Sample records for two-dimensional wave equation

  1. Solitary wave solutions of two-dimensional nonlinear Kadomtsev-Petviashvili dynamic equation in dust-acoustic plasmas

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.

    2017-09-01

    Nonlinear two-dimensional Kadomtsev-Petviashvili (KP) equation governs the behaviour of nonlinear waves in dusty plasmas with variable dust charge and two temperature ions. By using the reductive perturbation method, the two-dimensional dust-acoustic solitary waves (DASWs) in unmagnetized cold plasma consisting of dust fluid, ions and electrons lead to a KP equation. We derived the solitary travelling wave solutions of the two-dimensional nonlinear KP equation by implementing sech-tanh, sinh-cosh, extended direct algebraic and fraction direct algebraic methods. We found the electrostatic field potential and electric field in the form travelling wave solutions for two-dimensional nonlinear KP equation. The solutions for the KP equation obtained by using these methods can be demonstrated precisely and efficiency. As an illustration, we used the readymade package of Mathematica program 10.1 to solve the original problem. These solutions are in good agreement with the analytical one.

  2. Travelling-wave solutions of a weakly nonlinear two-dimensional higher-order Kadomtsev-Petviashvili dynamical equation for dispersive shallow-water waves

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.

    2017-01-01

    The propagation of three-dimensional nonlinear irrotational flow of an inviscid and incompressible fluid of the long waves in dispersive shallow-water approximation is analyzed. The problem formulation of the long waves in dispersive shallow-water approximation lead to fifth-order Kadomtsev-Petviashvili (KP) dynamical equation by applying the reductive perturbation theory. By using an extended auxiliary equation method, the solitary travelling-wave solutions of the two-dimensional nonlinear fifth-order KP dynamical equation are derived. An analytical as well as a numerical solution of the two-dimensional nonlinear KP equation are obtained and analyzed with the effects of external pressure flow.

  3. Two-dimensional evolution equation of finite-amplitude internal gravity waves in a uniformly stratified fluid

    PubMed

    Kataoka; Tsutahara; Akuzawa

    2000-02-14

    We derive a fully nonlinear evolution equation that can describe the two-dimensional motion of finite-amplitude long internal waves in a uniformly stratified three-dimensional fluid of finite depth. The derived equation is the two-dimensional counterpart of the evolution equation obtained by Grimshaw and Yi [J. Fluid Mech. 229, 603 (1991)]. In the small-amplitude limit, our equation is reduced to the celebrated Kadomtsev-Petviashvili equation.

  4. Rogue waves in the two dimensional nonlocal nonlinear Schrödinger equation and nonlocal Klein-Gordon equation.

    PubMed

    Liu, Wei; Zhang, Jing; Li, Xiliang

    2018-01-01

    In this paper, we investigate two types of nonlocal soliton equations with the parity-time (PT) symmetry, namely, a two dimensional nonlocal nonlinear Schrödinger (NLS) equation and a coupled nonlocal Klein-Gordon equation. Solitons and periodic line waves as exact solutions of these two nonlocal equations are derived by employing the Hirota's bilinear method. Like the nonlocal NLS equation, these solutions may have singularities. However, by suitable constraints of parameters, nonsingular breather solutions are generated. Besides, by taking a long wave limit of these obtained soliton solutions, rogue wave solutions and semi-rational solutions are derived. For the two dimensional NLS equation, rogue wave solutions are line rogue waves, which arise from a constant background with a line profile and then disappear into the same background. The semi-rational solutions shows intriguing dynamical behaviours: line rogue wave and line breather arise from a constant background together and then disappear into the constant background again uniformly. For the coupled nonlocal Klein-Gordon equation, rogue waves are localized in both space and time, semi-rational solutions are composed of rogue waves, breathers and periodic line waves. These solutions are demonstrated analytically to exist for special classes of nonlocal equations relevant to optical waveguides.

  5. Rogue waves in the two dimensional nonlocal nonlinear Schrödinger equation and nonlocal Klein-Gordon equation

    PubMed Central

    Zhang, Jing; Li, Xiliang

    2018-01-01

    In this paper, we investigate two types of nonlocal soliton equations with the parity-time (PT) symmetry, namely, a two dimensional nonlocal nonlinear Schrödinger (NLS) equation and a coupled nonlocal Klein-Gordon equation. Solitons and periodic line waves as exact solutions of these two nonlocal equations are derived by employing the Hirota’s bilinear method. Like the nonlocal NLS equation, these solutions may have singularities. However, by suitable constraints of parameters, nonsingular breather solutions are generated. Besides, by taking a long wave limit of these obtained soliton solutions, rogue wave solutions and semi-rational solutions are derived. For the two dimensional NLS equation, rogue wave solutions are line rogue waves, which arise from a constant background with a line profile and then disappear into the same background. The semi-rational solutions shows intriguing dynamical behaviours: line rogue wave and line breather arise from a constant background together and then disappear into the constant background again uniformly. For the coupled nonlocal Klein-Gordon equation, rogue waves are localized in both space and time, semi-rational solutions are composed of rogue waves, breathers and periodic line waves. These solutions are demonstrated analytically to exist for special classes of nonlocal equations relevant to optical waveguides. PMID:29432495

  6. Classifying bilinear differential equations by linear superposition principle

    NASA Astrophysics Data System (ADS)

    Zhang, Lijun; Khalique, Chaudry Masood; Ma, Wen-Xiu

    2016-09-01

    In this paper, we investigate the linear superposition principle of exponential traveling waves to construct a sub-class of N-wave solutions of Hirota bilinear equations. A necessary and sufficient condition for Hirota bilinear equations possessing this specific sub-class of N-wave solutions is presented. We apply this result to find N-wave solutions to the (2+1)-dimensional KP equation, a (3+1)-dimensional generalized Kadomtsev-Petviashvili (KP) equation, a (3+1)-dimensional generalized BKP equation and the (2+1)-dimensional BKP equation. The inverse question, i.e., constructing Hirota Bilinear equations possessing N-wave solutions, is considered and a refined 3-step algorithm is proposed. As examples, we construct two very general kinds of Hirota bilinear equations of order 4 possessing N-wave solutions among which one satisfies dispersion relation and another does not satisfy dispersion relation.

  7. Uniform high order spectral methods for one and two dimensional Euler equations

    NASA Technical Reports Server (NTRS)

    Cai, Wei; Shu, Chi-Wang

    1991-01-01

    Uniform high order spectral methods to solve multi-dimensional Euler equations for gas dynamics are discussed. Uniform high order spectral approximations with spectral accuracy in smooth regions of solutions are constructed by introducing the idea of the Essentially Non-Oscillatory (ENO) polynomial interpolations into the spectral methods. The authors present numerical results for the inviscid Burgers' equation, and for the one dimensional Euler equations including the interactions between a shock wave and density disturbance, Sod's and Lax's shock tube problems, and the blast wave problem. The interaction between a Mach 3 two dimensional shock wave and a rotating vortex is simulated.

  8. One- and Two-dimensional Solitary Wave States in the Nonlinear Kramers Equation with Movement Direction as a Variable

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Ishibashi, Kazuya

    2018-06-01

    We study self-propelled particles by direct numerical simulation of the nonlinear Kramers equation for self-propelled particles. In our previous paper, we studied self-propelled particles with velocity variables in one dimension. In this paper, we consider another model in which each particle exhibits directional motion. The movement direction is expressed with a variable ϕ. We show that one-dimensional solitary wave states appear in direct numerical simulations of the nonlinear Kramers equation in one- and two-dimensional systems, which is a generalization of our previous result. Furthermore, we find two-dimensionally localized states in the case that each self-propelled particle exhibits rotational motion. The center of mass of the two-dimensionally localized state exhibits circular motion, which implies collective rotating motion. Finally, we consider a simple one-dimensional model equation to qualitatively understand the formation of the solitary wave state.

  9. Nonlocal Reformulations of Water and Internal Waves and Asymptotic Reductions

    NASA Astrophysics Data System (ADS)

    Ablowitz, Mark J.

    2009-09-01

    Nonlocal reformulations of the classical equations of water waves and two ideal fluids separated by a free interface, bounded above by either a rigid lid or a free surface, are obtained. The kinematic equations may be written in terms of integral equations with a free parameter. By expressing the pressure, or Bernoulli, equation in terms of the surface/interface variables, a closed system is obtained. An advantage of this formulation, referred to as the nonlocal spectral (NSP) formulation, is that the vertical component is eliminated, thus reducing the dimensionality and fixing the domain in which the equations are posed. The NSP equations and the Dirichlet-Neumann operators associated with the water wave or two-fluid equations can be related to each other and the Dirichlet-Neumann series can be obtained from the NSP equations. Important asymptotic reductions obtained from the two-fluid nonlocal system include the generalizations of the Benney-Luke and Kadomtsev-Petviashvili (KP) equations, referred to as intermediate-long wave (ILW) generalizations. These 2+1 dimensional equations possess lump type solutions. In the water wave problem high-order asymptotic series are obtained for two and three dimensional gravity-capillary solitary waves. In two dimensions, the first term in the asymptotic series is the well-known hyperbolic secant squared solution of the KdV equation; in three dimensions, the first term is the rational lump solution of the KP equation.

  10. Series expansion solutions for the multi-term time and space fractional partial differential equations in two- and three-dimensions

    NASA Astrophysics Data System (ADS)

    Ye, H.; Liu, F.; Turner, I.; Anh, V.; Burrage, K.

    2013-09-01

    Fractional partial differential equations with more than one fractional derivative in time describe some important physical phenomena, such as the telegraph equation, the power law wave equation, or the Szabo wave equation. In this paper, we consider two- and three-dimensional multi-term time and space fractional partial differential equations. The multi-term time-fractional derivative is defined in the Caputo sense, whose order belongs to the interval (1,2],(2,3],(3,4] or (0, m], and the space-fractional derivative is referred to as the fractional Laplacian form. We derive series expansion solutions based on a spectral representation of the Laplacian operator on a bounded region. Some applications are given for the two- and three-dimensional telegraph equation, power law wave equation and Szabo wave equation.

  11. The limitation and applicability of Musher-Sturman equation to two dimensional lower hybrid wave collapse

    NASA Technical Reports Server (NTRS)

    Tam, Sunny W. Y.; Chang, Tom

    1995-01-01

    The existence of localized regions of intense lower hybrid waves in the auroral ionosphere recently observed by rocket and satellite experiments can be understood by the study of a non-linear two-timescale coupling process. In this Letter, we demonstrate that the leading non-linear term in the standard Musher-Sturman equation vanishes identically in strict two-dimensions (normal to the magnetic field). Instead, the new two-dimensional equation is characterized by a much weaker non-linear term which arises from the ponderomotive force perpendicular to the magnetic field, particularly that due to the ions. The old and new equations are compared by means of time-evolution calculations of wave fields. The results exhibit a remarkable difference in the evolution of the waves as governed by the two equations. Such dissimilar outcomes motivate our investigation of the limitation of Musher-Sturman equation in quasi-two-dimensions. Only within all these limits can Musher-Sturman equation adequately describe the collapse of lower hybrid waves.

  12. Explicit and exact nontraveling wave solutions of the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation

    NASA Astrophysics Data System (ADS)

    Yuan, Na

    2018-04-01

    With the aid of the symbolic computation, we present an improved ( G ‧ / G ) -expansion method, which can be applied to seek more types of exact solutions for certain nonlinear evolution equations. In illustration, we choose the (3 + 1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation to demonstrate the validity and advantages of the method. As a result, abundant explicit and exact nontraveling wave solutions are obtained including two solitary waves solutions, nontraveling wave solutions and dromion soliton solutions. Some particular localized excitations and the interactions between two solitary waves are researched. The method can be also applied to other nonlinear partial differential equations.

  13. Finite-amplitude strain waves in laser-excited plates.

    PubMed

    Mirzade, F Kh

    2008-07-09

    The governing equations for two-dimensional finite-amplitude longitudinal strain waves in isotropic laser-excited solid plates are derived. Geometric and weak material nonlinearities are included, and the interaction of longitudinal displacements with the field of concentration of non-equilibrium laser-generated atomic defects is taken into account. An asymptotic approach is used to show that the equations are reducible to the Kadomtsev-Petviashvili-Burgers nonlinear evolution equation for a longitudinal self-consistent strain field. It is shown that two-dimensional shock waves can propagate in plates.

  14. Nonlinear ion acoustic waves scattered by vortexes

    NASA Astrophysics Data System (ADS)

    Ohno, Yuji; Yoshida, Zensho

    2016-09-01

    The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.

  15. Similarity solutions of some two-space-dimensional nonlinear wave evolution equations

    NASA Technical Reports Server (NTRS)

    Redekopp, L. G.

    1980-01-01

    Similarity reductions of the two-space-dimensional versions of the Korteweg-de Vries, modified Korteweg-de Vries, Benjamin-Davis-Ono, and nonlinear Schroedinger equations are presented, and some solutions of the reduced equations are discussed. Exact dispersive solutions of the two-dimensional Korteweg-de Vries equation are obtained, and the similarity solution of this equation is shown to be reducible to the second Painleve transcendent.

  16. An Experiment on Two-Dimensional Interaction of Solitary Waves in Shallow Water System

    NASA Astrophysics Data System (ADS)

    Tsuji, Hidekazu; Yufu, Kei; Marubayashi, Kenji

    2012-11-01

    The dynamics of solitary waves in horizontally two-dimensional region is not yet well understood. Recently two-dimensional soliton interaction of Kadmotsetv-Petviashvili (KP) equation which describes the weakly nonlinear long wave in shallow water system has been theoretically studied (e.g. Kodama (2010)). It is clarified that the ``resonant'' interaction which forms Y-shaped triad can be described by exact solution. Li et al. (2011) experimentally studied the reflection of solitary wave at the wall and verified the theory of KP equation. To investigate more general interaction process, an experiment in wave tank using two wave makers which are controlled independently is carried out. The wave tank is 4 m in length and 3.6 m in width. The depth of the water is about 8cm. The wavemakers, which are piston-type and have board about 1.5 m in length, can produce orderly solitary wave which amplitude is 1.0-3.5 cm. We observe newly generated solitary wave due to interaction of original solitary waves which have different amplitude and/or propagation direction. The results are compared with the aforementioned theory of KP equation.

  17. Whitham modulation theory for the two-dimensional Benjamin-Ono equation.

    PubMed

    Ablowitz, Mark; Biondini, Gino; Wang, Qiao

    2017-09-01

    Whitham modulation theory for the two-dimensional Benjamin-Ono (2DBO) equation is presented. A system of five quasilinear first-order partial differential equations is derived. The system describes modulations of the traveling wave solutions of the 2DBO equation. These equations are transformed to a singularity-free hydrodynamic-like system referred to here as the 2DBO-Whitham system. Exact reductions of this system are discussed, the formulation of initial value problems is considered, and the system is used to study the transverse stability of traveling wave solutions of the 2DBO equation.

  18. Diffraction of a plane wave on two-dimensional conductive structures and a surface wave

    NASA Astrophysics Data System (ADS)

    Davidovich, Mikhael V.

    2018-04-01

    We consider the structures type of two-dimensional electron gas in the form of a thin conductive, in particular, graphene films described by tensor conductivity, which are isolated or located on the dielectric layers. The dispersion equation for hybrid modes, as well as scattering parameters. We show that free wave (eigenwaves) problem follow from the problem of diffraction when linking the amplitude of the current of the linear equations are unsolvable, i.e., the determinant of this system is zero. As a particular case the dispersion equation follow from the conditions of matching (with zero reflection coefficient).

  19. Multiple periodic-soliton solutions of the (3+1)-dimensional generalised shallow water equation

    NASA Astrophysics Data System (ADS)

    Li, Ye-Zhou; Liu, Jian-Guo

    2018-06-01

    Based on the extended variable-coefficient homogeneous balance method and two new ansätz functions, we construct auto-Bäcklund transformation and multiple periodic-soliton solutions of (3 {+} 1)-dimensional generalised shallow water equations. Completely new periodic-soliton solutions including periodic cross-kink wave, periodic two-solitary wave and breather type of two-solitary wave are obtained. In addition, cross-kink three-soliton and cross-kink four-soliton solutions are derived. Furthermore, propagation characteristics and interactions of the obtained solutions are discussed and illustrated in figures.

  20. Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents.

    PubMed

    Kundu, Anjan; Mukherjee, Abhik; Naskar, Tapan

    2014-04-08

    Rogue waves are extraordinarily high and steep isolated waves, which appear suddenly in a calm sea and disappear equally fast. However, though the rogue waves are localized surface waves, their theoretical models and experimental observations are available mostly in one dimension, with the majority of them admitting only limited and fixed amplitude and modular inclination of the wave. We propose two dimensions, exactly solvable nonlinear Schrödinger (NLS) equation derivable from the basic hydrodynamic equations and endowed with integrable structures. The proposed two-dimensional equation exhibits modulation instability and frequency correction induced by the nonlinear effect, with a directional preference, all of which can be determined through precise analytic result. The two-dimensional NLS equation allows also an exact lump soliton which can model a full-grown surface rogue wave with adjustable height and modular inclination. The lump soliton under the influence of an ocean current appears and disappears preceded by a hole state, with its dynamics controlled by the current term. These desirable properties make our exact model promising for describing ocean rogue waves.

  1. Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents

    PubMed Central

    Kundu, Anjan; Mukherjee, Abhik; Naskar, Tapan

    2014-01-01

    Rogue waves are extraordinarily high and steep isolated waves, which appear suddenly in a calm sea and disappear equally fast. However, though the rogue waves are localized surface waves, their theoretical models and experimental observations are available mostly in one dimension, with the majority of them admitting only limited and fixed amplitude and modular inclination of the wave. We propose two dimensions, exactly solvable nonlinear Schrödinger (NLS) equation derivable from the basic hydrodynamic equations and endowed with integrable structures. The proposed two-dimensional equation exhibits modulation instability and frequency correction induced by the nonlinear effect, with a directional preference, all of which can be determined through precise analytic result. The two-dimensional NLS equation allows also an exact lump soliton which can model a full-grown surface rogue wave with adjustable height and modular inclination. The lump soliton under the influence of an ocean current appears and disappears preceded by a hole state, with its dynamics controlled by the current term. These desirable properties make our exact model promising for describing ocean rogue waves. PMID:24711719

  2. Numerical modeling of surface wave development under the action of wind

    NASA Astrophysics Data System (ADS)

    Chalikov, Dmitry

    2018-06-01

    The numerical modeling of two-dimensional surface wave development under the action of wind is performed. The model is based on three-dimensional equations of potential motion with a free surface written in a surface-following nonorthogonal curvilinear coordinate system in which depth is counted from a moving surface. A three-dimensional Poisson equation for the velocity potential is solved iteratively. A Fourier transform method, a second-order accuracy approximation of vertical derivatives on a stretched vertical grid and fourth-order Runge-Kutta time stepping are used. Both the input energy to waves and dissipation of wave energy are calculated on the basis of earlier developed and validated algorithms. A one-processor version of the model for PC allows us to simulate an evolution of the wave field with thousands of degrees of freedom over thousands of wave periods. A long-time evolution of a two-dimensional wave structure is illustrated by the spectra of wave surface and the input and output of energy.

  3. Dispersive shock waves in the Kadomtsev-Petviashvili and two dimensional Benjamin-Ono equations

    NASA Astrophysics Data System (ADS)

    Ablowitz, Mark J.; Demirci, Ali; Ma, Yi-Ping

    2016-10-01

    Dispersive shock waves (DSWs) in the Kadomtsev-Petviashvili (KP) equation and two dimensional Benjamin-Ono (2DBO) equation are considered using step like initial data along a parabolic front. Employing a parabolic similarity reduction exactly reduces the study of such DSWs in two space one time (2 + 1) dimensions to finding DSW solutions of (1 + 1) dimensional equations. With this ansatz, the KP and 2DBO equations can be exactly reduced to the cylindrical Korteweg-de Vries (cKdV) and cylindrical Benjamin-Ono (cBO) equations, respectively. Whitham modulation equations which describe DSW evolution in the cKdV and cBO equations are derived and Riemann type variables are introduced. DSWs obtained from the numerical solutions of the corresponding Whitham systems and direct numerical simulations of the cKdV and cBO equations are compared with very good agreement obtained. In turn, DSWs obtained from direct numerical simulations of the KP and 2DBO equations are compared with the cKdV and cBO equations, again with good agreement. It is concluded that the (2 + 1) DSW behavior along self similar parabolic fronts can be effectively described by the DSW solutions of the reduced (1 + 1) dimensional equations.

  4. Development of a grid-independent approximate Riemannsolver. Ph.D. Thesis - Michigan Univ.

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher Lockwood

    1991-01-01

    A grid-independent approximate Riemann solver for use with the Euler and Navier-Stokes equations was introduced and explored. The two-dimensional Euler and Navier-Stokes equations are described in Cartesian and generalized coordinates, as well as the traveling wave form of the Euler equations. The spatial and temporal discretization are described for both explicit and implicit time-marching schemes. The grid-aligned flux function of Roe is outlined, while the 5-wave grid-independent flux function is derived. The stability and monotonicity analysis of the 5-wave model are presented. Two-dimensional results are provided and extended to three dimensions. The corresponding results are presented.

  5. Multi-Periodic Waves in Shallow Water

    DTIC Science & Technology

    1992-09-01

    models-the Kadomtsev - Petviashvili (KP) equation . The KP equation describes the evolu- tion of weakly nonlinear, weakly two-dimensional waves on water of...experimentally. The analytical model is a family of periodic solutions of the Kadomtsev -Petviashuili equation . The experiments demonstrate the accuracy... Petviashvili Equation (with Norman Schef- fner & Harvey Segur). Proceedings, Nonlinear Water Waves Workshop, University of Bristol. England, 1991. Resonant

  6. Two-dimensional cylindrical ion-acoustic solitary and rogue waves in ultrarelativistic plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ata-ur-Rahman; National Centre for Physics at QAU Campus, Shahdrah Valley Road, Islamabad 44000; Ali, S.

    2013-07-15

    The propagation of ion-acoustic (IA) solitary and rogue waves is investigated in a two-dimensional ultrarelativistic degenerate warm dense plasma. By using the reductive perturbation technique, the cylindrical Kadomtsev–Petviashvili (KP) equation is derived, which can be further transformed into a Korteweg–de Vries (KdV) equation. The latter admits a solitary wave solution. However, when the frequency of the carrier wave is much smaller than the ion plasma frequency, the KdV equation can be transferred to a nonlinear Schrödinger equation to study the nonlinear evolution of modulationally unstable modified IA wavepackets. The propagation characteristics of the IA solitary and rogue waves are stronglymore » influenced by the variation of different plasma parameters in an ultrarelativistic degenerate dense plasma. The present results might be helpful to understand the nonlinear electrostatic excitations in astrophysical degenerate dense plasmas.« less

  7. Full-Scale Direct Numerical Simulation of Two- and Three-Dimensional Instabilities and Rivulet Formulation in Heated Falling Films

    NASA Technical Reports Server (NTRS)

    Krishnamoorthy, S.; Ramaswamy, B.; Joo, S. W.

    1995-01-01

    A thin film draining on an inclined plate has been studied numerically using finite element method. Three-dimensional governing equations of continuity, momentum and energy with a moving boundary are integrated in an arbitrary Lagrangian Eulerian frame of reference. Kinematic equation is solved to precisely update interface location. Rivulet formation based on instability mechanism has been simulated using full-scale computation. Comparisons with long-wave theory are made to validate the numerical scheme. Detailed analysis of two- and three-dimensional nonlinear wave formation and spontaneous rupture forming rivulets under the influence of combined thermocapillary and surface-wave instabilities is performed.

  8. Solution of the Burnett equations for hypersonic flows near the continuum limit

    NASA Technical Reports Server (NTRS)

    Imlay, Scott T.

    1992-01-01

    The INCA code, a three-dimensional Navier-Stokes code for analysis of hypersonic flowfields, was modified to analyze the lower reaches of the continuum transition regime, where the Navier-Stokes equations become inaccurate and Monte Carlo methods become too computationally expensive. The two-dimensional Burnett equations and the three-dimensional rotational energy transport equation were added to the code and one- and two-dimensional calculations were performed. For the structure of normal shock waves, the Burnett equations give consistently better results than Navier-Stokes equations and compare reasonably well with Monte Carlo methods. For two-dimensional flow of Nitrogen past a circular cylinder the Burnett equations predict the total drag reasonably well. Care must be taken, however, not to exceed the range of validity of the Burnett equations.

  9. A new equation in two dimensional fast magnetoacoustic shock waves in electron-positron-ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; Jehan, Nusrat; Mirza, Arshad M.

    2010-03-15

    Nonlinear properties of the two dimensional fast magnetoacoustic waves are studied in a three-component plasma comprising of electrons, positrons, and ions. In this regard, Kadomtsev-Petviashvili-Burger (KPB) equation is derived using the small amplitude perturbation expansion method. Under the condition that the electron and positron inertia are ignored, Burger-Kadomtsev-Petviashvili (Burger-KP) for a fast magnetoacoustic wave is derived for the first time, to the best of author's knowledge. The solutions of both KPB and Burger-KP equations are obtained using the tangent hyperbolic method. The effects of positron concentration, kinematic viscosity, and plasma beta are explored both for the KPB and the Burger-KPmore » shock waves and the differences between the two are highlighted. The present investigation may have relevance in the study of nonlinear electromagnetic shock waves both in laboratory and astrophysical plasmas.« less

  10. Fully three-dimensional direct numerical simulation of a plunging breaker

    NASA Astrophysics Data System (ADS)

    Lubin, Pierre; Vincent, Stéphane; Caltagirone, Jean-Paul; Abadie, Stéphane

    2003-07-01

    The scope of this paper is to show the results obtained for simulating three-dimensional breaking waves by solving the Navier-Stokes equations in air and water. The interface tracking is achieved by a Lax-Wendroff TVD scheme (Total Variation Diminishing), which is able to handle interface reconnections. We first present the equations and the numerical methods used in this work. We then proceed to the study of a three-dimensional plunging breaking wave, using initial conditions corresponding to unstable periodic sinusoidal waves of large amplitudes. We compare the results obtained for two simulations, a longshore depth perturbation has been introduced in the solution of the flow equations in order to see the transition from a two-dimensional velocity field to a fully three-dimensional one after plunging. Breaking processes including overturning, splash-up and breaking induced vortex-like motion beneath the surface are presented and discussed. To cite this article: P. Lubin et al., C. R. Mecanique 331 (2003).

  11. Comparison between results of solution of Burgers' equation and Laplace's equation by Galerkin and least-square finite element methods

    NASA Astrophysics Data System (ADS)

    Adib, Arash; Poorveis, Davood; Mehraban, Farid

    2018-03-01

    In this research, two equations are considered as examples of hyperbolic and elliptic equations. In addition, two finite element methods are applied for solving of these equations. The purpose of this research is the selection of suitable method for solving each of two equations. Burgers' equation is a hyperbolic equation. This equation is a pure advection (without diffusion) equation. This equation is one-dimensional and unsteady. A sudden shock wave is introduced to the model. This wave moves without deformation. In addition, Laplace's equation is an elliptical equation. This equation is steady and two-dimensional. The solution of Laplace's equation in an earth dam is considered. By solution of Laplace's equation, head pressure and the value of seepage in the directions X and Y are calculated in different points of earth dam. At the end, water table is shown in the earth dam. For Burgers' equation, least-square method can show movement of wave with oscillation but Galerkin method can not show it correctly (the best method for solving of the Burgers' equation is discrete space by least-square finite element method and discrete time by forward difference.). For Laplace's equation, Galerkin and least square methods can show water table correctly in earth dam.

  12. Exact solutions for (1 + 1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony equation and coupled Klein-Gordon equations.

    PubMed

    Khan, Kamruzzaman; Akbar, M Ali; Islam, S M Rayhanul

    2014-01-01

    In this work, recently developed modified simple equation (MSE) method is applied to find exact traveling wave solutions of nonlinear evolution equations (NLEEs). To do so, we consider the (1 + 1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony (DMBBM) equation and coupled Klein-Gordon (cKG) equations. Two classes of explicit exact solutions-hyperbolic and trigonometric solutions of the associated equations are characterized with some free parameters. Then these exact solutions correspond to solitary waves for particular values of the parameters. 02.30.Jr; 02.70.Wz; 05.45.Yv; 94.05.Fg.

  13. Bifurcations of solitary wave solutions for (two and three)-dimensional nonlinear partial differential equation in quantum and magnetized plasma by using two different methods

    NASA Astrophysics Data System (ADS)

    Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen

    2018-06-01

    In this research, we study new two techniques that called the extended simple equation method and the novel (G‧/G) -expansion method. The extended simple equation method depend on the auxiliary equation (dϕ/dξ = α + λϕ + μϕ2) which has three ways for solving depends on the specific condition on the parameters as follow: When (λ = 0) this auxiliary equation reduces to Riccati equation, when (α = 0) this auxiliary equation reduces to Bernoulli equation and when (α ≠ 0, λ ≠ 0, μ ≠ 0) we the general solutions of this auxiliary equation while the novel (G‧/G) -expansion method depends also on similar auxiliary equation (G‧/G)‧ = μ + λ(G‧/G) + (v - 1)(G‧/G) 2 which depend also on the value of (λ2 - 4 (v - 1) μ) and the specific condition on the parameters as follow: When (λ = 0) this auxiliary equation reduces to Riccati equation, when (μ = 0) this auxiliary equation reduces to Bernoulli equation and when (λ2 ≠ 4 (v - 1) μ) we the general solutions of this auxiliary equation. This show how both of these auxiliary equation are special cases of Riccati equation. We apply these methods on two dimensional nonlinear Kadomtsev-Petviashvili Burgers equation in quantum plasma and three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in a magnetized plasma. We obtain the exact traveling wave solutions of these important models and under special condition on the parameters, we get solitary traveling wave solutions. All calculations in this study have been established and verified back with the aid of the Maple package program. The executed method is powerful, effective and straightforward for solving nonlinear partial differential equations to obtain more and new solutions.

  14. Guided solitary waves.

    PubMed

    Miles, J

    1980-04-01

    Transversely periodic solitary-wave solutions of the Boussinesq equations (which govern wave propagation in a weakly dispersive, weakly nonlinear physical system) are determined. The solutions for negative dispersion (e.g., gravity waves) are singular and therefore physically unacceptable. The solutions for positive dispersion (e.g., capillary waves or magnetosonic waves in a plasma) are physically acceptable except in a limited parametric interval, in which they are complex. The two end points of this interval are associated with (two different) resonant interactions among three basic solitary waves, two of which are two-dimensional complex conjugates and the third of which is one-dimensional and real.

  15. Existence and Stability of Spatial Plane Waves for the Incompressible Navier-Stokes in R^3

    NASA Astrophysics Data System (ADS)

    Correia, Simão; Figueira, Mário

    2018-03-01

    We consider the three-dimensional incompressible Navier-Stokes equation on the whole space. We observe that this system admits a L^∞ family of global spatial plane wave solutions, which are connected with the two-dimensional equation. We then proceed to prove local well-posedness over a space which includes L^3(R^3) and these solutions. Finally, we prove L^3-stability of spatial plane waves, with no condition on their size.

  16. Soliton interactions and Bäcklund transformation for a (2+1)-dimensional variable-coefficient modified Kadomtsev-Petviashvili equation in fluid dynamics

    NASA Astrophysics Data System (ADS)

    Xiao, Zi-Jian; Tian, Bo; Sun, Yan

    2018-01-01

    In this paper, we investigate a (2+1)-dimensional variable-coefficient modified Kadomtsev-Petviashvili (mKP) equation in fluid dynamics. With the binary Bell-polynomial and an auxiliary function, bilinear forms for the equation are constructed. Based on the bilinear forms, multi-soliton solutions and Bell-polynomial-type Bäcklund transformation for such an equation are obtained through the symbolic computation. Soliton interactions are presented. Based on the graphic analysis, Parametric conditions for the existence of the shock waves, elevation solitons and depression solitons are given, and it is shown that under the condition of keeping the wave vectors invariable, the change of α(t) and β(t) can lead to the change of the solitonic velocities, but the shape of each soliton remains unchanged, where α(t) and β(t) are the variable coefficients in the equation. Oblique elastic interactions can exist between the (i) two shock waves, (ii) two elevation solitons, and (iii) elevation and depression solitons. However, oblique interactions between (i) shock waves and elevation solitons, (ii) shock waves and depression solitons are inelastic.

  17. Effect of nonthermal electrons on the propagation characteristics and stability of two-dimensional nonlinear electrostatic coherent structures in relativistic electron positron ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; National Centre for Physics; Rizvi, H.

    2011-06-15

    Two-dimensional propagation of nonlinear ion acoustic shock and solitary waves in an unmagnetized plasma consisting of nonthermal electrons, Boltzmannian positrons, and singly charged hot ions streaming with relativistic velocities are investigated. The system of fluid equations is reduced to Kadomtsev-Petviashvili-Burgers and Kadomtsev-Petviashvili (KP) equations in the limit of small amplitude perturbation. The dependence of the ion acoustic shock and solitary waves on various plasma parameters are explored in detail. Interestingly, it is observed that increasing the nonthermal electron population increases the wave dispersion which enervates the strength of the ion acoustic shock wave; however, the same effect leads to anmore » enhancement of the soliton amplitude due to the absence of dissipation in the KP equation. The present investigation may be useful to understand the two-dimensional propagation characteristics of small but finite amplitude localized shock and solitary structures in planetary magnetospheres and auroral plasmas where nonthermal populations of electrons have been observed by several satellite missions.« less

  18. Progress in multi-dimensional upwind differencing

    NASA Technical Reports Server (NTRS)

    Vanleer, Bram

    1992-01-01

    Multi-dimensional upwind-differencing schemes for the Euler equations are reviewed. On the basis of the first-order upwind scheme for a one-dimensional convection equation, the two approaches to upwind differencing are discussed: the fluctuation approach and the finite-volume approach. The usual extension of the finite-volume method to the multi-dimensional Euler equations is not entirely satisfactory, because the direction of wave propagation is always assumed to be normal to the cell faces. This leads to smearing of shock and shear waves when these are not grid-aligned. Multi-directional methods, in which upwind-biased fluxes are computed in a frame aligned with a dominant wave, overcome this problem, but at the expense of robustness. The same is true for the schemes incorporating a multi-dimensional wave model not based on multi-dimensional data but on an 'educated guess' of what they could be. The fluctuation approach offers the best possibilities for the development of genuinely multi-dimensional upwind schemes. Three building blocks are needed for such schemes: a wave model, a way to achieve conservation, and a compact convection scheme. Recent advances in each of these components are discussed; putting them all together is the present focus of a worldwide research effort. Some numerical results are presented, illustrating the potential of the new multi-dimensional schemes.

  19. On the conservation laws and solutions of a (2+1) dimensional KdV-mKdV equation of mathematical physics

    NASA Astrophysics Data System (ADS)

    Motsepa, Tanki; Masood Khalique, Chaudry

    2018-05-01

    In this paper, we study a (2+1) dimensional KdV-mKdV equation, which models many physical phenomena of mathematical physics. This equation has two integral terms in it. By an appropriate substitution, we convert this equation into two partial differential equations, which do not have integral terms and are equivalent to the original equation. We then work with the system of two equations and obtain its exact travelling wave solutions in form of Jacobi elliptic functions. Furthermore, we employ the multiplier method to construct conservation laws for the system. Finally, we revert the results obtained into the original variables of the (2+1) dimensional KdV-mKdV equation.

  20. Two-dimensional solitary waves and periodic waves on coupled nonlinear electrical transmission lines

    NASA Astrophysics Data System (ADS)

    Wang, Heng; Zheng, Shuhua

    2017-06-01

    By using the dynamical system approach, the exact travelling wave solutions for a system of coupled nonlinear electrical transmission lines are studied. Based on this method, the bifurcations of phase portraits of a dynamical system are given. The two-dimensional solitary wave solutions and periodic wave solutions on coupled nonlinear transmission lines are obtained. With the aid of Maple, the numerical simulations are conducted for solitary wave solutions and periodic wave solutions to the model equation. The results presented in this paper improve upon previous studies.

  1. A new (2+1) dimensional integrable evolution equation for an ion acoustic wave in a magnetized plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Abhik, E-mail: abhik.mukherjee@saha.ac.in; Janaki, M. S., E-mail: ms.janaki@saha.ac.in; Kundu, Anjan, E-mail: anjan.kundu@saha.ac.in

    2015-07-15

    A new, completely integrable, two dimensional evolution equation is derived for an ion acoustic wave propagating in a magnetized, collisionless plasma. The equation is a multidimensional generalization of a modulated wavepacket with weak transverse propagation, which has resemblance to nonlinear Schrödinger (NLS) equation and has a connection to Kadomtsev-Petviashvili equation through a constraint relation. Higher soliton solutions of the equation are derived through Hirota bilinearization procedure, and an exact lump solution is calculated exhibiting 2D structure. Some mathematical properties demonstrating the completely integrable nature of this equation are described. Modulational instability using nonlinear frequency correction is derived, and the correspondingmore » growth rate is calculated, which shows the directional asymmetry of the system. The discovery of this novel (2+1) dimensional integrable NLS type equation for a magnetized plasma should pave a new direction of research in the field.« less

  2. On the solution of the generalized wave and generalized sine-Gordon equations

    NASA Technical Reports Server (NTRS)

    Ablowitz, M. J.; Beals, R.; Tenenblat, K.

    1986-01-01

    The generalized wave equation and generalized sine-Gordon equations are known to be natural multidimensional differential geometric generalizations of the classical two-dimensional versions. In this paper, a system of linear differential equations is associated with these equations, and it is shown how the direct and inverse problems can be solved for appropriately decaying data on suitable lines. An initial-boundary value problem is solved for these equations.

  3. Two-Dimensional Computational Model for Wave Rotor Flow Dynamics

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1996-01-01

    A two-dimensional (theta,z) Navier-Stokes solver for multi-port wave rotor flow simulation is described. The finite-volume form of the unsteady thin-layer Navier-Stokes equations are integrated in time on multi-block grids that represent the stationary inlet and outlet ports and the moving rotor passages of the wave rotor. Computed results are compared with three-port wave rotor experimental data. The model is applied to predict the performance of a planned four-port wave rotor experiment. Two-dimensional flow features that reduce machine performance and influence rotor blade and duct wall thermal loads are identified. The performance impact of rounding the inlet port wall, to inhibit separation during passage gradual opening, is assessed.

  4. Solitary waves, rogue waves and homoclinic breather waves for a (2 + 1)-dimensional generalized Kadomtsev-Petviashvili equation

    NASA Astrophysics Data System (ADS)

    Dong, Min-Jie; Tian, Shou-Fu; Yan, Xue-Wei; Zou, Li; Li, Jin

    2017-10-01

    We study a (2 + 1)-dimensional generalized Kadomtsev-Petviashvili (gKP) equation, which characterizes the formation of patterns in liquid drops. By using Bell’s polynomials, an effective way is employed to succinctly construct the bilinear form of the gKP equation. Based on the resulting bilinear equation, we derive its solitary waves, rogue waves and homoclinic breather waves, respectively. Our results can help enrich the dynamical behavior of the KP-type equations.

  5. On the modeling of the bottom particles segregation with non-linear diffusion equations: application to the marine sand ripples

    NASA Astrophysics Data System (ADS)

    Tiguercha, Djlalli; Bennis, Anne-claire; Ezersky, Alexander

    2015-04-01

    The elliptical motion in surface waves causes an oscillating motion of the sand grains leading to the formation of ripple patterns on the bottom. Investigation how the grains with different properties are distributed inside the ripples is a difficult task because of the segration of particle. The work of Fernandez et al. (2003) was extended from one-dimensional to two-dimensional case. A new numerical model, based on these non-linear diffusion equations, was developed to simulate the grain distribution inside the marine sand ripples. The one and two-dimensional models are validated on several test cases where segregation appears. Starting from an homogeneous mixture of grains, the two-dimensional simulations demonstrate different segregation patterns: a) formation of zones with high concentration of light and heavy particles, b) formation of «cat's eye» patterns, c) appearance of inverse Brazil nut effect. Comparisons of numerical results with the new set of field data and wave flume experiments show that the two-dimensional non-linear diffusion equations allow us to reproduce qualitatively experimental results on particles segregation.

  6. Secondary Bifurcation and Change of Type for Three Dimensional Standing Waves in Shallow Water.

    DTIC Science & Technology

    1986-02-01

    field of standing K-P waves. A set of two non-interacting (to first order) solutions of the K-P equation ( Kadomtsev - Petviashvili 1970). The K-P equation ...P equation was first derived by Kadomtsev & Petviashvili (1970) in their study of the stability of solitary waves to transverse perturbations. A...Scientists, Springer-Verlag 6. B.A. Dubrovin (1981), "Theta Functions and Non-linear Equations ", Russian Mat. Surveys, 36, 11-92 7 B.B. Kadomtsev

  7. Theory and Experiment Analysis of Two-Dimensional Acousto-Optic Interaction.

    DTIC Science & Technology

    1995-01-03

    The universal coupled wave equation of two dimensional acousto optic effect has been deduced and the solution of normal Raman-Hath acousto optic diffraction...was derived from it. The theory was compared with the experimental results of a two dimensional acousto optic device consisting of two one dimensional modulators. The experiment results agree with the theory. (AN)

  8. On the three dimensional structure of stratospheric material transport associated with various types of waves

    NASA Astrophysics Data System (ADS)

    Kinoshita, T.; Sato, K.

    2016-12-01

    The Transformed Eulerian-Mean (TEM) equations were derived by Andrews and McIntyre (1976, 1978) and have been widely used to examine wave-mean flow interaction in the meridional cross section. According to previous studies, the Brewer-Dobson circulation in the stratosphere is driven by planetary waves, baroclinic waves, and inertia-gravity waves, and that the meridional circulation from the summer hemisphere to the winter hemisphere in the mesosphere is mainly driven by gravity waves (e.g., Garcia and Boville 1994; Plumb and Semeniuk 2003; Watanabe et al. 2008; Okamoto et al. 2011). However, the TEM equations do not provide the three-dimensional view of the transport, so that the three dimensional TEM equations have been formulated (Hoskins et al. 1983, Trenberth 1986, Plumb 1985, 1986, Takaya and Nakamura 1997, 2001, Miyahara 2006, Kinoshita et al. 2010, Noda 2010, Kinoshita and Sato 2013a, b, and Noda 2014). On the other hand, the TEM equations cannot properly treat the lower boundary and unstable waves. The Mass-weighted Isentropic Mean (MIM) equations derived by Iwasaki (1989, 1990) are the equations that overcome those problems and the formulation of three-dimensional MIM equations have been studied. The present study applies the three-dimensional TEM and MIM equations to the ERA-Interim reanalysis data and examines the climatological character of three-dimensional structure of Stratospheric Brewer-Dobson circulation. Next, we will discuss how to treat the flow associated with spatial structure of stationary waves.

  9. Signatures of extra dimensions in gravitational waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andriot, David; Gómez, Gustavo Lucena, E-mail: andriotphysics@gmail.com, E-mail: glucenag@aei.mpg.de

    2017-06-01

    Considering gravitational waves propagating on the most general 4+ N -dimensional space-time, we investigate the effects due to the N extra dimensions on the four-dimensional waves. All wave equations are derived in general and discussed. On Minkowski{sub 4} times an arbitrary Ricci-flat compact manifold, we find: a massless wave with an additional polarization, the breathing mode, and extra waves with high frequencies fixed by Kaluza-Klein masses. We discuss whether these two effects could be observed.

  10. Statistics of extreme waves in the framework of one-dimensional Nonlinear Schrodinger Equation

    NASA Astrophysics Data System (ADS)

    Agafontsev, Dmitry; Zakharov, Vladimir

    2013-04-01

    We examine the statistics of extreme waves for one-dimensional classical focusing Nonlinear Schrodinger (NLS) equation, iΨt + Ψxx + |Ψ |2Ψ = 0, (1) as well as the influence of the first nonlinear term beyond Eq. (1) - the six-wave interactions - on the statistics of waves in the framework of generalized NLS equation accounting for six-wave interactions, dumping (linear dissipation, two- and three-photon absorption) and pumping terms, We solve these equations numerically in the box with periodically boundary conditions starting from the initial data Ψt=0 = F(x) + ?(x), where F(x) is an exact modulationally unstable solution of Eq. (1) seeded by stochastic noise ?(x) with fixed statistical properties. We examine two types of initial conditions F(x): (a) condensate state F(x) = 1 for Eq. (1)-(2) and (b) cnoidal wave for Eq. (1). The development of modulation instability in Eq. (1)-(2) leads to formation of one-dimensional wave turbulence. In the integrable case the turbulence is called integrable and relaxes to one of infinite possible stationary states. Addition of six-wave interactions term leads to appearance of collapses that eventually are regularized by the dumping terms. The energy lost during regularization of collapses in (2) is restored by the pumping term. In the latter case the system does not demonstrate relaxation-like behavior. We measure evolution of spectra Ik =< |Ψk|2 >, spatial correlation functions and the PDFs for waves amplitudes |Ψ|, concentrating special attention on formation of "fat tails" on the PDFs. For the classical integrable NLS equation (1) with condensate initial condition we observe Rayleigh tails for extremely large waves and a "breathing region" for middle waves with oscillations of the frequency of waves appearance with time, while nonintegrable NLS equation with dumping and pumping terms (2) with the absence of six-wave interactions α = 0 demonstrates perfectly Rayleigh PDFs without any oscillations with time. In case of the cnoidal wave initial condition we observe severely non-Rayleigh PDFs for the classical NLS equation (1) with the regions corresponding to 2-, 3- and so on soliton collisions clearly seen of the PDFs. Addition of six-wave interactions in Eq. (2) for condensate initial condition results in appearance of non-Rayleigh addition to the PDFs that increase with six-wave interaction constant α and disappears with the absence of six-wave interactions α = 0. References: [1] D.S. Agafontsev, V.E. Zakharov, Rogue waves statistics in the framework of one-dimensional Generalized Nonlinear Schrodinger Equation, arXiv:1202.5763v3.

  11. Analytic solutions for Long's equation and its generalization

    NASA Astrophysics Data System (ADS)

    Humi, Mayer

    2017-12-01

    Two-dimensional, steady-state, stratified, isothermal atmospheric flow over topography is governed by Long's equation. Numerical solutions of this equation were derived and used by several authors. In particular, these solutions were applied extensively to analyze the experimental observations of gravity waves. In the first part of this paper we derive an extension of this equation to non-isothermal flows. Then we devise a transformation that simplifies this equation. We show that this simplified equation admits solitonic-type solutions in addition to regular gravity waves. These new analytical solutions provide new insights into the propagation and amplitude of gravity waves over topography.

  12. Hybrid soliton solutions in the (2+1)-dimensional nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Chen, Meidan; Li, Biao

    2017-11-01

    Rational solutions and hybrid solutions from N-solitons are obtained by using the bilinear method and a long wave limit method. Line rogue waves and lumps in the (2+1)-dimensional nonlinear Schrödinger (NLS) equation are derived from two-solitons. Then from three-solitons, hybrid solutions between kink soliton with breathers, periodic line waves and lumps are derived. Interestingly, after the collision, the breathers are kept invariant, but the amplitudes of the periodic line waves and lumps change greatly. For the four-solitons, the solutions describe as breathers with breathers, line rogue waves or lumps. After the collision, breathers and lumps are kept invariant, but the line rogue wave has a great change.

  13. Two dimensional cylindrical fast magnetoacoustic solitary waves in a dust plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Haifeng; Wang Shiqing; Engineering and Technical College of Chengdu University of Technology, Leshan 614000

    2011-04-15

    The nonlinear fast magnetoacoustic solitary waves in a dust plasma with the combined effects of bounded cylindrical geometry and transverse perturbation are investigated in a new equation. In this regard, cylindrical Kadomtsev-Petviashvili (CKP) equation is derived using the small amplitude perturbation expansion method. Under a suitable coordinate transformation, the CKP equation can be solved analytically. It is shown that the dust cylindrical fast magnetoacoustic solitary waves can exist in the CKP equation. The present investigation may have relevance in the study of nonlinear electromagnetic soliton waves both in laboratory and astrophysical plasmas.

  14. Restoration of the contact surface in FORCE-type centred schemes I: Homogeneous two-dimensional shallow water equations

    NASA Astrophysics Data System (ADS)

    Canestrelli, Alberto; Toro, Eleuterio F.

    2012-10-01

    Recently, the FORCE centred scheme for conservative hyperbolic multi-dimensional systems has been introduced in [34] and has been applied to Euler and relativistic MHD equations, solved on unstructured meshes. In this work we propose a modification of the FORCE scheme, named FORCE-Contact, that provides improved resolution of contact and shear waves. This paper presents the technique in full detail as applied to the two-dimensional homogeneous shallow water equations. The improvements due to the new method are particularly evident when an additional equation is solved for a tracer, since the modified scheme exactly resolves isolated and steady contact discontinuities. The improvement is considerable also for slowly moving contact discontinuities, for shear waves and for steady states in meandering channels. For these types of flow fields, the numerical results provided by the new FORCE-Contact scheme are comparable with, and sometimes better than, the results obtained from upwind schemes, such as Roes scheme for example. In a companion paper, a similar approach to restoring the missing contact wave and preserving well-balanced properties for non-conservative one- and two-layer shallow water equations is introduced. However, the procedure is general and it is in principle applicable to other multidimensional hyperbolic systems in conservative and non-conservative form, such as the Euler equations for compressible gas dynamics.

  15. Whitham modulation theory for (2  +  1)-dimensional equations of Kadomtsev–Petviashvili type

    NASA Astrophysics Data System (ADS)

    Ablowitz, Mark J.; Biondini, Gino; Rumanov, Igor

    2018-05-01

    Whitham modulation theory for certain two-dimensional evolution equations of Kadomtsev–Petviashvili (KP) type is presented. Three specific examples are considered in detail: the KP equation, the two-dimensional Benjamin–Ono (2DBO) equation and a modified KP (m2KP) equation. A unified derivation is also provided. In the case of the m2KP equation, the corresponding Whitham modulation system exhibits features different from the other two. The approach presented here does not require integrability of the original evolution equation. Indeed, while the KP equation is known to be a completely integrable equation, the 2DBO equation and the m2KP equation are not known to be integrable. In each of the cases considered, the Whitham modulation system obtained consists of five first-order quasilinear partial differential equations. The Riemann problem (i.e. the analogue of the Gurevich–Pitaevskii problem) for the one-dimensional reduction of the m2KP equation is studied. For the m2KP equation, the system of modulation equations is used to analyze the linear stability of traveling wave solutions.

  16. On the generation of cnoidal waves in ion beam-dusty plasma containing superthermal electrons and ions

    NASA Astrophysics Data System (ADS)

    El-Bedwehy, N. A.

    2016-07-01

    The reductive perturbation technique is used for investigating an ion beam-dusty plasma system consisting of two opposite polarity dusty grains, and superthermal electrons and ions in addition to ion beam. A two-dimensional Kadomtsev-Petviashvili equation is derived. The solution of this equation, employing Painlevé analysis, leads to cnoidal waves. The dependence of the structural features of these waves on the physical plasma parameters is investigated.

  17. On the generation of cnoidal waves in ion beam-dusty plasma containing superthermal electrons and ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Bedwehy, N. A., E-mail: nab-elbedwehy@yahoo.com

    2016-07-15

    The reductive perturbation technique is used for investigating an ion beam-dusty plasma system consisting of two opposite polarity dusty grains, and superthermal electrons and ions in addition to ion beam. A two-dimensional Kadomtsev–Petviashvili equation is derived. The solution of this equation, employing Painlevé analysis, leads to cnoidal waves. The dependence of the structural features of these waves on the physical plasma parameters is investigated.

  18. Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation via two methods and its applications

    NASA Astrophysics Data System (ADS)

    Ali, Asghar; Seadawy, Aly R.; Lu, Dianchen

    2018-05-01

    The aim of this article is to construct some new traveling wave solutions and investigate localized structures for fourth-order nonlinear Ablowitz-Kaup-Newell-Segur (AKNS) water wave dynamical equation. The simple equation method (SEM) and the modified simple equation method (MSEM) are applied in this paper to construct the analytical traveling wave solutions of AKNS equation. The different waves solutions are derived by assigning special values to the parameters. The obtained results have their importance in the field of physics and other areas of applied sciences. All the solutions are also graphically represented. The constructed results are often helpful for studying several new localized structures and the waves interaction in the high-dimensional models.

  19. A quasi-one-dimensional theory of sound propagation in lined ducts with mean flow

    NASA Astrophysics Data System (ADS)

    Dokumaci, Erkan

    2018-04-01

    Sound propagation in ducts with locally-reacting liners has received the attention of many authors proposing two- and three-dimensional solutions of the convected wave equation and of the Pridmore-Brown equation. One-dimensional lined duct models appear to have received less attention. The present paper proposes a quasi-one-dimensional theory for lined uniform ducts with parallel sheared mean flow. The basic assumption of the theory is that the effects of refraction and wall compliance on the fundamental mode remain within ranges in which the acoustic fluctuations are essentially uniform over a duct section. This restricts the model to subsonic low Mach numbers and Helmholtz numbers of less than about unity. The axial propagation constants and the wave transfer matrix of the duct are given by simple explicit expressions and can be applied with no-slip, full-slip or partial slip boundary conditions. The limitations of the theory are discussed and its predictions are compared with the fundamental mode solutions of the convected wave equation, the Pridmore-Brown equation and measurements where available.

  20. New Patterns of the Two-Dimensional Rogue Waves: (2+1)-Dimensional Maccari System

    NASA Astrophysics Data System (ADS)

    Wang, Gai-Hua; Wang, Li-Hong; Rao, Ji-Guang; He, Jing-Song

    2017-06-01

    The ocean rogue wave is one kind of puzzled destructive phenomenon that has not been understood thoroughly so far. The two-dimensional nature of this wave has inspired the vast endeavors on the recognizing new patterns of the rogue waves based on the dynamical equations with two-spatial variables and one-temporal variable, which is a very crucial step to prevent this disaster event at the earliest stage. Along this issue, we present twelve new patterns of the two-dimensional rogue waves, which are reduced from a rational and explicit formula of the solutions for a (2+1)-dimensional Maccari system. The extreme points (lines) of the first-order lumps (rogue waves) are discussed according to their analytical formulas. For the lower-order rogue waves, we show clearly in formula that parameter b 2 plays a significant role to control these patterns. Supported by the National Natural Science Foundation of China under Grant No. 11671219, the K. C. Wong Magna Fund in Ningbo University, Gai-Hua Wang is also supported by the Scientific Research Foundation of Graduate School of Ningbo University

  1. Generation of Rising-tone Chorus in a Two-dimensional Mirror Field by Using the General Curvilinear PIC Code

    NASA Astrophysics Data System (ADS)

    Ke, Y.; Gao, X.; Lu, Q.; Wang, X.; Wang, S.

    2017-12-01

    Recently, the generation of rising-tone chorus has been implemented with one-dimensional (1-D) particle-in-cell (PIC) simulations in an inhomogeneous background magnetic field, where both the propagation of waves and motion of electrons are simply forced to be parallel to the background magnetic field. We have developed a two-dimensional(2-D) general curvilinear PIC simulation code, and successfully reproduced rising-tone chorus waves excited from an anisotropic electron distribution in a 2-D mirror field. Our simulation results show that whistler waves are mainly generated around the magnetic equator, and continuously gain growth during their propagation toward higher-latitude regions. The rising-tone chorus waves are formed off the magnetic equator, which propagate quasi-parallel to the background magnetic field with the finite wave normal angle. Due to the propagating effect, the wave normal angle of chorus waves is increasing during their propagation toward higher-latitude regions along an enough curved field line. The chirping rate of chorus waves are found to be larger along a field line more close to the middle field line in the mirror field.

  2. Generation of rising-tone chorus in a two-dimensional mirror field by using the general curvilinear PIC code

    NASA Astrophysics Data System (ADS)

    Ke, Yangguang; Gao, Xinliang; Lu, Quanming; Wang, Xueyi; Wang, Shui

    2017-08-01

    Recently, the generation of rising-tone chorus has been implemented with one-dimensional (1-D) particle-in-cell (PIC) simulations in an inhomogeneous background magnetic field, where both the propagation of waves and motion of electrons are simply forced to be parallel to the background magnetic field. In this paper, we have developed a two-dimensional (2-D) general curvilinear PIC simulation code and successfully reproduced rising-tone chorus waves excited from an anisotropic electron distribution in a 2-D mirror field. Our simulation results show that whistler waves are mainly generated around the magnetic equator and continuously gain growth during their propagation toward higher-latitude regions. The rising-tone chorus waves are observed off the magnetic equator, which propagate quasi-parallel to the background magnetic field with the wave normal angle smaller than 25°. Due to the propagating effect, the wave normal angle of chorus waves is increasing during their propagation toward higher-latitude regions along an enough curved field line. The chirping rate of chorus waves is found to be larger along a field line with a smaller curvature.

  3. Rogue waves and lump solitons for a ?-dimensional B-type Kadomtsev-Petviashvili equation in fluid dynamics

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Tian, Bo; Xie, Xi-Yang; Chai, Jun; Yin, Hui-Min

    2018-07-01

    Under investigation is a ?-dimensional B-type Kadomtsev-Petviashvili equation, which has applications in the propagation of non-linear waves in fluid dynamics. Through the Hirota method and the extended homoclinic test technique, we obtain the breather-type kink soliton solutions and breather rational soliton solutions. Rogue wave solutions are derived, which come from the derivation of breather rational solitons with respect to x. Amplitudes of the breather-type kink solitons and rogue waves decrease with a non-zero parameter in the equation, ?, increasing when ?. In addition, dark rogue waves are derived when ?. Furthermore, with the aid of the Hirota method and symbolic computation, two types of the lump solitons are obtained with the different choices of the parameters. We graphically study the lump solitons related to the parameter ?, and amplitude of the lump soliton is negatively correlated with ? when ?.

  4. Simulations and analysis of asteroid-generated tsunamis using the shallow water equations

    NASA Astrophysics Data System (ADS)

    Berger, M. J.; LeVeque, R. J.; Weiss, R.

    2016-12-01

    We discuss tsunami propagation for asteroid-generated air bursts and water impacts. We present simulations for a range of conditions using the GeoClaw simulation software. Examples include meteors that span 5 to 250 MT of kinetic energy, and use bathymetry from the U.S. coastline. We also study radially symmetric one-dimensional equations to better explore the nature and decay rate of waves generated by air burst pressure disturbances traveling at the speed of sound in air, which is much greater than the gravity wave speed of the tsunami generated. One-dimensional simulations along a transect of bathymetry are also used to explore the resolution needed for the full two-dimensional simulations, which are much more expensive even with the use of adaptive mesh refinement due to the short wave lengths of these tsunamis. For this same reason, shallow water equations may be inadequate and we also discuss dispersive effects.

  5. Breathers, quasi-periodic and travelling waves for a generalized ?-dimensional Yu-Toda-Sasa-Fukayama equation in fluids

    NASA Astrophysics Data System (ADS)

    Hu, Wen-Qiang; Gao, Yi-Tian; Zhao, Chen; Jia, Shu-Liang; Lan, Zhong-Zhou

    2017-07-01

    Under investigation in this paper is a generalized ?-dimensional Yu-Toda-Sasa-Fukayama equation for the interfacial wave in a two-layer fluid or the elastic quasi-plane wave in a liquid lattice. By virtue of the binary Bell polynomials, bilinear form of this equation is obtained. With the help of the bilinear form, N-soliton solutions are obtained via the Hirota method, and a bilinear Bäcklund transformation is derived to verify the integrability. Homoclinic breather waves are obtained according to the homoclinic test approach, which is not only the space-periodic breather but also the time-periodic breather via the graphic analysis. Via the Riemann theta function, quasi one-periodic waves are constructed, which can be viewed as a superposition of the overlapping solitary waves, placed one period apart. Finally, soliton-like, periodical triangle-type, rational-type and solitary bell-type travelling waves are obtained by means of the polynomial expansion method.

  6. Transverse instability of periodic and generalized solitary waves for a fifth-order KP model

    NASA Astrophysics Data System (ADS)

    Haragus, Mariana; Wahlén, Erik

    2017-02-01

    We consider a fifth-order Kadomtsev-Petviashvili equation which arises as a two-dimensional model in the classical water-wave problem. This equation possesses a family of generalized line solitary waves which decay exponentially to periodic waves at infinity. We prove that these solitary waves are transversely spectrally unstable and that this instability is induced by the transverse instability of the periodic tails. We rely upon a detailed spectral analysis of some suitably chosen linear operators.

  7. Analysis of sound propagation in ducts using the wave envelope concept

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1974-01-01

    A finite difference formulation is presented for sound propagation in a rectangular two-dimensional duct without steady flow for plane wave input. Before the difference equations are formulated, the governing Helmholtz equation is first transformed to a form whose solution does not oscillate along the length of the duct. This transformation reduces the required number of grid points by an order of magnitude, and the number of grid points becomes independent of the sound frequency. Physically, the transformed pressure represents the amplitude of the conventional sound wave. Example solutions are presented for sound propagation in a one-dimensional straight hard-wall duct and in a two-dimensional straight soft-wall duct without steady flow. The numerical solutions show evidence of the existence along the duct wall of a developing acoustic pressure diffusion boundary layer which is similar in nature to the conventional viscous flow boundary layer. In order to better illustrate this concept, the wave equation and boundary conditions are written such that the frequency no longer appears explicitly in them. The frequency effects in duct propagation can be visualized solely as an expansion and stretching of the suppressor duct.

  8. Progressive wave expansions and open boundary problems

    NASA Technical Reports Server (NTRS)

    Hagstrom, T.; Hariharan, S. I.

    1995-01-01

    In this paper we construct progressive wave expansions and asymptotic boundary conditions for wave-like equations in exterior domains, including applications to electromagnetics, compressible flows and aero-acoustics. The development of the conditions will be discussed in two parts. The first part will include derivations of asymptotic conditions based on the well-known progressive wave expansions for the two-dimensional wave equations. A key feature in the derivations is that the resulting family of boundary conditions involves a single derivative in the direction normal to the open boundary. These conditions are easy to implement and an application in electromagnetics will be presented. The second part of the paper will discuss the theory for hyperbolic systems in two dimensions. Here, the focus will be to obtain the expansions in a general way and to use them to derive a class of boundary conditions that involve only time derivatives or time and tangential derivatives. Maxwell's equations and the compressible Euler equations are used as examples. Simulations with the linearized Euler equations are presented to validate the theory.

  9. Nonlinear dynamics of resonant electrons interacting with coherent Langmuir waves

    NASA Astrophysics Data System (ADS)

    Tobita, Miwa; Omura, Yoshiharu

    2018-03-01

    We study the nonlinear dynamics of resonant particles interacting with coherent waves in space plasmas. Magnetospheric plasma waves such as whistler-mode chorus, electromagnetic ion cyclotron waves, and hiss emissions contain coherent wave structures with various discrete frequencies. Although these waves are electromagnetic, their interaction with resonant particles can be approximated by equations of motion for a charged particle in a one-dimensional electrostatic wave. The equations are expressed in the form of nonlinear pendulum equations. We perform test particle simulations of electrons in an electrostatic model with Langmuir waves and a non-oscillatory electric field. We solve equations of motion and study the dynamics of particles with different values of inhomogeneity factor S defined as a ratio of the non-oscillatory electric field intensity to the wave amplitude. The simulation results demonstrate deceleration/acceleration, thermalization, and trapping of particles through resonance with a single wave, two waves, and multiple waves. For two-wave and multiple-wave cases, we describe the wave-particle interaction as either coherent or incoherent based on the probability of nonlinear trapping.

  10. Two dimensional nonplanar evolution of electrostatic shock waves in pair-ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; Rizvi, H.

    2012-01-15

    Electrostatic waves in a two dimensional nonplanar geometry are studied in an unmagnetized, dissipative pair-ion plasma in the presence of weak transverse perturbations. The dissipation in the system is taken into account by incorporating the kinematic viscosity of both positive and negative ions in plasmas. The nonplanar Kadomtsev-Petviashvili-Burgers (KPB) as well as the Burgers Kadomtsev-Petviashvili (Burgers KP) equations are derived using the small amplitude expansion method and the range of applicability of both the equations are discussed. The system under consideration is observed to admit compressive rarefactive shocks. The present study may have relevance to understand the formation of twomore » dimensional nonplanar electrostatic shocks in laboratory plasmas.« less

  11. Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems

    NASA Astrophysics Data System (ADS)

    Chen, Shihua; Baronio, Fabio; Soto-Crespo, Jose M.; Grelu, Philippe; Mihalache, Dumitru

    2017-11-01

    This review is dedicated to recent progress in the active field of rogue waves, with an emphasis on the analytical prediction of versatile rogue wave structures in scalar, vector, and multidimensional integrable nonlinear systems. We first give a brief outline of the historical background of the rogue wave research, including referring to relevant up-to-date experimental results. Then we present an in-depth discussion of the scalar rogue waves within two different integrable frameworks—the infinite nonlinear Schrödinger (NLS) hierarchy and the general cubic-quintic NLS equation, considering both the self-focusing and self-defocusing Kerr nonlinearities. We highlight the concept of chirped Peregrine solitons, the baseband modulation instability as an origin of rogue waves, and the relation between integrable turbulence and rogue waves, each with illuminating examples confirmed by numerical simulations. Later, we recur to the vector rogue waves in diverse coupled multicomponent systems such as the long-wave short-wave equations, the three-wave resonant interaction equations, and the vector NLS equations (alias Manakov system). In addition to their intriguing bright-dark dynamics, a series of other peculiar structures, such as coexisting rogue waves, watch-hand-like rogue waves, complementary rogue waves, and vector dark three sisters, are reviewed. Finally, for practical considerations, we also remark on higher-dimensional rogue waves occurring in three closely-related (2  +  1)D nonlinear systems, namely, the Davey-Stewartson equation, the composite (2  +  1)D NLS equation, and the Kadomtsev-Petviashvili I equation. As an interesting contrast to the peculiar X-shaped light bullets, a concept of rogue wave bullets intended for high-dimensional systems is particularly put forward by combining contexts in nonlinear optics.

  12. CMS-Wave

    DTIC Science & Technology

    2015-10-30

    Coastal Inlets Research Program CMS -Wave CMS -Wave is a two-dimensional spectral wind-wave generation and transformation model that employs a forward...marching, finite-difference method to solve the wave action conservation equation. Capabilities of CMS -Wave include wave shoaling, refraction... CMS -Wave can be used in either on a half- or full-plane mode, with primary waves propagating from the seaward boundary toward shore. It can

  13. Splash singularity for water waves.

    PubMed

    Castro, Angel; Córdoba, Diego; Fefferman, Charles L; Gancedo, Francisco; Gómez-Serrano, Javier

    2012-01-17

    We exhibit smooth initial data for the two-dimensional (2D) water-wave equation for which we prove that smoothness of the interface breaks down in finite time. Moreover, we show a stability result together with numerical evidence that there exist solutions of the 2D water-wave equation that start from a graph, turn over, and collapse in a splash singularity (self-intersecting curve in one point) in finite time.

  14. Splash singularity for water waves

    PubMed Central

    Castro, Angel; Córdoba, Diego; Fefferman, Charles L.; Gancedo, Francisco; Gómez-Serrano, Javier

    2012-01-01

    We exhibit smooth initial data for the two-dimensional (2D) water-wave equation for which we prove that smoothness of the interface breaks down in finite time. Moreover, we show a stability result together with numerical evidence that there exist solutions of the 2D water-wave equation that start from a graph, turn over, and collapse in a splash singularity (self-intersecting curve in one point) in finite time. PMID:22219372

  15. On the dispersionless Kadomtsev-Petviashvili equation with arbitrary nonlinearity and dimensionality: exact solutions, longtime asymptotics of the Cauchy problem, wave breaking and shocks

    NASA Astrophysics Data System (ADS)

    Santucci, F.; Santini, P. M.

    2016-10-01

    We study the generalization of the dispersionless Kadomtsev-Petviashvili (dKP) equation in n+1 dimensions and with nonlinearity of degree m+1, a model equation describing the propagation of weakly nonlinear, quasi one-dimensional waves in the absence of dispersion and dissipation, and arising in several physical contexts, like acoustics, plasma physics, hydrodynamics and nonlinear optics. In 2 + 1 dimensions and with quadratic nonlinearity, this equation is integrable through a novel inverse scattering transform, and it has been recently shown to be a prototype model equation in the description of the two-dimensional wave breaking of localized initial data. In higher dimensions and with higher nonlinearity, the generalized dKP equations are not integrable, but their invariance under motions on the paraboloid allows one to construct in this paper a family of exact solutions describing waves constant on their paraboloidal wave front and breaking simultaneously in all points of it, developing after breaking either multivaluedness or single-valued discontinuous profiles (shocks). Then such exact solutions are used to build the longtime behavior of the solutions of the Cauchy problem, for small and localized initial data, showing that wave breaking of small initial data takes place in the longtime regime if and only if m(n-1)≤slant 2. Lastly, the analytic aspects of such wave breaking are investigated in detail in terms of the small initial data, in both cases in which the solution becomes multivalued after breaking or it develops a shock. These results, contained in the 2012 master’s thesis of one of the authors (FS) [1], generalize those obtained in [2] for the dKP equation in n+1 dimensions with quadratic nonlinearity, and are obtained following the same strategy.

  16. Symmetry Reductions and Group-Invariant Radial Solutions to the n-Dimensional Wave Equation

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Zhao, Songlin

    2018-01-01

    In this paper, we derive explicit group-invariant radial solutions to a class of wave equation via symmetry group method. The optimal systems of one-dimensional subalgebras for the corresponding radial wave equation are presented in terms of the known point symmetries. The reductions of the radial wave equation into second-order ordinary differential equations (ODEs) with respect to each symmetry in the optimal systems are shown. Then we solve the corresponding reduced ODEs explicitly in order to write out the group-invariant radial solutions for the wave equation. Finally, several analytical behaviours and smoothness of the resulting solutions are discussed.

  17. New exact periodic solitary-wave solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in multi-temperature electron plasmas

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Tian, Yu; Zeng, Zhi-Fang

    2017-10-01

    In this paper, we aim to introduce a new form of the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation for the long waves of small amplitude with slow dependence on the transverse coordinate. By using the Hirota's bilinear form and the extended homoclinic test approach, new exact periodic solitary-wave solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation are presented. Moreover, the properties and characteristics for these new exact periodic solitary-wave solutions are discussed with some figures.

  18. Nonlocal symmetries, solitary waves and cnoidal periodic waves of the (2+1)-dimensional breaking soliton equation

    NASA Astrophysics Data System (ADS)

    Zou, Li; Tian, Shou-Fu; Feng, Lian-Li

    2017-12-01

    In this paper, we consider the (2+1)-dimensional breaking soliton equation, which describes the interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. By virtue of the truncated Painlevé expansion method, we obtain the nonlocal symmetry, Bäcklund transformation and Schwarzian form of the equation. Furthermore, by using the consistent Riccati expansion (CRE), we prove that the breaking soliton equation is solvable. Based on the consistent tan-function expansion, we explicitly derive the interaction solutions between solitary waves and cnoidal periodic waves.

  19. Reflection and interference of electromagnetic waves in inhomogeneous media

    NASA Technical Reports Server (NTRS)

    Geiger, F. E.; Kyle, H. L.

    1973-01-01

    Solutions were obtained of the wave equation for a plane horizontally polarized electro-magnetic wave incident on a semi infinite two dimensional inhomogeneous medium. Two problems were considered: An inhomogeneous half space, and an inhomogeneous layer of arbitrary thickness. Solutions of the wave equation were obtained in terms of Hankel functions with complex arguments. Numerical calculations were made of the reflection coefficient R at the interface of the homogeneous medium. The startling results show that the reflection coefficient for a complex dielectric constant with gradient, can be less than that of the same medium with zero gradient.

  20. Unsteady free surface flow in porous media: One-dimensional model equations including vertical effects and seepage face

    NASA Astrophysics Data System (ADS)

    Di Nucci, Carmine

    2018-05-01

    This note examines the two-dimensional unsteady isothermal free surface flow of an incompressible fluid in a non-deformable, homogeneous, isotropic, and saturated porous medium (with zero recharge and neglecting capillary effects). Coupling a Boussinesq-type model for nonlinear water waves with Darcy's law, the two-dimensional flow problem is solved using one-dimensional model equations including vertical effects and seepage face. In order to take into account the seepage face development, the system equations (given by the continuity and momentum equations) are completed by an integral relation (deduced from the Cauchy theorem). After testing the model against data sets available in the literature, some numerical simulations, concerning the unsteady flow through a rectangular dam (with an impermeable horizontal bottom), are presented and discussed.

  1. Three dimensional dust-acoustic solitary waves in an electron depleted dusty plasma with two-superthermal ion-temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borhanian, J.; Shahmansouri, M.

    2013-01-15

    A theoretical investigation is carried out to study the existence and characteristics of propagation of dust-acoustic (DA) waves in an electron-depleted dusty plasma with two-temperature ions, which are modeled by kappa distribution functions. A three-dimensional cylindrical Kadomtsev-Petviashvili equation governing evolution of small but finite amplitude DA waves is derived by means of a reductive perturbation method. The influence of physical parameters on solitary wave structure is examined. Furthermore, the energy integral equation is used to study the existence domains of the localized structures. It is found that the present model can be employed to describe the existence of positive asmore » well as negative polarity DA solitary waves by selecting special values for parameters of the system, e.g., superthermal index of cold and/or hot ions, cold to hot ion density ratio, and hot to cold ion temperature ratio. This model may be useful to understand the excitation of nonlinear DA waves in astrophysical objects.« less

  2. Comparison of the Effect of Horizontal Vibrations on Interfacial Waves in a Two-Layer System of Inviscid Liquids to Effective Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Pimenova, Anastasiya V.; Goldobin, Denis S.; Lyubimova, Tatyana P.

    2018-02-01

    We study the waves at the interface between two thin horizontal layers of immiscible liquids subject to high-frequency tangential vibrations. Nonlinear governing equations are derived for the cases of two- and three-dimensional flows and arbitrary ratio of layer thicknesses. The derivation is performed within the framework of the long-wavelength approximation, which is relevant as the linear instability of a thin-layers system is long-wavelength. The dynamics of equations is integrable and the equations themselves can be compared to the Boussinesq equation for the gravity waves in shallow water, which allows one to compare the action of the vibrational field to the action of the gravity and its possible effective inversion.

  3. A hybrid approach for nonlinear computational aeroacoustics predictions

    NASA Astrophysics Data System (ADS)

    Sassanis, Vasileios; Sescu, Adrian; Collins, Eric M.; Harris, Robert E.; Luke, Edward A.

    2017-01-01

    In many aeroacoustics applications involving nonlinear waves and obstructions in the far-field, approaches based on the classical acoustic analogy theory or the linearised Euler equations are unable to fully characterise the acoustic field. Therefore, computational aeroacoustics hybrid methods that incorporate nonlinear wave propagation have to be constructed. In this study, a hybrid approach coupling Navier-Stokes equations in the acoustic source region with nonlinear Euler equations in the acoustic propagation region is introduced and tested. The full Navier-Stokes equations are solved in the source region to identify the acoustic sources. The flow variables of interest are then transferred from the source region to the acoustic propagation region, where the full nonlinear Euler equations with source terms are solved. The transition between the two regions is made through a buffer zone where the flow variables are penalised via a source term added to the Euler equations. Tests were conducted on simple acoustic and vorticity disturbances, two-dimensional jets (Mach 0.9 and 2), and a three-dimensional jet (Mach 1.5), impinging on a wall. The method is proven to be effective and accurate in predicting sound pressure levels associated with the propagation of linear and nonlinear waves in the near- and far-field regions.

  4. Bilinear identities for an extended B-type Kadomtsev-Petviashvili hierarchy

    NASA Astrophysics Data System (ADS)

    Lin, Runliang; Cao, Tiancheng; Liu, Xiaojun; Zeng, Yunbo

    2016-03-01

    We construct bilinear identities for wave functions of an extended B-type Kadomtsev-Petviashvili (BKP) hierarchy containing two types of (2+1)-dimensional Sawada-Kotera equations with a self-consistent source. Introducing an auxiliary variable corresponding to the extended flow for the BKP hierarchy, we find the τ -function and bilinear identities for this extended BKP hierarchy. The bilinear identities generate all the Hirota bilinear equations for the zero-curvature forms of this extended BKP hierarchy. As examples, we obtain the Hirota bilinear equations for the two types of (2+1)-dimensional Sawada-Kotera equations in explicit form.

  5. Analytic study of solutions for a (3 + 1) -dimensional generalized KP equation

    NASA Astrophysics Data System (ADS)

    Gao, Hui; Cheng, Wenguang; Xu, Tianzhou; Wang, Gangwei

    2018-03-01

    The (3 + 1) -dimensional generalized KP (gKP) equation is an important nonlinear partial differential equation in theoretical and mathematical physics which can be used to describe nonlinear wave motion. Through the Hirota bilinear method, one-solition, two-solition and N-solition solutions are derived via symbolic computation. Two classes of lump solutions, rationally localized in all directions in space, to the dimensionally reduced cases in (2 + 1)-dimensions, are constructed by using a direct method based on the Hirota bilinear form of the equation. It implies that we can derive the lump solutions of the reduced gKP equation from positive quadratic function solutions to the aforementioned bilinear equation. Meanwhile, we get interaction solutions between a lump and a kink of the gKP equation. The lump appears from a kink and is swallowed by it with the change of time. This work offers a possibility which can enrich the variety of the dynamical features of solutions for higher-dimensional nonlinear evolution equations.

  6. Lump waves and breather waves for a (3+1)-dimensional generalized Kadomtsev-Petviashvili Benjamin-Bona-Mahony equation for an offshore structure

    NASA Astrophysics Data System (ADS)

    Yin, Ying; Tian, Bo; Wu, Xiao-Yu; Yin, Hui-Min; Zhang, Chen-Rong

    2018-04-01

    In this paper, we investigate a (3+1)-dimensional generalized Kadomtsev-Petviashvili Benjamin-Bona-Mahony equation, which describes the fluid flow in the case of an offshore structure. By virtue of the Hirota method and symbolic computation, bilinear forms, the lump-wave and breather-wave solutions are derived. Propagation characteristics and interaction of lump waves and breather waves are graphically discussed. Amplitudes and locations of the lump waves, amplitudes and periods of the breather waves all vary with the wavelengths in the three spatial directions, ratio of the wave amplitude to the depth of water, or product of the depth of water and the relative wavelength along the main direction of propagation. Of the interactions between the lump waves and solitons, there exist two different cases: (i) the energy is transferred from the lump wave to the soliton; (ii) the energy is transferred from the soliton to the lump wave.

  7. Time dependent wave envelope finite difference analysis of sound propagation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1984-01-01

    A transient finite difference wave envelope formulation is presented for sound propagation, without steady flow. Before the finite difference equations are formulated, the governing wave equation is first transformed to a form whose solution tends not to oscillate along the propagation direction. This transformation reduces the required number of grid points by an order of magnitude. Physically, the transformed pressure represents the amplitude of the conventional sound wave. The derivation for the wave envelope transient wave equation and appropriate boundary conditions are presented as well as the difference equations and stability requirements. To illustrate the method, example solutions are presented for sound propagation in a straight hard wall duct and in a two dimensional straight soft wall duct. The numerical results are in good agreement with exact analytical results.

  8. Equation for wave processes in inhomogeneous moving media and functional solution of the acoustic tomography problem based on it

    NASA Astrophysics Data System (ADS)

    Rumyantseva, O. D.; Shurup, A. S.

    2017-01-01

    The paper considers the derivation of the wave equation and Helmholtz equation for solving the tomographic problem of reconstruction combined scalar-vector inhomogeneities describing perturbations of the sound velocity and absorption, the vector field of flows, and perturbations of the density of the medium. Restrictive conditions under which the obtained equations are meaningful are analyzed. Results of numerical simulation of the two-dimensional functional-analytical Novikov-Agaltsov algorithm for reconstructing the flow velocity using the the obtained Helmholtz equation are presented.

  9. Information transport in classical statistical systems

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2018-02-01

    For "static memory materials" the bulk properties depend on boundary conditions. Such materials can be realized by classical statistical systems which admit no unique equilibrium state. We describe the propagation of information from the boundary to the bulk by classical wave functions. The dependence of wave functions on the location of hypersurfaces in the bulk is governed by a linear evolution equation that can be viewed as a generalized Schrödinger equation. Classical wave functions obey the superposition principle, with local probabilities realized as bilinears of wave functions. For static memory materials the evolution within a subsector is unitary, as characteristic for the time evolution in quantum mechanics. The space-dependence in static memory materials can be used as an analogue representation of the time evolution in quantum mechanics - such materials are "quantum simulators". For example, an asymmetric Ising model on a Euclidean two-dimensional lattice represents the time evolution of free relativistic fermions in two-dimensional Minkowski space.

  10. Numerical simulation of boundary layers. Part 2: Ribbon-induced transition in Blasius flow

    NASA Technical Reports Server (NTRS)

    Spalart, P.; Yang, K. S.

    1986-01-01

    The early three-dimensional stages of transition in Blasius boundary layers are studied by numerical solution of the Navier-Stokes equations. A finite-amplitude two-dimensional wave and random low-amplitude three-dimensional disturbances are introduced. Rapid amplification of the three-dimensional components is observed and leads to transition. For intermediate amplitudes of the two-dimensional wave the breakdown is of subharmonic type, and the dominant spanwise wave number increases with the amplitude. For high amplitudes the energy of the fundamental mode is comparable to the energy of the subharmonic mode, but never dominates it; the breakdown is of mixed type. Visualizations, energy histories, and spectra are presented. The sensitivity of the results to various physical and numerical parameters is studied. Agreement with experimental and theoretical results is discussed.

  11. An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension)

    NASA Technical Reports Server (NTRS)

    Powell, Kenneth G.

    1994-01-01

    An approximate Riemann solver is developed for the governing equations of ideal magnetohydrodynamics (MHD). The Riemann solver has an eight-wave structure, where seven of the waves are those used in previous work on upwind schemes for MHD, and the eighth wave is related to the divergence of the magnetic field. The structure of the eighth wave is not immediately obvious from the governing equations as they are usually written, but arises from a modification of the equations that is presented in this paper. The addition of the eighth wave allows multidimensional MHD problems to be solved without the use of staggered grids or a projection scheme, one or the other of which was necessary in previous work on upwind schemes for MHD. A test problem made up of a shock tube with rotated initial conditions is solved to show that the two-dimensional code yields answers consistent with the one-dimensional methods developed previously.

  12. Three New (2+1)-dimensional Integrable Systems and Some Related Darboux Transformations

    NASA Astrophysics Data System (ADS)

    Guo, Xiu-Rong

    2016-06-01

    We introduce two operator commutators by using different-degree loop algebras of the Lie algebra A1, then under the framework of zero curvature equations we generate two (2+1)-dimensional integrable hierarchies, including the (2+1)-dimensional shallow water wave (SWW) hierarchy and the (2+1)-dimensional Kaup-Newell (KN) hierarchy. Through reduction of the (2+1)-dimensional hierarchies, we get a (2+1)-dimensional SWW equation and a (2+1)-dimensional KN equation. Furthermore, we obtain two Darboux transformations of the (2+1)-dimensional SWW equation. Similarly, the Darboux transformations of the (2+1)-dimensional KN equation could be deduced. Finally, with the help of the spatial spectral matrix of SWW hierarchy, we generate a (2+1) heat equation and a (2+1) nonlinear generalized SWW system containing inverse operators with respect to the variables x and y by using a reduction spectral problem from the self-dual Yang-Mills equations. Supported by the National Natural Science Foundation of China under Grant No. 11371361, the Shandong Provincial Natural Science Foundation of China under Grant Nos. ZR2012AQ011, ZR2013AL016, ZR2015EM042, National Social Science Foundation of China under Grant No. 13BJY026, the Development of Science and Technology Project under Grant No. 2015NS1048 and A Project of Shandong Province Higher Educational Science and Technology Program under Grant No. J14LI58

  13. Two-and-one-half-dimensional magnetohydrodynamic simulations of the plasma sheet in the presence of oxygen ions: The plasma sheet oscillation and compressional Pc 5 waves

    NASA Astrophysics Data System (ADS)

    Lu, Li; Liu, Zhen-Xing; Cao, Jin-Bin

    2002-02-01

    Two-and-one-half-dimensional magnetohydrodynamic simulations of the multicomponent plasma sheet with the velocity curl term in the magnetic equation are represented. The simulation results can be summarized as follows: (1) There is an oscillation of the plasma sheet with the period on the order of 400 s (Pc 5 range); (2) the magnetic equator is a node of the magnetic field disturbance; (3) the magnetic energy integral varies antiphase with the internal energy integral; (4) disturbed waves have a propagating speed on the order of 10 km/s earthward; (5) the abundance of oxygen ions influences amplitude, period, and dissipation of the plasma sheet oscillation. It is suggested that the compressional Pc 5 waves, which are observed in the plasma sheet close to the magnetic equator, may be caused by the plasma sheet oscillation, or may be generated from the resonance of the plasma sheet oscillation with some Pc 5 perturbation waves coming from the outer magnetosphere.

  14. Nonlinear Ocean Waves

    DTIC Science & Technology

    1994-01-06

    for all of this work is the fact that the Kadomtsev - Petviashvili equation , a1(atu + ui)xU + a.3u) + ay2u = 0, (KP) describes approximately the evolution...the contents of these two papers. (a) Numerically induced chaos The cubic-nonlinear Schrtdinger equation in one dimension, iatA +,2V + 21i,1 =0, (NLS...arises in several physical contexts, including the evolution of nearly monochromatic, one-dimensional waves in deep water. The equation is known to be

  15. Nonlinear Schrödinger equations for Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Galati, Luigi; Zheng, Shijun

    2013-10-01

    The Gross-Pitaevskii equation, or more generally the nonlinear Schrödinger equation, models the Bose-Einstein condensates in a macroscopic gaseous superfluid wave-matter state in ultra-cold temperature. We provide analytical study of the NLS with L2 initial data in order to understand propagation of the defocusing and focusing waves for the BEC mechanism in the presence of electromagnetic fields. Numerical simulations are performed for the two-dimensional GPE with anisotropic quadratic potentials.

  16. Several reverse-time integrable nonlocal nonlinear equations: Rogue-wave solutions

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Chen, Yong

    2018-05-01

    A study of rogue-wave solutions in the reverse-time nonlocal nonlinear Schrödinger (NLS) and nonlocal Davey-Stewartson (DS) equations is presented. By using Darboux transformation (DT) method, several types of rogue-wave solutions are constructed. Dynamics of these rogue-wave solutions are further explored. It is shown that the (1 + 1)-dimensional fundamental rogue-wave solutions in the reverse-time NLS equation can be globally bounded or have finite-time blowing-ups. It is also shown that the (2 + 1)-dimensional line rogue waves in the reverse-time nonlocal DS equations can be bounded for all space and time or develop singularities in critical time. In addition, the multi- and higher-order rogue waves exhibit richer structures, most of which have no counterparts in the corresponding local nonlinear equations.

  17. Observation of Quasi-Two-Dimensional Nonlinear Interactions in a Drift-Wave Streamer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, T.; Nagashima, Y.; Itoh, S.-I.

    2010-11-26

    A streamer, which is a bunching of drift-wave fluctuations, and its mediator, which generates the streamer by coupling with other fluctuations, have been observed in a cylindrical magnetized plasma. Their radial structures were investigated in detail by using the biphase analysis. Their quasi-two-dimensional structures were revealed to be equivalent with a pair of fast and slow modes predicted by a nonlinear Schroedinger equation based on the Hasegawa-Mima model.

  18. Three-dimensional compact explicit-finite difference time domain scheme with density variation

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Takao; Maruta, Naoki

    2018-07-01

    In this paper, the density variation is implemented in the three-dimensional compact-explicit finite-difference time-domain (CE-FDTD) method. The formulation is first developed based on the continuity equation and the equation of motion, which include the density. Some numerical demonstrations are performed for the three-dimensional sound wave propagation in a two density layered medium. The numerical results are compared with the theoretical results to verify the proposed formulation.

  19. Capsize of polarization in dilute photonic crystals.

    PubMed

    Gevorkian, Zhyrair; Hakhoumian, Arsen; Gasparian, Vladimir; Cuevas, Emilio

    2017-11-29

    We investigate, experimentally and theoretically, polarization rotation effects in dilute photonic crystals with transverse permittivity inhomogeneity perpendicular to the traveling direction of waves. A capsize, namely a drastic change of polarization to the perpendicular direction is observed in a one-dimensional photonic crystal in the frequency range 10 ÷ 140 GHz. To gain more insights into the rotational mechanism, we have developed a theoretical model of dilute photonic crystal, based on Maxwell's equations with a spatially dependent two dimensional inhomogeneous dielectric permittivity. We show that the polarization's rotation can be explained by an optical splitting parameter appearing naturally in Maxwell's equations for magnetic or electric fields components. This parameter is an optical analogous of Rashba like spin-orbit interaction parameter present in quantum waves, introduces a correction to the band structure of the two-dimensional Bloch states, creates the dynamical phase shift between the waves propagating in the orthogonal directions and finally leads to capsizing of the initial polarization. Excellent agreement between theory and experiment is found.

  20. Unsteady three-dimensional marginal separation caused by surface-mounted obstacles and/or local suction

    NASA Astrophysics Data System (ADS)

    Braun, Stefan; Kluwick, Alfred

    2004-09-01

    Earlier investigations of steady two-dimensional marginally separated laminar boundary layers have shown that the non-dimensional wall shear (or equivalently the negative non-dimensional perturbation displacement thickness) is governed by a nonlinear integro-differential equation. This equation contains a single controlling parameter Gamma characterizing, for example, the angle of attack of a slender airfoil and has the important property that (real) solutions exist up to a critical value Gamma_c of Gamma only. Here we investigate three-dimensional unsteady perturbations of an incompressible steady two-dimensional marginally separated laminar boundary layer with special emphasis on the flow behaviour near Gamma_c. Specifically, it is shown that the integro differential equation which governs these disturbances if Gamma_c {-} Gamma {=} O(1) reduces to a nonlinear partial differential equation known as the Fisher equation as Gamma approaches the critical value Gamma_c. This in turn leads to a significant simplification of the problem allowing, among other things, a systematic study of devices used in boundary-layer control and an analytical investigation of the conditions leading to the formation of finite-time singularities which have been observed in earlier numerical studies of unsteady two-dimensional and three-dimensional flows in the vicinity of a line of symmetry. Also, it is found that it is possible to construct exact solutions which describe waves of constant form travelling in the spanwise direction. These waves may contain singularities which can be interpreted as vortex sheets. The existence of these solutions strongly suggests that solutions of the Fisher equation which lead to finite-time blow-up may be extended beyond the blow-up time, thereby generating moving singularities which can be interpreted as vortical structures qualitatively similar to those emerging in direct numerical simulations of near critical (i.e. transitional) laminar separation bubbles. This is supported by asymptotic analysis.

  1. a Speculative Study on Negative-Dimensional Potential and Wave Problems by Implicit Calculus Modeling Approach

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Wang, Fajie

    Based on the implicit calculus equation modeling approach, this paper proposes a speculative concept of the potential and wave operators on negative dimensionality. Unlike the standard partial differential equation (PDE) modeling, the implicit calculus modeling approach does not require the explicit expression of the PDE governing equation. Instead the fundamental solution of physical problem is used to implicitly define the differential operator and to implement simulation in conjunction with the appropriate boundary conditions. In this study, we conjecture an extension of the fundamental solution of the standard Laplace and Helmholtz equations to negative dimensionality. And then by using the singular boundary method, a recent boundary discretization technique, we investigate the potential and wave problems using the fundamental solution on negative dimensionality. Numerical experiments reveal that the physics behaviors on negative dimensionality may differ on positive dimensionality. This speculative study might open an unexplored territory in research.

  2. New solitary wave solutions to the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff and the Kadomtsev-Petviashvili hierarchy equations

    NASA Astrophysics Data System (ADS)

    Baskonus, Haci Mehmet; Sulaiman, Tukur Abdulkadir; Bulut, Hasan

    2017-10-01

    In this paper, with the help of Wolfram Mathematica 9 we employ the powerful sine-Gordon expansion method in investigating the solution structures of the two well known nonlinear evolution equations, namely; Calogero-Bogoyavlenskii-Schiff and Kadomtsev-Petviashvili hierarchy equations. We obtain new solutions with complex, hyperbolic and trigonometric function structures. All the obtained solutions in this paper verified their corresponding equations. We also plot the three- and two-dimensional graphics of all the obtained solutions in this paper by using the same program in Wolfram Mathematica 9. We finally submit a comprehensive conclusion.

  3. Multiexponential models of (1+1)-dimensional dilaton gravity and Toda-Liouville integrable models

    NASA Astrophysics Data System (ADS)

    de Alfaro, V.; Filippov, A. T.

    2010-01-01

    We study general properties of a class of two-dimensional dilaton gravity (DG) theories with potentials containing several exponential terms. We isolate and thoroughly study a subclass of such theories in which the equations of motion reduce to Toda and Liouville equations. We show that the equation parameters must satisfy a certain constraint, which we find and solve for the most general multiexponential model. It follows from the constraint that integrable Toda equations in DG theories generally cannot appear without accompanying Liouville equations. The most difficult problem in the two-dimensional Toda-Liouville (TL) DG is to solve the energy and momentum constraints. We discuss this problem using the simplest examples and identify the main obstacles to solving it analytically. We then consider a subclass of integrable two-dimensional theories where scalar matter fields satisfy the Toda equations and the two-dimensional metric is trivial. We consider the simplest case in some detail. In this example, we show how to obtain the general solution. We also show how to simply derive wavelike solutions of general TL systems. In the DG theory, these solutions describe nonlinear waves coupled to gravity and also static states and cosmologies. For static states and cosmologies, we propose and study a more general one-dimensional TL model typically emerging in one-dimensional reductions of higher-dimensional gravity and supergravity theories. We especially attend to making the analytic structure of the solutions of the Toda equations as simple and transparent as possible.

  4. Benchmark problems in computational aeroacoustics

    NASA Technical Reports Server (NTRS)

    Porter-Locklear, Freda

    1994-01-01

    A recent directive at NASA Langley is aimed at numerically predicting principal noise sources. During my summer stay, I worked with high-order ENO code, developed by Dr. Harold Atkins, for solving the unsteady compressible Navier-Stokes equations, as it applies to computational aeroacoustics (CAA). A CAA workshop, composed of six categories of benchmark problems, has been organized to test various numerical properties of code. My task was to determine the robustness of Atkins' code for these test problems. In one category, we tested the nonlinear wave propagation of the code for the one-dimensional Euler equations, with initial pressure, density, and velocity conditions. Using freestream boundary conditions, our results were plausible. In another category, we solved the linearized two-dimensional Euler equations to test the effectiveness of radiation boundary conditions. Here we utilized MAPLE to compute eigenvalues and eigenvectors of the Jacobian given variable and flux vectors. We experienced a minor problem with inflow and outflow boundary conditions. Next, we solved the quasi one dimensional unsteady flow equations with an incoming acoustic wave of amplitude 10(exp -6). The small amplitude sound wave was incident on a convergent-divergent nozzle. After finding a steady-state solution and then marching forward, our solution indicated that after 30 periods the acoustic wave had dissipated (a period is time required for sound wave to traverse one end of nozzle to other end).

  5. KP Equation in a Three-Dimensional Unmagnetized Warm Dusty Plasma with Variable Dust Charge

    NASA Astrophysics Data System (ADS)

    El-Shorbagy, Kh. H.; Mahassen, Hania; El-Bendary, Atef Ahmed

    2017-12-01

    In this work, we investigate the propagation of three-dimensional nonlinear dust-acoustic and dust-Coulomb waves in an unmagnetized warm dusty plasma consisting of electrons, ions, and charged dust particles. The grain charge fluctuation is incorporated through the current balance equation. Using the perturbation method, a Kadomtsev-Petviashvili (KP) equation is obtained. It has been shown that the charge fluctuation would modify the wave structures, and the waves in such systems are unstable due to high-order long wave perturbations.

  6. Investigation of Solitary wave solutions for Vakhnenko-Parkes equation via exp-function and Exp(-ϕ(ξ))-expansion method.

    PubMed

    Roshid, Harun-Or; Kabir, Md Rashed; Bhowmik, Rajandra Chadra; Datta, Bimal Kumar

    2014-01-01

    In this paper, we have described two dreadfully important methods to solve nonlinear partial differential equations which are known as exp-function and the exp(-ϕ(ξ)) -expansion method. Recently, there are several methods to use for finding analytical solutions of the nonlinear partial differential equations. The methods are diverse and useful for solving the nonlinear evolution equations. With the help of these methods, we are investigated the exact travelling wave solutions of the Vakhnenko- Parkes equation. The obtaining soliton solutions of this equation are described many physical phenomena for weakly nonlinear surface and internal waves in a rotating ocean. Further, three-dimensional plots of the solutions such as solitons, singular solitons, bell type solitary wave i.e. non-topological solitons solutions and periodic solutions are also given to visualize the dynamics of the equation.

  7. One-Dimensional Fokker-Planck Equation with Quadratically Nonlinear Quasilocal Drift

    NASA Astrophysics Data System (ADS)

    Shapovalov, A. V.

    2018-04-01

    The Fokker-Planck equation in one-dimensional spacetime with quadratically nonlinear nonlocal drift in the quasilocal approximation is reduced with the help of scaling of the coordinates and time to a partial differential equation with a third derivative in the spatial variable. Determining equations for the symmetries of the reduced equation are derived and the Lie symmetries are found. A group invariant solution having the form of a traveling wave is found. Within the framework of Adomian's iterative method, the first iterations of an approximate solution of the Cauchy problem are obtained. Two illustrative examples of exact solutions are found.

  8. The solution of the dam-break problem in the Porous Shallow water Equations

    NASA Astrophysics Data System (ADS)

    Cozzolino, Luca; Pepe, Veronica; Cimorelli, Luigi; D'Aniello, Andrea; Della Morte, Renata; Pianese, Domenico

    2018-04-01

    The Porous Shallow water Equations are commonly used to evaluate the propagation of flooding waves in the urban environment. These equations may exhibit not only classic shocks, rarefactions, and contact discontinuities, as in the ordinary two-dimensional Shallow water Equations, but also special discontinuities at abrupt porosity jumps. In this paper, an appropriate parameterization of the stationary weak solutions of one-dimensional Porous Shallow water Equations supplies the inner structure of the porosity jumps. The exact solution of the corresponding dam-break problem is presented, and six different wave configurations are individuated, proving that the solution exists and it is unique for given initial conditions and geometric characteristics. These results can be used as a benchmark in order to validate one- and two-dimensional numerical models for the solution of the Porous Shallow water Equations. In addition, it is presented a novel Finite Volume scheme where the porosity jumps are taken into account by means of a variables reconstruction approach. The dam-break results supplied by this numerical scheme are compared with the exact dam-break results, showing the promising capabilities of this numerical approach. Finally, the advantages of the novel porosity jump definition are shown by comparison with other definitions available in the literature, demonstrating its advantages, and the issues raising in real world applications are discussed.

  9. Strong anti-gravity Life in the shock wave

    NASA Astrophysics Data System (ADS)

    Fabbrichesi, Marco; Roland, Kaj

    1992-12-01

    Strong anti-gravity is the vanishing of the net force between two massive particles at rest, to all orders in Newton's constant. We study this phenomenon and show that it occurs in any effective theory of gravity which is obtained from a higher-dimensional model by compactification on a manifold with flat directions. We find the exact solution of the Einstein equations in the presence of a point-like source of strong anti-gravity by dimensional reduction of a shock-wave solution in the higher-dimensional model.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K.; Petersson, N. A.; Rodgers, A.

    Acoustic waveform modeling is a computationally intensive task and full three-dimensional simulations are often impractical for some geophysical applications such as long-range wave propagation and high-frequency sound simulation. In this study, we develop a two-dimensional high-order accurate finite-difference code for acoustic wave modeling. We solve the linearized Euler equations by discretizing them with the sixth order accurate finite difference stencils away from the boundary and the third order summation-by-parts (SBP) closure near the boundary. Non-planar topographic boundary is resolved by formulating the governing equation in curvilinear coordinates following the interface. We verify the implementation of the algorithm by numerical examplesmore » and demonstrate the capability of the proposed method for practical acoustic wave propagation problems in the atmosphere.« less

  11. Solution of two-body relativistic bound state equations with confining plus Coulomb interactions

    NASA Technical Reports Server (NTRS)

    Maung, Khin Maung; Kahana, David E.; Norbury, John W.

    1992-01-01

    Studies of meson spectroscopy have often employed a nonrelativistic Coulomb plus Linear Confining potential in position space. However, because the quarks in mesons move at an appreciable fraction of the speed of light, it is necessary to use a relativistic treatment of the bound state problem. Such a treatment is most easily carried out in momentum space. However, the position space Linear and Coulomb potentials lead to singular kernels in momentum space. Using a subtraction procedure we show how to remove these singularities exactly and thereby solve the Schroedinger equation in momentum space for all partial waves. Furthermore, we generalize the Linear and Coulomb potentials to relativistic kernels in four dimensional momentum space. Again we use a subtraction procedure to remove the relativistic singularities exactly for all partial waves. This enables us to solve three dimensional reductions of the Bethe-Salpeter equation. We solve six such equations for Coulomb plus Confining interactions for all partial waves.

  12. Exact solutions of a hierarchy of mixing speeds models

    NASA Astrophysics Data System (ADS)

    Cornille, H.; Platkowski, T.

    1992-07-01

    This paper presents several new aspects of discrete kinetic theory (DKT). First a hierarchy of d-dimensional (d=1,2,3) models is proposed with (2d+3) velocities and three moduli speeds: 0, 2, and a third one that can be arbitrary. It is assumed that the particles at rest have an internal energy which, for microscopic collisions, supplies for the loss of the kinetic energy. In a more general way than usual, collisions are allowed that mix particles with different speeds. Second, for the (1+1)-dimensional restriction of the systems of PDE for these models which have two independent quadratic collision terms we construct different exact solutions. The usual types of exact solutions are studied: periodic solutions and shock wave solutions obtained from the standard linearization of the scalar Riccati equations called Riccatian shock waves. Then other types of solutions of the coupled Riccati equations are found called non-Riccatian shock waves and they are compared with the previous ones. The main new result is that, between the upstream and downstream states, these new solutions are not necessarily monotonous. Further, for the shock problem, a two-dimensional dynamical system of ODE is solved numerically with limit values corresponding to the upstream and downstream states. As a by-product of this study two new linearizations for the Riccati coupled equations with two functions are proposed.

  13. Two-dimensional interaction of a shear flow with a free surface in a stratified fluid and its solitary-wave solutions via mathematical methods

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.

    2017-12-01

    In this study, we presented the problem formulations of models for internal solitary waves in a stratified shear flow with a free surface. The nonlinear higher order of extended KdV equations for the free surface displacement is generated. We derived the coefficients of the nonlinear higher-order extended KdV equation in terms of integrals of the modal function for the linear long-wave theory. The wave amplitude potential and the fluid pressure of the extended KdV equation in the form of solitary-wave solutions are deduced. We discussed and analyzed the stability of the obtained solutions and the movement role of the waves by making graphs of the exact solutions.

  14. New solitary wave solutions of (3 + 1)-dimensional nonlinear extended Zakharov-Kuznetsov and modified KdV-Zakharov-Kuznetsov equations and their applications

    NASA Astrophysics Data System (ADS)

    Lu, Dianchen; Seadawy, A. R.; Arshad, M.; Wang, Jun

    In this paper, new exact solitary wave, soliton and elliptic function solutions are constructed in various forms of three dimensional nonlinear partial differential equations (PDEs) in mathematical physics by utilizing modified extended direct algebraic method. Soliton solutions in different forms such as bell and anti-bell periodic, dark soliton, bright soliton, bright and dark solitary wave in periodic form etc are obtained, which have large applications in different branches of physics and other areas of applied sciences. The obtained solutions are also presented graphically. Furthermore, many other nonlinear evolution equations arising in mathematical physics and engineering can also be solved by this powerful, reliable and capable method. The nonlinear three dimensional extended Zakharov-Kuznetsov dynamica equation and (3 + 1)-dimensional modified KdV-Zakharov-Kuznetsov equation are selected to show the reliability and effectiveness of the current method.

  15. Hamiltonian structures for systems of hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Olver, Peter J.; Nutku, Yavuz

    1988-07-01

    The bi-Hamiltonian structure for a large class of one-dimensional hyberbolic systems of conservation laws in two field variables, including the equations of gas dynamics, shallow water waves, one-dimensional elastic media, and the Born-Infeld equation from nonlinear electrodynamics, is exhibited. For polytropic gas dynamics, these results lead to a quadri-Hamiltonian structure. New higher-order entropy-flux pairs (conservation laws) and higher-order symmetries are exhibited.

  16. Traveling wave solutions of the nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2017-10-01

    In this paper, we investigate the traveling soliton and the periodic wave solutions of the nonlinear Schrödinger equation (NLSE) with generalized nonlinear functionality. We also explore the underlying close connection between the well-known KdV equation and the NLSE. It is remarked that both one-dimensional KdV and NLSE models share the same pseudoenergy spectrum. We also derive the traveling wave solutions for two cases of weakly nonlinear mathematical models, namely, the Helmholtz and the Duffing oscillators' potentials. It is found that these models only allow gray-type NLSE solitary propagations. It is also found that the pseudofrequency ratio for the Helmholtz potential between the nonlinear periodic carrier and the modulated sinusoidal waves is always in the range 0.5 ≤ Ω/ω ≤ 0.537285 regardless of the potential parameter values. The values of Ω/ω = {0.5, 0.537285} correspond to the cnoidal waves modulus of m = {0, 1} for soliton and sinusoidal limits and m = 0.5, respectively. Moreover, the current NLSE model is extended to fully NLSE (FNLSE) situation for Sagdeev oscillator pseudopotential which can be derived using a closed set of hydrodynamic fluid equations with a fully integrable Hamiltonian system. The generalized quasi-three-dimensional traveling wave solution is also derived. The current simple hydrodynamic plasma model may also be generalized to two dimensions and other complex situations including different charged species and cases with magnetic or gravitational field effects.

  17. Type IIB Colliding Plane Waves

    NASA Astrophysics Data System (ADS)

    Gutperle, M.; Pioline, B.

    2003-09-01

    Four-dimensional colliding plane wave (CPW) solutions have played an important role in understanding the classical non-linearities of Einstein's equations. In this note, we investigate CPW solutions in 2n+2-dimensional Einstein gravity with a n+1-form flux. By using an isomorphism with the four-dimensional problem, we construct exact solutions analogous to the Szekeres vacuum solution in four dimensions. The higher-dimensional versions of the Khan-Penrose and Bell-Szekeres CPW solutions are studied perturbatively in the vicinity of the light-cone. We find that under small perturbations, a curvature singularity is generically produced, leading to both space-like and time-like singularities. For n = 4, our results pertain to the collision of two ten-dimensional type-IIB Blau-Figueroa o'Farrill-Hull-Papadopoulos plane waves.

  18. A (2+1)-dimensional Korteweg-de Vries type equation in water waves: Lie symmetry analysis; multiple exp-function method; conservation laws

    NASA Astrophysics Data System (ADS)

    Adem, Abdullahi Rashid

    2016-05-01

    We consider a (2+1)-dimensional Korteweg-de Vries type equation which models the shallow-water waves, surface and internal waves. In the analysis, we use the Lie symmetry method and the multiple exp-function method. Furthermore, conservation laws are computed using the multiplier method.

  19. Improved computational treatment of transonic flow about swept wings

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. F.; Bailey, F. R.; Frick, J.

    1976-01-01

    Relaxation solutions to classical three-dimensional small-disturbance (CSD) theory for transonic flow about lifting swept wings are reported. For such wings, the CSD theory was found to be a poor approximation to the full potential equation in regions of the flow field that are essentially two-dimensional in a plane normal to the sweep direction. The effect of this deficiency on the capture of embedded shock waves in terms of (1) the conditions under which shock waves can exist and (2) the relations they must satisfy when they do exist is emphasized. A modified small-disturbance (MSD) equation, derived by retaining two previously neglected terms, was proposed and shown to be a consistent approximation to the full potential equation over a wider range of sweep angles. The effect of these extra terms is demonstrated by comparing CSD, MSD, and experimental wing surface pressures.

  20. A new method for solving the quantum hydrodynamic equations of motion: application to two-dimensional reactive scattering.

    PubMed

    Pauler, Denise K; Kendrick, Brian K

    2004-01-08

    The de Broglie-Bohm hydrodynamic equations of motion are solved using a meshless method based on a moving least squares approach and an arbitrary Lagrangian-Eulerian frame of reference. A regridding algorithm adds and deletes computational points as needed in order to maintain a uniform interparticle spacing, and unitary time evolution is obtained by propagating the wave packet using averaged fields. The numerical instabilities associated with the formation of nodes in the reflected portion of the wave packet are avoided by adding artificial viscosity to the equations of motion. The methodology is applied to a two-dimensional model collinear reaction with an activation barrier. Reaction probabilities are computed as a function of both time and energy, and are in excellent agreement with those based on the quantum trajectory method. (c) 2004 American Institute of Physics

  1. A generic efficient adaptive grid scheme for rocket propulsion modeling

    NASA Technical Reports Server (NTRS)

    Mo, J. D.; Chow, Alan S.

    1993-01-01

    The objective of this research is to develop an efficient, time-accurate numerical algorithm to discretize the Navier-Stokes equations for the predictions of internal one-, two-dimensional and axisymmetric flows. A generic, efficient, elliptic adaptive grid generator is implicitly coupled with the Lower-Upper factorization scheme in the development of ALUNS computer code. The calculations of one-dimensional shock tube wave propagation and two-dimensional shock wave capture, wave-wave interactions, shock wave-boundary interactions show that the developed scheme is stable, accurate and extremely robust. The adaptive grid generator produced a very favorable grid network by a grid speed technique. This generic adaptive grid generator is also applied in the PARC and FDNS codes and the computational results for solid rocket nozzle flowfield and crystal growth modeling by those codes will be presented in the conference, too. This research work is being supported by NASA/MSFC.

  2. Periodic wave, breather wave and travelling wave solutions of a (2 + 1)-dimensional B-type Kadomtsev-Petviashvili equation in fluids or plasmas

    NASA Astrophysics Data System (ADS)

    Hu, Wen-Qiang; Gao, Yi-Tian; Jia, Shu-Liang; Huang, Qian-Min; Lan, Zhong-Zhou

    2016-11-01

    In this paper, a (2 + 1)-dimensional B-type Kadomtsev-Petviashvili equation is investigated, which has been presented as a model for the shallow water wave in fluids or the electrostatic wave potential in plasmas. By virtue of the binary Bell polynomials, the bilinear form of this equation is obtained. With the aid of the bilinear form, N -soliton solutions are obtained by the Hirota method, periodic wave solutions are constructed via the Riemann theta function, and breather wave solutions are obtained according to the extended homoclinic test approach. Travelling waves are constructed by the polynomial expansion method as well. Then, the relations between soliton solutions and periodic wave solutions are strictly established, which implies the asymptotic behaviors of the periodic waves under a limited procedure. Furthermore, we obtain some new solutions of this equation by the standard extended homoclinic test approach. Finally, we give a generalized form of this equation, and find that similar analytical solutions can be obtained from the generalized equation with arbitrary coefficients.

  3. Long-Time Numerical Integration of the Three-Dimensional Wave Equation in the Vicinity of a Moving Source

    NASA Technical Reports Server (NTRS)

    Ryabenkii, V. S.; Turchaninov, V. I.; Tsynkov, S. V.

    1999-01-01

    We propose a family of algorithms for solving numerically a Cauchy problem for the three-dimensional wave equation. The sources that drive the equation (i.e., the right-hand side) are compactly supported in space for any given time; they, however, may actually move in space with a subsonic speed. The solution is calculated inside a finite domain (e.g., sphere) that also moves with a subsonic speed and always contains the support of the right-hand side. The algorithms employ a standard consistent and stable explicit finite-difference scheme for the wave equation. They allow one to calculate tile solution for arbitrarily long time intervals without error accumulation and with the fixed non-growing amount of tile CPU time and memory required for advancing one time step. The algorithms are inherently three-dimensional; they rely on the presence of lacunae in the solutions of the wave equation in oddly dimensional spaces. The methodology presented in the paper is, in fact, a building block for constructing the nonlocal highly accurate unsteady artificial boundary conditions to be used for the numerical simulation of waves propagating with finite speed over unbounded domains.

  4. Solving the Vlasov equation in two spatial dimensions with the Schrödinger method

    NASA Astrophysics Data System (ADS)

    Kopp, Michael; Vattis, Kyriakos; Skordis, Constantinos

    2017-12-01

    We demonstrate that the Vlasov equation describing collisionless self-gravitating matter may be solved with the so-called Schrödinger method (ScM). With the ScM, one solves the Schrödinger-Poisson system of equations for a complex wave function in d dimensions, rather than the Vlasov equation for a 2 d -dimensional phase space density. The ScM also allows calculating the d -dimensional cumulants directly through quasilocal manipulations of the wave function, avoiding the complexity of 2 d -dimensional phase space. We perform for the first time a quantitative comparison of the ScM and a conventional Vlasov solver in d =2 dimensions. Our numerical tests were carried out using two types of cold cosmological initial conditions: the classic collapse of a sine wave and those of a Gaussian random field as commonly used in cosmological cold dark matter N-body simulations. We compare the first three cumulants, that is, the density, velocity and velocity dispersion, to those obtained by solving the Vlasov equation using the publicly available code ColDICE. We find excellent qualitative and quantitative agreement between these codes, demonstrating the feasibility and advantages of the ScM as an alternative to N-body simulations. We discuss, the emergence of effective vorticity in the ScM through the winding number around the points where the wave function vanishes. As an application we evaluate the background pressure induced by the non-linearity of large scale structure formation, thereby estimating the magnitude of cosmological backreaction. We find that it is negligibly small and has time dependence and magnitude compatible with expectations from the effective field theory of large scale structure.

  5. An efficient model for coupling structural vibrations with acoustic radiation

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Maestrello, Lucio; Ting, LU

    1993-01-01

    The scattering of an incident wave by a flexible panel is studied. The panel vibration is governed by the nonlinear plate equations while the loading on the panel, which is the pressure difference across the panel, depends on the reflected and transmitted waves. Two models are used to calculate this structural-acoustic interaction problem. One solves the three dimensional nonlinear Euler equations for the flow-field coupled with the plate equations (the fully coupled model). The second uses the linear wave equation for the acoustic field and expresses the load as a double integral involving the panel oscillation (the decoupled model). The panel oscillation governed by a system of integro-differential equations is solved numerically and the acoustic field is then defined by an explicit formula. Numerical results are obtained using the two models for linear and nonlinear panel vibrations. The predictions given by these two models are in good agreement but the computational time needed for the 'fully coupled model' is 60 times longer than that for 'the decoupled model'.

  6. Two different kinds of rogue waves in weakly crossing sea states

    NASA Astrophysics Data System (ADS)

    Ruban, V. P.

    2009-06-01

    Formation of giant waves in sea states with two spectral maxima centered at close wave vectors k0±Δk/2 in the Fourier plane is numerically simulated using the fully nonlinear model for long-crested water waves [V. P. Ruban, Phys. Rev. E 71, 055303(R) (2005)]. Depending on an angle θ between the vectors k0 and Δk , which determines a typical orientation of interference stripes in the physical plane, rogue waves arise having different spatial structure. If θ≲arctan(1/2) , then typical giant waves are relatively long fragments of essentially two-dimensional (2D) ridges, separated by wide valleys and consisting of alternating oblique crests and troughs. At nearly perpendicular k0 and Δk , the interference minima develop to coherent structures similar to the dark solitons of the nonlinear Schrodinger equation, and a 2D freak wave looks much as a piece of a one-dimensional freak wave bounded in the transversal direction by two such dark solitons.

  7. Designing scattering-free isotropic index profiles using phase-amplitude equations

    NASA Astrophysics Data System (ADS)

    King, C. G.; Horsley, S. A. R.; Philbin, T. G.

    2018-05-01

    The Helmholtz equation can be written as coupled equations for the amplitude and phase. By considering spatial phase distributions corresponding to reflectionless wave propagation in the plane and solving for the amplitude in terms of this phase, we designed two-dimensional graded-index media which do not scatter light. We give two illustrative examples, the first of which is a periodic grating for which diffraction is completely suppressed at a single frequency at normal incidence to the periodicity. The second example is a medium which behaves as a "beam shifter" at a single frequency; acting to laterally shift a plane wave, or sufficiently wide beam, without reflection.

  8. Rogue wave and a pair of resonance stripe solitons to a reduced (3+1)-dimensional Jimbo-Miwa equation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoen; Chen, Yong

    2017-11-01

    In this paper, a combination of stripe soliton and lump soliton is discussed to a reduced (3+1)-dimensional Jimbo-Miwa equation, in which such solution gives rise to two different excitation phenomena: fusion and fission. Particularly, a new combination of positive quadratic functions and hyperbolic functions is considered, and then a novel nonlinear phenomenon is explored. Via this method, a pair of resonance kink stripe solitons and rogue wave is studied. Rogue wave is triggered by the interaction between lump soliton and a pair of resonance kink stripe solitons. It is exciting that rogue wave must be attached to the stripe solitons from its appearing to disappearing. The whole progress is completely symmetry, the rogue wave starts itself from one stripe soliton and lose itself in another stripe soliton. The dynamic properties of the interaction between one stripe soliton and lump soliton, rogue wave are discussed by choosing appropriate parameters.

  9. The North Atlantic Oscillation Influence on the Wave Regime in Portugal: An Extreme Wave Event Analysis

    DTIC Science & Technology

    2005-03-01

    picture at 22/00Z.............50 x Figure 24. Case 5 – wave parameters........................51 Figure 25. Evolution of energy density (arrow...equation or energy balance equation: . in nl ds F v F S S S S t ∂ + ∇ = ≡ + + ∂ r (1) where ( , ; , )F f x tθ r is the two dimensional...collected from an offshore directional Seawatch buoy, in the vicinity of Cape Silleiro, Rayo Silleiro 19 (“E1”), (Figure 3), was provided by the

  10. Spatiotemporal chaos and two-dimensional dissipative rogue waves in Lugiato-Lefever model

    NASA Astrophysics Data System (ADS)

    Panajotov, Krassimir; Clerc, Marcel G.; Tlidi, Mustapha

    2017-06-01

    Driven nonlinear optical cavities can exhibit complex spatiotemporal dynamics. We consider the paradigmatic Lugiato-Lefever model describing driven nonlinear optical resonator. This model is one of the most-studied nonlinear equations in optics. It describes a large spectrum of nonlinear phenomena from bistability, to periodic patterns, localized structures, self-pulsating localized structures and to a complex spatiotemporal behavior. The model is considered also as prototype model to describe several optical nonlinear devices such as Kerr media, liquid crystals, left handed materials, nonlinear fiber cavity, and frequency comb generation. We focus our analysis on a spatiotemporal chaotic dynamics in one-dimension. We identify a route to spatiotemporal chaos through an extended quasiperiodicity. We have estimated the Kaplan-Yorke dimension that provides a measure of the strange attractor complexity. Likewise, we show that the Lugiato-Leferver equation supports rogues waves in two-dimensional settings. We characterize rogue-wave formation by computing the probability distribution of the pulse height. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  11. A numerical study of the 3-periodic wave solutions to KdV-type equations

    NASA Astrophysics Data System (ADS)

    Zhang, Yingnan; Hu, Xingbiao; Sun, Jianqing

    2018-02-01

    In this paper, by using the direct method of calculating periodic wave solutions proposed by Akira Nakamura, we present a numerical process to calculate the 3-periodic wave solutions to several KdV-type equations: the Korteweg-de Vries equation, the Sawada-Koterra equation, the Boussinesq equation, the Ito equation, the Hietarinta equation and the (2 + 1)-dimensional Kadomtsev-Petviashvili equation. Some detailed numerical examples are given to show the existence of the three-periodic wave solutions numerically.

  12. An ansatz for solving nonlinear partial differential equations in mathematical physics.

    PubMed

    Akbar, M Ali; Ali, Norhashidah Hj Mohd

    2016-01-01

    In this article, we introduce an ansatz involving exact traveling wave solutions to nonlinear partial differential equations. To obtain wave solutions using direct method, the choice of an appropriate ansatz is of great importance. We apply this ansatz to examine new and further general traveling wave solutions to the (1+1)-dimensional modified Benjamin-Bona-Mahony equation. Abundant traveling wave solutions are derived including solitons, singular solitons, periodic solutions and general solitary wave solutions. The solutions emphasize the nobility of this ansatz in providing distinct solutions to various tangible phenomena in nonlinear science and engineering. The ansatz could be more efficient tool to deal with higher dimensional nonlinear evolution equations which frequently arise in many real world physical problems.

  13. Application of fast Fourier transforms to the direct solution of a class of two-dimensional separable elliptic equations on the sphere

    NASA Technical Reports Server (NTRS)

    Moorthi, Shrinivas; Higgins, R. W.

    1993-01-01

    An efficient, direct, second-order solver for the discrete solution of a class of two-dimensional separable elliptic equations on the sphere (which generally arise in implicit and semi-implicit atmospheric models) is presented. The method involves a Fourier transformation in longitude and a direct solution of the resulting coupled second-order finite-difference equations in latitude. The solver is made efficient by vectorizing over longitudinal wave-number and by using a vectorized fast Fourier transform routine. It is evaluated using a prescribed solution method and compared with a multigrid solver and the standard direct solver from FISHPAK.

  14. The role of nonlinear critical layers in boundary layer transition

    NASA Technical Reports Server (NTRS)

    Goldstein, M.E.

    1995-01-01

    Asymptotic methods are used to describe the nonlinear self-interaction between pairs of oblique instability modes that eventually develops when initially linear spatially growing instability waves evolve downstream in nominally two-dimensional laminar boundary layers. The first nonlinear reaction takes place locally within a so-called 'critical layer', with the flow outside this layer consisting of a locally parallel mean flow plus a pair of oblique instability waves - which may or may not be accompanied by an associated plane wave. The amplitudes of these waves, which are completely determined by nonlinear effects within the critical layer, satisfy either a single integro-differential equation or a pair of integro-differential equations with quadratic to quartic-type nonlinearities. The physical implications of these equations are discussed.

  15. Computation and visualization of spreading depression based on reaction-diffusion equation with recovery

    NASA Astrophysics Data System (ADS)

    Ding, Hongxia; Chen, Shangbin; Zeng, Shuai; Zeng, Shaoqun; Liu, Qian; Luo, Qingming

    2008-12-01

    Spreading depression (SD) shows as propagating suppression of electrical activity, which relates with migraine and focal cerebral ischaemia. The putative mechanism of SD is the reaction-diffusion hypothesis involving potassium ions. In part inspired by optical imaging of two SD waves collision, we aimed to show the merged and large wavefront but not annihilation during collision by experimental and computational study. This paper modified Reggia et al established bistable equation with recovery to compute and visualize SD. Firstly, the media tissue of SD was assumed as one-dimensional continuum. The Crank-Nicholson method was used to solve the modified equations with recovery term. Then, the computation results were extended to two-dimensional space by symmetry. One individual SD was visualized as a concentric wave initiating from the stimulation point. The mergence but not annihilation of two colliding waves of SD was demonstrated. In addition, the dynamics of SD depending on the parameters was studied and presented. The results allied SD with the emerging concepts of volume transmission. This work not only supplied a paradigm to compute and visualize SD but also became a tool to explore the mechanisms of SD.

  16. Interaction phenomenon to dimensionally reduced p-gBKP equation

    NASA Astrophysics Data System (ADS)

    Zhang, Runfa; Bilige, Sudao; Bai, Yuexing; Lü, Jianqing; Gao, Xiaoqing

    2018-02-01

    Based on searching the combining of quadratic function and exponential (or hyperbolic cosine) function from the Hirota bilinear form of the dimensionally reduced p-gBKP equation, eight class of interaction solutions are derived via symbolic computation with Mathematica. The submergence phenomenon, presented to illustrate the dynamical features concerning these obtained solutions, is observed by three-dimensional plots and density plots with particular choices of the involved parameters between the exponential (or hyperbolic cosine) function and the quadratic function. It is proved that the interference between the two solitary waves is inelastic.

  17. Dynamics of film. [two dimensional continua theory

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1979-01-01

    The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.

  18. Lump Solitons in Surface Tension Dominated Flows

    NASA Astrophysics Data System (ADS)

    Milewski, Paul; Berger, Kurt

    1999-11-01

    The Kadomtsev-Petviashvilli I equation (KPI) which models small-amplitude, weakly three-dimensional surface-tension dominated long waves is integrable and allows for algebraically decaying lump solitary waves. It is not known (theoretically or numerically) whether the full free-surface Euler equations support such solutions. We consider an intermediate model, the generalised Benney-Luke equation (gBL) which is isotropic (not weakly three-dimensional) and contains KPI as a limit. We show numerically that: 1. gBL supports lump solitary waves; 2. These waves collide elastically and are stable; 3. They are generated by resonant flow over an obstacle.

  19. Nonlinear Fourier algorithm applied to solving equations of gravitational gas dynamics

    NASA Technical Reports Server (NTRS)

    Kolosov, B. I.

    1979-01-01

    Two dimensional gas flow problems were reduced to an approximating system of common differential equations, which were solved by a standard procedure of the Runge-Kutta type. A theorem of the existence of stationary conical shock waves with the cone vertex in the gravitating center was proved.

  20. Characteristics of the solitary waves and rogue waves with interaction phenomena in a (2 + 1)-dimensional Breaking Soliton equation

    NASA Astrophysics Data System (ADS)

    Hossen, Md. Belal; Roshid, Harun-Or; Ali, M. Zulfikar

    2018-05-01

    Under inquisition in this paper is a (2 + 1)-dimensional Breaking Soliton equation, which can describe various nonlinear scenarios in fluid dynamics. Using the Bell polynomials, some proficient auxiliary functions are offered to apparently construct its bilinear form and corresponding soliton solutions which are different from the previous literatures. Moreover, a direct method is used to construct its rogue wave and solitary wave solutions using particular auxiliary function with the assist of bilinear formalism. Finally, the interactions between solitary waves and rogue waves are offered with a complete derivation. These results enhance the variety of the dynamics of higher dimensional nonlinear wave fields related to mathematical physics and engineering.

  1. Variational modelling of extreme waves through oblique interaction of solitary waves: application to Mach reflection

    NASA Astrophysics Data System (ADS)

    Gidel, Floriane; Bokhove, Onno; Kalogirou, Anna

    2017-01-01

    In this work, we model extreme waves that occur due to Mach reflection through the intersection of two obliquely incident solitary waves. For a given range of incident angles and amplitudes, the Mach stem wave grows linearly in length and amplitude, reaching up to 4 times the amplitude of the incident waves. A variational approach is used to derive the bidirectional Benney-Luke equations, an asymptotic equivalent of the three-dimensional potential-flow equations modelling water waves. This nonlinear and weakly dispersive model has the advantage of allowing wave propagation in two horizontal directions, which is not the case with the unidirectional Kadomtsev-Petviashvili (KP) equation used in most previous studies. A variational Galerkin finite-element method is applied to solve the system numerically in Firedrake with a second-order Störmer-Verlet temporal integration scheme, in order to obtain stable simulations that conserve the overall mass and energy of the system. Using this approach, we are able to get close to the 4-fold amplitude amplification predicted by Miles.

  2. One-dimensional optical wave turbulence: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Laurie, Jason; Bortolozzo, Umberto; Nazarenko, Sergey; Residori, Stefania

    2012-05-01

    We present a review of the latest developments in one-dimensional (1D) optical wave turbulence (OWT). Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent waves leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-wave interaction, and that this is the basic mechanism of nonlinear wave coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context. The experimental system is described by two coupled nonlinear equations, which we explore within two wave limits allowing for the expression of the evolution of the complex amplitude in a single dynamical equation. The long-wave limit corresponds to waves with wave numbers smaller than the electrical coherence length of the liquid crystal, and the opposite limit, when wave numbers are larger. We show that both of these systems are of a dual cascade type, analogous to two-dimensional (2D) turbulence, which can be described by wave turbulence (WT) theory, and conclude that the cascades are induced by a six-wave resonant interaction process. WT theory predicts several stationary solutions (non-equilibrium and thermodynamic) to both the long- and short-wave systems, and we investigate the necessary conditions required for their realization. Interestingly, the long-wave system is close to the integrable 1D nonlinear Schrödinger equation (NLSE) (which contains exact nonlinear soliton solutions), and as a result during the inverse cascade, nonlinearity of the system at low wave numbers becomes strong. Subsequently, due to the focusing nature of the nonlinearity, this leads to modulational instability (MI) of the condensate and the formation of solitons. Finally, with the aid of the probability density function (PDF) description of WT theory, we explain the coexistence and mutual interactions between solitons and the weakly nonlinear random wave background in the form of a wave turbulence life cycle (WTLC).

  3. Multi-soliton solutions and Bäcklund transformation for a two-mode KdV equation in a fluid

    NASA Astrophysics Data System (ADS)

    Xiao, Zi-Jian; Tian, Bo; Zhen, Hui-Ling; Chai, Jun; Wu, Xiao-Yu

    2017-01-01

    In this paper, we investigate a two-mode Korteweg-de Vries equation, which describes the one-dimensional propagation of shallow water waves with two modes in a weakly nonlinear and dispersive fluid system. With the binary Bell polynomial and an auxiliary variable, bilinear forms, multi-soliton solutions in the two-wave modes and Bell polynomial-type Bäcklund transformation for such an equation are obtained through the symbolic computation. Soliton propagation and collisions between the two solitons are presented. Based on the graphic analysis, it is shown that the increase in s can lead to the increase in the soliton velocities under the condition of ?, but the soliton amplitudes remain unchanged when s changes, where s means the difference between the phase velocities of two-mode waves, ? and ? are the nonlinearity parameter and dispersion parameter respectively. Elastic collisions between the two solitons in both two modes are analyzed with the help of graphic analysis.

  4. Dispersion relations of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with initial stresses.

    PubMed

    Guo, Xiao; Wei, Peijun

    2016-03-01

    The dispersion relations of elastic waves in a one-dimensional phononic crystal formed by periodically repeating of a pre-stressed piezoelectric slab and a pre-stressed piezomagnetic slab are studied in this paper. The influences of initial stress on the dispersive relation are considered based on the incremental stress theory. First, the incremental stress theory of elastic solid is extended to the magneto-electro-elasto solid. The governing equations, constitutive equations, and boundary conditions of the incremental stresses in a magneto-electro-elasto solid are derived with consideration of the existence of initial stresses. Then, the transfer matrices of a pre-stressed piezoelectric slab and a pre-stressed piezomagnetic slab are formulated, respectively. The total transfer matrix of a single cell in the phononic crystal is obtained by the multiplication of two transfer matrixes related with two adjacent slabs. Furthermore, the Bloch theorem is used to obtain the dispersive equations of in-plane and anti-plane Bloch waves. The dispersive equations are solved numerically and the numerical results are shown graphically. The oblique propagation and the normal propagation situations are both considered. In the case of normal propagation of elastic waves, the analytical expressions of the dispersion equation are derived and compared with other literatures. The influences of initial stresses, including the normal initial stresses and shear initial stresses, on the dispersive relations are both discussed based on the numerical results. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Newton's method for nonlinear stochastic wave equations driven by one-dimensional Brownian motion.

    PubMed

    Leszczynski, Henryk; Wrzosek, Monika

    2017-02-01

    We consider nonlinear stochastic wave equations driven by one-dimensional white noise with respect to time. The existence of solutions is proved by means of Picard iterations. Next we apply Newton's method. Moreover, a second-order convergence in a probabilistic sense is demonstrated.

  6. Two dimensional electrostatic shock waves in relativistic electron positron ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; Rizvi, H.

    2010-05-15

    Ion-acoustic shock waves (IASWs) are studied in an unmagnetized plasma consisting of electrons, positrons and hot ions. In this regard, Kadomtsev-Petviashvili-Burgers (KPB) equation is derived using the small amplitude perturbation expansion method. The dependence of the IASWs on various plasma parameters is numerically investigated. It is observed that ratio of ion to electron temperature, kinematic viscosity, positron concentration, and the relativistic ion streaming velocity affect the structure of the IASW. Limiting case of the KPB equation is also discussed. Stability of KPB equation is also presented. The present investigation may have relevance in the study of electrostatic shock waves inmore » relativistic electron-positron-ion plasmas.« less

  7. The effect of dissipative inhomogeneous medium on the statistics of the wave intensity

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.

    1993-01-01

    One of the main theoretical points in the theory of wave propagation in random medium is the derivation of closed form equations to describe the statistics of the propagating waves. In particular, in one dimensional problems, the closed form representation of the multiple scattering effects is important since it contributes in understanding such problems like wave localization, backscattering enhancement, and intensity fluctuations. In this the propagation of plane waves in a layer of one-dimensional dissipative random medium is considered. The medium is modeled by a complex permittivity whose real part is a constant representing the absorption. The one dimensional problem is mathematically equivalent to the analysis of a transmission line with randomly perturbed distributed parameters and a single mode lossy waveguide and the results can be used to study the propagation of radio waves through atmosphere and the remote sensing of geophysical media. It is assumed the scattering medium consists of an ensemble of one-dimensional point scatterers randomly positioned in a layer of thickness L with diffuse boundaries. A Poisson impulse process with density lambda is used to model the position of scatterers in the medium. By employing the Markov properties of this process an exact closed form equation of Kolmogorov-Feller type was obtained for the probability density of the reflection coefficient. This equation was solved by combining two limiting cases: (1) when the density of scatterers is small; and (2) when the medium is weakly dissipative. A two variable perturbation method for small lambda was used to obtain solutions valid for thick layers. These solutions are then asymptotically evaluated for small dissipation. To show the effect of dissipation, the mean and fluctuations of the reflected power are obtained. The results were compared with a lossy homogeneous medium and with a lossless inhomogeneous medium and the regions where the effect of absorption is not essential were discussed.

  8. Nonlinear layered lattice model and generalized solitary waves in imperfectly bonded structures.

    PubMed

    Khusnutdinova, Karima R; Samsonov, Alexander M; Zakharov, Alexey S

    2009-05-01

    We study nonlinear waves in a two-layered imperfectly bonded structure using a nonlinear lattice model. The key element of the model is an anharmonic chain of oscillating dipoles, which can be viewed as a basic lattice analog of a one-dimensional macroscopic waveguide. Long nonlinear longitudinal waves in a layered lattice with a soft middle (or bonding) layer are governed by a system of coupled Boussinesq-type equations. For this system we find conservation laws and show that pure solitary waves, which exist in a single equation and can exist in the coupled system in the symmetric case, are structurally unstable and are replaced with generalized solitary waves.

  9. On an Acoustic Wave Equation Arising in Non-Equilibrium Gasdynamics. Classroom Notes

    ERIC Educational Resources Information Center

    Chandran, Pallath

    2004-01-01

    The sixth-order wave equation governing the propagation of one-dimensional acoustic waves in a viscous, heat conducting gaseous medium subject to relaxation effects has been considered. It has been reduced to a system of lower order equations corresponding to the finite speeds occurring in the equation, following a method due to Whitham. The lower…

  10. Bäcklund transformation, infinitely-many conservation laws, solitary and periodic waves of an extended (3 + 1)-dimensional Jimbo-Miwa equation with time-dependent coefficients

    NASA Astrophysics Data System (ADS)

    Deng, Gao-Fu; Gao, Yi-Tian; Gao, Xin-Yi

    2018-07-01

    In this paper, an extended (3+1)-dimensional Jimbo-Miwa equation with time-dependent coefficients is investigated, which comes from the second member of the Kadomtsev-Petviashvili hierarchy and is shown to be conditionally integrable. Bilinear form, Bäcklund transformation, Lax pair and infinitely-many conservation laws are derived via the binary Bell polynomials and symbolic computation. With the help of the bilinear form, one-, two- and three-soliton solutions are obtained via the Hirota method, one-periodic wave solutions are constructed via the Riemann theta function. Additionally, propagation and interaction of the solitons are investigated analytically and graphically, from which we find that the interaction between the solitons is elastic and the time-dependent coefficients can affect the soliton velocities, but the soliton amplitudes remain unchanged. One-periodic waves approach the one-solitary waves with the amplitudes vanishing and can be viewed as a superposition of the overlapping solitary waves, placed one period apart.

  11. Fully vectorial accelerating diffraction-free Helmholtz beams.

    PubMed

    Aleahmad, Parinaz; Miri, Mohammad-Ali; Mills, Matthew S; Kaminer, Ido; Segev, Mordechai; Christodoulides, Demetrios N

    2012-11-16

    We show that new families of diffraction-free nonparaxial accelerating optical beams can be generated by considering the symmetries of the underlying vectorial Helmholtz equation. Both two-dimensional transverse electric and magnetic accelerating wave fronts are possible, capable of moving along elliptic trajectories. Experimental results corroborate these predictions when these waves are launched from either the major or minor axis of the ellipse. In addition, three-dimensional spherical nondiffracting field configurations are presented along with their evolution dynamics. Finally, fully vectorial self-similar accelerating optical wave solutions are obtained via oblate-prolate spheroidal wave functions. In all occasions, these effects are illustrated via pertinent examples.

  12. Modeling digital pulse waveforms by solving one-dimensional Navier-stokes equations.

    PubMed

    Fedotov, Aleksandr A; Akulova, Anna S; Akulov, Sergey A

    2016-08-01

    Mathematical modeling for composition distal arterial pulse wave in the blood vessels of the upper limbs was considered. Formation of distal arterial pulse wave is represented as a composition of forward and reflected pulse waves propagating along the arterial vessels. The formal analogy between pulse waves propagation along the human arterial system and the propagation of electrical oscillations in electrical transmission lines with distributed parameters was proposed. Dependencies of pulse wave propagation along the human arterial system were obtained by solving the one-dimensional Navier-Stokes equations for a few special cases.

  13. Two-dimensional dispersion of magnetostatic volume spin waves

    NASA Astrophysics Data System (ADS)

    Buijnsters, Frank J.; van Tilburg, Lennert J. A.; Fasolino, Annalisa; Katsnelson, Mikhail I.

    2018-06-01

    Owing to the dipolar (magnetostatic) interaction, long-wavelength spin waves in in-plane magnetized films show an unusual dispersion behavior, which can be mathematically described by the model of and and refinements thereof. However, solving the two-dimensional dispersion requires the evaluation of a set of coupled transcendental equations and one has to rely on numerics. In this work, we present a systematic perturbative analysis of the spin wave model. An expansion in the in-plane wavevector allows us to obtain explicit closed-form expressions for the dispersion relation and mode profiles in various asymptotic regimes. Moreover, we derive a very accurate semi-analytical expression for the dispersion relation of the lowest-frequency mode that is straightforward to evaluate.

  14. Assessment of numerical techniques for unsteady flow calculations

    NASA Technical Reports Server (NTRS)

    Hsieh, Kwang-Chung

    1989-01-01

    The characteristics of unsteady flow motions have long been a serious concern in the study of various fluid dynamic and combustion problems. With the advancement of computer resources, numerical approaches to these problems appear to be feasible. The objective of this paper is to assess the accuracy of several numerical schemes for unsteady flow calculations. In the present study, Fourier error analysis is performed for various numerical schemes based on a two-dimensional wave equation. Four methods sieved from the error analysis are then adopted for further assessment. Model problems include unsteady quasi-one-dimensional inviscid flows, two-dimensional wave propagations, and unsteady two-dimensional inviscid flows. According to the comparison between numerical and exact solutions, although second-order upwind scheme captures the unsteady flow and wave motions quite well, it is relatively more dissipative than sixth-order central difference scheme. Among various numerical approaches tested in this paper, the best performed one is Runge-Kutta method for time integration and six-order central difference for spatial discretization.

  15. Analysis of vegetation effect on waves using a vertical 2-D RANS model

    USDA-ARS?s Scientific Manuscript database

    A vertical two-dimensional (2-D) model has been applied in the simulation of wave propagation through vegetated water bodies. The model is based on an existing model SOLA-VOF which solves the Reynolds-Averaged Navier-Stokes (RANS) equations with the finite difference method on a staggered rectangula...

  16. Drift ion acoustic shock waves in an inhomogeneous two-dimensional quantum magnetoplasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; Siddiq, M.; Karim, S.

    2009-04-15

    Linear and nonlinear propagation characteristics of drift ion acoustic waves are investigated in an inhomogeneous quantum plasma with neutrals in the background employing the quantum hydrodynamics (QHD) model. In this regard, a quantum Kadomtsev-Petviashvili-Burgers (KPB) equation is derived for the first time. It is shown that the ion acoustic wave couples with the drift wave if the parallel motion of ions is taken into account. Discrepancies in the earlier works on drift solitons and shocks in inhomogeneous plasmas are also pointed out and a correct theoretical framework is presented to study the one-dimensional as well as the two-dimensional propagation ofmore » shock waves in an inhomogeneous quantum plasma. Furthermore, the solution of KPB equation is presented using the tangent hyperbolic (tanh) method. The variation of the shock profile with the quantum Bohm potential, collision frequency, and ratio of drift to shock velocity in the comoving frame, v{sub *}/u, are also investigated. It is found that increasing the number density and collision frequency enhances the strength of the shock. It is also shown that the fast drift shock (i.e., v{sub *}/u>0) increases, whereas the slow drift shock (i.e., v{sub *}/u<0) decreases the strength of the shock. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.« less

  17. Three-dimensional wave-induced current model equations and radiation stresses

    NASA Astrophysics Data System (ADS)

    Xia, Hua-yong

    2017-08-01

    After the approach by Mellor (2003, 2008), the present paper reports on a repeated effort to derive the equations for three-dimensional wave-induced current. Via the vertical momentum equation and a proper coordinate transformation, the phase-averaged wave dynamic pressure is well treated, and a continuous and depth-dependent radiation stress tensor, rather than the controversial delta Dirac function at the surface shown in Mellor (2008), is provided. Besides, a phase-averaged vertical momentum flux over a sloping bottom is introduced. All the inconsistencies in Mellor (2003, 2008), pointed out by Ardhuin et al. (2008) and Bennis and Ardhuin (2011), are overcome in the presently revised equations. In a test case with a sloping sea bed, as shown in Ardhuin et al. (2008), the wave-driving forces derived in the present equations are in good balance, and no spurious vertical circulation occurs outside the surf zone, indicating that Airy's wave theory and the approach of Mellor (2003, 2008) are applicable for the derivation of the wave-induced current model.

  18. Modeling of thin-walled structures interacting with acoustic media as constrained two-dimensional continua

    NASA Astrophysics Data System (ADS)

    Rabinskiy, L. N.; Zhavoronok, S. I.

    2018-04-01

    The transient interaction of acoustic media and elastic shells is considered on the basis of the transition function approach. The three-dimensional hyperbolic initial boundary-value problem is reduced to a two-dimensional problem of shell theory with integral operators approximating the acoustic medium effect on the shell dynamics. The kernels of these integral operators are determined by the elementary solution of the problem of acoustic waves diffraction at a rigid obstacle with the same boundary shape as the wetted shell surface. The closed-form elementary solution for arbitrary convex obstacles can be obtained at the initial interaction stages on the background of the so-called “thin layer hypothesis”. Thus, the shell–wave interaction model defined by integro-differential dynamic equations with analytically determined kernels of integral operators becomes hence two-dimensional but nonlocal in time. On the other hand, the initial interaction stage results in localized dynamic loadings and consequently in complex strain and stress states that require higher-order shell theories. Here the modified theory of I.N.Vekua–A.A.Amosov-type is formulated in terms of analytical continuum dynamics. The shell model is constructed on a two-dimensional manifold within a set of field variables, Lagrangian density, and constraint equations following from the boundary conditions “shifted” from the shell faces to its base surface. Such an approach allows one to construct consistent low-order shell models within a unified formal hierarchy. The equations of the N th-order shell theory are singularly perturbed and contain second-order partial derivatives with respect to time and surface coordinates whereas the numerical integration of systems of first-order equations is more efficient. Such systems can be obtained as Hamilton–de Donder–Weyl-type equations for the Lagrangian dynamical system. The Hamiltonian formulation of the elementary N th-order shell theory is here briefly described.

  19. General high-order breathers and rogue waves in the (3 + 1) -dimensional KP-Boussinesq equation

    NASA Astrophysics Data System (ADS)

    Sun, Baonan; Wazwaz, Abdul-Majid

    2018-11-01

    In this work, we investigate the (3 + 1) -dimensional KP-Boussinesq equation, which can be used to describe the nonlinear dynamic behavior in scientific and engineering applications. We derive general high-order soliton solutions by using the Hirota's bilinear method combined with the perturbation expansion technique. We also obtain periodic solutions comprising of high-order breathers, periodic line waves, and mixed solutions consisting of breathers and periodic line waves upon selecting particular parameter constraints of the obtained soliton solutions. Furthermore, smooth rational solutions are generated by taking a long wave limit of the soliton solutions. These smooth rational solutions include high-order rogue waves, high-order lumps, and hybrid solutions consisting of lumps and line rogue waves. To better understand the dynamical behaviors of these solutions, we discuss some illustrative graphical analyses. It is expected that our results can enrich the dynamical behavior of the (3 + 1) -dimensional nonlinear evolution equations of other forms.

  20. Some new traveling wave exact solutions of the (2+1)-dimensional Boiti-Leon-Pempinelli equations.

    PubMed

    Qi, Jian-ming; Zhang, Fu; Yuan, Wen-jun; Huang, Zi-feng

    2014-01-01

    We employ the complex method to obtain all meromorphic exact solutions of complex (2+1)-dimensional Boiti-Leon-Pempinelli equations (BLP system of equations). The idea introduced in this paper can be applied to other nonlinear evolution equations. Our results show that all rational and simply periodic traveling wave exact solutions of the equations (BLP) are solitary wave solutions, the complex method is simpler than other methods, and there exist some rational solutions ur,2 (z) and simply periodic solutions us,2-6(z) which are not only new but also not degenerated successively by the elliptic function solutions. We believe that this method should play an important role for finding exact solutions in the mathematical physics. For these new traveling wave solutions, we give some computer simulations to illustrate our main results.

  1. Two-dimensional simulations of stimulated Brillouin scattering in laser produced plasmas

    NASA Astrophysics Data System (ADS)

    Amin, M. R.; Capjack, C. E.; Frycz, P.; Rozmus, W.; Tikhonchuk, V. T.

    1993-07-01

    A system of electromagnetic and ion acoustic wave equations coupled via the ponderomotive force are solved numerically in a two-dimensional planar geometry. The competition between forward, side, and backward Brillouin scattering of the finite size laser beam is studied for the first time without the standard paraxial optics approximation. Simulations reveal a strong dependence of the scattered light characteristics on the geometry of the interaction region, the shape of the pump beam, and the ion acoustic wave damping. The main effects include side and forward scattering enhancement and a stimulation of collimated backward scattered radiation.

  2. Body and Surface Wave Modeling of Observed Seismic Events. Part 2.

    DTIC Science & Technology

    1987-05-12

    is based on expand - ing the complete three dimensional solution of the wave equation expressed in cylindrical S coordinates in an asymptotic form which...using line source (2-D) theory. It is based on expand - ing the complete three dimensional solution of the wave equation expressed in cylindrical...generating synthetic point-source seismograms for shear dislocation sources using line source (2-D) theory. It is based on expanding the complete three

  3. Bending of solitons in weak and slowly varying inhomogeneous plasma

    NASA Astrophysics Data System (ADS)

    Mukherjee, Abhik; Janaki, M. S.; Kundu, Anjan

    2015-12-01

    The bending of solitons in two dimensional plane is presented in the presence of weak and slowly varying inhomogeneous ion density for the propagation of ion acoustic soliton in unmagnetized cold plasma with isothermal electrons. Using reductive perturbation technique, a modified Kadomtsev-Petviashvili equation is obtained with a chosen unperturbed ion density profile. The exact solution of the equation shows that the phase of the solitary wave gets modified by a function related to the unperturbed inhomogeneous ion density causing the soliton to bend in the two dimensional plane, while the amplitude of the soliton remains constant.

  4. Bending of solitons in weak and slowly varying inhomogeneous plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Abhik, E-mail: abhik.mukherjee@saha.ac.in; Janaki, M. S., E-mail: ms.janaki@saha.ac.in; Kundu, Anjan, E-mail: anjan.kundu@saha.ac.in

    2015-12-15

    The bending of solitons in two dimensional plane is presented in the presence of weak and slowly varying inhomogeneous ion density for the propagation of ion acoustic soliton in unmagnetized cold plasma with isothermal electrons. Using reductive perturbation technique, a modified Kadomtsev-Petviashvili equation is obtained with a chosen unperturbed ion density profile. The exact solution of the equation shows that the phase of the solitary wave gets modified by a function related to the unperturbed inhomogeneous ion density causing the soliton to bend in the two dimensional plane, while the amplitude of the soliton remains constant.

  5. A conservative finite difference algorithm for the unsteady transonic potential equation in generalized coordinates

    NASA Technical Reports Server (NTRS)

    Bridgeman, J. O.; Steger, J. L.; Caradonna, F. X.

    1982-01-01

    An implicit, approximate-factorization, finite-difference algorithm has been developed for the computation of unsteady, inviscid transonic flows in two and three dimensions. The computer program solves the full-potential equation in generalized coordinates in conservation-law form in order to properly capture shock-wave position and speed. A body-fitted coordinate system is employed for the simple and accurate treatment of boundary conditions on the body surface. The time-accurate algorithm is modified to a conventional ADI relaxation scheme for steady-state computations. Results from two- and three-dimensional steady and two-dimensional unsteady calculations are compared with existing methods.

  6. Pentadiagonal alternating-direction-implicit finite-difference time-domain method for two-dimensional Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Tay, Wei Choon; Tan, Eng Leong

    2014-07-01

    In this paper, we have proposed a pentadiagonal alternating-direction-implicit (Penta-ADI) finite-difference time-domain (FDTD) method for the two-dimensional Schrödinger equation. Through the separation of complex wave function into real and imaginary parts, a pentadiagonal system of equations for the ADI method is obtained, which results in our Penta-ADI method. The Penta-ADI method is further simplified into pentadiagonal fundamental ADI (Penta-FADI) method, which has matrix-operator-free right-hand-sides (RHS), leading to the simplest and most concise update equations. As the Penta-FADI method involves five stencils in the left-hand-sides (LHS) of the pentadiagonal update equations, special treatments that are required for the implementation of the Dirichlet's boundary conditions will be discussed. Using the Penta-FADI method, a significantly higher efficiency gain can be achieved over the conventional Tri-ADI method, which involves a tridiagonal system of equations.

  7. Modeling underwater noise propagation from marine hydrokinetic power devices through a time-domain, velocity-pressure solution

    DOE PAGES

    Hafla, Erin; Johnson, Erick; Johnson, C. Nathan; ...

    2018-06-01

    Marine hydrokinetic (MHK) devices generate electricity from the motion of tidal and ocean currents, as well as ocean waves, to provide an additional source of renewable energy available to the United States. These devices are a source of anthropogenic noise in the marine ecosystem and must meet regulatory guidelines that mandate a maximum amount of noise that may be generated. In the absence of measured levels from in situ deployments, a model for predicting the propagation of sound from an array of MHK sources in a real environment is essential. A set of coupled, linearized velocity-pressure equations in the time-domainmore » are derived and presented in this paper, which are an alternative solution to the Helmholtz and wave equation methods traditionally employed. Discretizing these equations on a three-dimensional (3D), finite-difference grid ultimately permits a finite number of complex sources and spatially varying sound speeds, bathymetry, and bed composition. The solution to this system of equations has been parallelized in an acoustic-wave propagation package developed at Sandia National Labs, called Paracousti. This work presents the broadband sound pressure levels from a single source in two-dimensional (2D) ideal and Pekeris wave-guides and in a 3D domain with a sloping boundary. Furthermore, the paper concludes with demonstration of Paracousti for an array of MHK sources in a simple wave-guide.« less

  8. Modeling underwater noise propagation from marine hydrokinetic power devices through a time-domain, velocity-pressure solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hafla, Erin; Johnson, Erick; Johnson, C. Nathan

    Marine hydrokinetic (MHK) devices generate electricity from the motion of tidal and ocean currents, as well as ocean waves, to provide an additional source of renewable energy available to the United States. These devices are a source of anthropogenic noise in the marine ecosystem and must meet regulatory guidelines that mandate a maximum amount of noise that may be generated. In the absence of measured levels from in situ deployments, a model for predicting the propagation of sound from an array of MHK sources in a real environment is essential. A set of coupled, linearized velocity-pressure equations in the time-domainmore » are derived and presented in this paper, which are an alternative solution to the Helmholtz and wave equation methods traditionally employed. Discretizing these equations on a three-dimensional (3D), finite-difference grid ultimately permits a finite number of complex sources and spatially varying sound speeds, bathymetry, and bed composition. The solution to this system of equations has been parallelized in an acoustic-wave propagation package developed at Sandia National Labs, called Paracousti. This work presents the broadband sound pressure levels from a single source in two-dimensional (2D) ideal and Pekeris wave-guides and in a 3D domain with a sloping boundary. Furthermore, the paper concludes with demonstration of Paracousti for an array of MHK sources in a simple wave-guide.« less

  9. Stability of Planar Rarefaction Wave to 3D Full Compressible Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Li, Lin-an; Wang, Teng; Wang, Yi

    2018-05-01

    We prove time-asymptotic stability toward the planar rarefaction wave for the three-dimensional full, compressible Navier-Stokes equations with the heat-conductivities in an infinite long flat nozzle domain {R × T^2} . Compared with one-dimensional case, the proof here is based on our new observations on the cancellations on the flux terms and viscous terms due to the underlying wave structures, which are crucial for overcoming the difficulties due to the wave propagation in the transverse directions x 2 and x 3 and its interactions with the planar rarefaction wave in x 1 direction.

  10. Exact periodic cross-kink wave solutions for the new (2+1)-dimensional KdV equation in fluid flows and plasma physics.

    PubMed

    Liu, Jian-Guo; Du, Jian-Qiang; Zeng, Zhi-Fang; Ai, Guo-Ping

    2016-10-01

    The Korteweg-de Vries (KdV)-type models have been shown to describe many important physical situations such as fluid flows, plasma physics, and solid state physics. In this paper, a new (2 + 1)-dimensional KdV equation is discussed. Based on the Hirota's bilinear form and a generalized three-wave approach, we obtain new exact solutions for the new (2 + 1)-dimensional KdV equation. With the help of symbolic computation, the properties for some new solutions are presented with some figures.

  11. On the Mathematical Modeling of Single and Multiple Scattering of Ultrasonic Guided Waves by Small Scatterers: A Structural Health Monitoring Measurement Model

    NASA Astrophysics Data System (ADS)

    Strom, Brandon William

    In an effort to assist in the paradigm shift from schedule based maintenance to conditioned based maintenance, we derive measurement models to be used within structural health monitoring algorithms. Our models are physics based, and use scattered Lamb waves to detect and quantify pitting corrosion. After covering the basics of Lamb waves and the reciprocity theorem, we develop a technique for the scattered wave solution. The first application is two-dimensional, and is employed in two different ways. The first approach integrates a traction distribution and replaces it by an equivalent force. The second approach is higher order and uses the actual traction distribution. We find that the equivalent force version of the solution technique holds well for small pits at low frequencies. The second application is three-dimensional. The equivalent force caused by the scattered wave of an arbitrary equivalent force is calculated. We obtain functions for the scattered wave displacements as a function of equivalent forces, equivalent forces as a function of incident wave, and scattered wave amplitudes as a function of incident amplitude. The third application uses self-consistency to derive governing equations for the scattered waves due to multiple corrosion pits. We decouple the implicit set of equations and solve explicitly by using a recursive series solution. Alternatively, we solve via an undetermined coefficient method which results in an interaction operator and solution via matrix inversion. The general solution is given for N pits including mode conversion. We show that the two approaches are equivalent, and give a solution for three pits. Various approximations are advanced to simplify the problem while retaining the leading order physics. As a final application, we use the multiple scattering model to investigate resonance of Lamb waves. We begin with a one-dimensional problem and progress to a three-dimensional problem. A directed graph enables interpretation of the interaction operator, and we show that a series solution converges due to loss of energy in the system. We see that there are four causes of resonance and plot the modulation depth as a function of spacing between the pits.

  12. Lee wave breaking region: the map of instability development scenarios

    NASA Astrophysics Data System (ADS)

    Yakovenko, S. N.

    2017-10-01

    Numerical study of a stably stratified flow above the two-dimensional cosine-shaped obstacle has been performed by DNS and LES. These methods were implemented to solve the three-dimensional Navier-Stokes equations in the Boussinesq approximation, together with by the scalar diffusion equation. The results of scanning in the wide ranges of physical parameters (Reynolds and Prandtl/Schmidt numbers relating to laboratory experiment cases and atmospheric or oceanic situations) are presented for instability and turbulence development scenarios in the overturning internal lee waves. The latter is generated by the obstacle in a flow with the constant inflow values of velocity and stable density gradient. Evolution of lee-wave breaking is explored by visualization of velocity and scalar (density) fields, and the analysis of spectra. Based on the numerical simulation results, the power-law dependence on Reynolds number is demonstrated for the wavelength of the most unstable perturbation.

  13. A Numerical Investigation of the Burnett Equations Based on the Second Law

    NASA Technical Reports Server (NTRS)

    Comeaux, Keith A.; Chapman, Dean R.; MacCormack, Robert W.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    The Burnett equations have been shown to potentially violate the second law of thermodynamics. The objective of this investigation is to correlate the numerical problems experienced by the Burnett equations to the negative production of entropy. The equations have had a long history of numerical instability to small wavelength disturbances. Recently, Zhong corrected the instability problem and made solutions attainable for one dimensional shock waves and hypersonic blunt bodies. Difficulties still exist when attempting to solve hypersonic flat plate boundary layers and blunt body wake flows, however. Numerical experiments will include one-dimensional shock waves, quasi-one dimensional nozzles, and expanding Prandlt-Meyer flows and specifically examine the entropy production for these cases.

  14. Evaluation of Full Reynolds Stress Turbulence Models in FUN3D

    NASA Technical Reports Server (NTRS)

    Dudek, Julianne C.; Carlson, Jan-Renee

    2017-01-01

    Full seven-equation Reynolds stress turbulence models are promising tools for today’s aerospace technology challenges. This paper examines two such models for computing challenging turbulent flows including shock-wave boundary layer interactions, separation and mixing layers. The Wilcox and the SSG/LRR full second-moment Reynolds stress models have been implemented into the FUN3D (Fully Unstructured Navier-Stokes Three Dimensional) unstructured Navier-Stokes code and were evaluated for four problems: a transonic two-dimensional diffuser, a supersonic axisymmetric compression corner, a compressible planar shear layer, and a subsonic axisymmetric jet. Simulation results are compared with experimental data and results computed using the more commonly used Spalart-Allmaras (SA) one-equation and the Menter Shear Stress Transport (SST-V) two-equation turbulence models.

  15. Evaluation of Full Reynolds Stress Turbulence Models in FUN3D

    NASA Technical Reports Server (NTRS)

    Dudek, Julianne C.; Carlson, Jan-Renee

    2017-01-01

    Full seven-equation Reynolds stress turbulence models are a relatively new and promising tool for todays aerospace technology challenges. This paper uses two stress-omega full Reynolds stress models to evaluate challenging flows including shock-wave boundary layer interactions, separation and mixing layers. The Wilcox and the SSG/LRR full second-moment Reynolds stress models have been implemented into the FUN3D (Fully Unstructured Navier-Stokes Three Dimensional) unstructured Navier-Stokes code and are evaluated for four problems: a transonic two-dimensional diffuser, a supersonic axisymmetric compression corner, a compressible planar shear layer, and a subsonic axisymmetric jet. Simulation results are compared with experimental data and results using the more commonly used Spalart-Allmaras (SA) one-equation and the Menter Shear Stress Transport (SST-V) two-equation turbulence models.

  16. New extended (G'/G)-expansion method to solve nonlinear evolution equation: the (3 + 1)-dimensional potential-YTSF equation.

    PubMed

    Roshid, Harun-Or-; Akbar, M Ali; Alam, Md Nur; Hoque, Md Fazlul; Rahman, Nizhum

    2014-01-01

    In this article, a new extended (G'/G) -expansion method has been proposed for constructing more general exact traveling wave solutions of nonlinear evolution equations with the aid of symbolic computation. In order to illustrate the validity and effectiveness of the method, we pick the (3 + 1)-dimensional potential-YTSF equation. As a result, abundant new and more general exact solutions have been achieved of this equation. It has been shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in applied mathematics, engineering and mathematical physics.

  17. Riccati parameterized self-similar waves in two-dimensional graded-index waveguide

    NASA Astrophysics Data System (ADS)

    Kumar De, Kanchan; Goyal, Amit; Raju, Thokala Soloman; Kumar, C. N.; Panigrahi, Prasanta K.

    2015-04-01

    An analytical method based on gauge-similarity transformation technique has been employed for mapping a (2+1)- dimensional variable coefficient coupled nonlinear Schrödinger equations (vc-CNLSE) with dispersion, nonlinearity and gain to standard NLSE. Under certain functional relations we construct a large family of self-similar waves in the form of bright similaritons, Akhmediev breathers and rogue waves. We report the effect of dispersion on the intensity of the solitary waves. Further, we illustrate the procedure to amplify the intensity of self-similar waves using isospectral Hamiltonian approach. This approach provides an efficient mechanism to generate analytically a wide class of tapering profiles and widths by exploiting the Riccati parameter. Equivalently, it enables one to control efficiently the self-similar wave structures and hence their evolution.

  18. The Effect of Orifice Eccentricity on Instability of Liquid Jets

    NASA Astrophysics Data System (ADS)

    Amini, Ghobad; Dolatabadi, Ali

    2011-11-01

    The hydrodynamic instability of inviscid jets issuing from elliptic orifices is studied. A linear stability analysis is presented for liquid jets that includes the effect of the surrounding gas and an explicit dispersion equation is derived for waves on an infinite uniform jet column. Elliptic configuration has two extreme cases; round jet when ratio of minor to major axis is unity and plane sheet when this ratio approaches zero. Dispersion equation of elliptic jet is approximated for large and small aspect ratios considering asymptotic of the dispersion equation. In case of aspect ratio equal to one, the dispersion equation is analogous to one of the circular jets derived by Yang. In case of aspect ratio approaches zero, the behavior of waves is qualitatively similar to that of long waves on a two dimensional liquid jets and the varicose and sinuous modes are predicted. The growth rate of initial disturbances for various azimuthal modes has been presented in a wide range of disturbances. PhD Candidate.

  19. The big bang as a higher-dimensional shock wave

    NASA Astrophysics Data System (ADS)

    Wesson, P. S.; Liu, H.; Seahra, S. S.

    2000-06-01

    We give an exact solution of the five-dimensional field equations which describes a shock wave moving in time and the extra (Kaluza-Klein) coordinate. The matter in four-dimensional spacetime is a cosmology with good physical properties. The solution suggests to us that the 4D big bang was a 5D shock wave.

  20. Three dimensional cylindrical Kadomtsev-Petviashvili equation in a very dense electron-positron-ion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moslem, W. M.; Sabry, R.; Shukla, P. K.

    2010-03-15

    By using the hydrodynamic equations of ions, Thomas-Fermi electron/positron density distribution, and Poisson equation, a three-dimensional cylindrical Kadomtsev-Petviashvili (CKP) equation is derived for small but finite amplitude ion-acoustic waves. The generalized expansion method is used to analytically solve the CKP equation. New class of solutions admits a train of well-separated bell-shaped periodic pulses is obtained. At certain condition, the latter degenerates to solitary wave solution. The effects of physical parameters on the solitary pulse structures are examined. Furthermore, the energy integral equation is used to study the existence regions of the localized pulses. The present study might be helpful tomore » understand the excitation of nonlinear ion-acoustic waves in a very dense astrophysical objects such as white dwarfs.« less

  1. The modified alternative (G'/G)-expansion method to nonlinear evolution equation: application to the (1+1)-dimensional Drinfel'd-Sokolov-Wilson equation.

    PubMed

    Akbar, M Ali; Mohd Ali, Norhashidah Hj; Mohyud-Din, Syed Tauseef

    2013-01-01

    Over the years, (G'/G)-expansion method is employed to generate traveling wave solutions to various wave equations in mathematical physics. In the present paper, the alternative (G'/G)-expansion method has been further modified by introducing the generalized Riccati equation to construct new exact solutions. In order to illustrate the novelty and advantages of this approach, the (1+1)-dimensional Drinfel'd-Sokolov-Wilson (DSW) equation is considered and abundant new exact traveling wave solutions are obtained in a uniform way. These solutions may be imperative and significant for the explanation of some practical physical phenomena. It is shown that the modified alternative (G'/G)-expansion method an efficient and advance mathematical tool for solving nonlinear partial differential equations in mathematical physics.

  2. Group-kinetic theory and modeling of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Tchen, C. M.

    1989-01-01

    A group kinetic method is developed for analyzing eddy transport properties and relaxation to equilibrium. The purpose is to derive the spectral structure of turbulence in incompressible and compressible media. Of particular interest are: direct and inverse cascade, boundary layer turbulence, Rossby wave turbulence, two phase turbulence; compressible turbulence, and soliton turbulence. Soliton turbulence can be found in large scale turbulence, turbulence connected with surface gravity waves and nonlinear propagation of acoustical and optical waves. By letting the pressure gradient represent the elementary interaction among fluid elements and by raising the Navier-Stokes equation to higher dimensionality, the master equation was obtained for the description of the microdynamical state of turbulence.

  3. Solving the Helmholtz equation in conformal mapped ARROW structures using homotopy perturbation method.

    PubMed

    Reck, Kasper; Thomsen, Erik V; Hansen, Ole

    2011-01-31

    The scalar wave equation, or Helmholtz equation, describes within a certain approximation the electromagnetic field distribution in a given system. In this paper we show how to solve the Helmholtz equation in complex geometries using conformal mapping and the homotopy perturbation method. The solution of the mapped Helmholtz equation is found by solving an infinite series of Poisson equations using two dimensional Fourier series. The solution is entirely based on analytical expressions and is not mesh dependent. The analytical results are compared to a numerical (finite element method) solution.

  4. A Model for Measured Traveling Waves at End-Diastole in Human Heart Wall by Ultrasonic Imaging Method

    NASA Astrophysics Data System (ADS)

    Bekki, Naoaki; Shintani, Seine A.; Ishiwata, Shin'ichi; Kanai, Hiroshi

    2016-04-01

    We observe traveling waves, measured by the ultrasonic noninvasive imaging method, in a longitudinal beam direction from the apex to the base side on the interventricular septum (IVS) during the period from the end-diastole to the beginning of systole for a healthy human heart wall. We present a possible phenomenological model to explain part of one-dimensional cardiac behaviors for the observed traveling waves around the time of R-wave of echocardiography (ECG) in the human heart. Although the observed two-dimensional patterns of traveling waves are extremely complex and no one knows yet the exact solutions for the traveling homoclinic plane wave in the one-dimensional complex Ginzburg-Landau equation (CGLE), we numerically find that part of the one-dimensional homoclinic dynamics of the phase and amplitude patterns in the observed traveling waves is similar to that of the numerical homoclinic plane-wave solutions in the CGLE with periodic boundary condition in a certain parameter space. It is suggested that part of the cardiac dynamics of the traveling waves on the IVS can be qualitatively described by the CGLE model as a paradigm for understanding biophysical nonlinear phenomena.

  5. Design of supercritical swept wings

    NASA Technical Reports Server (NTRS)

    Garabedian, P.; Mcfadden, G.

    1982-01-01

    Computational fluid dynamics are used to discuss problems inherent to transonic three-dimensional flow past supercritical swept wings. The formulation for a boundary value problem for the flow past the wing is provided, including consideration of weak shock waves and the use of parabolic coordinates. A swept wing code is developed which requires a mesh of 152 x 10 x 12 points and 200 time cycles. A formula for wave drag is calculated, based on the idea that the conservation form of the momentum equation becomes an entropy inequality measuring the drag, expressible in terms of a small-disturbance equation for a potential function in two dimensions. The entropy inequality has been incorporated in a two-dimensional code for the analysis of transonic flow over airfoils. A method of artificial viscosity is explored for optimum pressure distributions with design, and involves a free boundary problem considering speed over only a portion of the wing.

  6. Cascade flow analysis by Navier-Stokes equation

    NASA Astrophysics Data System (ADS)

    Nozaki, Osamu

    1987-06-01

    As the performance of the large electronic computer has improved, numerical simulation of the flow around the blade of the aircraft, for instance, is being actively conducted. In the compressor and turbine cascades of aircraft engine, multiple blades are put side by side closely, and the pressure gradient in the flow direction is large. Thus they have more complicated properties than the independent blade. At present, therefore, it is the mainstream to use potential, Euler's equation, etc., as the basic equation but, for knowing the phenomenon caused by the viscosity like the interference of shock waves and boundary layers, it is necessary to solve the Navier-Stokes (N-S) equation. A two-dimensional cascade analysis program was developed by the N-S equation by expanding the two-dimensional high Reynolds number transonic profile analysis code NSFOIL and the lattice formation program AFMESH for the independent blade, which were already developed so as to fit the cascade flow.

  7. Exact Solutions of Atmospheric (2+1)-Dimensional Nonlinear Incompressible Non-hydrostatic Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Wang, Ya-Xiong; Ren, Bo; Li, Jin-Hua

    2016-12-01

    Exact solutions of the atmospheric (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space. Supported by the National Natural Science Foundation of China under Grant Nos. 11305031 and 11305106, and Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No. Yq2013205

  8. Frequency mode excitations in two-dimensional Hindmarsh-Rose neural networks

    NASA Astrophysics Data System (ADS)

    Tabi, Conrad Bertrand; Etémé, Armand Sylvin; Mohamadou, Alidou

    2017-05-01

    In this work, we explicitly show the existence of two frequency regimes in a two-dimensional Hindmarsh-Rose neural network. Each of the regimes, through the semi-discrete approximation, is shown to be described by a two-dimensional complex Ginzburg-Landau equation. The modulational instability phenomenon for the two regimes is studied, with consideration given to the coupling intensities among neighboring neurons. Analytical solutions are also investigated, along with their propagation in the two frequency regimes. These waves, depending on the coupling strength, are identified as breathers, impulses and trains of soliton-like structures. Although the waves in two regimes appear in some common regions of parameters, some phase differences are noticed and the global dynamics of the system is highly influenced by the values of the coupling terms. For some values of such parameters, the high-frequency regime displays modulated trains of waves, while the low-frequency dynamics keeps the original asymmetric character of action potentials. We argue that in a wide range of pathological situations, strong interactions among neurons can be responsible for some pathological states, including schizophrenia and epilepsy.

  9. Global existence of solutions for semilinear damped wave equation in 2-D exterior domain

    NASA Astrophysics Data System (ADS)

    Ikehata, Ryo

    We consider a mixed problem of a damped wave equation utt-Δ u+ ut=| u| p in the two dimensional exterior domain case. Small global in time solutions can be constructed in the case when the power p on the nonlinear term | u| p satisfies p ∗=2

  10. On the dimensionally correct kinetic theory of turbulence for parallel propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaelzer, R., E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: 007gasun@khu.ac.kr, E-mail: luiz.ziebell@ufrgs.br; Ziebell, L. F., E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: 007gasun@khu.ac.kr, E-mail: luiz.ziebell@ufrgs.br; Yoon, P. H., E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: 007gasun@khu.ac.kr, E-mail: luiz.ziebell@ufrgs.br

    2015-03-15

    Yoon and Fang [Phys. Plasmas 15, 122312 (2008)] formulated a second-order nonlinear kinetic theory that describes the turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field. Their theory also includes discrete-particle effects, or the effects due to spontaneously emitted thermal fluctuations. However, terms associated with the spontaneous fluctuations in particle and wave kinetic equations in their theory contain proper dimensionality only for an artificial one-dimensional situation. The present paper extends the analysis and re-derives the dimensionally correct kinetic equations for three-dimensional case. The new formalism properly describes the effects of spontaneous fluctuations emitted in three-dimensional space, while the collectivelymore » emitted turbulence propagates predominantly in directions parallel/anti-parallel to the ambient magnetic field. As a first step, the present investigation focuses on linear wave-particle interaction terms only. A subsequent paper will include the dimensionally correct nonlinear wave-particle interaction terms.« less

  11. Two dimensional modelling of flood flows and suspended sedimenttransport: the case of the Brenta River, Veneto (Italy)

    NASA Astrophysics Data System (ADS)

    Martini, P.; Carniello, L.; Avanzi, C.

    2004-03-01

    The paper presents a numerical model for the simulation of flood waves and suspended sediment transport in a lowland river basin of North Eastern Italy. The two dimensional depth integrated momentum and continuity equations are modified to take into account the bottom irregularities that strongly affect the hydrodynamics in partially dry areas, as for example, in the first stages of an inundation process or in tidal flow. The set of equations are solved with a standard Galerkin finite element method using a semi-implicit numerical scheme where the effects of both the small channel network and the regulation devices on the flood wave propagation are accounted for. Transport of suspended sediment and bed evolution are coupled with the hydrodynamics using an appropriate form of the advection-dispersion equation and Exner's equation. Applications to a case study are presented in which the effects of extreme flooding on the Brenta River (Italy) are examined. Urban and rural flood risk areas are identified and the effects of a alleviating action based on a diversion channel flowing into Venice Lagoon are simulated. The results show that this solution strongly reduces the flood risk in the downstream areas and can provide an important source of sediment for the Venice Lagoon. Finally, preliminary results of the sediment dispersion due to currents and waves in the Venice Lagoon are presented.

  12. Rayleigh-Bloch waves trapped by a periodic perturbation: exact solutions

    NASA Astrophysics Data System (ADS)

    Merzon, A.; Zhevandrov, P.; Romero Rodríguez, M. I.; De la Paz Méndez, J. E.

    2018-06-01

    Exact solutions describing the Rayleigh-Bloch waves for the two-dimensional Helmholtz equation are constructed in the case when the refractive index is a sum of a constant and a small amplitude function which is periodic in one direction and of finite support in the other. These solutions are quasiperiodic along the structure and exponentially decay in the orthogonal direction. A simple formula for the dispersion relation of these waves is obtained.

  13. Dark lump excitations in superfluid Fermi gases

    NASA Astrophysics Data System (ADS)

    Xu, Yan-Xia; Duan, Wen-Shan

    2012-11-01

    We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases. A Kadomtsev—Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen—Cooper—Schrieffer (BCS) regime, Bose—Einstein condensate (BEC) regime, and unitarity regime. One-lump solution as well as one-line soliton solutions for the KPI equation are obtained, and two-line soliton solutions with the same amplitude are also studied in the limited cases. The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity.

  14. Development of a particle method of characteristics (PMOC) for one-dimensional shock waves

    NASA Astrophysics Data System (ADS)

    Hwang, Y.-H.

    2018-03-01

    In the present study, a particle method of characteristics is put forward to simulate the evolution of one-dimensional shock waves in barotropic gaseous, closed-conduit, open-channel, and two-phase flows. All these flow phenomena can be described with the same set of governing equations. The proposed scheme is established based on the characteristic equations and formulated by assigning the computational particles to move along the characteristic curves. Both the right- and left-running characteristics are traced and represented by their associated computational particles. It inherits the computational merits from the conventional method of characteristics (MOC) and moving particle method, but without their individual deficiencies. In addition, special particles with dual states deduced to the enforcement of the Rankine-Hugoniot relation are deliberately imposed to emulate the shock structure. Numerical tests are carried out by solving some benchmark problems, and the computational results are compared with available analytical solutions. From the derivation procedure and obtained computational results, it is concluded that the proposed PMOC will be a useful tool to replicate one-dimensional shock waves.

  15. Simulation Of Wave Function And Probability Density Of Modified Poschl Teller Potential Derived Using Supersymmetric Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Angraini, Lily Maysari; Suparmi, Variani, Viska Inda

    2010-12-01

    SUSY quantum mechanics can be applied to solve Schrodinger equation for high dimensional system that can be reduced into one dimensional system and represented in lowering and raising operators. Lowering and raising operators can be obtained using relationship between original Hamiltonian equation and the (super) potential equation. In this paper SUSY quantum mechanics is used as a method to obtain the wave function and the energy level of the Modified Poschl Teller potential. The graph of wave function equation and probability density is simulated by using Delphi 7.0 programming language. Finally, the expectation value of quantum mechanics operator could be calculated analytically using integral form or probability density graph resulted by the programming.

  16. A depth-averaged 2-D shallow water model for breaking and non-breaking long waves affected by rigid vegetation

    USDA-ARS?s Scientific Manuscript database

    This paper presents a depth-averaged two-dimensional shallow water model for simulating long waves in vegetated water bodies under breaking and non-breaking conditions. The effects of rigid vegetation are modelled in the form of drag and inertia forces as sink terms in the momentum equations. The dr...

  17. Rossby wave activity in a two-dimensional model - Closure for wave driving and meridional eddy diffusivity

    NASA Technical Reports Server (NTRS)

    Hitchman, Matthew H.; Brasseur, Guy

    1988-01-01

    A parameterization of the effects of Rossby waves in the middle atmosphere is proposed for use in two-dimensional models. By adding an equation for conservation of Rossby wave activity, closure is obtained for the meridional eddy fluxes and body force due to Rossby waves. Rossby wave activity is produced in a climatological fashion at the tropopause, is advected by a group velocity which is determined solely by model zonal winds, and is absorbed where it converges. Absorption of Rossby wave activity causes both an easterly torque and an irreversible mixing of potential vorticity, represented by the meridional eddy diffusivity, K(yy). The distribution of Rossby wave driving determines the distribution of K(yy), which is applied to all of the chemical constituents. This provides a self-consistent coupling of the wave activity with the winds, tracer distributions and the radiative field. Typical winter stratospheric values for K(yy) of 2 million sq m/sec are obtained. Poleward tracer advection is enhanced and meridional tracer gradients are reduced where Rossby wave activity is absorbed in the model.

  18. Simulation of propagation of the HPM in the low-pressure argon plasma

    NASA Astrophysics Data System (ADS)

    Zhigang, LI; Zhongcai, YUAN; Jiachun, WANG; Jiaming, SHI

    2018-02-01

    The propagation of the high-power microwave (HPM) with a frequency of 6 GHz in the low-pressure argon plasma was studied by the method of fluid approximation. The two-dimensional transmission model was built based on the wave equation, the electron drift-diffusion equations and the heavy species transport equations, which were solved by means of COMSOL Multiphysics software. The simulation results showed that the propagation characteristic of the HPM was closely related to the average electron density of the plasma. The attenuation of the transmitted wave increased nonlinearly with the electron density. Specifically, the growth of the attenuation slowed down as the electron density increased uniformly. In addition, the concrete transmission process of the HPM wave in the low-pressure argon plasma was given.

  19. Generalized wave operators, weighted Killing fields, and perturbations of higher dimensional spacetimes

    NASA Astrophysics Data System (ADS)

    Araneda, Bernardo

    2018-04-01

    We present weighted covariant derivatives and wave operators for perturbations of certain algebraically special Einstein spacetimes in arbitrary dimensions, under which the Teukolsky and related equations become weighted wave equations. We show that the higher dimensional generalization of the principal null directions are weighted conformal Killing vectors with respect to the modified covariant derivative. We also introduce a modified Laplace–de Rham-like operator acting on tensor-valued differential forms, and show that the wave-like equations are, at the linear level, appropriate projections off shell of this operator acting on the curvature tensor; the projection tensors being made out of weighted conformal Killing–Yano tensors. We give off shell operator identities that map the Einstein and Maxwell equations into weighted scalar equations, and using adjoint operators we construct solutions of the original field equations in a compact form from solutions of the wave-like equations. We study the extreme and zero boost weight cases; extreme boost corresponding to perturbations of Kundt spacetimes (which includes near horizon geometries of extreme black holes), and zero boost to static black holes in arbitrary dimensions. In 4D our results apply to Einstein spacetimes of Petrov type D and make use of weighted Killing spinors.

  20. Two dimensional numerical prediction of deflagration-to-detonation transition in porous energetic materials.

    PubMed

    Narin, B; Ozyörük, Y; Ulas, A

    2014-05-30

    This paper describes a two-dimensional code developed for analyzing two-phase deflagration-to-detonation transition (DDT) phenomenon in granular, energetic, solid, explosive ingredients. The two-dimensional model is constructed in full two-phase, and based on a highly coupled system of partial differential equations involving basic flow conservation equations and some constitutive relations borrowed from some one-dimensional studies that appeared in open literature. The whole system is solved using an optimized high-order accurate, explicit, central-difference scheme with selective-filtering/shock capturing (SF-SC) technique, to augment central-diffencing and prevent excessive dispersion. The sources of the equations describing particle-gas interactions in terms of momentum and energy transfers make the equation system quite stiff, and hence its explicit integration difficult. To ease the difficulties, a time-split approach is used allowing higher time steps. In the paper, the physical model for the sources of the equation system is given for a typical explosive, and several numerical calculations are carried out to assess the developed code. Microscale intergranular and/or intragranular effects including pore collapse, sublimation, pyrolysis, etc. are not taken into account for ignition and growth, and a basic temperature switch is applied in calculations to control ignition in the explosive domain. Results for one-dimensional DDT phenomenon are in good agreement with experimental and computational results available in literature. A typical shaped-charge wave-shaper case study is also performed to test the two-dimensional features of the code and it is observed that results are in good agreement with those of commercial software. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Numerical modeling of the early interaction of a planar shock with a dense particle field

    NASA Astrophysics Data System (ADS)

    Regele, Jonathan; Blanquart, Guillaume

    2011-11-01

    Dense compressible multiphase flows are of interest for multiphase turbomachinary and energetic material detonations. Still, there is little understanding of the detailed interaction mechanisms between shock waves and dense (particle volume fraction αd > 0 . 001) particle fields. A recent experimental study [Wagner et al, AIAA Aero. Sci., Orlando, 2011-188] has focused on the impingement of a planar shock wave on a dense particle curtain. In the present work, numerical solutions of the Euler equations in one and two dimensions are performed for a planar shock wave impinging on a fixed particle curtain and are compared to the experimental data for early times. Comparison of the one- and two-dimensional results demonstrate that the one-dimensional description captures the large scale flow behavior, but is inadequate to capture all the details observed in the experiments. The two-dimensional solutions are shown to reproduce the experimentally observed flow structures and provide insight into how these details originate.

  2. A computer program for fitting smooth surfaces to three-dimensional aircraft configurations

    NASA Technical Reports Server (NTRS)

    Craidon, C. B.; Smith, R. E., Jr.

    1975-01-01

    A computer program developed to fit smooth surfaces to the component parts of three-dimensional aircraft configurations was described. The resulting equation definition of an aircraft numerical model is useful in obtaining continuous two-dimensional cross section plots in arbitrarily defined planes, local tangents, enriched surface plots and other pertinent geometric information; the geometry organization used as input to the program has become known as the Harris Wave Drag Geometry.

  3. Generalized fourier analyses of the advection-diffusion equation - Part II: two-dimensional domains

    NASA Astrophysics Data System (ADS)

    Voth, Thomas E.; Martinez, Mario J.; Christon, Mark A.

    2004-07-01

    Part I of this work presents a detailed multi-methods comparison of the spatial errors associated with the one-dimensional finite difference, finite element and finite volume semi-discretizations of the scalar advection-diffusion equation. In Part II we extend the analysis to two-dimensional domains and also consider the effects of wave propagation direction and grid aspect ratio on the phase speed, and the discrete and artificial diffusivities. The observed dependence of dispersive and diffusive behaviour on propagation direction makes comparison of methods more difficult relative to the one-dimensional results. For this reason, integrated (over propagation direction and wave number) error and anisotropy metrics are introduced to facilitate comparison among the various methods. With respect to these metrics, the consistent mass Galerkin and consistent mass control-volume finite element methods, and their streamline upwind derivatives, exhibit comparable accuracy, and generally out-perform their lumped mass counterparts and finite-difference based schemes. While this work can only be considered a first step in a comprehensive multi-methods analysis and comparison, it serves to identify some of the relative strengths and weaknesses of multiple numerical methods in a common mathematical framework. Published in 2004 by John Wiley & Sons, Ltd.

  4. Coherent reflection from surface gravity water waves during reciprocal acoustic transmissions.

    PubMed

    Badiey, Mohsen; Song, Aijun; Smith, Kevin B

    2012-10-01

    During a recent experiment in Kauai, Hawaii, reciprocal transmissions were conducted between two acoustic transceivers mounted on the seafloor at a depth of 100 m. The passage of moving surface wave crests was shown to generate focused and intense coherent acoustic returns, which had increasing or decreasing delay depending on the direction of propagation relative to the direction of surface wave crests. It is shown that a rough surface two-dimensional parabolic equation model with an evolving sea surface can produce qualitative agreement with data for the dynamic surface returns.

  5. Numerical modelling of nonlinear full-wave acoustic propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx

    2015-10-28

    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on amore » GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.« less

  6. Schrödinger–Langevin equation with quantum trajectories for photodissociation dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    The Schrödinger–Langevin equation is integrated to study the wave packet dynamics of quantum systems subject to frictional effects by propagating an ensemble of quantum trajectories. The equations of motion for the complex action and quantum trajectories are derived from the Schrödinger–Langevin equation. The moving least squares approach is used to evaluate the spatial derivatives of the complex action required for the integration of the equations of motion. Computational results are presented and analyzed for the evolution of a free Gaussian wave packet, a two-dimensional barrier model, and the photodissociation dynamics of NOCl. The absorption spectrum of NOCl obtained from themore » Schrödinger–Langevin equation displays a redshift when frictional effects increase. This computational result agrees qualitatively with the experimental results in the solution-phase photochemistry of NOCl.« less

  7. Linearized compressible-flow theory for sonic flight speeds

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Lomax, Harvard; Spreiter, John R

    1950-01-01

    The partial differential equation for the perturbation velocity potential is examined for free-stream Mach numbers close to and equal to one. It is found that, under the assumptions of linearized theory, solutions can be found consistent with the theory for lifting-surface problems both in stationary three-dimensional flow and in unsteady two-dimensional flow. Several examples are solved including a three dimensional swept-back wing and two dimensional harmonically-oscillating wing, both for a free stream Mach number equal to one. Momentum relations for the evaluation of wave and vortex drag are also discussed. (author)

  8. KAM Tori for 1D Nonlinear Wave Equationswith Periodic Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Chierchia, Luigi; You, Jiangong

    In this paper, one-dimensional (1D) nonlinear wave equations with periodic boundary conditions are considered; V is a periodic smooth or analytic function and the nonlinearity f is an analytic function vanishing together with its derivative at u≡0. It is proved that for ``most'' potentials V(x), the above equation admits small-amplitude periodic or quasi-periodic solutions corresponding to finite dimensional invariant tori for an associated infinite dimensional dynamical system. The proof is based on an infinite dimensional KAM theorem which allows for multiple normal frequencies.

  9. A pseudoenergy wave-activity relation for ageostrophic and non-hydrostatic moist atmosphere

    NASA Astrophysics Data System (ADS)

    Ran, Ling-Kun; Ping, Fan

    2015-05-01

    By employing the energy-Casimir method, a three-dimensional virtual pseudoenergy wave-activity relation for a moist atmosphere is derived from a complete system of nonhydrostatic equations in Cartesian coordinates. Since this system of equations includes the effects of water substance, mass forcing, diabatic heating, and dissipations, the derived wave-activity relation generalizes the previous result for a dry atmosphere. The Casimir function used in the derivation is a monotonous function of virtual potential vorticity and virtual potential temperature. A virtual energy equation is employed (in place of the previous zonal momentum equation) in the derivation, and the basic state is stationary but can be three-dimensional or, at least, not necessarily zonally symmetric. The derived wave-activity relation is further used for the diagnosis of the evolution and propagation of meso-scale weather systems leading to heavy rainfall. Our diagnosis of two real cases of heavy precipitation shows that positive anomalies of the virtual pseudoenergy wave-activity density correspond well with the strong precipitation and are capable of indicating the movement of the precipitation region. This is largely due to the cyclonic vorticity perturbation and the vertically increasing virtual potential temperature over the precipitation region. Project supported by the National Basic Research Program of China (Grant No. 2013CB430105), the Key Program of the Chinese Academy of Sciences (Grant No. KZZD-EW-05), the National Natural Science Foundation of China (Grant No. 41175060), and the Project of CAMS, China (Grant No. 2011LASW-B15).

  10. Fully pseudospectral solution of the conformally invariant wave equation near the cylinder at spacelike infinity. III: nonspherical Schwarzschild waves and singularities at null infinity

    NASA Astrophysics Data System (ADS)

    Frauendiener, Jörg; Hennig, Jörg

    2018-03-01

    We extend earlier numerical and analytical considerations of the conformally invariant wave equation on a Schwarzschild background from the case of spherically symmetric solutions, discussed in Frauendiener and Hennig (2017 Class. Quantum Grav. 34 045005), to the case of general, nonsymmetric solutions. A key element of our approach is the modern standard representation of spacelike infinity as a cylinder. With a decomposition into spherical harmonics, we reduce the four-dimensional wave equation to a family of two-dimensional equations. These equations can be used to study the behaviour at the cylinder, where the solutions turn out to have, in general, logarithmic singularities at infinitely many orders. We derive regularity conditions that may be imposed on the initial data, in order to avoid the first singular terms. We then demonstrate that the fully pseudospectral time evolution scheme can be applied to this problem leading to a highly accurate numerical reconstruction of the nonsymmetric solutions. We are particularly interested in the behaviour of the solutions at future null infinity, and we numerically show that the singularities spread to null infinity from the critical set, where the cylinder approaches null infinity. The observed numerical behaviour is consistent with similar logarithmic singularities found analytically on the critical set. Finally, we demonstrate that even solutions with singularities at low orders can be obtained with high accuracy by virtue of a coordinate transformation that converts solutions with logarithmic singularities into smooth solutions.

  11. Three-dimensional modelling of thin liquid films over spinning disks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Wray, Alex; Yang, Junfeng; Matar, Omar

    2016-11-01

    In this research the dynamics of a thin film flowing over a rapidly spinning, horizontal disk is considered. A set of non-axisymmetric evolution equations for the film thickness, radial and azimuthal flow rates are derived using a boundary-layer approximation in conjunction with the Karman-Polhausen approximation for the velocity distribution in the film. These highly nonlinear partial differential equations are then solved numerically in order to reveal the formation of two and three-dimensional large-amplitude waves that travel from the disk inlet to its periphery. The spatio-temporal profile of film thickness provides us with visualization of flow structures over the entire disk and by varying system parameters(volumetric flow rate of fluid and rotational speed of disk) different wave patterns can be observed, including spiral, concentric, smooth waves and wave break-up in exceptional conditions. Similar types of waves can be found by experimentalists in literature and CFD simulation and our results show good agreement with both experimental and CFD results. Furthermore, the semi-parabolic velocity profile assumed in our model under the waves is directly compared with CFD data in various flow regimes in order to validate our model. EPSRC UK Programme Grant EP/K003976/1.

  12. Observation of Two-Dimensional Localized Jones-Roberts Solitons in Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Meyer, Nadine; Proud, Harry; Perea-Ortiz, Marisa; O'Neale, Charlotte; Baumert, Mathis; Holynski, Michael; Kronjäger, Jochen; Barontini, Giovanni; Bongs, Kai

    2017-10-01

    Jones-Roberts solitons are the only known class of stable dark solitonic solutions of the nonlinear Schrödinger equation in two and three dimensions. They feature a distinctive elongated elliptical shape that allows them to travel without change of form. By imprinting a triangular phase pattern, we experimentally generate two-dimensional Jones-Roberts solitons in a three-dimensional atomic Bose-Einstein condensate. We monitor their dynamics, observing that this kind of soliton is indeed not affected by dynamic (snaking) or thermodynamic instabilities, that instead make other classes of dark solitons unstable in dimensions higher than one. Our results confirm the prediction that Jones-Roberts solitons are stable solutions of the nonlinear Schrödinger equation and promote them for applications beyond matter wave physics, like energy and information transport in noisy and inhomogeneous environments.

  13. One-dimensional wave bottom boundary layer model comparison: specific eddy viscosity and turbulence closure models

    USGS Publications Warehouse

    Puleo, J.A.; Mouraenko, O.; Hanes, D.M.

    2004-01-01

    Six one-dimensional-vertical wave bottom boundary layer models are analyzed based on different methods for estimating the turbulent eddy viscosity: Laminar, linear, parabolic, k—one equation turbulence closure, k−ε—two equation turbulence closure, and k−ω—two equation turbulence closure. Resultant velocity profiles, bed shear stresses, and turbulent kinetic energy are compared to laboratory data of oscillatory flow over smooth and rough beds. Bed shear stress estimates for the smooth bed case were most closely predicted by the k−ω model. Normalized errors between model predictions and measurements of velocity profiles over the entire computational domain collected at 15° intervals for one-half a wave cycle show that overall the linear model was most accurate. The least accurate were the laminar and k−ε models. Normalized errors between model predictions and turbulence kinetic energy profiles showed that the k−ω model was most accurate. Based on these findings, when the smallest overall velocity profile prediction error is required, the processing requirements and error analysis suggest that the linear eddy viscosity model is adequate. However, if accurate estimates of bed shear stress and TKE are required then, of the models tested, the k−ω model should be used.

  14. Dispersive shock waves in Bose-Einstein condensates and nonlinear nano-oscillators in ferromagnetic thin films

    NASA Astrophysics Data System (ADS)

    Hoefer, Mark A.

    This thesis examines nonlinear wave phenomena, in two physical systems: a Bose-Einstein condensate (BEC) and thin film ferromagnets where the magnetization dynamics are excited by the spin momentum transfer (SMT) effect. In the first system, shock waves generated by steep gradients in the BEC wavefunction are shown to be of the disperse type. Asymptotic and averaging methods are used to determine shock speeds and structure in one spatial dimension. These results are compared with multidimensional numerical simulations and experiment showing good, qualitative agreement. In the second system, a model of magnetization dynamics due to SMT is presented. Using this model, nonlinear oscillating modes---nano-oscillators---are found numerically and analytically using perturbative methods. These results compare well with experiment. A Bose-Einstein condensate (BEC) is a quantum fluid that gives rise to interesting shock wave nonlinear dynamics. Experiments depict a BEC that exhibits behavior similar to that of a shock wave in a compressible gas, e.g. traveling fronts with steep gradients. However, the governing Gross-Pitaevskii (GP) equation that describes the mean field of a BEC admits no dissipation hence classical dissipative shock solutions do not explain the phenomena. Instead, wave dynamics with small dispersion is considered and it is shown that this provides a mechanism for the generation of a dispersive shock wave (DSW). Computations with the GP equation are compared to experiment with excellent agreement. A comparison between a canonical 1D dissipative and dispersive shock problem shows significant differences in shock structure and shock front speed. Numerical results associated with laboratory experiments show that three and two-dimensional approximations are in excellent agreement and one dimensional approximations are in qualitative agreement. The interaction of two DSWs is investigated analytically and numerically. Using one dimensional DSW theory it is argued that the experimentally observed blast waves may be viewed as dispersive shock waves. A nonlinear mathematical model of spin-wave excitation using a point contact in a thin ferromagnetic film is introduced. This work incorporates a recently proposed spin-torque contribution to classical magnetodynamic theory with a variable coefficient terra in the magnetic torque equation. Large-amplitude magnetic solitary waves are computed, which help explain recent spin-torque experiments. Numerical simulations of the full nonlinear model predict excitation frequencies in excess of 0.2 THz for contact diameters smaller than 6 nm. Simulations also predict a saturation and red shift of the frequency at currents large enough to invert the magnetization tinder the point contact. In the weak nonlinear limit, the theory is approximated by a cubic complex Ginzburg-Landau type equation. The mode's nonlinear frequency shift is found by use of perturbation techniques, whose results agree with those of direct numerical simulations.

  15. Two-dimensional modulated ion-acoustic excitations in electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Panguetna, Chérif S.; Tabi, Conrad B.; Kofané, Timoléon C.

    2017-09-01

    Two-dimensional modulated ion-acoustic waves are investigated in an electronegative plasma. Through the reductive perturbation expansion, the governing hydrodynamic equations are reduced to a Davey-Stewartson system with two-space variables. The latter is used to study the modulational instability of ion-acoustic waves along with the effect of plasma parameters, namely, the negative ion concentration ratio (α) and the electron-to-negative ion temperature ratio (σn). A parametric analysis of modulational instability is carried out, where regions of plasma parameters responsible for the emergence of modulated ion-acoustic waves are discussed, with emphasis on the behavior of the instability growth rate. Numerically, using perturbed plane waves as initial conditions, parameters from the instability regions give rise to series of dromion solitons under the activation of modulational instability. The sensitivity of the numerical solutions to plasma parameters is discussed. Some exact solutions in the form one- and two-dromion solutions are derived and their response to the effect of varying α and σn is discussed as well.

  16. Fully- and weakly-nonlinear biperiodic traveling waves in shallow water

    NASA Astrophysics Data System (ADS)

    Hirakawa, Tomoaki; Okamura, Makoto

    2018-04-01

    We directly calculate fully nonlinear traveling waves that are periodic in two independent horizontal directions (biperiodic) in shallow water. Based on the Riemann theta function, we also calculate exact periodic solutions to the Kadomtsev-Petviashvili (KP) equation, which can be obtained by assuming weakly-nonlinear, weakly-dispersive, weakly-two-dimensional waves. To clarify how the accuracy of the biperiodic KP solution is affected when some of the KP approximations are not satisfied, we compare the fully- and weakly-nonlinear periodic traveling waves of various wave amplitudes, wave depths, and interaction angles. As the interaction angle θ decreases, the wave frequency and the maximum wave height of the biperiodic KP solution both increase, and the central peak sharpens and grows beyond the height of the corresponding direct numerical solutions, indicating that the biperiodic KP solution cannot qualitatively model direct numerical solutions for θ ≲ 45^\\circ . To remedy the weak two-dimensionality approximation, we apply the correction of Yeh et al (2010 Eur. Phys. J. Spec. Top. 185 97-111) to the biperiodic KP solution, which substantially improves the solution accuracy and results in wave profiles that are indistinguishable from most other cases.

  17. Discrete spacetime, quantum walks, and relativistic wave equations

    NASA Astrophysics Data System (ADS)

    Mlodinow, Leonard; Brun, Todd A.

    2018-04-01

    It has been observed that quantum walks on regular lattices can give rise to wave equations for relativistic particles in the continuum limit. In this paper, we define the three-dimensional discrete-time walk as a product of three coined one-dimensional walks. The factor corresponding to each one-dimensional walk involves two projection operators that act on an internal coin space; each projector is associated with either the "forward" or "backward" direction in that physical dimension. We show that the simple requirement that there is no preferred axis or direction along an axis—that is, that the walk be symmetric under parity transformations and steps along different axes of the cubic lattice be uncorrelated—leads, in the case of the simplest solution, to the requirement that the continuum limit of the walk is fully Lorentz-invariant. We show further that, in the case of a massive particle, this symmetry requirement necessitates the use of a four-dimensional internal space (as in the Dirac equation). The "coin flip" operation is generated by the parity transformation on the internal coin space, while the differences of the projection operators associated with each dimension must all anticommute. Finally, we discuss the leading correction to the continuum limit, and the possibility of distinguishing through experiment between the discrete random walk and the continuum-based Dirac equation as a description of fermion dynamics.

  18. Characteristics of wind waves in shallow tidal basins and how they affect bed shear stress, bottom erosion, and the morphodynamic evolution of coupled marsh and mudflat landforms

    NASA Astrophysics Data System (ADS)

    Tommasini, Laura; Carniello, Luca; Goodwin, Guillaume; Mudd, Simon M.; Matticchio, Bruno; D'Alpaos, Andrea

    2017-04-01

    Wind-wave induced erosion is one of the main processes controlling the morphodynamic evolution of shallow tidal basins, because wind waves promote the erosion of subtidal platforms, tidal flats and salt marshes. Our study considered zero-, one-and two-dimensional wave models. First, we analyzed the relations between wave parameters, depth and bed shear stress with constant and variable wave period considering two zero-dimensional models based on the Young and Verhagen (1996), and Carniello et al. (2005, 2011) approaches. The first one is an empirical method that computes wave height and the variable wave period from wind velocity, fetch and water depth. The second one is based on the solution of wave action conservation equation, we use this second approach for computing the bottom shear stress and wave height, considering variable and constant (t=2s) wave period. Second, we compared the wave spectral model SWAN with a fully coupled Wind-Wave Tidal Model applied to a 1D rectangular domain. These models describe both the growth and propagation of wind waves. Finally, we applied the two-dimensional Wind Wave Tidal Model (WWTM) to six different configurations of the Venice lagoon considering the same boundary conditions and we evaluated the spatial variation of mean wave power density. The analysis with zero-dimensional models show that the effects of the different model assumptions on the wave period and on the wave height computation cannot be neglected. In particular, the relationships between bottom shear stress and water depth have different shapes. Two results emerge: first, the differences are higher for small depths, and then the maximum values reached with the Young and Verhagen (1996) approach are greater than the maximum values obtained with WWTM approach. The results obtained with two-dimensional models suggest that the wave height is different in particular for small fetch, this could be due to the different formulation of the wave period. Finally, the application of WWTM for the entire Lagoon basin underlines an increase of the mean power density in the last four centuries, in particular in the central-southern part of the lagoon between Chioggia and Malamocco inlets.

  19. Problems of interaction longitudinal shear waves with V-shape tunnels defect

    NASA Astrophysics Data System (ADS)

    Popov, V. G.

    2018-04-01

    The problem of determining the two-dimensional dynamic stress state near a tunnel defect of V-shaped cross-section is solved. The defect is located in an infinite elastic medium, where harmonic longitudinal shear waves are propagating. The initial problem is reduced to a system of two singular integral or integro-differential equations with fixed singularities. A numerical method for solving these systems with regard to the true asymptotics of the unknown functions is developed.

  20. Global and blowup solutions of a mixed problem with nonlinear boundary conditions for a one-dimensional semilinear wave equation

    NASA Astrophysics Data System (ADS)

    Kharibegashvili, S. S.; Jokhadze, O. M.

    2014-04-01

    A mixed problem for a one-dimensional semilinear wave equation with nonlinear boundary conditions is considered. Conditions of this type occur, for example, in the description of the longitudinal oscillations of a spring fastened elastically at one end, but not in accordance with Hooke's linear law. Uniqueness and existence questions are investigated for global and blowup solutions to this problem, in particular how they depend on the nature of the nonlinearities involved in the equation and the boundary conditions. Bibliography: 14 titles.

  1. Two-dimensional coupled mathematical modeling of fluvial processes with intense sediment transport and rapid bed evolution

    NASA Astrophysics Data System (ADS)

    Yue, Zhiyuan; Cao, Zhixian; Li, Xin; Che, Tao

    2008-09-01

    Alluvial rivers may experience intense sediment transport and rapid bed evolution under a high flow regime, for which traditional decoupled mathematical river models based on simplified conservation equations are not applicable. A two-dimensional coupled mathematical model is presented, which is generally applicable to the fluvial processes with either intense or weak sediment transport. The governing equations of the model comprise the complete shallow water hydrodynamic equations closed with Manning roughness for boundary resistance and empirical relationships for sediment exchange with the erodible bed. The second-order Total-Variation-Diminishing version of the Weighted-Average-Flux method, along with the HLLC approximate Riemann Solver, is adapted to solve the governing equations, which can properly resolve shock waves and contact discontinuities. The model is applied to the pilot study of the flooding due to a sudden outburst of a real glacial-lake.

  2. Two-dimensional model of the interaction of a plane acoustic wave with nozzle edge and wing trailing edge.

    PubMed

    Faranosov, Georgy A; Bychkov, Oleg P

    2017-01-01

    The interaction of a plane acoustic wave with two-dimensional model of nozzle edge and trailing edge is investigated theoretically by means of the Wiener-Hopf technique. The nozzle edge and the trailing edge are simulated by two half-planes with offset edges. Shear layer behind the nozzle edge is represented by a vortex sheet supporting Kelvin-Helmholtz instability waves. The considered configuration combines two well-known models (nozzle edge and trailing edge), and reveals additional interesting physical aspects. To obtain the solution, the matrix Wiener-Hopf equation is solved in conjunction with a requirement that the full Kutta condition is imposed at the edges. Factorization of the kernel matrix is performed by the combination of Padé approximation and the pole removal technique. This procedure is used to obtain numerical results. The results indicate that the diffracted acoustic field may be significantly intensified due to scattering of hydrodynamic instability waves into sound waves provided that the trailing edge is close enough to the vortex sheet. Similar mechanism may be responsible for the intensification of jet noise near a wing.

  3. Nonlinear excited waves on the interventricular septum

    NASA Astrophysics Data System (ADS)

    Bekki, Naoaki; Harada, Yoshifumi; Kanai, Hiroshi

    2012-11-01

    Using a novel ultrasonic noninvasive imaging method, we observe some phase singularities in propagating excited waves on a human cardiac interventricular septum (IVS) for a healthy young male. We present a possible physical model explaining one-dimensional dynamics of phase singularities in nonlinearly excited waves on the IVS. We show that at least one of the observed phase singularities in the excited waves on the IVS can be explained by the Bekki-Nozaki hole solution of the complex Ginzburg-Landau equation without any adjustable parameters. We conclude that the complex Ginzburg-Landau equation is such a suitable model for one-dimensional dynamics of cardiac phase singularities in nonlinearly excited waves on the IVS.

  4. On the Navier Stokes equations simulation of the head-on collision between two surface solitary waves

    NASA Astrophysics Data System (ADS)

    Lubin, Pierre; Vincent, Stéphane; Caltagirone, Jean-Paul

    2005-04-01

    The scope of this Note is to show the results obtained for simulating the two-dimensional head-on collision of two solitary waves by solving the Navier-Stokes equations in air and water. The work is dedicated to the numerical investigation of the hydrodynamics associated to this highly nonlinear flow configuration, the first numerical results being analyzed. The original numerical model is proved to be efficient and accurate in predicting the main features described in experiments found in the literature. This Note also outlines the interest of this configuration to be considered as a test-case for numerical models dedicated to computational fluid mechanics. To cite this article: P. Lubin et al., C. R. Mecanique 333 (2005).

  5. Analysis of band structure, transmission properties, and dispersion behavior of THz wave in one-dimensional parabolic plasma photonic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Askari, Nasim; Eslami, Esmaeil, E-mail: eeslami@iust.ac.ir; Mirzaie, Reza

    2015-11-15

    The photonic band gap of obliquely incident terahertz electromagnetic waves in a one-dimensional plasma photonic crystal is studied. The periodic structure consists of lossless dielectric and inhomogeneous plasma with a parabolic density profile. The dispersion relation and the THz wave transmittance are analyzed based on the electromagnetic equations and transfer matrix method. The dependence of effective plasma frequency and photonic band gap characteristics on dielectric and plasma thickness, plasma density, and incident angle are discussed in detail. A theoretical calculation for effective plasma frequency is presented and compared with numerical results. Results of these two methods are in good agreement.

  6. Propagation of acoustic waves in a one-dimensional macroscopically inhomogeneous poroelastic material.

    PubMed

    Gautier, G; Kelders, L; Groby, J P; Dazel, O; De Ryck, L; Leclaire, P

    2011-09-01

    Wave propagation in macroscopically inhomogeneous porous materials has received much attention in recent years. The wave equation, derived from the alternative formulation of Biot's theory of 1962, was reduced and solved recently in the case of rigid frame inhomogeneous porous materials. This paper focuses on the solution of the full wave equation in which the acoustic and the elastic properties of the poroelastic material vary in one-dimension. The reflection coefficient of a one-dimensional macroscopically inhomogeneous porous material on a rigid backing is obtained numerically using the state vector (or the so-called Stroh) formalism and Peano series. This coefficient can then be used to straightforwardly calculate the scattered field. To validate the method of resolution, results obtained by the present method are compared to those calculated by the classical transfer matrix method at both normal and oblique incidence and to experimental measurements at normal incidence for a known two-layers porous material, considered as a single inhomogeneous layer. Finally, discussion about the absorption coefficient for various inhomogeneity profiles gives further perspectives. © 2011 Acoustical Society of America

  7. Spontaneous generation of singularities in paraxial optical fields.

    PubMed

    Aiello, Andrea

    2016-04-01

    In nonrelativistic quantum mechanics, the spontaneous generation of singularities in smooth and finite wave functions is a well understood phenomenon also occurring for free particles. We use the familiar analogy between the two-dimensional Schrödinger equation and the optical paraxial wave equation to define a new class of square-integrable paraxial optical fields that develop a spatial singularity in the focal point of a weakly focusing thin lens. These fields are characterized by a single real parameter whose value determines the nature of the singularity. This novel field enhancement mechanism may stimulate fruitful research for diverse technological and scientific applications.

  8. On increasing stability in the two dimensional inverse source scattering problem with many frequencies

    NASA Astrophysics Data System (ADS)

    Entekhabi, Mozhgan Nora; Isakov, Victor

    2018-05-01

    In this paper, we will study the increasing stability in the inverse source problem for the Helmholtz equation in the plane when the source term is assumed to be compactly supported in a bounded domain Ω with a sufficiently smooth boundary. Using the Fourier transform in the frequency domain, bounds for the Hankel functions and for scattering solutions in the complex plane, improving bounds for the analytic continuation, and the exact observability for the wave equation led us to our goals which are a sharp uniqueness and increasing stability estimate when the wave number interval is growing.

  9. Parabolic equation for nonlinear acoustic wave propagation in inhomogeneous moving media

    NASA Astrophysics Data System (ADS)

    Aver'yanov, M. V.; Khokhlova, V. A.; Sapozhnikov, O. A.; Blanc-Benon, Ph.; Cleveland, R. O.

    2006-12-01

    A new parabolic equation is derived to describe the propagation of nonlinear sound waves in inhomogeneous moving media. The equation accounts for diffraction, nonlinearity, absorption, scalar inhomogeneities (density and sound speed), and vectorial inhomogeneities (flow). A numerical algorithm employed earlier to solve the KZK equation is adapted to this more general case. A two-dimensional version of the algorithm is used to investigate the propagation of nonlinear periodic waves in media with random inhomogeneities. For the case of scalar inhomogeneities, including the case of a flow parallel to the wave propagation direction, a complex acoustic field structure with multiple caustics is obtained. Inclusion of the transverse component of vectorial random inhomogeneities has little effect on the acoustic field. However, when a uniform transverse flow is present, the field structure is shifted without changing its morphology. The impact of nonlinearity is twofold: it produces strong shock waves in focal regions, while, outside the caustics, it produces higher harmonics without any shocks. When the intensity is averaged across the beam propagating through a random medium, it evolves similarly to the intensity of a plane nonlinear wave, indicating that the transverse redistribution of acoustic energy gives no considerable contribution to nonlinear absorption.

  10. Simulation of femtosecond two-dimensional electronic spectra of conical intersections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krčmář, Jindřich; Gelin, Maxim F.; Domcke, Wolfgang

    2015-08-21

    We have simulated femtosecond two-dimensional (2D) electronic spectra for an excited-state conical intersection using the wave-function version of the equation-of-motion phase-matching approach. We show that 2D spectra at fixed values of the waiting time provide information on the structure of the vibronic eigenstates of the conical intersection, while the evolution of the spectra with the waiting time reveals predominantly ground-state wave-packet dynamics. The results show that 2D spectra of conical intersection systems differ significantly from those obtained for chromophores with well separated excited-state potential-energy surfaces. The spectral signatures which can be attributed to conical intersections are discussed.

  11. Singularities in water waves and Rayleigh-Taylor instability

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1991-01-01

    Singularities in inviscid two-dimensional finite-amplitude water waves and inviscid Rayleigh-Taylor instability are discussed. For the deep water gravity waves of permanent form, through a combination of analytical and numerical methods, results describing the precise form, number, and location of singularities in the unphysical domain as the wave height is increased are presented. It is shown how the information on the singularity in the unphysical region has the same form as for deep water waves. However, associated with such a singularity is a series of image singularities at increasing distances from the physical plane with possibly different behavior. Furthermore, for the Rayleigh-Taylor problem of motion of fluid over a vacuum and for the unsteady water wave problem, integro-differential equations valid in the unphysical region are derived, and how these equations can give information on the nature of singularities for arbitrary initial conditions is shown.

  12. Initial values for the integration scheme to compute the eigenvalues for propagation in ducts

    NASA Technical Reports Server (NTRS)

    Eversman, W.

    1977-01-01

    A scheme for the calculation of eigenvalues in the problem of acoustic propagation in a two-dimensional duct is described. The computation method involves changing the coupled transcendental nonlinear algebraic equations into an initial value problem involving a nonlinear ordinary differential equation. The simplest approach is to use as initial values the hardwall eigenvalues and to integrate away from these values as the admittance varies from zero to its actual value with a linear variation. The approach leads to a powerful root finding routine capable of computing the transverse and axial wave numbers for two-dimensional ducts for any frequency, lining, admittance and Mach number without requiring initial guesses or starting points.

  13. Emergence and space-time structure of lump solution to the (2+1)-dimensional generalized KP equation

    NASA Astrophysics Data System (ADS)

    Tan, Wei; Dai, Houping; Dai, Zhengde; Zhong, Wenyong

    2017-11-01

    A periodic breather-wave solution is obtained using homoclinic test approach and Hirota's bilinear method with a small perturbation parameter u0 for the (2+1)-dimensional generalized Kadomtsev-Petviashvili equation. Based on the periodic breather-wave, a lump solution is emerged by limit behaviour. Finally, three different forms of the space-time structure of the lump solution are investigated and discussed using the extreme value theory.

  14. 3-Dimensional stereo implementation of photoacoustic imaging based on a new image reconstruction algorithm without using discrete Fourier transform

    NASA Astrophysics Data System (ADS)

    Ham, Woonchul; Song, Chulgyu

    2017-05-01

    In this paper, we propose a new three-dimensional stereo image reconstruction algorithm for a photoacoustic medical imaging system. We also introduce and discuss a new theoretical algorithm by using the physical concept of Radon transform. The main key concept of proposed theoretical algorithm is to evaluate the existence possibility of the acoustic source within a searching region by using the geometric distance between each sensor element of acoustic detector and the corresponding searching region denoted by grid. We derive the mathematical equation for the magnitude of the existence possibility which can be used for implementing a new proposed algorithm. We handle and derive mathematical equations of proposed algorithm for the one-dimensional sensing array case as well as two dimensional sensing array case too. A mathematical k-wave simulation data are used for comparing the image quality of the proposed algorithm with that of general conventional algorithm in which the FFT should be necessarily used. From the k-wave Matlab simulation results, we can prove the effectiveness of the proposed reconstruction algorithm.

  15. Solitary waves with weak transverse perturbations in quantum dusty plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ur-Rehman, H.; Masood, W.; Siddiq, M.

    2008-12-15

    Using the quantum hydrodynamic model, quantum dust ion-acoustic solitary waves are investigated in the presence of weak transverse perturbations. The linear dispersion relation is obtained using the Fourier analysis. The two-dimensional (2D) propagation of small amplitude nonlinear waves is studied by deriving the Kadomtsev-Petviashvili (KP) equation. The traveling wave solution of the KP equation is obtained by employing the tanh method. By dint of this solution, the effects of quantum Bohm pressure and the dust concentration on the 2D solitary structure are studied. The effect of quantum Bohm potential on the stability of the KP soliton is also investigated. Themore » results are supported by the numerical analysis and the relevance of the present investigation in dense astrophysical environments is also pointed out.« less

  16. Three dimensional clyindrical Kadomtsev Petviashvili equation in two temperature charged dusty plasma

    NASA Astrophysics Data System (ADS)

    El-Bedwehy, N. A.; El-Attafi, M. A.; El-Labany, S. K.

    2016-09-01

    The properties of solitary waves in an unmagnetized, collisionless dusty plasma consisting of nonthermal ions, cold and hot dust grains and Maxwellian electrons have been investigated. Under a suitable coordinate transformation, the three-dimensional cylindrical Kadomtsev-Petviashvili (3D-CKP) equation is obtained. The effect of the nonthermal parameter, the negative charge number of hot and cold dust on the solitary properties are investigated. Furthermore, the solitary profile in the radial, axial, and polar angle coordinates with the time is examined. The present investigation may be applicable in space plasma such as F-ring of Saturn.

  17. Reduced-order prediction of rogue waves in two-dimensional deep-water waves

    NASA Astrophysics Data System (ADS)

    Farazmand, Mohammad; Sapsis, Themistoklis P.

    2017-07-01

    We consider the problem of large wave prediction in two-dimensional water waves. Such waves form due to the synergistic effect of dispersive mixing of smaller wave groups and the action of localized nonlinear wave interactions that leads to focusing. Instead of a direct simulation approach, we rely on the decomposition of the wave field into a discrete set of localized wave groups with optimal length scales and amplitudes. Due to the short-term character of the prediction, these wave groups do not interact and therefore their dynamics can be characterized individually. Using direct numerical simulations of the governing envelope equations we precompute the expected maximum elevation for each of those wave groups. The combination of the wave field decomposition algorithm, which provides information about the statistics of the system, and the precomputed map for the expected wave group elevation, which encodes dynamical information, allows (i) for understanding of how the probability of occurrence of rogue waves changes as the spectrum parameters vary, (ii) the computation of a critical length scale characterizing wave groups with high probability of evolving to rogue waves, and (iii) the formulation of a robust and parsimonious reduced-order prediction scheme for large waves. We assess the validity of this scheme in several cases of ocean wave spectra.

  18. Self-action of Bessel wave packets in a system of coupled light guides and formation of light bullets

    NASA Astrophysics Data System (ADS)

    Balakin, A. A.; Mironov, V. A.; Skobelev, S. A.

    2017-01-01

    The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the "kaleidoscopic" picture of a wave packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.

  19. Rogue waves and lump solutions for a (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation in fluid mechanics

    NASA Astrophysics Data System (ADS)

    Wu, Xiao-Yu; Tian, Bo; Chai, Han-Peng; Sun, Yan

    2017-08-01

    Under investigation in this letter is a (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation, which describes the weakly dispersive waves propagating in a fluid. Employing the Hirota method and symbolic computation, we obtain the lump, breather-wave and rogue-wave solutions under certain constraints. We graphically study the lump waves with the influence of the parameters h1, h3 and h5 which are all the real constants: When h1 increases, amplitude of the lump wave increases, and location of the peak moves; when h3 increases, lump wave’s amplitude decreases, but location of the peak keeps unchanged; when h5 changes, lump wave’s peak location moves, but amplitude keeps unchanged. Breather waves and rogue waves are displayed: Rogue waves emerge when the periods of the breather waves go to the infinity.

  20. An Analytical Model of Periodic Waves in Shallow Water,

    DTIC Science & Technology

    1984-07-01

    the KP equation , "f’ + 6f +x + 3 f 0 (1.8) "’ S(t o x yy describes their evolution if they are weakly two-dimensional ( Kadomtsev & Petviashvili ...directions. Both short-crested and long-crested waves are available from the model. Every wave pattern is an exact solution of the Kadomtsev - Petviashvili ...vol. 9, pp 65-66 Kadomtsev , B. B. & V. I. Petviashvili , 1970, Soy. Phys. Doklady, vol. 15, pp 539-541 Korteweg, D. J. & G. de~ries, 1895, Phil Mag

  1. Perturbed soliton excitations of Rao-dust Alfvén waves in magnetized dusty plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavitha, L., E-mail: louiskavitha@yahoo.co.in; The Abdus Salam International Centre for Theoretical Physics, Trieste; Lavanya, C.

    We investigate the propagation dynamics of the perturbed soliton excitations in a three component fully ionized dusty magnetoplasma consisting of electrons, ions, and heavy charged dust particulates. We derive the governing equation of motion for the two dimensional Rao-dust magnetohydrodynamic (R-D-MHD) wave by employing the inertialess electron equation of motion, inertial ion equation of motion, the continuity equations in a plasma with immobile charged dust grains, together with the Maxwell's equations, by assuming quasi neutrality and neglecting the displacement current in Ampere's law. Furthermore, we assume the massive dust particles are practically immobile since we are interested in timescales muchmore » shorter than the dusty plasma period, thereby neglecting any damping of the modes due to the grain charge fluctuations. We invoke the reductive perturbation method to represent the governing dynamics by a perturbed cubic nonlinear Schrödinger (pCNLS) equation. We solve the pCNLS, along the lines of Kodama-Ablowitz multiple scale nonlinear perturbation technique and explored the R-D-MHD waves as solitary wave excitations in a magnetized dusty plasma. Since Alfvén waves play an important role in energy transport in driving field-aligned currents, particle acceleration and heating, solar flares, and the solar wind, this representation of R-D-MHD waves as soliton excitations may have extensive applications to study the lower part of the earth's ionosphere.« less

  2. Numerical simulation of the control of the three-dimensional transition process in boundary layers

    NASA Technical Reports Server (NTRS)

    Kral, L. D.; Fasel, H. F.

    1990-01-01

    Surface heating techniques to control the three-dimensional laminar-turbulent transition process are numerically investigated for a water boundary layer. The Navier-Stokes and energy equations are solved using a fully implicit finite difference/spectral method. The spatially evolving boundary layer is simulated. Results of both passive and active methods of control are shown for small amplitude two-dimensional and three-dimensional disturbance waves. Control is also applied to the early stages of the secondary instability process using passive or active control techniques.

  3. Analytical solutions to time-fractional partial differential equations in a two-dimensional multilayer annulus

    NASA Astrophysics Data System (ADS)

    Chen, Shanzhen; Jiang, Xiaoyun

    2012-08-01

    In this paper, analytical solutions to time-fractional partial differential equations in a multi-layer annulus are presented. The final solutions are obtained in terms of Mittag-Leffler function by using the finite integral transform technique and Laplace transform technique. In addition, the classical diffusion equation (α=1), the Helmholtz equation (α→0) and the wave equation (α=2) are discussed as special cases. Finally, an illustrative example problem for the three-layer semi-circular annular region is solved and numerical results are presented graphically for various kind of order of fractional derivative.

  4. Interesting features of nonlinear shock equations in dissipative pair-ion-electron plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; National Centre for Physics; Rizvi, H.

    2011-09-15

    Two dimensional nonlinear electrostatic waves are studied in unmagnetized, dissipative pair-ion-electron plasmas in the presence of weak transverse perturbation. The dissipation in the system is taken into account by incorporating the kinematic viscosity of both positive and negative ions. In the linear case, a biquadratic dispersion relation is obtained, which yields the fast and slow modes in a pair-ion-electron plasma. It is shown that the limiting cases of electron-ion and pair-ion can be retrieved from the general biquadratic dispersion relation, and the differences in the characters of the waves propagating in both the cases are also highlighted. Using the smallmore » amplitude approximation method, the nonlinear Kadomtsev Petviashvili Burgers as well as Burgers-Kadomtsev Petviashvili equations are derived and their applicability for pair-ion-electron plasma is explained in detail. The present study may have relevance to understand the formation of two dimensional electrostatic shocks in laboratory produced pair-ion-electron plasmas.« less

  5. a Bounded Finite-Difference Discretization of a Two-Dimensional Diffusion Equation with Logistic Nonlinear Reaction

    NASA Astrophysics Data System (ADS)

    Macías-Díaz, J. E.

    In the present manuscript, we introduce a finite-difference scheme to approximate solutions of the two-dimensional version of Fisher's equation from population dynamics, which is a model for which the existence of traveling-wave fronts bounded within (0,1) is a well-known fact. The method presented here is a nonstandard technique which, in the linear regime, approximates the solutions of the original model with a consistency of second order in space and first order in time. The theory of M-matrices is employed here in order to elucidate conditions under which the method is able to preserve the positivity and the boundedness of solutions. In fact, our main result establishes relatively flexible conditions under which the preservation of the positivity and the boundedness of new approximations is guaranteed. Some simulations of the propagation of a traveling-wave solution confirm the analytical results derived in this work; moreover, the experiments evince a good agreement between the numerical result and the analytical solutions.

  6. Simulations of viscous and compressible gas-gas flows using high-order finite difference schemes

    NASA Astrophysics Data System (ADS)

    Capuano, M.; Bogey, C.; Spelt, P. D. M.

    2018-05-01

    A computational method for the simulation of viscous and compressible gas-gas flows is presented. It consists in solving the Navier-Stokes equations associated with a convection equation governing the motion of the interface between two gases using high-order finite-difference schemes. A discontinuity-capturing methodology based on sensors and a spatial filter enables capturing shock waves and deformable interfaces. One-dimensional test cases are performed as validation and to justify choices in the numerical method. The results compare well with analytical solutions. Shock waves and interfaces are accurately propagated, and remain sharp. Subsequently, two-dimensional flows are considered including viscosity and thermal conductivity. In Richtmyer-Meshkov instability, generated on an air-SF6 interface, the influence of the mesh refinement on the instability shape is studied, and the temporal variations of the instability amplitude is compared with experimental data. Finally, for a plane shock wave propagating in air and impacting a cylindrical bubble filled with helium or R22, numerical Schlieren pictures obtained using different grid refinements are found to compare well with experimental shadow-photographs. The mass conservation is verified from the temporal variations of the mass of the bubble. The mean velocities of pressure waves and bubble interface are similar to those obtained experimentally.

  7. Evaluation of Full Reynolds Stress Turbulence Models in FUN3D

    NASA Technical Reports Server (NTRS)

    Dudek, Julianne C.; Carlson, Jan-Renee

    2017-01-01

    Full seven-equation Reynolds stress turbulence models are a relatively new and promising tool for todays aerospace technology challenges. This paper uses two stress-omega full Reynolds stress models to evaluate challenging flows including shock-wave boundary layer interactions, separation and mixing layers. The Wilcox and the SSGLRR full second-moment Reynolds stress models are evaluated for four problems: a transonic two-dimensional diffuser, a supersonic axisymmetric compression corner, a compressible planar shear layer, and a subsonic axisymmetric jet. Simulation results are compared with experimental data and results using the more commonly used Spalart-Allmaras (SA) one-equation and the Menter Shear Stress Transport (SST) two-equation models.

  8. Propagation of large-amplitude waves on dielectric liquid sheets in a tangential electric field: exact solutions in three-dimensional geometry.

    PubMed

    Zubarev, Nikolay M; Zubareva, Olga V

    2010-10-01

    Nonlinear waves on sheets of dielectric liquid in the presence of an external tangential electric field are studied theoretically. It is shown that waves of arbitrary shape in three-dimensional geometry can propagate along (or against) the electric field direction without distortion, i.e., the equations of motion admit a wide class of exact traveling wave solutions. This unusual situation occurs for nonconducting ideal liquids with high dielectric constants in the case of a sufficiently strong field strength. Governing equations for evolution of plane symmetric waves on fluid sheets are derived using conformal variables. A dispersion relation for the evolution of small perturbations of the traveling wave solutions is obtained. It follows from this relation that, regardless of the wave shape, the amplitudes of small-scale perturbations do not increase with time and, hence, the traveling waves are stable. We also study the interaction of counterpropagating symmetric waves with small but finite amplitudes. The corresponding solution of the equations of motion describes the nonlinear superposition of the oppositely directed waves. The results obtained are applicable for the description of long waves on fluid sheets in a horizontal magnetic field.

  9. Sine-Gordon Equation in (1+2) and (1+3) dimensions: Existence and Classification of Traveling-Wave Solutions.

    PubMed

    Zarmi, Yair

    2015-01-01

    The (1+1)-dimensional Sine-Gordon equation passes integrability tests commonly applied to nonlinear evolution equations. Its kink solutions (one-dimensional fronts) are obtained by a Hirota algorithm. In higher space-dimensions, the equation does not pass these tests. Although it has been derived over the years for quite a few physical systems that have nothing to do with Special Relativity, the Sine-Gordon equation emerges as a non-linear relativistic wave equation. This opens the way for exploiting the tools of the Theory of Special Relativity. Using no more than the relativistic kinematics of tachyonic momentum vectors, from which the solutions are constructed through the Hirota algorithm, the existence and classification of N-moving-front solutions of the (1+2)- and (1+3)-dimensional equations for all N ≥ 1 are presented. In (1+2) dimensions, each multi-front solution propagates rigidly at one velocity. The solutions are divided into two subsets: Solutions whose velocities are lower than a limiting speed, c = 1, or are greater than or equal to c. To connect with concepts of the Theory of Special Relativity, c will be called "the speed of light." In (1+3)-dimensions, multi-front solutions are characterized by spatial structure and by velocity composition. The spatial structure is either planar (rotated (1+2)-dimensional solutions), or genuinely three-dimensional--branes. Planar solutions, propagate rigidly at one velocity, which is lower than, equal to, or higher than c. Branes must contain clusters of fronts whose speed exceeds c = 1. Some branes are "hybrids": different clusters of fronts propagate at different velocities. Some velocities may be lower than c but some must be equal to, or exceed, c. Finally, the speed of light cannot be approached from within the subset of slower-than-light solutions in both (1+2) and (1+3) dimensions.

  10. Exact traveling-wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional Schrödinger equation with polynomial nonlinearity of arbitrary order.

    PubMed

    Petrović, Nikola Z; Belić, Milivoj; Zhong, Wei-Ping

    2011-02-01

    We obtain exact traveling wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional nonlinear Schrödinger equation with variable coefficients and polynomial Kerr nonlinearity of an arbitrarily high order. Exact solutions, given in terms of Jacobi elliptic functions, are presented for the special cases of cubic-quintic and septic models. We demonstrate that the widely used method for finding exact solutions in terms of Jacobi elliptic functions is not applicable to the nonlinear Schrödinger equation with saturable nonlinearity. ©2011 American Physical Society

  11. Rogue waves for a discrete (2+1)-dimensional Ablowitz-Ladik equation in the nonlinear optics and Bose-Einstein condensation

    NASA Astrophysics Data System (ADS)

    Wu, Xiao-Yu; Tian, Bo; Chai, Han-Peng; Du, Zhong

    2018-03-01

    Under investigation in this paper is a discrete (2+1)-dimensional Ablowitz-Ladik equation, which is used to model the nonlinear waves in the nonlinear optics and Bose-Einstein condensation. Employing the Kadomtsev-Petviashvili hierarchy reduction, we obtain the rogue wave solutions in terms of the Gramian. We graphically study the first-, second- and third-order rogue waves with the influence of the focusing coefficient and coupling strength. When the value of the focusing coefficient increases, both the peak of the rogue wave and background decrease. When the value of the coupling strength increases, the rogue wave raises and decays in a shorter time. High-order rogue waves are exhibited as one single highest peak and some lower humps, and such lower humps are shown as the triangular and circular patterns.

  12. Turbulence in the Ott-Antonsen equation for arrays of coupled phase oscillators

    NASA Astrophysics Data System (ADS)

    Wolfrum, M.; Gurevich, S. V.; Omel'chenko, O. E.

    2016-02-01

    In this paper we study the transition to synchrony in an one-dimensional array of oscillators with non-local coupling. For its description in the continuum limit of a large number of phase oscillators, we use a corresponding Ott-Antonsen equation, which is an integro-differential equation for the evolution of the macroscopic profiles of the local mean field. Recently, it was reported that in the spatially extended case at the synchronisation threshold there appear partially coherent plane waves with different wave numbers, which are organised in the well-known Eckhaus scenario. In this paper, we show that for Kuramoto-Sakaguchi phase oscillators the phase lag parameter in the interaction function can induce a Benjamin-Feir-type instability of the partially coherent plane waves. The emerging collective macroscopic chaos appears as an intermediate stage between complete incoherence and stable partially coherent plane waves. We give an analytic treatment of the Benjamin-Feir instability and its onset in a codimension-two bifurcation in the Ott-Antonsen equation as well as a numerical study of the transition from phase turbulence to amplitude turbulence inside the Benjamin-Feir unstable region.

  13. Stability of planar traveling waves in a Keller-Segel equation on an infinite strip domain

    NASA Astrophysics Data System (ADS)

    Chae, Myeongju; Choi, Kyudong; Kang, Kyungkeun; Lee, Jihoon

    2018-07-01

    We consider a simplified model of tumor angiogenesis, described by a Keller-Segel equation on the two dimensional domain (x , y) ∈ R ×Sλ where Sλ is the circle of perimeter λ. It is known that the system allows planar traveling wave solutions of an invading type. In case that λ is sufficiently small, we establish the nonlinear stability of traveling wave solutions in the absence of chemical diffusion if the initial perturbation is sufficiently small in some weighted Sobolev space. When chemical diffusion is present, it can be shown that the system is linearly stable. Lastly, we prove that any solution with our front condition eventually becomes planar under certain regularity conditions.

  14. A three-dimensional, finite element model for coastal and estuarine circulation

    USGS Publications Warehouse

    Walters, R.A.

    1992-01-01

    This paper describes the development and application of a three-dimensional model for coastal and estuarine circulation. The model uses a harmonic expansion in time and a finite element discretization in space. All nonlinear terms are retained, including quadratic bottom stress, advection and wave transport (continuity nonlinearity). The equations are solved as a global and a local problem, where the global problem is the solution of the wave equation formulation of the shallow water equations, and the local problem is the solution of the momentum equation for the vertical velocity profile. These equations are coupled to the advection-diffusion equation for salt so that density gradient forcing is included in the momentum equations. The model is applied to a study of Delaware Bay, U.S.A., where salinity intrusion is the primary focus. ?? 1991.

  15. Reactive-Diffusive-Advective Traveling Waves in a Family of Degenerate Nonlinear Equations.

    PubMed

    Sánchez-Garduño, Faustino; Pérez-Velázquez, Judith

    This paper deals with the analysis of existence of traveling wave solutions (TWS) for a diffusion-degenerate (at D (0) = 0) and advection-degenerate (at h '(0) = 0) reaction-diffusion-advection (RDA) equation. Diffusion is a strictly increasing function and the reaction term generalizes the kinetic part of the Fisher-KPP equation. We consider different forms of the convection term h ( u ): (1)   h '( u ) is constant k , (2)   h '( u ) = ku with k > 0, and (3) it is a quite general form which guarantees the degeneracy in the advective term. In Case 1, we prove that the task can be reduced to that for the corresponding equation, where k = 0, and then previous results reported from the authors can be extended. For the other two cases, we use both analytical and numerical tools. The analysis we carried out is based on the restatement of searching TWS for the full RDA equation into a two-dimensional dynamical problem. This consists of searching for the conditions on the parameter values for which there exist heteroclinic trajectories of the ordinary differential equations (ODE) system in the traveling wave coordinates. Throughout the paper we obtain the dynamics by using tools coming from qualitative theory of ODE.

  16. Reactive-Diffusive-Advective Traveling Waves in a Family of Degenerate Nonlinear Equations

    PubMed Central

    Sánchez-Garduño, Faustino

    2016-01-01

    This paper deals with the analysis of existence of traveling wave solutions (TWS) for a diffusion-degenerate (at D(0) = 0) and advection-degenerate (at h′(0) = 0) reaction-diffusion-advection (RDA) equation. Diffusion is a strictly increasing function and the reaction term generalizes the kinetic part of the Fisher-KPP equation. We consider different forms of the convection term h(u): (1)  h′(u) is constant k, (2)  h′(u) = ku with k > 0, and (3) it is a quite general form which guarantees the degeneracy in the advective term. In Case 1, we prove that the task can be reduced to that for the corresponding equation, where k = 0, and then previous results reported from the authors can be extended. For the other two cases, we use both analytical and numerical tools. The analysis we carried out is based on the restatement of searching TWS for the full RDA equation into a two-dimensional dynamical problem. This consists of searching for the conditions on the parameter values for which there exist heteroclinic trajectories of the ordinary differential equations (ODE) system in the traveling wave coordinates. Throughout the paper we obtain the dynamics by using tools coming from qualitative theory of ODE. PMID:27689131

  17. Rayleigh-wave diffractions due to a void in the layered half space

    USGS Publications Warehouse

    Xia, J.; Xu, Y.; Miller, R.D.; Nyquist, Jonathan E.

    2006-01-01

    Void detection is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surface-wave techniques can provide reliable shear (S)-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the resolution of S-wave velocity profiles inverted from surface-wave phase velocities. Xia et al. (2006a) derived a Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space. Encouraging results of directly detecting a void from Rayleigh-wave diffractions were presented (Xia et al., 2006a). In this paper we used four two-dimensional square voids in the layered half space to demonstrate the feasibility of detecting a void with Rayleigh-wave diffractions. Rayleigh-wave diffractions were recognizable for all these models after removing direct surface waves by F-K filtering. We evaluate the feasibility of applying the Rayleigh-wave diffraction traveltime equation to a void in the layered earth model. The phase velocity of diffracted Rayleigh waves is predominately determined by surrounding materials of a void. The modeling results demonstrate that the Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space can be applied to the case of a void in the layered half space. In practice, only two diffraction times are necessary to define the depth to the top of a void and the average velocity of diffracted Rayleigh waves. ?? 2005 Society of Exploration Geophysicists.

  18. Dispersive wave propagation in two-dimensional rigid periodic blocky materials with elastic interfaces

    NASA Astrophysics Data System (ADS)

    Bacigalupo, Andrea; Gambarotta, Luigi

    2017-05-01

    Dispersive waves in two-dimensional blocky materials with periodic microstructure made up of equal rigid units, having polygonal centro-symmetric shape with mass and gyroscopic inertia, connected with each other through homogeneous linear interfaces, have been analyzed. The acoustic behavior of the resulting discrete Lagrangian model has been obtained through a Floquet-Bloch approach. From the resulting eigenproblem derived by the Euler-Lagrange equations for harmonic wave propagation, two acoustic branches and an optical branch are obtained in the frequency spectrum. A micropolar continuum model to approximate the Lagrangian model has been derived based on a second-order Taylor expansion of the generalized macro-displacement field. The constitutive equations of the equivalent micropolar continuum have been obtained, with the peculiarity that the positive definiteness of the second-order symmetric tensor associated to the curvature vector is not guaranteed and depends both on the ratio between the local tangent and normal stiffness and on the block shape. The same results have been obtained through an extended Hamiltonian derivation of the equations of motion for the equivalent continuum that is related to the Hill-Mandel macro homogeneity condition. Moreover, it is shown that the hermitian matrix governing the eigenproblem of harmonic wave propagation in the micropolar model is exact up to the second order in the norm of the wave vector with respect to the same matrix from the discrete model. To appreciate the acoustic behavior of some relevant blocky materials and to understand the reliability and the validity limits of the micropolar continuum model, some blocky patterns have been analyzed: rhombic and hexagonal assemblages and running bond masonry. From the results obtained in the examples, the obtained micropolar model turns out to be particularly accurate to describe dispersive functions for wavelengths greater than 3-4 times the characteristic dimension of the block. Finally, in consideration that the positive definiteness of the second order elastic tensor of the micropolar model is not guaranteed, the hyperbolicity of the equation of motion has been investigated by considering the Legendre-Hadamard ellipticity conditions requiring real values for the wave velocity.

  19. Solution of D dimensional Dirac equation for hyperbolic tangent potential using NU method and its application in material properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suparmi, A., E-mail: soeparmi@staff.uns.ac.id; Cari, C., E-mail: cari@staff.uns.ac.id; Pratiwi, B. N., E-mail: namakubetanurpratiwi@gmail.com

    2016-02-08

    The analytical solution of D-dimensional Dirac equation for hyperbolic tangent potential is investigated using Nikiforov-Uvarov method. In the case of spin symmetry the D dimensional Dirac equation reduces to the D dimensional Schrodinger equation. The D dimensional relativistic energy spectra are obtained from D dimensional relativistic energy eigen value equation by using Mat Lab software. The corresponding D dimensional radial wave functions are formulated in the form of generalized Jacobi polynomials. The thermodynamically properties of materials are generated from the non-relativistic energy eigen-values in the classical limit. In the non-relativistic limit, the relativistic energy equation reduces to the non-relativistic energy.more » The thermal quantities of the system, partition function and specific heat, are expressed in terms of error function and imaginary error function which are numerically calculated using Mat Lab software.« less

  20. Three-Dimensional Shallow Water Acoustics

    DTIC Science & Technology

    2015-09-30

    converts the Helmholtz wave equation of elliptic type to a one-way wave equation of parabolic type. The conversion allows efficient marching solution ...algorithms for 2 solving the boundary value problem posed by the Helmholtz equation . This can reduce significantly the requirement for computational...Fourier parabolic- equation sound propagation solution scheme," J. Acoust. Soc. Am, vol. 132, pp. EL61-EL67 (2012). [6] Y.-T. Lin, J.M. Collis and T.F

  1. Electron acoustic solitary waves in a magnetized plasma with nonthermal electrons and an electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in; University of the Western Cape, Belville

    2016-08-15

    A theoretical investigation is carried out to study the obliquely propagating electron acoustic solitary waves having nonthermal hot electrons, cold and beam electrons, and ions in a magnetized plasma. We have employed reductive perturbation theory to derive the Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation describing the nonlinear evolution of these waves. The two-dimensional plane wave solution of KdV-ZK equation is analyzed to study the effects of nonthermal and beam electrons on the characteristics of the solitons. Theoretical results predict negative potential solitary structures. We emphasize that the inclusion of finite temperature effects reduces the soliton amplitudes and the width of the solitons increasesmore » by an increase in the obliquity of the wave propagation. The numerical analysis is presented for the parameters corresponding to the observations of “burst a” event by Viking satellite on the auroral field lines.« less

  2. Two dimensional modelling of flood flows and suspended sediment transport: the case of Brenta River

    NASA Astrophysics Data System (ADS)

    D'Alpaos, L.; Martini, P.; Carniello, L.

    2003-04-01

    The paper deals with numerical modelling of flood waves and suspended sediment in plain river basins. The two dimensional depth integrated momentum and continuity equations, modified to take into account of the bottom irregularities that strongly affect the hydrodynamic and the continuity in partially dry areas (for example, during the first stages of a plain flooding and in tidal flows), are solved with a standard Galerkin finite element method using a semi-implicit numerical scheme and considering the role both of the small channel network and the regulation dispositive on the flooding wave propagation. Transport of suspended sediment and bed evolution are coupled with the flood propagation through the convection-dispersion equation and the Exner's equation. Results of a real case study are presented in which the effects of extreme flood of Brenta River (Italy) are examinated. The flooded areas (urban and rural areas) are identified and a mitigation solution based on a diversion channel flowing into Venice Lagoon is proposed. We show that this solution strongly reduces the flood risk in the downstream areas and can provide an important sediment source to the Venice Lagoon. Finally, preliminary results of the sediment dispersion in the Venice Lagoon are presented.

  3. Dispersive traveling wave solutions of the Equal-Width and Modified Equal-Width equations via mathematical methods and its applications

    NASA Astrophysics Data System (ADS)

    Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar

    2018-06-01

    The Equal-Width and Modified Equal-Width equations are used as a model in partial differential equations for the simulation of one-dimensional wave transmission in nonlinear media with dispersion processes. In this article we have employed extend simple equation method and the exp(-varphi(ξ)) expansion method to construct the exact traveling wave solutions of equal width and modified equal width equations. The obtained results are novel and have numerous applications in current areas of research in mathematical physics. It is exposed that our method, with the help of symbolic computation, provides a effective and powerful mathematical tool for solving different kind nonlinear wave problems.

  4. Analysis of Three-Dimensional, Nonlinear Development of Wave-Like Structure in a Compressible Round Jet

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Mankbadi, Reda R.

    2002-01-01

    An analysis of the nonlinear development of the large-scale structures or instability waves in compressible round jets was conducted using the integral energy method. The equations of motion were decomposed into two sets of equations; one set governing the mean flow motion and the other set governing the large-scale structure motion. The equations in each set were then combined to derive kinetic energy equations that were integrated in the radial direction across the jet after the boundary-layer approximations were applied. Following the application of further assumptions regarding the radial shape of the mean flow and the large structures, equations were derived that govern the nonlinear, streamwise development of the large structures. Using numerically generated mean flows, calculations show the energy exchanges and the effects of the initial amplitude on the coherent structure development in the jet.

  5. Stable two-dimensional solitary pulses in linearly coupled dissipative Kadomtsev-Petviashvili equations.

    PubMed

    Feng, Bao-Feng; Malomed, Boris A; Kawahara, Takuji

    2002-11-01

    We present a two-dimensional (2D) generalization of the stabilized Kuramoto-Sivashinsky system, based on the Kadomtsev-Petviashvili (KP) equation including dissipation of the generic [Newell-Whitehead-Segel (NWS)] type and gain. The system directly applies to the description of gravity-capillary waves on the surface of a liquid layer flowing down an inclined plane, with a surfactant diffusing along the layer's surface. Actually, the model is quite general, offering a simple way to stabilize nonlinear media, combining the weakly 2D dispersion of the KP type with gain and NWS dissipation. Other applications are internal waves in multilayer fluids flowing down an inclined plane, double-front flames in gaseous mixtures, etc. Parallel to this weakly 2D model, we also introduce and study a semiphenomenological one, whose dissipative terms are isotropic, rather than of the NWS type, in order to check if qualitative results are sensitive to the exact form of the lossy terms. The models include an additional linear equation of the advection-diffusion type, linearly coupled to the main KP-NWS equation. The extra equation provides for stability of the zero background in the system, thus opening a way for the existence of stable localized pulses. We focus on the most interesting case, when the dispersive part of the system is of the KP-I type, which corresponds, e.g., to capillary waves, and makes the existence of completely localized 2D pulses possible. Treating the losses and gain as small perturbations and making use of the balance equation for the field momentum, we find that the equilibrium between the gain and losses may select two steady-state solitons from their continuous family existing in the absence of the dissipative terms (the latter family is found in an exact analytical form, and is numerically demonstrated to be stable). The selected soliton with the larger amplitude is expected to be stable. Direct simulations completely corroborate the analytical predictions, for both the physical and phenomenological models.

  6. Self-action of Bessel wave packets in a system of coupled light guides and formation of light bullets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakin, A. A., E-mail: balakin.alexey@yandex.ru; Mironov, V. A.; Skobelev, S. A., E-mail: sk.sa1981@gmail.com

    The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the “kaleidoscopic” picture of a wavemore » packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.« less

  7. Strong shock waves and nonequilibrium response in a one-dimensional gas: a Boltzmann equation approach.

    PubMed

    Hurtado, Pablo I

    2005-10-01

    We investigate the nonequilibrium behavior of a one-dimensional binary fluid on the basis of Boltzmann equation, using an infinitely strong shock wave as probe. Density, velocity, and temperature profiles are obtained as a function of the mixture mass ratio mu. We show that temperature overshoots near the shock layer, and that heavy particles are denser, slower, and cooler than light particles in the strong nonequilibrium region around the shock. The shock width omega(mu), which characterizes the size of this region, decreases as omega(mu) approximately mu(1/3) for mu-->0. In this limit, two very different length scales control the fluid structure, with heavy particles equilibrating much faster than light ones. Hydrodynamic fields relax exponentially toward equilibrium: phi(chi) approximately exp[-chi/lambda]. The scale separation is also apparent here, with two typical scales, lambda1 and lambda2, such that lambda1 approximately mu(1/2 as mu-->0, while lambda2, which is the slow scale controlling the fluid's asymptotic relaxation, increases to a constant value in this limit. These results are discussed in light of recent numerical studies on the nonequilibrium behavior of similar one-dimensional binary fluids.

  8. Flow Visualization and Pattern Formation in Vertically Falling Liquid Films

    NASA Astrophysics Data System (ADS)

    Balakotaiah, Vemuri; Malamataris, Nikolaos

    2008-11-01

    Analytical results of a low-dimensional two equation h-q model and results of a direct numerical simulation of the transient two-dimensional Navier Stokes equations are presented for vertically falling liquid films along a solid wall. The numerical study aims at the elucidation of the hydrodynamics of the falling film. The analytical study aims at the calculation of the parameter space where pattern formation occurs for this flow. It has been found that when the wave amplitude exceeds a certain magnitude, flow reversal occurs in the film underneath the minimum of the waves [1]. The instantaneous vortical structures possess two hyperbolic points on the vertical wall and an elliptic point in the film. As the wave amplitude increases further, the elliptic point reaches the free surface of the film and two more hyperbolic points are formed in the free surface that replace the elliptic point. Between the two hyperbolic points on the free surface, the streamwise component of velocity is negative and the film is divided into asymmetric patterns of up and down flows. Depending on the value of the Kapitza number, these patterns are either stationary or oscillatory. Physical reasons for the influence of the Kapitza number on pattern formation are given. Movies are shown where the pattern formation is demonstrated. [1] N.A.Malamataris and V.Balakotaiah (2008), AIChE J., 54(7), p. 1725-1740

  9. Nonlinear hydrodynamic stability and transition; Proceedings of the IUTAM Symposium, Nice, France, Sept. 3-7, 1990

    NASA Astrophysics Data System (ADS)

    Theoretical and experimental research on nonlinear hydrodynamic stability and transition is presented. Bifurcations, amplitude equations, pattern in experiments, and shear flows are considered. Particular attention is given to bifurcations of plane viscous fluid flow and transition to turbulence, chaotic traveling wave covection, chaotic behavior of parametrically excited surface waves in square geometry, amplitude analysis of the Swift-Hohenberg equation, traveling wave convection in finite containers, focus instability in axisymmetric Rayleigh-Benard convection, scaling and pattern formation in flowing sand, dynamical behavior of instabilities in spherical gap flows, and nonlinear short-wavelength Taylor vortices. Also discussed are stability of a flow past a two-dimensional grid, inertia wave breakdown in a precessing fluid, flow-induced instabilities in directional solidification, structure and dynamical properties of convection in binary fluid mixtures, and instability competition for convecting superfluid mixtures.

  10. Nonlinear stability of solar type 3 radio bursts. 1: Theory

    NASA Technical Reports Server (NTRS)

    Smith, R. A.; Goldstein, M. L.; Papadopoulos, K.

    1978-01-01

    A theory of the excitation of solar type 3 bursts is presented. Electrons initially unstable to the linear bump-in-tail instability are shown to rapidly amplify Langmuir waves to energy densities characteristic of strong turbulence. The three-dimensional equations which describe the strong coupling (wave-wave) interactions are derived. For parameters characteristic of the interplanetary medium the equations reduce to one dimension. In this case, the oscillating two stream instability (OTSI) is the dominant nonlinear instability, and is stablized through the production of nonlinear ion density fluctuations that efficiently scatter Langmuir waves out of resonance with the electron beam. An analytical model of the electron distribution function is also developed which is used to estimate the total energy losses suffered by the electron beam as it propagates from the solar corona to 1 A.U. and beyond.

  11. Sediment transport under wave groups: Relative importance between nonlinear waveshape and nonlinear boundary layer streaming

    USGS Publications Warehouse

    Yu, X.; Hsu, T.-J.; Hanes, D.M.

    2010-01-01

    Sediment transport under nonlinear waves in a predominately sheet flow condition is investigated using a two-phase model. Specifically, we study the relative importance between the nonlinear waveshape and nonlinear boundary layer streaming on cross-shore sand transport. Terms in the governing equations because of the nonlinear boundary layer process are included in this one-dimensional vertical (1DV) model by simplifying the two-dimensional vertical (2DV) ensemble-averaged two-phase equations with the assumption that waves propagate without changing their form. The model is first driven by measured time series of near-bed flow velocity because of a wave group during the SISTEX99 large wave flume experiment and validated with the measured sand concentration in the sheet flow layer. Additional studies are then carried out by including and excluding the nonlinear boundary layer terms. It is found that for the grain diameter (0.24 mm) and high-velocity skewness wave condition considered here, nonlinear waveshape (e.g., skewness) is the dominant mechanism causing net onshore transport and nonlinear boundary layer streaming effect only causes an additional 36% onshore transport. However, for conditions of relatively low-wave skewness and a stronger offshore directed current, nonlinear boundary layer streaming plays a more critical role in determining the net transport. Numerical experiments further suggest that the nonlinear boundary layer streaming effect becomes increasingly important for finer grain. When the numerical model is driven by measured near-bed flow velocity in a more realistic surf zone setting, model results suggest nonlinear boundary layer processes may nearly double the onshore transport purely because of nonlinear waveshape. Copyright 2010 by the American Geophysical Union.

  12. Wave-induced response of a floating two-dimensional body with a moonpool

    PubMed Central

    Fredriksen, Arnt G.; Kristiansen, Trygve; Faltinsen, Odd M.

    2015-01-01

    Regular wave-induced behaviour of a floating stationary two-dimensional body with a moonpool is studied. The focus is on resonant piston-mode motion in the moonpool and rigid-body motions. Dedicated two-dimensional experiments have been performed. Two numerical hybrid methods, which have previously been applied to related problems, are further developed. Both numerical methods couple potential and viscous flow. The semi-nonlinear hybrid method uses linear free-surface and body-boundary conditions. The other one uses fully nonlinear free-surface and body-boundary conditions. The harmonic polynomial cell method solves the Laplace equation in the potential flow domain, while the finite volume method solves the Navier–Stokes equations in the viscous flow domain near the body. Results from the two codes are compared with the experimental data. The nonlinear hybrid method compares well with the data, while certain discrepancies are observed for the semi-nonlinear method. In particular, the roll motion is over-predicted by the semi-nonlinear hybrid method. Error sources in the semi-nonlinear hybrid method are discussed. The moonpool strongly affects heave motions in a frequency range around the piston-mode resonance frequency of the moonpool. No resonant water motions occur in the moonpool at the piston-mode resonance frequency. Instead large moonpool motions occur at a heave natural frequency associated with small damping near the piston-mode resonance frequency. PMID:25512594

  13. Radial Photonic Crystal for Detection of Frequency and Position of Radiation Sources

    DTIC Science & Technology

    2012-08-06

    Dehesa, J. Acoustic resonances in two-dimensional radial sonic crystal shells. New J. Phys. 12, 073034 (2010). 15. Kurs, A. et al. Wireless power...microstructured materials, i.e. metamaterials, we present here the first practical realization of a radial wave crystal . This type of device was...parameters, those that define the solution of the wave propagation equations, has opened a very wide range of possibilities going from negative

  14. Exact traveling wave solutions for system of nonlinear evolution equations.

    PubMed

    Khan, Kamruzzaman; Akbar, M Ali; Arnous, Ahmed H

    2016-01-01

    In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolution equations those arise in mathematical physics and engineering fields. It is uncomplicated to extend this method to higher-order nonlinear evolution equations in mathematical physics. And it should be possible to apply the same method to nonlinear evolution equations having more general forms of nonlinearities by utilizing the traveling wave hypothesis.

  15. On nonlinear Tollmien-Schlichting/vortex interaction in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Davis, Dominic A. R.; Smith, Frank T.

    1993-01-01

    The instability of an incompressible three-dimensional boundary layer (that is, one with cross-flow) is considered theoretically and computationally in the context of vortex/wave interactions. Specifically the work centers on two low amplitude, lower-branch Tollmien-Schlichting waves which mutually interact to induce a weak longitudinal vortex flow; the vortex motion, in turn, gives rise to significant wave-modulation via wall-shear forcing. The characteristic Reynolds number is taken as a large parameter and, as a consequence, the waves' and the vortex motion are governed primarily by triple-deck theory. The nonlinear interaction is captured by a viscous partial-differential system for the vortex coupled with a pair of amplitude equations for each wave pressure. Three distinct possibilities were found to emerge for the nonlinear behavior of the flow solution downstream - an algebraic finite-distance singularity, far downstream saturation or far-downstream wave-decay (leaving pure vortex flow) - depending on the input conditions, the wave angles, and the size of the cross-flow.

  16. The stability of freak waves with regard to external impact and perturbation of initial data

    NASA Astrophysics Data System (ADS)

    Smirnova, Anna; Shamin, Roman

    2014-05-01

    We investigate solutions of the equations, describing freak waves, in perspective of stability with regard to external impact and perturbation of initial data. The modeling of freak waves is based on numerical solution of equations describing a non-stationary potential flow of the ideal fluid with a free surface. We consider the two-dimensional infinitely deep flow. For waves modeling we use the equations in conformal variables. The variant of these equations is offered in [1]. Mathematical correctness of these equations was discussed in [2]. These works establish the uniqueness of solutions, offer the effective numerical solution calculation methods, prove the numerical convergence of these methods. The important aspect of numerical modeling of freak waves is the stability of solutions, describing these waves. In this work we study the questions of stability with regards to external impact and perturbation of initial data. We showed the stability of freak waves numerical model, corresponding to the external impact. We performed series of computational experiments with various freak wave initial data and random external impact. This impact means the power density on free surface. In each experiment examine two waves: the wave that was formed by external impact and without one. In all the experiments we see the stability of equation`s solutions. The random external impact practically does not change the time of freak wave formation and its form. Later our work progresses to the investigation of solution's stability under perturbations of initial data. We take the initial data that provide a freak wave and get the numerical solution. In common we take the numerical solution of equation with perturbation of initial data. The computing experiments showed that the freak waves equations solutions are stable under perturbations of initial data.So we can make a conclusion that freak waves are stable relatively external perturbation and perturbation of initial data both. 1. Zakharov V.E., Dyachenko A.I., Vasilyev O.A. New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface// Eur. J.~Mech. B Fluids. 2002. V. 21. P. 283-291. 2. R.V. Shamin. Dynamics of an Ideal Liquid with a Free Surface in Conformal Variables // Journal of Mathematical Sciences, Vol. 160, No. 5, 2009. P. 537-678. 3. R.V. Shamin, V.E. Zakharov, A.I. Dyachenko. How probability for freak wave formation can be found // THE EUROPEAN PHYSICAL JOURNAL - SPECIAL TOPICS Volume 185, Number 1, 113-124, DOI: 10.1140/epjst/e2010-01242-y

  17. Anomalous tropical planetary wave activity during 2015/2016 quasi biennial oscillation disruption

    NASA Astrophysics Data System (ADS)

    Kumar, Karanam Kishore; Mathew, Sneha Susan; Subrahmanyam, K. V.

    2018-01-01

    In the present communication, a record breaking duration (23 months) of the eastward phase of the QBO at 20 hPa is reported and details of the tropical wave activity during the recent anomalous QBO event are discussed. Two-dimensional Fourier analysis revealed the presence of 30-40 and 10-15 day westward propagating wave number 1 structures at 40 hPa pressure level over the equator. A combination of the mid-latitude Rossby waves and the 30-40 day oscillations seems to be the most probable mechanism for the observed disruption of the QBO.

  18. Wake-shock interaction at a Mach number of 6

    NASA Technical Reports Server (NTRS)

    Walsh, M. J.

    1978-01-01

    Measurements of mean pitot pressure, static pressure, and total temperature were made in the two dimensional turbulent mixing region of a wake downstream of an interaction with a shock-expansion wave system. The results indicated that: (1) the shock increased the mixing, and (2) the expansion field that followed the shock decreased the turbulent mixing. The overall effect of the shock-expansion wave interaction was dependent on the orientation of the expansion wave with respect to the intersecting shock wave. These data could be used to validate nonequilibrium turbulence modeling and numerical solution of the time averaged Navier-Stokes equations.

  19. Acoustic receptivity and transition modeling of Tollmien-Schlichting disturbances induced by distributed surface roughness

    NASA Astrophysics Data System (ADS)

    Raposo, Henrique; Mughal, Shahid; Ashworth, Richard

    2018-04-01

    Acoustic receptivity to Tollmien-Schlichting waves in the presence of surface roughness is investigated for a flat plate boundary layer using the time-harmonic incompressible linearized Navier-Stokes equations. It is shown to be an accurate and efficient means of predicting receptivity amplitudes and, therefore, to be more suitable for parametric investigations than other approaches with direct-numerical-simulation-like accuracy. Comparison with the literature provides strong evidence of the correctness of the approach, including the ability to quantify non-parallel flow effects. These effects are found to be small for the efficiency function over a wide range of frequencies and local Reynolds numbers. In the presence of a two-dimensional wavy-wall, non-parallel flow effects are quite significant, producing both wavenumber detuning and an increase in maximum amplitude. However, a smaller influence is observed when considering an oblique Tollmien-Schlichting wave. This is explained by considering the non-parallel effects on receptivity and on linear growth which may, under certain conditions, cancel each other out. Ultimately, we undertake a Monte Carlo type uncertainty quantification analysis with two-dimensional distributed random roughness. Its power spectral density (PSD) is assumed to follow a power law with an associated uncertainty following a probabilistic Gaussian distribution. The effects of the acoustic frequency over the mean amplitude of the generated two-dimensional Tollmien-Schlichting waves are studied. A strong dependence on the mean PSD shape is observed and discussed according to the basic resonance mechanisms leading to receptivity. The growth of Tollmien-Schlichting waves is predicted with non-linear parabolized stability equations computations to assess the effects of stochasticity in transition location.

  20. Modelling in vivo action potential propagation along a giant axon.

    PubMed

    George, Stuart; Foster, Jamie M; Richardson, Giles

    2015-01-01

    A partial differential equation model for the three-dimensional current flow in an excitable, unmyelinated axon is considered. Where the axon radius is significantly below a critical value R(crit) (that depends upon intra- and extra-cellular conductivity and ion channel conductance) the resistance of the intracellular space is significantly higher than that of the extracellular space, such that the potential outside the axon is uniformly small whilst the intracellular potential is approximated by the transmembrane potential. In turn, since the current flow is predominantly axial, it can be shown that the transmembrane potential is approximated by a solution to the one-dimensional cable equation. It is noted that the radius of the squid giant axon, investigated by (Hodgkin and Huxley 1952e), lies close to R(crit). This motivates us to apply the three-dimensional model to the squid giant axon and compare the results thus found to those obtained using the cable equation. In the context of the in vitro experiments conducted in (Hodgkin and Huxley 1952e) we find only a small difference between the wave profiles determined using these two different approaches and little difference between the speeds of action potential propagation predicted. This suggests that the cable equation approximation is accurate in this scenario. However when applied to the it in vivo setting, in which the conductivity of the surrounding tissue is considerably lower than that of the axoplasm, there are marked differences in both wave profile and speed of action potential propagation calculated using the two approaches. In particular, the cable equation significantly over predicts the increase in the velocity of propagation as axon radius increases. The consequences of these results are discussed in terms of the evolutionary costs associated with increasing the speed of action potential propagation by increasing axon radius.

  1. Higher-order rational solitons and rogue-like wave solutions of the (2 + 1)-dimensional nonlinear fluid mechanics equations

    NASA Astrophysics Data System (ADS)

    Wen, Xiao-Yong; Yan, Zhenya

    2017-02-01

    The novel generalized perturbation (n, M)-fold Darboux transformations (DTs) are reported for the (2 + 1)-dimensional Kadomtsev-Petviashvili (KP) equation and its extension by using the Taylor expansion of the Darboux matrix. The generalized perturbation (1 , N - 1) -fold DTs are used to find their higher-order rational solitons and rogue wave solutions in terms of determinants. The dynamics behaviors of these rogue waves are discussed in detail for different parameters and time, which display the interesting RW and soliton structures including the triangle, pentagon, heptagon profiles, etc. Moreover, we find that a new phenomenon that the parameter (a) can control the wave structures of the KP equation from the higher-order rogue waves (a ≠ 0) into higher-order rational solitons (a = 0) in (x, t)-space with y = const . These results may predict the corresponding dynamical phenomena in the models of fluid mechanics and other physically relevant systems.

  2. Dirac Equation in (1 +1 )-Dimensional Curved Spacetime and the Multiphoton Quantum Rabi Model

    NASA Astrophysics Data System (ADS)

    Pedernales, J. S.; Beau, M.; Pittman, S. M.; Egusquiza, I. L.; Lamata, L.; Solano, E.; del Campo, A.

    2018-04-01

    We introduce an exact mapping between the Dirac equation in (1 +1 )-dimensional curved spacetime (DCS) and a multiphoton quantum Rabi model (QRM). A background of a (1 +1 )-dimensional black hole requires a QRM with one- and two-photon terms that can be implemented in a trapped ion for the quantum simulation of Dirac particles in curved spacetime. We illustrate our proposal with a numerical analysis of the free fall of a Dirac particle into a (1 +1 )-dimensional black hole, and find that the Zitterbewegung effect, measurable via the oscillatory trajectory of the Dirac particle, persists in the presence of gravity. From the duality between the squeezing term in the multiphoton QRM and the metric coupling in the DCS, we show that gravity generates squeezing of the Dirac particle wave function.

  3. Periodic solutions for one dimensional wave equation with bounded nonlinearity

    NASA Astrophysics Data System (ADS)

    Ji, Shuguan

    2018-05-01

    This paper is concerned with the periodic solutions for the one dimensional nonlinear wave equation with either constant or variable coefficients. The constant coefficient model corresponds to the classical wave equation, while the variable coefficient model arises from the forced vibrations of a nonhomogeneous string and the propagation of seismic waves in nonisotropic media. For finding the periodic solutions of variable coefficient wave equation, it is usually required that the coefficient u (x) satisfies ess infηu (x) > 0 with ηu (x) = 1/2 u″/u - 1/4 (u‧/u)2, which actually excludes the classical constant coefficient model. For the case ηu (x) = 0, it is indicated to remain an open problem by Barbu and Pavel (1997) [6]. In this work, for the periods having the form T = 2p-1/q (p , q are positive integers) and some types of boundary value conditions, we find some fundamental properties for the wave operator with either constant or variable coefficients. Based on these properties, we obtain the existence of periodic solutions when the nonlinearity is monotone and bounded. Such nonlinearity may cross multiple eigenvalues of the corresponding wave operator. In particular, we do not require the condition ess infηu (x) > 0.

  4. Feasibility of detecting near-surface feature with Rayleigh-wave diffraction

    USGS Publications Warehouse

    Xia, J.; Nyquist, Jonathan E.; Xu, Y.; Roth, M.J.S.; Miller, R.D.

    2007-01-01

    Detection of near-surfaces features such as voids and faults is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surface-wave techniques can provide reliable shear (S)-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the resolution of S-wave velocity profiles inverted from surface-wave phase velocities. Therefore, we studied the feasibility of directly detecting near-surfaces features with surface-wave diffractions. Based on the properties of surface waves, we have derived a Rayleigh-wave diffraction traveltime equation. We also have solved the equation for the depth to the top of a void and an average velocity of Rayleigh waves. Using these equations, the depth to the top of a void/fault can be determined based on traveltime data from a diffraction curve. In practice, only two diffraction times are necessary to define the depth to the top of a void/fault and the average Rayleigh-wave velocity that generates the diffraction curve. We used four two-dimensional square voids to demonstrate the feasibility of detecting a void with Rayleigh-wave diffractions: a 2??m by 2??m with a depth to the top of the void of 2??m, 4??m by 4??m with a depth to the top of the void of 7??m, and 6??m by 6??m with depths to the top of the void 12??m and 17??m. We also modeled surface waves due to a vertical fault. Rayleigh-wave diffractions were recognizable for all these models after FK filtering was applied to the synthetic data. The Rayleigh-wave diffraction traveltime equation was verified by the modeled data. Modeling results suggested that FK filtering is critical to enhance diffracted surface waves. A real-world example is presented to show how to utilize the derived equation of surface-wave diffractions. ?? 2006 Elsevier B.V. All rights reserved.

  5. Analytical Approach to (2+1)-Dimensional Boussinesq Equation and (3+1)-Dimensional Kadomtsev-Petviashvili Equation

    NASA Astrophysics Data System (ADS)

    Sarıaydın, Selin; Yıldırım, Ahmet

    2010-05-01

    In this paper, we studied the solitary wave solutions of the (2+1)-dimensional Boussinesq equation utt -uxx-uyy-(u2)xx-uxxxx = 0 and the (3+1)-dimensional Kadomtsev-Petviashvili (KP) equation uxt -6ux 2 +6uuxx -uxxxx -uyy -uzz = 0. By using this method, an explicit numerical solution is calculated in the form of a convergent power series with easily computable components. To illustrate the application of this method numerical results are derived by using the calculated components of the homotopy perturbation series. The numerical solutions are compared with the known analytical solutions. Results derived from our method are shown graphically.

  6. Quantum revival for elastic waves in thin plate

    NASA Astrophysics Data System (ADS)

    Dubois, Marc; Lefebvre, Gautier; Sebbah, Patrick

    2017-05-01

    Quantum revival is described as the time-periodic reconstruction of a wave packet initially localized in space and time. This effect is expected in finite-size systems which exhibit commensurable discrete spectrum such as the infinite quantum well. Here, we report on the experimental observation of full and fractional quantum revival for classical waves in a two dimensional cavity. We consider flexural waves propagating in thin plates, as their quadratic dispersion at low frequencies mimics the dispersion relation of quantum systems governed by Schrödinger equation. Time-dependent excitation and measurement are performed at ultrasonic frequencies and reveal a periodic reconstruction of the initial elastic wave packet.

  7. Phase transition of traveling waves in bacterial colony pattern

    NASA Astrophysics Data System (ADS)

    Wakano, Joe Yuichiro; Komoto, Atsushi; Yamaguchi, Yukio

    2004-05-01

    Depending on the growth condition, bacterial colonies can exhibit different morphologies. Many previous studies have used reaction diffusion equations to reproduce spatial patterns. They have revealed that nonlinear reaction term can produce diverse patterns as well as nonlinear diffusion coefficient. Typical reaction term consists of nutrient consumption, bacterial reproduction, and sporulation. Among them, the functional form of sporulation rate has not been biologically investigated. Here we report experimentally measured sporulation rate. Then, based on the result, a reaction diffusion model is proposed. One-dimensional simulation showed the existence of traveling wave solution. We study the wave form as a function of the initial nutrient concentration and find two distinct types of solution. Moreover, transition between them is very sharp, which is analogous to phase transition. The velocity of traveling wave also shows sharp transition in nonlinear diffusion model, which is consistent with the previous experimental result. The phenomenon can be explained by separatrix in reaction term dynamics. Results of two-dimensional simulation are also shown and discussed.

  8. Jordan form, parabolicity and other features of change of type transition for hydrodynamic type systems

    NASA Astrophysics Data System (ADS)

    Konopelchenko, B. G.; Ortenzi, G.

    2017-05-01

    Changes of type transitions for two-component hydrodynamic type systems are discussed. It is shown that these systems generically assume the Jordan form (with 2 × 2 Jordan block) on the transition line with hodograph equations becoming parabolic. Conditions which allow or forbid the transition from the hyperbolic domain to elliptic one are discussed. Hamiltonian systems and their special subclasses and equations, such as dispersionless nonlinear Schrödinger, dispersionless Boussinesq, one-dimensional isentropic gas dynamics equations, and nonlinear wave equations are studied. Numerical results concerning the crossing of transition line for the dispersionless Boussinesq equation are also presented.

  9. Sound waves and flexural mode dynamics in two-dimensional crystals

    NASA Astrophysics Data System (ADS)

    Michel, K. H.; Scuracchio, P.; Peeters, F. M.

    2017-09-01

    Starting from a Hamiltonian with anharmonic coupling between in-plane acoustic displacements and out-of-plane (flexural) modes, we derived coupled equations of motion for in-plane displacements correlations and flexural mode density fluctuations. Linear response theory and time-dependent thermal Green's functions techniques are applied in order to obtain different response functions. As external perturbations we allow for stresses and thermal heat sources. The displacement correlations are described by a Dyson equation where the flexural density distribution enters as an additional perturbation. The flexural density distribution satisfies a kinetic equation where the in-plane lattice displacements act as a perturbation. In the hydrodynamic limit this system of coupled equations is at the basis of a unified description of elastic and thermal phenomena, such as isothermal versus adiabatic sound motion and thermal conductivity versus second sound. The general theory is formulated in view of application to graphene, two-dimensional h-BN, and 2H-transition metal dichalcogenides and oxides.

  10. Investigation of unsteadiness in Shock-particle cloud interaction: Fully resolved two-dimensional simulation and one-dimensional modeling

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh-Nik, Zahra; Regele, Jonathan D.

    2015-11-01

    Dense compressible particle-laden flow, which has a complex nature, exists in various engineering applications. Shock waves impacting a particle cloud is a canonical problem to investigate this type of flow. It has been demonstrated that large flow unsteadiness is generated inside the particle cloud from the flow induced by the shock passage. It is desirable to develop models for the Reynolds stress to capture the energy contained in vortical structures so that volume-averaged models with point particles can be simulated accurately. However, the previous work used Euler equations, which makes the prediction of vorticity generation and propagation innacurate. In this work, a fully resolved two dimensional (2D) simulation using the compressible Navier-Stokes equations with a volume penalization method to model the particles has been performed with the parallel adaptive wavelet-collocation method. The results still show large unsteadiness inside and downstream of the particle cloud. A 1D model is created for the unclosed terms based upon these 2D results. The 1D model uses a two-phase simple low dissipation AUSM scheme (TSLAU) developed by coupled with the compressible two phase kinetic energy equation.

  11. Numerical Recovering of a Speed of Sound by the BC-Method in 3D

    NASA Astrophysics Data System (ADS)

    Pestov, Leonid; Bolgova, Victoria; Danilin, Alexandr

    We develop the numerical algorithm for solving the inverse problem for the wave equation by the Boundary Control method. The problem, which we refer to as a forward one, is an initial boundary value problem for the wave equation with zero initial data in the bounded domain. The inverse problem is to find the speed of sound c(x) by the measurements of waves induced by a set of boundary sources. The time of observation is assumed to be greater then two acoustical radius of the domain. The numerical algorithm for sound reconstruction is based on two steps. The first one is to find a (sufficiently large) number of controls {f_j} (the basic control is defined by the position of the source and some time delay), which generates the same number of known harmonic functions, i.e. Δ {u_j}(.,T) = 0 , where {u_j} is the wave generated by the control {f_j} . After that the linear integral equation w.r.t. the speed of sound is obtained. The piecewise constant model of the speed is used. The result of numerical testing of 3-dimensional model is presented.

  12. Correspondence between discrete and continuous models of excitable media: trigger waves

    NASA Technical Reports Server (NTRS)

    Chernyak, Y. B.; Feldman, A. B.; Cohen, R. J.

    1997-01-01

    We present a theoretical framework for relating continuous partial differential equation (PDE) models of excitable media to discrete cellular automata (CA) models on a randomized lattice. These relations establish a quantitative link between the CA model and the specific physical system under study. We derive expressions for the CA model's plane wave speed, critical curvature, and effective diffusion constant in terms of the model's internal parameters (the interaction radius, excitation threshold, and time step). We then equate these expressions to the corresponding quantities obtained from solution of the PDEs (for a fixed excitability). This yields a set of coupled equations with a unique solution for the required CA parameter values. Here we restrict our analysis to "trigger" wave solutions obtained in the limiting case of a two-dimensional excitable medium with no recovery processes. We tested the correspondence between our CA model and two PDE models (the FitzHugh-Nagumo medium and a medium with a "sawtooth" nonlinear reaction source) and found good agreement with the numerical solutions of the PDEs. Our results suggest that the behavior of trigger waves is actually controlled by a small number of parameters.

  13. Observationally constrained modeling of sound in curved ocean internal waves: examination of deep ducting and surface ducting at short range.

    PubMed

    Duda, Timothy F; Lin, Ying-Tsong; Reeder, D Benjamin

    2011-09-01

    A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional parabolic equation computational code, and the results are compared to measured propagation along fixed 3 and 6 km source/receiver paths. The measurements were made on the shelf of the South China Sea northeast of Tung-Sha Island. Construction of the time-varying three-dimensional sound-speed fields used in the modeling simulations was guided by environmental data collected concurrently with the acoustic data. Computed three-dimensional propagation results compare well with field observations. The simulations allow identification of time-dependent sound forward scattering and ducting processes within the curved internal gravity waves. Strong acoustic intensity enhancement was observed during passage of high-amplitude nonlinear waves over the source/receiver paths, and is replicated in the model. The waves were typical of the region (35 m vertical displacement). Two types of ducting are found in the model, which occur asynchronously. One type is three-dimensional modal trapping in deep ducts within the wave crests (shallow thermocline zones). The second type is surface ducting within the wave troughs (deep thermocline zones). © 2011 Acoustical Society of America

  14. An interacting boundary layer model for cascades

    NASA Technical Reports Server (NTRS)

    Davis, R. T.; Rothmayer, A. P.

    1983-01-01

    A laminar, incompressible interacting boundary layer model is developed for two-dimensional cascades. In the limit of large cascade spacing these equations reduce to the interacting boundary layer equations for a single body immersed in an infinite stream. A fully implicit numerical method is used to solve the governing equations, and is found to be at least as efficient as the same technique applied to the single body problem. Solutions are then presented for a cascade of finite flat plates and a cascade of finite sine-waves, with cusped leading and trailing edges.

  15. Two-and three-dimensional unsteady lift problems in high-speed flight

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard; Heaslet, Max A; Fuller, Franklyn B; Sluder, Loma

    1952-01-01

    The problem of transient lift on two- and three-dimensional wings flying at high speeds is discussed as a boundary-value problem for the classical wave equation. Kirchoff's formula is applied so that the analysis is reduced, just as in the steady state, to an investigation of sources and doublets. The applications include the evaluation of indicial lift and pitching-moment curves for two-dimensional sinking and pitching wings flying at Mach numbers equal to 0, 0.8, 1.0, 1.2 and 2.0. Results for the sinking case are also given for a Mach number of 0.5. In addition, the indicial functions for supersonic-edged triangular wings in both forward and reverse flow are presented and compared with the two-dimensional values.

  16. Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method.

    PubMed

    Deng, Yongbo; Korvink, Jan G

    2016-05-01

    This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.

  17. Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method

    PubMed Central

    Korvink, Jan G.

    2016-01-01

    This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable. PMID:27279766

  18. Three-Dimensional Navier-Stokes Simulations with Two-Equation Turbulence Models of Intersecting Shock-Waves/Turbulent Boundary Layer at Mach 8.3

    NASA Technical Reports Server (NTRS)

    Bardina, J. E.; Coakley, T. J.

    1994-01-01

    An investigation of the numerical simulation with two-equation turbulence models of a three-dimensional hypersonic intersecting (SWTBL) shock-wave/turbulent boundary layer interaction flow is presented. The flows are solved with an efficient implicit upwind flux-difference split Reynolds-averaged Navier-Stokes code. Numerical results are compared with experimental data for a flow at Mach 8.28 and Reynolds number 5.3x10(exp 6) with crossing shock-waves and expansion fans generated by two lateral 15 fins located on top of a cold-wall plate. This experiment belongs to the hypersonic database for modeling validation. Simulations show the development of two primary counter-rotating cross-flow vortices and secondary turbulent structures under the main vortices and in each corner singularity inside the turbulent boundary layer. A significant loss of total pressure is produced by the complex interaction between the main vortices and the uplifted jet stream of the boundary layer. The overall agreement between computational and experimental data is generally good. The turbulence modeling corrections show improvements in the predictions of surface heat transfer distribution and an increase in the strength of the cross-flow vortices. Accurate predictions of the outflow flowfield is found to require accurate modeling of the laminar/turbulent boundary layers on the fin walls.

  19. Dirac and Klein-Gordon-Fock equations in Grumiller’s spacetime

    NASA Astrophysics Data System (ADS)

    Al-Badawi, A.; Sakalli, I.

    We study the Dirac and the chargeless Klein-Gordon-Fock equations in the geometry of Grumiller’s spacetime that describes a model for gravity of a central object at large distances. The Dirac equation is separated into radial and angular equations by adopting the Newman-Penrose formalism. The angular part of the both wave equations are analytically solved. For the radial equations, we managed to reduce them to one dimensional Schrödinger-type wave equations with their corresponding effective potentials. Fermions’s potentials are numerically analyzed by serving their some characteristic plots. We also compute the quasinormal frequencies of the chargeless and massive scalar waves. With the aid of those quasinormal frequencies, Bekenstein’s area conjecture is tested for the Grumiller black hole. Thus, the effects of the Rindler acceleration on the waves of fermions and scalars are thoroughly analyzed.

  20. An analytical model of a curved beam with a T shaped cross section

    NASA Astrophysics Data System (ADS)

    Hull, Andrew J.; Perez, Daniel; Cox, Donald L.

    2018-03-01

    This paper derives a comprehensive analytical dynamic model of a closed circular beam that has a T shaped cross section. The new model includes in-plane and out-of-plane vibrations derived using continuous media expressions which produces results that have a valid frequency range above those available from traditional lumped parameter models. The web is modeled using two-dimensional elasticity equations for in-plane motion and the classical flexural plate equation for out-of-plane motion. The flange is modeled using two sets of Donnell shell equations: one for the left side of the flange and one for the right side of the flange. The governing differential equations are solved with unknown wave propagation coefficients multiplied by spatial domain and time domain functions which are inserted into equilibrium and continuity equations at the intersection of the web and flange and into boundary conditions at the edges of the system resulting in 24 algebraic equations. These equations are solved to yield the wave propagation coefficients and this produces a solution to the displacement field in all three dimensions. An example problem is formulated and compared to results from finite element analysis.

  1. Traveling wave solutions and conservation laws for nonlinear evolution equation

    NASA Astrophysics Data System (ADS)

    Baleanu, Dumitru; Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa

    2018-02-01

    In this work, the Riccati-Bernoulli sub-ordinary differential equation and modified tanh-coth methods are used to reach soliton solutions of the nonlinear evolution equation. We acquire new types of traveling wave solutions for the governing equation. We show that the equation is nonlinear self-adjoint by obtaining suitable substitution. Therefore, we construct conservation laws for the equation using new conservation theorem. The obtained solutions in this work may be used to explain and understand the physical nature of the wave spreads in the most dispersive medium. The constraint condition for the existence of solitons is stated. Some three dimensional figures for some of the acquired results are illustrated.

  2. Hidden conformal symmetry of rotating black holes in minimal five-dimensional gauged supergravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setare, M. R.; Kamali, V.

    2010-10-15

    In the present paper we show that for a low frequency limit the wave equation of a massless scalar field in the background of nonextremal charged rotating black holes in five-dimensional minimal gauged and ungauged supergravity can be written as the Casimir of an SL(2,R) symmetry. Our result shows that the entropy of the black hole is reproduced by the Cardy formula. Also the absorption cross section is consistent with the finite temperature absorption cross section for a two-dimensional conformal field theory.

  3. Generalized self-similar unsteady gas flows behind the strong shock wave front

    NASA Astrophysics Data System (ADS)

    Bogatko, V. I.; Potekhina, E. A.

    2018-05-01

    Two-dimensional (plane and axially symmetric) nonstationary gas flows behind the front of a strong shock wave are considered. All the gas parameters are functions of the ratio of Cartesian coordinates to some degree of time tn, where n is a self-similarity index. The problem is solved in Lagrangian variables. It is shown that the resulting system of partial differential equations is suitable for constructing an iterative process. ¢he "thin shock layer" method is used to construct an approximate analytical solution of the problem. The limit solution of the problem is constructed. A formula for determining the path traversed by a gas particle in the shock layer along the front of a shock wave is obtained. A system of equations for determining the first approximation corrections is constructed.

  4. Upstream-advancing waves generated by three-dimensional moving disturbances

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Joon; Grimshaw, Roger H. J.

    1990-02-01

    The wave field resulting from a surface pressure or a bottom topography in a horizontally unbounded domain is studied. Upstream-advancing waves successively generated by various forcing disturbances moving with near-resonant speeds are found by numerically solving a forced Kadomtsev-Petviashvili (fKP) equation, which shows in its simplest form the interplay of a basic linear wave operator, longitudinal and transverse dispersion, nonlinearity, and forcing. Curved solitary waves are found as a slowly varying similarity solution of the Kadomtsev-Petviashvili (KP) equation, and are favorably compared with the upstream-advancing waves numerically obtained.

  5. A two-dimensional, time-dependent model of suspended sediment transport and bed reworking for continental shelves

    USGS Publications Warehouse

    Harris, C.K.; Wiberg, P.L.

    2001-01-01

    A two-dimensional, time-dependent solution to the transport equation is formulated to account for advection and diffusion of sediment suspended in the bottom boundary layer of continental shelves. This model utilizes a semi-implicit, upwind-differencing scheme to solve the advection-diffusion equation across a two-dimensional transect that is configured so that one dimension is the vertical, and the other is a horizontal dimension usually aligned perpendicular to shelf bathymetry. The model calculates suspended sediment concentration and flux; and requires as input wave properties, current velocities, sediment size distributions, and hydrodynamic sediment properties. From the calculated two-dimensional suspended sediment fluxes, we quantify the redistribution of shelf sediment, bed erosion, and deposition for several sediment sizes during resuspension events. The two-dimensional, time-dependent approach directly accounts for cross-shelf gradients in bed shear stress and sediment properties, as well as transport that occurs before steady-state suspended sediment concentrations have been attained. By including the vertical dimension in the calculations, we avoid depth-averaging suspended sediment concentrations and fluxes, and directly account for differences in transport rates and directions for fine and coarse sediment in the bottom boundary layer. A flux condition is used as the bottom boundary condition for the transport equation in order to capture time-dependence of the suspended sediment field. Model calculations demonstrate the significance of both time-dependent and spatial terms on transport and depositional patterns on continental shelves. ?? 2001 Elsevier Science Ltd. All rights reserved.

  6. Thermal Non-Equilibrium Flows in Three Space Dimensions

    NASA Astrophysics Data System (ADS)

    Zeng, Yanni

    2016-01-01

    We study the equations describing the motion of a thermal non-equilibrium gas in three space dimensions. It is a hyperbolic system of six equations with a relaxation term. The dissipation mechanism induced by the relaxation is weak in the sense that the Shizuta-Kawashima criterion is violated. This implies that a perturbation of a constant equilibrium state consists of two parts: one decays in time while the other stays. In fact, the entropy wave grows weakly along the particle path as the process is irreversible. We study thermal properties related to the well-posedness of the nonlinear system. We also obtain a detailed pointwise estimate on the Green's function for the Cauchy problem when the system is linearized around an equilibrium constant state. The Green's function provides a complete picture of the wave pattern, with an exact and explicit leading term. Comparing with existing results for one dimensional flows, our results reveal a new feature of three dimensional flows: not only does the entropy wave not decay, but the velocity also contains a non-decaying part, strongly coupled with its decaying one. The new feature is supported by the second order approximation via the Chapman-Enskog expansions, which are the Navier-Stokes equations with vanished shear viscosity and heat conductivity.

  7. Some Interaction Solutions of a Reduced Generalised (3+1)-Dimensional Shallow Water Wave Equation for Lump Solutions and a Pair of Resonance Solitons

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Chen, Mei-Dan; Li, Xian; Li, Biao

    2017-05-01

    Through Hirota bilinear transformation and symbolic computation with Maple, a class of lump solutions, rationally localised in all directions in the space, to a reduced generalised (3+1)-dimensional shallow water wave (SWW) equation are prensented. The resulting lump solutions all contain six parameters, two of which are free due to the translation invariance of the SWW equation and the other four of which must satisfy a nonzero determinant condition guaranteeing analyticity and rational localisation of the solutions. Then we derived the interaction solutions for lump solutions and one stripe soliton and the result shows that the particular lump solutions with specific values of the involved parameters will be drowned or swallowed by the stripe soliton. Furthermore, we extend this method to a more general combination of positive quadratic function and hyperbolic functions. Especially, it is interesting that a rogue wave is found to be aroused by the interaction between lump solutions and a pair of resonance stripe solitons. By choosing the values of the parameters, the dynamic properties of lump solutions, interaction solutions for lump solutions and one stripe soliton and interaction solutions for lump solutions and a pair of resonance solitons, are shown by dynamic graphs.

  8. Long-Term Global Morphology of Gravity Wave Activity Using UARS Data

    NASA Technical Reports Server (NTRS)

    Eckermann, Stephen D.; Jackman, C. (Technical Monitor)

    2000-01-01

    Gravity waves in satellite data from CRISTA and MLS are studied in depth this quarter. Results this quarter are somewhat limited due to the PI'S heavy involvement throughout this reporting period in on-site forecasting of mountain wave-induced turbulence for the NASA's ER-2 research aircraft at Kiruna, Sweden during the SAGE Ill Ozone Loss and Validation Experiment (SOLVE). Results reported concentrate on further mesoscale modeling studies of mountain waves over the southern Andes, evident in CRISTA and MLS data. Two-dimensional mesoscale model simulations are extended through generalization of model equations to include both rotation and a first-order turbulence closure scheme. Results of three experiments are analyzed in depth and submitted for publication. We also commence simulations with a three-dimensional mesoscale model (MM5) and present preliminary results for the CRISTA 1 period near southern South America. Combination of ground-based temperature data at 87 km from two sites with global HRDl data was continued this quarter, showing stationary planetary wave structures. This work was also submitted for publication.

  9. High-Resolution Genuinely Multidimensional Solution of Conservation Laws by the Space-Time Conservation Element and Solution Element Method

    NASA Technical Reports Server (NTRS)

    Himansu, Ananda; Chang, Sin-Chung; Yu, Sheng-Tao; Wang, Xiao-Yen; Loh, Ching-Yuen; Jorgenson, Philip C. E.

    1999-01-01

    In this overview paper, we review the basic principles of the method of space-time conservation element and solution element for solving the conservation laws in one and two spatial dimensions. The present method is developed on the basis of local and global flux conservation in a space-time domain, in which space and time are treated in a unified manner. In contrast to the modern upwind schemes, the approach here does not use the Riemann solver and the reconstruction procedure as the building blocks. The drawbacks of the upwind approach, such as the difficulty of rationally extending the 1D scalar approach to systems of equations and particularly to multiple dimensions is here contrasted with the uniformity and ease of generalization of the Conservation Element and Solution Element (CE/SE) 1D scalar schemes to systems of equations and to multiple spatial dimensions. The assured compatibility with the simplest type of unstructured meshes, and the uniquely simple nonreflecting boundary conditions of the present method are also discussed. The present approach has yielded high-resolution shocks, rarefaction waves, acoustic waves, vortices, ZND detonation waves, and shock/acoustic waves/vortices interactions. Moreover, since no directional splitting is employed, numerical resolution of two-dimensional calculations is comparable to that of the one-dimensional calculations. Some sample applications displaying the strengths and broad applicability of the CE/SE method are reviewed.

  10. Self-Consistent Model of Magnetospheric Ring Current and Electromagnetic Ion Cyclotron Waves: The 2-7 May 1998 Storm

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.

    2003-01-01

    A complete description of a self-consistent model of magnetospheric ring current interacting with electromagnetic ion cyclotron waves is presented. The model is based on the system of two kinetic equations; one equation describes the ring current ion dynamics, and another equation describes the wave evolution. The effects on ring current ions interacting with electromagnetic ion cyclotron waves and back on waves are considered self-consistently by solving both equations on a global magnetospheric scale under nonsteady state conditions. The developed model is employed to simulate the entire 2-7 May 1998 storm period. First, the trapped number fluxes of the ring current protons are calculated and presented along with comparison with the data measured by the three- dimensional hot plasma instrument Polar/HYDRA. Incorporating in the model the wave-particle interaction leads to much better agreement between the experimental data and the model results. Second, examining of the wave (MLT, L shell) distributions produced by the model during the storm progress reveals an essential intensification of the wave emission about 2 days after the main phase of the storm. This result is well consistent with the earlier ground-based observations. Finally, the theoretical shapes and the occurrence rates of the wave power spectral densities are studied. It is found that about 2 days after the storm s main phase on 4 May, mainly non-Gaussian shapes of power spectral densities are produced.

  11. Finite-surface method for the Maxwell equations with corner singularities

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel; Yarrow, Maurice

    1994-01-01

    The finite-surface method for the two-dimensional Maxwell equations in generalized coordinates is extended to treat perfect conductor boundaries with sharp corners. Known singular forms of the grid and the electromagnetic fields in the neighborhood of each corner are used to obtain accurate approximations to the surface and line integrals appearing in the method. Numerical results are presented for a harmonic plane wave incident on a finite flat plate. Comparisons with exact solutions show good agreement.

  12. Optical solitons and modulation instability analysis with (3 + 1)-dimensional nonlinear Shrödinger equation

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru

    2017-12-01

    This paper addresses the (3 + 1)-dimensional nonlinear Shrödinger equation (NLSE) that serves as the model to study the propagation of optical solitons through nonlinear optical fibers. Two integration schemes are employed to study the equation. These are the complex envelope function ansatz and the solitary wave ansatz with Jaccobi elliptic function methods, we present the exact dark, bright and dark-bright or combined optical solitons to the model. The intensity as well as the nonlinear phase shift of the solitons are reported. The modulation instability aspects are discussed using the concept of linear stability analysis. The MI gain is got. Numerical simulation of the obtained results are analyzed with interesting figures showing the physical meaning of the solutions.

  13. A Variational Reduction and the Existence of a Fully Localised Solitary Wave for the Three-Dimensional Water-Wave Problem with Weak Surface Tension

    NASA Astrophysics Data System (ADS)

    Buffoni, Boris; Groves, Mark D.; Wahlén, Erik

    2017-12-01

    Fully localised solitary waves are travelling-wave solutions of the three- dimensional gravity-capillary water wave problem which decay to zero in every horizontal spatial direction. Their existence has been predicted on the basis of numerical simulations and model equations (in which context they are usually referred to as `lumps'), and a mathematically rigorous existence theory for strong surface tension (Bond number {β} greater than {1/3} ) has recently been given. In this article we present an existence theory for the physically more realistic case {0 < β < 1/3} . A classical variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle featuring a perturbation of the functional associated with the Davey-Stewartson equation. A nontrivial critical point of the reduced functional is found by minimising it over its natural constraint set.

  14. A Variational Reduction and the Existence of a Fully Localised Solitary Wave for the Three-Dimensional Water-Wave Problem with Weak Surface Tension

    NASA Astrophysics Data System (ADS)

    Buffoni, Boris; Groves, Mark D.; Wahlén, Erik

    2018-06-01

    Fully localised solitary waves are travelling-wave solutions of the three- dimensional gravity-capillary water wave problem which decay to zero in every horizontal spatial direction. Their existence has been predicted on the basis of numerical simulations and model equations (in which context they are usually referred to as `lumps'), and a mathematically rigorous existence theory for strong surface tension (Bond number {β} greater than {1/3}) has recently been given. In this article we present an existence theory for the physically more realistic case {0 < β < 1/3}. A classical variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle featuring a perturbation of the functional associated with the Davey-Stewartson equation. A nontrivial critical point of the reduced functional is found by minimising it over its natural constraint set.

  15. Wave Transformation Over Reefs: Evaluation of One-Dimensional Numerical Models

    DTIC Science & Technology

    2009-01-01

    equations on an unstructured grid. Proceedings International Conference on Coastal Engineering ‘06 V1. San Diego, CA, 73-85. Baldock, T. E., P. Holmes , S...equations. Monthly Weather Review 91:99-164. Smith, J. M, A. R. Sherlock , and D. T. Resio. 2001. Steady state spectral wave model user’s manual

  16. An exact solution of the van der Waals interaction between two ground-state hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Koga, Toshikatsu; Matsumoto, Shinya

    1985-06-01

    A momentum space treatment shows that perturbation equations for the H(1s)-H(1s) van der Waals interaction can be exactly solved in their Schrödinger forms without invoking any variational methods. Using the Fock transformation, which projects the momentum vector of an electron from the three-dimensional hyperplane onto the four-dimensional hypersphere, we solve the third order integral-type perturbation equation with respect to the reciprocal of the internuclear distance R. An exact third order wave function is found as a linear combination of infinite number of four-dimensional spherical harmonics. The result allows us to evaluate the exact dispersion energy E6R-6, which is completely determined by the first three coefficients of the above linear combination.

  17. Two-layer interfacial flows beyond the Boussinesq approximation: a Hamiltonian approach

    NASA Astrophysics Data System (ADS)

    Camassa, R.; Falqui, G.; Ortenzi, G.

    2017-02-01

    The theory of integrable systems of Hamiltonian PDEs and their near-integrable deformations is used to study evolution equations resulting from vertical-averages of the Euler system for two-layer stratified flows in an infinite two-dimensional channel. The Hamiltonian structure of the averaged equations is obtained directly from that of the Euler equations through the process of Hamiltonian reduction. Long-wave asymptotics together with the Boussinesq approximation of neglecting the fluids’ inertia is then applied to reduce the leading order vertically averaged equations to the shallow-water Airy system, albeit in a non-trivial way. The full non-Boussinesq system for the dispersionless limit can then be viewed as a deformation of this well known equation. In a perturbative study of this deformation, a family of approximate constants of the motion are explicitly constructed and used to find local solutions of the evolution equations by means of hodograph-like formulae.

  18. Dynamics from a mathematical model of a two-state gas laser

    NASA Astrophysics Data System (ADS)

    Kleanthous, Antigoni; Hua, Tianshu; Manai, Alexandre; Yawar, Kamran; Van Gorder, Robert A.

    2018-05-01

    Motivated by recent work in the area, we consider the behavior of solutions to a nonlinear PDE model of a two-state gas laser. We first review the derivation of the two-state gas laser model, before deriving a non-dimensional model given in terms of coupled nonlinear partial differential equations. We then classify the steady states of this system, in order to determine the possible long-time asymptotic solutions to this model, as well as corresponding stability results, showing that the only uniform steady state (the zero motion state) is unstable, while a linear profile in space is stable. We then provide numerical simulations for the full unsteady model. We show for a wide variety of initial conditions that the solutions tend toward the stable linear steady state profiles. We also consider traveling wave solutions, and determine the unique wave speed (in terms of the other model parameters) which allows wave-like solutions to exist. Despite some similarities between the model and the inviscid Burger's equation, the solutions we obtain are much more regular than the solutions to the inviscid Burger's equation, with no evidence of shock formation or loss of regularity.

  19. The Kadomtsev-Petviashvili equation under rapid forcing

    NASA Astrophysics Data System (ADS)

    Moroz, Irene M.

    1997-06-01

    We consider the initial value problem for the forced Kadomtsev-Petviashvili equation (KP) when the forcing is assumed to be fast compared to the evolution of the unforced equation. This suggests the introduction of two time scales. Solutions to the forced KP are sought by expanding the dependent variable in powers of a small parameter, which is inversely related to the forcing time scale. The unforced system describes weakly nonlinear, weakly dispersive, weakly two-dimensional wave propagation and is studied in two forms, depending upon whether gravity dominates surface tension or vice versa. We focus on the effect that the forcing has on the one-lump solution to the KPI equation (where surface tension dominates) and on the one- and two-line soliton solutions to the KPII equation (when gravity dominates). Solutions to second order in the expansion are computed analytically for some specific choices of the forcing function, which are related to the choice of initial data.

  20. Analysis of the generalized (2+1)-dimensional Nizhnik-Novikov-Veselov equations with variable coefficients in an inhomogeneous medium

    NASA Astrophysics Data System (ADS)

    Chai, Han-Peng; Tian, Bo; Zhen, Hui-Ling; Chai, Jun; Guan, Yue-Yang

    2017-08-01

    Korteweg-de Vries (KdV)-type equations are seen to describe the shallow-water waves, lattice structures and ion-acoustic waves in plasmas. Hereby, we consider an extension of the KdV-type equations called the generalized (2+1)-dimensional Nizhnik-Novikov-Veselov equations with variable coefficients in an inhomogeneous medium. Via the Hirota bilinear method and symbolic computation, we derive the bilinear forms, N-soliton solutions and Bäcklund transformation. Effects of the first- and higher-order dispersion terms are investigated. Soliton evolution and interaction are graphically presented and analyzed: Both the propagation velocity and direction of the soliton change when the dispersion terms are time-dependent; The interactions between/among the solitons are elastic, independent of the forms of the coefficients in the equations.

  1. Black hole perturbation under a 2 +2 decomposition in the action

    NASA Astrophysics Data System (ADS)

    Ripley, Justin L.; Yagi, Kent

    2018-01-01

    Black hole perturbation theory is useful for studying the stability of black holes and calculating ringdown gravitational waves after the collision of two black holes. Most previous calculations were carried out at the level of the field equations instead of the action. In this work, we compute the Einstein-Hilbert action to quadratic order in linear metric perturbations about a spherically symmetric vacuum background in Regge-Wheeler gauge. Using a 2 +2 splitting of spacetime, we expand the metric perturbations into a sum over scalar, vector, and tensor spherical harmonics, and dimensionally reduce the action to two dimensions by integrating over the two sphere. We find that the axial perturbation degree of freedom is described by a two-dimensional massive vector action, and that the polar perturbation degree of freedom is described by a two-dimensional dilaton massive gravity action. Varying the dimensionally reduced actions, we rederive covariant and gauge-invariant master equations for the axial and polar degrees of freedom. Thus, the two-dimensional massive vector and massive gravity actions we derive by dimensionally reducing the perturbed Einstein-Hilbert action describe the dynamics of a well-studied physical system: the metric perturbations of a static black hole. The 2 +2 formalism we present can be generalized to m +n -dimensional spacetime splittings, which may be useful in more generic situations, such as expanding metric perturbations in higher dimensional gravity. We provide a self-contained presentation of m +n formalism for vacuum spacetime splittings.

  2. Analytical solutions of the Schroedinger equation for a two-dimensional exciton in magnetic field of arbitrary strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang-Do, Ngoc-Tram; Hoang, Van-Hung; Le, Van-Hoang

    2013-05-15

    The Feranchuk-Komarov operator method is developed by combining with the Levi-Civita transformation in order to construct analytical solutions of the Schroedinger equation for a two-dimensional exciton in a uniform magnetic field of arbitrary strength. As a result, analytical expressions for the energy of the ground and excited states are obtained with a very high precision of up to four decimal places. Especially, the precision is uniformly stable for the whole range of the magnetic field. This advantage appears due to the consideration of the asymptotic behaviour of the wave-functions in strong magnetic field. The results could be used for variousmore » physical analyses and the method used here could also be applied to other atomic systems.« less

  3. Exact solutions to three-dimensional generalized nonlinear Schrödinger equations with varying potential and nonlinearities.

    PubMed

    Yan, Zhenya; Konotop, V V

    2009-09-01

    It is shown that using the similarity transformations, a set of three-dimensional p-q nonlinear Schrödinger (NLS) equations with inhomogeneous coefficients can be reduced to one-dimensional stationary NLS equation with constant or varying coefficients, thus allowing for obtaining exact localized and periodic wave solutions. In the suggested reduction the original coordinates in the (1+3) space are mapped into a set of one-parametric coordinate surfaces, whose parameter plays the role of the coordinate of the one-dimensional equation. We describe the algorithm of finding solutions and concentrate on power (linear and nonlinear) potentials presenting a number of case examples. Generalizations of the method are also discussed.

  4. Solitons, Bäcklund transformation and Lax pair for a (2+1)-dimensional B-type Kadomtsev-Petviashvili equation in the fluid/plasma mechanics

    NASA Astrophysics Data System (ADS)

    Lan, Zhong-Zhou; Gao, Yi-Tian; Yang, Jin-Wei; Su, Chuan-Qi; Wang, Qi-Min

    2016-09-01

    Under investigation in this paper is a (2+1)-dimensional B-type Kadomtsev-Petviashvili equation for the shallow water wave in a fluid or electrostatic wave potential in a plasma. Bilinear form, Bäcklund transformation and Lax pair are derived based on the binary Bell polynomials. Multi-soliton solutions are constructed via the Hirota’s method. Propagation and interaction of the solitons are illustrated graphically: (i) Through the asymptotic analysis, elastic and inelastic interactions between the two solitons are discussed analytically and graphically, respectively. The elastic interaction, amplitudes, velocities and shapes of the two solitons remain unchanged except for a phase shift. However, in the area of the inelastic interaction, amplitudes of the two solitons have a linear superposition. (ii) Elastic interactions among the three solitons indicate that the properties of the elastic interactions among the three solitons are similar to those between the two solitons. Moreover, oblique and overtaking interactions between the two solitons are displayed. Oblique interactions among the three solitons and interactions among the two parallel solitons and a single one are presented as well. (iii) Inelastic-elastic interactions imply that the interaction between the inelastic region and another one is elastic.

  5. On the instability of wave-fields with JONSWAP spectra to inhomogeneous disturbances, and the consequent long-time evolution

    NASA Astrophysics Data System (ADS)

    Ribal, A.; Stiassnie, M.; Babanin, A.; Young, I.

    2012-04-01

    The instability of two-dimensional wave-fields and its subsequent evolution in time are studied by means of the Alber equation for narrow-banded random surface-waves in deep water subject to inhomogeneous disturbances. A linear partial differential equation (PDE) is obtained after applying an inhomogeneous disturbance to the Alber's equation and based on the solution of this PDE, the instability of the ocean wave surface is studied for a JONSWAP spectrum, which is a realistic ocean spectrum with variable directional spreading and steepness. The steepness of the JONSWAP spectrum depends on γ and α which are the peak-enhancement factor and energy scale of the spectrum respectively and it is found that instability depends on the directional spreading, α and γ. Specifically, if the instability stops due to the directional spreading, increase of the steepness by increasing α or γ can reactivate it. This result is in qualitative agreement with the recent large-scale experiment and new theoretical results. In the instability area of α-γ plane, a long-time evolution has been simulated by integrating Alber's equation numerically and recurrent evolution is obtained which is the stochastic counterpart of the Fermi-Pasta-Ulam recurrence obtained for the cubic Schrödinger equation.

  6. Explicit mathematical construction of relativistic nonlinear de Broglie waves described by three-dimensional (wave and electromagnetic) solitons ``piloted'' (controlled) by corresponding solutions of associated linear Klein-Gordon and Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Vigier, Jean-Pierre

    1991-02-01

    Starting from a nonlinear relativistic Klein-Gordon equation derived from the stochastic interpretation of quantum mechanics (proposed by Bohm-Vigier, (1) Nelson, (2) de Broglie, (3) Guerra et al. (4) ), one can construct joint wave and particle, soliton-like solutions, which follow the average de Broglie-Bohm (5) real trajectories associated with linear solutions of the usual Schrödinger and Klein-Gordon equations.

  7. The Shannon entropy information for mixed Manning Rosen potential in D-dimensional Schrodinger equation

    NASA Astrophysics Data System (ADS)

    Suparmi, A.; Cari, C.; Nur Pratiwi, Beta; Arya Nugraha, Dewanta

    2017-01-01

    D dimensional Schrodinger equation for the mixed Manning Rosen potential was investigated using supersymmetric quantum mechanics. We obtained the energy eigenvalues from radial part solution and wavefunctions in radial and angular parts solution. From the lowest radial wavefunctions, we evaluated the Shannon entropy information using Matlab software. Based on the entropy densities demonstrated graphically, we obtained that the wave of position information entropy density moves right when the value of potential parameter q increases, while its wave moves left with the increase of parameter α. The wave of momentum information entropy densities were expressed in graphs. We observe that its amplitude increase with increasing parameter q and α

  8. Extremely Fast Numerical Integration of Ocean Surface Wave Dynamics

    DTIC Science & Technology

    2007-09-30

    sub-processor must be added as shown in the blue box of Fig. 1. We first consider the Kadomtsev - Petviashvili (KP) equation ηt + coηx +αηηx + βη ...analytic integration of the so-called “soliton equations ,” I have discovered how the GFT can be used to solved higher order equations for which study...analytical study and extremely fast numerical integration of the extended nonlinear Schroedinger equation for fully three dimensional wave motion

  9. Exact soliton of (2 + 1)-dimensional fractional Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Rizvi, S. T. R.; Ali, K.; Bashir, S.; Younis, M.; Ashraf, R.; Ahmad, M. O.

    2017-07-01

    The nonlinear fractional Schrödinger equation is the basic equation of fractional quantum mechanics introduced by Nick Laskin in 2002. We apply three tools to solve this mathematical-physical model. First, we find the solitary wave solutions including the trigonometric traveling wave solutions, bell and kink shape solitons using the F-expansion and Improve F-expansion method. We also obtain the soliton solution, singular soliton solutions, rational function solution and elliptic integral function solutions, with the help of the extended trial equation method.

  10. On the Periodic Solutions of the Five-Dimensional Lorenz Equation Modeling Coupled Rosby Waves and Gravity Waves

    NASA Astrophysics Data System (ADS)

    Carvalho, Tiago; Llibre, Jaume

    2017-06-01

    Lorenz studied the coupled Rosby waves and gravity waves using the differential system U˙ = -VW + bVZ,V˙ = UW - bUZ,Ẇ = -UV,Ẋ = -Z,Ż = bUV + X. This system has the two first integrals H1 = U2 + V2,H 2 = V2 + W2 + X2 + Z2. Our main result shows that in each invariant set {H1 = h1 > 0}∩{H2 = h2 > 0} there are at least four (resp., 2) periodic solutions of the differential system with b≠0 and h2 > h1 (resp., h2 < h1).

  11. Modifiying shallow-water equations as a model for wave-vortex turbulence

    NASA Astrophysics Data System (ADS)

    Mohanan, A. V.; Augier, P.; Lindborg, E.

    2017-12-01

    The one-layer shallow-water equations is a simple two-dimensional model to study the complex dynamics of the oceans and the atmosphere. We carry out forced-dissipative numerical simulations, either by forcing medium-scale wave modes, or by injecting available potential energy (APE). With pure wave forcing in non-rotating cases, a statistically stationary regime is obtained for a range of forcing Froude numbers Ff = ɛ /(kf c), where ɛ is the energy dissipation rate, kf the forcing wavenumber and c the wave speed. Interestingly, the spectra scale as k-2 and third and higher order structure functions scale as r. Such statistics is a manifestation of shock turbulence or Burgulence, which dominate the flow. Rotating cases exhibit some inverse energy cascade, along with a stronger forward energy cascade, dominated by wave-wave interactions. We also propose two modifications to the classical shallow-water equations to construct a toy model. The properties of the model are explored by forcing in APE at a small and a medium wavenumber. The toy model simulations are then compared with results from shallow-water equations and a full General Circulation Model (GCM) simulation. The most distinctive feature of this model is that, unlike shallow-water equations, it avoids shocks and conserves quadratic energy. In Fig. 1, for the shallow-water equations, shocks appear as thin dark lines in the divergence (∇ .{u}) field, and as discontinuities in potential temperature (θ ) field; whereas only waves appear in the corresponding fields from toy model simulation. Forward energy cascade results in a wave field with k-5/3 spectrum, along with equipartition of KE and APE at small scales. The vortical field develops into a k-3 spectrum. With medium forcing wavenumber, at large scales, energy converted from APE to KE undergoes inverse cascade as a result of nonlinear fluxes composed of vortical modes alone. Gradually, coherent vortices emerge with a strong preference for anticyclonic motion. The model can serve as a closer representation of real geophysical turbulence than the classical shallow-water equations. Fig 1. Divergence and potential temperature fields of shallow-water (top row) and toy model (bottom row) simulations.

  12. Fission and fusion interaction phenomena of mixed lump kink solutions for a generalized (3+1)-dimensional B-type Kadomtsev-Petviashvili equation

    NASA Astrophysics Data System (ADS)

    Liu, Yaqing; Wen, Xiaoyong

    2018-05-01

    In this paper, a generalized (3+1)-dimensional B-type Kadomtsev-Petviashvili (gBKP) equation is investigated by using the Hirota’s bilinear method. With the aid of symbolic computation, some new lump, mixed lump kink and periodic lump solutions are derived. Based on the derived solutions, some novel interaction phenomena like the fission and fusion interactions between one lump soliton and one kink soliton, the fission and fusion interactions between one lump soliton and a pair of kink solitons and the interactions between two periodic lump solitons are discussed graphically. Results might be helpful for understanding the propagation of the shallow water wave.

  13. Three-Dimensional Electron Optics Model Developed for Traveling-Wave Tubes

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    2000-01-01

    A three-dimensional traveling-wave tube (TWT) electron beam optics model including periodic permanent magnet (PPM) focusing has been developed at the NASA Glenn Research Center at Lewis Field. This accurate model allows a TWT designer to develop a focusing structure while reducing the expensive and time-consuming task of building the TWT and hot-testing it (with the electron beam). In addition, the model allows, for the first time, an investigation of the effect on TWT operation of the important azimuthally asymmetric features of the focusing stack. The TWT is a vacuum device that amplifies signals by transferring energy from an electron beam to a radiofrequency (RF) signal. A critically important component is the focusing structure, which keeps the electron beam from diverging and intercepting the RF slow wave circuit. Such an interception can result in excessive circuit heating and decreased efficiency, whereas excessive growth in the beam diameter can lead to backward wave oscillations and premature saturation, indicating a serious reduction in tube performance. The most commonly used focusing structure is the PPM stack, which consists of a sequence of cylindrical iron pole pieces and opposite-polarity magnets. Typically, two-dimensional electron optics codes are used in the design of magnetic focusing devices. In general, these codes track the beam from the gun downstream by solving equations of motion for the electron beam in static-electric and magnetic fields in an azimuthally symmetric structure. Because these two-dimensional codes cannot adequately simulate a number of important effects, the simulation code MAFIA (solution of Maxwell's equations by the Finite-Integration-Algorithm) was used at Glenn to develop a three-dimensional electron optics model. First, a PPM stack was modeled in three dimensions. Then, the fields obtained using the magnetostatic solver were loaded into a particle-in-cell solver where the fully three-dimensional behavior of the beam was simulated in the magnetic focusing field. For the first time, the effects of azimuthally asymmetric designs and critical azimuthally asymmetric characteristics of the focusing stack (such as shunts, C-magnets, or magnet misalignment) on electron beam behavior have been investigated. A cutaway portion of a simulated electron beam focused by a PPM stack is illustrated.

  14. Wave-induced response of a floating two-dimensional body with a moonpool.

    PubMed

    Fredriksen, Arnt G; Kristiansen, Trygve; Faltinsen, Odd M

    2015-01-28

    Regular wave-induced behaviour of a floating stationary two-dimensional body with a moonpool is studied. The focus is on resonant piston-mode motion in the moonpool and rigid-body motions. Dedicated two-dimensional experiments have been performed. Two numerical hybrid methods, which have previously been applied to related problems, are further developed. Both numerical methods couple potential and viscous flow. The semi-nonlinear hybrid method uses linear free-surface and body-boundary conditions. The other one uses fully nonlinear free-surface and body-boundary conditions. The harmonic polynomial cell method solves the Laplace equation in the potential flow domain, while the finite volume method solves the Navier-Stokes equations in the viscous flow domain near the body. Results from the two codes are compared with the experimental data. The nonlinear hybrid method compares well with the data, while certain discrepancies are observed for the semi-nonlinear method. In particular, the roll motion is over-predicted by the semi-nonlinear hybrid method. Error sources in the semi-nonlinear hybrid method are discussed. The moonpool strongly affects heave motions in a frequency range around the piston-mode resonance frequency of the moonpool. No resonant water motions occur in the moonpool at the piston-mode resonance frequency. Instead large moonpool motions occur at a heave natural frequency associated with small damping near the piston-mode resonance frequency. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Riemann–Hilbert problem approach for two-dimensional flow inverse scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agaltsov, A. D., E-mail: agalets@gmail.com; Novikov, R. G., E-mail: novikov@cmap.polytechnique.fr; IEPT RAS, 117997 Moscow

    2014-10-15

    We consider inverse scattering for the time-harmonic wave equation with first-order perturbation in two dimensions. This problem arises in particular in the acoustic tomography of moving fluid. We consider linearized and nonlinearized reconstruction algorithms for this problem of inverse scattering. Our nonlinearized reconstruction algorithm is based on the non-local Riemann–Hilbert problem approach. Comparisons with preceding results are given.

  16. Coherence lengths for three-dimensional superconductors in the BCS-Bose picture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, R.M.; Casas, M.; Getino, J.M.

    1995-12-01

    Following an approach similar to that of Miyake or Randeria, Duan, and Shieh in two dimensions, we study a three-dimensional many-fermion gas at zero temperature interacting via some short-ranged two-body potential. To accommodate a possible singularity (e.g., the Coulomb repulsion) in the interaction, the potential is eliminated in favor of the two-body scattering {ital t}-matrix, the low-energy form of which is expressible in terms of the {ital s}-wave scattering length {ital a}{sub {ital s}}. The BCS gap equation for {ital s}-wave pairing is then solved simultaneously with the number equation in order to self-consistently obtain the zero-temperature BCS gap {Delta}more » as well as the chemical potential {mu} as functions of the dimensionless coupling variable {lambda}{equivalent_to}{ital k}{sub {ital F}}{ital a}{sub {ital s}}, where {ital k}{sub {ital F}} is the Fermi momentum. Results are valid for arbitrary coupling strength, and in the weak coupling limit reproduce the standard BCS results. Finally, root-mean-square pair sizes are obtained as a function of {lambda} and compared with experimental values.« less

  17. Hybrid method (JM-ECS) combining the J-matrix and exterior complex scaling methods for scattering calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanroose, W.; Broeckhove, J.; Arickx, F.

    The paper proposes a hybrid method for calculating scattering processes. It combines the J-matrix method with exterior complex scaling and an absorbing boundary condition. The wave function is represented as a finite sum of oscillator eigenstates in the inner region, and it is discretized on a grid in the outer region. The method is validated for a one- and a two-dimensional model with partial wave equations and a calculation of p-shell nuclear scattering with semirealistic interactions.

  18. Numerical solution for the interaction of shock wave with laminar boundary layer in two-dimensional flow on a flat plate. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Landau, U.

    1984-01-01

    The finite difference computation method was investigated for solving problems of interaction between a shock wave and a laminar boundary layer, through solution of the complete Navier-Stokes equations. This method provided excellent solutions, was simple to perform and needed a relatively short solution time. A large number of runs for various flow conditions could be carried out from which the interaction characteristics and principal factors that influence interaction could be studied.

  19. A computational study on the interaction between a vortex and a shock wave

    NASA Technical Reports Server (NTRS)

    Meadows, Kristine R.; Kumar, Ajay; Hussaini, M. Y.

    1989-01-01

    A computational study of two-dimensional shock vortex interaction is discussed in this paper. A second order upwind finite volume method is used to solve the Euler equations in conservation form. In this method, the shock wave is captured rather than fitted so that the cases where shock vortex interaction may cause secondary shocks can also be investigated. The effects of vortex strength on the computed flow and acoustic field generated by the interaction are qualitatively evaluated.

  20. On nonlinear evolution of low-frequency Alfvén waves in weakly-expanding solar wind plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nariyuki, Y.

    A multi-dimensional nonlinear evolution equation for Alfvén waves in weakly-expanding solar wind plasmas is derived by using the reductive perturbation method. The expansion of solar wind plasma parcels is modeled by an expanding box model, which includes the accelerating expansion. It is shown that the resultant equation agrees with the Wentzel-Kramers-Brillouin prediction of the low-frequency Alfvén waves in the linear limit. In the cold and one-dimensional limit, a modified derivative nonlinear Schrodinger equation is obtained. Direct numerical simulations are carried out to discuss the effect of the expansion on the modulational instability of monochromatic Alfvén waves and the propagation ofmore » Alfvén solitons. By using the instantaneous frequency, it is quantitatively shown that as far as the expansion rate is much smaller than wave frequencies, effects of the expansion are almost adiabatic. It is also confirmed that while shapes of Alfvén solitons temporally change due to the expansion, some of them can stably propagate after their collision in weakly-expanding plasmas.« less

  1. An implicit time-marching method for the three-dimensional Navier-Stokes equations of contravariant velocity components

    NASA Astrophysics Data System (ADS)

    Daiguji, Hisaaki; Yamamoto, Satoru

    1988-12-01

    The implicit time-marching finite-difference method for solving the three-dimensional compressible Euler equations developed by the authors is extended to the Navier-Stokes equations. The distinctive features of this method are to make use of momentum equations of contravariant velocities instead of physical boundaries, and to be able to treat the periodic boundary condition for the three-dimensional impeller flow easily. These equations can be solved by using the same techniques as the Euler equations, such as the delta-form approximate factorization, diagonalization and upstreaming. In addition to them, a simplified total variation diminishing scheme by the authors is applied to the present method in order to capture strong shock waves clearly. Finally, the computed results of the three-dimensional flow through a transonic compressor rotor with tip clearance are shown.

  2. Effective modeling and reverse-time migration for novel pure acoustic wave in arbitrary orthorhombic anisotropic media

    NASA Astrophysics Data System (ADS)

    Xu, Shigang; Liu, Yang

    2018-03-01

    The conventional pseudo-acoustic wave equations (PWEs) in arbitrary orthorhombic anisotropic (OA) media usually have coupled P- and SV-wave modes. These coupled equations may introduce strong SV-wave artifacts and numerical instabilities in P-wave simulation results and reverse-time migration (RTM) profiles. However, pure acoustic wave equations (PAWEs) completely decouple the P-wave component from the full elastic wavefield and naturally solve all the aforementioned problems. In this article, we present a novel PAWE in arbitrary OA media and compare it with the conventional coupled PWEs. Through decomposing the solution of the corresponding eigenvalue equation for the original PWE into an ellipsoidal differential operator (EDO) and an ellipsoidal scalar operator (ESO), the new PAWE in time-space domain is constructed by applying the combination of these two solvable operators and can effectively describe P-wave features in arbitrary OA media. Furthermore, we adopt the optimal finite-difference method (FDM) to solve the newly derived PAWE. In addition, the three-dimensional (3D) hybrid absorbing boundary condition (HABC) with some reasonable modifications is developed for reducing artificial edge reflections in anisotropic media. To improve computational efficiency in 3D case, we adopt graphic processing unit (GPU) with Compute Unified Device Architecture (CUDA) instead of traditional central processing unit (CPU) architecture. Several numerical experiments for arbitrary OA models confirm that the proposed schemes can produce pure, stable and accurate P-wave modeling results and RTM images with higher computational efficiency. Moreover, the 3D numerical simulations can provide us with a comprehensive and real description of wave propagation.

  3. Dispersion relations of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with functionally graded interlayers.

    PubMed

    Guo, Xiao; Wei, Peijun; Lan, Man; Li, Li

    2016-08-01

    The effects of functionally graded interlayers on dispersion relations of elastic waves in a one-dimensional piezoelectric/piezomagnetic phononic crystal are studied in this paper. First, the state transfer equation of the functionally graded interlayer is derived from the motion equation by the reduction of order (from second order to first order). The transfer matrix of the functionally graded interlayer is obtained by solving the state transfer equation with the spatial-varying coefficient. Based on the transfer matrixes of the piezoelectric slab, the piezomagnetic slab and the functionally graded interlayers, the total transfer matrix of a single cell is obtained. Further, the Bloch theorem is used to obtain the resultant dispersion equations of in-plane and anti-plane Bloch waves. The dispersion equations are solved numerically and the numerical results are shown graphically. Five kinds of profiles of functionally graded interlayers between a piezoelectric slab and a piezomagnetic slab are considered. It is shown that the functionally graded interlayers have evident influences on the dispersion curves and the band gaps. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Nonplanar KdV and KP equations for quantum electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Dutta, Debjit

    2015-12-01

    Nonlinear quantum ion-acoustic waves with the effects of nonplanar cylindrical geometry, quantum corrections, and transverse perturbations are studied. By using the standard reductive perturbation technique, a cylindrical Kadomtsev-Petviashvili equation for ion-acoustic waves is derived by incorporating quantum-mechanical effects. The quantum-mechanical effects via quantum diffraction and quantum statistics and the role of transverse perturbations in cylindrical geometry on the dynamics of this wave are studied analytically. It is found that the dynamics of ion-acoustic solitary waves (IASWs) is governed by a three-dimensional cylindrical Kadomtsev-Petviashvili equation (CKPE). The results could help in a theoretical analysis of astrophysical and laser produced plasmas.

  5. Fast Neural Solution Of A Nonlinear Wave Equation

    NASA Technical Reports Server (NTRS)

    Barhen, Jacob; Toomarian, Nikzad

    1996-01-01

    Neural algorithm for simulation of class of nonlinear wave phenomena devised. Numerically solves special one-dimensional case of Korteweg-deVries equation. Intended to be executed rapidly by neural network implemented as charge-coupled-device/charge-injection device, very-large-scale integrated-circuit analog data processor of type described in "CCD/CID Processors Would Offer Greater Precision" (NPO-18972).

  6. Coupled fluid-structure interaction. Part 1: Theory. Part 2: Application

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.; Ohayon, Roger

    1991-01-01

    A general three dimensional variational principle is obtained for the motion of an acoustic field enclosed in a rigid or flexible container by the method of canonical decomposition applied to a modified form of the wave equation in the displacement potential. The general principle is specialized to a mixed two-field principle that contains the fluid displacement potential and pressure as independent fields. Semidiscrete finite element equations of motion based on this principle are derived and sample cases are given.

  7. Some special solutions to the Hyperbolic NLS equation

    NASA Astrophysics Data System (ADS)

    Vuillon, Laurent; Dutykh, Denys; Fedele, Francesco

    2018-04-01

    The Hyperbolic Nonlinear SCHRöDINGER equation (HypNLS) arises as a model for the dynamics of three-dimensional narrow-band deep water gravity waves. In this study, the symmetries and conservation laws of this equation are computed. The PETVIASHVILI method is then exploited to numerically compute bi-periodic time-harmonic solutions of the HypNLS equation. In physical space they represent non-localized standing waves. Non-trivial spatial patterns are revealed and an attempt is made to describe them using symbolic dynamics and the language of substitutions. Finally, the dynamics of a slightly perturbed standing wave is numerically investigated by means a highly accurate FOURIER solver.

  8. Reduced-order prediction of rogue waves in two-dimensional deep-water waves

    NASA Astrophysics Data System (ADS)

    Sapsis, Themistoklis; Farazmand, Mohammad

    2017-11-01

    We consider the problem of large wave prediction in two-dimensional water waves. Such waves form due to the synergistic effect of dispersive mixing of smaller wave groups and the action of localized nonlinear wave interactions that leads to focusing. Instead of a direct simulation approach, we rely on the decomposition of the wave field into a discrete set of localized wave groups with optimal length scales and amplitudes. Due to the short-term character of the prediction, these wave groups do not interact and therefore their dynamics can be characterized individually. Using direct numerical simulations of the governing envelope equations we precompute the expected maximum elevation for each of those wave groups. The combination of the wave field decomposition algorithm, which provides information about the statistics of the system, and the precomputed map for the expected wave group elevation, which encodes dynamical information, allows (i) for understanding of how the probability of occurrence of rogue waves changes as the spectrum parameters vary, (ii) the computation of a critical length scale characterizing wave groups with high probability of evolving to rogue waves, and (iii) the formulation of a robust and parsimonious reduced-order prediction scheme for large waves. T.S. has been supported through the ONR Grants N00014-14-1-0520 and N00014-15-1-2381 and the AFOSR Grant FA9550-16-1-0231. M.F. has been supported through the second Grant.

  9. Optical turbulence and transverse rogue waves in a cavity with triple-quantum-dot molecules

    NASA Astrophysics Data System (ADS)

    Eslami, M.; Khanmohammadi, M.; Kheradmand, R.; Oppo, G.-L.

    2017-09-01

    We show that optical turbulence extreme events can exist in the transverse dynamics of a cavity containing molecules of triple quantum dots under conditions close to tunneling-induced transparency. These nanostructures, when coupled via tunneling, form a four-level configuration with tunable energy-level separations. We show that such a system exhibits multistability and bistability of Turing structures in instability domains with different critical wave vectors. By numerical simulation of the mean-field equation that describes the transverse dynamics of the system, we show that the simultaneous presence of two transverse solutions with opposite nonlinearities gives rise to a series of turbulent structures with the capability of generating two-dimensional rogue waves.

  10. Nonequilibrium Precondensation of Classical Waves in Two Dimensions Propagating through Atomic Vapors

    NASA Astrophysics Data System (ADS)

    Šantić, Neven; Fusaro, Adrien; Salem, Sabeur; Garnier, Josselin; Picozzi, Antonio; Kaiser, Robin

    2018-02-01

    The nonlinear Schrödinger equation, used to describe the dynamics of quantum fluids, is known to be valid not only for massive particles but also for the propagation of light in a nonlinear medium, predicting condensation of classical waves. Here we report on the initial evolution of random waves with Gaussian statistics using atomic vapors as an efficient two dimensional nonlinear medium. Experimental and theoretical analysis of near field images reveal a phenomenon of nonequilibrium precondensation, characterized by a fast relaxation towards a precondensate fraction of up to 75%. Such precondensation is in contrast to complete thermalization to the Rayleigh-Jeans equilibrium distribution, requiring prohibitive long interaction lengths.

  11. 2D instabilities of surface gravity waves on a linear shear current

    NASA Astrophysics Data System (ADS)

    Francius, Marc; Kharif, Christian

    2016-04-01

    Periodic 2D surface water waves propagating steadily on a rotational current have been studied by many authors (see [1] and references therein). Although the recent important theoretical developments have confirmed that periodic waves can exist over flows with arbitrary vorticity, their stability and their nonlinear evolution have not been much studied extensively so far. In fact, even in the rather simple case of uniform vorticity (linear shear), few papers have been published on the effect of a vertical shear current on the side-band instability of a uniform wave train over finite depth. In most of these studies [2-5], asymptotic expansions and multiple scales method have been used to obtain envelope evolution equations, which allow eventually to formulate a condition of (linear) instability to long modulational perturbations. It is noted here that this instability is often referred in the literature as the Benjamin-Feir or modulational instability. In the present study, we consider the linear stability of finite amplitude two-dimensional, periodic water waves propagating steadily on the free surface of a fluid with constant vorticity and finite depth. First, the steadily propagating surface waves are computed with steepness up to very close to the highest, using a Fourier series expansions and a collocation method, which constitutes a simple extension of Fenton's method [6] to the cases with a linear shear current. Then, the linear stability of these permanent waves to infinitesimal 2D perturbations is developed from the fully nonlinear equations in the framework of normal modes analysis. This linear stability analysis is an extension of [7] to the case of waves in the presence of a linear shear current and permits the determination of the dominant instability as a function of depth and vorticity for a given steepness. The numerical results are used to assess the accuracy of the vor-NLS equation derived in [5] for the characteristics of modulational instabilities due to resonant four-wave interactions, as well as to study the influence of vorticity and nonlinearity on the characteristics of linear instabilities due to resonant five-wave and six-wave interactions. Depending on the dimensionless depth, superharmonic instabilities due to five-wave interactions can become dominant with increasing positive vorticiy. Acknowledgments: This work was supported by the Direction Générale de l'Armement and funded by the ANR project n°. ANR-13-ASTR-0007. References [1] A. Constantin, Two-dimensionality of gravity water flows of constant non-zero vorticity beneath a surface wave train, Eur. J. Mech. B/Fluids, 2011, 30, 12-16. [2] R. S. Johnson, On the modulation of water waves on shear flows, Proc. Royal Soc. Lond. A., 1976, 347, 537-546. [3] M. Oikawa, K. Chow, D. J. Benney, The propagation of nonlinear wave packets in a shear flow with a free surface, Stud. Appl. Math., 1987, 76, 69-92. [4] A. I Baumstein, Modulation of gravity waves with shear in water, Stud. Appl. Math., 1998, 100, 365-90. [5] R. Thomas, C. Kharif, M. Manna, A nonlinear Schrödinger equation for water waves on finite depth with constant vorticity, Phys. Fluids, 2012, 24, 127102. [6] M. M Rienecker, J. D Fenton, A Fourier approximation method for steady water waves , J. Fluid Mech., 1981, 104, 119-137 [7] M. Francius, C. Kharif, Three-dimensional instabilities of periodic gravity waves in shallow water, J. Fluid Mech., 2006, 561, 417-437

  12. Effects of dust size distribution on dust acoustic waves in two-dimensional unmagnetized dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Guangjun; Duan Wenshan; Tian Duoxiang

    2008-04-15

    For unmagnetized dusty plasma with many different dust grain species containing both hot isothermal electrons and ions, both the linear dispersion relation and the Kadomtsev-Petviashvili equation for small, but finite amplitude dust acoustic waves are obtained. The linear dispersion relation is investigated numerically. Furthermore, the variations of amplitude, width, and propagation velocity of the nonlinear solitary wave with an arbitrary dust size distribution function are studied as well. Moreover, both the power law distribution and the Gaussian distribution are approximately simulated by using appropriate arbitrary dust size distribution functions.

  13. Obliquely propagating low frequency electromagnetic shock waves in two dimensional quantum magnetoplasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.

    2009-04-15

    Linear and nonlinear propagation characteristics of low frequency magnetoacoustic waves in quantum magnetoplasmas are studied employing the quantum magnetohydrodynamic model. In this regard, a quantum Kadomtsev-Petviashvili-Burgers (KPB) equation is derived using the small amplitude expansion method. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. Furthermore, the solution of KPB equation is presented using the tangent hyperbolic (tanh) method. The variation in the fast and slow magnetoacoustic shock profiles with the quantum Bohm potential via increasing number density, obliqueness angle {theta}, magnetic field, and the resistivity are also investigated. It is observed that themore » aforementioned plasma parameters significantly modify the propagation characteristics of nonlinear magnetoacoustic shock waves in quantum magnetoplasmas. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.« less

  14. Exact Analytical Solutions for Elastodynamic Impact

    DTIC Science & Technology

    2015-11-30

    corroborated by derivation of exact discrete solutions from recursive equations for the impact problems. 15. SUBJECT TERMS One-dimensional impact; Elastic...wave propagation; Laplace transform; Floor function; Discrete solutions 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18...impact Elastic wave propagation Laplace transform Floor function Discrete solutionsWe consider the one-dimensional impact problem in which a semi

  15. A mathematical model of the structure and evolution of small scale discrete auroral arcs

    NASA Technical Reports Server (NTRS)

    Seyler, C. E.

    1990-01-01

    A three dimensional fluid model which includes the dispersive effect of electron inertia is used to study the nonlinear macroscopic plasma dynamics of small scale discrete auroral arcs within the auroral acceleration zone and ionosphere. The motion of the Alfven wave source relative to the magnetospheric and ionospheric plasma forms an oblique Alfven wave which is reflected from the topside ionosphere by the negative density gradient. The superposition of the incident and reflected wave can be described by a steady state analytical solution of the model equations with the appropriate boundary conditions. This two dimensional discrete auroral arc equilibrium provides a simple explanation of auroral acceleration associated with the parallel electric field. Three dimensional fully nonlinear numerical simulations indicate that the equilibrium arc configuration evolves three dimensionally through collisionless tearing and reconnection of the current layer. The interaction of the perturbed flow and the transverse magnetic field produces complex transverse structure that may be the origin of the folds and curls observed to be associated with small scale discrete arcs.

  16. Development and Application of a Three-dimensional Seismo-acoustic Coupled-mode Model

    DTIC Science & Technology

    2014-09-30

    of coral reef fish need to locate a reef , and sound emanating from reefs may act as a cue to guide them. Using acoustic data collected from Bahia...approximate the solution to the wave equation. RELATED PROJECTS Geoacoustic inversion in three-dimensional environments The goal of this project is...shear wave speed Under this project an laboratory measurements the compressional and shear wave speeds and attenuations in coarse and fine grained

  17. Solution of D dimensional Dirac equation for coulombic potential using NU method and its thermodynamics properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cari, C., E-mail: cari@staff.uns.ac.id; Suparmi, A., E-mail: soeparmi@staff.uns.ac.id; Yunianto, M., E-mail: muhtaryunianto@staff.uns.ac.id

    2016-02-08

    The analytical solution of Ddimensional Dirac equation for Coulombic potential is investigated using Nikiforov-Uvarov method. The D dimensional relativistic energy spectra are obtained from relativistic energy eigenvalue equation by using Mat Lab software.The corresponding D dimensional radial wave functions are formulated in the form of generalized Jacobi and Laguerre Polynomials. In the non-relativistic limit, the relativistic energy equation reduces to the non-relativistic energy which will be applied to determine some thermodynamical properties of the system. The thermodynamical properties of the system are expressed in terms of error function and imaginary error function.

  18. A hybrid model of laser energy deposition for multi-dimensional simulations of plasmas and metals

    NASA Astrophysics Data System (ADS)

    Basko, Mikhail M.; Tsygvintsev, Ilia P.

    2017-05-01

    The hybrid model of laser energy deposition is a combination of the geometrical-optics ray-tracing method with the one-dimensional (1D) solution of the Helmholtz wave equation in regions where the geometrical optics becomes inapplicable. We propose an improved version of this model, where a new physically consistent criterion for transition to the 1D wave optics is derived, and a special rescaling procedure of the wave-optics deposition profile is introduced. The model is intended for applications in large-scale two- and three-dimensional hydrodynamic codes. Comparison with exact 1D solutions demonstrates that it can fairly accurately reproduce the absorption fraction in both the s- and p-polarizations on arbitrarily steep density gradients, provided that a sufficiently accurate algorithm for gradient evaluation is used. The accuracy of the model becomes questionable for long laser pulses simulated on too fine grids, where the hydrodynamic self-focusing instability strongly manifests itself.

  19. The exact solutions and approximate analytic solutions of the (2 + 1)-dimensional KP equation based on symmetry method.

    PubMed

    Gai, Litao; Bilige, Sudao; Jie, Yingmo

    2016-01-01

    In this paper, we successfully obtained the exact solutions and the approximate analytic solutions of the (2 + 1)-dimensional KP equation based on the Lie symmetry, the extended tanh method and the homotopy perturbation method. In first part, we obtained the symmetries of the (2 + 1)-dimensional KP equation based on the Wu-differential characteristic set algorithm and reduced it. In the second part, we constructed the abundant exact travelling wave solutions by using the extended tanh method. These solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions respectively. It should be noted that when the parameters are taken as special values, some solitary wave solutions are derived from the hyperbolic function solutions. Finally, we apply the homotopy perturbation method to obtain the approximate analytic solutions based on four kinds of initial conditions.

  20. Transformed Fourier and Fick equations for the control of heat and mass diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guenneau, S.; Petiteau, D.; Zerrad, M.

    We review recent advances in the control of diffusion processes in thermodynamics and life sciences through geometric transforms in the Fourier and Fick equations, which govern heat and mass diffusion, respectively. We propose to further encompass transport properties in the transformed equations, whereby the temperature is governed by a three-dimensional, time-dependent, anisotropic heterogeneous convection-diffusion equation, which is a parabolic partial differential equation combining the diffusion equation and the advection equation. We perform two dimensional finite element computations for cloaks, concentrators and rotators of a complex shape in the transient regime. We precise that in contrast to invisibility cloaks for waves,more » the temperature (or mass concentration) inside a diffusion cloak crucially depends upon time, its distance from the source, and the diffusivity of the invisibility region. However, heat (or mass) diffusion outside cloaks, concentrators and rotators is unaffected by their presence, whatever their shape or position. Finally, we propose simplified designs of layered cylindrical and spherical diffusion cloaks that might foster experimental efforts in thermal and biochemical metamaterials.« less

  1. Dynamics and Stability of Rolling Viscoelastic Tires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, Trevor

    2013-04-30

    Current steady state rolling tire calculations often do not include treads because treads destroy the rotational symmetry of the tire. We describe two methodologies to compute time periodic solutions of a two-dimensional viscoelastic tire with treads: solving a minimization problem and solving a system of equations. We also expand on work by Oden and Lin on free spinning rolling elastic tires in which they disovered a hierachy of N-peak steady state standing wave solutions. In addition to discovering a two-dimensional hierarchy of standing wave solutions that includes their N-peak hiearchy, we consider the eects of viscoelasticity on the standing wavemore » solutions. Finally, a commonplace model of viscoelasticity used in our numerical experiments led to non-physical elastic energy growth for large tire speeds. We show that a viscoelastic model of Govindjee and Reese remedies the problem.« less

  2. Small amplitude two dimensional electrostatic excitations in a magnetized dusty plasma with q-distributed electrons

    NASA Astrophysics Data System (ADS)

    Khan, Shahab Ullah; Adnan, Muhammad; Qamar, Anisa; Mahmood, Shahzad

    2016-07-01

    The propagation of linear and nonlinear electrostatic waves is investigated in magnetized dusty plasma with stationary negatively or positively charged dust, cold mobile ions and non-extensive electrons. Two normal modes are predicted in the linear regime, whose characteristics are investigated parametrically, focusing on the effect of electrons non-extensivity, dust charge polarity, concentration of dust and magnetic field strength. Using the reductive perturbation technique, a Zakharov-Kuznetsov (ZK) type equation is derived which governs the dynamics of small-amplitude solitary waves in magnetized dusty plasma. The properties of the solitary wave structures are analyzed numerically with the system parameters i.e. electrons non-extensivity, concentration of dust, polarity of dust and magnetic field strength. Following Allen and Rowlands (J. Plasma Phys. 53:63, 1995), we have shown that the pulse soliton solution of the ZK equation is unstable, and have analytically traced the dependence of the instability growth rate on the nonextensive parameter q for electrons, dust charge polarity and magnetic field strength. The results should be useful for understanding the nonlinear propagation of DIA solitary waves in laboratory and space plasmas.

  3. Computing the Evans function via solving a linear boundary value ODE

    NASA Astrophysics Data System (ADS)

    Wahl, Colin; Nguyen, Rose; Ventura, Nathaniel; Barker, Blake; Sandstede, Bjorn

    2015-11-01

    Determining the stability of traveling wave solutions to partial differential equations can oftentimes be computationally intensive but of great importance to understanding the effects of perturbations on the physical systems (chemical reactions, hydrodynamics, etc.) they model. For waves in one spatial dimension, one may linearize around the wave and form an Evans function - an analytic Wronskian-like function which has zeros that correspond in multiplicity to the eigenvalues of the linearized system. If eigenvalues with a positive real part do not exist, the traveling wave will be stable. Two methods exist for calculating the Evans function numerically: the exterior-product method and the method of continuous orthogonalization. The first is numerically expensive, and the second reformulates the originally linear system as a nonlinear system. We develop a new algorithm for computing the Evans function through appropriate linear boundary-value problems. This algorithm is cheaper than the previous methods, and we prove that it preserves analyticity of the Evans function. We also provide error estimates and implement it on some classical one- and two-dimensional systems, one being the Swift-Hohenberg equation in a channel, to show the advantages.

  4. A model for the generation of two-dimensional surf beat

    USGS Publications Warehouse

    List, Jeffrey H.

    1992-01-01

    A finite difference model predicting group-forced long waves in the nearshore is constructed with two interacting parts: an incident wave model providing time-varying radiation stress gradients across the nearshore, and a long-wave model which solves the equations of motion for the forcing imposed by the incident waves. Both shallow water group-bound long waves and long waves generated by a time-varying breakpoint are simulated. Model-generated time series are used to calculate the cross correlation between wave groups and long waves through the surf zone. The cross-correlation signal first observed by Tucker (1950) is well predicted. For the first time, this signal is decomposed into the contributions from the two mechanisms of leaky mode forcing. Results show that the cross-correlation signal can be explained by bound long waves which are amplified, though strongly modified, through the surf zone before reflection from the shoreline. The breakpoint-forced long waves are added to the bound long waves at a phase of pi/2 and are a secondary contribution owing to their relatively small size.

  5. Rogue wave variational modelling through the interaction of two solitary waves

    NASA Astrophysics Data System (ADS)

    Gidel, Floriane; Bokhove, Onno

    2016-04-01

    The extreme and unexpected characteristics of Rogue waves have made them legendary for centuries. It is only on the 1st of January 1995 that these mariners' tales started to raise scientist's curiosity, when such a wave was recorded in the North Sea; a sudden wall of water hit the Draupner offshore platform, more than twice higher than the other waves, providing evidence of the existence of rogue or freak waves. Since then, studies have shown that these surface gravity waves of high amplitude (at least twice the height of the other sea waves [Dyste et al., 2008]) appear in non-linear dispersive water motion [Drazin and Johnson, 1989], at any depth, and have caused a lot of damage in recent years [Nikolkina and Didenkulova, 2011 ]. So far, most of the studies have tried to determine their probability of occurrence, but no conclusion has been achieved yet, which means that we are currently unenable to predict or avoid these monster waves. An accurate mathematical and numerical water-wave model would enable simulation and observation of this external forcing on boats and offshore structures and hence reduce their threat. In this work, we aim to model rogue waves through a soliton splash generated by the interaction of two solitons coming from different channels at a specific angle. Kodama indeed showed that one way to produce extreme waves is through the intersection of two solitary waves, or one solitary wave and its oblique reflection on a vertical wall [Yeh, Li and Kodama, 2010 ]. While he modelled Mach reflection from Kadomtsev-Petviashvili (KP) theory, we aim to model rogue waves from the three-dimensional potential flow equations and/or their asymptotic equivalent described by Benney and Luke [Benney and Luke, 1964]. These theories have the advantage to allow wave propagation in several directions, which is not the case with KP equations. The initial solitary waves are generated by removing a sluice gate in each channel. The equations are derived through a variational approach, based on Luke's variational principle [Luke, 1967], and its dynamical equivalent from Miles [Miles, 1977], that describe incompressible and inviscid potential flows with free surface, through the variations of the Lagrangian. This Lagrangian, obtained from Bernouilli's equations, can be expressed in a Hamiltonian form, for which robust time integrators have been derived [Gagarina et al., 2015]. A Galerkin finite element method is then used to solve the system numerically, and we aim to compare our simulations to exact solutions of the KP-equation.

  6. Acoustic impact on the laminated plates placed between barriers

    NASA Astrophysics Data System (ADS)

    Paimushin, V. N.; Gazizullin, R. K.; Fedotenkov, G. V.

    2016-11-01

    On the basis of previously derived equations, analytical solutions are established on the forced vibrations of two-layer and three-layers rectangular plates hinged in an opening of absolutely rigid walls during the transmission of monoharmonic sound waves. It is assumed that the partition wall is situated between two absolutely rigid barriers, one of them by harmonic oscillation with a given displacements amplitude on the plate forms the incident sound wave, and the other is stationary and has a coating of deformable energy absorbing material with high damping properties. The behavior of acoustic environments in the spaces between the deformable plate and the barriers described by classical wave equation based on the ideal compressible fluid model. To describe the process of dynamic deformation of the energy absorbing coating of fixed barrier, two-dimensional equations of motion based on the use of models transversely soft layer are derived with a linear approximation of the displacement field in the thickness direction of the coating and taking into account the damping properties of the material and the hysteresis model for it. The influence of the physical and mechanical properties of the concerned mechanical system and the frequency of the incident sound wave on the parameters of its insulation properties of the plate, as well as on the parameters of the stress-strain state of the plate has been analyzed.

  7. Stability of dust ion acoustic solitary waves in a collisionless unmagnetized nonthermal plasma in presence of isothermal positrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sardar, Sankirtan; Bandyopadhyay, Anup, E-mail: abandyopadhyay1965@gmail.com; Das, K. P.

    A three-dimensional KP (Kadomtsev Petviashvili) equation is derived here describing the propagation of weakly nonlinear and weakly dispersive dust ion acoustic wave in a collisionless unmagnetized plasma consisting of warm adiabatic ions, static negatively charged dust grains, nonthermal electrons, and isothermal positrons. When the coefficient of the nonlinear term of the KP-equation vanishes an appropriate modified KP (MKP) equation describing the propagation of dust ion acoustic wave is derived. Again when the coefficient of the nonlinear term of this MKP equation vanishes, a further modified KP equation is derived. Finally, the stability of the solitary wave solutions of the KPmore » and the different modified KP equations are investigated by the small-k perturbation expansion method of Rowlands and Infeld [J. Plasma Phys. 3, 567 (1969); 8, 105 (1972); 10, 293 (1973); 33, 171 (1985); 41, 139 (1989); Sov. Phys. - JETP 38, 494 (1974)] at the lowest order of k, where k is the wave number of a long-wavelength plane-wave perturbation. The solitary wave solutions of the different evolution equations are found to be stable at this order.« less

  8. General multicomponent Yajima-Oikawa system: Painlevé analysis, soliton solutions, and energy-sharing collisions.

    PubMed

    Kanna, T; Sakkaravarthi, K; Tamilselvan, K

    2013-12-01

    We consider the multicomponent Yajima-Oikawa (YO) system and show that the two-component YO system can be derived in a physical setting of a three-coupled nonlinear Schrödinger (3-CNLS) type system by the asymptotic reduction method. The derivation is further generalized to the multicomponent case. This set of equations describes the dynamics of nonlinear resonant interaction between a one-dimensional long wave and multiple short waves. The Painlevé analysis of the general multicomponent YO system shows that the underlying set of evolution equations is integrable for arbitrary nonlinearity coefficients which will result in three different sets of equations corresponding to positive, negative, and mixed nonlinearity coefficients. We obtain the general bright N-soliton solution of the multicomponent YO system in the Gram determinant form by using Hirota's bilinearization method and explicitly analyze the one- and two-soliton solutions of the multicomponent YO system for the above mentioned three choices of nonlinearity coefficients. We also point out that the 3-CNLS system admits special asymptotic solitons of bright, dark, anti-dark, and gray types, when the long-wave-short-wave resonance takes place. The short-wave component solitons undergo two types of energy-sharing collisions. Specifically, in the two-component YO system, we demonstrate that two types of energy-sharing collisions-(i) energy switching with opposite nature for a particular soliton in two components and (ii) similar kind of energy switching for a given soliton in both components-result for two different choices of nonlinearity coefficients. The solitons appearing in the long-wave component always exhibit elastic collision whereas those of short-wave components exhibit standard elastic collisions only for a specific choice of parameters. We have also investigated the collision dynamics of asymptotic solitons in the original 3-CNLS system. For completeness, we explore the three-soliton interaction and demonstrate the pairwise nature of collisions and unravel the fascinating state restoration property.

  9. Traveling wave solution of driven nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2017-09-01

    The traveling solitary and cnoidal wave solutions of the one dimensional driven nonlinear Schrödinger equation with a generalized form of nonlinearity are presented in this paper. We examine the modulation of nonlinear solitary excitations in two known weakly nonlinear models of classic oscillators, namely, the Helmholtz and Duffing oscillators and envelope structure formations for different oscillator and driver parameters. It is shown that two distinct regimes of subcritical and supercritical modulations may occur for nonlinear excitations with propagation speeds v <√{4 F0 } and v >√{4 F0 } , respectively, in which F0 is the driver force strength. The envelope soliton and cnoidal waves in these regimes are observed to be fundamentally different. The effect of pseudoenergy on the structure of the modulated envelope excitations is studied in detail for both sub- and supercritical modulation types. The current model for traveling envelope excitations may be easily extended to pseudopotentials with full nonlinearity relevant to more realistic gases, fluids, and plasmas.

  10. Study of Lamb Waves for Non-Destructive Testing Behind Screens

    NASA Astrophysics Data System (ADS)

    Kauffmann, P.; Ploix, M.-A.; Chaix, J.-F.; Gueudré, C.; Corneloup, G.; Baqué, F. AF(; )

    2018-01-01

    The inspection and control of sodium-cooled fast reactors (SFR) is a major issue for the nuclear industry. Ultrasonic solutions are under study because of the opacity of liquid sodium. In this paper, the use of leaky Lamb waves is considered for non-destructive testing (NDT) on parallel and immersed structures assimilated as plates. The first phase of our approach involved studying the propagation properties of leaky Lamb waves. Equations that model the propagation of Lamb waves in an immersed plate were solved numerically. The phase velocity can be experimentally measured using a two dimensional Fourier transform. The group velocity can be experimentally measured using a short-time Fourier transform technique. Attenuation of leaky Lamb waves is mostly due to the re-emission of energy into the surrounding fluid, and it can be measured by these two techniques.

  11. An Investigation of Wave Propagations in Discontinuous Galerkin Method

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.

    2004-01-01

    Analysis of the discontinuous Galerkin method has been carried out for one- and two-dimensional system of hyperbolic equations. Analytical, as well as numerical, properties of wave propagation in a DGM scheme are derived and verified with direct numerical simulations. In addition to a systematic examination of the dissipation and dispersion errors, behaviours of a DG scheme at an interface of two different grid topologies are also studied. Under the same framework, a quantitative discrete analysis of various artificial boundary conditions is also conducted. Progress has been made in numerical boundary condition treatment that is closely related to the application of DGM in aeroacoustics problems. Finally, Fourier analysis of DGM for the Convective diffusion equation has also be studied in connection with the application of DG schemes for the Navier-Stokes equations. This research has resulted in five(5) publications, plus one additional manuscript in preparation, four(4) conference presentations, and three(3) departmental seminars, as summarized in part II. Abstracts of papers are given in part 111 of this report.

  12. On the existence of solutions to a one-dimensional degenerate nonlinear wave equation

    NASA Astrophysics Data System (ADS)

    Hu, Yanbo

    2018-07-01

    This paper is concerned with the degenerate initial-boundary value problem to the one-dimensional nonlinear wave equation utt =((1 + u) aux) x which arises in a number of various physical contexts. The global existence of smooth solutions to the degenerate problem was established under relaxed conditions on the initial-boundary data by the characteristic decomposition method. Moreover, we show that the solution is uniformly C 1 , α continuous up to the degenerate boundary and the degenerate curve is C 1 , α continuous for α ∈ (0 , min ⁡ a/1+a, 1/1+a).

  13. Nonlinear dynamics and anisotropic structure of rotating sheared turbulence.

    PubMed

    Salhi, A; Jacobitz, F G; Schneider, K; Cambon, C

    2014-01-01

    Homogeneous turbulence in rotating shear flows is studied by means of pseudospectral direct numerical simulation and analytical spectral linear theory (SLT). The ratio of the Coriolis parameter to shear rate is varied over a wide range by changing the rotation strength, while a constant moderate shear rate is used to enable significant contributions to the nonlinear interscale energy transfer and to the nonlinear intercomponental redistribution terms. In the destabilized and neutral cases, in the sense of kinetic energy evolution, nonlinearity cannot saturate the growth of the largest scales. It permits the smallest scale to stabilize by a scale-by-scale quasibalance between the nonlinear energy transfer and the dissipation spectrum. In the stabilized cases, the role of rotation is mainly nonlinear, and interacting inertial waves can affect almost all scales as in purely rotating flows. In order to isolate the nonlinear effect of rotation, the two-dimensional manifold with vanishing spanwise wave number is revisited and both two-component spectra and single-point two-dimensional energy components exhibit an important effect of rotation, whereas the SLT as well as the purely two-dimensional nonlinear analysis are unaffected by rotation as stated by the Proudman theorem. The other two-dimensional manifold with vanishing streamwise wave number is analyzed with similar tools because it is essential for any shear flow. Finally, the spectral approach is used to disentangle, in an analytical way, the linear and nonlinear terms in the dynamical equations.

  14. On the transition towards slow manifold in shallow-water and 3D Euler equations in a rotating frame

    NASA Technical Reports Server (NTRS)

    Mahalov, A.

    1994-01-01

    The long-time, asymptotic state of rotating homogeneous shallow-water equations is investigated. Our analysis is based on long-time averaged rotating shallow-water equations describing interactions of large-scale, horizontal, two-dimensional motions with surface inertial-gravity waves field for a shallow, uniformly rotating fluid layer. These equations are obtained in two steps: first by introducing a Poincare/Kelvin linear propagator directly into classical shallow-water equations, then by averaging. The averaged equations describe interaction of wave fields with large-scale motions on time scales long compared to the time scale 1/f(sub o) introduced by rotation (f(sub o)/2-angular velocity of background rotation). The present analysis is similar to the one presented by Waleffe (1991) for 3D Euler equations in a rotating frame. However, since three-wave interactions in rotating shallow-water equations are forbidden, the final equations describing the asymptotic state are simplified considerably. Special emphasis is given to a new conservation law found in the asymptotic state and decoupling of the dynamics of the divergence free part of the velocity field. The possible rising of a decoupled dynamics in the asymptotic state is also investigated for homogeneous turbulence subjected to a background rotation. In our analysis we use long-time expansion, where the velocity field is decomposed into the 'slow manifold' part (the manifold which is unaffected by the linear 'rapid' effects of rotation or the inertial waves) and a formal 3D disturbance. We derive the physical space version of the long-time averaged equations and consider an invariant, basis-free derivation. This formulation can be used to generalize Waleffe's (1991) helical decomposition to viscous inhomogeneous flows (e.g. problems in cylindrical geometry with no-slip boundary conditions on the cylinder surface and homogeneous in the vertical direction).

  15. Surface Green's function of a piezoelectric half-space.

    PubMed

    Laude, Vincent; Jerez-Hanckes, Carlos F; Ballandras, Sylvain

    2006-02-01

    The computation of the two-dimensional harmonic spatial-domain Green's function at the surface of a piezoelectric half-space is discussed. Starting from the known form of the Green's function expressed in the spectral domain, the singular contributions are isolated and treated separately. It is found that the surface acoustic wave contributions (i.e., poles in the spectral Green's function) give rise to an anisotropic generalization of the Hankel function H0(2), the spatial Green's function for the scalar two-dimensional wave equation. The asymptotic behavior at infinity and at the origin (for the electrostatic contribution) also are explicitly treated. The remaining nonsingular part of the spectral Green's function is obtained numerically by a combination of fast Fourier transform and quadrature. Illustrations are given in the case of a substrate of Y-cut lithium niobate.

  16. Matter-wave two-dimensional solitons in crossed linear and nonlinear optical lattices

    NASA Astrophysics Data System (ADS)

    da Luz, H. L. F.; Abdullaev, F. Kh.; Gammal, A.; Salerno, M.; Tomio, Lauro

    2010-10-01

    The existence of multidimensional matter-wave solitons in a crossed optical lattice (OL) with a linear optical lattice (LOL) in the x direction and a nonlinear optical lattice (NOL) in the y direction, where the NOL can be generated by a periodic spatial modulation of the scattering length using an optically induced Feshbach resonance is demonstrated. In particular, we show that such crossed LOLs and NOLs allow for stabilizing two-dimensional solitons against decay or collapse for both attractive and repulsive interactions. The solutions for the soliton stability are investigated analytically, by using a multi-Gaussian variational approach, with the Vakhitov-Kolokolov necessary criterion for stability; and numerically, by using the relaxation method and direct numerical time integrations of the Gross-Pitaevskii equation. Very good agreement of the results corresponding to both treatments is observed.

  17. Two-dimensional CFD modeling of wave rotor flow dynamics

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; Chima, Rodrick V.

    1994-01-01

    A two-dimensional Navier-Stokes solver developed for detailed study of wave rotor flow dynamics is described. The CFD model is helping characterize important loss mechanisms within the wave rotor. The wave rotor stationary ports and the moving rotor passages are resolved on multiple computational grid blocks. The finite-volume form of the thin-layer Navier-Stokes equations with laminar viscosity are integrated in time using a four-stage Runge-Kutta scheme. Roe's approximate Riemann solution scheme or the computationally less expensive advection upstream splitting method (AUSM) flux-splitting scheme is used to effect upwind-differencing of the inviscid flux terms, using cell interface primitive variables set by MUSCL-type interpolation. The diffusion terms are central-differenced. The solver is validated using a steady shock/laminar boundary layer interaction problem and an unsteady, inviscid wave rotor passage gradual opening problem. A model inlet port/passage charging problem is simulated and key features of the unsteady wave rotor flow field are identified. Lastly, the medium pressure inlet port and high pressure outlet port portion of the NASA Lewis Research Center experimental divider cycle is simulated and computed results are compared with experimental measurements. The model accurately predicts the wave timing within the rotor passages and the distribution of flow variables in the stationary inlet port region.

  18. Two-dimensional CFD modeling of wave rotor flow dynamics

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; Chima, Rodrick V.

    1993-01-01

    A two-dimensional Navier-Stokes solver developed for detailed study of wave rotor flow dynamics is described. The CFD model is helping characterize important loss mechanisms within the wave rotor. The wave rotor stationary ports and the moving rotor passages are resolved on multiple computational grid blocks. The finite-volume form of the thin-layer Navier-Stokes equations with laminar viscosity are integrated in time using a four-stage Runge-Kutta scheme. The Roe approximate Riemann solution scheme or the computationally less expensive Advection Upstream Splitting Method (AUSM) flux-splitting scheme are used to effect upwind-differencing of the inviscid flux terms, using cell interface primitive variables set by MUSCL-type interpolation. The diffusion terms are central-differenced. The solver is validated using a steady shock/laminar boundary layer interaction problem and an unsteady, inviscid wave rotor passage gradual opening problem. A model inlet port/passage charging problem is simulated and key features of the unsteady wave rotor flow field are identified. Lastly, the medium pressure inlet port and high pressure outlet port portion of the NASA Lewis Research Center experimental divider cycle is simulated and computed results are compared with experimental measurements. The model accurately predicts the wave timing within the rotor passage and the distribution of flow variables in the stationary inlet port region.

  19. Exact Lyapunov exponent of the harmonic magnon modes of one-dimensional Heisenberg-Mattis spin glasses

    NASA Astrophysics Data System (ADS)

    Sepehrinia, Reza; Niry, M. D.; Bozorg, B.; Tabar, M. Reza Rahimi; Sahimi, Muhammad

    2008-03-01

    A mapping is developed between the linearized equation of motion for the dynamics of the transverse modes at T=0 of the Heisenberg-Mattis model of one-dimensional (1D) spin glasses and the (discretized) random wave equation. The mapping is used to derive an exact expression for the Lyapunov exponent (LE) of the magnon modes of spin glasses and to show that it follows anomalous scaling at low magnon frequencies. In addition, through numerical simulations, the differences between the LE and the density of states of the wave equation in a discrete 1D model of randomly disordered media (those with a finite correlation length) and that of continuous media (with a zero correlation length) are demonstrated and emphasized.

  20. Acoustic wave propagation in heterogeneous structures including experimental validation

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Dahl, Milo D.

    1989-01-01

    A finite element model was developed to solve for the acoustic pressure and energy fields in a heterogeneous suppressor. The derivations from the governing equations assumed that the material properties could vary with position resulting in a heterogeneous variable property two-dimensional wave equation. This eliminated the necessity of finding the boundary conditions between different materials. For a two-media region consisting of part air and part bulk absorber, a model was used to describe the bulk absorber properties in two directions. Complex metallic structures inside the air duct are simulated by simply changing element properties from air to the structural material in a pattern to describe the desired shapes. To verify the numerical theory, experiments were conducted without flow in a rectangular duct with a single folded cavity mounted above the duct and absorbing material mounted inside a cavity. Changes in a nearly plane wave sound field were measured on the wall opposite the absorbing cavity. Fairly good agreement was found in the standing wave pattern upstream of the absorber and in the decay of pressure level opposite the absorber, as a function of distance along the duct. The finite element model provides a convenient method for evaluating the acoustic properties of bulk absorbers.

  1. Geometric interpretation of four-wave mixing

    NASA Astrophysics Data System (ADS)

    Ott, J. R.; Steffensen, H.; Rottwitt, K.; McKinstrie, C. J.

    2013-10-01

    The nonlinear phenomenon of four-wave mixing (FWM) is investigated using a method, where, without the need of calculus, both phase and amplitudes of the mixing fields are visualized simultaneously, giving a complete overview of the FWM dynamics. This is done by introducing a set of Stokes-like coordinates of the electric fields, which reduce the FWM dynamics to a closed two-dimensional surface, similar to the Bloch sphere of quantum electrodynamics or the Pointcaré sphere in polarization dynamics. The coordinates are chosen so as to use the gauge invariance symmetries of the FWM equations which also give the conservation of action flux known as the Manley-Rowe relations. This reduces the dynamics of FWM to the one-dimensional intersection between the closed two-dimensional surface and the phase-plane given by the conserved Hamiltonian. The analysis is advantageous for visualizing phase-dependent FWM phenomena which are found in a large variety of nonlinear systems and even in various optical communication schemes.

  2. Analysis of Eigenvalue and Eigenfunction of Klein Gordon Equation Using Asymptotic Iteration Method for Separable Non-central Cylindrical Potential

    NASA Astrophysics Data System (ADS)

    Suparmi, A.; Cari, C.; Lilis Elviyanti, Isnaini

    2018-04-01

    Analysis of relativistic energy and wave function for zero spin particles using Klein Gordon equation was influenced by separable noncentral cylindrical potential was solved by asymptotic iteration method (AIM). By using cylindrical coordinates, the Klein Gordon equation for the case of symmetry spin was reduced to three one-dimensional Schrodinger like equations that were solvable using variable separation method. The relativistic energy was calculated numerically with Matlab software, and the general unnormalized wave function was expressed in hypergeometric terms.

  3. Mixed lump-kink and rogue wave-kink solutions for a (3 + 1) -dimensional B-type Kadomtsev-Petviashvili equation in fluid mechanics

    NASA Astrophysics Data System (ADS)

    Hu, Cong-Cong; Tian, Bo; Wu, Xiao-Yu; Yuan, Yu-Qiang; Du, Zhong

    2018-02-01

    Under investigation is a (3 + 1) -dimensional B-type Kadomtsev-Petviashvili equation, which describes the weakly dispersive waves in a fluid. Via the Hirota method and symbolic computation, we obtain the mixed lump-kink and mixed rogue wave-kink solutions. Through the mixed lump-kink solutions, we observe three different phenomena between a lump and one kink. For the fusion phenomenon, a lump and a kink are merged with the lump's energy transferring into the kink gradually, until the lump merges into the kink completely. Fission phenomenon displays that a lump separates from a kink. The last phenomenon shows that a lump travels together with a kink with their amplitudes unchanged. In addition, we graphically study the interaction between a rogue wave and a pair of the kinks. It can be observed that the rogue wave arises from one kink and disappears into the other kink. At certain time, the amplitude of the rogue wave reaches the maximum.

  4. Using Global Invariant Manifolds to Understand Metastability in the Burgers Equation With Small Viscosity

    NASA Astrophysics Data System (ADS)

    Beck, Margaret; Wayne, C. Eugene

    2009-01-01

    The large-time behavior of solutions to the Burgers equation with small viscosity is described using invariant manifolds. In particular, a geometric explanation is provided for a phenomenon known as metastability, which in the present context means that solutions spend a very long time near the family of solutions known as diffusive N-waves before finally converging to a stable self-similar diffusion wave. More precisely, it is shown that in terms of similarity, or scaling, variables in an algebraically weighted L^2 space, the self-similar diffusion waves correspond to a one-dimensional global center manifold of stationary solutions. Through each of these fixed points there exists a one-dimensional, global, attractive, invariant manifold corresponding to the diffusive N-waves. Thus, metastability corresponds to a fast transient in which solutions approach this metastable manifold of diffusive N-waves, followed by a slow decay along this manifold, and, finally, convergence to the self-similar diffusion wave.

  5. Effective one-dimensional approach to the source reconstruction problem of three-dimensional inverse optoacoustics

    NASA Astrophysics Data System (ADS)

    Stritzel, J.; Melchert, O.; Wollweber, M.; Roth, B.

    2017-09-01

    The direct problem of optoacoustic signal generation in biological media consists of solving an inhomogeneous three-dimensional (3D) wave equation for an initial acoustic stress profile. In contrast, the more defiant inverse problem requires the reconstruction of the initial stress profile from a proper set of observed signals. In this article, we consider an effectively 1D approach, based on the assumption of a Gaussian transverse irradiation source profile and plane acoustic waves, in which the effects of acoustic diffraction are described in terms of a linear integral equation. The respective inverse problem along the beam axis can be cast into a Volterra integral equation of the second kind for which we explore here efficient numerical schemes in order to reconstruct initial stress profiles from observed signals, constituting a methodical progress of computational aspects of optoacoustics. In this regard, we explore the validity as well as the limits of the inversion scheme via numerical experiments, with parameters geared toward actual optoacoustic problem instances. The considered inversion input consists of synthetic data, obtained in terms of the effectively 1D approach, and, more generally, a solution of the 3D optoacoustic wave equation. Finally, we also analyze the effect of noise and different detector-to-sample distances on the optoacoustic signal and the reconstructed pressure profiles.

  6. Research on radiation characteristic of plasma antenna through FDTD method.

    PubMed

    Zhou, Jianming; Fang, Jingjing; Lu, Qiuyuan; Liu, Fan

    2014-01-01

    The radiation characteristic of plasma antenna is investigated by using the finite-difference time-domain (FDTD) approach in this paper. Through using FDTD method, we study the propagation of electromagnetic wave in free space in stretched coordinate. And the iterative equations of Maxwell equation are derived. In order to validate the correctness of this method, we simulate the process of electromagnetic wave propagating in free space. Results show that electromagnetic wave spreads out around the signal source and can be absorbed by the perfectly matched layer (PML). Otherwise, we study the propagation of electromagnetic wave in plasma by using the Boltzmann-Maxwell theory. In order to verify this theory, the whole process of electromagnetic wave propagating in plasma under one-dimension case is simulated. Results show that Boltzmann-Maxwell theory can be used to explain the phenomenon of electromagnetic wave propagating in plasma. Finally, the two-dimensional simulation model of plasma antenna is established under the cylindrical coordinate. And the near-field and far-field radiation pattern of plasma antenna are obtained. The experiments show that the variation of electron density can introduce the change of radiation characteristic.

  7. Pulsed plane wave analytic solutions for generic shapes and the validation of Maxwell's equations solvers

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; Vastano, John A.; Lomax, Harvard

    1992-01-01

    Generic shapes are subjected to pulsed plane waves of arbitrary shape. The resulting scattered electromagnetic fields are determined analytically. These fields are then computed efficiently at field locations for which numerically determined EM fields are required. Of particular interest are the pulsed waveform shapes typically utilized by radar systems. The results can be used to validate the accuracy of finite difference time domain Maxwell's equations solvers. A two-dimensional solver which is second- and fourth-order accurate in space and fourth-order accurate in time is examined. Dielectric media properties are modeled by a ramping technique which simplifies the associated gridding of body shapes. The attributes of the ramping technique are evaluated by comparison with the analytic solutions.

  8. Theory of the corrugation instability of a piston-driven shock wave.

    PubMed

    Bates, J W

    2015-01-01

    We analyze the two-dimensional stability of a shock wave driven by a steadily moving corrugated piston in an inviscid fluid with an arbitrary equation of state. For h≤-1 or h>h(c), where h is the D'yakov parameter and h(c) is the Kontorovich limit, we find that small perturbations on the shock front are unstable and grow--at first quadratically and later linearly--with time. Such instabilities are associated with nonequilibrium fluid states and imply a nonunique solution to the hydrodynamic equations. The above criteria are consistent with instability limits observed in shock-tube experiments involving ionizing and dissociating gases and may have important implications for driven shocks in laser-fusion, astrophysical, and/or detonation studies.

  9. On mass transport in porosity waves

    NASA Astrophysics Data System (ADS)

    Jordan, Jacob S.; Hesse, Marc A.; Rudge, John F.

    2018-03-01

    Porosity waves arise naturally from the equations describing fluid migration in ductile rocks. Here, we show that higher-dimensional porosity waves can transport mass and therefore preserve geochemical signatures, at least partially. Fluid focusing into these high porosity waves leads to recirculation in their center. This recirculating fluid is separated from the background flow field by a circular dividing streamline and transported with the phase velocity of the porosity wave. Unlike models for one-dimensional chromatography in geological porous media, tracer transport in higher-dimensional porosity waves does not produce chromatographic separations between relatively incompatible elements due to the circular flow pattern. This may allow melt that originated from the partial melting of fertile heterogeneities or fluid produced during metamorphism to retain distinct geochemical signatures as they rise buoyantly towards the surface.

  10. Diffusive and localization behavior of electromagnetic waves in a two-dimensional random medium

    NASA Astrophysics Data System (ADS)

    Wang, Ken Kang-Hsin; Ye, Zhen

    2003-10-01

    In this paper, we discuss the transport phenomena of electromagnetic waves in a two-dimensional random system which is composed of arrays of electrical dipoles, following the model presented earlier by Erdogan et al. [J. Opt. Soc. Am. B 10, 391 (1993)]. A set of self-consistent equations is presented, accounting for the multiple scattering in the system, and is then solved numerically. A strong localization regime is discovered in the frequency domain. The transport properties within, near the edge of, and nearly outside the localization regime are investigated for different parameters such as filling factor and system size. The results show that within the localization regime, waves are trapped near the transmitting source. Meanwhile, the diffusive waves follow an intuitive but expected picture. That is, they increase with traveling path as more and more random scattering incurs, followed by a saturation, then start to decay exponentially when the travelling path is large enough, signifying the localization effect. For the cases where the frequencies are near the boundary of or outside the localization regime, the results of diffusive waves are compared with the diffusion approximation, showing less encouraging agreement as in other systems [Asatryan et al., Phys. Rev. E 67, 036605 (2003)].

  11. Exact solitary wave solution for higher order nonlinear Schrodinger equation using He's variational iteration method

    NASA Astrophysics Data System (ADS)

    Rani, Monika; Bhatti, Harbax S.; Singh, Vikramjeet

    2017-11-01

    In optical communication, the behavior of the ultrashort pulses of optical solitons can be described through nonlinear Schrodinger equation. This partial differential equation is widely used to contemplate a number of physically important phenomena, including optical shock waves, laser and plasma physics, quantum mechanics, elastic media, etc. The exact analytical solution of (1+n)-dimensional higher order nonlinear Schrodinger equation by He's variational iteration method has been presented. Our proposed solutions are very helpful in studying the solitary wave phenomena and ensure rapid convergent series and avoid round off errors. Different examples with graphical representations have been given to justify the capability of the method.

  12. Selection of intracellular calcium patterns in a model with clustered Ca2+ release channels

    NASA Astrophysics Data System (ADS)

    Shuai, J. W.; Jung, P.

    2003-03-01

    A two-dimensional model is proposed for intracellular Ca2+ waves, which incorporates both the discrete nature of Ca2+ release sites in the endoplasmic reticulum membrane and the stochastic dynamics of the clustered inositol 1,4,5-triphosphate (IP3) receptors. Depending on the Ca2+ diffusion coefficient and concentration of IP3, various spontaneous Ca2+ patterns, such as calcium puffs, local waves, abortive waves, global oscillation, and tide waves, can be observed. We further investigate the speed of the global waves as a function of the IP3 concentration and the Ca2+ diffusion coefficient and under what conditions the spatially averaged Ca2+ response can be described by a simple set of ordinary differential equations.

  13. Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems.

    PubMed

    Wang, Ken Kang-Hsin; Ye, Zhen

    2003-12-01

    We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems.

  14. Steady-state turbulence with a narrow inertial range

    NASA Technical Reports Server (NTRS)

    Weatherall, J. C.; Nicholson, D. R.; Goldman, M. V.

    1983-01-01

    Coupled two-dimensional wave equations are solved on a computer to model Langmuir wave turbulence excited by a weak electron beam. The model includes wave growth due to beam-plasma interaction, and dissipation by Landau damping. The inertial range is limited to a relatively small number of modes such as could occur when the ratio of masses between the negative and positive ions is larger than in a hydrogen plasma, or when there is damping in long wavelength Langmuir waves. A steady state is found consisting of quasistable, collapsed wave packets. The effects of different beam parameters and the assumed narrow inertial range are considered. The results may be relevant to plasma turbulence observed in connection with type III solar bursts.

  15. Perturbation method for the second-order nonlinear effect of focused acoustic field around a scatterer in an ideal fluid.

    PubMed

    Liu, Gang; Jayathilake, Pahala Gedara; Khoo, Boo Cheong

    2014-02-01

    Two nonlinear models are proposed to investigate the focused acoustic waves that the nonlinear effects will be important inside the liquid around the scatterer. Firstly, the one dimensional solutions for the widely used Westervelt equation with different coordinates are obtained based on the perturbation method with the second order nonlinear terms. Then, by introducing the small parameter (Mach number), a dimensionless formulation and asymptotic perturbation expansion via the compressible potential flow theory is applied. This model permits the decoupling between the velocity potential and enthalpy to second order, with the first potential solutions satisfying the linear wave equation (Helmholtz equation), whereas the second order solutions are associated with the linear non-homogeneous equation. Based on the model, the local nonlinear effects of focused acoustic waves on certain volume are studied in which the findings may have important implications for bubble cavitation/initiation via focused ultrasound called HIFU (High Intensity Focused Ultrasound). The calculated results show that for the domain encompassing less than ten times the radius away from the center of the scatterer, the non-linear effect exerts a significant influence on the focused high intensity acoustic wave. Moreover, at the comparatively higher frequencies, for the model of spherical wave, a lower Mach number may result in stronger nonlinear effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Flux splitting algorithms for two-dimensional viscous flows with finite-rate chemistry

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun; Liou, Meng-Sing

    1989-01-01

    The Roe flux-difference splitting method has been extended to treat two-dimensional viscous flows with nonequilibrium chemistry. The derivations have avoided unnecessary assumptions or approximations. For spatial discretization, the second-order Roe upwind differencing is used for the convective terms and central differencing for the viscous terms. An upwind-based TVD scheme is applied to eliminate oscillations and obtain a sharp representation of discontinuities. A two-stage Runge-Kutta method is used to time integrate the discretized Navier-Stokes and species transport equations for the asymptotic steady solutions. The present method is then applied to two types of flows: the shock wave/boundary layer interaction problems and the jet in cross flows.

  17. Study on longitudinal dispersion relation in one-dimensional relativistic plasma: Linear theory and Vlasov simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, H.; Wu, S. Z.; Zhou, C. T.

    2013-09-15

    The dispersion relation of one-dimensional longitudinal plasma waves in relativistic homogeneous plasmas is investigated with both linear theory and Vlasov simulation in this paper. From the Vlasov-Poisson equations, the linear dispersion relation is derived for the proper one-dimensional Jüttner distribution. Numerically obtained linear dispersion relation as well as an approximate formula for plasma wave frequency in the long wavelength limit is given. The dispersion of longitudinal wave is also simulated with a relativistic Vlasov code. The real and imaginary parts of dispersion relation are well studied by varying wave number and plasma temperature. Simulation results are in agreement with establishedmore » linear theory.« less

  18. Numerical Study of Hydrothermal Wave Suppression in Thermocapillary Flow Using a Predictive Control Method

    NASA Astrophysics Data System (ADS)

    Muldoon, F. H.

    2018-04-01

    Hydrothermal waves in flows driven by thermocapillary and buoyancy effects are suppressed by applying a predictive control method. Hydrothermal waves arise in the manufacturing of crystals, including the "open boat" crystal growth process, and lead to undesirable impurities in crystals. The open boat process is modeled using the two-dimensional unsteady incompressible Navier-Stokes equations under the Boussinesq approximation and the linear approximation of the surface thermocapillary force. The flow is controlled by a spatially and temporally varying heat flux density through the free surface. The heat flux density is determined by a conjugate gradient optimization algorithm. The gradient of the objective function with respect to the heat flux density is found by solving adjoint equations derived from the Navier-Stokes ones in the Boussinesq approximation. Special attention is given to heat flux density distributions over small free-surface areas and to the maximum admissible heat flux density.

  19. From the paddle to the beach - A Boussinesq shallow water numerical wave tank based on Madsen and Sørensen's equations

    NASA Astrophysics Data System (ADS)

    Orszaghova, Jana; Borthwick, Alistair G. L.; Taylor, Paul H.

    2012-01-01

    This article describes a one-dimensional numerical model of a shallow-water flume with an in-built piston paddle moving boundary wavemaker. The model is based on a set of enhanced Boussinesq equations and the nonlinear shallow water equations. Wave breaking is described approximately, by locally switching to the nonlinear shallow water equations when a critical wave steepness is reached. The moving shoreline is calculated as part of the solution. The piston paddle wavemaker operates on a movable grid, which is Lagrangian on the paddle face and Eulerian away from the paddle. The governing equations are, however, evolved on a fixed mapped grid, and the newly calculated solution is transformed back onto the moving grid via a domain mapping technique. Validation test results are compared against analytical solutions, confirming correct discretisation of the governing equations, wave generation via the numerical paddle, and movement of the wet/dry front. Simulations are presented that reproduce laboratory experiments of wave runup on a plane beach and wave overtopping of a laboratory seawall, involving solitary waves and compact wave groups. In practice, the numerical model is suitable for simulating the propagation of weakly dispersive waves and can additionally model any associated inundation, overtopping or inland flooding within the same simulation.

  20. Nonplanar electrostatic shock waves in dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; Rizvi, H.

    2010-02-15

    Two-dimensional quantum ion acoustic shock waves (QIASWs) are studied in an unmagnetized plasma consisting of electrons and ions. In this regard, a nonplanar quantum Kadomtsev-Petviashvili-Burgers (QKPB) equation is derived using the small amplitude perturbation expansion method. Using the tangent hyperbolic method, an analytical solution of the planar QKPB equation is obtained and subsequently used as the initial profile to numerically solve the nonplanar QKPB equation. It is observed that the increasing number density (and correspondingly the quantum Bohm potential) and kinematic viscosity affect the propagation characteristics of the QIASW. The temporal evolution of the nonplanar QIASW is investigated both inmore » Cartesian and polar planes and the results are discussed from the numerical stand point. The results of the present study may be applicable in the study of propagation of small amplitude localized electrostatic shock structures in dense astrophysical environments.« less

  1. The solution of non-linear hyperbolic equation systems by the finite element method

    NASA Technical Reports Server (NTRS)

    Loehner, R.; Morgan, K.; Zienkiewicz, O. C.

    1984-01-01

    A finite-element method for the solution of nonlinear hyperbolic systems of equations, such as those encountered in non-self-adjoint problems of transient phenomena in convection-diffusion or in the mixed representation of wave problems, is developed and demonstrated. The problem is rewritten in moving coordinates and reinterpolated to the original mesh by a Taylor expansion prior to a standard Galerkin spatial discretization, and it is shown that this procedure is equivalent to the time-discretization approach of Donea (1984). Numerical results for sample problems are presented graphically, including such shallow-water problems as the breaking of a dam, the shoaling of a wave, and the outflow of a river; compressible flows such as the isothermal flow in a nozzle and the Riemann shock-tube problem; and the two-dimensional scalar-advection, nonlinear-shallow-water, and Euler equations.

  2. First and second sound in a two-dimensional harmonically trapped Bose gas across the Berezinskii–Kosterlitz–Thouless transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xia-Ji, E-mail: xiajiliu@swin.edu.au; Hu, Hui, E-mail: hhu@swin.edu.au

    2014-12-15

    We theoretically investigate first and second sound of a two-dimensional (2D) atomic Bose gas in harmonic traps by solving Landau’s two-fluid hydrodynamic equations. For an isotropic trap, we find that first and second sound modes become degenerate at certain temperatures and exhibit typical avoided crossings in mode frequencies. At these temperatures, second sound has significant density fluctuation due to its hybridization with first sound and has a divergent mode frequency towards the Berezinskii–Kosterlitz–Thouless (BKT) transition. For a highly anisotropic trap, we derive the simplified one-dimensional hydrodynamic equations and discuss the sound-wave propagation along the weakly confined direction. Due to themore » universal jump of the superfluid density inherent to the BKT transition, we show that the first sound velocity exhibits a kink across the transition. These predictions might be readily examined in current experimental setups for 2D dilute Bose gases with a sufficiently large number of atoms, where the finite-size effect due to harmonic traps is relatively weak.« less

  3. Simple Numerical Modelling for Gasdynamic Design of Wave Rotors

    NASA Astrophysics Data System (ADS)

    Okamoto, Koji; Nagashima, Toshio

    The precise estimation of pressure waves generated in the passages is a crucial factor in wave rotor design. However, it is difficult to estimate the pressure wave analytically, e.g. by the method of characteristics, because the mechanism of pressure-wave generation and propagation in the passages is extremely complicated as compared to that in a shock tube. In this study, a simple numerical modelling scheme was developed to facilitate the design procedure. This scheme considers the three dominant factors in the loss mechanism —gradual passage opening, wall friction and leakage— for simulating the pressure waves precisely. The numerical scheme itself is based on the one-dimensional Euler equations with appropriate source terms to reduce the calculation time. The modelling of these factors was verified by comparing the results with those of a two-dimensional numerical simulation, which were previously validated by the experimental data in our previous study. Regarding wave rotor miniaturization, the leakage flow effect, which involves the interaction between adjacent cells, was investigated extensively. A port configuration principle was also examined and analyzed in detail to verify the applicability of the present numerical modelling scheme to the wave rotor design.

  4. Wave-vortex interactions in the nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Guo, Yuan; Bühler, Oliver

    2014-02-01

    This is a theoretical study of wave-vortex interaction effects in the two-dimensional nonlinear Schrödinger equation, which is a useful conceptual model for the limiting dynamics of superfluid quantum condensates at zero temperature. The particular wave-vortex interaction effects are associated with the scattering and refraction of small-scale linear waves by the straining flows induced by quantized point vortices and, crucially, with the concomitant nonlinear back-reaction, the remote recoil, that these scattered waves exert on the vortices. Our detailed model is a narrow, slowly varying wavetrain of small-amplitude waves refracted by one or two vortices. Weak interactions are studied using a suitable perturbation method in which the nonlinear recoil force on the vortex then arises at second order in wave amplitude, and is computed in terms of a Magnus-type force expression for both finite and infinite wavetrains. In the case of an infinite wavetrain, an explicit asymptotic formula for the scattering angle is also derived and cross-checked against numerical ray tracing. Finally, under suitable conditions a wavetrain can be so strongly refracted that it collapses all the way onto a zero-size point vortex. This is a strong wave-vortex interaction by definition. The conditions for such a collapse are derived and the validity of ray tracing theory during the singular collapse is investigated.

  5. An Analysis of Processes in the Solar Wind in a Thin Layer Adjacent to the Front of the Shock Wave

    NASA Astrophysics Data System (ADS)

    Molotkov, I. A.; Atamaniuk, B.

    2018-05-01

    A two-dimensional stationary system of nonlinear magnetohydrodynamics (MHD) equations in a thin layer adjoining the front of the interplanetary shock wave has been solved. Previously, any available publications relied on linear transport equations. But the presence of high-energy particles in the solar wind (SW) requires taking into account the processes of self-interaction. Our analysis examines the nonlinear terms in the MHD equations. A solution has been constructed for three cases: (1) in the absence of magnetic reconnections; (2) for magnetic reconnections; and (3) with the simultaneous action of reconnections and junction of magnetic islands. In all three cases, expressions were found for the main parameters of the SW. The results obtained on the basis of the solution of the MHD equations are consistent with the conclusions based on the investigation of the particle velocity distribution functions. This makes it possible to confirm the previously established fraction of particles excited to energies above 1 MeV.

  6. Truncated Painlevé expansion: Tanh-traveling wave solutions and reduction of sine-Poisson equation to a quadrature for stationary and nonstationary three-dimensional collisionless cold plasma

    NASA Astrophysics Data System (ADS)

    Ibrahim, R. S.; El-Kalaawy, O. H.

    2006-10-01

    The relativistic nonlinear self-consistent equations for a collisionless cold plasma with stationary ions [R. S. Ibrahim, IMA J. Appl. Math. 68, 523 (2003)] are extended to 3 and 3+1 dimensions. The resulting system of equations is reduced to the sine-Poisson equation. The truncated Painlevé expansion and reduction of the partial differential equation to a quadrature problem (RQ method) are described and applied to obtain the traveling wave solutions of the sine-Poisson equation for stationary and nonstationary equations in 3 and 3+1 dimensions describing the charge-density equilibrium configuration model.

  7. Dynamic crack propagation in a 2D elastic body: The out-of-plane case

    NASA Astrophysics Data System (ADS)

    Nicaise, Serge; Sandig, Anna-Margarete

    2007-05-01

    Already in 1920 Griffith has formulated an energy balance criterion for quasistatic crack propagation in brittle elastic materials. Nowadays, a generalized energy balance law is used in mechanics [F. Erdogan, Crack propagation theories, in: H. Liebowitz (Ed.), Fracture, vol. 2, Academic Press, New York, 1968, pp. 498-586; L.B. Freund, Dynamic Fracture Mechanics, Cambridge Univ. Press, Cambridge, 1990; D. Gross, Bruchmechanik, Springer-Verlag, Berlin, 1996] in order to predict how a running crack will grow. We discuss this situation in a rigorous mathematical way for the out-of-plane state. This model is described by two coupled equations in the reference configuration: a two-dimensional scalar wave equation for the displacement fields in a cracked bounded domain and an ordinary differential equation for the crack position derived from the energy balance law. We handle both equations separately, assuming at first that the crack position is known. Then the weak and strong solvability of the wave equation will be studied and the crack tip singularities will be derived under the assumption that the crack is straight and moves tangentially. Using the energy balance law and the crack tip behavior of the displacement fields we finally arrive at an ordinary differential equation for the motion of the crack tip.

  8. Chirped or time modulated excitation compared to short pulses for photoacoustic imaging in acoustic attenuating media

    NASA Astrophysics Data System (ADS)

    Burgholzer, P.; Motz, C.; Lang, O.; Berer, T.; Huemer, M.

    2018-02-01

    In photoacoustic imaging, optically generated acoustic waves transport the information about embedded structures to the sample surface. Usually, short laser pulses are used for the acoustic excitation. Acoustic attenuation increases for higher frequencies, which reduces the bandwidth and limits the spatial resolution. One could think of more efficient waveforms than single short pulses, such as pseudo noise codes, chirped, or harmonic excitation, which could enable a higher information-transfer from the samples interior to its surface by acoustic waves. We used a linear state space model to discretize the wave equation, such as the Stoke's equation, but this method could be used for any other linear wave equation. Linear estimators and a non-linear function inversion were applied to the measured surface data, for onedimensional image reconstruction. The proposed estimation method allows optimizing the temporal modulation of the excitation laser such that the accuracy and spatial resolution of the reconstructed image is maximized. We have restricted ourselves to one-dimensional models, as for higher dimensions the one-dimensional reconstruction, which corresponds to the acoustic wave without attenuation, can be used as input for any ultrasound imaging method, such as back-projection or time-reversal method.

  9. Exact analytic solution of position-dependent mass Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Rajbongshi, Hangshadhar

    2018-03-01

    Exact analytic solution of position-dependent mass Schrödinger equation is generated by using extended transformation, a method of mapping a known system into a new system equipped with energy eigenvalues and corresponding wave functions. First order transformation is performed on D-dimensional radial Schrödinger equation with constant mass by taking trigonometric Pöschl-Teller potential as known system. The exactly solvable potentials with position-dependent mass generated for different choices of mass functions through first order transformation are also taken as known systems in the second order transformation performed on D-dimensional radial position-dependent mass Schrödinger equation. The solutions are fitted for "Zhu and Kroemer" ordering of ambiguity. All the wave functions corresponding to nonzero energy eigenvalues are normalizable. The new findings are that the normalizability condition of the wave functions remains independent of mass functions, and some of the generated potentials show a family relationship among themselves where power law potentials also get related to non-power law potentials and vice versa through the transformation.

  10. Forcing a three-dimensional, hydrostatic, primitive-equation model for application in the surf zone: 2. Application to DUCK94

    NASA Astrophysics Data System (ADS)

    Newberger, P. A.; Allen, J. S.

    2007-08-01

    A three-dimensional primitive-equation model for application to the nearshore surf zone has been developed. This model, an extension of the Princeton Ocean Model (POM), predicts the wave-averaged circulation forced by breaking waves. All of the features of the original POM are retained in the extended model so that applications can be made to regions where breaking waves, stratification, rotation, and wind stress make significant contributions to the flow behavior. In this study we examine the effects of breaking waves and wind stress. The nearshore POM circulation model is embedded within the NearCom community model and is coupled with a wave model. This combined modeling system is applied to the nearshore surf zone off Duck, North Carolina, during the DUCK94 field experiment of October 1994. Model results are compared to observations from this experiment, and the effects of parameter choices are examined. A process study examining the effects of tidal depth variation on depth-dependent wave-averaged currents is carried out. With identical offshore wave conditions and model parameters, the strength and spatial structure of the undertow and of the alongshore current vary systematically with water depth. Some three-dimensional solutions show the development of shear instabilities of the alongshore current. Inclusion of wave-current interactions makes an appreciable difference in the characteristics of the instability.

  11. Wave scattering from a periodic dielectric surface for a general angle of incidence

    NASA Technical Reports Server (NTRS)

    Chuang, S. L.; Kong, J. A.

    1982-01-01

    Electromagnetic waves scattered from a periodic dielectric and perfectly conducting surface are studied for a general angle of incidence. It is shown that the one-dimensional corrugated surface can be solved by using two scalar functions: the components of the electric and magnetic fields along the row direction of the surface, and appropriate boundary conditions to obtain simple matrix equations. Results are compared to the case where the incident angle wave vector is perpendicular to the row direction. Numerical results demonstrate that energy conservation and reciprocity are obeyed for scattering by sinusoidal surfaces for the general case, which checks the consistency of the formalism.

  12. Well-posed Euler model of shock-induced two-phase flow in bubbly liquid

    NASA Astrophysics Data System (ADS)

    Tukhvatullina, R. R.; Frolov, S. M.

    2018-03-01

    A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.

  13. A GENERALIZED TWO-COMPONENT MODEL OF SOLAR WIND TURBULENCE AND AB INITIO DIFFUSION MEAN-FREE PATHS AND DRIFT LENGTHSCALES OF COSMIC RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiengarten, T.; Fichtner, H.; Kleimann, J.

    2016-12-10

    We extend a two-component model for the evolution of fluctuations in the solar wind plasma so that it is fully three-dimensional (3D) and also coupled self-consistently to the large-scale magnetohydrodynamic equations describing the background solar wind. The two classes of fluctuations considered are a high-frequency parallel-propagating wave-like piece and a low-frequency quasi-two-dimensional component. For both components, the nonlinear dynamics is dominanted by quasi-perpendicular spectral cascades of energy. Driving of the fluctuations by, for example, velocity shear and pickup ions is included. Numerical solutions to the new model are obtained using the Cronos framework, and validated against previous simpler models. Comparing results frommore » the new model with spacecraft measurements, we find improved agreement relative to earlier models that employ prescribed background solar wind fields. Finally, the new results for the wave-like and quasi-two-dimensional fluctuations are used to calculate ab initio diffusion mean-free paths and drift lengthscales for the transport of cosmic rays in the turbulent solar wind.« less

  14. Interactive boundary-layer calculations of a transonic wing flow

    NASA Technical Reports Server (NTRS)

    Kaups, Kalle; Cebeci, Tuncer; Mehta, Unmeel

    1989-01-01

    Results obtained from iterative solutions of inviscid and boundary-layer equations are presented and compared with experimental values. The calculated results were obtained with an Euler code and a transonic potential code in order to furnish solutions for the inviscid flow; they were interacted with solutions of two-dimensional boundary-layer equations having a strip-theory approximation. Euler code results are found to be in better agreement with the experimental data than with the full potential code, especially in the presence of shock waves, (with the sole exception of the near-tip region).

  15. Numerical simulation of fluid flow around a scramaccelerator projectile

    NASA Technical Reports Server (NTRS)

    Pepper, Darrell W.; Humphrey, Joseph W.; Sobota, Thomas H.

    1991-01-01

    Numerical simulations of the fluid motion and temperature distribution around a 'scramaccelerator' projectile are obtained for Mach numbers in the 5-10 range. A finite element method is used to solve the equations of motion for inviscid and viscous two-dimensional or axisymmetric compressible flow. The time-dependent equations are solved explicitly, using bilinear isoparametric quadrilateral elements, mass lumping, and a shock-capturing Petrov-Galerkin formulation. Computed results indicate that maintaining on-design performance for controlling and stabilizing oblique detonation waves is critically dependent on projectile shape and Mach number.

  16. A theoretical prediction of the acoustic pressure generated by turbulence-flame front interactions

    NASA Technical Reports Server (NTRS)

    Huff, R. G.

    1984-01-01

    The equations of momentum annd continuity are combined and linearized yielding the one dimensional nonhomogeneous acoustic wave equation. Three terms in the non-homogeneous equation act as acoustic sources and are taken to be forcing functions acting on the homogeneous wave equation. The three source terms are: fluctuating entropy, turbulence gradients, and turbulence-flame interactions. Each source term is discussed. The turbulence-flame interaction source is used as the basis for computing the source acoustic pressure from the Fourier transformed wave equation. Pressure fluctuations created in turbopump gas generators and turbines may act as a forcing function for turbine and propellant tube vibrations in Earth to orbit space propulsion systems and could reduce their life expectancy. A preliminary assessment of the acoustic pressure fluctuations in such systems is presented.

  17. A theoretical prediction of the acoustic pressure generated by turbulence-flame front interactions

    NASA Technical Reports Server (NTRS)

    Huff, R. G.

    1984-01-01

    The equations of momentum and continuity are combined and linearized yielding the one dimensional nonhomogeneous acoustic wave equation. Three terms in the non-homogeneous equation act as acoustic sources and are taken to be forcing functions acting on the homogeneous wave equation. The three source terms are: fluctuating entropy, turbulence gradients, and turbulence-flame interactions. Each source term is discussed. The turbulence-flame interaction source is used as the basis for computing the source acoustic pressure from the Fourier transformed wave equation. Pressure fluctuations created in turbopump gas generators and turbines may act as a forcing function for turbine and propellant tube vibrations in earth to orbit space propulsion systems and could reduce their life expectancy. A preliminary assessment of the acoustic pressure fluctuations in such systems is presented.

  18. Global boundary flattening transforms for acoustic propagation under rough sea surfaces.

    PubMed

    Oba, Roger M

    2010-07-01

    This paper introduces a conformal transform of an acoustic domain under a one-dimensional, rough sea surface onto a domain with a flat top. This non-perturbative transform can include many hundreds of wavelengths of the surface variation. The resulting two-dimensional, flat-topped domain allows direct application of any existing, acoustic propagation model of the Helmholtz or wave equation using transformed sound speeds. Such a transform-model combination applies where the surface particle velocity is much slower than sound speed, such that the boundary motion can be neglected. Once the acoustic field is computed, the bijective (one-to-one and onto) mapping permits the field interpolation in terms of the original coordinates. The Bergstrom method for inverse Riemann maps determines the transform by iterated solution of an integral equation for a surface matching term. Rough sea surface forward scatter test cases provide verification of the method using a particular parabolic equation model of the Helmholtz equation.

  19. Numerical study of chemically reacting viscous flow relevant to pulsed detonation engines

    NASA Astrophysics Data System (ADS)

    Yi, Tae-Hyeong

    2005-11-01

    A computational fluid dynamics code for two-dimensional, multi-species, laminar Navier-Stokes equations is developed to simulate a recently proposed engine concept for a pulsed detonation based propulsion system and to investigate the feasibility of the engine of the concept. The governing equations that include transport phenomena such as viscosity, thermal conduction and diffusion are coupled with chemical reactions. The gas is assumed to be thermally perfect and in chemically non-equilibrium. The stiffness due to coupling the fluid dynamics and the chemical kinetics is properly taken care of by using a time-operator splitting method and a variable coefficient ordinary differential equation solver. A second-order Roe scheme with a minmod limiter is explicitly used for space descretization, while a second-order, two-step Runge-Kutta method is used for time descretization. In space integration, a finite volume method and a cell-centered scheme are employed. The first-order derivatives in the equations of transport properties are discretized by a central differencing with Green's theorem. Detailed chemistry is involved in this study. Two chemical reaction mechanisms are extracted from GRI-Mech, which are forty elementary reactions with thirteen species for a hydrogen-air mixture and twenty-seven reactions with eight species for a hydrogen-oxygen mixture. The code is ported to a high-performance parallel machine with Message-Passing Interface. Code validation is performed with chemical kinetic modeling for a stoichiometric hydrogen-air mixture, an one-dimensional detonation tube, a two-dimensional, inviscid flow over a wedge and a viscous flow over a flat plate. Detonation is initiated using a numerically simulated arc-ignition or shock-induced ignition system. Various freestream conditions are utilized to study the propagation of the detonation in the proposed concept of the engine. Investigation of the detonation propagation is performed for a pulsed detonation rocket and a supersonic combustion chamber. For a pulsed detonation rocket case, the detonation tube is embedded in a mixing chamber where an initiator is added to the main detonation chamber. Propagating detonation waves in a supersonic combustion chamber is investigated for one- and two-dimensional cases. The detonation initiated by an arc and a shock wave is studied in the inviscid and viscous flow, respectively. Various features including a detonation-shock interaction, a detonation diffraction, a base flow and a vortex are observed.

  20. Effect of Prestresses on the Dispersion of Quasi-Lamb Waves in the System Consisting of an Ideal Liquid Layer and a Compressible Elastic Layer

    NASA Astrophysics Data System (ADS)

    Bagno, A. M.

    2017-03-01

    The propagation of quasi-Lamb waves in a prestrained compressible elastic layer interacting with a layer of an ideal compressible fluid is studied. The three-dimensional equations of linearized elasticity and the assumption of finite strains for the elastic layer and the three-dimensional linearized Euler equations for the fluid are used. The dispersion curves for the quasi-Lamb modes are plotted over a wide frequency range. The effect of prestresses and the thickness of the elastic and liquid layers on the frequency spectrum of normal quasi-Lamb waves is analyzed. The localization properties of the lower quasi-Lamb modes in the elastic-fluid waveguides are studied. The numerical results are presented in the form of graphs and analyzed

  1. K-P-Burgers equation in negative ion-rich relativistic dusty plasma including the effect of kinematic viscosity

    NASA Astrophysics Data System (ADS)

    Dev, A. N.; Deka, M. K.; Sarma, J.; Saikia, D.; Adhikary, N. C.

    2016-10-01

    The stationary solution is obtained for the K-P-Burgers equation that describes the nonlinear propagations of dust ion acoustic waves in a multi-component, collisionless, un-magnetized relativistic dusty plasma consisting of electrons, positive and negative ions in the presence of charged massive dust grains. Here, the Kadomtsev-Petviashvili (K-P) equation, three-dimensional (3D) Burgers equation, and K-P-Burgers equations are derived by using the reductive perturbation method including the effects of viscosity of plasma fluid, thermal energy, ion density, and ion temperature on the structure of a dust ion acoustic shock wave (DIASW). The K-P equation predictes the existences of stationary small amplitude solitary wave, whereas the K-P-Burgers equation in the weakly relativistic regime describes the evolution of shock-like structures in such a multi-ion dusty plasma.

  2. Coprimeness-preserving non-integrable extension to the two-dimensional discrete Toda lattice equation

    NASA Astrophysics Data System (ADS)

    Kamiya, Ryo; Kanki, Masataka; Mase, Takafumi; Tokihiro, Tetsuji

    2017-01-01

    We introduce a so-called coprimeness-preserving non-integrable extension to the two-dimensional Toda lattice equation. We believe that this equation is the first example of such discrete equations defined over a three-dimensional lattice. We prove that all the iterates of the equation are irreducible Laurent polynomials of the initial data and that every pair of two iterates is co-prime, which indicate confined singularities of the equation. By reducing the equation to two- or one-dimensional lattices, we obtain coprimeness-preserving non-integrable extensions to the one-dimensional Toda lattice equation and the Somos-4 recurrence.

  3. Diffusion Monte Carlo study of strongly interacting two-dimensional Fermi gases

    DOE PAGES

    Galea, Alexander; Dawkins, Hillary; Gandolfi, Stefano; ...

    2016-02-01

    Ultracold atomic Fermi gases have been a popular topic of research, with attention being paid recently to two-dimensional (2D) gases. In this work, we perform T=0 ab initio diffusion Monte Carlo calculations for a strongly interacting two-component Fermi gas confined to two dimensions. We first go over finite-size systems and the connection to the thermodynamic limit. After that, we illustrate pertinent 2D scattering physics and properties of the wave function. We then show energy results for the strong-coupling crossover, in between the Bose-Einstein condensation (BEC) and Bardeen-Cooper-Schrieffer (BCS) regimes. Our energy results for the BEC-BCS crossover are parametrized to producemore » an equation of state, which is used to determine Tan's contact. We carry out a detailed comparison with other microscopic results. Lastly, we calculate the pairing gap for a range of interaction strengths in the strong coupling regime, following from variationally optimized many-body wave functions.« less

  4. Conceptual Foundations of Soliton Versus Particle Dualities Toward a Topological Model for Matter

    NASA Astrophysics Data System (ADS)

    Kouneiher, Joseph

    2016-06-01

    The idea that fermions could be solitons was actually confirmed in theoretical models in 1975 in the case when the space-time is two-dimensional and with the sine-Gordon model. More precisely S. Coleman showed that two different classical models end up describing the same fermions particle, when the quantum theory is constructed. But in one model the fermion is a quantum excitation of the field and in the other model the particle is a soliton. Hence both points of view can be reconciliated.The principal aim in this paper is to exhibit a solutions of topological type for the fermions in the wave zone, where the equations of motion are non-linear field equations, i.e. using a model generalizing sine- Gordon model to four dimensions, and describe the solutions for linear and circular polarized waves. In other words, the paper treat fermions as topological excitations of a bosonic field.

  5. A Fast Method of Deriving the Kirchhoff Formula for Moving Surfaces

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Posey, Joe W.

    2007-01-01

    The Kirchhoff formula for a moving surface is very useful in many wave propagation problems, particularly in the prediction of noise from rotating machinery. Several publications in the last two decades have presented derivations of the Kirchhoff formula for moving surfaces in both time and frequency domains. Here we present a method originally developed by Farassat and Myers in time domain that is both simple and direct. It is based on generalized function theory and the useful concept of imbedding the problem in the unbounded three-dimensional space. We derive an inhomogeneous wave equation with the source terms that involve Dirac delta functions with their supports on the moving data surface. This wave equation is then solved using the simple free space Green's function of the wave equation resulting in the Kirchhoff formula. The algebraic manipulations are minimal and simple. We do not need the Green's theorem in four dimensions and there is no ambiguity in the interpretation of any terms in the final formulas. Furthermore, this method also gives the simplest derivation of the classical Kirchhoff formula which has a fairly lengthy derivation in physics and applied mathematics books. The Farassat-Myers method can be used easily in frequency domain.

  6. Thermodynamics properties study of diatomic molecules with q-deformed modified Poschl-Teller plus Manning Rosen non-central potential in D dimensions using SUSYQM approach

    NASA Astrophysics Data System (ADS)

    Suparmi, A.; Cari, C.; Pratiwi, B. N.

    2016-04-01

    D-dimensional Dirac equation of q-deformed modified Poschl-Teller plus Manning Rosen non-central potential was solved using supersymmetric quantum mechanics (SUSY QM). The relativistic energy spectra were analyzed by using SUSY QM and shape invariant properties from radial part of D dimensional Dirac equation and the angular quantum numbers were obtained from angular part of D dimensional Dirac equation. The SUSY operators was used to generate the D dimensional relativistic wave functions both for radial and angular parts. In the non-relativistic limit, the relativistic energy equation was reduced to the non-relativistic energy. In the classical limit, the partition function of vibrational, the specific heat of vibrational, and the mean energy of vibrational of some diatomic molecules were calculated from the equation of non-relativistic energy with the help of error function and Mat-lab 2011.

  7. Dispersive estimates for massive Dirac operators in dimension two

    NASA Astrophysics Data System (ADS)

    Erdoğan, M. Burak; Green, William R.; Toprak, Ebru

    2018-05-01

    We study the massive two dimensional Dirac operator with an electric potential. In particular, we show that the t-1 decay rate holds in the L1 →L∞ setting if the threshold energies are regular. We also show these bounds hold in the presence of s-wave resonances at the threshold. We further show that, if the threshold energies are regular then a faster decay rate of t-1(log ⁡ t) - 2 is attained for large t, at the cost of logarithmic spatial weights. The free Dirac equation does not satisfy this bound due to the s-wave resonances at the threshold energies.

  8. Integral method for the calculation of Hawking radiation in dispersive media. I. Symmetric asymptotics.

    PubMed

    Robertson, Scott; Leonhardt, Ulf

    2014-11-01

    Hawking radiation has become experimentally testable thanks to the many analog systems which mimic the effects of the event horizon on wave propagation. These systems are typically dominated by dispersion and give rise to a numerically soluble and stable ordinary differential equation only if the rest-frame dispersion relation Ω^{2}(k) is a polynomial of relatively low degree. Here we present a new method for the calculation of wave scattering in a one-dimensional medium of arbitrary dispersion. It views the wave equation as an integral equation in Fourier space, which can be solved using standard and efficient numerical techniques.

  9. Exact closed-form solutions of a fully nonlinear asymptotic two-fluid model

    NASA Astrophysics Data System (ADS)

    Cheviakov, Alexei F.

    2018-05-01

    A fully nonlinear model of Choi and Camassa (1999) describing one-dimensional incompressible dynamics of two non-mixing fluids in a horizontal channel, under a shallow water approximation, is considered. An equivalence transformation is presented, leading to a special dimensionless form of the system, involving a single dimensionless constant physical parameter, as opposed to five parameters present in the original model. A first-order dimensionless ordinary differential equation describing traveling wave solutions is analyzed. Several multi-parameter families of physically meaningful exact closed-form solutions of the two-fluid model are derived, corresponding to periodic, solitary, and kink-type bidirectional traveling waves; specific examples are given, and properties of the exact solutions are analyzed.

  10. Transport characteristics of a ZnMgO/ZnO hetero junction and the effect of temperature and Mg content

    NASA Astrophysics Data System (ADS)

    Uslu, Salih; Yarar, Zeki

    2017-02-01

    The Ensemble Monte Carlo method is used to calculate the transport characteristics of two dimensional electron gas (2DEG) at a ZnMgO/ZnO hetero structure. The spontaneous and piezoelectric polarizations are considered and there is no intentional doping in either material. Numerical Schrödinger and Poisson equations are solved self consistently to obtain the scattering rates of various scattering mechanisms. The density of carriers, each energy sub bands, potential profile and corresponding wave functions are obtained from the self consistent calculations. The self consistent sub band wave functions of acoustic and optic phonon scattering and interface roughness scattering are used in Monte Carlo method to obtain transport characteristics at ZnMgO/ZnO junction. Two dimensional electron gas confined to ZnMgO/ZnO hetero structure is studied and the effect of temperature and Mg content are investigated.

  11. Nonequilibrium recombination after a curved shock wave

    NASA Astrophysics Data System (ADS)

    Wen, Chihyung; Hornung, Hans

    2010-02-01

    The effect of nonequilibrium recombination after a curved two-dimensional shock wave in a hypervelocity dissociating flow of an inviscid Lighthill-Freeman gas is considered. An analytical solution is obtained with the effective shock values derived by Hornung (1976) [5] and the assumption that the flow is ‘quasi-frozen’ after a thin dissociating layer near the shock. The solution gives the expression of dissociation fraction as a function of temperature on a streamline. A rule of thumb can then be provided to check the validity of binary scaling for experimental conditions and a tool to determine the limiting streamline that delineates the validity zone of binary scaling. The effects on the nonequilibrium chemical reaction of the large difference in free stream temperature between free-piston shock tunnel and equivalent flight conditions are discussed. Numerical examples are presented and the results are compared with solutions obtained with two-dimensional Euler equations using the code of Candler (1988) [10].

  12. ISCFD Nagoya 1989 - International Symposium on Computational Fluid Dynamics, 3rd, Nagoya, Japan, Aug. 28-31, 1989, Technical Papers

    NASA Astrophysics Data System (ADS)

    Recent advances in computational fluid dynamics are discussed in reviews and reports. Topics addressed include large-scale LESs for turbulent pipe and channel flows, numerical solutions of the Euler and Navier-Stokes equations on parallel computers, multigrid methods for steady high-Reynolds-number flow past sudden expansions, finite-volume methods on unstructured grids, supersonic wake flow on a blunt body, a grid-characteristic method for multidimensional gas dynamics, and CIC numerical simulation of a wave boundary layer. Consideration is given to vortex simulations of confined two-dimensional jets, supersonic viscous shear layers, spectral methods for compressible flows, shock-wave refraction at air/water interfaces, oscillatory flow in a two-dimensional collapsible channel, the growth of randomness in a spatially developing wake, and an efficient simplex algorithm for the finite-difference and dynamic linear-programming method in optimal potential control.

  13. Lagrangian geometrical optics of nonadiabatic vector waves and spin particles

    DOE PAGES

    Ruiz, D. E.; Dodin, I. Y.

    2015-07-29

    Linear vector waves, both quantum and classical, experience polarization-driven bending of ray trajectories and polarization dynamics that can be interpreted as the precession of the "wave spin". Here, both phenomena are governed by an effective gauge Hamiltonian vanishing in leading-order geometrical optics. This gauge Hamiltonian can be recognized as a generalization of the Stern-Gerlach Hamiltonian that is commonly known for spin-1/2 quantum particles. The corresponding reduced Lagrangians for continuous nondissipative waves and their geometrical-optics rays are derived from the fundamental wave Lagrangian. The resulting Euler-Lagrange equations can describe simultaneous interactions of N resonant modes, where N is arbitrary, and leadmore » to equations for the wave spin, which happens to be an (N 2 - 1)-dimensional spin vector. As a special case, classical equations for a Dirac particle (N = 2) are deduced formally, without introducing additional postulates or interpretations, from the Dirac quantum Lagrangian with the Pauli term. The model reproduces the Bargmann-Michel-Telegdi equations with added Stern-Gerlach force.« less

  14. Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrödinger equations via the extended sinh-Gordon equation expansion method

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.; Kumar, Dipankar; Chakrabarty, Anuz Kumar

    2018-05-01

    The (2+1)-dimensional hyperbolic and cubic-quintic nonlinear Schrödinger equations describe the propagation of ultra-short pulses in optical fibers of nonlinear media. By using an extended sinh-Gordon equation expansion method, some new complex hyperbolic and trigonometric functions prototype solutions for two nonlinear Schrödinger equations were derived. The acquired new complex hyperbolic and trigonometric solutions are expressed by dark, bright, combined dark-bright, singular and combined singular solitons. The obtained results are more compatible than those of other applied methods. The extended sinh-Gordon equation expansion method is a more powerful and robust mathematical tool for generating new optical solitary wave solutions for many other nonlinear evolution equations arising in the propagation of optical pulses.

  15. Lattice Boltzmann Equation On a 2D Rectangular Grid

    NASA Technical Reports Server (NTRS)

    Bouzidi, MHamed; DHumieres, Dominique; Lallemand, Pierre; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    We construct a multi-relaxation lattice Boltzmann model on a two-dimensional rectangular grid. The model is partly inspired by a previous work of Koelman to construct a lattice BGK model on a two-dimensional rectangular grid. The linearized dispersion equation is analyzed to obtain the constraints on the isotropy of the transport coefficients and Galilean invariance for various wave propagations in the model. The linear stability of the model is also studied. The model is numerically tested for three cases: (a) a vortex moving with a constant velocity on a mesh periodic boundary conditions; (b) Poiseuille flow with an arbitrasy inclined angle with respect to the lattice orientation: and (c) a cylinder &symmetrically placed in a channel. The numerical results of these tests are compared with either analytic solutions or the results obtained by other methods. Satisfactory results are obtained for the numerical simulations.

  16. Shock-free configurations in two-and three-dimensional transonic flow

    NASA Technical Reports Server (NTRS)

    Seebass, A. R.

    1981-01-01

    Efforts to replace Sobieczky's complicated analog computations of solutions to the hodograph equations by a fast elliptic solver in order to generate shock-free airfoil designs more effectively are described. The indirect design of airfoil and wing shapes that are free from shock waves even though the local flow velocity exceeds the speed of sound is described. The problem of finding an airfoil in two dimensional, irrotational flow that has a prescribed pressure distribution is as addressed. Sobieczky's suggestion to use a fictitious gas for finding shock-free airfoils directly in the physical plane was the basis for a more efficient procedure for achieving the same end.

  17. Two-dimensional, phase modulated lattice sums with application to the Helmholtz Green’s function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linton, C. M., E-mail: C.M.Linton@lboro.ac.uk

    2015-01-15

    A class of two-dimensional phase modulated lattice sums in which the denominator is an indefinite quadratic polynomial Q is expressed in terms of a single, exponentially convergent series of elementary functions. This expression provides an extremely efficient method for the computation of the quasi-periodic Green’s function for the Helmholtz equation that arises in a number of physical contexts when studying wave propagation through a doubly periodic medium. For a class of sums in which Q is positive definite, our new result can be used to generate representations in terms of θ-functions which are significant generalisations of known results.

  18. Evaluation of a wave-vector-frequency-domain method for nonlinear wave propagation

    PubMed Central

    Jing, Yun; Tao, Molei; Clement, Greg T.

    2011-01-01

    A wave-vector-frequency-domain method is presented to describe one-directional forward or backward acoustic wave propagation in a nonlinear homogeneous medium. Starting from a frequency-domain representation of the second-order nonlinear acoustic wave equation, an implicit solution for the nonlinear term is proposed by employing the Green’s function. Its approximation, which is more suitable for numerical implementation, is used. An error study is carried out to test the efficiency of the model by comparing the results with the Fubini solution. It is shown that the error grows as the propagation distance and step-size increase. However, for the specific case tested, even at a step size as large as one wavelength, sufficient accuracy for plane-wave propagation is observed. A two-dimensional steered transducer problem is explored to verify the nonlinear acoustic field directional independence of the model. A three-dimensional single-element transducer problem is solved to verify the forward model by comparing it with an existing nonlinear wave propagation code. Finally, backward-projection behavior is examined. The sound field over a plane in an absorptive medium is backward projected to the source and compared with the initial field, where good agreement is observed. PMID:21302985

  19. Addendum to foundations of multidimensional wave field signal theory: Gaussian source function

    NASA Astrophysics Data System (ADS)

    Baddour, Natalie

    2018-02-01

    Many important physical phenomena are described by wave or diffusion-wave type equations. Recent work has shown that a transform domain signal description from linear system theory can give meaningful insight to multi-dimensional wave fields. In N. Baddour [AIP Adv. 1, 022120 (2011)], certain results were derived that are mathematically useful for the inversion of multi-dimensional Fourier transforms, but more importantly provide useful insight into how source functions are related to the resulting wave field. In this short addendum to that work, it is shown that these results can be applied with a Gaussian source function, which is often useful for modelling various physical phenomena.

  20. Hydrodynamic Characteristics and Strength Analysis of a Novel Dot-matrix Oscillating Wave Energy Converter

    NASA Astrophysics Data System (ADS)

    Shao, Meng; Xiao, Chengsi; Sun, Jinwei; Shao, Zhuxiao; Zheng, Qiuhong

    2017-12-01

    The paper analyzes hydrodynamic characteristics and the strength of a novel dot-matrix oscillating wave energy converter, which is in accordance with nowadays’ research tendency: high power, high efficiency, high reliability and low cost. Based on three-dimensional potential flow theory, the paper establishes motion control equations of the wave energy converter unit and calculates wave loads and motions. On this basis, a three-dimensional finite element model of the device is built to check its strength. Through the analysis, it can be confirmed that the WEC is feasible and the research results could be a reference for wave energy’s exploration and utilization.

  1. Evolution of large amplitude Alfven waves in solar wind plasmas: Kinetic-fluid models

    NASA Astrophysics Data System (ADS)

    Nariyuki, Y.

    2014-12-01

    Large amplitude Alfven waves are ubiquitously observed in solar wind plasmas. Mjolhus(JPP, 1976) and Mio et al(JPSJ, 1976) found that nonlinear evolution of the uni-directional, parallel propagating Alfven waves can be described by the derivative nonlinear Schrodinger equation (DNLS). Later, the multi-dimensional extension (Mjolhus and Wyller, JPP, 1988; Passot and Sulem, POP, 1993; Gazol et al, POP, 1999) and ion kinetic modification (Mjolhus and Wyller, JPP, 1988; Spangler, POP, 1989; Medvedev and Diamond, POP, 1996; Nariyuki et al, POP, 2013) of DNLS have been reported. Recently, Nariyuki derived multi-dimensional DNLS from an expanding box model of the Hall-MHD system (Nariyuki, submitted). The set of equations including the nonlinear evolution of compressional wave modes (TDNLS) was derived by Hada(GRL, 1993). DNLS can be derived from TDNLS by rescaling of the variables (Mjolhus, Phys. Scr., 2006). Nariyuki and Hada(JPSJ, 2007) derived a kinetically modified TDNLS by using a simple Landau closure (Hammet and Perkins, PRL, 1990; Medvedev and Diamond, POP, 1996). In the present study, we revisit the ion kinetic modification of multi-dimensional TDNLS through more rigorous derivations, which is consistent with the past kinetic modification of DNLS. Although the original TDNLS was derived in the multi-dimensional form, the evolution of waves with finite propagation angles in TDNLS has not been paid much attention. Applicability of the resultant models to solar wind turbulence is discussed.

  2. Modeling of shock wave propagation in large amplitude ultrasound.

    PubMed

    Pinton, Gianmarco F; Trahey, Gregg E

    2008-01-01

    The Rankine-Hugoniot relation for shock wave propagation describes the shock speed of a nonlinear wave. This paper investigates time-domain numerical methods that solve the nonlinear parabolic wave equation, or the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, and the conditions they require to satisfy the Rankine-Hugoniot relation. Two numerical methods commonly used in hyperbolic conservation laws are adapted to solve the KZK equation: Godunov's method and the monotonic upwind scheme for conservation laws (MUSCL). It is shown that they satisfy the Rankine-Hugoniot relation regardless of attenuation. These two methods are compared with the current implicit solution based method. When the attenuation is small, such as in water, the current method requires a degree of grid refinement that is computationally impractical. All three numerical methods are compared in simulations for lithotripters and high intensity focused ultrasound (HIFU) where the attenuation is small compared to the nonlinearity because much of the propagation occurs in water. The simulations are performed on grid sizes that are consistent with present-day computational resources but are not sufficiently refined for the current method to satisfy the Rankine-Hugoniot condition. It is shown that satisfying the Rankine-Hugoniot conditions has a significant impact on metrics relevant to lithotripsy (such as peak pressures) and HIFU (intensity). Because the Godunov and MUSCL schemes satisfy the Rankine-Hugoniot conditions on coarse grids, they are particularly advantageous for three-dimensional simulations.

  3. A convergent series expansion for hyperbolic systems of conservation laws

    NASA Technical Reports Server (NTRS)

    Harabetian, E.

    1985-01-01

    The discontinuities piecewise analytic initial value problem for a wide class of conservation laws is considered which includes the full three-dimensional Euler equations. The initial interaction at an arbitrary curved surface is resolved in time by a convergent series. Among other features the solution exhibits shock, contact, and expansion waves as well as sound waves propagating on characteristic surfaces. The expansion waves correspond to he one-dimensional rarefactions but have a more complicated structure. The sound waves are generated in place of zero strength shocks, and they are caused by mismatches in derivatives.

  4. Numerical study on the instabilities in H2-air rotating detonation engines

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Zhou, Weijiang; Yang, Yunjun; Liu, Zhou; Wang, Jianping

    2018-04-01

    Numerical simulations of rotating detonation engines (RDEs) are performed using two-dimensional Euler equations and a detailed chemistry model of H2-air. Two propagation modes, the one-wave mode and the two-wave mode, are observed in the RDEs. The instabilities of the RDEs are studied and analyzed specifically. A low frequency instability and a high frequency instability are found from the pressure-time trace measured at a fixed location and the average density-time trace of the RDEs. For the low frequency instability, the pressure peak of the pressure-time trace oscillates with a low frequency while the average density is stable. The deviation between the measurement location and the location of the detonation wave results in the low frequency instability. For the high frequency instability, the average density of the RDEs oscillates regularly with a single frequency while the pressure oscillates irregularly with several frequencies. The oscillation of the detonation wave height results in the high frequency instability. Furthermore, the low frequency instability and the high frequency instability both occur in the one-wave and two-wave mode RDEs.

  5. Mean dyadic Green's function for a two layer random medium

    NASA Technical Reports Server (NTRS)

    Zuniga, M. A.

    1981-01-01

    The mean dyadic Green's function for a two-layer random medium with arbitrary three-dimensional correlation functions has been obtained with the zeroth-order solution to the Dyson equation by applying the nonlinear approximation. The propagation of the coherent wave in the random medium is similar to that in an anisotropic medium with different propagation constants for the characteristic transverse electric and transverse magnetic polarizations. In the limit of a laminar structure, two propagation constants for each polarization are found to exist.

  6. Nonlinear Conservation Laws and Finite Volume Methods

    NASA Astrophysics Data System (ADS)

    Leveque, Randall J.

    Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References

  7. Electrostatic shocks and solitons in pair-ion plasmas in a two-dimensional geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; Mahmood, S.; Imtiaz, N.

    2009-12-15

    Nonlinear electrostatic waves are studied in unmagnetized, dissipative pair-ion plasmas in the presence of weak transverse perturbations. The dissipation in the system is taken into account by incorporating the kinematic viscosity of both positive and negative ions in plasmas. The Kadomtsev-Petviashvili-Burger equation is derived using the small amplitude expansion method. The Kadomtsev-Petviashvili equation for pair-ion plasmas is also presented by ignoring the dissipative effects. Both compressive and rarefactive shocks and solitary waves are found to exist in pair-ion plasmas. The dependence of compression and rarefaction on the temperature ratios between the ion species is numerically shown. The present study maymore » have relevance to the understanding of the formation of electrostatic shocks and solitons in laboratory produced pair-ion plasmas.« less

  8. Direct observation of the two-plasmon-decay common plasma wave using ultraviolet Thomson scattering.

    PubMed

    Follett, R K; Edgell, D H; Henchen, R J; Hu, S X; Katz, J; Michel, D T; Myatt, J F; Shaw, J; Froula, D H

    2015-03-01

    A 263-nm Thomson-scattering beam was used to directly probe two-plasmon-decay (TPD) excited electron plasma waves (EPWs) driven by between two and five 351-nm beams on the OMEGA Laser System. The amplitude of these waves was nearly independent of the number of drive beams at constant overlapped intensity, showing that the observed EPWs are common to the multiple beams. In an experimental configuration where the Thomson-scattering diagnostic was not wave matched to the common TPD EPWs, a broad spectrum of TPD-driven EPWs was observed, indicative of nonlinear effects associated with TPD saturation. Electron plasma waves corresponding to Langmuir decay of TPD EPWs were observed in both Thomson-scattering spectra, suggesting the Langmuir decay instability as a TPD saturation mechanism. Simulated Thomson-scattering spectra from three-dimensional numerical solutions of the extended Zakharov equations of TPD are in excellent agreement with the experimental spectra and verify the presence of the Langmuir decay instability.

  9. Direct observation of the two-plasmon-decay common plasma wave using ultraviolet Thomson scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follett, R. K.; Edgell, D. H.; Henchen, R. J.

    2015-03-26

    A 263-nm Thomson-scattering beam was used to directly probe two-plasmon-decay (TPD) excited electron plasma waves (EPWs) driven by between two and five 351-nm beams on the OMEGA Laser System. The amplitude of these waves was nearly independent of the number of drive beams at constant overlapped intensity, showing that the observed EPWs are common to the multiple beams. In an experimental configuration where the Thomson-scattering diagnostic was not wave matched to the common TPD EPWs, a broad spectrum of TPD-driven EPWs was observed, indicative of nonlinear effects associated with TPD saturation. Electron plasma waves corresponding to Langmuir decay of TPDmore » EPWs were observed in both Thomson-scattering spectra, suggesting the Langmuir decay instability as a TPD saturation mechanism. Simulated Thomson-scattering spectra from three-dimensional numerical solutions of the extended Zakharov equations of TPD are in excellent agreement with the experimental spectra and verify the presence of the Langmuir decay instability.« less

  10. Controlled formation and reflection of a bright solitary matter-wave

    PubMed Central

    Marchant, A. L.; Billam, T. P.; Wiles, T. P.; Yu, M. M. H.; Gardiner, S. A.; Cornish, S. L.

    2013-01-01

    Bright solitons are non-dispersive wave solutions, arising in a diverse range of nonlinear, one-dimensional systems, including atomic Bose–Einstein condensates with attractive interactions. In reality, cold-atom experiments can only approach the idealized one-dimensional limit necessary for the realization of true solitons. Nevertheless, it remains possible to create bright solitary waves, the three-dimensional analogue of solitons, which maintain many of the key properties of their one-dimensional counterparts. Such solitary waves offer many potential applications and provide a rich testing ground for theoretical treatments of many-body quantum systems. Here we report the controlled formation of a bright solitary matter-wave from a Bose–Einstein condensate of 85Rb, which is observed to propagate over a distance of ∼1.1 mm in 150 ms with no observable dispersion. We demonstrate the reflection of a solitary wave from a repulsive Gaussian barrier and contrast this to the case of a repulsive condensate, in both cases finding excellent agreement with theoretical simulations using the three-dimensional Gross–Pitaevskii equation. PMID:23673650

  11. Intermittency in generalized NLS equation with focusing six-wave interactions

    NASA Astrophysics Data System (ADS)

    Agafontsev, D. S.; Zakharov, V. E.

    2015-10-01

    We study numerically the statistics of waves for generalized one-dimensional Nonlinear Schrödinger (NLS) equation that takes into account focusing six-wave interactions, dumping and pumping terms. We demonstrate the universal behavior of this system for the region of parameters when six-wave interactions term affects significantly only the largest waves. In particular, in the statistically steady state of this system the probability density function (PDF) of wave amplitudes turns out to be strongly non-Rayleigh one for large waves, with characteristic "fat tail" decaying with amplitude | Ψ | close to ∝ exp ⁡ (- γ | Ψ |), where γ > 0 is constant. The corresponding non-Rayleigh addition to the PDF indicates strong intermittency, vanishes in the absence of six-wave interactions, and increases with six-wave coupling coefficient.

  12. Validation and Comparison of 2D and 3D Codes for Nearshore Motion of Long Waves Using Benchmark Problems

    NASA Astrophysics Data System (ADS)

    Velioǧlu, Deniz; Cevdet Yalçıner, Ahmet; Zaytsev, Andrey

    2016-04-01

    Tsunamis are huge waves with long wave periods and wave lengths that can cause great devastation and loss of life when they strike a coast. The interest in experimental and numerical modeling of tsunami propagation and inundation increased considerably after the 2011 Great East Japan earthquake. In this study, two numerical codes, FLOW 3D and NAMI DANCE, that analyze tsunami propagation and inundation patterns are considered. Flow 3D simulates linear and nonlinear propagating surface waves as well as long waves by solving three-dimensional Navier-Stokes (3D-NS) equations. NAMI DANCE uses finite difference computational method to solve 2D depth-averaged linear and nonlinear forms of shallow water equations (NSWE) in long wave problems, specifically tsunamis. In order to validate these two codes and analyze the differences between 3D-NS and 2D depth-averaged NSWE equations, two benchmark problems are applied. One benchmark problem investigates the runup of long waves over a complex 3D beach. The experimental setup is a 1:400 scale model of Monai Valley located on the west coast of Okushiri Island, Japan. Other benchmark problem is discussed in 2015 National Tsunami Hazard Mitigation Program (NTHMP) Annual meeting in Portland, USA. It is a field dataset, recording the Japan 2011 tsunami in Hilo Harbor, Hawaii. The computed water surface elevation and velocity data are compared with the measured data. The comparisons showed that both codes are in fairly good agreement with each other and benchmark data. The differences between 3D-NS and 2D depth-averaged NSWE equations are highlighted. All results are presented with discussions and comparisons. Acknowledgements: Partial support by Japan-Turkey Joint Research Project by JICA on earthquakes and tsunamis in Marmara Region (JICA SATREPS - MarDiM Project), 603839 ASTARTE Project of EU, UDAP-C-12-14 project of AFAD Turkey, 108Y227, 113M556 and 213M534 projects of TUBITAK Turkey, RAPSODI (CONCERT_Dis-021) of CONCERT-Japan Joint Call and Istanbul Metropolitan Municipality are all acknowledged.

  13. Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology.

    PubMed

    Heidenreich, Elvio A; Ferrero, José M; Doblaré, Manuel; Rodríguez, José F

    2010-07-01

    Many problems in biology and engineering are governed by anisotropic reaction-diffusion equations with a very rapidly varying reaction term. This usually implies the use of very fine meshes and small time steps in order to accurately capture the propagating wave while avoiding the appearance of spurious oscillations in the wave front. This work develops a family of macro finite elements amenable for solving anisotropic reaction-diffusion equations with stiff reactive terms. The developed elements are incorporated on a semi-implicit algorithm based on operator splitting that includes adaptive time stepping for handling the stiff reactive term. A linear system is solved on each time step to update the transmembrane potential, whereas the remaining ordinary differential equations are solved uncoupled. The method allows solving the linear system on a coarser mesh thanks to the static condensation of the internal degrees of freedom (DOF) of the macroelements while maintaining the accuracy of the finer mesh. The method and algorithm have been implemented in parallel. The accuracy of the method has been tested on two- and three-dimensional examples demonstrating excellent behavior when compared to standard linear elements. The better performance and scalability of different macro finite elements against standard finite elements have been demonstrated in the simulation of a human heart and a heterogeneous two-dimensional problem with reentrant activity. Results have shown a reduction of up to four times in computational cost for the macro finite elements with respect to equivalent (same number of DOF) standard linear finite elements as well as good scalability properties.

  14. On the generation and evolution of internal gravity waves

    NASA Technical Reports Server (NTRS)

    Lansing, F. S.; Maxworthy, T.

    1984-01-01

    The tidal generation and evolution of internal gravity waves is investigated experimentally and theoretically using a two-dimensional two-layer model. Time-dependent flow is created by moving a profile of maximum submerged depth 7.7 cm through a total stroke of 29 cm in water above a freon-kerosene mixture in an 8.6-m-long 30-cm-deep 20-cm-wide transparent channel, and the deformation of the fluid interface is recorded photographically. A theoretical model of the interface as a set of discrete vortices is constructed numerically; the rigid structures are represented by a source distribution; governing equations in Lagrangian form are obtained; and two integrodifferential equations relating baroclinic vorticity generation and source-density generation are derived. The experimental and computed results are shown in photographs and graphs, respectively, and found to be in good agreement at small Froude numbers. The reasons for small discrepancies in the position of the maximum interface displacement at large Froude numbers are examined.

  15. Spacetime representation of topological phononics

    NASA Astrophysics Data System (ADS)

    Deymier, Pierre A.; Runge, Keith; Lucas, Pierre; Vasseur, Jérôme O.

    2018-05-01

    Non-conventional topology of elastic waves arises from breaking symmetry of phononic structures either intrinsically through internal resonances or extrinsically via application of external stimuli. We develop a spacetime representation based on twistor theory of an intrinsic topological elastic structure composed of a harmonic chain attached to a rigid substrate. Elastic waves in this structure obey the Klein–Gordon and Dirac equations and possesses spinorial character. We demonstrate the mapping between straight line trajectories of these elastic waves in spacetime and the twistor complex space. The twistor representation of these Dirac phonons is related to their topological and fermion-like properties. The second topological phononic structure is an extrinsic structure composed of a one-dimensional elastic medium subjected to a moving superlattice. We report an analogy between the elastic behavior of this time-dependent superlattice, the scalar quantum field theory and general relativity of two types of exotic particle excitations, namely temporal Dirac phonons and temporal ghost (tachyonic) phonons. These phonons live on separate sides of a two-dimensional frequency space and are delimited by ghost lines reminiscent of the conventional light cone. Both phonon types exhibit spinorial amplitudes that can be measured by mapping the particle behavior to the band structure of elastic waves.

  16. In-plane time-harmonic elastic wave motion and resonance phenomena in a layered phononic crystal with periodic cracks.

    PubMed

    Golub, Mikhail V; Zhang, Chuanzeng

    2015-01-01

    This paper presents an elastodynamic analysis of two-dimensional time-harmonic elastic wave propagation in periodically multilayered elastic composites, which are also frequently referred to as one-dimensional phononic crystals, with a periodic array of strip-like interior or interface cracks. The transfer matrix method and the boundary integral equation method in conjunction with the Bloch-Floquet theorem are applied to compute the elastic wave fields in the layered periodic composites. The effects of the crack size, spacing, and location, as well as the incidence angle and the type of incident elastic waves on the wave propagation characteristics in the composite structure are investigated in details. In particular, the band-gaps, the localization and the resonances of elastic waves are revealed by numerical examples. In order to understand better the wave propagation phenomena in layered phononic crystals with distributed cracks, the energy flow vector of Umov and the corresponding energy streamlines are visualized and analyzed. The numerical results demonstrate that large energy vortices obstruct elastic wave propagation in layered phononic crystals at resonance frequencies. They occur before the cracks reflecting most of the energy transmitted by the incoming wave and disappear when the problem parameters are shifted from the resonant ones.

  17. Geometric calculus-based postulates for the derivation and extension of the Maxwell equations

    NASA Astrophysics Data System (ADS)

    McClellan, Gene E.

    2012-09-01

    Clifford analysis, particularly application of the geometric algebra of three-dimensional physical space and its associated geometric calculus, enables a compact formulation of Maxwell's electromagnetic (EM) equations from a set of physically relevant and mathematically pleasing postulates. This formulation results in a natural extension of the Maxwell equations yielding wave solutions in addition to the usual EM waves. These additional solutions do not contradict experiment and have three properties in common with the apparent properties of dark energy. These three properties are that the wave solutions 1) propagate at the speed of light, 2) do not interact with ordinary electric charges or currents, and 3) possess retrograde momentum. By retrograde momentum, we mean that the momentum carried by such a wave is directed oppositely to the direction of energy transport. A "gas" of such waves generates negative pressure.

  18. Effects of Magnetic field on Peristalsis transport of a Carreau Fluid in a tapered asymmetric channel

    NASA Astrophysics Data System (ADS)

    Prakash, J.; Balaji, N.; Siva, E. P.; Kothandapani, M.; Govindarajan, A.

    2018-04-01

    The paper is concerned with effects of a uniform applied magnetic field on a Carreau fluid flow in a tapered asymmetric channel with peristalsis. The channel non-uniform & asymmetry are formed by choosing the peristaltic wave train on the tapered walls to have different amplitude and phase (ϕ). The governing equations of the Carreau model in two - dimensional peristaltic flow phenomena are constructed under assumptions of long wave length and low Reynolds number approximations. The simplified non - linear governing equations are solved by regular perturbation method. The expressions for pressure rise, frictional force, velocity and stream function are determined and the effects of different parameters like non-dimensional amplitudes walls (a and b), non - uniform parameter (m), Hartmann number (M), phase difference (ϕ),power law index (n) and Weissenberg numbers (We) on the flow characteristics are discussed. It is viewed that the rheological parameter for large (We), the curves of the pressure rise are not linear but it behaves like a Newtonian fluid for very small Weissenberg number.

  19. Modulation analysis of nonlinear beam refraction at an interface in liquid crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assanto, Gaetano; Smyth, Noel F.; Xia Wenjun

    2011-09-15

    A theoretical investigation of solitary wave refraction in nematic liquid crystals is undertaken. A modulation theory based on a Lagrangian formulation of the governing optical solitary wave equations is developed. The resulting low-dimensional equations are found to give solutions in excellent agreement with full numerical solutions of the governing equations, as well as with previous experimental studies. The analysis deals with a number of types of refraction from a more to a less optically dense medium, the most famous being the Goos-Haenchen shift upon total internal reflection.

  20. Spatiotemporal behavior and nonlinear dynamics in a phase conjugate resonator

    NASA Technical Reports Server (NTRS)

    Liu, Siuying Raymond

    1993-01-01

    The work described can be divided into two parts. The first part is an investigation of the transient behavior and stability property of a phase conjugate resonator (PCR) below threshold. The second part is an experimental and theoretical study of the PCR's spatiotemporal dynamics above threshold. The time-dependent coupled wave equations for four-wave mixing (FWM) in a photorefractive crystal, with two distinct interaction regions caused by feedback from an ordinary mirror, was used to model the transient dynamics of a PCR below threshold. The conditions for self-oscillation were determined and the solutions were used to define the PCR's transfer function and analyze its stability. Experimental results for the buildup and decay times confirmed qualitatively the predicted behavior. Experiments were carried out above threshold to study the spatiotemporal dynamics of the PCR as a function of Pragg detuning and the resonator's Fresnel number. The existence of optical vortices in the wavefront were identified by optical interferometry. It was possible to describe the transverse dynamics and the spatiotemporal instabilities by modeling the three-dimensional-coupled wave equations in photorefractive FWM using a truncated modal expansion approach.

  1. Sub-Alfvénic reduced magnetohydrodynamic equations for tokamaks

    NASA Astrophysics Data System (ADS)

    Sengupta, W.; Hassam, A. B.; Antonsen, T. M.

    2017-06-01

    A reduced set of magnetohydrodynamic (MHD) equations is derived, applicable to large aspect ratio tokamaks and relevant for dynamics that is sub-Alfvénic with respect to ideal ballooning modes. This ordering optimally allows sound waves, Mercier modes, drift modes, geodesic-acoustic modes (GAM), zonal flows and shear Alfvén waves. Wavelengths long compared to the gyroradius but comparable to the minor radius of a typical tokamak are considered. With the inclusion of resistivity, tearing modes, resistive ballooning modes, Pfirsch-Schluter cells and the Stringer spin-up are also included. A major advantage is that the resulting system is two-dimensional in space, and the system incorporates self-consistent and dynamic Shafranov shifts. A limitation is that the system is valid only in radial domains where the tokamak safety factor, , is close to rational. In the tokamak core, the system is well suited to study the sawtooth discharge in the presence of Mercier modes. The systematic ordering scheme and methodology developed are versatile enough to reduce the more general collisional two-fluid equations or possibly the Vlasov-Maxwell system in the MHD ordering.

  2. The modified semi-discrete two-dimensional Toda lattice with self-consistent sources

    NASA Astrophysics Data System (ADS)

    Gegenhasi

    2017-07-01

    In this paper, we derive the Grammian determinant solutions to the modified semi-discrete two-dimensional Toda lattice equation, and then construct the semi-discrete two-dimensional Toda lattice equation with self-consistent sources via source generation procedure. The algebraic structure of the resulting coupled modified differential-difference equation is clarified by presenting its Grammian determinant solutions and Casorati determinant solutions. As an application of the Grammian determinant and Casorati determinant solution, the explicit one-soliton and two-soliton solution of the modified semi-discrete two-dimensional Toda lattice equation with self-consistent sources are given. We also construct another form of the modified semi-discrete two-dimensional Toda lattice equation with self-consistent sources which is the Bäcklund transformation for the semi-discrete two-dimensional Toda lattice equation with self-consistent sources.

  3. One-dimensional GIS-based model compared with a two-dimensional model in urban floods simulation.

    PubMed

    Lhomme, J; Bouvier, C; Mignot, E; Paquier, A

    2006-01-01

    A GIS-based one-dimensional flood simulation model is presented and applied to the centre of the city of Nîmes (Gard, France), for mapping flow depths or velocities in the streets network. The geometry of the one-dimensional elements is derived from the Digital Elevation Model (DEM). The flow is routed from one element to the next using the kinematic wave approximation. At the crossroads, the flows in the downstream branches are computed using a conceptual scheme. This scheme was previously designed to fit Y-shaped pipes junctions, and has been modified here to fit X-shaped crossroads. The results were compared with the results of a two-dimensional hydrodynamic model based on the full shallow water equations. The comparison shows that good agreements can be found in the steepest streets of the study zone, but differences may be important in the other streets. Some reasons that can explain the differences between the two models are given and some research possibilities are proposed.

  4. Research on Radiation Characteristic of Plasma Antenna through FDTD Method

    PubMed Central

    Zhou, Jianming; Fang, Jingjing; Lu, Qiuyuan; Liu, Fan

    2014-01-01

    The radiation characteristic of plasma antenna is investigated by using the finite-difference time-domain (FDTD) approach in this paper. Through using FDTD method, we study the propagation of electromagnetic wave in free space in stretched coordinate. And the iterative equations of Maxwell equation are derived. In order to validate the correctness of this method, we simulate the process of electromagnetic wave propagating in free space. Results show that electromagnetic wave spreads out around the signal source and can be absorbed by the perfectly matched layer (PML). Otherwise, we study the propagation of electromagnetic wave in plasma by using the Boltzmann-Maxwell theory. In order to verify this theory, the whole process of electromagnetic wave propagating in plasma under one-dimension case is simulated. Results show that Boltzmann-Maxwell theory can be used to explain the phenomenon of electromagnetic wave propagating in plasma. Finally, the two-dimensional simulation model of plasma antenna is established under the cylindrical coordinate. And the near-field and far-field radiation pattern of plasma antenna are obtained. The experiments show that the variation of electron density can introduce the change of radiation characteristic. PMID:25114961

  5. A k-Space Method for Moderately Nonlinear Wave Propagation

    PubMed Central

    Jing, Yun; Wang, Tianren; Clement, Greg T.

    2013-01-01

    A k-space method for moderately nonlinear wave propagation in absorptive media is presented. The Westervelt equation is first transferred into k-space via Fourier transformation, and is solved by a modified wave-vector time-domain scheme. The present approach is not limited to forward propagation or parabolic approximation. One- and two-dimensional problems are investigated to verify the method by comparing results to analytic solutions and finite-difference time-domain (FDTD) method. It is found that to obtain accurate results in homogeneous media, the grid size can be as little as two points per wavelength, and for a moderately nonlinear problem, the Courant–Friedrichs–Lewy number can be as large as 0.4. Through comparisons with the conventional FDTD method, the k-space method for nonlinear wave propagation is shown here to be computationally more efficient and accurate. The k-space method is then employed to study three-dimensional nonlinear wave propagation through the skull, which shows that a relatively accurate focusing can be achieved in the brain at a high frequency by sending a low frequency from the transducer. Finally, implementations of the k-space method using a single graphics processing unit shows that it required about one-seventh the computation time of a single-core CPU calculation. PMID:22899114

  6. Investigation of Convection and Pressure Treatment with Splitting Techniques

    NASA Technical Reports Server (NTRS)

    Thakur, Siddharth; Shyy, Wei; Liou, Meng-Sing

    1995-01-01

    Treatment of convective and pressure fluxes in the Euler and Navier-Stokes equations using splitting formulas for convective velocity and pressure is investigated. Two schemes - controlled variation scheme (CVS) and advection upstream splitting method (AUSM) - are explored for their accuracy in resolving sharp gradients in flows involving moving or reflecting shock waves as well as a one-dimensional combusting flow with a strong heat release source term. For two-dimensional compressible flow computations, these two schemes are implemented in one of the pressure-based algorithms, whose very basis is the separate treatment of convective and pressure fluxes. For the convective fluxes in the momentum equations as well as the estimation of mass fluxes in the pressure correction equation (which is derived from the momentum and continuity equations) of the present algorithm, both first- and second-order (with minmod limiter) flux estimations are employed. Some issues resulting from the conventional use in pressure-based methods of a staggered grid, for the location of velocity components and pressure, are also addressed. Using the second-order fluxes, both CVS and AUSM type schemes exhibit sharp resolution. Overall, the combination of upwinding and splitting for the convective and pressure fluxes separately exhibits robust performance for a variety of flows and is particularly amenable for adoption in pressure-based methods.

  7. The effect of compliant walls on three-dimensional primary and secondary instabilities in boundary layer transition

    NASA Astrophysics Data System (ADS)

    Joslin, R. D.

    1991-04-01

    The use of passive devices to obtain drag and noise reduction or transition delays in boundary layers is highly desirable. One such device that shows promise for hydrodynamic applications is the compliant coating. The present study extends the mechanical model to allow for three-dimensional waves. This study also looks at the effect of compliant walls on three-dimensional secondary instabilities. For the primary and secondary instability analysis, spectral and shooting approximations are used to obtain solutions of the governing equations and boundary conditions. The spectral approximation consists of local and global methods of solution while the shooting approach is local. The global method is used to determine the discrete spectrum of eigenvalue without any initial guess. The local method requires a sufficiently accurate initial guess to converge to the eigenvalue. Eigenvectors may be obtained with either local approach. For the initial stage of this analysis, two and three dimensional primary instabilities propagate over compliant coatings. Results over the compliant walls are compared with the rigid wall case. Three-dimensional instabilities are found to dominate transition over the compliant walls considered. However, transition delays are still obtained and compared with transition delay predictions for rigid walls. The angles of wave propagation are plotted with Reynolds number and frequency. Low frequency waves are found to be highly three-dimensional.

  8. Freak oscillation in a dusty plasma.

    PubMed

    Zhang, Heng; Yang, Yang; Hong, Xue-Ren; Qi, Xin; Duan, Wen-Shan; Yang, Lei

    2017-05-01

    The freak oscillation in one-dimensional dusty plasma is studied numerically by particle-in-cell method. Using a perturbation method, the basic set of fluid equations is reduced to a nonlinear Schrödinger equation (NLSE). The rational solution of the NLSE is presented, which is proposed as an effective tool for studying the rogue waves in dusty plasma. Additionally, the application scope of the analytical solution of the rogue wave described by the NLSE is given.

  9. Scattering of sound waves by a compressible vortex

    NASA Technical Reports Server (NTRS)

    Colonius, Tim; Lele, Sanjiva K.; Moin, Parviz

    1991-01-01

    Scattering of plane sound waves by a compressible vortex is investigated by direct computation of the two-dimensional Navier-Stokes equations. Nonreflecting boundary conditions are utilized, and their accuracy is established by comparing results on different sized domains. Scattered waves are directly measured from the computations. The resulting amplitude and directivity pattern of the scattered waves is discussed, and compared to various theoretical predictions. For compact vortices (zero circulation), the scattered waves directly computed are in good agreement with predictions based on an acoustic analogy. Strong scattering at about + or - 30 degrees from the direction of incident wave propagation is observed. Back scattering is an order of magnitude smaller than forward scattering. For vortices with finite circulation refraction of the sound by the mean flow field outside the vortex core is found to be important in determining the amplitude and directivity of the scattered wave field.

  10. Vector matter waves in two-component Bose-Einstein condensates with spatially modulated nonlinearities

    NASA Astrophysics Data System (ADS)

    Xu, Si-Liu; He, Jun-Rong; Xue, Li; Belić, Milivoj R.

    2018-02-01

    We demonstrate three-dimensional (3D) vector solitary waves in the coupled (3 + 1)-D nonlinear Gross-Pitaevskii equations with variable nonlinearity coefficients. The analysis is carried out in spherical coordinates, providing novel localized solutions that depend on three modal numbers, l, m, and n. Using the similarity transformation (ST) method in 3D, vector solitary waves are built with the help of a combination of harmonic and trapping potentials, including multipole solutions and necklace rings. In general, the solutions found are stable for low values of the modal numbers; for values larger than 2, the solutions are found to be unstable. Variable nonlinearity allows the utilization of soliton management methods.

  11. The Evolution of Finite Amplitude Wavetrains in Plane Channel Flow

    NASA Technical Reports Server (NTRS)

    Hewitt, R. E.; Hall, P.

    1996-01-01

    We consider a viscous incompressible fluid flow driven between two parallel plates by a constant pressure gradient. The flow is at a finite Reynolds number, with an 0(l) disturbance in the form of a traveling wave. A phase equation approach is used to discuss the evolution of slowly varying fully nonlinear two dimensional wavetrains. We consider uniform wavetrains in detail, showing that the development of a wavenumber perturbation is governed by Burgers equation in most cases. The wavenumber perturbation theory, constructed using the phase equation approach for a uniform wavetrain, is shown to be distinct from an amplitude perturbation expansion about the periodic flow. In fact we show that the amplitude equation contains only linear terms and is simply the heat equation. We review, briefly, the well known dynamics of Burgers equation, which imply that both shock structures and finite time singularities of the wavenumber perturbation can occur with respect to the slow scales. Numerical computations have been performed to identify areas of the (wavenumber, Reynolds number, energy) neutral surface for which each of these possibilities can occur. We note that the evolution equations will breakdown under certain circumstances, in particular for a weakly nonlinear secondary flow. Finally we extend the theory to three dimensions and discuss the limit of a weak spanwise dependence for uniform wavetrains, showing that two functions are required to describe the evolution. These unknowns are a phase and a pressure function which satisfy a pair of linearly coupled partial differential equations. The results obtained from applying the same analysis to the fully three dimensional problem are included as an appendix.

  12. A Generalization of the Einstein-Maxwell Equations

    NASA Astrophysics Data System (ADS)

    Cotton, Fredrick

    2016-03-01

    The proposed modifications of the Einstein-Maxwell equations include: (1) the addition of a scalar term to the electromagnetic side of the equation rather than to the gravitational side, (2) the introduction of a 4-dimensional, nonlinear electromagnetic constitutive tensor and (3) the addition of curvature terms arising from the non-metric components of a general symmetric connection. The scalar term is defined by the condition that a spherically symmetric particle be force-free and mathematically well-behaved everywhere. The constitutive tensor introduces two auxiliary fields which describe the particle structure. The additional curvature terms couple both to particle solutions and to electromagnetic and gravitational wave solutions. http://sites.google.com/site/fwcotton/em-30.pdf

  13. Magnetohydrodynamic motion of a two-fluid plasma

    DOE PAGES

    Burby, Joshua W.

    2017-07-21

    Here, the two-fluid Maxwell system couples frictionless electron and ion fluids via Maxwell’s equations. When the frequencies of light waves, Langmuir waves, and single-particle cyclotron motion are scaled to be asymptotically large, the two-fluid Maxwell system becomes a fast-slow dynamical system. This fast-slow system admits a formally-exact single-fluid closure that may be computed systematically with any desired order of accuracy through the use of a functional partial differential equation. In the leading order approximation, the closure reproduces magnetohydrodynamics (MHD). Higher order truncations of the closure give an infinite hierarchy of extended MHD models that allow for arbitrary mass ratio, asmore » well as perturbative deviations from charge neutrality. The closure is interpreted geometrically as an invariant slow manifold in the infinite-dimensional two-fluid phase space, on which two-fluid motions are free of high-frequency oscillations. This perspective shows that the full closure inherits a Hamiltonian structure from two-fluid theory. By employing infinite-dimensional Lie transforms, the Poisson bracket for the all-orders closure may be obtained in closed form. Thus, conservative truncations of the single-fluid closure may be obtained by simply truncating the single-fluid Hamiltonian. Moreover, the closed-form expression for the all-orders bracket gives explicit expressions for a number of the full closure’s conservation laws. Notably, the full closure, as well as any of its Hamiltonian truncations, admits a pair of independent circulation invariants.« less

  14. Magnetohydrodynamic motion of a two-fluid plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burby, Joshua W.

    Here, the two-fluid Maxwell system couples frictionless electron and ion fluids via Maxwell’s equations. When the frequencies of light waves, Langmuir waves, and single-particle cyclotron motion are scaled to be asymptotically large, the two-fluid Maxwell system becomes a fast-slow dynamical system. This fast-slow system admits a formally-exact single-fluid closure that may be computed systematically with any desired order of accuracy through the use of a functional partial differential equation. In the leading order approximation, the closure reproduces magnetohydrodynamics (MHD). Higher order truncations of the closure give an infinite hierarchy of extended MHD models that allow for arbitrary mass ratio, asmore » well as perturbative deviations from charge neutrality. The closure is interpreted geometrically as an invariant slow manifold in the infinite-dimensional two-fluid phase space, on which two-fluid motions are free of high-frequency oscillations. This perspective shows that the full closure inherits a Hamiltonian structure from two-fluid theory. By employing infinite-dimensional Lie transforms, the Poisson bracket for the all-orders closure may be obtained in closed form. Thus, conservative truncations of the single-fluid closure may be obtained by simply truncating the single-fluid Hamiltonian. Moreover, the closed-form expression for the all-orders bracket gives explicit expressions for a number of the full closure’s conservation laws. Notably, the full closure, as well as any of its Hamiltonian truncations, admits a pair of independent circulation invariants.« less

  15. Strongly coupled stress waves in heterogeneous plates.

    NASA Technical Reports Server (NTRS)

    Wang, A. S. D.; Chou, P. C.; Rose, J. L.

    1972-01-01

    Consideration of coupled stress waves generated by an impulsive load applied at one end of a semiinfinite plate. For the field equations governing the one-dimensional coupled waves a hyperbolic system of equations is obtained in which a strong coupling in the second derivatives exists. The method of characteristics described by Chou and Mortimer (1967) is extended to cover the case of strong coupling, and a study is made of the transient stress waves in a semiinfinite plate subjected to an initial step input. Coupled discontinuity fronts are found to propagate at different velocities. The normal plate stress and the bending moment at different time regimes are illustrated by graphs.

  16. Conservation laws and conserved quantities for (1+1)D linearized Boussinesq equations

    NASA Astrophysics Data System (ADS)

    Carvalho, Cindy; Harley, Charis

    2017-05-01

    Conservation laws and physical conserved quantities for the (1+1)D linearized Boussinesq equations at a constant water depth are presented. These equations describe incompressible, inviscid, irrotational fluid flow in the form of a non steady solitary wave. A systematic multiplier approach is used to obtain the conservation laws of the system of third order partial differential equations (PDEs) in dimensional form. Physical conserved quantities are derived by integrating the conservation laws in the direction of wave propagation and imposing decaying boundary conditions in the horizontal direction. One of these is a newly discovered conserved quantity which relates to an energy flux density.

  17. Effective equations for matter-wave gap solitons in higher-order transversal states.

    PubMed

    Mateo, A Muñoz; Delgado, V

    2013-10-01

    We demonstrate that an important class of nonlinear stationary solutions of the three-dimensional (3D) Gross-Pitaevskii equation (GPE) exhibiting nontrivial transversal configurations can be found and characterized in terms of an effective one-dimensional (1D) model. Using a variational approach we derive effective equations of lower dimensionality for BECs in (m,n(r)) transversal states (states featuring a central vortex of charge m as well as n(r) concentric zero-density rings at every z plane) which provides us with a good approximate solution of the original 3D problem. Since the specifics of the transversal dynamics can be absorbed in the renormalization of a couple of parameters, the functional form of the equations obtained is universal. The model proposed finds its principal application in the study of the existence and classification of 3D gap solitons supported by 1D optical lattices, where in addition to providing a good estimate for the 3D wave functions it is able to make very good predictions for the μ(N) curves characterizing the different fundamental families. We have corroborated the validity of our model by comparing its predictions with those from the exact numerical solution of the full 3D GPE.

  18. Chaotic scattering in an open vase-shaped cavity: Topological, numerical, and experimental results

    NASA Astrophysics Data System (ADS)

    Novick, Jaison Allen

    We present a study of trajectories in a two-dimensional, open, vase-shaped cavity in the absence of forces The classical trajectories freely propagate between elastic collisions. Bound trajectories, regular scattering trajectories, and chaotic scattering trajectories are present in the vase. Most importantly, we find that classical trajectories passing through the vase's mouth escape without return. In our simulations, we propagate bursts of trajectories from point sources located along the vase walls. We record the time for escaping trajectories to pass through the vase's neck. Constructing a plot of escape time versus the initial launch angle for the chaotic trajectories reveals a vastly complicated recursive structure or a fractal. This fractal structure can be understood by a suitable coordinate transform. Reducing the dynamics to two dimensions reveals that the chaotic dynamics are organized by a homoclinic tangle, which is formed by the union of infinitely long, intersecting stable and unstable manifolds. This study is broken down into three major components. We first present a topological theory that extracts the essential topological information from a finite subset of the tangle and encodes this information in a set of symbolic dynamical equations. These equations can be used to predict a topologically forced minimal subset of the recursive structure seen in numerically computed escape time plots. We present three applications of the theory and compare these predictions to our simulations. The second component is a presentation of an experiment in which the vase was constructed from Teflon walls using an ultrasound transducer as a point source. We compare the escaping signal to a classical simulation and find agreement between the two. Finally, we present an approximate solution to the time independent Schrodinger Equation for escaping waves. We choose a set of points at which to evaluate the wave function and interpolate trajectories connecting the source point to each "detector point". We then construct the wave function directly from these classical trajectories using the two-dimensional WKB approximation. The wave function is Fourier Transformed using a Fast Fourier Transform algorithm resulting in a spectrum in which each peak corresponds to an interpolated trajectory. Our predictions are based on an imagined experiment that uses microwave propagation within an electromagnetic waveguide. Such an experiment exploits the fact that under suitable conditions both Maxwell's Equations and the Schrodinger Equation can be reduced to the Helmholtz Equation. Therefore, our predictions, while compared to the electromagnetic experiment, contain information about the quantum system. Identifying peaks in the transmission spectrum with chaotic trajectories will allow for an additional experimental verification of the intermediate recursive structure. Finally, we summarize our results and discuss possible extensions of this project.

  19. A higher-order conservation element solution element method for solving hyperbolic differential equations on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Bilyeu, David

    This dissertation presents an extension of the Conservation Element Solution Element (CESE) method from second- to higher-order accuracy. The new method retains the favorable characteristics of the original second-order CESE scheme, including (i) the use of the space-time integral equation for conservation laws, (ii) a compact mesh stencil, (iii) the scheme will remain stable up to a CFL number of unity, (iv) a fully explicit, time-marching integration scheme, (v) true multidimensionality without using directional splitting, and (vi) the ability to handle two- and three-dimensional geometries by using unstructured meshes. This algorithm has been thoroughly tested in one, two and three spatial dimensions and has been shown to obtain the desired order of accuracy for solving both linear and non-linear hyperbolic partial differential equations. The scheme has also shown its ability to accurately resolve discontinuities in the solutions. Higher order unstructured methods such as the Discontinuous Galerkin (DG) method and the Spectral Volume (SV) methods have been developed for one-, two- and three-dimensional application. Although these schemes have seen extensive development and use, certain drawbacks of these methods have been well documented. For example, the explicit versions of these two methods have very stringent stability criteria. This stability criteria requires that the time step be reduced as the order of the solver increases, for a given simulation on a given mesh. The research presented in this dissertation builds upon the work of Chang, who developed a fourth-order CESE scheme to solve a scalar one-dimensional hyperbolic partial differential equation. The completed research has resulted in two key deliverables. The first is a detailed derivation of a high-order CESE methods on unstructured meshes for solving the conservation laws in two- and three-dimensional spaces. The second is the code implementation of these numerical methods in a computer code. For code development, a one-dimensional solver for the Euler equations was developed. This work is an extension of Chang's work on the fourth-order CESE method for solving a one-dimensional scalar convection equation. A generic formulation for the nth-order CESE method, where n ≥ 4, was derived. Indeed, numerical implementation of the scheme confirmed that the order of convergence was consistent with the order of the scheme. For the two- and three-dimensional solvers, SOLVCON was used as the basic framework for code implementation. A new solver kernel for the fourth-order CESE method has been developed and integrated into the framework provided by SOLVCON. The main part of SOLVCON, which deals with unstructured meshes and parallel computing, remains intact. The SOLVCON code for data transmission between computer nodes for High Performance Computing (HPC). To validate and verify the newly developed high-order CESE algorithms, several one-, two- and three-dimensional simulations where conducted. For the arbitrary order, one-dimensional, CESE solver, three sets of governing equations were selected for simulation: (i) the linear convection equation, (ii) the linear acoustic equations, (iii) the nonlinear Euler equations. All three systems of equations were used to verify the order of convergence through mesh refinement. In addition the Euler equations were used to solve the Shu-Osher and Blastwave problems. These two simulations demonstrated that the new high-order CESE methods can accurately resolve discontinuities in the flow field.For the two-dimensional, fourth-order CESE solver, the Euler equation was employed in four different test cases. The first case was used to verify the order of convergence through mesh refinement. The next three cases demonstrated the ability of the new solver to accurately resolve discontinuities in the flows. This was demonstrated through: (i) the interaction between acoustic waves and an entropy pulse, (ii) supersonic flow over a circular blunt body, (iii) supersonic flow over a guttered wedge. To validate and verify the three-dimensional, fourth-order CESE solver, two different simulations where selected. The first used the linear convection equations to demonstrate fourth-order convergence. The second used the Euler equations to simulate supersonic flow over a spherical body to demonstrate the scheme's ability to accurately resolve shocks. All test cases used are well known benchmark problems and as such, there are multiple sources available to validate the numerical results. Furthermore, the simulations showed that the high-order CESE solver was stable at a CFL number near unity.

  20. Calculation of Energetic Ion Tail from Ion Cyclotron Resonance Frequency Heating

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Li, Youyi; Li, Jiangang

    1994-04-01

    The second harmonic frequency of hydrogen ion cyclotron resonance heating experiment on HT-6M tokamak was studied by adding the quasi-linear wave-ion interaction term in the two-dimensional (velocity space), time-dependent, nonlinear and multispecies Fokker-Planck equation. The temporal evolution of ion distribution function and relevant parameters were calculated and compared with experiment data. The calculation shows that the ion temperature increases, high-energy ion tail (above 5 keV) and anisotropy appear when the wave is injected to plasma. The simulations are in reasonable agreement with experiment data.

  1. Two-dimensional supersonic nonlinear Schrödinger flow past an extended obstacle

    NASA Astrophysics Data System (ADS)

    El, G. A.; Kamchatnov, A. M.; Khodorovskii, V. V.; Annibale, E. S.; Gammal, A.

    2009-10-01

    Supersonic flow of a superfluid past a slender impenetrable macroscopic obstacle is studied in the framework of the two-dimensional (2D) defocusing nonlinear Schrödinger (NLS) equation. This problem is of fundamental importance as a dispersive analog of the corresponding classical gas-dynamics problem. Assuming the oncoming flow speed is sufficiently high, we asymptotically reduce the original boundary-value problem for a steady flow past a slender body to the one-dimensional dispersive piston problem described by the nonstationary NLS equation, in which the role of time is played by the stretched x coordinate and the piston motion curve is defined by the spatial body profile. Two steady oblique spatial dispersive shock waves (DSWs) spreading from the pointed ends of the body are generated in both half planes. These are described analytically by constructing appropriate exact solutions of the Whitham modulation equations for the front DSW and by using a generalized Bohr-Sommerfeld quantization rule for the oblique dark soliton fan in the rear DSW. We propose an extension of the traditional modulation description of DSWs to include the linear “ship-wave” pattern forming outside the nonlinear modulation region of the front DSW. Our analytic results are supported by direct 2D unsteady numerical simulations and are relevant to recent experiments on Bose-Einstein condensates freely expanding past obstacles.

  2. A single-sided representation for the homogeneous Green's function of a unified scalar wave equation.

    PubMed

    Wapenaar, Kees

    2017-06-01

    A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only.

  3. Direct Numerical Simulation of a Temporally Evolving Incompressible Plane Wake: Effect of Initial Conditions on Evolution and Topology

    NASA Technical Reports Server (NTRS)

    Sondergaard, R.; Cantwell, B.; Mansour, N.

    1997-01-01

    Direct numerical simulations have been used to examine the effect of the initial disturbance field on the development of three-dimensionality and the transition to turbulence in the incompressible plane wake. The simulations were performed using a new numerical method for solving the time-dependent, three-dimensional, incompressible Navier-Stokes equations in flows with one infinite and two periodic directions. The method uses standard Fast Fourier Transforms and is applicable to cases where the vorticity field is compact in the infinite direction. Initial disturbances fields examined were combinations of two-dimensional waves and symmetric pairs of 60 deg oblique waves at the fundamental, subharmonic, and sub-subharmonic wavelengths. The results of these simulations indicate that the presence of 60 deg disturbances at the subharmonic streamwise wavelength results in the development of strong coherent three-dimensional structures. The resulting strong three-dimensional rate-of-strain triggers the growth of intense fine scale motions. Wakes initiated with 60 deg disturbances at the fundamental streamwise wavelength develop weak coherent streamwise structures, and do not develop significant fine scale motions, even at high Reynolds numbers. The wakes which develop strong three-dimensional structures exhibit growth rates on par with experimentally observed turbulent plane wakes. Wakes which develop only weak three-dimensional structures exhibit significantly lower late time growth rates. Preliminary studies of wakes initiated with an oblique fundamental and a two-dimensional subharmonic, which develop asymmetric coherent oblique structures at the subharmonic wavelength, indicate that significant fine scale motions only develop if the resulting oblique structures are above an angle of approximately 45 deg.

  4. An Euler-Lagrange method considering bubble radial dynamics for modeling sonochemical reactors.

    PubMed

    Jamshidi, Rashid; Brenner, Gunther

    2014-01-01

    Unsteady numerical computations are performed to investigate the flow field, wave propagation and the structure of bubbles in sonochemical reactors. The turbulent flow field is simulated using a two-equation Reynolds-Averaged Navier-Stokes (RANS) model. The distribution of the acoustic pressure is solved based on the Helmholtz equation using a finite volume method (FVM). The radial dynamics of a single bubble are considered by applying the Keller-Miksis equation to consider the compressibility of the liquid to the first order of acoustical Mach number. To investigate the structure of bubbles, a one-way coupling Euler-Lagrange approach is used to simulate the bulk medium and the bubbles as the dispersed phase. Drag, gravity, buoyancy, added mass, volume change and first Bjerknes forces are considered and their orders of magnitude are compared. To verify the implemented numerical algorithms, results for one- and two-dimensional simplified test cases are compared with analytical solutions. The results show good agreement with experimental results for the relationship between the acoustic pressure amplitude and the volume fraction of the bubbles. The two-dimensional axi-symmetric results are in good agreement with experimentally observed structure of bubbles close to sonotrode. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Gaussian variational ansatz in the problem of anomalous sea waves: Comparison with direct numerical simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruban, V. P., E-mail: ruban@itp.ac.ru

    2015-05-15

    The nonlinear dynamics of an obliquely oriented wave packet on a sea surface is analyzed analytically and numerically for various initial parameters of the packet in relation to the problem of the so-called rogue waves. Within the Gaussian variational ansatz applied to the corresponding (1+2)-dimensional hyperbolic nonlinear Schrödinger equation (NLSE), a simplified Lagrangian system of differential equations is derived that describes the evolution of the coefficients of the real and imaginary quadratic forms appearing in the Gaussian. This model provides a semi-quantitative description of the process of nonlinear spatiotemporal focusing, which is one of the most probable mechanisms of roguemore » wave formation in random wave fields. The system of equations is integrated in quadratures, which allows one to better understand the qualitative differences between linear and nonlinear focusing regimes of a wave packet. Predictions of the Gaussian model are compared with the results of direct numerical simulation of fully nonlinear long-crested waves.« less

  6. Calculation of the flow field in supersonic mixed-compression inlets at angle of attack using the three-dimensional method of characteristics with discrete shock wave fitting

    NASA Technical Reports Server (NTRS)

    Vadyak, J.; Hoffman, J. D.

    1978-01-01

    The influence of molecular transport is included in the computation by treating viscous and thermal diffusion terms in the governing partial differential equations as correction terms in the method of characteristics scheme. The development of a production type computer program is reported which is capable of calculating the flow field in a variety of axisymmetric mixed-compression aircraft inlets. The results agreed well with those produced by the two-dimensional method characteristics when axisymmetric flow fields are computed. For three-dimensional flow fields, the results agree well with experimental data except in regions of high viscous interaction and boundary layer removal.

  7. Rogue Waves and Lump Solitons of the (3+1)-Dimensional Generalized B-type Kadomtsev-Petviashvili Equation for Water Waves

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Tian, Bo; Liu, Lei; Chai, Han-Peng; Yuan, Yu-Qiang

    2017-12-01

    In this paper, the (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation for water waves is investigated. Through the Hirota method and Kadomtsev-Petviashvili hierarchy reduction, we obtain the first-order, higher-order, multiple rogue waves and lump solitons based on the solutions in terms of the Gramian. The first-order rogue waves are the line rogue waves which arise from the constant background and then disappear into the constant background again, while the first-order lump solitons propagate stably. Interactions among several first-order rogue waves which are described by the multiple rogue waves are presented. Elastic interactions of several first-order lump solitons are also presented. We find that the higher-order rogue waves and lump solitons can be treated as the superpositions of several first-order ones, while the interaction between the second-order lump solitons is inelastic. Supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023, and 11471050, by the Open Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05), and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02

  8. On the prediction of far field computational aeroacoustics of advanced propellers

    NASA Technical Reports Server (NTRS)

    Jaeger, Stephen M.; Korkan, Kenneth D.

    1990-01-01

    A numerical method for determining the acoustic far field generated by a high-speed subsonic aircraft propeller was developed. The approach used in this method was to generate the entire three-dimensional pressure field about the propeller (using an Euler flowfield solver) and then to apply a solution of the wave equation on a cylindrical surface enveloping the propeller. The method is applied to generate the three-dimensional flowfield between two blades of an advanced propeller. The results are compared with experimental data obtained in a wind-tunnel test at a Mach number of 0.6.

  9. Uniform strongly interacting soliton gas in the frame of the Nonlinear Schrodinger Equation

    NASA Astrophysics Data System (ADS)

    Gelash, Andrey; Agafontsev, Dmitry

    2017-04-01

    The statistical properties of many soliton systems play the key role in the fundamental studies of integrable turbulence and extreme sea wave formation. It is well known that separated solitons are stable nonlinear coherent structures moving with constant velocity. After collisions with each other they restore the original shape and only acquire an additional phase shift. However, at the moment of strong nonlinear soliton interaction (i.e. when solitons are located close) the wave field are highly complicated and should be described by the theory of inverse scattering transform (IST), which allows to integrate the KdV equation, the NLSE and many other important nonlinear models. The usual approach of studying the dynamics and statistics of soliton wave field is based on relatively rarefied gas of solitons [1,2] or restricted by only two-soliton interactions [3]. From the other hand, the exceptional role of interacting solitons and similar coherent structures - breathers in the formation of rogue waves statistics was reported in several recent papers [4,5]. In this work we study the NLSE and use the most straightforward and general way to create many soliton initial condition - the exact N-soliton formulas obtained in the theory of the IST [6]. We propose the recursive numerical scheme for Zakharov-Mikhailov variant of the dressing method [7,8] and discuss its stability with respect to increasing the number of solitons. We show that the pivoting, i.e. the finding of an appropriate order for recursive operations, has a significant impact on the numerical accuracy. We use the developed scheme to generate statistical ensembles of 32 strongly interacting solitons, i.e. solve the inverse scattering problem for the high number of discrete eigenvalues. Then we use this ensembles as initial conditions for numerical simulations in the box with periodic boundary conditions and study statics of obtained uniform strongly interacting gas of NLSE solitons. Author thanks the support of the Russian Science Foundation (Grand No. 14-22-00174) [1] D. Dutykh, E. Pelinovsky, Numerical simulation of a solitonic gas in kdv and kdv-bbm equations, Physics Letters A 378 (42) (2014) 3102-3110. [2] E. Shurgalina, E. Pelinovsky, Nonlinear dynamics of a soliton gas: Modified korteweg-de vries equation framework, Physics Letters A 380 (24) (2016) 2049-2053. [3] E. N. Pelinovsky, E. Shurgalina, A. Sergeeva, T. G. Talipova, G. El, R. H. Grimshaw, Two-soliton interaction as an elementary act of soliton turbulence in integrable systems, Physics Letters A 377 (3) (2013) 272-275 [4] J. Soto-Crespo, N. Devine, N. Akhmediev, Integrable turbulence and rogue waves: Breathers or solitons?, Physical review letters 116 (10) (2016) 103901. [5] D. S. Agafontsev, V. E. Zakharov, Integrable turbulence and formation of rogue waves, Nonlinearity 28 (8) (2015) 2791. [6] V. E. Zakharov, A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP 34 (1) (1972) 62. [7] V. Zakharov, A. Mikhailov, Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method, Sov. Phys.-JETP (Engl. Transl.) 47 (6) (1978). [8] A. A. Gelash, V. E. Zakharov, Superregular solitonic solutions: a novel scenario for the nonlinear stage of modulation instability, Nonlinearity 27 (4) (2014) R1.

  10. A topological study of gravity free-surface waves generated by bluff bodies using the method of steepest descents

    PubMed Central

    2016-01-01

    The standard analytical approach for studying steady gravity free-surface waves generated by a moving body often relies upon a linearization of the physical geometry, where the body is considered asymptotically small in one or several of its dimensions. In this paper, a methodology that avoids any such geometrical simplification is presented for the case of steady-state flows at low speeds. The approach is made possible through a reduction of the water-wave equations to a complex-valued integral equation that can be studied using the method of steepest descents. The main result is a theory that establishes a correspondence between different bluff-bodied free-surface flow configurations, with the topology of the Riemann surface formed by the steepest descent paths. Then, when a geometrical feature of the body is modified, a corresponding change to the Riemann surface is observed, and the resultant effects to the water waves can be derived. This visual procedure is demonstrated for the case of two-dimensional free-surface flow past a surface-piercing ship and over an angled step in a channel. PMID:27493559

  11. Statistical properties of nonlinear one-dimensional wave fields

    NASA Astrophysics Data System (ADS)

    Chalikov, D.

    2005-06-01

    A numerical model for long-term simulation of gravity surface waves is described. The model is designed as a component of a coupled Wave Boundary Layer/Sea Waves model, for investigation of small-scale dynamic and thermodynamic interactions between the ocean and atmosphere. Statistical properties of nonlinear wave fields are investigated on a basis of direct hydrodynamical modeling of 1-D potential periodic surface waves. The method is based on a nonstationary conformal surface-following coordinate transformation; this approach reduces the principal equations of potential waves to two simple evolutionary equations for the elevation and the velocity potential on the surface. The numerical scheme is based on a Fourier transform method. High accuracy was confirmed by validation of the nonstationary model against known solutions, and by comparison between the results obtained with different resolutions in the horizontal. The scheme allows reproduction of the propagation of steep Stokes waves for thousands of periods with very high accuracy. The method here developed is applied to simulation of the evolution of wave fields with large number of modes for many periods of dominant waves. The statistical characteristics of nonlinear wave fields for waves of different steepness were investigated: spectra, curtosis and skewness, dispersion relation, life time. The prime result is that wave field may be presented as a superposition of linear waves is valid only for small amplitudes. It is shown as well, that nonlinear wave fields are rather a superposition of Stokes waves not linear waves. Potential flow, free surface, conformal mapping, numerical modeling of waves, gravity waves, Stokes waves, breaking waves, freak waves, wind-wave interaction.

  12. Symmetry-breaking instability of quadratic soliton bound states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delque, Michaeel; Departement d'Optique P.M. Duffieux, Institut FEMTO-ST, Universite de Franche-Comte, CNRS UMR 6174, F-25030 Besancon; Fanjoux, Gil

    We study both numerically and experimentally two-dimensional soliton bound states in quadratic media and demonstrate their symmetry-breaking instability. The experiment is performed in a potassium titanyl phosphate crystal in a type-II configuration. The bound state is generated by the copropagation of the antisymmetric fundamental beam locked in phase with the symmetrical second harmonic one. Experimental results are in good agreement with numerical simulations of the nonlinear wave equations.

  13. Computation of shock wave/target interaction

    NASA Technical Reports Server (NTRS)

    Mark, A.; Kutler, P.

    1983-01-01

    Computational results of shock waves impinging on targets and the ensuing diffraction flowfield are presented. A number of two-dimensional cases are computed with finite difference techniques. The classical case of a shock wave/cylinder interaction is compared with shock tube data and shows the quality of the computations on a pressure-time plot. Similar results are obtained for a shock wave/rectangular body interaction. Here resolution becomes important and the use of grid clustering techniques tend to show good agreement with experimental data. Computational results are also compared with pressure data resulting from shock impingement experiments for a complicated truck-like geometry. Here of significance are the grid generation and clustering techniques used. For these very complicated bodies, grids are generated by numerically solving a set of elliptic partial differential equations.

  14. Geometrically induced nonlinear dynamics in one-dimensional lattices

    NASA Astrophysics Data System (ADS)

    Hamilton, Merle D.; de Alcantara Bonfim, O. F.

    2006-03-01

    We present a lattice model consisting of a single one-dimensional chain, where the masses are interconnected by linear springs and allowed to move in a horizontal direction only, as in a monorail. In the transverse direction each mass is also attached to two other linear springs, one on each side of the mass. The ends of these springs are kept at fixed positions. The nonlinearity in the model arises from the geometric constraints imposed on the motion of the masses, as well as from the configuration of the springs, where in the transverse direction the springs are either in the extended or compressed state depending on the position of the masses. Under these conditions we show that solitary waves are present in the system. In the long wavelength limit an analytic solution for these nonlinear waves is found. Numerical integrations of the equations of motion in the full system are also performed to analyze the conditions for the existence and stability of the nonlinear waves.

  15. Static and Monoharmonic Acoustic Impact on a Laminated Plate

    NASA Astrophysics Data System (ADS)

    Paimushin, V. N.; Gazizullin, R. K.

    2017-07-01

    A discrete layered damping model of a multilayer plate at small displacements and deformations, with account of the internal damping of layers according to the Thompson-Kelvin-Voight model, is presented. Based on the equations derived, an analytical solution to the static deformation problem for single-layer rectangular plate hinge-supported along its contour and subjected of a uniformly distributed pressure applied to one of its boundary planes is obtained. Its convergence to the three-dimensional solution is analyzed in relation to the dimension of mesh in the thickness direction of the plate. It is found that, for thin plates, the dimension of the problem formulated can be reduced on the basis of simplified hypotheses applied to each layer. An analytical solutions is also constructed for the forced vibrations of two- and three-layer rectangular plates hinged in the opening of an absolutely stiff dividing wall upon transmission of a monoharmonic sound wave through them. It was assumed that the dividing wall is situated between two absolutely stiff barriers; one of them, owing to the harmonic vibration with a given displacement amplitude of the plate, forms an incident sound wave, and the other is stationary and is coated by a energy-absorbing material with high damping properties. Behavior of the acoustic media in spaces between the deformable plate and the barriers is described by the classical wave equations based on the model of an ideal compressible fluid. To describe the process of dynamic deformation of the energy-absorbing coating of the fixed barrier, two-dimensional equations of motion are derived based on the model of a transversely soft layer, a linear approximation of displacement fields in the thickness direction of the coating, and the account of damping properties of its material by using the hysteresis model. The effect of physical and mechanical parameters of the mechanical system considered and of frequency of the incident sound wave on the parameter of its sound insulation, and the characteristics of stress-strain state of the plate is investigated

  16. Dynamic of solitary wave solutions in some nonlinear pseudoparabolic models and Dodd-Bullough-Mikhailov equation

    NASA Astrophysics Data System (ADS)

    Ilhan, O. A.; Bulut, H.; Sulaiman, T. A.; Baskonus, H. M.

    2018-02-01

    In this study, the modified exp ( - Φ (η )) -expansion function method is used in constructing some solitary wave solutions to the Oskolkov-Benjamin-Bona-Mahony-Burgers, one-dimensional Oskolkov equations and the Dodd-Bullough-Mikhailov equation. We successfully construct some singular solitons and singular periodic waves solutions with the hyperbolic, trigonometric and exponential function structures to these three nonlinear models. Under the choice of some suitable values of the parameters involved, we plot the 2D and 3D graphics to some of the obtained solutions in this study. All the obtained solutions in this study verify their corresponding equation. We perform all the computations in this study with the help of the Wolfram Mathematica software. The obtained solutions in this study may be helpful in explaining some practical physical problems.

  17. Spatio-temporal dynamics of an active, polar, viscoelastic ring.

    PubMed

    Marcq, Philippe

    2014-04-01

    Constitutive equations for a one-dimensional, active, polar, viscoelastic liquid are derived by treating the strain field as a slow hydrodynamic variable. Taking into account the couplings between strain and polarity allowed by symmetry, the hydrodynamics of an active, polar, viscoelastic body include an evolution equation for the polarity field that generalizes the damped Kuramoto-Sivashinsky equation. Beyond thresholds of the active coupling coefficients between the polarity and the stress or the strain rate, bifurcations of the homogeneous state lead first to stationary waves, then to propagating waves of the strain, stress and polarity fields. I argue that these results are relevant to living matter, and may explain rotating actomyosin rings in cells and mechanical waves in epithelial cell monolayers.

  18. Mathematical investigation of tsunami-like long waves interaction with submerge dike of different thickness

    NASA Astrophysics Data System (ADS)

    Zhiltsov, Konstantin; Kostyushin, Kirill; Kagenov, Anuar; Tyryshkin, Ilya

    2017-11-01

    This paper presents a mathematical investigation of the interaction of a long tsunami-type wave with a submerge dike. The calculations were performed by using the freeware package OpenFOAM. Unsteady two-dimensional Navier-Stokes equations were used for mathematical modeling of incompressible two-phase medium. The Volume of Fluid (VOF) method is used to capture the free surface of a liquid. The effects caused by long wave of defined amplitude motion through a submerged dike of varying thickness were discussed in detail. Numerical results show that after wave passing through the barrier, multiple vortex structures were formed behind. Intensity of vortex depended on the size of the barrier. The effectiveness of the submerge barrier was estimated by evaluating the wave reflection and transmission coefficients using the energy integral method. Then, the curves of the dependences of the reflection and transmission coefficients were obtained for the interaction of waves with the dike. Finally, it was confirmed that the energy of the wave could be reduced by more than 50% when it passed through the barrier.

  19. First-arrival traveltime computation for quasi-P waves in 2D transversely isotropic media using Fermat’s principle-based fast marching

    NASA Astrophysics Data System (ADS)

    Hu, Jiangtao; Cao, Junxing; Wang, Huazhong; Wang, Xingjian; Jiang, Xudong

    2017-12-01

    First-arrival traveltime computation for quasi-P waves in transversely isotropic (TI) media is the key component of tomography and depth migration. It is appealing to use the fast marching method in isotropic media as it efficiently computes traveltime along an expanding wavefront. It uses the finite difference method to solve the eikonal equation. However, applying the fast marching method in anisotropic media faces challenges because the anisotropy introduces additional nonlinearity in the eikonal equation and solving this nonlinear eikonal equation with the finite difference method is challenging. To address this problem, we present a Fermat’s principle-based fast marching method to compute traveltime in two-dimensional TI media. This method is applicable in both vertical and tilted TI (VTI and TTI) media. It computes traveltime along an expanding wavefront using Fermat’s principle instead of the eikonal equation. Thus, it does not suffer from the nonlinearity of the eikonal equation in TI media. To compute traveltime using Fermat’s principle, the explicit expression of group velocity in TI media is required to describe the ray propagation. The moveout approximation is adopted to obtain the explicit expression of group velocity. Numerical examples on both VTI and TTI models show that the traveltime contour obtained by the proposed method matches well with the wavefront from the wave equation. This shows that the proposed method could be used in depth migration and tomography.

  20. Development of attenuation and diffraction corrections for linear and nonlinear Rayleigh surface waves radiating from a uniform line source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Hyunjo, E-mail: hjjeong@wku.ac.kr; Cho, Sungjong; Zhang, Shuzeng

    2016-04-15

    In recent studies with nonlinear Rayleigh surface waves, harmonic generation measurements have been successfully employed to characterize material damage and microstructural changes, and found to be sensitive to early stages of damage process. A nonlinearity parameter of Rayleigh surface waves was derived and frequently measured to quantify the level of damage. The accurate measurement of the nonlinearity parameter generally requires making corrections for beam diffraction and medium attenuation. These effects are not generally known for nonlinear Rayleigh waves, and therefore not properly considered in most of previous studies. In this paper, the nonlinearity parameter for a Rayleigh surface wave ismore » defined from the plane wave displacement solutions. We explicitly define the attenuation and diffraction corrections for fundamental and second harmonic Rayleigh wave beams radiated from a uniform line source. Attenuation corrections are obtained from the quasilinear theory of plane Rayleigh wave equations. To obtain closed-form expressions for diffraction corrections, multi-Gaussian beam (MGB) models are employed to represent the integral solutions derived from the quasilinear theory of the full two-dimensional wave equation without parabolic approximation. Diffraction corrections are presented for a couple of transmitter-receiver geometries, and the effects of making attenuation and diffraction corrections are examined through the simulation of nonlinearity parameter determination in a solid sample.« less

Top