meng; He, Jin; Zhang, Hao

    2014-12-01

    Hilbert transform (HT) is widely used in temporal speckle pattern interferometry, but errors from low modulations might propagate and corrupt the calculated phase. A spatio-temporal method for phase retrieval using temporal HT and spatial phase unwrapping is presented. In time domain, the wrapped phase difference between the initial and current states is directly determined by using HT. To avoid the influence of the low modulation intensity, the phase information between the two states is ignored. As a result, the phase unwrapping is shifted from time domain to space domain. A phase unwrapping algorithm based on discrete cosine transform is adopted by taking advantage of the information in adjacent pixels. An experiment is carried out with a Michelson-type interferometer to study the out-of-plane deformation field. High quality whole-field phase distribution maps with different fringe densities are obtained. Under the experimental conditions, the maximum number of fringes resolvable in a 416×416 frame is 30, which indicates a 15λ deformation along the direction of loading.

  10. Passive Microfluidic device for Sub Millisecond Mixing

    PubMed Central

    McMahon, Jay; Mohamed, Hisham; Barnard, David; Shaikh, Tanvir R.; Mannella, Carmen A.; Wagenknecht, Terence; Lu, Toh-Ming

    2009-01-01

    We report the investigation of a novel microfluidic mixing device to achieve submillisecond mixing. The micromixer combines two fluid streams of several microliters per second into a mixing compartment integrated with two T- type premixers and 4 butterfly-shaped in-channel mixing elements. We have employed three dimensional fluidic simulations to evaluate the mixing efficiency, and have constructed physical devices utilizing conventional microfabrication techniques. The simulation indicated thorough mixing at flow rate as low as 6 µL/s. The corresponding mean residence time is 0.44 ms for 90% of the particles simulated, or 0.49 ms for 95% of the particles simulated, respectively. The mixing efficiency of the physical device was also evaluated using fluorescein dye solutions and FluoSphere-red nanoparticles suspensions. The constructed micromixers achieved thorough mixing at the same flow rate of 6 µL/s, with the mixing indices of 96% ± 1%, and 98% ± 1% for the dye and the nanoparticle, respectively. The experimental results are consistent with the simulation data. The device demonstrated promising capabilities for time resolved studies for macromolecular dynamics of biological macromolecules. PMID:20161619

  11. Melanoma thickness measurement in two-layer tissue phantoms using pulsed photothermal radiometry (PPTR)

    NASA Astrophysics Data System (ADS)

    Wang, Tianyi; Qiu, Jinze; Paranjape, Amit; Milner, Thomas E.

    2009-02-01

    Melanoma is a malignant tumor of melanocytes which are found predominantly in skin. Melanoma is one of the rarer types of skin cancer but causes the majority of skin cancer related deaths. The staging of malignant melanoma using Breslow thickness is important because of the relationship to survival rate after five years. Pulsed photothermal radiometry (PPTR) is based on the time-resolved acquisition of infrared (IR) emission from a sample after pulsed laser exposure. PPTR can be used to investigate the relationship between melanoma thickness and detected radiometric temperature using two-layer tissue phantoms. We used a Monte Carlo simulation to mimic light transport in melanoma and employed a three-dimensional heat transfer model to obtain simulated radiometric temperature increase and, in comparison, we also conducted PPTR experiments to confirm our simulation results. Simulation and experimental results show similar trends: thicker absorbing layers corresponding to deeper lesions produce slower radiometric temperature decays. A quantitative relationship exists between PPTR radiometric temperature decay time and thickness of the absorbing layer in tissue phantoms.

  12. On-line characterization of monoclonal antibody variants by liquid chromatography-mass spectrometry operating in a two-dimensional format.

    PubMed

    Alvarez, Melissa; Tremintin, Guillaume; Wang, Jennifer; Eng, Marian; Kao, Yung-Hsiang; Jeong, Justin; Ling, Victor T; Borisov, Oleg V

    2011-12-01

    Recombinant monoclonal antibodies (MAbs) have become one of the most rapidly growing classes of biotherapeutics in the treatment of human disease. MAbs are highly heterogeneous proteins, thereby requiring a battery of analytical technologies for their characterization. However, incompatibility between separation and subsequent detection is often encountered. Here we demonstrate the utility of a generic on-line liquid chromatography-mass spectrometry (LC-MS) method operated in a two-dimensional format toward the rapid characterization of MAb charge and size variants. Using a single chromatographic system capable of running two independent gradients, up to six fractions of interest from an ion exchange (IEC) or size exclusion (SEC) separation can be identified by trapping and desalting the fractions onto a series of reversed phase trap cartridges with subsequent on-line analysis by mass spectrometry. Analysis of poorly resolved and low-level peaks in the IEC or SEC profile was facilitated by preconcentrating fractions on the traps using multiple injections. An on-line disulfide reduction step was successfully incorporated into the workflow, allowing more detailed characterization of modified MAbs by providing chain-specific information. The system is fully automated, thereby enabling high-throughput analysis with minimal sample handling. This technology provides rapid data turnaround time, a much needed feature during product characterization and development of multiple biotherapeutic proteins. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Multivariate image analysis of laser-induced photothermal imaging used for detection of caries tooth

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ashraf F.; Abdel Aziz, Wessam M.; El-Sharkawy, Yasser H.

    2010-08-01

    Time-resolved photothermal imaging has been investigated to characterize tooth for the purpose of discriminating between normal and caries areas of the hard tissue using thermal camera. Ultrasonic thermoelastic waves were generated in hard tissue by the absorption of fiber-coupled Q-switched Nd:YAG laser pulses operating at 1064 nm in conjunction with a laser-induced photothermal technique used to detect the thermal radiation waves for diagnosis of human tooth. The concepts behind the use of photo-thermal techniques for off-line detection of caries tooth features were presented by our group in earlier work. This paper illustrates the application of multivariate image analysis (MIA) techniques to detect the presence of caries tooth. MIA is used to rapidly detect the presence and quantity of common caries tooth features as they scanned by the high resolution color (RGB) thermal cameras. Multivariate principal component analysis is used to decompose the acquired three-channel tooth images into a two dimensional principal components (PC) space. Masking score point clusters in the score space and highlighting corresponding pixels in the image space of the two dominant PCs enables isolation of caries defect pixels based on contrast and color information. The technique provides a qualitative result that can be used for early stage caries tooth detection. The proposed technique can potentially be used on-line or real-time resolved to prescreen the existence of caries through vision based systems like real-time thermal camera. Experimental results on the large number of extracted teeth as well as one of the thermal image panoramas of the human teeth voltanteer are investigated and presented.

  14. Time-resolved terahertz spectroscopy of electrically conductive metal-organic frameworks doped with redox active species

    NASA Astrophysics Data System (ADS)

    Alberding, Brian G.; Heilweil, Edwin J.

    2015-09-01

    Metal-Organic Frameworks (MOFs) are three-dimensional coordination polymers that are well known for large pore surface area and their ability to adsorb molecules from both the gaseous and solution phases. In general, MOFs are electrically insulating, but promising opportunities for tuning the electronic structure exist because MOFs possess synthetic versatility; the metal and organic ligand subunits can be exchanged or dopant molecules can be introduced into the pore space. Two such MOFs with demonstrated electrical conductivity are Cu3(1,3,5-benzenetricarboxylate)2, a.k.a HKUST-1, and Cu[Ni(pyrazine-2,3-dithiolate)2]. Herein, these two MOFs have been infiltrated with the redox active species 7,7,8,8-tetracyanoquinodimethane (TCNQ) and iodine under solution phase conditions and shown to produce redox products within the MOF pore space. Vibrational bands assignable to TCNQ anion and triiodide anion have been observed in the Mid-IR and Terahertz ranges using FTIR Spectroscopy. The MOF samples have been further investigated by Time-Resolved Terehertz Spectroscopy (TRTS). Using this technique, the charge mobility, separation, and recombination dynamics have been followed on the picosecond time scale following photoexcitation with visible radiation. The preliminary results show that the MOF samples have small inherent photoconductivity with charge separation lifetimes on the order of a few picoseconds. In the case of HKUST-1, the MOF can also be supported by a TiO2 film and initial results show that charge injection into the TiO2 layer occurs with a comparable efficiency to the dye sensitizer N3, [cis-Bis(isothiocyanato)-bis(2,2'-bipyridyl-4,4'-dicarboxylato ruthenium(II)], and therefore this MOF has potential as a new light absorbing and charge conducting material in photovoltaic devices.

  15. Structural formation of huntingtin-like aggregates probed by small-angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, Christopher B; Perevozchikova, Tatiana; Berthelier-Jung, Valerie M

    2011-01-01

    In several neurodegenerative disorders, including Huntington s disease (HD), aspects concerning the earliest of protein structures that form along the aggregation pathway have increasingly gained attention since these particular species are likely to be neurotoxic. We used time-resolved small-angle neutron scattering (SANS) to probe in solution these transient structures formed by peptides having the N-terminal sequence context of mutant huntingtin (Htt) exon 1. We obtained snapshots of the formed aggregates as the kinetic reaction ensued to yield quantitative information on their size and mass. At the early stage, small precursor species with an initial radius of gyration (Rg) of 16.1more » 5.9 and average mass of a dimer to trimer were monitored. Structural growth was treated as two modes with a transition from three-dimensional early aggregate formation to two-dimensional fibril growth and association. Our SANS results on the internal structure of the mature fibrils demonstrate loose packing with about 1 peptide per 4.75 -sheet repeat distance, which is shown to be quantitatively consistent with a -helix model. This research provides new insights into the structures forming along the pathway of Htt exon 1 aggregation and should assist in determining the role that precursors play in neuronal toxicity.« less

  16. Gamma Knife surgery for arteriovenous malformations in the brain: integration of time-resolved contrast-enhanced magnetic resonance angiography into dosimetry planning. Technical note.

    PubMed

    Taschner, Christian A; Le Thuc, Vianney; Reyns, Nicolas; Gieseke, Juergen; Gauvrit, Jean-Yves; Pruvo, Jean-Pierre; Leclerc, Xavier

    2007-10-01

    The aim of this study was to develop an algorithm for the integration of time-resolved contrast-enhanced magnetic resonance (MR) angiography into dosimetry planning for Gamma Knife surgery (GKS) of arteriovenous malformations (AVMs) in the brain. Twelve patients harboring brain AVMs referred for GKS underwent intraarterial digital subtraction (DS) angiography and time-resolved MR angiography while wearing an externally applied cranial stereotactic frame. Time-resolved MR angiography was performed on a 1.5-tesla MR unit (Achieva, Philips Medical Systems) using contrast-enhanced 3D fast field echo sequencing with stochastic central k-space ordering. Postprocessing with interactive data language (Research Systems, Inc.) produced hybrid data sets containing dynamic angiographic information and the MR markers necessary for stereotactic transformation. Image files were sent to the Leksell GammaPlan system (Elekta) for dosimetry planning. Stereotactic transformation of the hybrid data sets containing the time-resolved MR angiography information with automatic detection of the MR markers was possible in all 12 cases. The stereotactic coordinates of vascular structures predefined from time-resolved MR angiography matched with DS angiography data in all cases. In 10 patients dosimetry planning could be performed based on time-resolved MR angiography data. In two patients, time-resolved MR angiography data alone were considered insufficient. The target volumes showed a notable shift of centers between modalities. Integration of time-resolved MR angiography data into the Leksell GammaPlan system for patients with brain AVMs is feasible. The proposed algorithm seems concise and sufficiently robust for clinical application. The quality of the time-resolved MR angiography sequencing needs further improvement.

  17. Can two-dimensional gas chromatography/mass spectrometric identification of bicyclic aromatic acids in petroleum fractions help to reveal further details of aromatic hydrocarbon biotransformation pathways?

    PubMed

    West, Charles E; Pureveen, Jos; Scarlett, Alan G; Lengger, Sabine K; Wilde, Michael J; Korndorffer, Frans; Tegelaar, Erik W; Rowland, Steven J

    2014-05-15

    The identification of key acid metabolites ('signature' metabolites) has allowed significant improvements to be made in our understanding of the biodegradation of petroleum hydrocarbons, in reservoir and in contaminated natural systems, such as aquifers and seawater. On this basis, anaerobic oxidation is now more widely accepted as one viable mechanism, for instance. However, identification of metabolites in the complex acid mixtures from petroleum degradation is challenging and would benefit from use of more highly resolving analytical methods. Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GCxGC/TOFMS) with both nominal mass and accurate mass measurement was used to study the complex mixtures of aromatic acids (as methyl esters) in petroleum fractions. Numerous mono- and di-aromatic acid isomers were identified in a commercial naphthenic acids fraction from petroleum and in an acids fraction from a biodegraded petroleum. In many instances, compounds were identified by comparison of mass spectral and retention time data with those of authentic compounds. The identification of a variety of alkyl naphthalene carboxylic and alkanoic and alkyl tetralin carboxylic and alkanoic acids, plus identifications of a range of alkyl indane acids, provides further evidence for 'signature' metabolites of biodegradation of aromatic petroleum hydrocarbons. Identifications such as these now offer the prospect of better differentiation of metabolites of bacterial processes (e.g. aerobic, methanogenic, sulphate-reducing) in polar petroleum fractions. Copyright © 2014 John Wiley & Sons, Ltd.

  18. The Kringle-like Domain Facilitates Post-endoplasmic Reticulum Changes to Premelanosome Protein (PMEL) Oligomerization and Disulfide Bond Configuration and Promotes Amyloid Formation*

    PubMed Central

    Ho, Tina; Watt, Brenda; Spruce, Lynn A.; Seeholzer, Steven H.; Marks, Michael S.

    2016-01-01

    The formation of functional amyloid must be carefully regulated to prevent the accumulation of potentially toxic products. Premelanosome protein (PMEL) forms non-toxic functional amyloid fibrils that assemble into sheets upon which melanins ultimately are deposited within the melanosomes of pigment cells. PMEL is synthesized in the endoplasmic reticulum but forms amyloid only within post-Golgi melanosome precursors; thus, PMEL must traverse the secretory pathway in a non-amyloid form. Here, we identified two pre-amyloid PMEL intermediates that likely regulate the timing of fibril formation. Analyses by non-reducing SDS-PAGE, size exclusion chromatography, and sedimentation velocity revealed two native high Mr disulfide-bonded species that contain Golgi-modified forms of PMEL. These species correspond to disulfide bond-containing dimeric and monomeric PMEL isoforms that contain no other proteins as judged by two-dimensional PAGE of metabolically labeled/immunoprecipitated PMEL and by mass spectrometry of affinity-purified complexes. Metabolic pulse-chase analyses, small molecule inhibitor treatments, and evaluation of site-directed mutants suggest that the PMEL dimer forms around the time of endoplasmic reticulum exit and is resolved by disulfide bond rearrangement into a monomeric form within the late Golgi or a post-Golgi compartment. Mutagenesis of individual cysteine residues within the non-amyloid cysteine-rich Kringle-like domain stabilizes the disulfide-bonded dimer and impairs fibril formation as determined by electron microscopy. Our data show that the Kringle-like domain facilitates the resolution of disulfide-bonded PMEL dimers and promotes PMEL functional amyloid formation, thereby suggesting that PMEL dimers must be resolved to monomers to generate functional amyloid fibrils. PMID:26694611

  19. Covariance J-resolved spectroscopy: Theory and application in vivo.

    PubMed

    Iqbal, Zohaib; Verma, Gaurav; Kumar, Anand; Thomas, M Albert

    2017-08-01

    Magnetic resonance spectroscopy (MRS) is a powerful tool capable of investigating the metabolic status of several tissues in vivo. In particular, single-voxel-based 1 H spectroscopy provides invaluable biochemical information from a volume of interest (VOI) and has therefore been used in a variety of studies. Unfortunately, typical one-dimensional MRS data suffer from severe signal overlap and thus important metabolites are difficult to distinguish. One method that is used to disentangle overlapping resonances is the two-dimensional J-resolved spectroscopy (JPRESS) experiment. Due to the long acquisition duration of the JPRESS experiment, a limited number of points are acquired in the indirect dimension, leading to poor spectral resolution along this dimension. Poor spectral resolution is problematic because proper peak assignment may be hindered, which is why the zero-filling method is often used to improve resolution as a post-processing step. However, zero-filling leads to spectral artifacts, which may affect visualization and quantitation of spectra. A novel method utilizing a covariance transformation, called covariance J-resolved spectroscopy (CovJ), was developed in order to improve spectral resolution along the indirect dimension (F 1 ). Comparison of simulated data demonstrates that peak structures remain qualitatively similar between JPRESS and the novel method along the diagonal region (F 1 = 0 Hz), whereas differences arise in the cross-peak (F 1 ≠0 Hz) regions. In addition, quantitative results of in vivo JPRESS data acquired on a 3T scanner show significant correlations (r 2 >0.86, p<0.001) when comparing the metabolite concentrations between the two methods. Finally, a quantitation algorithm, 'COVariance Spectral Evaluation of 1 H Acquisitions using Representative prior knowledge' (Cov-SEHAR), was developed in order to quantify γ-aminobutyric acid and glutamate from the CovJ spectra. These preliminary findings indicate that the CovJ method may be used to improve spectral resolution without hindering metabolite quantitation for J-resolved spectra. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Chemical transitions of Areca semen during the thermal processing revealed by temperature-resolved ATR-FTIR spectroscopy and two-dimensional correlation analysis

    NASA Astrophysics Data System (ADS)

    Wang, Zhibiao; Wang, Xu; Pei, Wenxuan; Li, Sen; Sun, Suqin; Zhou, Qun; Chen, Jianbo

    2018-03-01

    Areca semen is a common herb used in traditional Chinese medicine, but alkaloids in this herb are categorized as Group I carcinogens by IARC. It has been proven that the stir-baking process can reduce alkaloids in Areca semen while keep the activity for promoting digestion. However, the changes of compositions other than alkaloids during the thermal processing are unclear. Understanding the thermal chemical transitions of Areca semen is necessary to explore the processing mechanisms and optimize the procedures. In this research, FTIR spectroscopy with a temperature-controlled ATR accessory is employed to study the heating process of Areca semen. Principal component analysis and two-dimensional correlation spectroscopy are used to interpret the spectra to reveal the chemical transitions of Areca semen in different temperature ranges. The loss of a few volatile compounds in the testa and sperm happens below 105 °C, while some esters in the sperm decreases above 105 °C. As the heating temperature is close to 210 °C, Areca semen begins to be scorched and the decomposition of many compounds can be observed. This research shows the potential of the temperature-resolved ATR-FTIR spectroscopy in exploring the chemical transitions of the thermal processing of herbal materials.

  1. Energy Transfer Between Coherently Delocalized States in Thin Films of the Explosive Pentaerythritol Tetranitrate (PETN) Revealed by Two-Dimensional Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ostrander, Joshua; Knepper, Robert; Tappan, Alexander; Kay, Jeffery; Zanni, Martin; Farrow, Darcie

    2017-06-01

    Pentaerythritol tetranitrate (PETN) is a common secondary explosive and has been used extensively to study shock initiation and energy propagation in energetic materials. We report 2D IR measurements of PETN thin films that resolve vibrational energy transfer and relaxation mechanisms. Ultrafast anisotropy measurements reveal a sub-500 fs reorientation of transition dipoles in thin films of vapor-deposited PETN that is absent in solution measurements, consistent with intermolecular energy transfer. The anisotropy is frequency dependent, suggesting spectrally heterogeneous vibrational relaxation. Cross peaks are observed in 2D IR spectra that resolve a specific energy transfer pathway with a 2 ps time scale. Measurements of the transition dipole strength indicate that these vibrational modes are coherently delocalized over at least 15-30 molecules. We discuss the implications of vibrational relaxation between coherently delocalized eigenstates for mechanisms relevant to explosives. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. A new flux-conserving numerical scheme for the steady, incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Scott, James R.

    1994-01-01

    This paper is concerned with the continued development of a new numerical method, the space-time solution element (STS) method, for solving conservation laws. The present work focuses on the two-dimensional, steady, incompressible Navier-Stokes equations. Using first an integral approach, and then a differential approach, the discrete flux conservation equations presented in a recent paper are rederived. Here a simpler method for determining the flux expressions at cell interfaces is given; a systematic and rigorous derivation of the conditions used to simulate the differential form of the governing conservation law(s) is provided; necessary and sufficient conditions for a discrete approximation to satisfy a conservation law in E2 are derived; and an estimate of the local truncation error is given. A specific scheme is then constructed for the solution of the thin airfoil boundary layer problem. Numerical results are presented which demonstrate the ability of the scheme to accurately resolve the developing boundary layer and wake regions using grids which are much coarser than those employed by other numerical methods. It is shown that ten cells in the cross-stream direction are sufficient to accurately resolve the developing airfoil boundary layer.

  3. Intangible pointlike tracers for liquid-crystal-based microsensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brasselet, Etienne; Juodkazis, Saulius

    2010-12-15

    We propose an optical detection technique for liquid-crystal-based sensors that is based on polarization-resolved tracking of optical singularities and does not rely on standard observation of light-intensity changes caused by modifications of the liquid crystal orientational ordering. It uses a natural two-dimensional network of polarization singularities embedded in the transverse cross section of a probe beam that passes through a liquid crystal sample, in our case, a nematic droplet held in laser tweezers. The identification and spatial evolution of such a topological fingerprint is retrieved from subwavelength polarization-resolved imaging, and the mechanical constraint exerted on the molecular ordering by themore » trapping beam itself is chosen as the control parameter. By restricting our analysis to one type of point singularity, C points, which correspond to location in space where the polarization azimuth is undefined, we show that polarization singularities appear as intangible pointlike tracers for liquid-crystal-based three-dimensional microsensors. The method has a superresolution potential and can be used to visualize changes at the nanoscale.« less

  4. A new time and space resolved transmission spectrometer for research in inertial confinement fusion and radiation source development.

    PubMed

    Knapp, P F; Ball, C; Austin, K; Hansen, S B; Kernaghan, M D; Lake, P W; Ampleford, D J; McPherson, L A; Sandoval, D; Gard, P; Wu, M; Bourdon, C; Rochau, G A; McBride, R D; Sinars, D B

    2017-01-01

    We describe the design and function of a new time and space resolved x-ray spectrometer for use in Z-pinch inertial confinement fusion and radiation source development experiments. The spectrometer is designed to measure x-rays in the range of 0.5-1.5 Å (8-25 keV) with a spectral resolution λ/Δλ ∼ 400. The purpose of this spectrometer is to measure the time- and one-dimensional space-dependent electron temperature and density during stagnation. These relatively high photon energies are required to escape the dense plasma created at stagnation and to obtain sensitivity to electron temperatures ≳3 keV. The spectrometer is of the Cauchois type, employing a large 30 × 36 mm 2 , transmissive quartz optic for which a novel solid beryllium holder was designed. The performance of the crystal was verified using offline tests, and the integrated system was tested using experiments on the Z pulsed power accelerator.

  5. Periodic unsteady effects on turbulent boundary layer transport and heat transfer: An experimental investigation in a cylinder-wall junction flow

    NASA Astrophysics Data System (ADS)

    Xie, Qi

    Heat transfer in a turbulent boundary layer downstream of junction with a cylinder has many engineering applications including controlling heat transfer to the endwall in gas turbine passages and cooling of protruding electronic chips. The main objective of this research is to study the fundamental process of heat transport and wall heat transfer in a turbulent three-dimensional flow superimposed with local large-scale periodic unsteadiness generated by vortex shedding from the cylinder. Direct measurements of the Reynolds heat fluxes (/line{utheta},\\ /line{vtheta}\\ and\\ /line{wtheta}) and time-resolved wall heat transfer rate will provide insight into unsteady flow behavior and data for advanced turbulence models for numerical simulation of complex engineering flows. Experiments were conducted in an open-circuit, low-speed wind tunnel. Reynolds stresses and heat fluxes were obtained from turbulent heat-flux probes which consisted of two hot wires, arranged in an X-wire configuration, and a cold wire located in front of the X-wire. Thin-film surface heat flux sensors were designed for measuring time-resolved wall heat flux. A reference probe and conditional-sampling technique connected the flow field dynamics to wall heat transfer. An event detecting and ensemble-averaging method was developed to separate effects of unsteadiness from those of background turbulence. Results indicate that unsteadiness affects both heat transport and wall heat transfer. The flow behind the cylinder can be characterized by three regions: (1) Wake region, where unsteadiness is observed to have modest effect; (2) Unsteady region, where the strongest unsteadiness effect is found; (3) Outer region, where the flow approaches the two-dimensional boundary-layer behavior. Vortex shedding from both sides of the cylinder contributes to mixing enhancement in the wake region. Unsteadiness contributes up to 51% of vertical and 59% of spanwise turbulent heat fluxes in the unsteady region. The instantaneous wall Stanton number increased up to 100% compared with an undisturbed flow. Large-scale fluctuations of wall Stanton number were due to the periodic thinning and thickening of the thermal layer caused by periodic vertical velocity fluctuations. This suggests that the outerlayer motion affects near-wall flow behavior and wall heat transfer.

  6. Incremental value of live/real time three-dimensional transthoracic echocardiography over the two-dimensional technique in assessing carcinoid heart disease involving the aortic valve.

    PubMed

    Bulur, Serkan; Hsiung, Ming C; Nanda, Navin C; Hardas, Shalaka; Mohamed, Ahmed; ElKaryoni, Ahmed; Srialluri, Swetha; Barssoum, Kirolos; Elsayed, Mahmoud; Wei, Jeng; Yin, Wei-Hsian

    2016-11-01

    We present a case of an adult with metastatic carcinoid heart disease, in whom live/real time three-dimensional transthoracic echocardiography provided incremental value over two-dimensional transthoracic echocardiography in assessing involvement of the aortic valve. © 2016, Wiley Periodicals, Inc.

  7. Time-resolved magnetic resonance angiography (MRA) at 3.0 Tesla for evaluation of hemodynamic characteristics of vascular malformations: description of distinct subgroups.

    PubMed

    Hammer, Simone; Uller, Wibke; Manger, Florentine; Fellner, Claudia; Zeman, Florian; Wohlgemuth, Walter A

    2017-01-01

    Quantitative evaluation of hemodynamic characteristics of arteriovenous and venous malformations using time-resolved magnetic resonance angiography (MRA) at 3.0 Tesla. Time-resolved MRA with interleaved stochastic trajectories (TWIST) at 3.0 Tesla was studied in 83 consecutive patients with venous malformations (VM) and arteriovenous malformations (AVM). Enhancement characteristics were calculated as percentage increase of signal intensity above baseline over time. Maximum percentage signal intensity increase (signal max ), time intervals between onset of arterial enhancement and lesion enhancement (t onset ), and time intervals between beginning of lesion enhancement and maximum percentage of lesion enhancement (t max ) were analyzed. All AVMs showed a high-flow hemodynamic pattern. Two significantly different (p < 0.001) types of venous malformations emerged: VMs with arteriovenous fistulas (AVF) (median signal max 737 %, IQR [interquartile range] = 511 - 1182 %; median t onset 5 s, IQR = 5 - 10 s; median t max 35 s, IQR = 26 - 40 s) and without AVFs (median signal max 284 %, IQR = 177-432 %; median t onset 23 s, IQR = 15 - 30 s; median t max 60 s, IQR = 55 - 75 s). Quantitative evaluation of time-resolved MRA at 3.0 Tesla provides hemodynamic characterization of vascular malformations. VMs can be subclassified into two hemodynamic subgroups due to presence or absence of AVFs. • Time-resolved MRA at 3.0 Tesla provides quantitative hemodynamic characterization of vascular malformations. • Malformations significantly differ in time courses of enhancement and signal intensity increase. • AVMs show a distinctive high-flow hemodynamic pattern. • Two significantly different types of VMs emerged: VMs with and without AVFs.

  8. Long-time variation in magnetic structure of CeIr 3Si 2: Observation of a nucleation-and-growth process of magnetic domains

    DOE PAGES

    Motoya, Kiyoichiro; Hagihala, Masato; Takabatake, Toshiro; ...

    2016-02-29

    CeIr 3Si 2 is the first three-dimensional uniform magnet in which the long-time variation in magnetic structure was observed. To clarify the microscopic mechanism of this magnetic structural change, time-resolved neutron scattering measurements have been reinvestigated. Clear time variations in the line widths as well as the amplitudes of magnetic Bragg diffractions have been observed in this improved instrumentation. On the notion of this observation, a nucleation-and-growth model of magnetic structural change has been presented. The numerical calculation with this model reproduces well the observation.

  9. Long-time variation in magnetic structure of CeIr 3Si 2: Observation of a nucleation-and-growth process of magnetic domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motoya, Kiyoichiro; Hagihala, Masato; Takabatake, Toshiro

    CeIr 3Si 2 is the first three-dimensional uniform magnet in which the long-time variation in magnetic structure was observed. To clarify the microscopic mechanism of this magnetic structural change, time-resolved neutron scattering measurements have been reinvestigated. Clear time variations in the line widths as well as the amplitudes of magnetic Bragg diffractions have been observed in this improved instrumentation. On the notion of this observation, a nucleation-and-growth model of magnetic structural change has been presented. The numerical calculation with this model reproduces well the observation.

  10. Symplectic potentials and resolved Ricci-flat ACG metrics

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Aswin K.; Govindarajan, Suresh; Gowdigere, Chethan N.

    2007-12-01

    We pursue the symplectic description of toric Kähler manifolds. There exists a general local classification of metrics on toric Kähler manifolds equipped with Hamiltonian 2-forms due to Apostolov, Calderbank and Gauduchon (ACG). We derive the symplectic potential for these metrics. Using a method due to Abreu, we relate the symplectic potential to the canonical potential written by Guillemin. This enables us to recover the moment polytope associated with metrics and we thus obtain global information about the metric. We illustrate these general considerations by focusing on six-dimensional Ricci-flat metrics and obtain Ricci-flat metrics associated with real cones over Lpqr and Ypq manifolds. The metrics associated with cones over Ypq manifolds turn out to be partially resolved with two blow-up parameters taking special (non-zero) values. For a fixed Ypq manifold, we find explicit metrics for several inequivalent blow-ups parametrized by a natural number k in the range 0 < k < p. We also show that all known examples of resolved metrics such as the resolved conifold and the resolution of {\\bb C}^3/{\\bb Z}_3 also fit the ACG classification.

  11. Impact of time-resolved MRA on diagnostic accuracy in patients with symptomatic peripheral artery disease of the calf station.

    PubMed

    Hansmann, Jan; Michaely, Henrik J; Morelli, John N; Diehl, Steffen J; Meyer, Mathias; Schoenberg, Stefan O; Attenberger, Ulrike I

    2013-12-01

    The purpose of this article is to evaluate the added diagnostic accuracy of time-resolved MR angiography (MRA) of the calves compared with continuous-table-movement MRA in patients with symptomatic lower extremity peripheral artery disease (PAD) using digital subtraction angiography (DSA) correlation. Eighty-four consecutive patients with symptomatic PAD underwent a low-dose 3-T MRA protocol, consisting of continuous-table-movement MRA, acquired from the diaphragm to the calves, and an additional time-resolved MRA of the calves; 0.1 mmol/kg body weight (bw) of contrast material was used (0.07 mmol/kg bw for continuous-table-movement MRA and 0.03 mmol/kg bw for time-resolved MRA). Two radiologists rated image quality on a 4-point scale and stenosis degree on a 3-point scale. An additional assessment determined the degree of venous contamination and whether time-resolved MRA improved diagnostic confidence. The accuracy of stenosis gradation with continuous-table-movement and time-resolved MRA was compared with that of DSA as a correlation. Overall diagnostic accuracy was calculated for continuous-table-movement and time-resolved MRA. Median image quality was rated as good for 578 vessel segments with continuous-table-movement MRA and as excellent for 565 vessel segments with time-resolved MRA. Interreader agreement was excellent (κ = 0.80-0.84). Venous contamination interfered with diagnosis in more than 60% of continuous-table-movement MRA examinations. The degree of stenosis was assessed for 340 vessel segments. The diagnostic accuracies (continuous-table-movement MRA/time-resolved MRA) combined for the readers were obtained for the tibioperoneal trunk (84%/93%), anterior tibial (69%/87%), posterior tibial (85%/91%), and peroneal (67%/81%) arteries. The addition of time-resolved MRA improved diagnostic confidence in 69% of examinations. The addition of time-resolved MRA at the calf station improves diagnostic accuracy over continuous-table-movement MRA alone in symptomatic patients with PAD.

  12. Permeabilization assay for antimicrobial peptides based on pore-spanning lipid membranes on nanoporous alumina.

    PubMed

    Neubacher, Henrik; Mey, Ingo; Carnarius, Christian; Lazzara, Thomas D; Steinem, Claudia

    2014-04-29

    Screening tools to study antimicrobial peptides (AMPs) with the aim to optimize therapeutic delivery vectors require automated and parallelized sampling based on chip technology. Here, we present the development of a chip-based assay that allows for the investigation of the action of AMPs on planar lipid membranes in a time-resolved manner by fluorescence readout. Anodic aluminum oxide (AAO) composed of cylindrical pores with a diameter of 70 nm and a thickness of up to 10 μm was used as a support to generate pore-spanning lipid bilayers from giant unilamellar vesicle spreading, which resulted in large continuous membrane patches sealing the pores. Because AAO is optically transparent, fluid single lipid bilayers and the underlying pore cavities can be readily observed by three-dimensional confocal laser scanning microscopy (CLSM). To assay the membrane permeabilizing activity of the AMPs, the translocation of the water-soluble dyes into the AAO cavities and the fluorescence of the sulforhodamine 101 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanol-l-amine triethylammonium salt (Texas Red DHPE)-labeled lipid membrane were observed by CLSM in a time-resolved manner as a function of the AMP concentration. The effect of two different AMPs, magainin-2 and melittin, was investigated, showing that the concentrations required for membrane permeabilization and the kinetics of the dye entrance differ significantly. Our results are discussed in light of the proposed permeabilization models of the two AMPs. The presented data demonstrate the potential of this setup for the development of an on-chip screening platform for AMPs.

  13. Dual echelon femtosecond single-shot spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Taeho; Wolfson, Johanna W.; Teitelbaum, Samuel W.

    We have developed a femtosecond single-shot spectroscopic technique to measure irreversible changes in condensed phase materials in real time. Crossed echelons generate a two-dimensional array of time-delayed pulses with one femtosecond probe pulse. This yields 9 ps of time-resolved data from a single laser shot, filling a gap in currently employed measurement methods. We can now monitor ultrafast irreversible dynamics in solid-state materials or other samples that cannot be flowed or replenished between laser shots, circumventing limitations of conventional pump-probe methods due to sample damage or product buildup. Despite the absence of signal-averaging in the single-shot measurement, an acceptable signal-to-noisemore » level has been achieved via background and reference calibration procedures. Pump-induced changes in relative reflectivity as small as 0.2%−0.5% are demonstrated in semimetals, with both electronic and coherent phonon dynamics revealed by the data. The optical arrangement and the space-to-time conversion and calibration procedures necessary to achieve this level of operation are described. Sources of noise and approaches for dealing with them are discussed.« less

  14. Spatially Resolved MR-Compatible Doppler Ultrasound: Proof of Concept for Triggering of Diagnostic Quality Cardiovascular MRI for Function and Flow Quantification at 3T.

    PubMed

    Crowe, Lindsey Alexandra; Manasseh, Gibran; Chmielewski, Aneta; Hachulla, Anne-Lise; Speicher, Daniel; Greiser, Andreas; Muller, Hajo; de Perrot, Thomas; Vallee, Jean-Paul; Salomir, Rares

    2018-02-01

    We demonstrate the use of a magnetic-resonance (MR)-compatible ultrasound (US) imaging probe using spatially resolved Doppler for diagnostic quality cardiovascular MR imaging (MRI) as an initial step toward hybrid US/MR fetal imaging. A newly developed technology for a dedicated MR-compatible phased array ultrasound-imaging probe acquired pulsed color Doppler carotid images, which were converted in near-real time to a trigger signal for cardiac cine and flow quantification MRI. Ultrasound and MR data acquired simultaneously were interference free. Conventional electrocardiogram (ECG) and the proposed spatially resolved Doppler triggering were compared in 10 healthy volunteers. A synthetic "false-triggered" image was retrospectively processed using metric optimized gating (MOG). Images were scored by expert readers, and sharpness, cardiac function and aortic flow were quantified. Four-dimensional (4-D) flow (two volunteers) showed feasibility of Doppler triggering over a long acquisition time. Imaging modalities were compatible. US probe positioning was stable and comfortable. Image quality scores and quantified sharpness were statistically equal for Doppler- and ECG-triggering (p ). ECG-, Doppler-triggered, and MOG ejection fractions were equivalent (p ), with false-triggered values significantly lower (p < 0.0005). Aortic flow showed no difference between ECG- and Doppler-triggered and MOG (p > 0.05). 4-D flow quantification gave consistent results between ECG and Doppler triggering. We report interference-free pulsed color Doppler ultrasound during MR data acquisition. Cardiovascular MRI of diagnostic quality was successfully obtained with pulsed color Doppler triggering. The hardware platform could further enable advanced free-breathing cardiac imaging. Doppler ultrasound triggering is applicable where ECG is compromised due to pathology or interference at higher magnetic fields, and where direct ECG is impossible, i.e., fetal imaging.

  15. The impact of infield biomass burning on PM levels and its chemical composition.

    PubMed

    Dambruoso, P; de Gennaro, G; Di Gilio, A; Palmisani, J; Tutino, M

    2014-12-01

    In the South of Italy, it is common for farmers to burn pruning waste from olive trees in spring. In order to evaluate the impact of the biomass burning source on the physical and chemical characteristics of the particulate matter (PM) emitted by these fires, a PM monitoring campaign was carried out in an olive grove. Daily PM10 samples were collected for 1 week, when there were no open fires, and when biomass was being burned, and at two different distances from the fires. Moreover, an optical particle counter and a polycyclic aromatic hydrocarbon (PAH) analyzer were used to measure the high time-resolved dimensional distribution of particles emitted and total PAHs concentrations, respectively. Chemical analysis of PM10 samples identified organic and inorganic components such as PAHs, ions, elements, and carbonaceous fractions (OC, EC). Analysis of the collected data showed the usefulness of organic and inorganic tracer species and of PAH diagnostic ratios for interpreting the impact of biomass fires on PM levels and on its chemical composition. Finally, high time-resolved monitoring of particle numbers and PAH concentrations was performed before, during, and after biomass burning, and these concentrations were seen to be very dependent on factors such as weather conditions, combustion efficiency, and temperature (smoldering versus flaming conditions), and moisture content of the wood burned.

  16. Micro-Mirrors for Nanoscale Three-Dimensional Microscopy

    PubMed Central

    Seale, Kevin; Janetopoulos, Chris; Wikswo, John

    2013-01-01

    A research-grade optical microscope is capable of resolving fine structures in two-dimensional images. However, three-dimensional resolution, or the ability of the microscope to distinguish between objects lying above or below the focal plane from in-focus objects, is not nearly as good as in-plane resolution. In this issue of ACS Nano, McMahon et al. report the use of mirrored pyramidal wells with a conventional microscope for rapid, 3D localization and tracking of nanoparticles. Mirrors have been used in microscopy before, but recent work with MPWs is unique because it enables the rapid determination of the x-, y-, and z-position of freely diffusing nanoparticles and cellular nanostructures with unprecedented speed and spatial accuracy. As inexpensive tools for 3D visualization, mirrored pyramidal wells may prove to be invaluable aids in nanotechnology and engineering of nanomaterials. PMID:19309167

  17. Coherent anti-stokes Raman spectroscopy for detecting explosives in real time

    NASA Astrophysics Data System (ADS)

    Dogariu, Arthur; Pidwerbetsky, Alex

    2012-06-01

    We demonstrate real-time stand-off detection and imaging of trace explosives using collinear, backscattered Coherent Anti-Stokes Raman Spectroscopy (CARS). Using a hybrid time-resolved broad-band CARS we identify nanograms of explosives on the millisecond time scale. The broad-band excitation in the near-mid-infrared region excites the vibrational modes in the fingerprint region, and the time-delayed probe beam ensures the reduction of any non-resonant contributions to the CARS signal. The strong coherent enhancement allows for recording Raman spectra in real-time. We demonstrate stand-off detection by acquiring, analyzing, and identifying vibrational fingerprints in real-time with very high sensitivity and selectivity. By extending the focused region from a 100-micron sized spot to a 5mm long line we can obtain the spectral information from an extended region of the remote target with high spatial resolution. We demonstrate fast hyperspectral imaging by one-dimensional scanning of the Line-CARS. The three-dimensional data structure contains the vibrational spectra of the target at each sampled location, which allows for chemical mapping of the remote target.

  18. Entropic multirelaxation-time lattice Boltzmann method for moving and deforming geometries in three dimensions

    NASA Astrophysics Data System (ADS)

    Dorschner, B.; Chikatamarla, S. S.; Karlin, I. V.

    2017-06-01

    Entropic lattice Boltzmann methods have been developed to alleviate intrinsic stability issues of lattice Boltzmann models for under-resolved simulations. Its reliability in combination with moving objects was established for various laminar benchmark flows in two dimensions in our previous work [B. Dorschner, S. Chikatamarla, F. Bösch, and I. Karlin, J. Comput. Phys. 295, 340 (2015), 10.1016/j.jcp.2015.04.017] as well as for three-dimensional one-way coupled simulations of engine-type geometries in B . Dorschner, F. Bösch, S. Chikatamarla, K. Boulouchos, and I. Karlin [J. Fluid Mech. 801, 623 (2016), 10.1017/jfm.2016.448] for flat moving walls. The present contribution aims to fully exploit the advantages of entropic lattice Boltzmann models in terms of stability and accuracy and extends the methodology to three-dimensional cases, including two-way coupling between fluid and structure and then turbulence and deforming geometries. To cover this wide range of applications, the classical benchmark of a sedimenting sphere is chosen first to validate the general two-way coupling algorithm. Increasing the complexity, we subsequently consider the simulation of a plunging SD7003 airfoil in the transitional regime at a Reynolds number of Re =40 000 and, finally, to access the model's performance for deforming geometries, we conduct a two-way coupled simulation of a self-propelled anguilliform swimmer. These simulations confirm the viability of the new fluid-structure interaction lattice Boltzmann algorithm to simulate flows of engineering relevance.

  19. Integrated Aeromechanics with Three-Dimensional Solid-Multibody Structures

    NASA Technical Reports Server (NTRS)

    Datta, Anubhav; Johnson, Wayne

    2014-01-01

    A full three-dimensional finite element-multibody structural dynamic solver is coupled to a three-dimensional Reynolds-averaged Navier-Stokes solver for the prediction of integrated aeromechanical stresses and strains on a rotor blade in forward flight. The objective is to lay the foundations of all major pieces of an integrated three-dimensional rotor dynamic analysis - from model construction to aeromechanical solution to stress/strain calculation. The primary focus is on the aeromechanical solution. Two types of three-dimensional CFD/CSD interfaces are constructed for this purpose with an emphasis on resolving errors from geometry mis-match so that initial-stage approximate structural geometries can also be effectively analyzed. A three-dimensional structural model is constructed as an approximation to a UH-60A-like fully articulated rotor. The aerodynamic model is identical to the UH-60A rotor. For preliminary validation measurements from a UH-60A high speed flight is used where CFD coupling is essential to capture the advancing side tip transonic effects. The key conclusion is that an integrated aeromechanical analysis is indeed possible with three-dimensional structural dynamics but requires a careful description of its geometry and discretization of its parts.

  20. High-resolution angle-resolved photoemission study of electronic structure and charge-density wave formation in HoTe3

    NASA Astrophysics Data System (ADS)

    Liu, Guodong; Wang, Chenlu; Zhang, Yan; Hu, Bingfeng; Mou, Daixiang; Yu, Li; Zhao, Lin; Zhou, Xingjiang; Wang, Nanlin; Chen, Chuangtian; Xu, Zuyan

    We performed high-resolution angle-resolved photoemission spectroscopy (ARPES) measurement on high quality crystal of HoTe3, an intriguing quasi-two-dimensional rare-earth-element tritelluride charge-density-wave (CDW) compound. The main features of the electronic structure in this compound are established by employing a quasi-CW laser (7eV) and a helium discharging lamp (21.22 eV) as excitation light sources. It reveals many bands back folded according to the CDW periodicity and two incommensurate CDW gaps created by perpendicular Fermi surface (FS) nesting vectors. A large gap is found to open in well nested regions of the Fermi surface sheets, whereas other Fermi surface sections with poor nesting remain ungapped. In particular, some peculiar features are identified by using our ultra-high resolution and bulk sensitive laser-ARPES.

  1. Dynamic contrast–enhanced magnetic resonance imaging in patients with pulmonary arterial hypertension

    PubMed Central

    Condliffe, Robin; Marshall, Helen; Elliot, Charlie; Kiely, David G.; Wild, Jim M.

    2014-01-01

    Abstract Dynamic contrast–enhanced (DCE) time-resolved magnetic resonance (MR) imaging is a technique whereby the passage of an intravenous contrast bolus can be tracked through the pulmonary vascular system. The aim of this study was to investigate the prognostic significance of DCE-MR pulmonary blood transit times in patients with pulmonary arterial hypertension (PAH). Seventy-nine patients diagnosed with PAH underwent pulmonary DCE imaging at 1.5 T using a time-resolved three-dimensional spoiled gradient echo sequence. The prognostic significance of two DCE parameters, full width at half maximum (FWHM) of the first-pass clearance curve and pulmonary transit time (PTT), along with demographic and invasive catheter measurements, was evaluated by univariate and bivariate Cox proportional hazards regression and Kaplan-Meier analysis. DCE-MR transit times were most closely correlated with cardiac index (CI) and pulmonary vascular resistance index (PVRI) and were both found to be accurate for detecting reduced CI (FWHM area under the curve [AUC] at receiver operating characteristic analysis = 0.91 and PTT AUC = 0.92, respectively) and for detecting elevated PVRI (FWHM AUC = 0.88 and PTT AUC = 0.84, respectively). During the follow-up period, 25 patients died. Patients with longer measurements of FWHM (P = 0.0014) and PTT (P = 0.004) were associated with poor outcome at Kaplan-Meier analysis, and both parameters were strong predictors of adverse outcome from Cox proportional hazards analysis (P = 0.013 and 0.010, respectively). At bivariate analysis, DCE measurements predicted mortality independent of age, gender, and World Health Organization functional class; however, invasive hemodynamic indexes CI, PVRI, and DCE measurements were not independent of one another. In conclusion, DCE-MR transit times predict mortality in patients with PAH and are closely associated with clinical gold standards CI and PVRI. PMID:25006422

  2. Dynamic contrast-enhanced magnetic resonance imaging in patients with pulmonary arterial hypertension.

    PubMed

    Swift, Andrew J; Telfer, Adam; Rajaram, Smitha; Condliffe, Robin; Marshall, Helen; Capener, Dave; Hurdman, Judith; Elliot, Charlie; Kiely, David G; Wild, Jim M

    2014-03-01

    Dynamic contrast-enhanced (DCE) time-resolved magnetic resonance (MR) imaging is a technique whereby the passage of an intravenous contrast bolus can be tracked through the pulmonary vascular system. The aim of this study was to investigate the prognostic significance of DCE-MR pulmonary blood transit times in patients with pulmonary arterial hypertension (PAH). Seventy-nine patients diagnosed with PAH underwent pulmonary DCE imaging at 1.5 T using a time-resolved three-dimensional spoiled gradient echo sequence. The prognostic significance of two DCE parameters, full width at half maximum (FWHM) of the first-pass clearance curve and pulmonary transit time (PTT), along with demographic and invasive catheter measurements, was evaluated by univariate and bivariate Cox proportional hazards regression and Kaplan-Meier analysis. DCE-MR transit times were most closely correlated with cardiac index (CI) and pulmonary vascular resistance index (PVRI) and were both found to be accurate for detecting reduced CI (FWHM area under the curve [AUC] at receiver operating characteristic analysis = 0.91 and PTT AUC = 0.92, respectively) and for detecting elevated PVRI (FWHM AUC = 0.88 and PTT AUC = 0.84, respectively). During the follow-up period, 25 patients died. Patients with longer measurements of FWHM (P = 0.0014) and PTT (P = 0.004) were associated with poor outcome at Kaplan-Meier analysis, and both parameters were strong predictors of adverse outcome from Cox proportional hazards analysis (P = 0.013 and 0.010, respectively). At bivariate analysis, DCE measurements predicted mortality independent of age, gender, and World Health Organization functional class; however, invasive hemodynamic indexes CI, PVRI, and DCE measurements were not independent of one another. In conclusion, DCE-MR transit times predict mortality in patients with PAH and are closely associated with clinical gold standards CI and PVRI.

  3. Localization and separation of acoustic sources by using a 2.5-dimensional circular microphone array.

    PubMed

    Bai, Mingsian R; Lai, Chang-Sheng; Wu, Po-Chen

    2017-07-01

    Circular microphone arrays (CMAs) are sufficient in many immersive audio applications because azimuthal angles of sources are considered more important than the elevation angles in those occasions. However, the fact that CMAs do not resolve the elevation angle well can be a limitation for some applications which involves three-dimensional sound images. This paper proposes a 2.5-dimensional (2.5-D) CMA comprised of a CMA and a vertical logarithmic-spacing linear array (LLA) on the top. In the localization stage, two delay-and-sum beamformers are applied to the CMA and the LLA, respectively. The direction of arrival (DOA) is estimated from the product of two array output signals. In the separation stage, Tikhonov regularization and convex optimization are employed to extract the source amplitudes on the basis of the estimated DOA. The extracted signals from two arrays are further processed by the normalized least-mean-square algorithm with the internal iteration to yield the source signal with improved quality. To validate the 2.5-D CMA experimentally, a three-dimensionally printed circular array comprised of a 24-element CMA and an eight-element LLA is constructed. Objective perceptual evaluation of speech quality test and a subjective listening test are also undertaken.

  4. Computations of Axisymmetric Flows in Hypersonic Shock Tubes

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.; Wilson, Gregory J.

    1995-01-01

    A time-accurate two-dimensional fluid code is used to compute test times in shock tubes operated at supersonic speeds. Unlike previous studies, this investigation resolves the finer temporal details of the shock-tube flow by making use of modern supercomputers and state-of-the-art computational fluid dynamic solution techniques. The code, besides solving the time-dependent fluid equations, also accounts for the finite rate chemistry in the hypersonic environment. The flowfield solutions are used to estimate relevant shock-tube parameters for laminar flow, such as test times, and to predict density and velocity profiles. Boundary-layer parameters such as bar-delta(sub u), bar-delta(sup *), and bar-tau(sub w), and test time parameters such as bar-tau and particle time of flight t(sub f), are computed and compared with those evaluated by using Mirels' correlations. This article then discusses in detail the effects of flow nonuniformities on particle time-of-flight behind the normal shock and, consequently, on the interpretation of shock-tube data. This article concludes that for accurate interpretation of shock-tube data, a detailed analysis of flowfield parameters, using a computer code such as used in this study, must be performed.

  5. Unsteady, one-dimensional gas dynamics computations using a TVD type sequential solver

    NASA Technical Reports Server (NTRS)

    Thakur, Siddharth; Shyy, Wei

    1992-01-01

    The efficacy of high resolution convection schemes to resolve sharp gradient in unsteady, 1D flows is examined using the TVD concept based on a sequential solution algorithm. Two unsteady flow problems are considered which include the problem involving the interaction of the various waves in a shock tube with closed reflecting ends and the problem involving the unsteady gas dynamics in a tube with closed ends subject to an initial pressure perturbation. It is concluded that high accuracy convection schemes in a sequential solution framework are capable of resolving discontinuities in unsteady flows involving complex gas dynamics. However, a sufficient amount of dissipation is required to suppress oscillations near discontinuities in the sequential approach, which leads to smearing of the solution profiles.

  6. Incremental value of live/real time three-dimensional transesophageal echocardiography over the two-dimensional technique in the assessment of a tuberculoma involving the left atrium and appendage.

    PubMed

    Kemaloğlu Öz, Tuğba; Elsayed, Mahmoud; Nanda, Navin C; Kalenderoğlu, Koray; Akyüz, Şükrü; Atasoy, Işıl; Ösken, Altuğ; Onuk, Tolga; Eren, Mehmet

    2016-09-01

    Intracardiac tuberculomas are extremely rare, and cardiac involvement in tuberculosis accounts for only 0.5% of extrapulmonary tuberculosis. We report for the first time incremental value of live/real time three-dimensional transesophageal echocardiography over two-dimensional transesophageal echocardiography in the assessment of a tuberculoma involving the left atrium and left atrial appendage. © 2016, Wiley Periodicals, Inc.

  7. Radar systems for a polar mission, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Komen, M. J.; Mccauley, J.; Mcmillan, S. B.; Parashar, S. K.

    1977-01-01

    The application of synthetic aperture radar (SAR) in monitoring and managing earth resources is examined. Synthetic aperture radars form a class of side-looking airborne radar, often referred to as coherent SLAR, which permits fine-resolution radar imagery to be generated at long operating ranges by the use of signal processing techniques. By orienting the antenna beam orthogonal to the motion of the spacecraft carrying the radar, a one-dimensional imagery ray system is converted into a two-dimensional or terrain imaging system. The radar's ability to distinguish - or resolve - closely spaced transverse objects is determined by the length of the pulse. The transmitter components receivers, and the mixer are described in details.

  8. Sequence-specific sup 1 H NMR resonance assignments of Bacillus subtilis HPr: Use of spectra obtained from mutants to resolve spectral overlap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittekind, M.; Klevit, R.E.; Reizer, J.

    1990-08-07

    On the basis of an analysis of two-dimensional {sup 1}H NMR spectra, the complete sequence-specific {sup 1}H NMR assignments are presented for the phosphocarrier protein HPr from the Gram-positive bacterium Bacillus subtilis. During the assignment procedure, extensive use was made of spectra obtained from point mutants of HPr in order to resolve spectral overlap and to provide verification of assignments. Regions of regular secondary structure were identified by characteristic patterns of sequential backbone proton NOEs and slowly exchanging amide protons. B subtilis HPr contains four {beta}-strands that form a single antiparallel {beta}-sheet and two well-defined {alpha}-helices. There are two stretchesmore » of extended backbone structure, one of which contains the active site His{sub 15}. The overall fold of the protein is very similar to that of Escherichia coli HPr determined by NMR studies.« less

  9. NASA-Lewis experiences with multigroup cross sections and shielding calculations

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1972-01-01

    The nuclear reactor shield analysis procedures employed at NASA-Lewis are described. Emphasis is placed on the generation, use, and testing of multigroup cross section data. Although coupled neutron and gamma ray cross section sets are useful in two dimensional Sn transport calculations, much insight has been gained from examination of uncoupled calculations. These have led to experimental and analytic studies of areas deemed to be of first order importance to reactor shield calculations. A discussion is given of problems encountered in using multigroup cross sections in the resolved resonance energy range. The addition to ENDF files of calculated and/or measured neutron-energy-dependent capture gamma ray spectra for shielding calculations is questioned for the resonance region. Anomalies inherent in two dimensional Sn transport calculations which may overwhelm any cross section discrepancies are illustrated.

  10. Implicit Total Variation Diminishing (TVD) schemes for steady-state calculations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Warming, R. F.; Harten, A.

    1983-01-01

    The application of a new implicit unconditionally stable high resolution total variation diminishing (TVD) scheme to steady state calculations. It is a member of a one parameter family of explicit and implicit second order accurate schemes developed by Harten for the computation of weak solutions of hyperbolic conservation laws. This scheme is guaranteed not to generate spurious oscillations for a nonlinear scalar equation and a constant coefficient system. Numerical experiments show that this scheme not only has a rapid convergence rate, but also generates a highly resolved approximation to the steady state solution. A detailed implementation of the implicit scheme for the one and two dimensional compressible inviscid equations of gas dynamics is presented. Some numerical computations of one and two dimensional fluid flows containing shocks demonstrate the efficiency and accuracy of this new scheme.

  11. Large-eddy simulation of turbulent flow with a surface-mounted two-dimensional obstacle

    NASA Technical Reports Server (NTRS)

    Yang, Kyung-Soo; Ferziger, Joel H.

    1993-01-01

    In this paper, we perform a large eddy simulation (LES) of turbulent flow in a channel containing a two-dimensional obstacle on one wall using a dynamic subgrid-scale model (DSGSM) at Re = 3210, based on bulk velocity above the obstacle and obstacle height; the wall layers are fully resolved. The low Re enables us to perform a DNS (Case 1) against which to validate the LES results. The LES with the DSGSM is designated Case 2. In addition, an LES with the conventional fixed model constant (Case 3) is conducted to allow identification of improvements due to the DSGSM. We also include LES at Re = 82,000 (Case 4) using conventional Smagorinsky subgrid-scale model and a wall-layer model. The results will be compared with the experiment of Dimaczek et al.

  12. Hemodynamics in a giant intracranial aneurysm characterized by in vitro 4D flow MRI

    PubMed Central

    Schiavazzi, Daniele; Moen, Sean; Jagadeesan, Bharathi; Van de Moortele, Pierre-François; Coletti, Filippo

    2018-01-01

    Experimental and computational data suggest that hemodynamics play a critical role in the development, growth, and rupture of cerebral aneurysms. The flow structure, especially in aneurysms with a large sac, is highly complex and three-dimensional. Therefore, volumetric and time-resolved measurements of the flow properties are crucial to fully characterize the hemodynamics. In this study, phase-contrast Magnetic Resonance Imaging is used to assess the fluid dynamics inside a 3D-printed replica of a giant intracranial aneurysm, whose hemodynamics was previously simulated by multiple research groups. The physiological inflow waveform is imposed in a flow circuit with realistic cardiovascular impedance. Measurements are acquired with sub-millimeter spatial resolution for 16 time steps over a cardiac cycle, allowing for the detailed reconstruction of the flow evolution. Moreover, the three-dimensional and time-resolved pressure distribution is calculated from the velocity field by integrating the fluid dynamics equations, and is validated against differential pressure measurements using precision transducers. The flow structure is characterized by vortical motions that persist within the aneurysm sac for most of the cardiac cycle. All the main flow statistics including velocity, vorticity, pressure, and wall shear stress suggest that the flow pattern is dictated by the aneurysm morphology and is largely independent of the pulsatility of the inflow, at least for the flow regimes investigated here. Comparisons are carried out with previous computational simulations that used the same geometry and inflow conditions, both in terms of cycle-averaged and systolic quantities. PMID:29300738

  13. High-Resolution Fibre-Optic Temperature Sensing: A New Tool to Study the Two-Dimensional Structure of Atmospheric Surface-Layer Flow

    NASA Astrophysics Data System (ADS)

    Thomas, Christoph K.; Kennedy, Adam M.; Selker, John S.; Moretti, Ayla; Schroth, Martin H.; Smoot, Alexander R.; Tufillaro, Nicholas B.; Zeeman, Matthias J.

    2012-02-01

    We present a novel approach based on fibre-optic distributed temperature sensing (DTS) to measure the two-dimensional thermal structure of the surface layer at high resolution (0.25 m, ≈0.5 Hz). Air temperature observations obtained from a vertically-oriented fibre-optics array of approximate dimensions 8 m × 8 m and sonic anemometer data from two levels were collected over a short grass field located in the flat bottom of a wide valley with moderate surface heterogeneity. The objectives of the study were to evaluate the potential of the DTS technique to study small-scale processes in the surface layer over a wide range of atmospheric stability, and to analyze the space-time dynamics of transient cold-air pools in the calm boundary layer. The time response and precision of the fibre-based temperatures were adequate to resolve individual sub-metre sized turbulent and non-turbulent structures, of time scales of seconds, in the convective, neutral, and stable surface layer. Meaningful sensible heat fluxes were computed using the eddy-covariance technique when combined with vertical wind observations. We present a framework that determines the optimal environmental conditions for applying the fibre-optics technique in the surface layer and identifies areas for potentially significant improvements of the DTS performance. The top of the transient cold-air pool was highly non-stationary indicating a superposition of perturbations of different time and length scales. Vertical eddy scales in the strongly stratified transient cold-air pool derived from the DTS data agreed well with the buoyancy length scale computed using the vertical velocity variance and the Brunt-Vaisala frequency, while scales for weak stratification disagreed. The high-resolution DTS technique opens a new window into spatially sampling geophysical fluid flows including turbulent energy exchange.

  14. The MUSE Hubble Ultra Deep Field Survey. V. Spatially resolved stellar kinematics of galaxies at redshift 0.2 ≲ z ≲ 0.8

    NASA Astrophysics Data System (ADS)

    Guérou, Adrien; Krajnović, Davor; Epinat, Benoit; Contini, Thierry; Emsellem, Eric; Bouché, Nicolas; Bacon, Roland; Michel-Dansac, Leo; Richard, Johan; Weilbacher, Peter M.; Schaye, Joop; Marino, Raffaella Anna; den Brok, Mark; Erroz-Ferrer, Santiago

    2017-11-01

    We present spatially resolved stellar kinematic maps, for the first time, for a sample of 17 intermediate redshift galaxies (0.2 ≲ z ≲ 0.8). We used deep MUSE/VLT integral field spectroscopic observations in the Hubble Deep Field South (HDFS) and Hubble Ultra Deep Field (HUDF), resulting from ≈30 h integration time per field, each covering 1' × 1' field of view, with ≈ 0.̋65 spatial resolution. We selected all galaxies brighter than 25 mag in the I band and for which the stellar continuum is detected over an area that is at least two times larger than the spatial resolution. The resulting sample contains mostly late-type disk, main-sequence star-forming galaxies with 108.5 M⊙ ≲ M∗ ≲ 1010.5 M⊙. Using a full-spectrum fitting technique, we derive two-dimensional maps of the stellar and gas kinematics, including the radial velocity V and velocity dispersion σ. We find that most galaxies in the sample are consistent with having rotating stellar disks with roughly constant velocity dispersions and that the second order velocity moments Vrms = √V2+σ2 of the gas and stars, a scaling proxy for the galaxy gravitational potential, compare well to each other. These spatially resolved observations of the stellar kinematics of intermediate redshift galaxies suggest that the regular stellar kinematics of disk galaxies that is observed in the local Universe was already in place 4-7 Gyr ago and that their gas kinematics traces the gravitational potential of the galaxy, thus is not dominated by shocks and turbulent motions. Finally, we build dynamical axisymmetric Jeans models constrained by the derived stellar kinematics for two specific galaxies and derive their dynamical masses. These are in good agreement (within 25%) with those derived from simple exponential disk models based on the gas kinematics. The obtained mass-to-light ratios hint towards dark matter dominated systems within a few effective radii. Based on observations made with ESO telescopes at the La Silla-Paranal Observatory under programmes 094.A-0289(B), 095.A-0010(A), 096.A-0045(A) and 096.A-0045(B).

  15. The craniomandibular mechanics of being human

    PubMed Central

    Wroe, Stephen; Ferrara, Toni L.; McHenry, Colin R.; Curnoe, Darren; Chamoli, Uphar

    2010-01-01

    Diminished bite force has been considered a defining feature of modern Homo sapiens, an interpretation inferred from the application of two-dimensional lever mechanics and the relative gracility of the human masticatory musculature and skull. This conclusion has various implications with regard to the evolution of human feeding behaviour. However, human dental anatomy suggests a capacity to withstand high loads and two-dimensional lever models greatly simplify muscle architecture, yielding less accurate results than three-dimensional modelling using multiple lines of action. Here, to our knowledge, in the most comprehensive three-dimensional finite element analysis performed to date for any taxon, we ask whether the traditional view that the bite of H. sapiens is weak and the skull too gracile to sustain high bite forces is supported. We further introduce a new method for reconstructing incomplete fossil material. Our findings show that the human masticatory apparatus is highly efficient, capable of producing a relatively powerful bite using low muscle forces. Thus, relative to other members of the superfamily Hominoidea, humans can achieve relatively high bite forces, while overall stresses are reduced. Our findings resolve apparently discordant lines of evidence, i.e. the presence of teeth well adapted to sustain high loads within a lightweight cranium and mandible. PMID:20554545

  16. Time-resolved stimulated emission depletion and energy transfer dynamics in two-photon excited EGFP.

    PubMed

    Masters, T A; Robinson, N A; Marsh, R J; Blacker, T S; Armoogum, D A; Larijani, B; Bain, A J

    2018-04-07

    Time and polarization-resolved stimulated emission depletion (STED) measurements are used to investigate excited state evolution following the two-photon excitation of enhanced green fluorescent protein (EGFP). We employ a new approach for the accurate STED measurement of the hitherto unmeasured degree of hexadecapolar transition dipole moment alignment α 40 present at a given excitation-depletion (pump-dump) pulse separation. Time-resolved polarized fluorescence measurements as a function of pump-dump delay reveal the time evolution of α 40 to be considerably more rapid than predicted for isotropic rotational diffusion in EGFP. Additional depolarization by homo-Förster resonance energy transfer is investigated for both α 20 (quadrupolar) and α 40 transition dipole alignments. These results point to the utility of higher order dipole correlation measurements in the investigation of resonance energy transfer processes.

  17. Observation of quantum interferences via light-induced conical intersections in diatomic molecules

    DOE PAGES

    Natan, Adi; Ware, Matthew R.; Prabhudesai, Vaibhav S.; ...

    2016-04-07

    We observe energy-dependent angle-resolved diffraction patterns in protons from strong-field dissociation of the molecular hydrogen ion H + 2. The interference is a characteristic of dissociation around a laser-induced conical intersection (LICI), which is a point of contact between two surfaces in the dressed 2-dimensional Born-Oppenheimer potential energy landscape of a diatomic molecule in a strong laser field. The interference magnitude and angular period depend strongly on the energy difference between the initial state and the LICI, consistent with coherent diffraction around a cone-shaped potential barrier whose width and thickness depend on the relative energy of the initial state andmore » the cone apex. As a result, these findings are supported by numerical solutions of the time-dependent Schrodinger equation for similar experimental conditions.« less

  18. Mixing of a passive scalar in isotropic and sheared homogeneous turbulence

    NASA Technical Reports Server (NTRS)

    Shirani, E.; Ferziger, J. H.; Reynolds, W. C.

    1981-01-01

    In order to calculate the velocity and scalar fields, the three dimensional, time-dependent equations of motion and the diffusion equation were solved numerically. The following cases were treated: isotropic, homogeneous turbulence with decay of a passive scalar; and homogeneous turbulent shear flow with a passive scalar whose mean varies linearly in the spanwise direction. The solutions were obtained at relatively low Reynolds numbers so that all of the turbulent scales could be resolved without modeling. Turbulent statistics such as integral length scales, Taylor microscales, Kolmogorov length scale, one- and two-point correlations of velocity-velocity and velocity-scalar, turbulent Prandtl/Schmidt number, r.m.s. values of velocities, the scalar quantity and pressure, skewness, decay rates, and decay exponents were calculated. The results are compared with the available expermental results, and good agreement is obtained.

  19. Observation of quantum interferences via light-induced conical intersections in diatomic molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natan, Adi; Ware, Matthew R.; Prabhudesai, Vaibhav S.

    We observe energy-dependent angle-resolved diffraction patterns in protons from strong-field dissociation of the molecular hydrogen ion H + 2. The interference is a characteristic of dissociation around a laser-induced conical intersection (LICI), which is a point of contact between two surfaces in the dressed 2-dimensional Born-Oppenheimer potential energy landscape of a diatomic molecule in a strong laser field. The interference magnitude and angular period depend strongly on the energy difference between the initial state and the LICI, consistent with coherent diffraction around a cone-shaped potential barrier whose width and thickness depend on the relative energy of the initial state andmore » the cone apex. As a result, these findings are supported by numerical solutions of the time-dependent Schrodinger equation for similar experimental conditions.« less

  20. Time-Resolved Images of Laser-Induced Gas Ignition Using High-Speed Photographic and Spectroscopic Techniques

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Ling; Lewis, J. W. L.; Parigger, C. G.

    1997-11-01

    Two-dimensional visualization of laser-induced spark ignition in atmospheric-pressure gases is reported. Laser-induced breakdown in air, O2 and combustible NH_3/O2 mixture was achieved using a 1064 nm, Nd:YAG laser of approximately 6 ns pulse width, focused at 10-mm above a 60-mm diameter flat-flame burner. An argon sheath-gas flow was used to stabilize the core flowfield. High-speed photographic techniques were applied to trace a complete sequence of kernel development of a single breakdown or ignition event. Thermochemical characteristics of the post-breakdown regime were analyzed by laser-induced fluorescence spectroscopy (LIFS). Spatial distribution of NH free radical observed by planar-LIF showed the contours of the developing flame-front. The corresponding NH temperature maps achieved by excitation LIFS and Boltzmann plot are also presented.

  1. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Lee, S.; Shiroto, T.

    2016-06-20

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm 2. Lastly, the temporalmore » evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.« less

  2. Rapid evolution of a jet streak circulation in a pre-convective environment

    NASA Technical Reports Server (NTRS)

    Kocin, P. J.; Uccellini, L. W.; Petersen, R. A.

    1986-01-01

    An analysis of the April 10, 1979 Red River Valley severe weather outbreak, using a three-hourly rawinsonde network, indicates that the preconvection environment is influenced by upper-level and lower-level tropospheric jet streaks (ULJs and LLJs) that act to destabilize the atmosphere, and contribute to low-level heat and moisture transports and convergence that act to initiate the storm system. Transformation of an indirect circulation noted within the exit region of the ULJ at 1200 and 1500 GMT is observed within a six-hour period. Dramatic changes are found in the jet streak circulations over a short period of time as the system deviates from that approximated by the geostrophic momentum approximation, and these deviations suggest that adjustments asssociated with ULJs in this case could not be resolved using a simplified two-dimensional approach.

  3. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Lee, S.; Nagatomo, H.

    2016-06-20

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm{sup 2}. The temporal evolution of the experimental andmore » simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.« less

  4. Exciton emission of quasi-2D InGaN in GaN matrix grown by molecular beam epitaxy

    PubMed Central

    Ma, Dingyu; Rong, Xin; Zheng, Xiantong; Wang, Weiying; Wang, Ping; Schulz, Tobias; Albrecht, Martin; Metzner, Sebastian; Müller, Mathias; August, Olga; Bertram, Frank; Christen, Jürgen; Jin, Peng; Li, Mo; Zhang, Jian; Yang, Xuelin; Xu, Fujun; Qin, Zhixin; Ge, Weikun; Shen, Bo; Wang, Xinqiang

    2017-01-01

    We investigate the emission from confined excitons in the structure of a single-monolayer-thick quasi-two-dimensional (quasi-2D) InxGa1−xN layer inserted in GaN matrix. This quasi-2D InGaN layer was successfully achieved by molecular beam epitaxy (MBE), and an excellent in-plane uniformity in this layer was confirmed by cathodoluminescence mapping study. The carrier dynamics have also been investigated by time-resolved and excitation-power-dependent photoluminescence, proving that the recombination occurs via confined excitons within the ultrathin quasi-2D InGaN layer even at high temperature up to ~220 K due to the enhanced exciton binding energy. This work indicates that such structure affords an interesting opportunity for developing high-performance photonic devices. PMID:28417975

  5. A technique for rapid source apportionment applied to ambient organic aerosol measurements from a thermal desorption aerosol gas chromatograph (TAG)

    DOE PAGES

    Zhang, Yaping; Williams, Brent J.; Goldstein, Allen H.; ...

    2016-11-25

    Here, we present a rapid method for apportioning the sources of atmospheric organic aerosol composition measured by gas chromatography–mass spectrometry methods. Here, we specifically apply this new analysis method to data acquired on a thermal desorption aerosol gas chromatograph (TAG) system. Gas chromatograms are divided by retention time into evenly spaced bins, within which the mass spectra are summed. A previous chromatogram binning method was introduced for the purpose of chromatogram structure deconvolution (e.g., major compound classes) (Zhang et al., 2014). Here we extend the method development for the specific purpose of determining aerosol samples' sources. Chromatogram bins are arrangedmore » into an input data matrix for positive matrix factorization (PMF), where the sample number is the row dimension and the mass-spectra-resolved eluting time intervals (bins) are the column dimension. Then two-dimensional PMF can effectively do three-dimensional factorization on the three-dimensional TAG mass spectra data. The retention time shift of the chromatogram is corrected by applying the median values of the different peaks' shifts. Bin width affects chemical resolution but does not affect PMF retrieval of the sources' time variations for low-factor solutions. A bin width smaller than the maximum retention shift among all samples requires retention time shift correction. A six-factor PMF comparison among aerosol mass spectrometry (AMS), TAG binning, and conventional TAG compound integration methods shows that the TAG binning method performs similarly to the integration method. However, the new binning method incorporates the entirety of the data set and requires significantly less pre-processing of the data than conventional single compound identification and integration. In addition, while a fraction of the most oxygenated aerosol does not elute through an underivatized TAG analysis, the TAG binning method does have the ability to achieve molecular level resolution on other bulk aerosol components commonly observed by the AMS.« less

  6. A technique for rapid source apportionment applied to ambient organic aerosol measurements from a thermal desorption aerosol gas chromatograph (TAG)

    NASA Astrophysics Data System (ADS)

    Zhang, Yaping; Williams, Brent J.; Goldstein, Allen H.; Docherty, Kenneth S.; Jimenez, Jose L.

    2016-11-01

    We present a rapid method for apportioning the sources of atmospheric organic aerosol composition measured by gas chromatography-mass spectrometry methods. Here, we specifically apply this new analysis method to data acquired on a thermal desorption aerosol gas chromatograph (TAG) system. Gas chromatograms are divided by retention time into evenly spaced bins, within which the mass spectra are summed. A previous chromatogram binning method was introduced for the purpose of chromatogram structure deconvolution (e.g., major compound classes) (Zhang et al., 2014). Here we extend the method development for the specific purpose of determining aerosol samples' sources. Chromatogram bins are arranged into an input data matrix for positive matrix factorization (PMF), where the sample number is the row dimension and the mass-spectra-resolved eluting time intervals (bins) are the column dimension. Then two-dimensional PMF can effectively do three-dimensional factorization on the three-dimensional TAG mass spectra data. The retention time shift of the chromatogram is corrected by applying the median values of the different peaks' shifts. Bin width affects chemical resolution but does not affect PMF retrieval of the sources' time variations for low-factor solutions. A bin width smaller than the maximum retention shift among all samples requires retention time shift correction. A six-factor PMF comparison among aerosol mass spectrometry (AMS), TAG binning, and conventional TAG compound integration methods shows that the TAG binning method performs similarly to the integration method. However, the new binning method incorporates the entirety of the data set and requires significantly less pre-processing of the data than conventional single compound identification and integration. In addition, while a fraction of the most oxygenated aerosol does not elute through an underivatized TAG analysis, the TAG binning method does have the ability to achieve molecular level resolution on other bulk aerosol components commonly observed by the AMS.

  7. Application of mass spectrometry in the characterization of chemicals in coal-derived liquids.

    PubMed

    Liu, Fang-Jing; Fan, Maohong; Wei, Xian-Yong; Zong, Zhi-Min

    2017-07-01

    Coal-derived liquids (CDLs) are primarily generated from pyrolysis, carbonization, gasification, direct liquefaction, low-temperature extraction, thermal dissolution, and mild oxidation. CDLs are important feedstocks for producing value-added chemicals and clean liquid fuels as well as high performance carbon materials. Accordingly, the compositional characterization of chemicals in CDLs at the molecular level with advanced analytical techniques is significant for the efficient utilization of CDLs. Although reviews on advancements have been rarely reported, great progress has been achieved in this area by using gas chromatography/mass spectrometry (GC/MS), two-dimensional GC-time of flight mass spectrometry (GC × GC-TOFMS), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). This review focuses on characterizing hydrocarbon, oxygen-containing, nitrogen-containing, sulfur-containing, and halogen-containing chemicals in various CDLs with these three mass spectrometry techniques. Small molecular (< 500 u), volatile and semi-volatile, and less polar chemicals in CDLs have been identified with GC/MS and GC × GC-TOFMS. By equipped with two-dimensional GC, GC × GC-TOFMS can achieve a clearly chromatographic separation of complex chemicals in CDLs without prior fractionation, and thus can overcome the disadvantages of co-elution and serious peak overlap in GC/MS analysis, providing much more compositional information. With ultrahigh resolving power and mass accuracy, FT-ICR MS reveals a huge number of compositionally distinct compounds assigned to various chemical classes in CDLs. It shows excellent performance in resolving and characterizing higher-molecular, less volatile, and polar chemicals that cannot be detected by GC/MS and GC × GC-TOFMS. The application of GC × GC-TOFMS and FT-ICR MS to chemical characterization of CDLs is not as prevalent as that of petroleum and largely remains to be developed in many respects. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:543-579, 2017. © 2016 Wiley Periodicals, Inc.

  8. Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni Franco; Pan, Yong-Le; Aptowicz, Kevin B.; Casati, Caterina; Pinnick, Ronald G.; Chang, Richard K.; Videen, Gorden W.

    2013-12-01

    Measurement of two-dimensional angle-resolved optical scattering (TAOS) patterns is an attractive technique for detecting and characterizing micron-sized airborne particles. In general, the interpretation of these patterns and the retrieval of the particle refractive index, shape or size alone, are difficult problems. By reformulating the problem in statistical learning terms, a solution is proposed herewith: rather than identifying airborne particles from their scattering patterns, TAOS patterns themselves are classified through a learning machine, where feature extraction interacts with multivariate statistical analysis. Feature extraction relies on spectrum enhancement, which includes the discrete cosine FOURIER transform and non-linear operations. Multivariate statistical analysis includes computation of the principal components and supervised training, based on the maximization of a suitable figure of merit. All algorithms have been combined together to analyze TAOS patterns, organize feature vectors, design classification experiments, carry out supervised training, assign unknown patterns to classes, and fuse information from different training and recognition experiments. The algorithms have been tested on a data set with more than 3000 TAOS patterns. The parameters that control the algorithms at different stages have been allowed to vary within suitable bounds and are optimized to some extent. Classification has been targeted at discriminating aerosolized Bacillus subtilis particles, a simulant of anthrax, from atmospheric aerosol particles and interfering particles, like diesel soot. By assuming that all training and recognition patterns come from the respective reference materials only, the most satisfactory classification result corresponds to 20% false negatives from B. subtilis particles and <11% false positives from all other aerosol particles. The most effective operations have consisted of thresholding TAOS patterns in order to reject defective ones, and forming training sets from three or four pattern classes. The presented automated classification method may be adapted into a real-time operation technique, capable of detecting and characterizing micron-sized airborne particles.

  9. Modeling Intrajunction Dispersion at a Well-Mixed Tidal River Junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfram, Phillip J.; Fringer, Oliver B.; Monsen, Nancy E.

    In this paper, the relative importance of small-scale, intrajunction flow features such as shear layers, separation zones, and secondary flows on dispersion in a well-mixed tidal river junction is explored. A fully nonlinear, nonhydrostatic, and unstructured three-dimensional (3D) model is used to resolve supertidal dispersion via scalar transport at a well-mixed tidal river junction. Mass transport simulated in the junction is compared against predictions using a simple node-channel model to quantify the effects of small-scale, 3D intrajunction flow features on mixing and dispersion. The effects of three-dimensionality are demonstrated by quantifying the difference between two-dimensional (2D) and 3D model results.more » An intermediate 3D model that does not resolve the secondary circulation or the recirculating flow at the junction is also compared to the 3D model to quantify the relative sensitivity of mixing on intrajunction flow features. Resolution of complex flow features simulated by the full 3D model is not always necessary because mixing is primarily governed by bulk flow splitting due to the confluence–diffluence cycle. Finally, results in 3D are comparable to the 2D case for many flow pathways simulated, suggesting that 2D modeling may be reasonable for nonstratified and predominantly hydrostatic flows through relatively straight junctions, but not necessarily for the full junction network.« less

  10. Modeling Intrajunction Dispersion at a Well-Mixed Tidal River Junction

    DOE PAGES

    Wolfram, Phillip J.; Fringer, Oliver B.; Monsen, Nancy E.; ...

    2016-08-01

    In this paper, the relative importance of small-scale, intrajunction flow features such as shear layers, separation zones, and secondary flows on dispersion in a well-mixed tidal river junction is explored. A fully nonlinear, nonhydrostatic, and unstructured three-dimensional (3D) model is used to resolve supertidal dispersion via scalar transport at a well-mixed tidal river junction. Mass transport simulated in the junction is compared against predictions using a simple node-channel model to quantify the effects of small-scale, 3D intrajunction flow features on mixing and dispersion. The effects of three-dimensionality are demonstrated by quantifying the difference between two-dimensional (2D) and 3D model results.more » An intermediate 3D model that does not resolve the secondary circulation or the recirculating flow at the junction is also compared to the 3D model to quantify the relative sensitivity of mixing on intrajunction flow features. Resolution of complex flow features simulated by the full 3D model is not always necessary because mixing is primarily governed by bulk flow splitting due to the confluence–diffluence cycle. Finally, results in 3D are comparable to the 2D case for many flow pathways simulated, suggesting that 2D modeling may be reasonable for nonstratified and predominantly hydrostatic flows through relatively straight junctions, but not necessarily for the full junction network.« less

  11. Analysis of students’ spatial thinking in geometry: 3D object into 2D representation

    NASA Astrophysics Data System (ADS)

    Fiantika, F. R.; Maknun, C. L.; Budayasa, I. K.; Lukito, A.

    2018-05-01

    The aim of this study is to find out the spatial thinking process of students in transforming 3-dimensional (3D) object to 2-dimensional (2D) representation. Spatial thinking is helpful in using maps, planning routes, designing floor plans, and creating art. The student can engage geometric ideas by using concrete models and drawing. Spatial thinking in this study is identified through geometrical problems of transforming a 3-dimensional object into a 2-dimensional object image. The problem was resolved by the subject and analyzed by reference to predetermined spatial thinking indicators. Two representative subjects of elementary school were chosen based on mathematical ability and visual learning style. Explorative description through qualitative approach was used in this study. The result of this study are: 1) there are different representations of spatial thinking between a boy and a girl object, 2) the subjects has their own way to invent the fastest way to draw cube net.

  12. Design of angle-resolved illumination optics using nonimaging bi-telecentricity for 193 nm scatterfield microscopy.

    PubMed

    Sohn, Martin Y; Barnes, Bryan M; Silver, Richard M

    2018-03-01

    Accurate optics-based dimensional measurements of features sized well-below the diffraction limit require a thorough understanding of the illumination within the optical column and of the three-dimensional scattered fields that contain the information required for quantitative metrology. Scatterfield microscopy can pair simulations with angle-resolved tool characterization to improve agreement between the experiment and calculated libraries, yielding sub-nanometer parametric uncertainties. Optimized angle-resolved illumination requires bi-telecentric optics in which a telecentric sample plane defined by a Köhler illumination configuration and a telecentric conjugate back focal plane (CBFP) of the objective lens; scanning an aperture or an aperture source at the CBFP allows control of the illumination beam angle at the sample plane with minimal distortion. A bi-telecentric illumination optics have been designed enabling angle-resolved illumination for both aperture and source scanning modes while yielding low distortion and chief ray parallelism. The optimized design features a maximum chief ray angle at the CBFP of 0.002° and maximum wavefront deviations of less than 0.06 λ for angle-resolved illumination beams at the sample plane, holding promise for high quality angle-resolved illumination for improved measurements of deep-subwavelength structures using deep-ultraviolet light.

  13. Pulse pile-up in hard X-ray detector systems. [for solar X-rays

    NASA Technical Reports Server (NTRS)

    Datlowe, D. W.

    1975-01-01

    When pulse-height spectra are measured by a nuclear detection system at high counting rates, the probability that two or more pulses will arrive within the resolving time of the system is significant. This phenomenon, pulse pile-up, distorts the pulse-height spectrum and must be considered in the interpretation of spectra taken at high counting rates. A computational technique for the simulation of pile-up is developed. The model is examined in the three regimes where (1) the time between pulses is long compared to the detector-system resolving time, (2) the time between pulses is comparable to the resolving time, and (3) many pulses occur within the resolving time. The technique is used to model the solar hard X-ray experiment on the OSO-7 satellite; comparison of the model with data taken during three large flares shows excellent agreement. The paper also describes rule-of-thumb tests for pile-up and identifies the important detector design factors for minimizing pile-up, i.e., thick entrance windows and short resolving times in the system electronics.

  14. A scalable multi-photon coincidence detector based on superconducting nanowires.

    PubMed

    Zhu, Di; Zhao, Qing-Yuan; Choi, Hyeongrak; Lu, Tsung-Ju; Dane, Andrew E; Englund, Dirk; Berggren, Karl K

    2018-06-04

    Coincidence detection of single photons is crucial in numerous quantum technologies and usually requires multiple time-resolved single-photon detectors. However, the electronic readout becomes a major challenge when the measurement basis scales to large numbers of spatial modes. Here, we address this problem by introducing a two-terminal coincidence detector that enables scalable readout of an array of detector segments based on superconducting nanowire microstrip transmission line. Exploiting timing logic, we demonstrate a sixteen-element detector that resolves all 136 possible single-photon and two-photon coincidence events. We further explore the pulse shapes of the detector output and resolve up to four-photon events in a four-element device, giving the detector photon-number-resolving capability. This new detector architecture and operating scheme will be particularly useful for multi-photon coincidence detection in large-scale photonic integrated circuits.

  15. Ultrafast Interlayer Electron Transfer in Incommensurate Transition Metal Dichalcogenide Homobilayers.

    PubMed

    Li, Yuanyuan; Cui, Qiannan; Ceballos, Frank; Lane, Samuel D; Qi, Zeming; Zhao, Hui

    2017-11-08

    Two-dimensional materials, such as graphene, transition metal dichalcogenides, and phosphorene, can be used to construct van der Waals multilayer structures. This approach has shown potentials to produce new materials that combine novel properties of the participating individual layers. One key requirement for effectively harnessing emergent properties of these materials is electronic connection of the involved atomic layers through efficient interlayer charge or energy transfer. Recently, ultrafast charge transfer on a time scale shorter than 100 fs has been observed in several van der Waals bilayer heterostructures formed by two different materials. However, information on the transfer between two atomic layers of the same type is rare. Because these homobilayers are essential elements in constructing multilayer structures with desired optoelectronic properties, efficient interlayer transfer is highly desired. Here we show that electron transfer between two monolayers of MoSe 2 occurs on a picosecond time scale. Even faster transfer was observed in homobilayers of WS 2 and WSe 2 . The samples were fabricated by manually stacking two exfoliated monolayer flakes. By adding a graphene layer as a fast carrier recombination channel for one of the two monolayers, the transfer of the photoexcited carriers from the populated to the drained monolayers was time-resolved by femtosecond transient absorption measurements. The observed efficient interlayer carrier transfer indicates that such homobilayers can be used in van der Waals multilayers to enhance their optical absorption without significantly compromising the interlayer transport performance. Our results also provide valuable information for understanding interlayer charge transfer in heterostructures.

  16. 3D imaging of intrinsic crystalline defects in zinc oxide by spectrally resolved two-photon fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Al-Tabich, A.; Inami, W.; Kawata, Y.; Jablonski, R.; Worasawat, S.; Mimura, H.

    2017-05-01

    We present a method for three-dimensional intrinsic defect imaging in zinc oxide (ZnO) by spectrally resolved two-photon fluorescence microscopy, based on the previously presented method of observing a photoluminescence distribution in wide-gap semiconductor crystals [Noor et al., Appl. Phys. Lett. 92(16), 161106 (2008)]. A tightly focused light beam radiated by a titanium-sapphire laser is used to obtain a two-photon excitation of selected area of the ZnO sample. Photoluminescence intensity of a specific spectral range is then selected by optical band pass filters and measured by a photomultiplier tube. Reconstruction of the specimen image is done by scanning the volume of interest by a piezoelectric positioning stage and measuring the spectrally resolved photoluminescence intensity at each point. The method has been proved to be effective at locating intrinsic defects of the ZnO crystalline structure in the volume of the crystal. The method was compared with other defect imaging and 3D imaging techniques like scanning tunneling microscopy and confocal microscopy. In both cases, our method shows superior penetration abilities and, as the only method, allows location of the defects of the chosen type in 3D. In this paper, we present the results of oxygen vacancies and zinc antisites imaging in ZnO nanorods.

  17. Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory

    DOE PAGES

    Schaeffer, D. B.; Fox, W.; Haberberger, D.; ...

    2017-07-13

    Here, we present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number M ms ≈ 12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on time scales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magneticmore » barrier between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration.« less

  18. Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaeffer, D. B.; Fox, W.; Haberberger, D.

    Here, we present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number M ms ≈ 12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on time scales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magneticmore » barrier between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration.« less

  19. An Efficient Pipeline Wavefront Phase Recovery for the CAFADIS Camera for Extremely Large Telescopes

    PubMed Central

    Magdaleno, Eduardo; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel

    2010-01-01

    In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain): international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA). These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO) problems in Extremely Large Telescopes (ELTs) in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs). Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations. PMID:22315523

  20. An efficient pipeline wavefront phase recovery for the CAFADIS camera for extremely large telescopes.

    PubMed

    Magdaleno, Eduardo; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel

    2010-01-01

    In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain): international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA). These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO) problems in Extremely Large Telescopes (ELTs) in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs). Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations.

Top