Sample records for two-dimensional weak localization

  1. Nonequilibrium fluctuations as a distinctive feature of weak localization

    PubMed Central

    Barone, C.; Romeo, F.; Pagano, S.; Attanasio, C.; Carapella, G.; Cirillo, C.; Galdi, A.; Grimaldi, G.; Guarino, A.; Leo, A.; Nigro, A.; Sabatino, P.

    2015-01-01

    Two-dimensional materials, such as graphene, topological insulators, and two-dimensional electron gases, represent a technological playground to develop coherent electronics. In these systems, quantum interference effects, and in particular weak localization, are likely to occur. These coherence effects are usually characterized by well-defined features in dc electrical transport, such as a resistivity increase and negative magnetoresistance below a crossover temperature. Recently, it has been shown that in magnetic and superconducting compounds, undergoing a weak-localization transition, a specific low-frequency 1/f noise occurs. An interpretation in terms of nonequilibrium universal conductance fluctuations has been given. The universality of this unusual electric noise mechanism has been here verified by detailed voltage-spectral density investigations on ultrathin copper films. The reported experimental results validate the proposed theoretical framework, and also provide an alternative methodology to detect weak-localization effects by using electric noise spectroscopy. PMID:26024506

  2. Magnetoresistance in two-dimensional array of Ge/Si quantum dots

    NASA Astrophysics Data System (ADS)

    Stepina, N. P.; Koptev, E. S.; Pogosov, A. G.; Dvurechenskii, A. V.; Nikiforov, A. I.; Zhdanov, E. Yu

    2012-07-01

    Magnetoresistance in two-dimensional array of Ge/Si was studied for a wide range of the conductance, where the transport regime changes from hopping to diffusive one. The behavior of magnetoresistance is similar for all samples; it is negative in weak fields and becomes positive with increasing of magnetic field. Negative magnetoresistance can be described in the frame of weak localization approach with suggestion that quantum interference contribution to the conductance is restricted not only by the phase breaking length but also by the localization length.

  3. Defect-driven localization crossovers in MBE-grown La-doped SrSn O3 films

    NASA Astrophysics Data System (ADS)

    Wang, Tianqi; Thoutam, Laxman Raju; Prakash, Abhinav; Nunn, William; Haugstad, Greg; Jalan, Bharat

    2017-11-01

    Through systematic control of cation stoichiometry using a hybrid molecular beam epitaxy method, we show a crossover from weak to strong localization of electronic carriers in La-doped SrSn O3 films on LaAl O3 (001). We demonstrate that substrate-induced dislocations in these films can have a strong influence on the electron phase coherence length resulting in two-dimensional to three-dimensional weak localization crossover. We discuss the correlation between electronic transport, and defects associated with nonstoichiometry and dislocations.

  4. Entanglement Entropy in Two-Dimensional String Theory.

    PubMed

    Hartnoll, Sean A; Mazenc, Edward A

    2015-09-18

    To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.

  5. Dephasing rates for weak localization and universal conductance fluctuations in two dimensional Si:P and Ge:P δ-layers.

    PubMed

    Shamim, Saquib; Mahapatra, S; Scappucci, G; Klesse, W M; Simmons, M Y; Ghosh, Arindam

    2017-05-04

    We report quantum transport measurements on two dimensional (2D) Si:P and Ge:P δ-layers and compare the inelastic scattering rates relevant for weak localization (WL) and universal conductance fluctuations (UCF) for devices of various doping densities (0.3-2.5 × 10 18 m -2 ) at low temperatures (0.3-4.2 K). The phase breaking rate extracted experimentally from measurements of WL correction to conductivity and UCF agree well with each other within the entire temperature range. This establishes that WL and UCF, being the outcome of quantum interference phenomena, are governed by the same dephasing rate.

  6. Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope

    PubMed Central

    Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki

    2015-01-01

    Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field. PMID:26459874

  7. Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope

    NASA Astrophysics Data System (ADS)

    Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki

    2015-10-01

    Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field.

  8. Finite element formulation with embedded weak discontinuities for strain localization under dynamic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Tao; Mourad, Hashem M.; Bronkhorst, Curt A.

    Here, we present an explicit finite element formulation designed for the treatment of strain localization under highly dynamic conditions. We also used a material stability analysis to detect the onset of localization behavior. Finite elements with embedded weak discontinuities are employed with the aim of representing subsequent localized deformation accurately. The formulation and its algorithmic implementation are described in detail. Numerical results are presented to illustrate the usefulness of this computational framework in the treatment of strain localization under highly dynamic conditions, and to examine its performance characteristics in the context of two-dimensional plane-strain problems.

  9. Finite element formulation with embedded weak discontinuities for strain localization under dynamic conditions

    DOE PAGES

    Jin, Tao; Mourad, Hashem M.; Bronkhorst, Curt A.; ...

    2017-09-13

    Here, we present an explicit finite element formulation designed for the treatment of strain localization under highly dynamic conditions. We also used a material stability analysis to detect the onset of localization behavior. Finite elements with embedded weak discontinuities are employed with the aim of representing subsequent localized deformation accurately. The formulation and its algorithmic implementation are described in detail. Numerical results are presented to illustrate the usefulness of this computational framework in the treatment of strain localization under highly dynamic conditions, and to examine its performance characteristics in the context of two-dimensional plane-strain problems.

  10. Spontaneous breaking of time-reversal symmetry in strongly interacting two-dimensional electron layers in silicon and germanium.

    PubMed

    Shamim, S; Mahapatra, S; Scappucci, G; Klesse, W M; Simmons, M Y; Ghosh, A

    2014-06-13

    We report experimental evidence of a remarkable spontaneous time-reversal symmetry breaking in two-dimensional electron systems formed by atomically confined doping of phosphorus (P) atoms inside bulk crystalline silicon (Si) and germanium (Ge). Weak localization corrections to the conductivity and the universal conductance fluctuations were both found to decrease rapidly with decreasing doping in the Si:P and Ge:P delta layers, suggesting an effect driven by Coulomb interactions. In-plane magnetotransport measurements indicate the presence of intrinsic local spin fluctuations at low doping, providing a microscopic mechanism for spontaneous lifting of the time-reversal symmetry. Our experiments suggest the emergence of a new many-body quantum state when two-dimensional electrons are confined to narrow half-filled impurity bands.

  11. Two- to three-dimensional crossover in a dense electron liquid in silicon

    NASA Astrophysics Data System (ADS)

    Matmon, Guy; Ginossar, Eran; Villis, Byron J.; Kölker, Alex; Lim, Tingbin; Solanki, Hari; Schofield, Steven R.; Curson, Neil J.; Li, Juerong; Murdin, Ben N.; Fisher, Andrew J.; Aeppli, Gabriel

    2018-04-01

    Doping of silicon via phosphine exposures alternating with molecular beam epitaxy overgrowth is a path to Si:P substrates for conventional microelectronics and quantum information technologies. The technique also provides a well-controlled material for systematic studies of two-dimensional lattices with a half-filled band. We show here that for a dense (ns=2.8 ×1014 cm-2) disordered two-dimensional array of P atoms, the full field magnitude and angle-dependent magnetotransport is remarkably well described by classic weak localization theory with no corrections due to interaction. The two- to three-dimensional crossover seen upon warming can also be interpreted using scaling concepts developed for anistropic three-dimensional materials, which work remarkably except when the applied fields are nearly parallel to the conducting planes.

  12. Superdiffusive transport and energy localization in disordered granular crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, Alejandro J.; Kevrekidis, Panagiotis G.; Porter, Mason A.

    We study the spreading of initially localized excitations in one-dimensional disordered granular crystals. We thereby investigate localization phenomena in strongly nonlinear systems, which we demonstrate to be fundamentally different from localization in linear and weakly nonlinear systems. We conduct a thorough comparison of wave dynamics in chains with three different types of disorder: an uncorrelated (Anderson-like) disorder and two types of correlated disorders (which are produced by random dimer arrangements), and for two families of initial conditions: displacement perturbations and velocity perturbations. We find for strongly precompressed (i.e., weakly nonlinear) chains that the dynamics strongly depends on the initial condition.more » Furthermore, for displacement perturbations, the long-time asymptotic behavior of the second moment m ~2 has oscillations that depend on the type of disorder, with a complex trend that is markedly different from a power law and which is particularly evident for an Anderson-like disorder.« less

  13. Superdiffusive transport and energy localization in disordered granular crystals

    DOE PAGES

    Martinez, Alejandro J.; Kevrekidis, Panagiotis G.; Porter, Mason A.

    2016-02-12

    We study the spreading of initially localized excitations in one-dimensional disordered granular crystals. We thereby investigate localization phenomena in strongly nonlinear systems, which we demonstrate to be fundamentally different from localization in linear and weakly nonlinear systems. We conduct a thorough comparison of wave dynamics in chains with three different types of disorder: an uncorrelated (Anderson-like) disorder and two types of correlated disorders (which are produced by random dimer arrangements), and for two families of initial conditions: displacement perturbations and velocity perturbations. We find for strongly precompressed (i.e., weakly nonlinear) chains that the dynamics strongly depends on the initial condition.more » Furthermore, for displacement perturbations, the long-time asymptotic behavior of the second moment m ~2 has oscillations that depend on the type of disorder, with a complex trend that is markedly different from a power law and which is particularly evident for an Anderson-like disorder.« less

  14. Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments

    NASA Astrophysics Data System (ADS)

    Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.

    2018-04-01

    We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three-dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb2 Pt2 Pb , a metal where itinerant electrons coexist with localized moments of Yb ions which can be described in terms of effective S =1 /2 spins with a dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the two interacting subsystems. We characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasilinear temperature dependence.

  15. Bremsstrahlung function, leading Lüscher correction at weak coupling and localization

    NASA Astrophysics Data System (ADS)

    Bonini, Marisa; Griguolo, Luca; Preti, Michelangelo; Seminara, Domenico

    2016-02-01

    We discuss the near BPS expansion of the generalized cusp anomalous dimension with L units of R-charge. Integrability provides an exact solution, obtained by solving a general TBA equation in the appropriate limit: we propose here an alternative method based on supersymmetric localization. The basic idea is to relate the computation to the vacuum expectation value of certain 1/8 BPS Wilson loops with local operator insertions along the contour. These observables localize on a two-dimensional gauge theory on S 2, opening the possibility of exact calculations. As a test of our proposal, we reproduce the leading Lüscher correction at weak coupling to the generalized cusp anomalous dimension. This result is also checked against a genuine Feynman diagram approach in {N}=4 Super Yang-Mills theory.

  16. Field-scale and wellbore modeling of compaction-induced casing failures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilbert, L.B. Jr.; Gwinn, R.L.; Moroney, T.A.

    1999-06-01

    Presented in this paper are the results and verification of field- and wellbore-scale large deformation, elasto-plastic, geomechanical finite element models of reservoir compaction and associated casing damage. The models were developed as part of a multidisciplinary team project to reduce the number of costly well failures in the diatomite reservoir of the South Belridge Field near Bakersfield, California. Reservoir compaction of high porosity diatomite rock induces localized shearing deformations on horizontal weak-rock layers and geologic unconformities. The localized shearing deformations result in casing damage or failure. Two-dimensional, field-scale finite element models were used to develop relationships between field operations, surfacemore » subsidence, and shear-induced casing damage. Pore pressures were computed for eighteen years of simulated production and water injection, using a three-dimensional reservoir simulator. The pore pressures were input to the two-dimensional geomechanical field-scale model. Frictional contact surfaces were used to model localized shear deformations. To capture the complex casing-cement-rock interaction that governs casing damage and failure, three-dimensional models of a wellbore were constructed, including a frictional sliding surface to model localized shear deformation. Calculations were compared to field data for verification of the models.« less

  17. Two-dimensional nonlinear finite element analysis of well damage due to reservoir compaction, well-to-well interactions, and localization on weak layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilbert, L.B. Jr.; Fredrich, J.T.; Bruno, M.S.

    1996-05-01

    In this paper the authors present the results of a coupled nonlinear finite element geomechanics model for reservoir compaction and well-to-well interactions for the high-porosity, low strength diatomite reservoirs of the Belridge field near Bakersfield, California. They show that well damage and failures can occur under the action of two distinct mechanisms: shear deformations induced by pore compaction, and subsidence, and shear deformations due to well-to-well interactions during production or water injection. They show such casting damage or failure can be localized to weak layers that slide or slip under shear due to subsidence. The magnitude of shear displacements andmore » surface subsidence agree with field observations.« less

  18. Dimensional crossover of electron weak localization in ZnO/TiO{sub x} stacked layers grown by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, D., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Misra, P., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Joshi, M. P.

    2016-01-25

    We report on the dimensional crossover of electron weak localization in ZnO/TiO{sub x} stacked layers having well-defined and spatially-localized Ti dopant profiles along film thickness. These films were grown by in situ incorporation of sub-monolayer TiO{sub x} on the growing ZnO film surface and subsequent overgrowth of thin conducting ZnO spacer layer using atomic layer deposition. Film thickness was varied in the range of ∼6–65 nm by vertically stacking different numbers (n = 1–7) of ZnO/TiO{sub x} layers of nearly identical dopant-profiles. The evolution of zero-field sheet resistance (R{sub ◻}) versus temperature with decreasing film thickness showed a metal to insulator transition. Onmore » the metallic side of the metal-insulator transition, R{sub ◻}(T) and magnetoresistance data were found to be well corroborated with the theoretical framework of electron weak localization in the diffusive transport regime. The temperature dependence of both R{sub ◻} and inelastic scattering length provided strong evidence for a smooth crossover from 2D to 3D weak localization behaviour. Results of this study provide deeper insight into the electron transport in low-dimensional n-type ZnO/TiO{sub x} stacked layers which have potential applications in the field of transparent oxide electronics.« less

  19. Localized oscillatory states in magnetoconvection.

    PubMed

    Buckley, Matthew C; Bushby, Paul J

    2013-02-01

    Localized states are found in many pattern forming systems. The aim of this paper is to investigate the occurrence of oscillatory localized states in two-dimensional Boussinesq magnetoconvection. Initially considering an idealized model, in which the vertical structure of the system has been simplified by a projection onto a small number of Fourier modes, we find that these states are restricted to the low ζ regime (where ζ represents the ratio of the magnetic to thermal diffusivities). These states always exhibit bistability with another nontrivial solution branch; in other words, they show no evidence of subcritical behavior. This is due to the weak flux expulsion that is exhibited by these time-dependent solutions. Using the results of this parameter survey, we locate corresponding states in a fully resolved two-dimensional system, although the mode of oscillation is more complex in this case. This is the first time that a localized oscillatory state, of this kind, has been found in a fully resolved magnetoconvection simulation.

  20. Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures.

    PubMed

    Cheon, Gowoon; Duerloo, Karel-Alexander N; Sendek, Austin D; Porter, Chase; Chen, Yuan; Reed, Evan J

    2017-03-08

    Layered materials held together by weak interactions including van der Waals forces, such as graphite, have attracted interest for both technological applications and fundamental physics in their layered form and as an isolated single-layer. Only a few dozen single-layer van der Waals solids have been subject to considerable research focus, although there are likely to be many more that could have superior properties. To identify a broad spectrum of layered materials, we present a novel data mining algorithm that determines the dimensionality of weakly bonded subcomponents based on the atomic positions of bulk, three-dimensional crystal structures. By applying this algorithm to the Materials Project database of over 50,000 inorganic crystals, we identify 1173 two-dimensional layered materials and 487 materials that consist of weakly bonded one-dimensional molecular chains. This is an order of magnitude increase in the number of identified materials with most materials not known as two- or one-dimensional materials. Moreover, we discover 98 weakly bonded heterostructures of two-dimensional and one-dimensional subcomponents that are found within bulk materials, opening new possibilities for much-studied assembly of van der Waals heterostructures. Chemical families of materials, band gaps, and point groups for the materials identified in this work are presented. Point group and piezoelectricity in layered materials are also evaluated in single-layer forms. Three hundred and twenty-five of these materials are expected to have piezoelectric monolayers with a variety of forms of the piezoelectric tensor. This work significantly extends the scope of potential low-dimensional weakly bonded solids to be investigated.

  1. Variable-range-hopping magnetoresistance

    NASA Astrophysics Data System (ADS)

    Azbel, Mark Ya

    1991-03-01

    The hopping magnetoresistance R of a two-dimensional insulator with metallic impurities is considered. In sufficiently weak magnetic fields it increases or decreases depending on the impurity density n: It decreases if n is low and increases if n is high. In high magnetic fields B, it always exponentially increases with √B . Such fields yield a one-dimensional temperature dependence: lnR~1/ √T . The calculation provides an accurate leading approximation for small impurities with one eigenstate in their potential well. In the limit of infinitesimally small impurities, an impurity potential is described by a generalized function. This function, similar to a δ function, is localized at a point, but, contrary to a δ function in the dimensionality above 1, it has finite eigenenergies. Such functions may be helpful in the study of scattering and localization of any waves.

  2. Directional Solidification of a Binary Alloy into a Cellular Convective Flow: Localized Morphologies

    NASA Technical Reports Server (NTRS)

    Chen, Y.- J.; Davis, S. H.

    1999-01-01

    A steady, two dimensional cellular convection modifies the morphological instability of a binary alloy that undergoes directional solidification. When the convection wavelength is far longer than that of the morphological cells, the behavior of the moving front is described by a slow, spatial-temporal dynamics obtained through a multiple-scale analysis. The resulting system has a "parametric-excitation" structure in space, with complex parameters characterizing the interactions between flow, solute diffusion, and rejection. The convection stabilizes two dimensional disturbances oriented with the flow, but destabilizes three dimensional disturbances in general. When the flow is weak, the morphological instability behaves incommensurably to the flow wavelength, but becomes quantized and forced to fit into the flow-box as the flow gets stronger. At large flow magnitudes the instability is localized, confined in narrow envelopes with cells traveling with the flow. In this case the solutions are discrete eigenstates in an unbounded space. Their stability boundary and asymptotics are obtained by the WKB analysis.

  3. Single-Particle Mobility Edge in a One-Dimensional Quasiperiodic Optical Lattice

    NASA Astrophysics Data System (ADS)

    Lüschen, Henrik P.; Scherg, Sebastian; Kohlert, Thomas; Schreiber, Michael; Bordia, Pranjal; Li, Xiao; Das Sarma, S.; Bloch, Immanuel

    2018-04-01

    A single-particle mobility edge (SPME) marks a critical energy separating extended from localized states in a quantum system. In one-dimensional systems with uncorrelated disorder, a SPME cannot exist, since all single-particle states localize for arbitrarily weak disorder strengths. However, in a quasiperiodic system, the localization transition can occur at a finite detuning strength and SPMEs become possible. In this Letter, we find experimental evidence for the existence of such a SPME in a one-dimensional quasiperiodic optical lattice. Specifically, we find a regime where extended and localized single-particle states coexist, in good agreement with theoretical simulations, which predict a SPME in this regime.

  4. Two interacting Hofstadter butterflies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barelli, A.; Bellissard, J.; Jacquod, P.

    1997-04-01

    The problem of two interacting particles in a quasiperiodic potential is addressed. Using analytical and numerical methods, we explore the spectral properties and eigenstates structure from the weak to the strong interaction case. More precisely, a semiclassical approach based on noncommutative geometry techniques is used to understand the intricate structure of such a spectrum. An interaction induced localization effect is furthermore emphasized. We discuss the application of our results on a two-dimensional model of two particles in a uniform magnetic field with on-site interaction. {copyright} {ital 1997} {ital The American Physical Society}

  5. Full characterization of modular values for finite-dimensional systems

    NASA Astrophysics Data System (ADS)

    Ho, Le Bin; Imoto, Nobuyuki

    2016-06-01

    Kedem and Vaidman obtained a relationship between the spin-operator modular value and its weak value for specific coupling strengths [14]. Here we give a general expression for the modular value in the n-dimensional Hilbert space using the weak values up to (n - 1)th order of an arbitrary observable for any coupling strength, assuming non-degenerated eigenvalues. For two-dimensional case, it shows a linear relationship between the weak value and the modular value. We also relate the modular value of the sum of observables to the weak value of their product.

  6. Nanopatterned Quantum Dot Lasers for High Speed, High Efficiency, Operation

    DTIC Science & Technology

    2015-04-27

    significant inhomogeneous broadening of the spectral gain. SK QDs inherently form on top of a two-dimensional “ wetting layer”, leading to weak...QDs inherently form on top of a two-dimensional “ wetting layer”, leading to weak electron and hole confinement to the QD, which results in low gain...exhibit full three- dimensional nano-scale confinement and elimination of the wetting layer states. The objectives of this project were to develop

  7. Gravitational Lensing Effect on the Two-Point Correlation of Hot Spots in the Cosmic Microwave Background.

    PubMed

    Takada; Komatsu; Futamase

    2000-04-20

    We investigate the weak gravitational lensing effect that is due to the large-scale structure of the universe on two-point correlations of local maxima (hot spots) in the two-dimensional sky map of the cosmic microwave background (CMB) anisotropy. According to the Gaussian random statistics, as most inflationary scenarios predict, the hot spots are discretely distributed, with some characteristic angular separations on the last scattering surface that are due to oscillations of the CMB angular power spectrum. The weak lensing then causes pairs of hot spots, which are separated with the characteristic scale, to be observed with various separations. We found that the lensing fairly smooths out the oscillatory features of the two-point correlation function of hot spots. This indicates that the hot spot correlations can be a new statistical tool for measuring the shape and normalization of the power spectrum of matter fluctuations from the lensing signatures.

  8. Anti-Weak Localization Measurements in the Ballistic Regime

    NASA Astrophysics Data System (ADS)

    Jayathilaka, Dilhani; Dedigama, Aruna; Murphy, Sheena; Edirisooriya, Madhavie; Goel, Niti; Mishima, Tetsuya; Santos, Michael; Mullen, Kieran

    2007-03-01

    Anti-weak localization dominates at low fields in systems in which spin-orbit coupling is strong. The experimental results are well described by theory [1] in low mobility systems in which the magnetic length (lB) is greater than the mean free path; however high mobility systems with strong spin-orbit interactions, such the InSb based two dimensional systems (2DESs) examined here, are not in this diffusive regime. A recently developed theory [2] addresses both the diffusive and ballistic regimes taking into account both the backscattered and non-backscattered contributions to the conductivity. We will discuss the agreement of the new theory to measurements of InSb 2DESs prepared with both strong Dresselhaus and Rashba effects. [1] S.V. Iordanskii, Yu B. Lyanda-Geller, and G.E. Pikus, JETP Lett. 60, 206 (1994). [2] L.E. Golub, Phys. Rev. B. 71, 235310 (2005).

  9. Features of the energy structure of acoustic fields in the ocean with two-dimensional random inhomogeneities

    NASA Astrophysics Data System (ADS)

    Gulin, O. E.; Yaroshchuk, I. O.

    2017-03-01

    The paper is devoted to the analytic study and numerical simulation of mid-frequency acoustic signal propagation in a two-dimensional inhomogeneous random shallow-water medium. The study was carried out by the cross section method (local modes). We present original theoretical estimates for the behavior of the average acoustic field intensity and show that at different distances, the features of propagation loss behavior are determined by the intensity of fluctuations and their horizontal scale and depend on the initial regular parameters, such as the emission frequency and size of sound losses in the bottom. We establish analytically that for the considered waveguide and sound frequency parameters, mode coupling effect has a local character and weakly influences the statistics. We establish that the specific form of the spatial spectrum of sound velocity inhomogeneities for the statistical patterns of the field intensity is insignificant during observations in the range of shallow-water distances of practical interest.

  10. Terahertz Radiation Heterodyne Detector Using Two-Dimensional Electron Gas in a GaN Heterostructure

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Gill, John J.; Mehdi, Imran; Crawford, Timothy J.; Sergeev, Andrei V.; Mitin, Vladimir V.

    2012-01-01

    High-resolution submillimeter/terahertz spectroscopy is important for studying atmospheric and interstellar molecular gaseous species. It typically uses heterodyne receivers where an unknown (weak) signal is mixed with a strong signal from the local oscillator (LO) operating at a slightly different frequency. The non-linear mixer devices for this frequency range are unique and are not off-the-shelf commercial products. Three types of THz mixers are commonly used: Schottky diode, superconducting hot-electron bolometer (HEB), and superconductor-insulation-superconductor (SIS) junction. A HEB mixer based on the two-dimensional electron gas (2DEG) formed at the interface of two slightly dissimilar semiconductors was developed. This mixer can operate at temperatures between 100 and 300 K, and thus can be used with just passive radiative cooling available even on small spacecraft.

  11. Competitive or weak cooperative stochastic Lotka-Volterra systems conditioned on non-extinction.

    PubMed

    Cattiaux, Patrick; Méléard, Sylvie

    2010-06-01

    We are interested in the long time behavior of a two-type density-dependent biological population conditioned on non-extinction, in both cases of competition or weak cooperation between the two species. This population is described by a stochastic Lotka-Volterra system, obtained as limit of renormalized interacting birth and death processes. The weak cooperation assumption allows the system not to blow up. We study the existence and uniqueness of a quasi-stationary distribution, that is convergence to equilibrium conditioned on non-extinction. To this aim we generalize in two-dimensions spectral tools developed for one-dimensional generalized Feller diffusion processes. The existence proof of a quasi-stationary distribution is reduced to the one for a d-dimensional Kolmogorov diffusion process under a symmetry assumption. The symmetry we need is satisfied under a local balance condition relying the ecological rates. A novelty is the outlined relation between the uniqueness of the quasi-stationary distribution and the ultracontractivity of the killed semi-group. By a comparison between the killing rates for the populations of each type and the one of the global population, we show that the quasi-stationary distribution can be either supported by individuals of one (the strongest one) type or supported by individuals of the two types. We thus highlight two different long time behaviors depending on the parameters of the model: either the model exhibits an intermediary time scale for which only one type (the dominant trait) is surviving, or there is a positive probability to have coexistence of the two species.

  12. Applications of high-dimensional photonic entaglement

    NASA Astrophysics Data System (ADS)

    Broadbent, Curtis J.

    This thesis presents the results of four experiments related to applications of higher dimensional photonic entanglement. (1) We use energy-time entangled biphotons from spontaneous parametric down-conversion (SPDC) to implement a large-alphabet quantum key distribution (QKD) system which securely transmits up to 10 bits of the random key per photon. An advantage over binary alphabet QKD is demonstrated for quantum channels with a single-photon transmission-rate ceiling. The security of the QKD system is based on the measurable reduction of entanglement in the presence of eavesdropping. (2) We demonstrate the preservation of energy-time entanglement in a tunable slow-light medium. The fine-structure resonances of a hot Rubidium vapor are used to slow one photon from an energy-time entangled biphoton generated with non-degenerate SPDC. The slow-light medium is placed in one arm of a Franson interferometer. The observed Franson fringes witness the presence of entanglement and quantify a delay of 1.3 biphoton correlation lengths. (3) We utilize holograms to discriminate between two spatially-coherent single-photon images. Heralded single photons are created with degenerate SPDC and sent through one of two transmission masks to make single-photon images with no spatial overlap. The single-photon images are sent through a previously prepared holographic filter. The filter discriminates the single-photon images with an average confidence level of 95%. (4) We employ polarization entangled biphotons generated from non-collinear SPDC to violate a generalized Leggett-Garg inequality with non-local weak measurements. The weak measurement is implemented with Fresnel reflection of a microscope coverslip on one member of the entangled biphoton. Projective measurement with computer-controlled polarizers on the entangled state after the weak measurement yields a joint probability with three degrees of freedom. Contextual values are then used to determine statistical averages of measurement operations from the joint probability. Correlations between the measured averages are shown to violate the upper bound of three distinct two-object Leggett-Garg inequalities derived from assumptions of macro-realism. A relationship between the violation of two-object Leggett-Garg inequalities and strange non-local weak values is derived and experimentally demonstrated.

  13. Stable quantum systems in anti-de Sitter space: Causality, independence, and spectral properties

    NASA Astrophysics Data System (ADS)

    Buchholz, Detlev; Summers, Stephen J.

    2004-12-01

    If a state is passive for uniformly accelerated observers in n-dimensional (n⩾2) anti-de Sitter (Ads) space-time (i.e., cannot be used by them to operate a perpetuum mobile), they will (a) register a universal value of the Unruh temperature, (b) discover a PCT symmetry, and (c) find that observables in complementary wedge-shaped regions necessarily commute with each other in this state. The stability properties of such a passive state induce a "geodesic causal structure" on AdS and concommitant locality relations. It is shown that observables in these complementary wedge-shaped regions fulfill strong additional independence conditions. In two-dimensional AdS these even suffice to enable the derivation of a nontrivial, local, covariant net indexed by bounded space-time regions. All these results are model-independent and hold in any theory which is compatible with a weak notion of space-time localization. Examples are provided of models satisfying the hypotheses of these theorems.

  14. Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation.

    PubMed

    Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi

    2015-01-01

    Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it.

  15. Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation

    PubMed Central

    Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi

    2015-01-01

    Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it. PMID:26221133

  16. Two-dimensional solid-phase extraction strategy for the selective enrichment of aminoglycosides in milk.

    PubMed

    Shen, Aijin; Wei, Jie; Yan, Jingyu; Jin, Gaowa; Ding, Junjie; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao

    2017-03-01

    An orthogonal two-dimensional solid-phase extraction strategy was established for the selective enrichment of three aminoglycosides including spectinomycin, streptomycin, and dihydrostreptomycin in milk. A reversed-phase liquid chromatography material (C 18 ) and a weak cation-exchange material (TGA) were integrated in a single solid-phase extraction cartridge. The feasibility of two-dimensional clean-up procedure that experienced two-step adsorption, two-step rinsing, and two-step elution was systematically investigated. Based on the orthogonality of reversed-phase and weak cation-exchange procedures, the two-dimensional solid-phase extraction strategy could minimize the interference from the hydrophobic matrix existing in traditional reversed-phase solid-phase extraction. In addition, high ionic strength in the extracts could be effectively removed before the second dimension of weak cation-exchange solid-phase extraction. Combined with liquid chromatography and tandem mass spectrometry, the optimized procedure was validated according to the European Union Commission directive 2002/657/EC. A good performance was achieved in terms of linearity, recovery, precision, decision limit, and detection capability in milk. Finally, the optimized two-dimensional clean-up procedure incorporated with liquid chromatography and tandem mass spectrometry was successfully applied to the rapid monitoring of aminoglycoside residues in milk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Casimir forces between defects in one-dimensional quantum liquids

    NASA Astrophysics Data System (ADS)

    Recati, A.; Fuchs, J. N.; Peça, C. S.; Zwerger, W.

    2005-08-01

    We discuss the effective interactions between two localized perturbations in one-dimensional quantum liquids. For noninteracting fermions, the interactions exhibit Friedel oscillations, giving rise to a Ruderman-Kittel-Kasuya-Yosida-type interaction familiar from impurity spins in metals. In the interacting case, at low energies, a Luttinger-liquid description applies. In the case of repulsive fermions, the Friedel oscillations of the interacting system are replaced, at long distances, by a universal Casimir-type interaction which depends only on the sound velocity and decays inversely with the separation. The Casimir-type interaction between localized perturbations embedded in a fermionic environment gives rise to a long-range coupling between quantum dots in ultracold Fermi gases, opening an alternative to couple qubits with neutral atoms. We also briefly discuss the case of bosonic quantum liquids in which the interaction between weak impurities turns out to be short ranged, decaying exponentially on the scale of the healing length.

  18. Wavepacket dynamics in one-dimensional system with long-range correlated disorder

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroaki S.

    2018-03-01

    We numerically investigate dynamical property in the one-dimensional tight-binding model with long-range correlated disorder having power spectrum 1 /fα (α: spectrum exponent) generated by Fourier filtering method. For relatively small α <αc (=2) time-dependence of mean square displacement (MSD) of the initially localized wavepacket shows ballistic spread and localizes as time elapses. It is shown that α-dependence of the dynamical localization length determined by the MSD exhibits a simple scaling law in the localization regime for the relatively weak disorder strength W. Furthermore, scaled MSD by the dynamical localization length almost obeys an universal function from the ballistic to the localization regime in the various combinations of the parameters α and W.

  19. How to detect fluctuating stripes in the high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Kivelson, S. A.; Bindloss, I. P.; Fradkin, E.; Oganesyan, V.; Tranquada, J. M.; Kapitulnik, A.; Howald, C.

    2003-10-01

    This article discusses fluctuating order in a quantum disordered phase proximate to a quantum critical point, with particular emphasis on fluctuating stripe order. Optimal strategies are derived for extracting information concerning such local order from experiments, with emphasis on neutron scattering and scanning tunneling microscopy. These ideas are tested by application to two model systems—an exactly solvable one-dimensional (1D) electron gas with an impurity, and a weakly interacting 2D electron gas. Experiments on the cuprate high-temperature superconductors which can be analyzed using these strategies are extensively reviewed. The authors adduce evidence that stripe correlations are widespread in the cuprates. They compare and contrast the advantages of two limiting perspectives on the high-temperature superconductor: weak coupling, in which correlation effects are treated as a perturbation on an underlying metallic (although renormalized) Fermi-liquid state, and strong coupling, in which the magnetism is associated with well-defined localized spins, and stripes are viewed as a form of micro phase separation. The authors present quantitative indicators that the latter view better accounts for the observed stripe phenomena in the cuprates.

  20. Weak solutions of the three-dimensional vorticity equation with vortex singularities

    NASA Technical Reports Server (NTRS)

    Winckelmans, G.; Leonard, A.

    1988-01-01

    The extension of the concept of vortex singularities, developed by Saffman and Meiron (1986) for the case of two-dimensional point vortices in an incompressible vortical flow, to the three-dimensional case of vortex sticks (vortons) is investigated analytically. The derivation of the governing equations is explained, and it is demonstrated that the formulation obtained conserves total vorticity and is a weak solution of the vorticity equation, making it an appropriate means for representing three-dimensional vortical flows with limited numbers of vortex singularities.

  1. Local magnetizations in impure two-dimensional antiferromagnets

    NASA Astrophysics Data System (ADS)

    van Luijk, J. A.; Arts, A. F. M.; de Wijn, H. W.

    1980-03-01

    The local magnetizations near dilute substitutional impurities in the quadratic-layer antiferromagnet K2MnF4 are studied both experimentally and theoretically. The impurities considered are the nonmagnetic Zn and Mg, as well as Ni. The magnetizations are probed through the positions of the impurity-associated satellites in the nuclear magnetic resonance of the out-of-layer and in-layer 19F nuclei adjacent to the magnetic ions. It is discussed in which way the effects of lattice deformations can be eliminated in order to obtain the variations of the local magnetizations with temperature. The theoretical treatment is based on Green's-function techniques. The decoupling employed is within the local spin-deviation operators and accounts for correlation between nearest neighbors. It reduces the renormalized spin-wave Hamiltonian to an effective quadratic form, rendering decoupling of Green's functions unnecessary. The spectral distributions of the excitations are calculated including local modes. The theory is subsequently applied to the 13-site cluster consisting of the impurity and the first three shells of Mn around it. Good agreement is found. The magnetization is significantly modified in the first shell. The further shells are only weakly affected, however somewhat stronger than in comparable three-dimensional systems. For nonmagnetic impurities the thermal spin deviation in the first shell is about 13 larger than that of the host; in the Ni-doped system the additional deviations are within 1%. The zero-point deviation of the Ni is 0.11 units of spin, as compared to 0.17 in the host. A further experimental result is a uniform shift, increasing with concentration, of the sublattice magnetization at large distance from the impurity. It must be related to the finite density of states near the zone center in two-dimensional systems. Finally, some data are presented on the local susceptibilities.

  2. Three-dimensional atom localization via electromagnetically induced transparency in a three-level atomic system.

    PubMed

    Wang, Zhiping; Cao, Dewei; Yu, Benli

    2016-05-01

    We present a new scheme for three-dimensional (3D) atom localization in a three-level atomic system via measuring the absorption of a weak probe field. Owing to the space-dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the probe absorption. It is found that, by properly varying the parameters of the system, the probability of finding the atom in 3D space can be almost 100%. Our scheme opens a promising way to achieve high-precision and high-efficiency 3D atom localization, which provides some potential applications in laser cooling or atom nano-lithography via atom localization.

  3. Weak antilocalization in Cd3As2 thin films

    PubMed Central

    Zhao, Bo; Cheng, Peihong; Pan, Haiyang; Zhang, Shuai; Wang, Baigeng; Wang, Guanghou; Xiu, Faxian; Song, Fengqi

    2016-01-01

    Recently, it has been theoretically predicted that Cd3As2 is a three dimensional Dirac material, a new topological phase discovered after topological insulators, which exhibits a linear energy dispersion in the bulk with massless Dirac fermions. Here, we report on the low-temperature magnetoresistance measurements on a ~50 nm-thick Cd3As2 film. The weak antilocalization under perpendicular magnetic field is discussed based on the two-dimensional Hikami-Larkin-Nagaoka (HLN) theory. The electron-electron interaction is addressed as the source of the dephasing based on the temperature-dependent scaling behavior. The weak antilocalization can be also observed while the magnetic field is parallel to the electric field due to the strong interaction between the different conductance channels in this quasi-two-dimensional film. PMID:26935029

  4. Weak antilocalization in Cd3As2 thin films.

    PubMed

    Zhao, Bo; Cheng, Peihong; Pan, Haiyang; Zhang, Shuai; Wang, Baigeng; Wang, Guanghou; Xiu, Faxian; Song, Fengqi

    2016-03-03

    Recently, it has been theoretically predicted that Cd3As2 is a three dimensional Dirac material, a new topological phase discovered after topological insulators, which exhibits a linear energy dispersion in the bulk with massless Dirac fermions. Here, we report on the low-temperature magnetoresistance measurements on a ~50 nm-thick Cd3As2 film. The weak antilocalization under perpendicular magnetic field is discussed based on the two-dimensional Hikami-Larkin-Nagaoka (HLN) theory. The electron-electron interaction is addressed as the source of the dephasing based on the temperature-dependent scaling behavior. The weak antilocalization can be also observed while the magnetic field is parallel to the electric field due to the strong interaction between the different conductance channels in this quasi-two-dimensional film.

  5. Colossal magnetoresistance in amino-functionalized graphene quantum dots at room temperature: manifestation of weak anti-localization and doorway to spintronics

    NASA Astrophysics Data System (ADS)

    Roy, Rajarshi; Thapa, Ranjit; Kumar, Gundam Sandeep; Mazumder, Nilesh; Sen, Dipayan; Sinthika, S.; Das, Nirmalya S.; Chattopadhyay, Kalyan K.

    2016-04-01

    In this work, we have demonstrated the signatures of localized surface distortions and disorders in functionalized graphene quantum dots (fGQD) and consequences in magneto-transport under weak field regime (~1 Tesla) at room temperature. Observed positive colossal magnetoresistance (MR) and its suppression is primarily explained by weak anti-localization phenomenon where competitive valley (inter and intra) dependent scattering takes place at room temperature under low magnetic field; analogous to low mobility disordered graphene samples. Furthermore, using ab-initio analysis we show that sub-lattice sensitive spin-polarized ground state exists in the GQD as a result of pz orbital asymmetry in GQD carbon atoms with amino functional groups. This spin polarized ground state is believed to help the weak anti-localization dependent magneto transport by generating more disorder and strain in a GQD lattice under applied magnetic field and lays the premise for future graphene quantum dot based spintronic applications.In this work, we have demonstrated the signatures of localized surface distortions and disorders in functionalized graphene quantum dots (fGQD) and consequences in magneto-transport under weak field regime (~1 Tesla) at room temperature. Observed positive colossal magnetoresistance (MR) and its suppression is primarily explained by weak anti-localization phenomenon where competitive valley (inter and intra) dependent scattering takes place at room temperature under low magnetic field; analogous to low mobility disordered graphene samples. Furthermore, using ab-initio analysis we show that sub-lattice sensitive spin-polarized ground state exists in the GQD as a result of pz orbital asymmetry in GQD carbon atoms with amino functional groups. This spin polarized ground state is believed to help the weak anti-localization dependent magneto transport by generating more disorder and strain in a GQD lattice under applied magnetic field and lays the premise for future graphene quantum dot based spintronic applications. Electronic supplementary information (ESI) available: UV-Vis spectrum of synthesized fGQDs, reconstructed false color surface topographic images from a high-resolution fGQD TEM lattice; Raman spectra with corresponding Breit-Wigner-Fano (BWF) line fitting of `G band' before and after the application of sTMF, spin density distribution (SDD) with different shapes of a functionalized graphene quantum dot, SDD of the main simulated fGQD model obtained using different exchange correlation functional (PW91, RBPE and LDA). Models of (a) two NH2 molecules adsorbed on a graphene sheet (periodic structure), (b) representing corresponding SPDOS are also provided. Charge density distribution (CDD) with two-dimensional side view contour plots of adsorbed -NH2 and O&z.dbd;C-NH2 on GQD lattice and SPDOS of a main fGQD model with 0.2% strain. See DOI: 10.1039/c5nr09292b

  6. Existence of global weak solution for a reduced gravity two and a half layer model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Zhenhua, E-mail: zhenhua.guo.math@gmail.com; Li, Zilai, E-mail: lizilai0917@163.com; Yao, Lei, E-mail: yaolei1056@hotmail.com

    2013-12-15

    We investigate the existence of global weak solution to a reduced gravity two and a half layer model in one-dimensional bounded spatial domain or periodic domain. Also, we show that any possible vacuum state has to vanish within finite time, then the weak solution becomes a unique strong one.

  7. The Effect of Weak Resistivity and Weak Thermal Diffusion on Short-wavelength Magnetic Buoyancy Instability

    NASA Astrophysics Data System (ADS)

    Gradzki, Marek J.; Mizerski, Krzysztof A.

    2018-03-01

    Magnetic buoyancy instability in weakly resistive and thermally conductive plasma is an important mechanism of magnetic field expulsion in astrophysical systems. It is often invoked, e.g., in the context of the solar interior. Here, we revisit a problem introduc`ed by Gilman: the short-wavelength linear stability of a plane layer of compressible isothermal and weakly diffusive fluid permeated by a horizontal magnetic field of strength decreasing with height. In this physical setting, we investigate the effect of weak resistivity and weak thermal conductivity on the short-wavelength perturbations, localized in the vertical direction, and show that the presence of diffusion allows to establish the wavelength of the most unstable mode, undetermined in an ideal fluid. When diffusive effects are neglected, the perturbations are amplified at a rate that monotonically increases as the wavelength tends to zero. We demonstrate that, when the resistivity and thermal conduction are introduced, the wavelength of the most unstable perturbation is established and its scaling law with the diffusion parameters depends on gradients of the mean magnetic field, temperature, and density. Three main dynamical regimes are identified, with the wavelength of the most unstable mode scaling as either λ /d∼ {{ \\mathcal U }}κ 3/5 or λ /d∼ {{ \\mathcal U }}κ 3/4 or λ /d∼ {{ \\mathcal U }}κ 1/3, where d is the layer thickness and {{ \\mathcal U }}κ is the ratio of the characteristic thermal diffusion velocity scale to the free-fall velocity. Our analytic results are backed up by a series of numerical solutions. The two-dimensional interchange modes are shown to dominate over three-dimensional ones when the magnetic field and/or temperature gradients are strong enough.

  8. Reversible and nonvolatile ferroelectric control of two-dimensional electronic transport properties of ZrCuSiAs-type copper oxyselenide thin films with a layered structure

    NASA Astrophysics Data System (ADS)

    Zhao, Xu-Wen; Gao, Guan-Yin; Yan, Jian-Min; Chen, Lei; Xu, Meng; Zhao, Wei-Yao; Xu, Zhi-Xue; Guo, Lei; Liu, Yu-Kuai; Li, Xiao-Guang; Wang, Yu; Zheng, Ren-Kui

    2018-05-01

    Copper-based ZrCuSiAs-type compounds of LnCuChO (Ln =Bi and lanthanides, Ch =S , Se, Te) with a layered crystal structure continuously attract worldwide attention in recent years. Although their high-temperature (T ≥ 300 K) electrical properties have been intensively studied, their low-temperature electronic transport properties are little known. In this paper, we report the integration of ZrCuSiAs-type copper oxyselenide thin films of B i0.94P b0.06CuSeO (BPCSO) with perovskite-type ferroelectric Pb (M g1 /3N b2 /3 ) O3-PbTi O3 (PMN-PT) single crystals in the form of ferroelectric field effect devices that allow us to control the electronic properties (e.g., carrier density, magnetoconductance, dephasing length, etc.) of BPCSO films in a reversible and nonvolatile manner by polarization switching at room temperature. Combining ferroelectric gating and magnetotransport measurements with the Hikami-Larkin-Nagaoka theory, we demonstrate two-dimensional (2D) electronic transport characteristics and weak antilocalization effect as well as strong carrier-density-mediated competition between weak antilocalization and weak localization in BPCSO films. Our results show that ferroelectric gating using PMN-PT provides an effective and convenient approach to probe the carrier-density-related 2D electronic transport properties of ZrCuSiAs-type copper oxyselenide thin films.

  9. The Magnetohydrodynamic Kelvin-Helmholtz Instability: A Two-dimensional Numerical Study

    NASA Astrophysics Data System (ADS)

    Frank, Adam; Jones, T. W.; Ryu, Dongsu; Gaalaas, Joseph B.

    1996-04-01

    We have carried out two-dimensional simulations of the nonlinear evolution of unstable sheared magnetohydrodynamic flows. These calculations extend the earlier work of Miura (1984) and consider periodic sections of flows containing aligned magnetic fields. Two equal density, compressible fluids are separated by a shear layer with a hyperbolic tangent velocity profile. We considered two cases: a strong magnetic field (Alfvén Mach number, MA = 2.5) and a weak field (MA = 5). Each flow rapidly evolves until it reaches a nearly steady condition, which is fundamentally different from the analogous gas- dynamic state. Both MHD flows relax to a stable, laminar flow on timescales less than or of the order of 15 linear growth times, measured from saturation of the instability. That timescale is several orders of magnitude less than the nominal dissipation time for these simulated flows, so this condition represents an quasi-steady relaxed state analogous to the long-lived single vortex, known as "Kelvin's Cat's Eye," formed in two-dimensional nearly ideal gasdynamic simulations of a vortex sheet. The strong magnetic field case reaches saturation as magnetic tension in the displaced flow boundary becomes sufficient to stabilize it. That flow then relaxes in a straightforward way to the steady, laminar flow condition. The weak magnetic field case, on the other hand, begins development of the vortex expected for gasdynamics, but that vortex is destroyed by magnetic stresses that locally become strong. Magnetic topologies lead to reconnection and dynamical alignment between magnetic and velocity fields. Together these processes produce a sequence of intermittent vortices and subsequent relaxation to a nearly laminar flow condition in which the magnetic cross helicity is nearly maximized. Remaining irregularities show several interesting properties. A pair of magnetic flux tubes are formed that straddle the boundary between the oppositely moving fluids. Velocity and magnetic fluctuations within those features are closely aligned, representing Alfvén waves propagating locally downstream. The flux tubes surround a low-density channel of hot gas that contains most of the excess entropy generated through the relaxation process.

  10. Parameterization of large-scale turbulent diffusion in the presence of both well-mixed and weakly mixed patchy layers

    NASA Astrophysics Data System (ADS)

    Osman, M. K.; Hocking, W. K.; Tarasick, D. W.

    2016-06-01

    Vertical diffusion and mixing of tracers in the upper troposphere and lower stratosphere (UTLS) are not uniform, but primarily occur due to patches of turbulence that are intermittent in time and space. The effective diffusivity of regions of patchy turbulence is related to statistical parameters describing the morphology of turbulent events, such as lifetime, number, width, depth and local diffusivity (i.e., diffusivity within the turbulent patch) of the patches. While this has been recognized in the literature, the primary focus has been on well-mixed layers, with few exceptions. In such cases the local diffusivity is irrelevant, but this is not true for weakly and partially mixed layers. Here, we use both theory and numerical simulations to consider the impact of intermediate and weakly mixed layers, in addition to well-mixed layers. Previous approaches have considered only one dimension (vertical), and only a small number of layers (often one at each time step), and have examined mixing of constituents. We consider a two-dimensional case, with multiple layers (10 and more, up to hundreds and even thousands), having well-defined, non-infinite, lengths and depths. We then provide new formulas to describe cases involving well-mixed layers which supersede earlier expressions. In addition, we look in detail at layers that are not well mixed, and, as an interesting variation on previous models, our procedure is based on tracking the dispersion of individual particles, which is quite different to the earlier approaches which looked at mixing of constituents. We develop an expression which allows determination of the degree of mixing, and show that layers used in some previous models were in fact not well mixed and so produced erroneous results. We then develop a generalized model based on two dimensional random-walk theory employing Rayleigh distributions which allows us to develop a universal formula for diffusion rates for multiple two-dimensional layers with general degrees of mixing. We show that it is the largest, most vigorous and less common turbulent layers that make the major contribution to global diffusion. Finally, we make estimates of global-scale diffusion coefficients in the lower stratosphere and upper troposphere. For the lower stratosphere, κeff ≈ 2x10-2 m2 s-1, assuming no other processes contribute to large-scale diffusion.

  11. Guided solitary waves.

    PubMed

    Miles, J

    1980-04-01

    Transversely periodic solitary-wave solutions of the Boussinesq equations (which govern wave propagation in a weakly dispersive, weakly nonlinear physical system) are determined. The solutions for negative dispersion (e.g., gravity waves) are singular and therefore physically unacceptable. The solutions for positive dispersion (e.g., capillary waves or magnetosonic waves in a plasma) are physically acceptable except in a limited parametric interval, in which they are complex. The two end points of this interval are associated with (two different) resonant interactions among three basic solitary waves, two of which are two-dimensional complex conjugates and the third of which is one-dimensional and real.

  12. Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments

    DOE PAGES

    Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.

    2018-04-10

    We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb 2Pt 2Pb, a metal where itinerant electrons coexist with localized moments of Yb-ions which can be described in terms of effective S = 1/2 spins with dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the twomore » interacting subsystems. Lastly, we characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasi linear temperature dependence.« less

  13. Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.

    We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb 2Pt 2Pb, a metal where itinerant electrons coexist with localized moments of Yb-ions which can be described in terms of effective S = 1/2 spins with dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the twomore » interacting subsystems. Lastly, we characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasi linear temperature dependence.« less

  14. The Eckhaus and the Benjamin-Feir instability near a weakly inverted bifurcation

    NASA Technical Reports Server (NTRS)

    Brand, Helmut R.; Deissler, Robert J.

    1991-01-01

    We investigate how the criteria for two prototype instabilities in one dimensional pattern forming systems, namely for the Eckhaus instability and for the Benjamin-Feir instability, change as one goes from a continuous bifurcation, to a spatially periodic or spatially and/or time periodic state, to the corresponding weakly inverted, i.e., hysteretic, cases. We also give the generalization to two dimensional patterns in systems with anisotropy as they arise from hydrodynamic instabilities in nematic liquid crystals.

  15. Eckhaus and Benjamin-Feir instabilities near a weakly inverted bifurcation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brand, H.R.; Deissler, R.J.

    1992-03-15

    We investigate how the criteria for two prototype instabilities in one-dimensional pattern-forming systems, namely for the Eckhaus instability and for the Benjamin-Feir instability, change as one goes from a continuous bifurcation to a spatially periodic or spatially and/or time-periodic state to the corresponding weakly inverted, i.e., hysteretic, cases. We also give the generalization to two-dimensional patterns in systems with anisotropy as they arise, for example, for hydrodynamic instabilities in nematic liquid crystals.

  16. Three-Dimensional Characterization and Modeling of Microstructural Weak Links for Spall Damage in FCC Metals

    DOE PAGES

    Krishnan, Kapil; Brown, Andrew; Wayne, Leda; ...

    2014-11-25

    Local microstructural weak links for spall damage were investigated using three-dimensional (3-D) characterization in multicrystalline copper samples (grain size ≈ 450 µm) shocked with laser-driven plates at low pressures (2 to 4 GPa). The thickness of samples and flyer plates, approximately 1000 and 500 µm respectively, led to short pressure pulses that allowed isolating microstructure effects on local damage characteristics. Electron Backscattering Diffraction and optical microscopy were used to relate the presence, size, and shape of porosity to local microstructure. The experiments were complemented with 3-D finite element simulations of individual grain boundaries (GBs) that resulted in large damage volumesmore » using crystal plasticity coupled with a void nucleation and growth model. Results from analysis of these damage sites show that the presence of a GB-affected zone, where strain concentration occurs next to a GB, correlates strongly with damage localization at these sites, most likely due to the inability of maintaining strain compatibility across these interfaces, with additional effects due to the inclination of the GB with respect to the shock. Results indicate that strain compatibility plays an important role on intergranular spall damage in metallic materials.« less

  17. Generation of plate tectonics with two-phase grain-damage and pinning: Source-sink model and toroidal flow

    NASA Astrophysics Data System (ADS)

    Bercovici, David; Ricard, Yanick

    2013-03-01

    The grain-damage and pinning mechanism of Bercovici and Ricard (2012) for lithospheric shear-localization is employed in two-dimensional flow calculations to test its ability to generate toroidal (strike-slip) motion and influence plate evolution. This mechanism posits that damage to the interface between phases in a polycrystalline material like peridotite (composed primarily of olivine and pyroxene) increases the number of small Zener pinning surfaces, which then constrain mineral grains to ever smaller sizes, regardless of creep mechanism. This effect allows a self-softening feedback in which damage and grain-reduction can co-exist with a grain-size dependent diffusion creep rheology; moreover, grain growth and weak-zone healing are greatly impeded by Zener pinning thereby leading to long-lived relic weak zones. The fluid dynamical calculations employ source-sink driven flow as a proxy for convective poloidal flow (upwelling/downwelling and divergent/convergent motion), and the coupling of this flow with non-linear rheological mechanisms excites toroidal or strike-slip motion. The numerical experiments show that pure dislocation-creep rheology, and grain-damage without Zener pinning (as occurs in a single-phase assemblages) permit only weak localization and toroidal flow; however, the full grain-damage with pinning readily allows focussed localization and intense, plate-like toroidal motion and strike-slip deformation. Rapid plate motion changes are also tested with abrupt rotations of the source-sink field after a plate-like configuration is developed; the post-rotation flow and material property fields retain memory of the original configuration for extensive periods, leading to suboptimally aligned plate boundaries (e.g., strike-slip margins non-parallel to plate motion), oblique subduction, and highly localized, weak and long lived acute plate-boundary junctions such as at what is observed at the Aleutian-Kurile intersection. The grain-damage and pinning theory therefore readily satisfies key plate-tectonic metrics of localized toroidal motion and plate-boundary inheritance, and thus provides a predictive theory for the generation of plate tectonics on Earth and other planets.

  18. Local Real-Space View of the Achiral 1 T -TiSe2 2 ×2 ×2 Charge Density Wave

    NASA Astrophysics Data System (ADS)

    Hildebrand, B.; Jaouen, T.; Mottas, M.-L.; Monney, G.; Barreteau, C.; Giannini, E.; Bowler, D. R.; Aebi, P.

    2018-03-01

    The transition metal dichalcogenide 1 T -TiSe2 -two-dimensional layered material undergoing a commensurate 2 ×2 ×2 charge density wave (CDW) transition with a weak periodic lattice distortion (PLD) below ≈200 K . Scanning tunneling microscopy (STM) combined with intentionally introduced interstitial Ti atoms allows us to go beyond the usual spatial resolution of STM and to intimately probe the three-dimensional character of the PLD. Furthermore, the inversion-symmetric achiral nature of the CDW in the z direction is revealed, contradicting the claimed existence of helical CDW stacking and associated chiral order. This study paves the way to a simultaneous real-space probing of both charge and structural reconstructions in CDW compounds.

  19. Strong photon antibunching in weakly nonlinear two-dimensional exciton-polaritons

    NASA Astrophysics Data System (ADS)

    Ryou, Albert; Rosser, David; Saxena, Abhi; Fryett, Taylor; Majumdar, Arka

    2018-06-01

    A deterministic and scalable array of single photon nonlinearities in the solid state holds great potential for both fundamental physics and technological applications, but its realization has proved extremely challenging. Despite significant advances, leading candidates such as quantum dots and group III-V quantum wells have yet to overcome their respective bottlenecks in random positioning and weak nonlinearity. Here we consider a hybrid light-matter platform, marrying an atomically thin two-dimensional material to a photonic crystal cavity, and analyze its second-order coherence function. We identify several mechanisms for photon antibunching under different system parameters, including one characterized by large dissipation and weak nonlinearity. Finally, we show that by patterning the two-dimensional material into different sizes, we can drive our system dynamics from a coherent state into a regime of strong antibunching with second-order coherence function g(2 )(0 ) ˜10-3 , opening a possible route to scalable, on-chip quantum simulations with correlated photons.

  20. Filamentation and light bullet formation dynamics in solid-state dielectric media with weak, moderate and strong anomalous group velocity dispersion

    NASA Astrophysics Data System (ADS)

    Gražulevičiūtė, I.; Garejev, N.; Majus, D.; Jukna, V.; Tamošauskas, G.; Dubietis, A.

    2016-02-01

    We present a series of measurements, which characterize filamentation dynamics of intense ultrashort laser pulses in the space-time domain, as captured by means of three-dimensional imaging technique in sapphire and fused silica, in the wavelength range of 1.45-2.25 μm, accessing the regimes of weak, moderate and strong anomalous group velocity dispersion (GVD). In the regime of weak anomalous GVD (at 1.45 μm), pulse splitting into two sub-pulses producing a pair of light bullets with spectrally shifted carrier frequencies in both nonlinear media is observed. In contrast, in the regimes of moderate (at 1.8 μm) and strong (at 2.25 μm) anomalous GVD we observe notably different transient dynamics, which however lead to the formation of a single self-compressed quasistationary light bullet with an universal spatiotemporal shape comprised of an extended ring-shaped periphery and a localized intense core that carries the self-compressed pulse.

  1. Resonance fluorescence based two- and three-dimensional atom localization

    NASA Astrophysics Data System (ADS)

    Wahab, Abdul; Rahmatullah; Qamar, Sajid

    2016-06-01

    Two- and three-dimensional atom localization in a two-level atom-field system via resonance fluorescence is suggested. For the two-dimensional localization, the atom interacts with two orthogonal standing-wave fields, whereas for the three-dimensional atom localization, the atom interacts with three orthogonal standing-wave fields. The effect of the detuning and phase shifts associated with the corresponding standing-wave fields is investigated. A precision enhancement in position measurement of the single atom can be noticed via the control of the detuning and phase shifts.

  2. Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking

    PubMed Central

    von Diezmann, Alex; Shechtman, Yoav; Moerner, W. E.

    2017-01-01

    Single-molecule super-resolution fluorescence microscopy and single-particle tracking are two imaging modalities that illuminate the properties of cells and materials on spatial scales down to tens of nanometers, or with dynamical information about nanoscale particle motion in the millisecond range, respectively. These methods generally use wide-field microscopes and two-dimensional camera detectors to localize molecules to much higher precision than the diffraction limit. Given the limited total photons available from each single-molecule label, both modalities require careful mathematical analysis and image processing. Much more information can be obtained about the system under study by extending to three-dimensional (3D) single-molecule localization: without this capability, visualization of structures or motions extending in the axial direction can easily be missed or confused, compromising scientific understanding. A variety of methods for obtaining both 3D super-resolution images and 3D tracking information have been devised, each with their own strengths and weaknesses. These include imaging of multiple focal planes, point-spread-function engineering, and interferometric detection. These methods may be compared based on their ability to provide accurate and precise position information of single-molecule emitters with limited photons. To successfully apply and further develop these methods, it is essential to consider many practical concerns, including the effects of optical aberrations, field-dependence in the imaging system, fluorophore labeling density, and registration between different color channels. Selected examples of 3D super-resolution imaging and tracking are described for illustration from a variety of biological contexts and with a variety of methods, demonstrating the power of 3D localization for understanding complex systems. PMID:28151646

  3. Electrical and thermal transport in the quasiatomic limit of coupled Luttinger liquids

    NASA Astrophysics Data System (ADS)

    Szasz, Aaron; Ilan, Roni; Moore, Joel E.

    2017-02-01

    We introduce a new model for quasi-one-dimensional materials, motivated by intriguing but not yet well-understood experiments that have shown two-dimensional polymer films to be promising materials for thermoelectric devices. We consider a two-dimensional material consisting of many one-dimensional systems, each treated as a Luttinger liquid, with weak (incoherent) coupling between them. This approximation of strong interactions within each one-dimensional chain and weak coupling between them is the "quasiatomic limit." We find integral expressions for the (interchain) transport coefficients, including the electrical and thermal conductivities and the thermopower, and we extract their power law dependencies on temperature. Luttinger liquid physics is manifested in a violation of the Wiedemann-Franz law; the Lorenz number is larger than the Fermi liquid value by a factor between γ2 and γ4, where γ ≥1 is a measure of the electron-electron interaction strength in the system.

  4. Anomaly in the band centre of the one-dimensional Anderson model

    NASA Astrophysics Data System (ADS)

    Kappus, M.; Wegner, F.

    1981-03-01

    We calculate the density of states and various characteristic lengths of the one-dimensional Anderson model in the limit of weak disorder. All these quantities show anomalous fluctuations near the band centre. This has already been observed for the density of states in a different model by Gorkov and Dorokhov, and is in close agreement with a Monte-Carlo calculation for the localization length by Czycholl, Kramer and Mac-Kinnon.

  5. Comparison of weak-wind characteristics across different Surface Types in stable stratification

    NASA Astrophysics Data System (ADS)

    Freundorfer, Anita; Rehberg, Ingo; Thomas, Christoph

    2017-04-01

    Atmospheric transport in weak winds and very stable conditions is often characterized by phenomena collectively referred to as submeso motions since their time and spatial scales exceed those of turbulence, but are smaller than synoptic motions. Evidence is mounting that submeso motions invalidate models for turbulent dispersion and diffusion since their physics are not captured by current similarity theories. Typical phenomena in the weak-wind stable boundary layer include meandering motions, quasi two-dimensional pancake-vortices or wavelike motions. These motions may be subject to non-local forcing and sensitive to small topographic undulations. The invalidity of Taylor's hypothesis of frozen turbulence for submeso motions requires the use of sensor networks to provide observations in both time and space domains simultaneously. We present the results from the series of Advanced Resolution Canopy Flow Observations (ARCFLO) experiments using a sensor network consisting of 12 sonic anemometers and 12 thermohygrometers. The objective of ARCFLO was to observe the flow and the turbulent and submeso transport at a high spatial and temporal resolution at 4 different sites in the Pacific Northwest, USA. These sites represented a variable degree of terrain complexity (flat to mountainous) and vegetation architecture (grass to forest, open to dense). In our study, a distinct weak-wind regime was identified for each site using the threshold velocity at which the friction velocity becomes dependent upon the mean horizontal wind speed. Here we used the scalar mean of the wind speed because the friction velocity showed a clearer dependence on the scalar mean compared to the vector mean of the wind velocity. It was found that the critical speed for the weak wind regime is higher in denser vegetation. For an open agricultural area (Botany and Plant Pathology Farm) we found a critical wind speed of v_crit= (0.24±0.05) ms-1 while for a very dense forest (Mary's River Douglas Fir site) with a Leaf Area Index of LAI=9.4 m2m-2, the critical wind speed measures v_crit= (1.0±0.1) ms-1. Further analyses include developing an identification scheme to sample submeso motions using their quasi two-dimensional nature. Once separated from turbulence the properties of submeso motions and the impact of different canopy densities on those motions can be explored. We hypothesize that submeso motions are the main generating mechanism for the locally confined and intermittent turbulence in the weak-wind and stable boundary layers.

  6. Hydrogen/deuterium (H/D) exchange of gelatinized starch studied by two-dimensional (2D) near-infrared (NIR) correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Mizukado, Junji

    2018-05-01

    Hydrogen/deuterium (H/D) exchange of gelatinized starch was probed by in-situ near-infrared (NIR) monitoring coupled with two-dimensional (2D) correlation spectroscopy. Gelatinized starch undergoes spontaneous H/D exchange in D2O. During the substitution, the exchange rate essentially becomes different depending on solvent accessibility of various parts of the molecule. Thus, by analyzing the change in the NIR feature observed during the substitution, it becomes possible to sort out local structure and dynamics of the system. 2D correlation analysis of the time-dependent NIR spectra reveals the presence of different local structure of the starch, each having different solvent accessibility. For example, during the H/D exchange, the D2O is first absorbed by starch molecules especially around the surface area between the starch and water, where the water molecules are weakly interacted with the starch molecules. This absorption is quickly followed by the development of HDO species. Further absorption of the D2O results in the penetration of the molecules inside the starch and eventually develops the relatively strong interaction between the HDO and starch molecules because of the presence of dominant starch molecules.

  7. Superfluid transition of homogeneous and trapped two-dimensional Bose gases.

    PubMed

    Holzmann, Markus; Baym, Gordon; Blaizot, Jean-Paul; Laloë, Franck

    2007-01-30

    Current experiments on atomic gases in highly anisotropic traps present the opportunity to study in detail the low temperature phases of two-dimensional inhomogeneous systems. Although, in an ideal gas, the trapping potential favors Bose-Einstein condensation at finite temperature, interactions tend to destabilize the condensate, leading to a superfluid Kosterlitz-Thouless-Berezinskii phase with a finite superfluid mass density but no long-range order, as in homogeneous fluids. The transition in homogeneous systems is conveniently described in terms of dissociation of topological defects (vortex-antivortex pairs). However, trapped two-dimensional gases are more directly approached by generalizing the microscopic theory of the homogeneous gas. In this paper, we first derive, via a diagrammatic expansion, the scaling structure near the phase transition in a homogeneous system, and then study the effects of a trapping potential in the local density approximation. We find that a weakly interacting trapped gas undergoes a Kosterlitz-Thouless-Berezinskii transition from the normal state at a temperature slightly below the Bose-Einstein transition temperature of the ideal gas. The characteristic finite superfluid mass density of a homogeneous system just below the transition becomes strongly suppressed in a trapped gas.

  8. Localization and delocalization of a one-dimensional system coupled with the environment

    NASA Astrophysics Data System (ADS)

    Zhu, Hong-Jun; Xiong, Shi-Jie

    2010-03-01

    We investigate several models of a one-dimensional chain coupling with surrounding atoms to elucidate disorder-induced delocalization in quantum wires, a peculiar behaviour against common wisdom. We show that the localization length is enhanced by disorder of side sites in the case of strong disorder, but in the case of weak disorder there is a plateau in this dependence. The above behaviour is the conjunct influence of the coupling to the surrounding atoms and the antiresonant effect. We also discuss different effects and their physical origin of different types of disorder in such systems. The numerical results show that coupling with the surrounding atoms can induce either the localization or delocalization effect depending on the values of parameters.

  9. Linear Instability of a Uni-Directional Transversely Sheared Mean Flow

    NASA Technical Reports Server (NTRS)

    Wundrow, David W.

    1996-01-01

    The effect of spanwise-periodic mean-flow distortions (i.e. streamwise-vortex structures) on the evolution of small-amplitude, single-frequency instability waves in an otherwise two-dimensional shear flow is investigated. The streamwise-vortex structures are taken to be just weak enough so that the spatially growing instability waves behave (locally) like linear perturbations about a uni-directional transversely sheared mean flow. Numerical solutions are computed and discussed for both the mean flow and the instability waves. The influence of the streamwise-vortex wavelength on the properties of the most rapidly growing instability wave is also discussed.

  10. Levitation of current carrying states in the lattice model for the integer quantum Hall effect.

    PubMed

    Koschny, T; Potempa, H; Schweitzer, L

    2001-04-23

    The disorder driven quantum Hall to insulator transition is investigated for a two-dimensional lattice model. The Hall conductivity and the localization length are calculated numerically near the transition. For uncorrelated and weakly correlated disorder potentials the current carrying states are annihilated by the negative Chern states originating from the band center. In the presence of correlated disorder potentials with correlation length larger than approximately half the lattice constant the floating up of the critical states in energy without merging is observed. This behavior is similar to the levitation scenario proposed for the continuum model.

  11. Fully- and weakly-nonlinear biperiodic traveling waves in shallow water

    NASA Astrophysics Data System (ADS)

    Hirakawa, Tomoaki; Okamura, Makoto

    2018-04-01

    We directly calculate fully nonlinear traveling waves that are periodic in two independent horizontal directions (biperiodic) in shallow water. Based on the Riemann theta function, we also calculate exact periodic solutions to the Kadomtsev-Petviashvili (KP) equation, which can be obtained by assuming weakly-nonlinear, weakly-dispersive, weakly-two-dimensional waves. To clarify how the accuracy of the biperiodic KP solution is affected when some of the KP approximations are not satisfied, we compare the fully- and weakly-nonlinear periodic traveling waves of various wave amplitudes, wave depths, and interaction angles. As the interaction angle θ decreases, the wave frequency and the maximum wave height of the biperiodic KP solution both increase, and the central peak sharpens and grows beyond the height of the corresponding direct numerical solutions, indicating that the biperiodic KP solution cannot qualitatively model direct numerical solutions for θ ≲ 45^\\circ . To remedy the weak two-dimensionality approximation, we apply the correction of Yeh et al (2010 Eur. Phys. J. Spec. Top. 185 97-111) to the biperiodic KP solution, which substantially improves the solution accuracy and results in wave profiles that are indistinguishable from most other cases.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, T., E-mail: xietao@ustc.edu.cn; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026; Qin, H.

    A unified ballooning theory, constructed on the basis of two special theories [Zhang et al., Phys. Fluids B 4, 2729 (1992); Y. Z. Zhang and T. Xie, Nucl. Fusion Plasma Phys. 33, 193 (2013)], shows that a weak up-down asymmetric mode structure is normally formed in an up-down symmetric equilibrium; the weak up-down asymmetry in mode structure is the manifestation of non-trivial higher order effects beyond the standard ballooning equation. It is shown that the asymmetric mode may have even higher growth rate than symmetric modes. The salient features of the theory are illustrated by investigating a fluid model formore » the ion temperature gradient (ITG) mode. The two dimensional (2D) analytical form of the ITG mode, solved in ballooning representation, is then converted into the radial-poloidal space to provide the natural boundary condition for solving the 2D mathematical local eigenmode problem. We find that the analytical expression of the mode structure is in a good agreement with finite difference solution. This sets a reliable framework for quasi-linear computation.« less

  13. Two Photon Absorption in II-VI Semiconductors: The Influence of Dimensionality and Size.

    PubMed

    Scott, Riccardo; Achtstein, Alexander W; Prudnikau, Anatol; Antanovich, Artsiom; Christodoulou, Sotirios; Moreels, Iwan; Artemyev, Mikhail; Woggon, Ulrike

    2015-08-12

    We report a comprehensive study on the two-photon absorption cross sections of colloidal CdSe nanoplatelets, -rods, and -dots of different sizes by the means of z-scan and two-photon excitation spectroscopy. Platelets combine large particle volumes with ultra strong confinement. In contrast to weakly confined nanocrystals, the TPA cross sections of CdSe nanoplatelets scale superlinearly with volume (V(∼2)) and show ten times more efficient two-photon absorption than nanorods or dots. This unexpectedly strong shape dependence goes well beyond the effect of local fields. The larger the particles' aspect ratio, the greater is the confinement related electronic contribution to the increased two-photon absorption. Both electronic confinement and local field effects favor the platelets and make them unique two-photon absorbers with outstanding cross sections of up to 10(7) GM, the largest ever reported for (colloidal) semiconductor nanocrystals and ideally suited for two-photon imaging and nonlinear optoelectronics. The obtained results are confirmed by two independent techniques as well as a new self-referencing method.

  14. Generation of plate tectonics via grain-damage and pinning

    NASA Astrophysics Data System (ADS)

    Bercovici, D.; Ricard, Y. R.

    2012-12-01

    Weakening and shear localization in the lithosphere are essential ingredients for understanding how and whether plate tectonics is generated from mantle convection on terrestrial planets. The grain-damage and pinning mechanism of Bercovici & Ricard (2012) for lithospheric shear--localization proposes that damage to the interface between phases in a polycrystalline material like peridotite (composed primarily of olivine and pyroxene) increases the number of small Zener pinning surfaces that constrain mineral grains to ever smaller sizes regardless of creep mechanism. This effect allows a self-softening feedback in which damage and grain-reduction can co-exist with a grain-size dependent diffusion creep rheology; moreoever, grain growth and weak-zone healing are greatly impeded by Zener pinning thereby leading to long-lived relic weak zones. This mechanism is employed in two-dimensional flow calculations to test its ability to generate toroidal (strike-slip) motion from convective type flow and to influence plate evolution. The fluid dynamical calculations employ source-sink driven flow as a proxy for convective poloidal flow (upwelling/downwelling and divergent/convergent motion), and the coupling of this flow with non-linear rheological mechanisms excites toroidal or strike-slip motion. The numerical experiments show that pure dislocation-creep rheology, and grain-damage without Zener pinning (as occurs in a single-phase assemblages) permit only weak localization and toroidal flow; however, the full grain-damage with pinning readily allows focussed localization and intense, plate-like toroidal motion and strike-slip deformation. Rapid plate motion changes are also tested with abrupt rotations of the source-sink field after a plate-like configuration is developed; the post-rotation flow and material property fields are found to never recover or lose memory of the original configuration, leading to suboptimally aligned plate boundaries (e.g., strike-slip margins non-parallel to plate motion), oblique subduction and highly localized, weak and long lived acute plate-boundary junctions such as at the Aleution-Kurile intersection. The grain-damage and pinning theory therefore readily satisfies key plate-tectonic metrics of localized toroidal motion and plate-boundary inheritance, and thus provides a predictive theory for the generation of plate tectonics on Earth and other planets. References: Bercovici, D., Ricard, Y., 2012. Mechanisms for the generation of plate tectonics by two-phase grain-damage and pinning. Phys. Earth Planet. Int. 202-203, 27--55.

  15. Strong and weak second-order topological insulators with hexagonal symmetry and ℤ3 index

    NASA Astrophysics Data System (ADS)

    Ezawa, Motohiko

    2018-06-01

    We propose second-order topological insulators (SOTIs) whose lattice structure has a hexagonal symmetry C6. We start with a three-dimensional weak topological insulator constructed on a stacked triangular lattice, which has only side topological surface states. We then introduce an additional mass term which gaps out the side surface states but preserves the hinge states. The resultant system is a three-dimensional SOTI. The bulk topological quantum number is shown to be the Z3 index protected by inversion time-reversal symmetry I T and rotoinversion symmetry I C6 . We obtain three phases: trivial, strong, and weak SOTI phases. We argue the origin of these two types of SOTIs. A hexagonal prism is a typical structure respecting these symmetries, where six topological hinge states emerge at the side. The building block is a hexagon in two dimensions, where topological corner states emerge at the six corners in the SOTI phase. Strong and weak SOTIs are obtained when the interlayer hopping interaction is strong and weak, respectively.

  16. The meshless local Petrov-Galerkin method based on moving Kriging interpolation for solving the time fractional Navier-Stokes equations.

    PubMed

    Thamareerat, N; Luadsong, A; Aschariyaphotha, N

    2016-01-01

    In this paper, we present a numerical scheme used to solve the nonlinear time fractional Navier-Stokes equations in two dimensions. We first employ the meshless local Petrov-Galerkin (MLPG) method based on a local weak formulation to form the system of discretized equations and then we will approximate the time fractional derivative interpreted in the sense of Caputo by a simple quadrature formula. The moving Kriging interpolation which possesses the Kronecker delta property is applied to construct shape functions. This research aims to extend and develop further the applicability of the truly MLPG method to the generalized incompressible Navier-Stokes equations. Two numerical examples are provided to illustrate the accuracy and efficiency of the proposed algorithm. Very good agreement between the numerically and analytically computed solutions can be observed in the verification. The present MLPG method has proved its efficiency and reliability for solving the two-dimensional time fractional Navier-Stokes equations arising in fluid dynamics as well as several other problems in science and engineering.

  17. Mechanisms of weak thickness dependence of the critical current density in strong-pinning ex situ metal organic-deposition-route YBa2Cu3O7-x coated conductors

    NASA Astrophysics Data System (ADS)

    Kim, S. I.; Gurevich, A.; Song, X.; Li, X.; Zhang, W.; Kodenkandath, T.; Rupich, M. W.; Holesinger, T. G.; Larbalestier, D. C.

    2006-09-01

    We report on the thickness dependence of the superconducting characteristics including critical current Ic, critical current density Jc, transition temperature Tc, irreversibility field Hirr, bulk pinning force plot Fp(H), and normal state resistivity curve ρ(T) measured after successive ion milling of ~1 µm thick high-Ic YBa2Cu3O7-x films made by an ex situ metal-organic deposition process on Ni-W rolling-assisted biaxially textured substrates (RABiTSTM). In contrast to many recent data, mostly on in situ pulsed laser deposition (PLD) films, which show strong depression of Jc with increasing film thickness t, our films exhibit only a weak dependence of Jc on t. The two better textured samples had full cross-section average Jc,avg (77 K, 0 T) ~4 MA cm-2 near the buffer layer interface and ~3 MA cm-2 at full thickness, despite significant current blocking due to ~30% porosity in the film. Taking account of the thickness dependence of the porosity, we estimate that the local, vortex-pinning current density is essentially independent of thickness, while accounting for the additional current-blocking effects of grain boundaries leads to local, vortex-pinning Jc values well above 5 MA cm-2. Such high local Jc values are produced by strong three-dimensional vortex pinning which subdivides vortex lines into weakly coupled segments much shorter than the film thickness.

  18. Effect of critical molecular weight of PEO in epoxy/EPO blends as characterized by advanced DSC and solid-state NMR

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoliang; Lu, Shoudong; Sun, Pingchuan; Xue, Gi

    2013-03-01

    The differential scanning calorimetry (DSC) and solid state NMR have been used to systematically study the length scale of the miscibility and local dynamics of the epoxy resin/poly(ethylene oxide) (ER/PEO) blends with different PEO molecular weight. By DSC, we found that the diffusion behavior of PEO with different Mw is an important factor in controlling these behaviors upon curing. We further employed two-dimensional 13C-{1H}PISEMA NMR experiment to elucidate the possible weak interaction and detailed local dynamics in ER/PEO blends. The CH2O group of PEO forms hydrogen bond with hydroxyl proton of cured-ER ether group, and its local dynamics frozen by such interaction. Our finding indicates that molecular weight (Mw) of PEO is a crucial factor in controlling the miscibility, chain dynamics and hydrogen bonding interaction in these blends.

  19. Magnetoresistance of an Anderson insulator of bosons.

    PubMed

    Gangopadhyay, Anirban; Galitski, Victor; Müller, Markus

    2013-07-12

    We study the magnetoresistance of two-dimensional bosonic Anderson insulators. We describe the change in spatial decay of localized excitations in response to a magnetic field, which is given by an interference sum over alternative tunneling trajectories. The excitations become more localized with increasing field (in sharp contrast to generic fermionic excitations which get weakly delocalized): the localization length ξ(B) is found to change as ξ(-1)(B)-ξ(-1)(0)~B(4/5). The quantum interference problem maps onto the classical statistical mechanics of directed polymers in random media (DPRM). We explain the observed scaling using a simplified droplet model which incorporates the nontrivial DPRM exponents. Our results have implications for a variety of experiments on magnetic-field-tuned superconductor-to-insulator transitions observed in disordered films, granular superconductors, and Josephson junction arrays, as well as for cold atoms in artificial gauge fields.

  20. THE ROLE OF A FLUX ROPE EJECTION IN A THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATION OF A SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishida, Keisuke; Shibata, Kazunari; Nishizuka, Naoto, E-mail: nishida@kwasan.kyoto-u.ac.jp

    2013-10-01

    We investigated the dynamic evolution of a three-dimensional (3D) flux rope eruption and magnetic reconnection process in a solar flare by simply extending the two-dimensional (2D) resistive magnetohydrodynamic simulation model of solar flares with low β plasma to a 3D model. We succeeded in reproducing a current sheet and bi-directional reconnection outflows just below the flux rope during the eruption in our 3D simulations. We calculated four cases of a strongly twisted flux rope and a weakly twisted flux rope in 2D and 3D simulations. The time evolution of a weakly twisted flux rope in the 3D simulation shows behaviorsmore » similar to those of the 2D simulation, while a strongly twisted flux rope in the 3D simulation clearly shows a different time evolution from the 2D simulation except for the initial phase evolution. The ejection speeds of both strongly and weakly twisted flux ropes in 3D simulations are larger than in the 2D simulations, and the reconnection rates in 3D cases are also larger than in the 2D cases. This indicates positive feedback between the ejection speed of a flux rope and the reconnection rate even in the 3D simulation, and we conclude that the plasmoid-induced reconnection model can be applied to 3D. We also found that small-scale plasmoids are formed inside a current sheet and make it turbulent. These small-scale plasmoid ejections have a role in locally increasing the reconnection rate intermittently as observed in solar flares, coupled with a global eruption of a flux rope.« less

  1. Bending of solitons in weak and slowly varying inhomogeneous plasma

    NASA Astrophysics Data System (ADS)

    Mukherjee, Abhik; Janaki, M. S.; Kundu, Anjan

    2015-12-01

    The bending of solitons in two dimensional plane is presented in the presence of weak and slowly varying inhomogeneous ion density for the propagation of ion acoustic soliton in unmagnetized cold plasma with isothermal electrons. Using reductive perturbation technique, a modified Kadomtsev-Petviashvili equation is obtained with a chosen unperturbed ion density profile. The exact solution of the equation shows that the phase of the solitary wave gets modified by a function related to the unperturbed inhomogeneous ion density causing the soliton to bend in the two dimensional plane, while the amplitude of the soliton remains constant.

  2. Bending of solitons in weak and slowly varying inhomogeneous plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Abhik, E-mail: abhik.mukherjee@saha.ac.in; Janaki, M. S., E-mail: ms.janaki@saha.ac.in; Kundu, Anjan, E-mail: anjan.kundu@saha.ac.in

    2015-12-15

    The bending of solitons in two dimensional plane is presented in the presence of weak and slowly varying inhomogeneous ion density for the propagation of ion acoustic soliton in unmagnetized cold plasma with isothermal electrons. Using reductive perturbation technique, a modified Kadomtsev-Petviashvili equation is obtained with a chosen unperturbed ion density profile. The exact solution of the equation shows that the phase of the solitary wave gets modified by a function related to the unperturbed inhomogeneous ion density causing the soliton to bend in the two dimensional plane, while the amplitude of the soliton remains constant.

  3. In vivo Three-Dimensional Superresolution Fluorescence Tracking using a Double-Helix Point Spread Function

    PubMed Central

    Lew, Matthew D.; Thompson, Michael A.; Badieirostami, Majid; Moerner, W. E.

    2010-01-01

    The point spread function (PSF) of a widefield fluorescence microscope is not suitable for three-dimensional super-resolution imaging. We characterize the localization precision of a unique method for 3D superresolution imaging featuring a double-helix point spread function (DH-PSF). The DH-PSF is designed to have two lobes that rotate about their midpoint in any transverse plane as a function of the axial position of the emitter. In effect, the PSF appears as a double helix in three dimensions. By comparing the Cramer-Rao bound of the DH-PSF with the standard PSF as a function of the axial position, we show that the DH-PSF has a higher and more uniform localization precision than the standard PSF throughout a 2 μm depth of field. Comparisons between the DH-PSF and other methods for 3D super-resolution are briefly discussed. We also illustrate the applicability of the DH-PSF for imaging weak emitters in biological systems by tracking the movement of quantum dots in glycerol and in live cells. PMID:20563317

  4. Inhomogeneous magnesium hydride synthesized by low temperature ion implantation: weak localization effect

    NASA Astrophysics Data System (ADS)

    Nédellec, P.; Dumoulin, L.; Burger, J. P.; Bernas, H.; Köstler, H.; Traverse, A.

    1993-11-01

    Metastable MgHx hydride was prepared by H ion implantation into Mg films at 5 K. The resistivity and magnetoresistance temperature dependence reveal weak localization effects due to atomic disorder. At low hydrogen concentrations, x le 0.3, the conductivity varies as σ sim log(T), typical of two-dimensional weak localization behaviour. The resistivity is also very sensitive to the sample inhomogeneity, due to H diffusion, which can be modelled by introducing a temperature-dependent geometrical percolating factor G. At higher H concentrations, 0.7 le x le 3, after annealing at 20 K, 50 K and 110 K, the samples also exhibit weak localization but with three-dimensional behaviour i.e. a σ sim sqrt{T}. Our analysis is consistent with the existence of an inhomogeneous system formed by a mixture of two phases with contrasted conduction properties, one of which is a well-behaved metal, while the other displays the localization properties. The results lead us to identify the former phase to a non percolating superconducting phase at low temperature. Des films d'hydrure MgHx sont préparés, hors de l'équilibre thermodynamique, par implantation d'ions H dans des films de Mg maintenus à 5 K. La mesure de la résistance et de la magnétorésistance en fonction de la température met en évidence des effets importants de localisation électronique due au désordre atomique. Pour les faibles concentrations d'hydrogène, x le 0,3, la conductivité varie comme σ sim log(T), variation caractéristique d'un comportement dominé par les effets de localisation électronique faible à 2 dimensions. La résistivité est très sensible aux effets d'inhomogénéité, liés à la diffusion de H. Nous avons modélisé ces effets en introduisant un coefficient géométrique variant avec la température. Pour les concentrations plus élevées (0, 7 le x le 3), après un recuit à 20 K, 50 K et 110 K, les films montrent également des effets de localisation mais la conductivité varie maintenant comme σ sim sqrt{T}, caractéristique d'un comportement tridimensionnel. L'analyse des résultats est compatible avec l'hypothèse d'un système inhomogène formé du mélange de deux phases avec des propriétés électriques contrastées : un “mauvais métal" et un “bon métal" qui, à basse température, pourrait présenter un état supraconducteur non percolant.

  5. 7-Meth­oxy­indan-1-one

    PubMed Central

    Chang, Yuan Jay; Chen, Kew-Yu

    2012-01-01

    In the title compound, C10H10O2, the 1-indanone unit is essentially planar (r.m.s. deviation = 0.028 Å). In the crystal, molecules are linked via C—H⋯O hydrogen bonds, forming layers lying parallel to the ab plane. This two-dimensional structure is stabilized by a weak C—H⋯π inter­action. A second weak C—H⋯π inter­action links the layers, forming a three-dimensional structure. PMID:23284398

  6. High performance computing aspects of a dimension independent semi-Lagrangian discontinuous Galerkin code

    NASA Astrophysics Data System (ADS)

    Einkemmer, Lukas

    2016-05-01

    The recently developed semi-Lagrangian discontinuous Galerkin approach is used to discretize hyperbolic partial differential equations (usually first order equations). Since these methods are conservative, local in space, and able to limit numerical diffusion, they are considered a promising alternative to more traditional semi-Lagrangian schemes (which are usually based on polynomial or spline interpolation). In this paper, we consider a parallel implementation of a semi-Lagrangian discontinuous Galerkin method for distributed memory systems (so-called clusters). Both strong and weak scaling studies are performed on the Vienna Scientific Cluster 2 (VSC-2). In the case of weak scaling we observe a parallel efficiency above 0.8 for both two and four dimensional problems and up to 8192 cores. Strong scaling results show good scalability to at least 512 cores (we consider problems that can be run on a single processor in reasonable time). In addition, we study the scaling of a two dimensional Vlasov-Poisson solver that is implemented using the framework provided. All of the simulations are conducted in the context of worst case communication overhead; i.e., in a setting where the CFL (Courant-Friedrichs-Lewy) number increases linearly with the problem size. The framework introduced in this paper facilitates a dimension independent implementation of scientific codes (based on C++ templates) using both an MPI and a hybrid approach to parallelization. We describe the essential ingredients of our implementation.

  7. New generation of two-dimensional spintronic systems realized by coupling of Rashba and Dirac fermions

    PubMed Central

    Eremeev, Sergey V.; Tsirkin, Stepan S.; Nechaev, Ilya A.; Echenique, Pedro M.; Chulkov, Evgueni V.

    2015-01-01

    Intriguing phenomena and novel physics predicted for two-dimensional (2D) systems formed by electrons in Dirac or Rashba states motivate an active search for new materials or combinations of the already revealed ones. Being very promising ingredients in themselves, interplaying Dirac and Rashba systems can provide a base for next generation of spintronics devices, to a considerable extent, by mixing their striking properties or by improving technically significant characteristics of each other. Here, we demonstrate that in BiTeI@PbSb2Te4 composed of a BiTeI trilayer on top of the topological insulator (TI) PbSb2Te4 weakly- and strongly-coupled Dirac-Rashba hybrid systems are realized. The coupling strength depends on both interface hexagonal stacking and trilayer-stacking order. The weakly-coupled system can serve as a prototype to examine, e.g., plasmonic excitations, frictional drag, spin-polarized transport, and charge-spin separation effect in multilayer helical metals. In the strongly-coupled regime, within ~100 meV energy interval of the bulk TI projected bandgap a helical state substituting for the TI surface state appears. This new state is characterized by a larger momentum, similar velocity, and strong localization within BiTeI. We anticipate that our findings pave the way for designing a new type of spintronics devices based on Rashba-Dirac coupled systems. PMID:26239268

  8. Relaxation of a High-Energy Quasiparticle in a One-Dimensional Bose Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Shina; Glazman, Leonid I.; Pustilnik, Michael

    2010-08-27

    We evaluate the relaxation rate of high-energy quasiparticles in a weakly interacting one-dimensional Bose gas. Unlike in higher dimensions, the rate is a nonmonotonic function of temperature, with a maximum at the crossover to the state of suppressed density fluctuations. At the maximum, the relaxation rate may significantly exceed its zero-temperature value. We also find the dependence of the differential inelastic scattering rate on the transferred energy. This rate yields information about temperature dependence of local pair correlations.

  9. Low eigenvalues of the entanglement Hamiltonian, localization length, and rare regions in one-dimensional disordered interacting systems

    NASA Astrophysics Data System (ADS)

    Berkovits, Richard

    2018-03-01

    The properties of the low-lying eigenvalues of the entanglement Hamiltonian and their relation to the localization length of a disordered interacting one-dimensional many-particle system are studied. The average of the first entanglement Hamiltonian level spacing is proportional to the ground-state localization length and shows the same dependence on the disorder and interaction strength as the localization length. This is the result of the fact that entanglement is limited to distances of order of the localization length. The distribution of the first entanglement level spacing shows a Gaussian-type behavior as expected for level spacings much larger than the disorder broadening. For weakly disordered systems (localization length larger than sample length), the distribution shows an additional peak at low-level spacings. This stems from rare regions in some samples which exhibit metalliclike behavior of large entanglement and large particle-number fluctuations. These intermediate microemulsion metallic regions embedded in the insulating phase are discussed.

  10. Performance Analysis of Local Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Tong, Xin T.

    2018-03-01

    Ensemble Kalman filter (EnKF) is an important data assimilation method for high-dimensional geophysical systems. Efficient implementation of EnKF in practice often involves the localization technique, which updates each component using only information within a local radius. This paper rigorously analyzes the local EnKF (LEnKF) for linear systems and shows that the filter error can be dominated by the ensemble covariance, as long as (1) the sample size exceeds the logarithmic of state dimension and a constant that depends only on the local radius; (2) the forecast covariance matrix admits a stable localized structure. In particular, this indicates that with small system and observation noises, the filter error will be accurate in long time even if the initialization is not. The analysis also reveals an intrinsic inconsistency caused by the localization technique, and a stable localized structure is necessary to control this inconsistency. While this structure is usually taken for granted for the operation of LEnKF, it can also be rigorously proved for linear systems with sparse local observations and weak local interactions. These theoretical results are also validated by numerical implementation of LEnKF on a simple stochastic turbulence in two dynamical regimes.

  11. Thermodynamics of Yukawa fluids near the one-component-plasma limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khrapak, Sergey A.; Aix-Marseille-Université, CNRS, Laboratoire PIIM, UMR 7345, 13397 Marseille Cedex 20; Semenov, Igor L.

    Thermodynamics of weakly screened (near the one-component-plasma limit) Yukawa fluids in two and three dimensions is analyzed in detail. It is shown that the thermal component of the excess internal energy of these fluids, when expressed in terms of the properly normalized coupling strength, exhibits the scaling pertinent to the corresponding one-component-plasma limit (the scalings differ considerably between the two- and three-dimensional situations). This provides us with a simple and accurate practical tool to estimate thermodynamic properties of weakly screened Yukawa fluids. Particular attention is paid to the two-dimensional fluids, for which several important thermodynamic quantities are calculated to illustratemore » the application of the approach.« less

  12. Multilocality and fusion rules on the generalized structure functions in two-dimensional and three-dimensional Navier-Stokes turbulence.

    PubMed

    Gkioulekas, Eleftherios

    2016-09-01

    Using the fusion-rules hypothesis for three-dimensional and two-dimensional Navier-Stokes turbulence, we generalize a previous nonperturbative locality proof to multiple applications of the nonlinear interactions operator on generalized structure functions of velocity differences. We call this generalization of nonperturbative locality to multiple applications of the nonlinear interactions operator "multilocality." The resulting cross terms pose a new challenge requiring a new argument and the introduction of a new fusion rule that takes advantage of rotational symmetry. Our main result is that the fusion-rules hypothesis implies both locality and multilocality in both the IR and UV limits for the downscale energy cascade of three-dimensional Navier-Stokes turbulence and the downscale enstrophy cascade and inverse energy cascade of two-dimensional Navier-Stokes turbulence. We stress that these claims relate to nonperturbative locality of generalized structure functions on all orders and not the term-by-term perturbative locality of diagrammatic theories or closure models that involve only two-point correlation and response functions.

  13. Ground state of a confined Yukawa plasma including correlation effects

    NASA Astrophysics Data System (ADS)

    Henning, C.; Ludwig, P.; Filinov, A.; Piel, A.; Bonitz, M.

    2007-09-01

    The ground state of an externally confined one-component Yukawa plasma is derived analytically using the local density approximation (LDA). In particular, the radial density profile is computed. The results are compared with the recently obtained mean-field (MF) density profile [Henning , Phys. Rev. E 74, 056403 (2006)]. While the MF results are more accurate for weak screening, the LDA with correlations included yields the proper description for large screening. By comparison with first-principles simulations for three-dimensional spherical Yukawa crystals, we demonstrate that the two approximations complement each other. Together they accurately describe the density profile in the full range of screening parameters.

  14. Multi-atlas learner fusion: An efficient segmentation approach for large-scale data.

    PubMed

    Asman, Andrew J; Huo, Yuankai; Plassard, Andrew J; Landman, Bennett A

    2015-12-01

    We propose multi-atlas learner fusion (MLF), a framework for rapidly and accurately replicating the highly accurate, yet computationally expensive, multi-atlas segmentation framework based on fusing local learners. In the largest whole-brain multi-atlas study yet reported, multi-atlas segmentations are estimated for a training set of 3464 MR brain images. Using these multi-atlas estimates we (1) estimate a low-dimensional representation for selecting locally appropriate example images, and (2) build AdaBoost learners that map a weak initial segmentation to the multi-atlas segmentation result. Thus, to segment a new target image we project the image into the low-dimensional space, construct a weak initial segmentation, and fuse the trained, locally selected, learners. The MLF framework cuts the runtime on a modern computer from 36 h down to 3-8 min - a 270× speedup - by completely bypassing the need for deformable atlas-target registrations. Additionally, we (1) describe a technique for optimizing the weak initial segmentation and the AdaBoost learning parameters, (2) quantify the ability to replicate the multi-atlas result with mean accuracies approaching the multi-atlas intra-subject reproducibility on a testing set of 380 images, (3) demonstrate significant increases in the reproducibility of intra-subject segmentations when compared to a state-of-the-art multi-atlas framework on a separate reproducibility dataset, (4) show that under the MLF framework the large-scale data model significantly improve the segmentation over the small-scale model under the MLF framework, and (5) indicate that the MLF framework has comparable performance as state-of-the-art multi-atlas segmentation algorithms without using non-local information. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate

    NASA Astrophysics Data System (ADS)

    Annett, James; Cross, Graham L. W.

    2016-07-01

    Graphene and related two-dimensional materials have shown unusual and exceptional mechanical properties, with similarities to origami-like paper folding and kirigami-like cutting demonstrated. For paper analogues, a critical difference between macroscopic sheets and a two-dimensional solid is the molecular scale of the thin dimension of the latter, allowing the thermal activation of considerable out-of-plane motion. So far thermal activity has been shown to produce local wrinkles in a free graphene sheet that help in theoretically understanding its stability, for example, and give rise to unexpected long-range bending stiffness. Here we show that thermal activation can have a more marked effect on the behaviour of two-dimensional solids, leading to spontaneous and self-driven sliding, tearing and peeling from a substrate on scales approaching the macroscopic. We demonstrate that scalable nanoimprint-style contact techniques can nucleate and direct the parallel self-assembly of graphene ribbons of controlled shape in ambient conditions. We interpret our observations through a simple fracture-mechanics model that shows how thermodynamic forces drive the formation of the graphene-graphene interface in lieu of substrate contact with sufficient strength to peel and tear multilayer graphene sheets. Our results show how weak physical surface forces can be harnessed and focused by simple folded configurations of graphene to tear the strongest covalent bond. This effect may hold promise for the patterning and mechanical actuating of devices based on two-dimensional materials.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bie Haiying; Lu Jing; Yu Jiehui

    Three novel thiocyanate supramolecular compounds have been synthesized and characterized by X-ray diffraction and fluorescent spectra. Compound [pipH]{sub 2}[Co(NCS){sub 4}] (pip=piperazine) 1 possesses a two-dimensional layer connected by the combination of N-H...N hydrogen bonds and weak S...S contacts. Under the same conditions, using nickel salt instead of cobalt salt as a starting material, we obtained a different two-dimensional supramolecular layer [pipH]{sub 2}[Ni(NCS){sub 4}] 2 connected by unusual N-H...S hydrogen bonds and weak S...S contacts. In order to observe the influence of the dimension of ligand on the self-assembly structure, dabco was used for substituting pip, and compound [dabcoH]{sub 2}[Ni(NCS){sub 4}]more » (dabco=1,4-Diazabicyclo[2.2.2] octane) 3 was gained, which constructed two-dimensional, highly wavy network with hourglass-shaped cavities only through N-H...S hydrogen bonds.« less

  17. Rare-Region-Induced Avoided Quantum Criticality in Disordered Three-Dimensional Dirac and Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Pixley, J. H.; Huse, David A.; Das Sarma, S.

    2016-04-01

    We numerically study the effect of short-ranged potential disorder on massless noninteracting three-dimensional Dirac and Weyl fermions, with a focus on the question of the proposed (and extensively theoretically studied) quantum critical point separating semimetal and diffusive-metal phases. We determine the properties of the eigenstates of the disordered Dirac Hamiltonian (H ) and exactly calculate the density of states (DOS) near zero energy, using a combination of Lanczos on H2 and the kernel polynomial method on H . We establish the existence of two distinct types of low-energy eigenstates contributing to the disordered density of states in the weak-disorder semimetal regime. These are (i) typical eigenstates that are well described by linearly dispersing perturbatively dressed Dirac states and (ii) nonperturbative rare eigenstates that are weakly dispersive and quasilocalized in the real-space regions with the largest (and rarest) local random potential. Using twisted boundary conditions, we are able to systematically find and study these two (essentially independent) types of eigenstates. We find that the Dirac states contribute low-energy peaks in the finite-size DOS that arise from the clean eigenstates which shift and broaden in the presence of disorder. On the other hand, we establish that the rare quasilocalized eigenstates contribute a nonzero background DOS which is only weakly energy dependent near zero energy and is exponentially small at weak disorder. We also find that the expected semimetal to diffusive-metal quantum critical point is converted to an avoided quantum criticality that is "rounded out" by nonperturbative effects, with no signs of any singular behavior in the DOS at the energy of the clean Dirac point. However, the crossover effects of the avoided (or hidden) criticality manifest themselves in a so-called quantum critical fan region away from the Dirac energy. We discuss the implications of our results for disordered Dirac and Weyl semimetals, and reconcile the large body of existing numerical work showing quantum criticality with the existence of these nonperturbative effects.

  18. Prethermal time crystals in a one-dimensional periodically driven Floquet system

    NASA Astrophysics Data System (ADS)

    Zeng, Tian-Sheng; Sheng, D. N.

    2017-09-01

    Motivated by experimental observations of time-symmetry breaking behavior in a periodically driven (Floquet) system, we study a one-dimensional spin model to explore the stability of such Floquet discrete time crystals (DTCs) under the interplay between interaction and the microwave driving. For intermediate interactions and high drivings, from the time evolution of both stroboscopic spin polarization and mutual information between two ends, we show that Floquet DTCs can exist in a prethermal time regime without the tuning of strong disorder. For much weak interactions the system is a symmetry-unbroken phase, while for strong interactions it gives its way to a thermal phase. Through analyzing the entanglement dynamics, we show that large driving fields protect the prethermal DTCs from many-body localization and thermalization. Our results suggest that by increasing the spin interaction, one can drive the experimental system into optimal regime for observing a robust prethermal DTC phase.

  19. Stable two-dimensional solitary pulses in linearly coupled dissipative Kadomtsev-Petviashvili equations.

    PubMed

    Feng, Bao-Feng; Malomed, Boris A; Kawahara, Takuji

    2002-11-01

    We present a two-dimensional (2D) generalization of the stabilized Kuramoto-Sivashinsky system, based on the Kadomtsev-Petviashvili (KP) equation including dissipation of the generic [Newell-Whitehead-Segel (NWS)] type and gain. The system directly applies to the description of gravity-capillary waves on the surface of a liquid layer flowing down an inclined plane, with a surfactant diffusing along the layer's surface. Actually, the model is quite general, offering a simple way to stabilize nonlinear media, combining the weakly 2D dispersion of the KP type with gain and NWS dissipation. Other applications are internal waves in multilayer fluids flowing down an inclined plane, double-front flames in gaseous mixtures, etc. Parallel to this weakly 2D model, we also introduce and study a semiphenomenological one, whose dissipative terms are isotropic, rather than of the NWS type, in order to check if qualitative results are sensitive to the exact form of the lossy terms. The models include an additional linear equation of the advection-diffusion type, linearly coupled to the main KP-NWS equation. The extra equation provides for stability of the zero background in the system, thus opening a way for the existence of stable localized pulses. We focus on the most interesting case, when the dispersive part of the system is of the KP-I type, which corresponds, e.g., to capillary waves, and makes the existence of completely localized 2D pulses possible. Treating the losses and gain as small perturbations and making use of the balance equation for the field momentum, we find that the equilibrium between the gain and losses may select two steady-state solitons from their continuous family existing in the absence of the dissipative terms (the latter family is found in an exact analytical form, and is numerically demonstrated to be stable). The selected soliton with the larger amplitude is expected to be stable. Direct simulations completely corroborate the analytical predictions, for both the physical and phenomenological models.

  20. Results of the eruptive column model inter-comparison study

    USGS Publications Warehouse

    Costa, Antonio; Suzuki, Yujiro; Cerminara, M.; Devenish, Ben J.; Esposti Ongaro, T.; Herzog, Michael; Van Eaton, Alexa; Denby, L.C.; Bursik, Marcus; de' Michieli Vitturi, Mattia; Engwell, S.; Neri, Augusto; Barsotti, Sara; Folch, Arnau; Macedonio, Giovanni; Girault, F.; Carazzo, G.; Tait, S.; Kaminski, E.; Mastin, Larry G.; Woodhouse, Mark J.; Phillips, Jeremy C.; Hogg, Andrew J.; Degruyter, Wim; Bonadonna, Costanza

    2016-01-01

    This study compares and evaluates one-dimensional (1D) and three-dimensional (3D) numerical models of volcanic eruption columns in a set of different inter-comparison exercises. The exercises were designed as a blind test in which a set of common input parameters was given for two reference eruptions, representing a strong and a weak eruption column under different meteorological conditions. Comparing the results of the different models allows us to evaluate their capabilities and target areas for future improvement. Despite their different formulations, the 1D and 3D models provide reasonably consistent predictions of some of the key global descriptors of the volcanic plumes. Variability in plume height, estimated from the standard deviation of model predictions, is within ~ 20% for the weak plume and ~ 10% for the strong plume. Predictions of neutral buoyancy level are also in reasonably good agreement among the different models, with a standard deviation ranging from 9 to 19% (the latter for the weak plume in a windy atmosphere). Overall, these discrepancies are in the range of observational uncertainty of column height. However, there are important differences amongst models in terms of local properties along the plume axis, particularly for the strong plume. Our analysis suggests that the simplified treatment of entrainment in 1D models is adequate to resolve the general behaviour of the weak plume. However, it is inadequate to capture complex features of the strong plume, such as large vortices, partial column collapse, or gravitational fountaining that strongly enhance entrainment in the lower atmosphere. We conclude that there is a need to more accurately quantify entrainment rates, improve the representation of plume radius, and incorporate the effects of column instability in future versions of 1D volcanic plume models.

  1. COMOC 2: Two-dimensional aerodynamics sequence, computer program user's guide

    NASA Technical Reports Server (NTRS)

    Manhardt, P. D.; Orzechowski, J. A.; Baker, A. J.

    1977-01-01

    The COMOC finite element fluid mechanics computer program system is applicable to diverse problem classes. The two dimensional aerodynamics sequence was established for solution of the potential and/or viscous and turbulent flowfields associated with subsonic flight of elementary two dimensional isolated airfoils. The sequence is constituted of three specific flowfield options in COMOC for two dimensional flows. These include the potential flow option, the boundary layer option, and the parabolic Navier-Stokes option. By sequencing through these options, it is possible to computationally construct a weak-interaction model of the aerodynamic flowfield. This report is the user's guide to operation of COMOC for the aerodynamics sequence.

  2. Two-dimensional La2/3Sr4/3MnO4 Manganite Films Probed by Epitaxial Strain and Cation Ordering

    NASA Astrophysics Data System (ADS)

    Nelson-Cheeseman, Brittany; Santos, Tiffany; Bhattacharya, Anand

    2010-03-01

    Dimensionality is known to play a central role in the properties of strongly correlated systems. Here we investigate magnetism and transport in thin films of the Ruddlesden-Popper n=1 phase, La1-xSr1+xMnO4. Within this material, the MnO6-octahedra form two-dimensional perovskite sheets separated by an extra rocksalt layer. By fabricating high quality thin films with ozone-assisted molecular beam epitaxy, we study how the effects of epitaxial strain and intentional cation ordering, known as digital synthesis, influence the properties of this 2-dimensional manganite. For example, at the same Mn^3+:Mn^4+ ratio (2:1) as its fully spin-polarized 3D manganite counterpart, this two dimensional analog at x=1/3 only displays a spin glass phase below 20K in bulk. This is believed to result from a competition between superexchange and double exchange, as well as disordered Jahn-Teller distortions. However, in our films we find weak ferromagnetic order up to much higher temperatures in addition to a low temperature spin glass phase. We will discuss how strain and cation order effect the presence of this weak ferromagnetism.

  3. Numerical simulations - Some results for the 2- and 3-D Hubbard models and a 2-D electron phonon model

    NASA Technical Reports Server (NTRS)

    Scalapino, D. J.; Sugar, R. L.; White, S. R.; Bickers, N. E.; Scalettar, R. T.

    1989-01-01

    Numerical simulations on the half-filled three-dimensional Hubbard model clearly show the onset of Neel order. Simulations of the two-dimensional electron-phonon Holstein model show the competition between the formation of a Peierls-CDW state and a superconducting state. However, the behavior of the partly filled two-dimensional Hubbard model is more difficult to determine. At half-filling, the antiferromagnetic correlations grow as T is reduced. Doping away from half-filling suppresses these correlations, and it is found that there is a weak attractive pairing interaction in the d-wave channel. However, the strength of the pair field susceptibility is weak at the temperatures and lattice sizes that have been simulated, and the nature of the low-temperature state of the nearly half-filled Hubbard model remains open.

  4. Finite Deformation of Magnetoelastic Film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barham, Matthew Ian

    2011-05-31

    A nonlinear two-dimensional theory is developed for thin magnetoelastic lms capable of large deformations. This is derived directly from three-dimensional theory. Signi cant simpli cations emerge in the descent from three dimensions to two, permitting the self eld generated by the body to be computed a posteriori. The model is specialized to isotropic elastomers with two material models. First weak magnetization is investigated leading to a free energy where magnetization and deformation are un-coupled. The second closely couples the magnetization and deformation. Numerical solutions are obtained to equilibrium boundary-value problems in which the membrane is subjected to lateral pressure andmore » an applied magnetic eld. An instability is inferred and investigated for the weak magnetization material model.« less

  5. Electronic transport in low dimensions: Carbon nanotubes and mesoscopic silver wires

    NASA Astrophysics Data System (ADS)

    Ghanem, Tarek Khairy

    This thesis explores the physics of low-dimensional electronic conductors using two materials systems, carbon nanotubes (CNTs) and lithographically-defined silver nanowires. In order to understand the intrinsic electronic properties of CNTs, it is important to eliminate the contact effects from the measurements. Here, this is accomplished by using a conductive-tip atomic force microscope cantilever as a local electrode in order to obtain length dependent transport properties. The CNT-movable electrode contact is fully characterized, and is largely independent of voltage bias conditions, and independent of the contact force beyond a certain threshold. The contact is affected by the fine positioning of the cantilever relative to the CNT due to parasitic lateral motion of the cantilever during the loading cycle, which, if not controlled, can lead to non-monotonic behavior of contact resistance vs. force. Length dependent transport measurements are reported for several metallic and semiconducting CNTs. The resistance versus length R(L) of semiconducting CNTs is linear in the on state. For the depleted state R(L) is linear for long channel lengths, but non-linear for short channel lengths due to the long depletion lengths in one-dimensional semiconductors. Transport remains diffusive under all depletion conditions, due to both low disorder and high temperature. The study of quantum corrections to classical conductivity in mesoscopic conductors is an essential tool for understanding phase coherence in these systems. A long standing discrepancy between theory and experiment regards the phase coherence time, which is expected theoretically to grow as a power law at low temperatures, but is experimentally found to saturate. The origins of this saturation have been debated for the last decade, with the main contenders being intrinsic decoherence by zero-point fluctuations of the electrons, and decoherence by dilute magnetic impurities. Here, the phase coherence time in quasi-one-dimensional silver wires is measured. The phase coherence times obtained from the weak localization correction to the conductivity at low magnetic field show saturation, while those obtained from universal conductance fluctuations at high field do not. This indicates that, for these samples, the origin of phase coherence time saturation obtained from weak localization is extrinsic, due to the presence of dilute magnetic impurities.

  6. Landau levels from neutral Bogoliubov particles in two-dimensional nodal superconductors under strain and doping gradients

    NASA Astrophysics Data System (ADS)

    Nica, Emilian M.; Franz, Marcel

    2018-02-01

    Motivated by recent work on strain-induced pseudomagnetic fields in Dirac and Weyl semimetals, we analyze the possibility of analogous fields in two-dimensional nodal superconductors. We consider the prototypical case of a d -wave superconductor, a representative of the cuprate family, and find that the presence of weak, spatially varying strain leads to pseudomagnetic fields and Landau quantization of Bogoliubov quasiparticles in the low-energy sector. A similar effect is induced by the presence of generic, weak doping gradients. In contrast to genuine magnetic fields in superconductors, the strain- and doping-gradient-induced pseudomagnetic fields couple in a way that preserves time-reversal symmetry and is not subject to the screening associated with the Meissner effect. These effects can be probed by tuning weak applied supercurrents which lead to shifts in the energies of the Landau levels and hence to quantum oscillations in thermodynamic and transport quantities.

  7. Quantifying two-dimensional nonstationary signal with power-law correlations by detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Fan, Qingju; Wu, Yonghong

    2015-08-01

    In this paper, we develop a new method for the multifractal characterization of two-dimensional nonstationary signal, which is based on the detrended fluctuation analysis (DFA). By applying to two artificially generated signals of two-component ARFIMA process and binomial multifractal model, we show that the new method can reliably determine the multifractal scaling behavior of two-dimensional signal. We also illustrate the applications of this method in finance and physiology. The analyzing results exhibit that the two-dimensional signals under investigation are power-law correlations, and the electricity market consists of electricity price and trading volume is multifractal, while the two-dimensional EEG signal in sleep recorded for a single patient is weak multifractal. The new method based on the detrended fluctuation analysis may add diagnostic power to existing statistical methods.

  8. Superfluid turbulence in a nonuniform circular channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, P.J.

    The excess dissipation due to the presence of quantized vorticity in flowing helium has been studied extensively. The success of the microscopic theory proposed by Schwarz in describing many properties of this dissipation led to a belief that the major aspects of the problem had been understood at the microscopic level. The experiment of Kafkalidis and Tough demonstrated that a weak one dimensional nonuniformity in the flow field led to a dramatic departure between the observed behavior and the predictions of the Schwarz theory using the local uniformity approximation (LUA). The research presented in this thesis was undertaken to measuremore » the dissipative states for thermal counterflow with a weak two dimensional nonuniformity. The experiment of Kafkalidis and Tough used a flow channel with a high aspect ratio. Such channels are known to exhibit only one state of superfluid turbulence. In this research the channel is circular in cross section and shows two distinct turbulent states (T-I and T-II). This experiment demonstrates that there is no difference in the excess dissipation for flows that are either converging or diverging. The T-I state is described by the same parameters as the T-I state in uniform channels. The turbulence exhibits front behavior at the transition between states. These conclusions are consistent with the LUA. The T-II state is at variance with the LUA, but is consistent with the results found in the Kafkalidis and Tough experiment.« less

  9. Progress on a Taylor weak statement finite element algorithm for high-speed aerodynamic flows

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Freels, J. D.

    1989-01-01

    A new finite element numerical Computational Fluid Dynamics (CFD) algorithm has matured to the point of efficiently solving two-dimensional high speed real-gas compressible flow problems in generalized coordinates on modern vector computer systems. The algorithm employs a Taylor Weak Statement classical Galerkin formulation, a variably implicit Newton iteration, and a tensor matrix product factorization of the linear algebra Jacobian under a generalized coordinate transformation. Allowing for a general two-dimensional conservation law system, the algorithm has been exercised on the Euler and laminar forms of the Navier-Stokes equations. Real-gas fluid properties are admitted, and numerical results verify solution accuracy, efficiency, and stability over a range of test problem parameters.

  10. Mass-corrections for the conservative coupling of flow and transport on collocated meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waluga, Christian, E-mail: waluga@ma.tum.de; Wohlmuth, Barbara; Rüde, Ulrich

    2016-01-15

    Buoyancy-driven flow models demand a careful treatment of the mass-balance equation to avoid spurious source and sink terms in the non-linear coupling between flow and transport. In the context of finite-elements, it is therefore commonly proposed to employ sufficiently rich pressure spaces, containing piecewise constant shape functions to obtain local or even strong mass-conservation. In three-dimensional computations, this usually requires nonconforming approaches, special meshes or higher order velocities, which make these schemes prohibitively expensive for some applications and complicate the implementation into legacy code. In this paper, we therefore propose a lean and conservatively coupled scheme based on standard stabilizedmore » linear equal-order finite elements for the Stokes part and vertex-centered finite volumes for the energy equation. We show that in a weak mass-balance it is possible to recover exact conservation properties by a local flux-correction which can be computed efficiently on the control volume boundaries of the transport mesh. We discuss implementation aspects and demonstrate the effectiveness of the flux-correction by different two- and three-dimensional examples which are motivated by geophysical applications.« less

  11. Dielectric response of branched copper phthalocyanine

    NASA Astrophysics Data System (ADS)

    Hamam, Khalil J.; Al-Amar, Mohammad M.; Mezei, Gellert; Guda, Ramakrishna; Burns, Clement A.

    2017-09-01

    The dielectric constant of pressed pellets and thin films of branched copper phthalocyanine (CuPc) was investigated as a function of frequency from 0.1 kHz to 1 MHz and temperature from 20 °C to 100 °C. Surface morphology was studied using a scanning electron microscope. The high-frequency values of the dielectric constant of pellets and thin films are ~3.5 and ~5.8, respectively. The response was only weakly dependent on frequency and temperature. The branched structure of the CuPc molecules helped to cancel out the effects of low-frequency polarization mechanisms. A planar delocalized charge system with two-dimensional localization was found using time-resolved photoluminescence measurements.

  12. Large Deviations in Weakly Interacting Boundary Driven Lattice Gases

    NASA Astrophysics Data System (ADS)

    van Wijland, Frédéric; Rácz, Zoltán

    2005-01-01

    One-dimensional, boundary-driven lattice gases with local interactions are studied in the weakly interacting limit. The density profiles and the correlation functions are calculated to first order in the interaction strength for zero-range and short-range processes differing only in the specifics of the detailed-balance dynamics. Furthermore, the effective free-energy (large-deviation function) and the integrated current distribution are also found to this order. From the former, we find that the boundary drive generates long-range correlations only for the short-range dynamics while the latter provides support to an additivity principle recently proposed by Bodineau and Derrida.

  13. 1-[6-(1H-Indol-1-yl)pyridin-2-yl]-1H-indole-3-carbaldehyde.

    PubMed

    Ramathilagam, C; Umarani, P R; Venkatesan, N; Rajakumar, P; Gunasekaran, B; Manivannan, V

    2014-02-01

    In the title compound, C22H15N3O, the dihedral angle between the two indole units is 33.72 (3)°. The mol-ecular structure features a weak intra-molecular C-H⋯N inter-action. In the crystal, weak C-H⋯O and C-H⋯π inter-actions, forming a two-dimensional network parallel to the bc plane.

  14. Two-dimensional distributed-phase-reference protocol for quantum key distribution

    NASA Astrophysics Data System (ADS)

    Bacco, Davide; Christensen, Jesper Bjerge; Castaneda, Mario A. Usuga; Ding, Yunhong; Forchhammer, Søren; Rottwitt, Karsten; Oxenløwe, Leif Katsuo

    2016-12-01

    Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the last 10 years, long-distance fiber-based DPR systems have been successfully demonstrated, although fundamental obstacles such as intrinsic channel losses limit their performance. Here, we introduce the first two-dimensional DPR-QKD protocol in which information is encoded in the time and phase of weak coherent pulses. The ability of extracting two bits of information per detection event, enables a higher secret key rate in specific realistic network scenarios. Moreover, despite the use of more dimensions, the proposed protocol remains simple, practical, and fully integrable.

  15. Two-dimensional distributed-phase-reference protocol for quantum key distribution.

    PubMed

    Bacco, Davide; Christensen, Jesper Bjerge; Castaneda, Mario A Usuga; Ding, Yunhong; Forchhammer, Søren; Rottwitt, Karsten; Oxenløwe, Leif Katsuo

    2016-12-22

    Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the last 10 years, long-distance fiber-based DPR systems have been successfully demonstrated, although fundamental obstacles such as intrinsic channel losses limit their performance. Here, we introduce the first two-dimensional DPR-QKD protocol in which information is encoded in the time and phase of weak coherent pulses. The ability of extracting two bits of information per detection event, enables a higher secret key rate in specific realistic network scenarios. Moreover, despite the use of more dimensions, the proposed protocol remains simple, practical, and fully integrable.

  16. Two-dimensional distributed-phase-reference protocol for quantum key distribution

    PubMed Central

    Bacco, Davide; Christensen, Jesper Bjerge; Castaneda, Mario A. Usuga; Ding, Yunhong; Forchhammer, Søren; Rottwitt, Karsten; Oxenløwe, Leif Katsuo

    2016-01-01

    Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the last 10 years, long-distance fiber-based DPR systems have been successfully demonstrated, although fundamental obstacles such as intrinsic channel losses limit their performance. Here, we introduce the first two-dimensional DPR-QKD protocol in which information is encoded in the time and phase of weak coherent pulses. The ability of extracting two bits of information per detection event, enables a higher secret key rate in specific realistic network scenarios. Moreover, despite the use of more dimensions, the proposed protocol remains simple, practical, and fully integrable. PMID:28004821

  17. Magneto-photoconductivity of three dimensional topological insulator bismuth telluride

    NASA Astrophysics Data System (ADS)

    Cao, Bingchen; Eginligil, Mustafa; Yu, Ting

    2018-03-01

    Magnetic field dependence of the photocurrent in a 3D topological insulator is studied. Among the 3D topological insulators bismuth telluride has unique hexagonal warping and spin texture which has been studied by photoemission, scanning tunnelling microscopy and transport. Here, we report on low temperature magneto-photoconductivity, up to 7 T, of two metallic bismuth telluride topological insulator samples with 68 and 110 nm thicknesses excited by 2.33 eV photon energy along the magnetic field perpendicular to the sample plane. At 4 K, both samples exhibit negative magneto-photoconductance below 4 T, which is as a result of weak-antilocalization of Dirac fermions similar to the previous observations in electrical transport. However the thinner sample shows positive magneto-photoconductance above 4 T. This can be attributed to the coupling of surface states. On the other hand, the thicker sample shows no positive magneto-photoconductance up to 7 T since there is only one surface state at play. By fitting the magneto-photoconductivity data of the thicker sample to the localization formula, we obtain weak antilocalization behaviour at 4, 10, and 20 K, as expected; however, weak localization behaviour at 30 K, which is a sign of surface states masked by bulk states. Also, from the temperature dependence of phase coherence length bulk carrier-carrier interaction is identified separately from the surface states. Therefore, it is possible to distinguish surface states by magneto-photoconductivity at low temperature, even in metallic samples.

  18. Interference of Locally Forced Internal Waves in Non-Uniform Stratifications

    NASA Astrophysics Data System (ADS)

    Supekar, Rohit; Peacock, Thomas

    2017-11-01

    Several studies have investigated the effect of constructive or destructive interference on the transmission of internal waves propagating through non-uniform stratifications. Such studies have been performed for internal waves that are spatiotemporally harmonic. To understand the effect of localization, we perform a theoretical and experimental study of the transmission of two-dimensional internal waves that are generated by a spatiotemporally localized boundary forcing. This is done by considering an idealized problem and applying a weakly viscous semi-analytic linear model. Parametric studies using this model show that localization leads to the disappearance of transmission peaks and troughs that would otherwise be present for a harmonic forcing. Laboratory experiments that we perform provide a clear indication of this physical effect. Based on the group velocity and angle of propagation of the internal waves, a practical criteria that assesses when the transmission peaks or troughs are evident, is obtained. It is found that there is a significant difference in the predicted energy transfer due to a harmonic and non-harmonic forcing which has direct implications to various physical forcings such as a storm over the ocean.

  19. Non-equilibrium coherence dynamics in one-dimensional Bose gases.

    PubMed

    Hofferberth, S; Lesanovsky, I; Fischer, B; Schumm, T; Schmiedmayer, J

    2007-09-20

    Low-dimensional systems provide beautiful examples of many-body quantum physics. For one-dimensional (1D) systems, the Luttinger liquid approach provides insight into universal properties. Much is known of the equilibrium state, both in the weakly and strongly interacting regimes. However, it remains a challenge to probe the dynamics by which this equilibrium state is reached. Here we present a direct experimental study of the coherence dynamics in both isolated and coupled degenerate 1D Bose gases. Dynamic splitting is used to create two 1D systems in a phase coherent state. The time evolution of the coherence is revealed through local phase shifts of the subsequently observed interference patterns. Completely isolated 1D Bose gases are observed to exhibit universal sub-exponential coherence decay, in excellent agreement with recent predictions. For two coupled 1D Bose gases, the coherence factor is observed to approach a non-zero equilibrium value, as predicted by a Bogoliubov approach. This coupled-system decay to finite coherence is the matter wave equivalent of phase-locking two lasers by injection. The non-equilibrium dynamics of superfluids has an important role in a wide range of physical systems, such as superconductors, quantum Hall systems, superfluid helium and spin systems. Our experiments studying coherence dynamics show that 1D Bose gases are ideally suited for investigating this class of phenomena.

  20. Epi-Two-Dimensional Fluid Flow: A New Topological Paradigm for Dimensionality

    NASA Astrophysics Data System (ADS)

    Yoshida, Z.; Morrison, P. J.

    2017-12-01

    While a variety of fundamental differences are known to separate two-dimensional (2D) and three-dimensional (3D) fluid flows, it is not well understood how they are related. Conventionally, dimensional reduction is justified by an a priori geometrical framework; i.e., 2D flows occur under some geometrical constraint such as shallowness. However, deeper inquiry into 3D flow often finds the presence of local 2D-like structures without such a constraint, where 2D-like behavior may be identified by the integrability of vortex lines or vanishing local helicity. Here we propose a new paradigm of flow structure by introducing an intermediate class, termed epi-two-dimensional flow, and thereby build a topological bridge between 2D and 3D flows. The epi-2D property is local and is preserved in fluid elements obeying ideal (inviscid and barotropic) mechanics; a local epi-2D flow may be regarded as a "particle" carrying a generalized enstrophy as its charge. A finite viscosity may cause "fusion" of two epi-2D particles, generating helicity from their charges giving rise to 3D flow.

  1. Measuring three-dimensional interaction potentials using optical interference.

    PubMed

    Mojarad, Nassir; Sandoghdar, Vahid; Krishnan, Madhavi

    2013-04-22

    We describe the application of three-dimensional (3D) scattering interferometric (iSCAT) imaging to the measurement of spatial interaction potentials for nano-objects in solution. We study electrostatically trapped gold particles in a nanofluidic device and present details on axial particle localization in the presence of a strongly reflecting interface. Our results demonstrate high-speed (~kHz) particle tracking with subnanometer localization precision in the axial and average 2.5 nm in the lateral dimension. A comparison of the measured levitation heights of trapped particles with the calculated values for traps of various geometries reveals good agreement. Our work demonstrates that iSCAT imaging delivers label-free, high-speed and accurate 3D tracking of nano-objects conducive to probing weak and long-range interaction potentials in solution.

  2. Three-Dimensional Model of Heat and Mass Transfer in Fractured Rocks to Estimate Environmental Conditions Along Heated Drifts

    NASA Astrophysics Data System (ADS)

    Fedors, R. W.; Painter, S. L.

    2004-12-01

    Temperature gradients along the thermally-perturbed drifts of the potential high-level waste repository at Yucca Mountain, Nevada, will drive natural convection and associated heat and mass transfer along drifts. A three-dimensional, dual-permeability, thermohydrological model of heat and mass transfer was used to estimate the magnitude of temperature gradients along a drift. Temperature conditions along heated drifts are needed to support estimates of repository-edge cooling and as input to computational fluid dynamics modeling of in-drift axial convection and the cold-trap process. Assumptions associated with abstracted heat transfer models and two-dimensional thermohydrological models weakly coupled to mountain-scale thermal models can readily be tested using the three-dimensional thermohydrological model. Although computationally expensive, the fully coupled three-dimensional thermohydrological model is able to incorporate lateral heat transfer, including host rock processes of conduction, convection in gas phase, advection in liquid phase, and latent-heat transfer. Results from the three-dimensional thermohydrological model showed that weakly coupling three-dimensional thermal and two-dimensional thermohydrological models lead to underestimates of temperatures and underestimates of temperature gradients over large portions of the drift. The representative host rock thermal conductivity needed for abstracted heat transfer models are overestimated using the weakly coupled models. If axial flow patterns over large portions of drifts are not impeded by the strong cross-sectional flow patterns imparted by the heat rising directly off the waste package, condensation from the cold-trap process will not be limited to the extreme ends of each drift. Based on the three-dimensional thermohydrological model, axial temperature gradients occur sooner over a larger portion of the drift, though high gradients nearest the edge of the potential repository are dampened. This abstract is an independent product of CNWRA and does not necessarily reflect the view or regulatory position of the Nuclear Regulatory Commission.

  3. Anderson transition in a three-dimensional kicked rotor

    NASA Astrophysics Data System (ADS)

    Wang, Jiao; García-García, Antonio M.

    2009-03-01

    We investigate Anderson localization in a three-dimensional (3D) kicked rotor. By a finite-size scaling analysis we identify a mobility edge for a certain value of the kicking strength k=kc . For k>kc dynamical localization does not occur, all eigenstates are delocalized and the spectral correlations are well described by Wigner-Dyson statistics. This can be understood by mapping the kicked rotor problem onto a 3D Anderson model (AM) where a band of metallic states exists for sufficiently weak disorder. Around the critical region k≈kc we carry out a detailed study of the level statistics and quantum diffusion. In agreement with the predictions of the one parameter scaling theory (OPT) and with previous numerical simulations, the number variance is linear, level repulsion is still observed, and quantum diffusion is anomalous with ⟨p2⟩∝t2/3 . We note that in the 3D kicked rotor the dynamics is not random but deterministic. In order to estimate the differences between these two situations we have studied a 3D kicked rotor in which the kinetic term of the associated evolution matrix is random. A detailed numerical comparison shows that the differences between the two cases are relatively small. However in the deterministic case only a small set of irrational periods was used. A qualitative analysis of a much larger set suggests that deviations between the random and the deterministic kicked rotor can be important for certain choices of periods. Heuristically it is expected that localization effects will be weaker in a nonrandom potential since destructive interference will be less effective to arrest quantum diffusion. However we have found that certain choices of irrational periods enhance Anderson localization effects.

  4. Two-dimensional topological superconducting phases emerged from d-wave superconductors in proximity to antiferromagnets

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-Yi; Wang, Ziqiang; Zhang, Guang-Ming

    2017-05-01

    Motivated by the recent observations of nodeless superconductivity in the monolayer CuO2 grown on the Bi2Sr2CaCu2O8+δ substrates, we study the two-dimensional superconducting (SC) phases described by the two-dimensional t\\text-J model in proximity to an antiferromagnetic (AF) insulator. We found that i) the nodal d-wave SC state can be driven via a continuous transition into a nodeless d-wave pairing state by the proximity-induced AF field. ii) The energetically favorable pairing states in the strong field regime have extended s-wave symmetry and can be nodal or nodeless. iii) Between the pure d-wave and s-wave paired phases, there emerge two topologically distinct SC phases with (s+\\text{i}d) symmetry, i.e., the weak and strong pairing phases, and the weak pairing phase is found to be a Z 2 topological superconductor protected by valley symmetry, exhibiting robust gapless nonchiral edge modes. These findings strongly suggest that the high-T c superconductors in proximity to antiferromagnets can realize fully gapped symmetry-protected topological SC.

  5. Large-scale Vortex Generation and Evolution in Short-crested Isolated Wave Breaking

    NASA Astrophysics Data System (ADS)

    Derakhti, M.; Kirby, J. T., Jr.

    2016-12-01

    Peregrine (1999), in discussing the effect of localization of wave energy dissipation as a generation mechanism for vorticity at the scale of individual waves, spurred a wave of study of vorticity dynamics and mixing processes in the wave-driven ocean. In deep water, the limited depth of penetration of breaking effects leads to the conceptual forcing of a "smoke-ring" resulting from the localized cross-section of impulsive forcing (Pizzo and Melville, 2013). In shallow water, depth limitations favor the generation of a quasi-two-dimensional field of vertical vortex structures, with a resulting inverse cascade of energy to low wavenumbers and the evolution of flows such as transient rip currents (Johnson and Pattiaratchi, 2006). In this study, we are examining a more detailed picture of the vorticity field evolving during a localized breaking event, with particular interest in the span from deep water to shallow water, with special attention to the transition from weak to strong bottom control. Using an LES/VOF model (Derakhti and Kirby, 2014), we examine the evolution of coherent vortex structures whose initial scales are determined by the width of the breaking region, and are much larger than the locally-controlled reverse horseshoe structures seen in typical studies of along-crest uniform breaking. We study the persistence of three-dimensionality of these structures and their contribution to the development of depth-integrated vertical vorticity, and comment on the suitability of 2D or quasi-3D models to represent nearshore flow fields.

  6. Survival condition for low-frequency quasi-one-dimensional breathers in a two-dimensional strongly anisotropic crystal

    NASA Astrophysics Data System (ADS)

    Savin, A. V.; Zubova, E. A.; Manevitch, L. I.

    2005-06-01

    We investigate a two-dimensional (2D) strongly anisotropic crystal (2D SAC) on substrate: 2D system of coupled linear chains of particles with strong intrachain and weak interchain interactions, each chain being subjected to the sine background potential. Nonlinear dynamics of one of these chains when the rest of them are fixed is reduced to the well known Frenkel-Kontorova (FK) model. Depending on strengh of the substrate, the 2D SAC models a variety of physical systems: polymer crystals with identical chains having light side groups, an array of inductively coupled long Josephson junctions, anisotropic crystals having light and heavy sublattices. Continuum limit of the FK model, the sine-Gordon (sG) equation, allows two types of soliton solutions: topological solitons and breathers. It is known that the quasi-one-dimensional topological solitons can propagate also in a chain of 2D system of coupled chains and even in a helix chain in a three-dimensional model of polymer crystal. In contrast to this, numerical simulation shows that the long-living breathers inherent to the FK model do not exist in the 2D SAC with weak background potential. The effect changes scenario of kink-antikink collision with small relative velocity: at weak background potential the collision always results only in intensive phonon radiation while kink-antikink recombination in the FK model results in long-living low-frequency sG breather creation. We found the survival condition for breathers in the 2D SAC on substrate depending on breather frequency and strength of the background potential. The survival condition bears no relation to resonances between breather frequency and frequencies of phonon band—contrary to the case of the FK model.

  7. Quantum transport in topological semimetals under magnetic fields

    NASA Astrophysics Data System (ADS)

    Lu, Hai-Zhou; Shen, Shun-Qing

    2017-06-01

    Topological semimetals are three-dimensional topological states of matter, in which the conduction and valence bands touch at a finite number of points, i.e., the Weyl nodes. Topological semimetals host paired monopoles and antimonopoles of Berry curvature at the Weyl nodes and topologically protected Fermi arcs at certain surfaces. We review our recent works on quantum transport in topological semimetals, according to the strength of the magnetic field. At weak magnetic fields, there are competitions between the positive magnetoresistivity induced by the weak anti-localization effect and negative magnetoresistivity related to the nontrivial Berry curvature. We propose a fitting formula for the magnetoconductivity of the weak anti-localization. We expect that the weak localization may be induced by inter-valley effects and interaction effect, and occur in double-Weyl semimetals. For the negative magnetoresistance induced by the nontrivial Berry curvature in topological semimetals, we show the dependence of the negative magnetoresistance on the carrier density. At strong magnetic fields, specifically, in the quantum limit, the magnetoconductivity depends on the type and range of the scattering potential of disorder. The high-field positive magnetoconductivity may not be a compelling signature of the chiral anomaly. For long-range Gaussian scattering potential and half filling, the magnetoconductivity can be linear in the quantum limit. A minimal conductivity is found at the Weyl nodes although the density of states vanishes there.

  8. Travelling-wave solutions of a weakly nonlinear two-dimensional higher-order Kadomtsev-Petviashvili dynamical equation for dispersive shallow-water waves

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.

    2017-01-01

    The propagation of three-dimensional nonlinear irrotational flow of an inviscid and incompressible fluid of the long waves in dispersive shallow-water approximation is analyzed. The problem formulation of the long waves in dispersive shallow-water approximation lead to fifth-order Kadomtsev-Petviashvili (KP) dynamical equation by applying the reductive perturbation theory. By using an extended auxiliary equation method, the solitary travelling-wave solutions of the two-dimensional nonlinear fifth-order KP dynamical equation are derived. An analytical as well as a numerical solution of the two-dimensional nonlinear KP equation are obtained and analyzed with the effects of external pressure flow.

  9. Direct discriminant locality preserving projection with Hammerstein polynomial expansion.

    PubMed

    Chen, Xi; Zhang, Jiashu; Li, Defang

    2012-12-01

    Discriminant locality preserving projection (DLPP) is a linear approach that encodes discriminant information into the objective of locality preserving projection and improves its classification ability. To enhance the nonlinear description ability of DLPP, we can optimize the objective function of DLPP in reproducing kernel Hilbert space to form a kernel-based discriminant locality preserving projection (KDLPP). However, KDLPP suffers the following problems: 1) larger computational burden; 2) no explicit mapping functions in KDLPP, which results in more computational burden when projecting a new sample into the low-dimensional subspace; and 3) KDLPP cannot obtain optimal discriminant vectors, which exceedingly optimize the objective of DLPP. To overcome the weaknesses of KDLPP, in this paper, a direct discriminant locality preserving projection with Hammerstein polynomial expansion (HPDDLPP) is proposed. The proposed HPDDLPP directly implements the objective of DLPP in high-dimensional second-order Hammerstein polynomial space without matrix inverse, which extracts the optimal discriminant vectors for DLPP without larger computational burden. Compared with some other related classical methods, experimental results for face and palmprint recognition problems indicate the effectiveness of the proposed HPDDLPP.

  10. Direct Numerical Simulation of a Temporally Evolving Incompressible Plane Wake: Effect of Initial Conditions on Evolution and Topology

    NASA Technical Reports Server (NTRS)

    Sondergaard, R.; Cantwell, B.; Mansour, N.

    1997-01-01

    Direct numerical simulations have been used to examine the effect of the initial disturbance field on the development of three-dimensionality and the transition to turbulence in the incompressible plane wake. The simulations were performed using a new numerical method for solving the time-dependent, three-dimensional, incompressible Navier-Stokes equations in flows with one infinite and two periodic directions. The method uses standard Fast Fourier Transforms and is applicable to cases where the vorticity field is compact in the infinite direction. Initial disturbances fields examined were combinations of two-dimensional waves and symmetric pairs of 60 deg oblique waves at the fundamental, subharmonic, and sub-subharmonic wavelengths. The results of these simulations indicate that the presence of 60 deg disturbances at the subharmonic streamwise wavelength results in the development of strong coherent three-dimensional structures. The resulting strong three-dimensional rate-of-strain triggers the growth of intense fine scale motions. Wakes initiated with 60 deg disturbances at the fundamental streamwise wavelength develop weak coherent streamwise structures, and do not develop significant fine scale motions, even at high Reynolds numbers. The wakes which develop strong three-dimensional structures exhibit growth rates on par with experimentally observed turbulent plane wakes. Wakes which develop only weak three-dimensional structures exhibit significantly lower late time growth rates. Preliminary studies of wakes initiated with an oblique fundamental and a two-dimensional subharmonic, which develop asymmetric coherent oblique structures at the subharmonic wavelength, indicate that significant fine scale motions only develop if the resulting oblique structures are above an angle of approximately 45 deg.

  11. Shape and Symmetry Determine Two-Dimensional Melting Transitions of Hard Regular Polygons

    NASA Astrophysics Data System (ADS)

    Anderson, Joshua A.; Antonaglia, James; Millan, Jaime A.; Engel, Michael; Glotzer, Sharon C.

    2017-04-01

    The melting transition of two-dimensional systems is a fundamental problem in condensed matter and statistical physics that has advanced significantly through the application of computational resources and algorithms. Two-dimensional systems present the opportunity for novel phases and phase transition scenarios not observed in 3D systems, but these phases depend sensitively on the system and, thus, predicting how any given 2D system will behave remains a challenge. Here, we report a comprehensive simulation study of the phase behavior near the melting transition of all hard regular polygons with 3 ≤n ≤14 vertices using massively parallel Monte Carlo simulations of up to 1 ×106 particles. By investigating this family of shapes, we show that the melting transition depends upon both particle shape and symmetry considerations, which together can predict which of three different melting scenarios will occur for a given n . We show that systems of polygons with as few as seven edges behave like hard disks; they melt continuously from a solid to a hexatic fluid and then undergo a first-order transition from the hexatic phase to the isotropic fluid phase. We show that this behavior, which holds for all 7 ≤n ≤14 , arises from weak entropic forces among the particles. Strong directional entropic forces align polygons with fewer than seven edges and impose local order in the fluid. These forces can enhance or suppress the discontinuous character of the transition depending on whether the local order in the fluid is compatible with the local order in the solid. As a result, systems of triangles, squares, and hexagons exhibit a Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) predicted continuous transition between isotropic fluid and triatic, tetratic, and hexatic phases, respectively, and a continuous transition from the appropriate x -atic to the solid. In particular, we find that systems of hexagons display continuous two-step KTHNY melting. In contrast, due to symmetry incompatibility between the ordered fluid and solid, systems of pentagons and plane-filling fourfold pentilles display a one-step first-order melting of the solid to the isotropic fluid with no intermediate phase.

  12. Critical behavior of two-dimensional vesicles in the deflated regime

    NASA Technical Reports Server (NTRS)

    Banavar, Jayanth R.; Maritan, Amos; Stella, Attilio

    1991-01-01

    The critical behavior of two-dimensional vesicles in the deflated regime is studied analytically using a mapping onto a gauge model, scaling arguments, and exact inequalities. In agreement with the results of earlier studies the critical behavior is governed by a branched-polymer fixed point. The shape of the critical line in the gauge model is deduced in the weak and in the infinitely deflated regime.

  13. 2-D to 3-D global/local finite element analysis of cross-ply composite laminates

    NASA Technical Reports Server (NTRS)

    Thompson, D. Muheim; Griffin, O. Hayden, Jr.

    1990-01-01

    An example of two-dimensional to three-dimensional global/local finite element analysis of a laminated composite plate with a hole is presented. The 'zoom' technique of global/local analysis is used, where displacements of the global/local interface from the two-dimensional global model are applied to the edges of the three-dimensional local model. Three different hole diameters, one, three, and six inches, are considered in order to compare the effect of hole size on the three-dimensional stress state around the hole. In addition, three different stacking sequences are analyzed for the six inch hole case in order to study the effect of stacking sequence. The existence of a 'critical' hole size, where the interlaminar stresses are maximum, is indicated. Dispersion of plies at the same angle, as opposed to clustering, is found to reduce the magnitude of some interlaminar stress components and increase others.

  14. Amplitude-dependent topological edge states in nonlinear phononic lattices

    NASA Astrophysics Data System (ADS)

    Pal, Raj Kumar; Vila, Javier; Leamy, Michael; Ruzzene, Massimo

    2018-03-01

    This work investigates the effect of nonlinearities on topologically protected edge states in one- and two-dimensional phononic lattices. We first show that localized modes arise at the interface between two spring-mass chains that are inverted copies of each other. Explicit expressions derived for the frequencies of the localized modes guide the study of the effect of cubic nonlinearities on the resonant characteristics of the interface, which are shown to be described by a Duffing-like equation. Nonlinearities produce amplitude-dependent frequency shifts, which in the case of a softening nonlinearity cause the localized mode to migrate to the bulk spectrum. The case of a hexagonal lattice implementing a phononic analog of a crystal exhibiting the quantum spin Hall effect is also investigated in the presence of weakly nonlinear cubic springs. An asymptotic analysis provides estimates of the amplitude dependence of the localized modes, while numerical simulations illustrate how the lattice response transitions from bulk-to-edge mode-dominated by varying the excitation amplitude. In contrast with the interface mode of the first example studies, this occurs both for hardening and softening springs. The results of this study provide a theoretical framework for the investigation of nonlinear effects that induce and control topologically protected wave modes through nonlinear interactions and amplitude tuning.

  15. Cross-ply laminates with holes in compression - Straight free-edge stresses determined by two- to three-dimensional global/local finite element analysis

    NASA Technical Reports Server (NTRS)

    Thompson, Danniella Muheim; Griffin, O. Hayden, Jr.; Vidussoni, Marco A.

    1990-01-01

    A practical example of applying two- to three-dimensional (2- to 3-D) global/local finite element analysis to laminated composites is presented. Cross-ply graphite/epoxy laminates of 0.1-in. (0.254-cm) thickness with central circular holes ranging from 1 to 6 in. (2.54 to 15.2 cm) in diameter, subjected to in-plane compression were analyzed. Guidelines for full three-dimensional finite element analysis and two- to three-dimensional global/local analysis of interlaminar stresses at straight free edges of laminated composites are included. The larger holes were found to reduce substantially the interlaminar stresses at the straight free-edge in proximity to the hole. Three-dimensional stress results were obtained for thin laminates which require prohibitive computer resources for full three-dimensional analyses of comparative accuracy.

  16. The polarized Debye sheath effect on Kadomtsev-Petviashvili electrostatic structures in strongly coupled dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahmansouri, M.; Alinejad, H.

    2015-04-15

    We give a theoretical investigation on the dynamics of nonlinear electrostatic waves in a strongly coupled dusty plasma with strong electrostatic interaction between dust grains in the presence of the polarization force (i.e., the force due to the polarized Debye sheath). Adopting a reductive perturbation method, we derived a three-dimensional Kadomtsev-Petviashvili equation that describes the evolution of weakly nonlinear electrostatic localized waves. The energy integral equation is used to study the existence domains of the localized structures. The analysis provides the localized structure existence region, in terms of the effects of strong interaction between the dust particles and polarization force.

  17. Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks

    NASA Astrophysics Data System (ADS)

    Faria, Teresa; Oliveira, José J.

    This paper addresses the local and global stability of n-dimensional Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions for local stability independent of the choice of the delay functions are given, by imposing a weak nondelayed diagonal dominance which cancels the delayed competition effect. The global asymptotic stability of positive equilibria is established under conditions slightly stronger than the ones required for the linear stability. For the case of monotone interactions, however, sharper conditions are presented. This paper generalizes known results for discrete delays to systems with distributed delays. Several applications illustrate the results.

  18. Three dimensional elements with Lagrange multipliers for the modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Kwon, Young-Rok; Lee, Byung-Chai

    2018-07-01

    Three dimensional mixed elements for the modified couple stress theory are proposed. The C1 continuity for the displacement field, which is required because of the curvature term in the variational form of the theory, is satisfied weakly by introducing a supplementary rotation as an independent variable and constraining the relation between the rotation and the displacement with a Lagrange multiplier vector. An additional constraint about the deviatoric curvature is also considered for three dimensional problems. Weak forms with one constraint and two constraints are derived, and four elements satisfying convergence criteria are developed by applying different approximations to each field of independent variables. The elements pass a [InlineEquation not available: see fulltext.] patch test for three dimensional problems. Numerical examples show that the additional constraint could be considered essential for the three dimensional elements, and one of the elements is recommended for practical applications via the comparison of the performances of the elements. In addition, all the proposed elements can represent the size effect well.

  19. Weak coupling of pseudoacoustic phonons and magnon dynamics in the incommensurate spin-ladder compound S r 14 C u 24 O 41

    DOE PAGES

    Chen, Xi; Bansal, Dipanshu; Sullivan, Sean; ...

    2016-10-21

    Intriguing lattice dynamics have been predicted for aperiodic crystals that contain incommensurate substructures. Here we report inelastic neutron scattering measurements of phonon and magnon dispersions in Sr 14Cu 24O 41, which contains incommensurate one-dimensional (1D) chain and two-dimensional (2D) ladder substructures. Two distinct pseudoacoustic phonon modes, corresponding to the sliding motion of one sublattice against the other, are observed for atomic motions polarized along the incommensurate axis. In the long wavelength limit, it is found that the sliding mode shows a remarkably small energy gap of 1.7–1.9 meV, indicating very weak interactions between the two incommensurate sublattices. The measurements alsomore » reveal a gapped and steep linear magnon dispersion of the ladder sublattice. The high group velocity of this magnon branch and weak coupling with acoustic and pseudoacoustic phonons can explain the large magnon thermal conductivity in Sr 14Cu 24O 41 crystals. In addition, the magnon specific heat is determined from the measured total specific heat and phonon density of states and exhibits a Schottky anomaly due to gapped magnon modes of the spin chains. Furthermore, these findings offer new insights into the phonon and magnon dynamics and thermal transport properties of incommensurate magnetic crystals that contain low-dimensional substructures.« less

  20. Surprises in low-dimensional correlated systems

    NASA Astrophysics Data System (ADS)

    Lin, Hsiu-Hau

    In this thesis, correlation effects in low-dimensional systems were studied. In particular, we focus on two systems: a point-contact in the quantum-Hall regime under the influence of ac drive and quasi-one-dimensional ladder materials with generic interactions in weak coupling. Powerful techniques, including renormalization group, quantum field theory, operator product expansions, bosonization,...etc., were employed to extract surprising physics out of these strongly fluctuating systems. We first study the effect of an ac drive on the current-voltage (I-V) characteristics of a tunnel junction between two fractional Quantum Hall fluids at filling nu-1 an odd integer. In a semi-classical limit, the tunneling current exhibits mode-locking, which corresponds to plateaus in the I-V curve at integer multiples of I = ef , with f the ac drive frequency. However, the full quantum model exhibits rounded plateaus centered around the quantized current values due to quantum fluctuations. The locations of these plateaus can serve as an indirect hint of fractional charges. Switching attentions to quasi-one-dimensional coupled-chain systems, we present a systematic weak-coupling renormalization group (RG) technique and find that generally broad regions of the phase space of the ladder materials are unstable to pairing, usually with approximate d-wave symmetry. The dimensional crossovers from 1D to 2D were also discussed. Carbon nanotubes as possible candidates that display such unconventional pairing and interesting physics in weak coupling were discussed. Quite surprisingly, a hidden symmetry was found in the weakly-coupled two-leg ladder. A perturbative renormalization group analysis reveals that at half-filling the model scales onto an exactly soluble SO(8) symmetric Gross-Neveu model. Integrability of the Gross-Neveu model is employed to extract the exact energies, degeneracies and quantum numbers of all the low energy excited states, which fall into degenerate SO(8) multiplets. For generic physical interactions, there are four robust phases which have different SO(8) symmetries but share a common SO(5) symmetry. The effects of marginal chiral interactions were discussed at the end. Finally, we summarize our main results and discuss related open questions for future study.

  1. First and second sound in a two-dimensional harmonically trapped Bose gas across the Berezinskii–Kosterlitz–Thouless transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xia-Ji, E-mail: xiajiliu@swin.edu.au; Hu, Hui, E-mail: hhu@swin.edu.au

    2014-12-15

    We theoretically investigate first and second sound of a two-dimensional (2D) atomic Bose gas in harmonic traps by solving Landau’s two-fluid hydrodynamic equations. For an isotropic trap, we find that first and second sound modes become degenerate at certain temperatures and exhibit typical avoided crossings in mode frequencies. At these temperatures, second sound has significant density fluctuation due to its hybridization with first sound and has a divergent mode frequency towards the Berezinskii–Kosterlitz–Thouless (BKT) transition. For a highly anisotropic trap, we derive the simplified one-dimensional hydrodynamic equations and discuss the sound-wave propagation along the weakly confined direction. Due to themore » universal jump of the superfluid density inherent to the BKT transition, we show that the first sound velocity exhibits a kink across the transition. These predictions might be readily examined in current experimental setups for 2D dilute Bose gases with a sufficiently large number of atoms, where the finite-size effect due to harmonic traps is relatively weak.« less

  2. Multi-Periodic Waves in Shallow Water

    DTIC Science & Technology

    1992-09-01

    models-the Kadomtsev - Petviashvili (KP) equation . The KP equation describes the evolu- tion of weakly nonlinear, weakly two-dimensional waves on water of...experimentally. The analytical model is a family of periodic solutions of the Kadomtsev -Petviashuili equation . The experiments demonstrate the accuracy... Petviashvili Equation (with Norman Schef- fner & Harvey Segur). Proceedings, Nonlinear Water Waves Workshop, University of Bristol. England, 1991. Resonant

  3. Pumping approximately integrable systems

    PubMed Central

    Lange, Florian; Lenarčič, Zala; Rosch, Achim

    2017-01-01

    Weak perturbations can drive an interacting many-particle system far from its initial equilibrium state if one is able to pump into degrees of freedom approximately protected by conservation laws. This concept has for example been used to realize Bose–Einstein condensates of photons, magnons and excitons. Integrable quantum systems, like the one-dimensional Heisenberg model, are characterized by an infinite set of conservation laws. Here, we develop a theory of weakly driven integrable systems and show that pumping can induce large spin or heat currents even in the presence of integrability breaking perturbations, since it activates local and quasi-local approximate conserved quantities. The resulting steady state is qualitatively captured by a truncated generalized Gibbs ensemble with Lagrange parameters that depend on the structure but not on the overall amplitude of perturbations nor the initial state. We suggest to use spin-chain materials driven by terahertz radiation to realize integrability-based spin and heat pumps. PMID:28598444

  4. Depression of positive magneto-conductance due to anti-weak localization effect in annealed In2O3-ZnO thick films

    NASA Astrophysics Data System (ADS)

    B, Shinozaki; S, Ezaki; K, Hidaka; K, Makise; T, Asano; N, Kokubo; K, Yamada; K, Yano; H, Nakamura

    2012-12-01

    We investigated the magneto-conductivity Δ in three dimensional indium zinc oxide films with different resistivity ρ prepared by postannealing in air. The weak localization theory was fitted to data of Δ H) at temperatures below 50K by the use of suitable inelastic scattering time τi(T) and spin-orbit(S-O) scattering time τi. We found the ρ dependences of both times τ and τi in a range 1.5 × 10-3Ω < ρ 300K) <4 × 10-6Ω. As ρ increases, the ratio τi/τ increases from ≍ .005 to ≍ .5 and the Δ - at low temperatures changes from positive to negative values. We suggest a picture that the annealing in air brings the change of the S-O scattering from light to heavy atoms, namely, oxygen to indium and/or zinc atoms.

  5. Two-dimensional Anderson-Hubbard model in the DMFT + {Sigma} approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuchinskii, E. Z., E-mail: kuchinsk@iep.uran.ru; Kuleeva, N. A.; Nekrasov, I. A.

    The density of states, the dynamic (optical) conductivity, and the phase diagram of the paramagnetic two-dimensional Anderson-Hubbard model with strong correlations and disorder are analyzed within the generalized dynamical mean field theory (DMFT + {Sigma} approximation). Strong correlations are accounted by the DMFT, while disorder is taken into account via the appropriate generalization of the self-consistent theory of localization. We consider the two-dimensional system with the rectangular 'bare' density of states (DOS). The DMFT effective single-impurity problem is solved by numerical renormalization group (NRG). The 'correlated metal,' Mott insulator, and correlated Anderson insulator phases are identified from the evolution ofmore » the density of states, optical conductivity, and localization length, demonstrating both Mott-Hubbard and Anderson metal-insulator transitions in two-dimensional systems of finite size, allowing us to construct the complete zero-temperature phase diagram of the paramagnetic Anderson-Hubbard model. The localization length in our approximation is practically independent of the strength of Hubbard correlations. But the divergence of the localization length in a finite-size two-dimensional system at small disorder signifies the existence of an effective Anderson transition.« less

  6. Translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I

    NASA Astrophysics Data System (ADS)

    Takahashi, Masae; Ishikawa, Yoichi

    2013-06-01

    We perform dispersion-corrected first-principles calculations, and far-infrared (terahertz) spectroscopic experiments at 4 K, to examine translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I. The calculated frequencies and relative intensities reproduce the observed spectrum to accuracy of 11 cm-1 or less. The stronger one of the two peaks assigned to the translational mode includes the stretching vibration of the weak hydrogen bond between the acetyl groups of a neighboring one-dimensional chain. The calculation of aspirin form II performed for comparison gives the stretching vibration of the weak hydrogen bond in one-dimensional chain.

  7. Variable-Range Hopping through Marginally Localized Phonons

    NASA Astrophysics Data System (ADS)

    Banerjee, Sumilan; Altman, Ehud

    2016-03-01

    We investigate the effect of coupling Anderson localized particles in one dimension to a system of marginally localized phonons having a symmetry protected delocalized mode at zero frequency. This situation is naturally realized for electrons coupled to phonons in a disordered nanowire as well as for ultracold fermions coupled to phonons of a superfluid in a one-dimensional disordered trap. To determine if the coupled system can be many-body localized we analyze the phonon-mediated hopping transport for both the weak and strong coupling regimes. We show that the usual variable-range hopping mechanism involving a low-order phonon process is ineffective at low temperature due to discreteness of the bath at the required energy. Instead, the system thermalizes through a many-body process involving exchange of a diverging number n ∝-log T of phonons in the low temperature limit. This effect leads to a highly singular prefactor to Mott's well-known formula and strongly suppresses the variable range hopping rate. Finally, we comment on possible implications of this physics in higher dimensional electron-phonon coupled systems.

  8. A frequency-based window width optimized two-dimensional S-Transform profilometry

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Chen, Feng; Xiao, Chao

    2017-11-01

    A new scheme is proposed to as a frequency-based window width optimized two-dimensional S-Transform profilometry, in which parameters pu and pv are introduced to control the width of a two-dimensional Gaussian window. Unlike the standard two-dimensional S-transform using the Gaussian window with window width proportional to the reciprocal local frequency of the tested signal, the size of window width for the optimized two-dimensional S-Transform varies with the pu th (pv th) power of the reciprocal local frequency fx (fy) in x (y) direction. The paper gives a detailed theoretical analysis of optimized two-dimensional S-Transform in fringe analysis as well as the characteristics of the modified Gauss window. Simulations are applied to evaluate the proposed scheme, the results show that the new scheme has better noise reduction ability and can extract phase distribution more precise in comparison with the standard two-dimensional S-transform even though the surface of the measured object varies sharply. Finally, the proposed scheme is demonstrated on three-dimensional surface reconstruction for a complex plastic cat mask to show its effectiveness.

  9. Local non-Calderbank-Shor-Steane quantum error-correcting code on a three-dimensional lattice

    NASA Astrophysics Data System (ADS)

    Kim, Isaac H.

    2011-05-01

    We present a family of non-Calderbank-Shor-Steane quantum error-correcting code consisting of geometrically local stabilizer generators on a 3D lattice. We study the Hamiltonian constructed from ferromagnetic interaction of overcomplete set of local stabilizer generators. The degenerate ground state of the system is characterized by a quantum error-correcting code whose number of encoded qubits are equal to the second Betti number of the manifold. These models (i) have solely local interactions; (ii) admit a strong-weak duality relation with an Ising model on a dual lattice; (iii) have topological order in the ground state, some of which survive at finite temperature; and (iv) behave as classical memory at finite temperature.

  10. Transport Measurements on NEODYMIUM(1.85) CERIUM(.15) Copper OXYGEN(4-DELTA) Thin Films

    NASA Astrophysics Data System (ADS)

    Kussmaul, Andreas

    1992-01-01

    This work describes the synthesis and the study of the transport properties of thin films of Nd _{1.85}Ce_{.15 }CuO_{4-delta} carried out respectively at the IBM T. J. Watson Research Center in collaboration with Dr. A. Gupta, and at the Francis Bitter National Magnet Laboratory under the direction of Dr. P. M. Tedrow. The thin films were prepared by laser ablation of a stoichiometric target on heated substrates in a reactive ambient. The influence of the deposition parameters was studied, and the use of a nitreous oxide ambient was found to yield a clear improvement of the sample quality. The transport properties of the films were measured at low temperatures and in high magnetic fields. Non superconducting samples showed a strong, highly anisotropic, negative magnetoresistance that is consistent with two dimensional weak-localization. Superconducting samples show two dimensional fluctuation effects above T_{c}. The theory of fluctuations in a magnetic field was used to extract the position of H_{c2} (in the perpendicular direction) in the broad and almost featureless resistive transition, and the extracted values were fit to the theory of dirty superconductors. The angular dependence of the resistive transition was studied close to T _{c} and found to be somewhat better described by a two-dimensional model. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  11. Interfacial energetics of two-dimensional colloidal clusters generated with a tunable anharmonic interaction potential

    NASA Astrophysics Data System (ADS)

    Hilou, Elaa; Du, Di; Kuei, Steve; Biswal, Sibani Lisa

    2018-02-01

    Interfacial characteristics are critical to various properties of two-dimensional (2D) materials such as band alignment at a heterojunction and nucleation kinetics in a 2D crystal. Despite the desire to harness these enhanced interfacial properties for engineering new materials, unexpected phase transitions and defects, unique to the 2D morphology, have left a number of open questions. In particular, the effects of configurational anisotropy, which are difficult to isolate experimentally, and their influence on interfacial properties are not well understood. In this work, we begin to probe this structure-thermodynamic relationship, using a rotating magnetic field to generate an anharmonic interaction potential in a 2D system of paramagnetic particles. At low magnetic field strengths, weakly interacting colloidal particles form non-close-packed, fluidlike droplets, whereas, at higher field strengths, crystallites with hexagonal ordering are observed. We examine spatial and interfacial properties of these 2D colloidal clusters by measuring the local bond orientation order parameter and interfacial stiffness as a function of the interaction strength. To our knowledge, this is the first study to measure the tunable interfacial stiffness of a 2D colloidal cluster by controlling particle interactions using external fields.

  12. Extrinsic curvature, geometric optics, and lamellar order on curved substrates

    NASA Astrophysics Data System (ADS)

    Kamien, Randall D.; Nelson, David R.; Santangelo, Christian D.; Vitelli, Vincenzo

    2009-11-01

    When thermal energies are weak, two-dimensional lamellar structures confined on a curved substrate display complex patterns arising from the competition between layer bending and compression in the presence of geometric constraints. We present broad design principles to engineer the geometry of the underlying substrate so that a desired lamellar pattern can be obtained by self-assembly. Two distinct physical effects are identified as key factors that contribute to the interaction between the shape of the underlying surface and the resulting lamellar morphology. The first is a local ordering field for the direction of each individual layer, which tends to minimize its curvature with respect to the three-dimensional embedding. The second is a nonlocal effect controlled by the intrinsic geometry of the surface that forces the normals to the (nearly incompressible) layers to lie on geodesics, leading to caustic formation as in optics. As a result, different surface morphologies with predominantly positive or negative Gaussian curvature can act as converging or diverging lenses, respectively. By combining these ingredients, as one would with different optical elements, complex lamellar morphologies can be obtained. This smectic optometry enables the manipulation of lamellar configurations for the design of materials.

  13. Computation for Electromigration in Interconnects of Microelectronic Devices

    NASA Astrophysics Data System (ADS)

    Averbuch, Amir; Israeli, Moshe; Ravve, Igor; Yavneh, Irad

    2001-03-01

    Reliability and performance of microelectronic devices depend to a large extent on the resistance of interconnect lines. Voids and cracks may occur in the interconnects, causing a severe increase in the total resistance and even open circuits. In this work we analyze void motion and evolution due to surface diffusion effects and applied external voltage. The interconnects under consideration are three-dimensional (sandwich) constructs made of a very thin metal film of possibly variable thickness attached to a substrate of nonvanishing conductance. A two-dimensional level set approach was applied to study the dynamics of the moving (assumed one-dimensional) boundary of a void in the metal film. The level set formulation of an electromigration and diffusion model results in a fourth-order nonlinear (two-dimensional) time-dependent PDE. This equation was discretized by finite differences on a regular grid in space and a Runge-Kutta integration scheme in time, and solved simultaneously with a second-order static elliptic PDE describing the electric potential distribution throughout the interconnect line. The well-posed three-dimensional problem for the potential was approximated via singular perturbations, in the limit of small aspect ratio, by a two-dimensional elliptic equation with variable coefficients describing the combined local conductivity of metal and substrate (which is allowed to vary in time and space). The difference scheme for the elliptic PDE was solved by a multigrid technique at each time step. Motion of voids in both weak and strong electric fields was examined, and different initial void configurations were considered, including circles, ellipses, polygons with rounded corners, a butterfly, and long grooves. Analysis of the void behavior and its influence on the resistance gives the circuit designer a tool for choosing the proper parameters of an interconnect (width-to-length ratio, properties of the line material, conductivity of the underlayer, etc.).

  14. Localized versus itinerant states created by multiple oxygen vacancies in SrTiO3

    NASA Astrophysics Data System (ADS)

    Jeschke, Harald O.; Shen, Juan; Valentí, Roser

    2015-02-01

    Oxygen vacancies in strontium titanate surfaces (SrTiO3) have been linked to the presence of a two-dimensional electron gas with unique behavior. We perform a detailed density functional theory study of the lattice and electronic structure of SrTiO3 slabs with multiple oxygen vacancies, with a main focus on two vacancies near a titanium dioxide terminated SrTiO3 surface. We conclude based on total energies that the two vacancies preferably inhabit the first two layers, i.e. they cluster vertically, while in the direction parallel to the surface, the vacancies show a weak tendency towards equal spacing. Analysis of the nonmagnetic electronic structure indicates that oxygen defects in the surface TiO2 layer lead to population of Ti {{t}2g} states and thus itinerancy of the electrons donated by the oxygen vacancy. In contrast, electrons from subsurface oxygen vacancies populate Ti eg states and remain localized on the two Ti ions neighboring the vacancy. We find that both the formation of a bound oxygen-vacancy state composed of hybridized Ti 3eg and 4p states neighboring the oxygen vacancy as well as the elastic deformation after extracting oxygen contribute to the stabilization of the in-gap state.

  15. Experimental Observation of Two-Dimensional Anderson Localization with the Atomic Kicked Rotor.

    PubMed

    Manai, Isam; Clément, Jean-François; Chicireanu, Radu; Hainaut, Clément; Garreau, Jean Claude; Szriftgiser, Pascal; Delande, Dominique

    2015-12-11

    Dimension 2 is expected to be the lower critical dimension for Anderson localization in a time-reversal-invariant disordered quantum system. Using an atomic quasiperiodic kicked rotor-equivalent to a two-dimensional Anderson-like model-we experimentally study Anderson localization in dimension 2 and we observe localized wave function dynamics. We also show that the localization length depends exponentially on the disorder strength and anisotropy and is in quantitative agreement with the predictions of the self-consistent theory for the 2D Anderson localization.

  16. Numerical analysis of the Anderson localization

    NASA Astrophysics Data System (ADS)

    Markoš, P.

    2006-10-01

    The aim of this paper is to demonstrate, by simple numerical simulations, the main transport properties of disordered electron systems. These systems undergo the metal insulator transition when either Fermi energy crosses the mobility edge or the strength of the disorder increases over critical value. We study how disorder affects the energy spectrum and spatial distribution of electronic eigenstates in the diffusive and insulating regime, as well as in the critical region of the metal-insulator transition. Then, we introduce the transfer matrix and conductance, and we discuss how the quantum character of the electron propagation influences the transport properties of disordered samples. In the weakly disordered systems, the weak localization and anti-localization as well as the universal conductance fluctuation are numerically simulated and discussed. The localization in the one dimensional system is described and interpreted as a purely quantum effect. Statistical properties of the conductance in the critical and localized regimes are demonstrated. Special attention is given to the numerical study of the transport properties of the critical regime and to the numerical verification of the single parameter scaling theory of localization. Numerical data for the critical exponent in the orthogonal models in dimension 2 < d, ≤ 5 are compared with theoretical predictions. We argue that the discrepancy between the theory and numerical data is due to the absence of the self-averaging of transmission quantities. This complicates the analytical analysis of the disordered systems. Finally, theoretical methods of description of weakly disordered systems are explained and their possible generalization to the localized regime is discussed. Since we concentrate on the one-electron propagation at zero temperature, no effects of electron-electron interaction and incoherent scattering are discussed in the paper.

  17. Role of spin diffusion in current-induced domain wall motion for disordered ferromagnets

    NASA Astrophysics Data System (ADS)

    Akosa, Collins Ashu; Kim, Won-Seok; Bisig, André; Kläui, Mathias; Lee, Kyung-Jin; Manchon, Aurélien

    2015-03-01

    Current-induced spin transfer torque and magnetization dynamics in the presence of spin diffusion in disordered magnetic textures is studied theoretically. We demonstrate using tight-binding calculations that weak, spin-conserving impurity scattering dramatically enhances the nonadiabaticity. To further explore this mechanism, a phenomenological drift-diffusion model for incoherent spin transport is investigated. We show that incoherent spin diffusion indeed produces an additional spatially dependent torque of the form ˜∇2[m ×(u .∇ ) m ] +ξ ∇2[(u .∇ ) m ] , where m is the local magnetization direction, u is the direction of injected current, and ξ is a parameter characterizing the spin dynamics (precession, dephasing, and spin-flip). This torque, which scales as the inverse square of the domain wall width, only weakly enhances the longitudinal velocity of a transverse domain wall but significantly enhances the transverse velocity of vortex walls. The spatial-dependent spin transfer torque uncovered in this study is expected to have significant impact on the current-driven motion of abrupt two-dimensional textures such as vortices, skyrmions, and merons.

  18. On Substrate for Atomic Chain Electronics

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Bauschlicher, Charles W., Jr.; Partridge, Harry; Saini, Subhash (Technical Monitor)

    1998-01-01

    A substrate for future atomic chain electronics, where adatoms are placed at designated positions and form atomically precise device components, is studied theoretically. The substrate has to serve as a two-dimensional template for adatom mounting with a reasonable confinement barrier and also provide electronic isolation, preventing unwanted coupling between independent adatom structures. However, the two requirements conflict. For excellent electronic isolation, we may seek adatom confinement via van der Waals interaction without chemical bonding to the substrate atoms, but the confinement turns out to be very weak and hence unsatisfactory. An alternative chemical bonding scheme with excellent structural strength is examined, but even fundamental adatom chain properties such as whether chains are semiconducting or metallic are strongly influenced by the nature of the chemical bonding, and electronic isolation is not always achieved. Conditions for obtaining semiconducting chains with well-localized surface-modes, leading to good isolation, are clarified and discussed.

  19. Joint statistics of strongly correlated neurons via dimensionality reduction

    NASA Astrophysics Data System (ADS)

    Deniz, Taşkın; Rotter, Stefan

    2017-06-01

    The relative timing of action potentials in neurons recorded from local cortical networks often shows a non-trivial dependence, which is then quantified by cross-correlation functions. Theoretical models emphasize that such spike train correlations are an inevitable consequence of two neurons being part of the same network and sharing some synaptic input. For non-linear neuron models, however, explicit correlation functions are difficult to compute analytically, and perturbative methods work only for weak shared input. In order to treat strong correlations, we suggest here an alternative non-perturbative method. Specifically, we study the case of two leaky integrate-and-fire neurons with strong shared input. Correlation functions derived from simulated spike trains fit our theoretical predictions very accurately. Using our method, we computed the non-linear correlation transfer as well as correlation functions that are asymmetric due to inhomogeneous intrinsic parameters or unequal input.

  20. Formation of Spiral-Arm Spurs and Bound Clouds in Vertically Stratified Galactic Gas Disks

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Tae; Ostriker, Eve C.

    2006-07-01

    We investigate the growth of spiral-arm substructure in vertically stratified, self-gravitating, galactic gas disks, using local numerical MHD simulations. Our new models extend our previous two-dimensional studies, which showed that a magnetized spiral shock in a thin disk can undergo magneto-Jeans instability (MJI), resulting in regularly spaced interarm spur structures and massive gravitationally bound fragments. Similar spur (or ``feather'') features have recently been seen in high-resolution observations of several galaxies. Here we consider two sets of numerical models: two-dimensional simulations that use a ``thick-disk'' gravitational kernel, and three-dimensional simulations with explicit vertical stratification. Both models adopt an isothermal equation of state with cs=7 km s-1. When disks are sufficiently magnetized and self-gravitating, the result in both sorts of models is the growth of spiral-arm substructure similar to that in our previous razor-thin models. Reduced self-gravity due to nonzero disk thickness increases the spur spacing to ~10 times the Jeans length at the arm peak. Bound clouds that form from spur fragmentation have masses ~(1-3)×107 Msolar each, similar to the largest observed GMCs. The mass-to-flux ratios and specific angular momenta of the bound condensations are lower than large-scale galactic values, as is true for observed GMCs. We find that unmagnetized or weakly magnetized two-dimensional models are unstable to the ``wiggle instability'' previously identified by Wada & Koda. However, our fully three-dimensional models do not show this effect. Nonsteady motions and strong vertical shear prevent coherent vortical structures from forming, evidently suppressing the wiggle instability. We also find no clear traces of Parker instability in the nonlinear spiral arm substructures that emerge, although conceivably Parker modes may help seed the MJI at early stages since azimuthal wavelengths are similar.

  1. Weak limit of the three-state quantum walk on the line

    NASA Astrophysics Data System (ADS)

    Falkner, Stefan; Boettcher, Stefan

    2014-07-01

    We revisit the one-dimensional discrete time quantum walk with three states and the Grover coin, the simplest model that exhibits localization in a quantum walk. We derive analytic expressions for the localization and a long-time approximation for the entire probability density function (PDF). We find the possibility for asymmetric localization to the extreme that it vanishes completely on one site of the initial conditions. We also connect the time-averaged approximation of the PDF found by Inui et al. [Phys. Rev. E 72, 056112 (2005), 10.1103/PhysRevE.72.056112] to a spatial average of the walk. We show that this smoothed approximation predicts moments of the real PDF accurately.

  2. Three-dimensional six-connecting organic building blocks based on polychlorotriphenylmethyl units--synthesis, self-assembly, and magnetic properties.

    PubMed

    Roques, Nans; Maspoch, Daniel; Wurst, Klaus; Ruiz-Molina, Daniel; Rovira, Concepció; Veciana, Jaume

    2006-12-13

    The synthesis of a three-dimensional, six-connecting, organic building block based on a robust, rigid, and open-shell polychlorotriphenylmethyl (PTM) unit (radical 1) is reported, and its self-assembly properties are described in detail. The tendencies of this highly polar molecule and its hydrogenated precursor, compound 4, to form hydrogen bonds with oxygenated solvents ([1THF(6)] and [4THF(6)]) were reduced by replacing THF with diethyl ether in the crystallization process to yield two-dimensional (2D) hydrogen-bonded structures ([1(Et(2)O)(3)] and [4(Et(2)O)(3)]). The presence of direct hydrogen bonds between the radicals in the latter phase of 1 gives rise to very weak ferromagnetic intermolecular interactions at low temperatures, whereas when the radicals are isolated by THF molecules these interactions are antiferromagnetic and very weak. The role played by the carboxylic groups not only in the self-assembly properties but also in the transmission of the magnetic interactions has been illustrated by determination of the crystal structure and measurement of the magnetic properties of the corresponding hexaester radical 6, in which the close packing of molecular units gives rise to weak antiferromagnetic intermolecular interactions. Attempts to avoid solvation of the molecules in the solid state and to increase the structural and magnetic dimensionality were pursued by recrystallization of both compounds 1 and 4 from concentrated nitric acid, affording two three-dimensional (3D) robust hydrogen-bonded structures. While the structure obtained with compound 4 is characterized by the presence of polar channels and boxes containing water guest molecules along the c axis, radical 1 was oxidized to the corresponding fuchsone 10, which presented a completely different close-packed, guest-free structure.

  3. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

    PubMed

    Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras; Coleman, Jonathan N; Strano, Michael S

    2012-11-01

    The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS(2), MoSe(2), WS(2) and WSe(2) have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.

  4. The effects of temperature and magnetic flux on electron transport through a four-channel DNA model

    NASA Astrophysics Data System (ADS)

    Lee, Sunhee; Hedin, Eric; Joe, Yong

    2010-03-01

    The temperature dependence of the conductivity of lambda phage DNA has been measured by Tran et al [1] experimentally, where the conductivity displayed strong (weak) temperature dependence above (below) a threshold temperature. In order to understand the temperature effects of electron transport theoretically, we study a two-dimensional and four-channel DNA model using a tight-binding (TB) Hamiltonian. The thermal effects within a TB model are incorporated into the hopping integral and the relative twist angle from its equilibrium value between base-pairs. Since these thermal structural fluctuations localize the electronic wave functions in DNA, we examine a temperature-dependent localization length, a temperature-driven transmission, and current-voltage characteristics in this system. In addition, we incorporate magnetic field effects into the analysis of the transmission through DNA in order to modulate the quantum interference between the electron paths that comprise the 4-channel structure. [1] P. Tran, B. Alavi, and G. Gruner, PRL 85, 1564 (2000).

  5. Flow of a Casson fluid through a locally-constricted porous channel: a numerical study

    NASA Astrophysics Data System (ADS)

    Amlimohamadi, Haleh; Akram, Maryammosadat; Sadeghy, Kayvan

    2016-05-01

    Flow of a Casson fluid through a two-dimensional porous channel containing a local constriction is numerically investigated assuming that the resistance offered by the porous medium obeys the Darcy's law. Treating the constriction as another porous medium which obeys the Darcy-Forcheimer model, the equations governing fluid flow in the main channel and the constriction itself are numerically solved using the finite-volume method (FVM) based on the pseudo-transient SIMPLE algorithm. It is shown that an increase in the porosity of the channel decreases the shear stress exerted on the constriction. On the other hand, an increase in the fluid's yield stress is predicted to increase the maximum shear stress experienced by the constriction near its crest. The porosity of the constriction itself is predicted to have a negligible effect on the plaque's shear stress. But, the momentum of the weak flow passing through the constriction is argued to lower the bulk fluid from separating downstream of the constriction.

  6. TRILEX and G W +EDMFT approach to d -wave superconductivity in the Hubbard model

    NASA Astrophysics Data System (ADS)

    Vučičević, J.; Ayral, T.; Parcollet, O.

    2017-09-01

    We generalize the recently introduced TRILEX approach (TRiply irreducible local EXpansion) to superconducting phases. The method treats simultaneously Mott and spin-fluctuation physics using an Eliashberg theory supplemented by local vertex corrections determined by a self-consistent quantum impurity model. We show that, in the two-dimensional Hubbard model, at strong coupling, TRILEX yields a d -wave superconducting dome as a function of doping. Contrary to the standard cluster dynamical mean field theory (DMFT) approaches, TRILEX can capture d -wave pairing using only a single-site effective impurity model. We also systematically explore the dependence of the superconducting temperature on the bare dispersion at weak coupling, which shows a clear link between strong antiferromagnetic (AF) correlations and the onset of superconductivity. We identify a combination of hopping amplitudes particularly favorable to superconductivity at intermediate doping. Finally, we study within G W +EDMFT the low-temperature d -wave superconducting phase at strong coupling in a region of parameter space with reduced AF fluctuations.

  7. Quantum phases of disordered three-dimensional Majorana-Weyl fermions

    NASA Astrophysics Data System (ADS)

    Wilson, Justin H.; Pixley, J. H.; Goswami, Pallab; Das Sarma, S.

    2017-04-01

    The gapless Bogoliubov-de Gennes (BdG) quasiparticles of a clean three-dimensional spinless px+i py superconductor provide an intriguing example of a thermal Hall semimetal (ThSM) phase of Majorana-Weyl fermions; such a phase can support a large anomalous thermal Hall conductivity and protected surface Majorana-Fermi arcs at zero energy. We study the effects of quenched disorder on such a gapless topological phase by carrying out extensive numerical and analytical calculations on a lattice model for a disordered, spinless px+i py superconductor. Using the kernel polynomial method, we compute both average and typical density of states for the BdG quasiparticles, from which we construct the phase diagram of three-dimensional dirty px+i py superconductors as a function of disorder strength and chemical potential of the underlying normal state. We establish that the power law quasilocalized states induced by rare statistical fluctuations of the disorder potential give rise to an exponentially small density of states at zero energy, and even infinitesimally weak disorder converts the ThSM into a thermal diffusive Hall metal (ThDM). Consequently, the phase diagram of the disordered model only consists of ThDM and thermal insulating phases. We show the existence of two types of thermal insulators: (i) a trivial thermal band insulator (ThBI) [or BEC phase] with a smeared gap that can occur for suitable band parameters and all strengths of disorder, supporting only exponentially localized Lifshitz states (at low energy) and (ii) a thermal Anderson insulator that only exists for large disorder strengths compared to all band parameters. We determine the nature of the two distinct localization-delocalization transitions between these two types of insulators and ThDM. Additionally, we establish the scaling properties of an avoided (or hidden) quantum critical point for moderate disorder strengths, which govern the crossover between ThSM and ThDM phases over a wide range of energy scales. We also discuss the experimental relevance of our findings for three-dimensional, time reversal symmetry breaking, triplet superconducting states.

  8. Weak-triplet, color-octet scalars and the CDF dijet excess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobrescu, Bogdan A.; Krnjaic, Gordan Z.

    2012-04-24

    We extend the standard model to include a weak-triplet and color-octet scalar. This 'octo-triplet' field consists of three particles, two charged and one neutral, whose masses and renormalizable interactions depend only on two new parameters. The charged octo-triplet decay into a W boson and a gluon is suppressed by a loop factor and an accidental cancellation. Thus, the main decays of the charged octo-triplet may occur through higher-dimensional operators, mediated by a heavy vectorlike fermion, into quark pairs. For an octo-triplet mass below the tb¯ threshold, the decay into Wb b¯ through an off-shell top quark has a width comparablemore » to that into cs¯ or cb¯. Pair production with one octo-triplet decaying to two jets and the other decaying to a W and two soft b jets may explain the dijet-plus-W excess reported by the CDF Collaboration. The same higher-dimensional operators lead to CP violation in B s-B¯ s mixing.« less

  9. UV-active plasmons in alkali and alkaline-earth intercalated graphene

    NASA Astrophysics Data System (ADS)

    Despoja, V.; Marušić, L.

    2018-05-01

    The interband π and π +σ plasmons in pristine graphene and the Dirac plasmon in doped graphene are not applicable, since they are broad or weak, and weakly couple to an external longitudinal or electromagnetic probe. Therefore, the ab initio density functional theory is used to demonstrate that the chemical doping of the graphene by the alkali or alkaline-earth atoms dramatically changes the poor graphene excitation spectrum in the ultraviolet frequency range (4-10 eV). Four prominent modes are detected. Two of them are the intralayer plasmons with square-root dispersion, characteristic of the two-dimensional modes. The remaining two are the interlayer plasmons, very strong in the long-wavelength limit but damped for larger wave vectors. The optical absorption calculations show that the interlayer plasmons are both optically active, which makes these materials suitable for small-organic-molecule sensing. This is particularly intriguing because the optically active two-dimensional plasmons have not been detected in other materials.

  10. Study of a structural phase transition by two dimensional Fourier transform NMR method

    NASA Astrophysics Data System (ADS)

    Trokiner, A.; Man, P. P.; Théveneau, H.; Papon, P.

    1985-09-01

    The fluoroperovskite RbCaF 3 undergoes a structural phase transition at 195.5 K, from a cubic phase where the 87Rb nuclei have no quadrupolar interaction ( ωQ= 0) to a tetragonal phase where ω Q ≠ O. The transition is weakly first-order. A two-dimensional FT NMR experiment has been performed on 87Rb ( I = {3}/{2}) in a single crystal in both phases and in the vicinity of the phase transition. Our results show the coexistence of the two phases at the phase transition.

  11. Correlation Between Transperineal 3-Dimensional Ultrasound Measurements of Levator Hiatus and Female Sexual Function.

    PubMed

    Aydin, Serdar; Bakar, Rabia Zehra; Arioğlu Aydin, Çağri; Ateş, Seda

    The aim of this study is to investigate the association of sexual functions with levator hiatus biometry measurements and levator ani muscle defect. In 62 heterosexual, sexually active premenopausal women without pelvic floor disorders or urinary incontinence, 3-dimensional transperineal ultrasound imaging was used. Two 3-dimensional volumes were recorded, one at rest and one on Valsalva maneuver. Levator biometry measurements and levator defect were evaluated in an axial plane. Sexual function was assessed by a validated questionnaire, Female Sexual Function Index (FSFI). The primary outcome measure was correlation of sexual functions with the levator hiatus area, transverse and anteroposterior diameters, levator ani muscle thickness, vaginal length, and changes in measurements with Valsalva and levator defect. Forty-two women (67.7%) had low total FSFI scores (<26.55). Levator defect rates were similar in female sexual dysfunction (7/42, 16.7%) and women without female sexual dysfunction (5/20, 25%). The FSFI was negatively and weakly correlated with Δhiatal anteroposterior diameter (r = -0.33, P < 0.009) in the study population. There was a weak and inverse correlation between Δhiatal anteroposterior diameter and arousal (r = -0.35, P < 0.002), desire (r = -0.38, P < 0.001), and orgasm (r = -0.33, P < 0.007). Pain and lubrication did not correlate with any measurement. Hiatal area and diameters at rest are not related to sexual functions. Changes in anteroposterior diameter of the levator hiatus during Valsalva, which may be a sign of pelvic floor laxity or levator muscle weakness, are weakly associated with sexual functions, particularly desire, arousal, and orgasm domains.

  12. One- and Two-dimensional Solitary Wave States in the Nonlinear Kramers Equation with Movement Direction as a Variable

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Ishibashi, Kazuya

    2018-06-01

    We study self-propelled particles by direct numerical simulation of the nonlinear Kramers equation for self-propelled particles. In our previous paper, we studied self-propelled particles with velocity variables in one dimension. In this paper, we consider another model in which each particle exhibits directional motion. The movement direction is expressed with a variable ϕ. We show that one-dimensional solitary wave states appear in direct numerical simulations of the nonlinear Kramers equation in one- and two-dimensional systems, which is a generalization of our previous result. Furthermore, we find two-dimensionally localized states in the case that each self-propelled particle exhibits rotational motion. The center of mass of the two-dimensionally localized state exhibits circular motion, which implies collective rotating motion. Finally, we consider a simple one-dimensional model equation to qualitatively understand the formation of the solitary wave state.

  13. Edge-mode superconductivity in a two-dimensional topological insulator.

    PubMed

    Pribiag, Vlad S; Beukman, Arjan J A; Qu, Fanming; Cassidy, Maja C; Charpentier, Christophe; Wegscheider, Werner; Kouwenhoven, Leo P

    2015-07-01

    Topological superconductivity is an exotic state of matter that supports Majorana zero-modes, which have been predicted to occur in the surface states of three-dimensional systems, in the edge states of two-dimensional systems, and in one-dimensional wires. Localized Majorana zero-modes obey non-Abelian exchange statistics, making them interesting building blocks for topological quantum computing. Here, we report superconductivity induced in the edge modes of semiconducting InAs/GaSb quantum wells, a two-dimensional topological insulator. Using superconducting quantum interference we demonstrate gate-tuning between edge-dominated and bulk-dominated regimes of superconducting transport. The edge-dominated regime arises only under conditions of high-bulk resistivity, which we associate with the two-dimensional topological phase. These experiments establish InAs/GaSb as a promising platform for the confinement of Majoranas into localized states, enabling future investigations of non-Abelian statistics.

  14. Finite-amplitude strain waves in laser-excited plates.

    PubMed

    Mirzade, F Kh

    2008-07-09

    The governing equations for two-dimensional finite-amplitude longitudinal strain waves in isotropic laser-excited solid plates are derived. Geometric and weak material nonlinearities are included, and the interaction of longitudinal displacements with the field of concentration of non-equilibrium laser-generated atomic defects is taken into account. An asymptotic approach is used to show that the equations are reducible to the Kadomtsev-Petviashvili-Burgers nonlinear evolution equation for a longitudinal self-consistent strain field. It is shown that two-dimensional shock waves can propagate in plates.

  15. Regularity of Solutions of the Nonlinear Sigma Model with Gravitino

    NASA Astrophysics Data System (ADS)

    Jost, Jürgen; Keßler, Enno; Tolksdorf, Jürgen; Wu, Ruijun; Zhu, Miaomiao

    2018-02-01

    We propose a geometric setup to study analytic aspects of a variant of the super symmetric two-dimensional nonlinear sigma model. This functional extends the functional of Dirac-harmonic maps by gravitino fields. The system of Euler-Lagrange equations of the two-dimensional nonlinear sigma model with gravitino is calculated explicitly. The gravitino terms pose additional analytic difficulties to show smoothness of its weak solutions which are overcome using Rivière's regularity theory and Riesz potential theory.

  16. Mode structure symmetry breaking of energetic particle driven beta-induced Alfvén eigenmode

    NASA Astrophysics Data System (ADS)

    Lu, Z. X.; Wang, X.; Lauber, Ph.; Zonca, F.

    2018-01-01

    The mode structure symmetry breaking of energetic particle driven Beta-induced Alfvén Eigenmode (BAE) is studied based on global theory and simulation. The weak coupling formula gives a reasonable estimate of the local eigenvalue compared with global hybrid simulation using XHMGC. The non-perturbative effect of energetic particles on global mode structure symmetry breaking in radial and parallel (along B) directions is demonstrated. With the contribution from energetic particles, two dimensional (radial and poloidal) BAE mode structures with symmetric/asymmetric tails are produced using an analytical model. It is demonstrated that the symmetry breaking in radial and parallel directions is intimately connected. The effects of mode structure symmetry breaking on nonlinear physics, energetic particle transport, and the possible insight for experimental studies are discussed.

  17. Damageable contact between an elastic body and a rigid foundation

    NASA Astrophysics Data System (ADS)

    Campo, M.; Fernández, J. R.; Silva, A.

    2009-02-01

    In this work, the contact problem between an elastic body and a rigid obstacle is studied, including the development of material damage which results from internal compression or tension. The variational problem is formulated as a first-kind variational inequality for the displacements coupled with a parabolic partial differential equation for the damage field. The existence of a unique local weak solution is stated. Then, a fully discrete scheme is introduced using the finite element method to approximate the spatial variable and an Euler scheme to discretize the time derivatives. Error estimates are derived on the approximate solutions, from which the linear convergence of the algorithm is deduced under suitable regularity conditions. Finally, three two-dimensional numerical simulations are performed to demonstrate the accuracy and the behaviour of the scheme.

  18. Detection of weak signals through nonlinear relaxation times for a Brownian particle in an electromagnetic field.

    PubMed

    Jiménez-Aquino, J I; Romero-Bastida, M

    2011-07-01

    The detection of weak signals through nonlinear relaxation times for a Brownian particle in an electromagnetic field is studied in the dynamical relaxation of the unstable state, characterized by a two-dimensional bistable potential. The detection process depends on a dimensionless quantity referred to as the receiver output, calculated as a function of the nonlinear relaxation time and being a characteristic time scale of our system. The latter characterizes the complete dynamical relaxation of the Brownian particle as it relaxes from the initial unstable state of the bistable potential to its corresponding steady state. The one-dimensional problem is also studied to complement the description.

  19. Global existence of the three-dimensional viscous quantum magnetohydrodynamic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jianwei, E-mail: yangjianwei@ncwu.edu.cn; Ju, Qiangchang, E-mail: qiangchang-ju@yahoo.com

    2014-08-15

    The global-in-time existence of weak solutions to the viscous quantum Magnetohydrodynamic equations in a three-dimensional torus with large data is proved. The global existence of weak solutions to the viscous quantum Magnetohydrodynamic equations is shown by using the Faedo-Galerkin method and weak compactness techniques.

  20. ROLE OF MAGNETIC FIELD STRENGTH AND NUMERICAL RESOLUTION IN SIMULATIONS OF THE HEAT-FLUX-DRIVEN BUOYANCY INSTABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avara, Mark J.; Reynolds, Christopher S.; Bogdanovic, Tamara, E-mail: mavara@astro.umd.edu, E-mail: chris@astro.umd.edu, E-mail: tamarab@gatech.edu

    2013-08-20

    The role played by magnetic fields in the intracluster medium (ICM) of galaxy clusters is complex. The weakly collisional nature of the ICM leads to thermal conduction that is channeled along field lines. This anisotropic heat conduction profoundly changes the instabilities of the ICM atmosphere, with convective stabilities being driven by temperature gradients of either sign. Here, we employ the Athena magnetohydrodynamic code to investigate the local non-linear behavior of the heat-flux-driven buoyancy instability (HBI) relevant in the cores of cooling-core clusters where the temperature increases with radius. We study a grid of two-dimensional simulations that span a large rangemore » of initial magnetic field strengths and numerical resolutions. For very weak initial fields, we recover the previously known result that the HBI wraps the field in the horizontal direction, thereby shutting off the heat flux. However, we find that simulations that begin with intermediate initial field strengths have a qualitatively different behavior, forming HBI-stable filaments that resist field-line wrapping and enable sustained vertical conductive heat flux at a level of 10%-25% of the Spitzer value. While astrophysical conclusions regarding the role of conduction in cooling cores require detailed global models, our local study proves that systems dominated by the HBI do not necessarily quench the conductive heat flux.« less

  1. Three-dimensional wave evolution on electrified falling films

    NASA Astrophysics Data System (ADS)

    Tomlin, Ruben; Papageorgiou, Demetrios; Pavliotis, Greg

    2016-11-01

    We consider the full three-dimensional model for a thin viscous liquid film completely wetting a flat infinite solid substrate at some non-zero angle to the horizontal, with an electric field normal to the substrate far from the flow. Thin film flows have applications in cooling processes. Many studies have shown that the presence of interfacial waves increases heat transfer by orders of magnitude due to film thinning and convection effects. A long-wave asymptotics procedure yields a Kuramoto-Sivashinsky equation with a non-local term to model the weakly nonlinear evolution of the interface dynamics for overlying film arrangements, with a restriction on the electric field strength. The non-local term is always linearly destabilising and produces growth rates proportional to the cube of the magnitude of the wavenumber vector. A sufficiently strong electric field is able promote non-trivial dynamics for subcritical Reynolds number flows where the flat interface is stable in the absence of an electric field. We present numerical simulations where we observe rich dynamical behavior with competing attractors, including "snaking" travelling waves and other fully three-dimensional wave formations. EPSRC studentship (RJT).

  2. Simulated East-west differences in F-region peak electron density at Far East mid-latitude region

    NASA Astrophysics Data System (ADS)

    Ren, Zhipeng; Zhao, Biqiang; Wan, Weixing; Liu, Libo

    2017-04-01

    In the present work, using Three-Dimensional Theoretical Ionospheric Model of the Earth in Institute of Geology and Geophysics, Chinese Academy of Sciences (TIME3D-IGGCAS), we simulated the east-west differences in Fregion peak electron density (NmF2) at Far East mid-latitude region.We found that, after removing the longitudinal variations of neutral parameters, TIME3D-IGGCAS can better represent the observed relative east-west difference (Rew) features. Rew is mainly negative (West NmF2 > East NmF2) at noon and positive (East NmF2 >West NmF2) at evening-night. The magnitude of daytime negative Rew is weak at local winter and strong at local summer, and the daytime Rew show two negative peaks around two equinoxes. With the increasing of solar flux level, the magnitude of Rew mainly become larger, and two daytime negative peaks slight shifts to June Solstice. With the decreasing of geographical latitude, Rew mainly become positive, and two daytime negative peaks slight shifts to June Solstice. Our simulation also suggested that the thermospheric zonal wind combined with the geomagnetic field configuration play a pivotal role in the formation of the ionospheric east-west differences at Far East midlatitude region.

  3. Simulated East-west differences in F-region peak electron density at Far East mid-latitude region

    NASA Astrophysics Data System (ADS)

    Ren, Z.; Wan, W.

    2017-12-01

    In the present work, using Three-Dimensional Theoretical Ionospheric Model of the Earth in Institute of Geology and Geophysics, Chinese Academy of Sciences (TIME3D-IGGCAS), we simulated the east-west differences in Fregion peak electron density (NmF2) at Far East mid-latitude region.We found that, after removing the longitudinal variations of neutral parameters, TIME3D-IGGCAS can better represent the observed relative east-west difference (Rew) features. Rew is mainly negative (West NmF2 > East NmF2) at noon and positive (East NmF2 >West NmF2) at evening-night. The magnitude of daytime negative Rew is weak at local winter and strong at local summer, and the daytime Rew show two negative peaks around two equinoxes. With the increasing of solar flux level, the magnitude of Rew mainly become larger, and two daytime negative peaks slight shifts to June Solstice. With the decreasing of geographical latitude, Rew mainly become positive, and two daytime negative peaks slight shifts to June Solstice. Our simulation also suggested that the thermospheric zonal wind combined with the geomagnetic field configuration play a pivotal role in the formation of the ionospheric east-west differences at Far East midlatitude region.

  4. High-dimensional atom localization via spontaneously generated coherence in a microwave-driven atomic system.

    PubMed

    Wang, Zhiping; Chen, Jinyu; Yu, Benli

    2017-02-20

    We investigate the two-dimensional (2D) and three-dimensional (3D) atom localization behaviors via spontaneously generated coherence in a microwave-driven four-level atomic system. Owing to the space-dependent atom-field interaction, it is found that the detecting probability and precision of 2D and 3D atom localization behaviors can be significantly improved via adjusting the system parameters, the phase, amplitude, and initial population distribution. Interestingly, the atom can be localized in volumes that are substantially smaller than a cubic optical wavelength. Our scheme opens a promising way to achieve high-precision and high-efficiency atom localization, which provides some potential applications in high-dimensional atom nanolithography.

  5. Weak ductile shear zone beneath the western North Anatolian Fault Zone: inferences from earthquake cycle model constrained by geodetic observations

    NASA Astrophysics Data System (ADS)

    Yamasaki, T.; Wright, T. J.; Houseman, G. A.

    2013-12-01

    After large earthquakes, rapid postseismic transient motions are commonly observed. Later in the loading cycle, strain is typically focused in narrow regions around the fault. In simple two-layer models of the loading cycle for strike-slip faults, rapid post-seismic transients require low viscosities beneath the elastic layer, but localized strain later in the cycle implies high viscosities in the crust. To explain this apparent paradox, complex transient rheologies have been invoked. Here we test an alternative hypothesis in which spatial variations in material properties of the crust can explain the geodetic observations. We use a 3D viscoelastic finite element code to examine two simple models of periodic fault slip: a stratified model in which crustal viscosity decreases exponentially with depth below an upper elastic layer, and a block model in which a low viscosity domain centered beneath the fault is embedded in a higher viscosity background representing normal crust. We test these models using GPS data acquired before and after the 1999 Izmit/Duzce earthquakes on the North Anatolian Fault Zone (Turkey). The model with depth-dependent viscosity can show both high postseismic velocities, and preseismic localization of the deformation, if the viscosity contrast from top to bottom of layer exceeds a factor of about 104. However, with no lateral variations in viscosity, this model cannot explain the proximity to the fault of maximum postseismic velocities. In contrast, the model which includes a localized weak zone beneath the faulted elastic lid can explain all the observations, if the weak zone extends down to mid-crustal levels and outward to 10 or 20 km from the fault. The non-dimensional ratio of relaxation time to earthquake repeat time, τ/Δt, is the critical parameter in controlling the observed deformation. In the weak-zone model, τ/Δt should be in the range 0.005 to 0.01 in the weak domain, and larger than ~ 1.0 elsewhere. This implies a viscosity in the weak zone of ~ 1018×0.3 Pa s, and larger than ~ 1020 Pa s outside this region. Models with sharp boundaries to the weak zone fit the data better than those with a smooth increase of viscosity away from the fault. Thus abrupt changes in material properties, such as those that might result from grain-size reduction, may be required in addition to any effect from shear heating. Unlike some previous models, we do not require non-linear stress-dependent viscosities. Our models imply that geodetic strain rates decay to a quasi-steady state within about 10% of the inter-earthquake period (years or decades) and that interseismic geodetic observations can therefore be used to infer the long-term geological slip rate, provided there has not been a recent earthquake. Rheologies inferred from postseismic studies alone likely reflect the rheology of the weak zone beneath the fault, and should not be used to infer the strength profile of normal lithosphere.

  6. Metallic phases from disordered (2+1)-dimensional quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Goswami, Pallab; Goldman, Hart; Raghu, S.

    2017-06-01

    Metallic phases have been observed in several disordered two-dimensional (2D) systems, including thin films near superconductor-insulator transitions and quantum Hall systems near plateau transitions. The existence of 2D metallic phases at zero temperature generally requires an interplay of disorder and interaction effects. Consequently, experimental observations of 2D metallic behavior have largely defied explanation. We formulate a general stability criterion for strongly interacting, massless Dirac fermions against disorder, which describe metallic ground states with vanishing density of states. We show that (2+1)-dimensional quantum electrodynamics (QED3) with a large, even number of fermion flavors remains metallic in the presence of weak scalar potential disorder due to the dynamic screening of disorder by gauge fluctuations. We also show that QED3 with weak mass disorder exhibits a stable, dirty metallic phase in which both interactions and disorder play important roles.

  7. Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures.

    PubMed

    Lin, Hung-Yu; Kuo, Yang; Liao, Cheng-Yuan; Yang, C C; Kiang, Yean-Woei

    2012-01-02

    The authors numerically investigate the absorption enhancement of an amorphous Si solar cell, in which a periodical one-dimensional nanowall or two-dimensional nanopillar structure of the Ag back-reflector is fabricated such that a dome-shaped grating geometry is formed after Si deposition and indium-tin-oxide coating. In this investigation, the effects of surface plasmon (SP) interaction in such a metal nanostructure are of major concern. Absorption enhancement in most of the solar spectral range of significant amorphous Si absorption (320-800 nm) is observed in a grating solar cell. In the short-wavelength range of high amorphous Si absorption, the weakly wavelength-dependent absorption enhancement is mainly caused by the broadband anti-reflection effect, which is produced through the surface nano-grating structures. In the long-wavelength range of diminishing amorphous Si absorption, the highly wavelength-sensitive absorption enhancement is mainly caused by Fabry-Perot resonance and SP interaction. The SP interaction includes the contributions of surface plasmon polariton and localized surface plasmon.

  8. [Functional diversity characteristics of canopy tree species of Jianfengling tropical montane rainforest on Hainan Island, China.

    PubMed

    Xu, Ge Xi; Shi, Zuo Min; Tang, Jing Chao; Liu, Shun; Ma, Fan Qiang; Xu, Han; Liu, Shi Rong; Li, Yi de

    2016-11-18

    Based on three 1-hm 2 plots of Jianfengling tropical montane rainforest on Hainan Island, 11 commom used functional traits of canopy trees were measured. After combining with topographical factors and trees census data of these three plots, we compared the impacts of weighted species abundance on two functional dispersion indices, mean pairwise distance (MPD) and mean nearest taxon distance (MNTD), by using single- and multi-dimensional traits, respectively. The relationship between functional richness of the forest canopies and species abundance was analyzed. We used a null model approach to explore the variations in standardized size effects of MPD and MNTD, which were weighted by species abundance and eliminated the influences of species richness diffe-rences among communities, and assessed functional diversity patterns of the forest canopies and their responses to local habitat heterogeneity at community's level. The results showed that variation in MPD was greatly dependent on the dimensionalities of functional traits as well as species abundance. The correlations between weighted and non-weighted MPD based on different dimensional traits were relatively weak (R=0.359-0.628). On the contrary, functional traits and species abundance had relatively weak effects on MNTD, which brought stronger correlations between weighted and non-weighted MNTD based on different dimensional traits (R=0.746-0.820). Functional dispersion of the forest canopies were generally overestimated when using non-weighted MPD and MNTD. Functional richness of the forest canopies showed an exponential relationship with species abundance (F=128.20; R 2 =0.632; AIC=97.72; P<0.001), which might exist a species abundance threshold value. Patterns of functional diversity of the forest canopies based on different dimensional functional traits and their habitat responses showed variations in some degree. Forest canopies in the valley usually had relatively stronger biological competition, and functional diversity was higher than expected functional diversity randomized by null model, which indicated dispersed distribution of functional traits among canopy tree species in this habitat. However, the functional diversity of the forest canopies tended to be close or lower than randomization in the other habitat types, which demonstrated random or clustered distribution of the functional traits among canopy tree species.

  9. Chimera states in two-dimensional networks of locally coupled oscillators

    NASA Astrophysics Data System (ADS)

    Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.

    2018-02-01

    Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera states in detail over a large range of coupling parameter. The existence of chimera states is confirmed by instantaneous angular frequency, order parameter and strength of incoherence.

  10. Chimera states in two-dimensional networks of locally coupled oscillators.

    PubMed

    Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K; Ghosh, Dibakar; Lakshmanan, M

    2018-02-01

    Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera states in detail over a large range of coupling parameter. The existence of chimera states is confirmed by instantaneous angular frequency, order parameter and strength of incoherence.

  11. Quantum fluctuations in the BCS-BEC crossover of two-dimensional Fermi gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Lianyi; Lu, Haifeng; Cao, Gaoqing

    2015-08-14

    We present a theoretical study of the ground state of the BCS-BEC crossover in dilute two-dimensional Fermi gases. While the mean-field theory provides a simple and analytical equation of state, the pressure is equal to that of a noninteracting Fermi gas in the entire BCS-BEC crossover, which is not consistent with the features of a weakly interacting Bose condensate in the BEC limit and a weakly interacting Fermi liquid in the BCS limit. The inadequacy of the two-dimensional mean-field theory indicates that the quantum fluctuations are much more pronounced than those in three dimensions. In this work, we show thatmore » the inclusion of the Gaussian quantum fluctuations naturally recovers the above features in both the BEC and the BCS limits. In the BEC limit, the missing logarithmic dependence on the boson chemical potential is recovered by the quantum fluctuations. Near the quantum phase transition from the vacuum to the BEC phase, we compare our equation of state with the known grand canonical equation of state of two-dimensional Bose gases and determine the ratio of the composite boson scattering length a B to the fermion scattering length a 2D. We find a B ≃ 0.56a 2D, in good agreement with the exact four-body calculation. As a result, we compare our equation of state in the BCS-BEC crossover with recent results from the quantum Monte Carlo simulations and the experimental measurements and find good agreements.« less

  12. A 3D simulation look-up library for real-time airborne gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Kulisek, Jonathan A.; Wittman, Richard S.; Miller, Erin A.; Kernan, Warnick J.; McCall, Jonathon D.; McConn, Ron J.; Schweppe, John E.; Seifert, Carolyn E.; Stave, Sean C.; Stewart, Trevor N.

    2018-01-01

    A three-dimensional look-up library consisting of simulated gamma-ray spectra was developed to leverage, in real-time, the abundance of data provided by a helicopter-mounted gamma-ray detection system consisting of 92 CsI-based radiation sensors and exhibiting a highly angular-dependent response. We have demonstrated how this library can be used to help effectively estimate the terrestrial gamma-ray background, develop simulated flight scenarios, and to localize radiological sources. Source localization accuracy was significantly improved, particularly for weak sources, by estimating the entire gamma-ray spectra while accounting for scattering in the air, and especially off the ground.

  13. TWO CRITERIA FOR WEAK GENERALIZED LOCALIZATION FOR MULTIPLE TRIGONOMETRIC FOURIER SERIES OF FUNCTIONS IN L_p, p \\ge 1

    NASA Astrophysics Data System (ADS)

    Bloshanskiĭ, I. L.

    1986-04-01

    The concept of weak generalized localization almost everywhere is introduced. For the multiple Fourier series of a function f, weak generalized localization almost everywhere holds on the set E (E is an arbitrary set of positive measure E \\subset T^N = \\lbrack- \\pi, \\pi\\rbrack^N) if the condition f(x) \\in L_p(T^N), p \\ge 1, f = 0 on E implies that the indicated series converges almost everywhere on some subset E_1 \\subset E of positive measure. For a large class of sets \\{ E \\}, E \\subset T^N, a number of propositions are proved showing that weak localization of rectangular sums holds on the set E in the classes L_p, p \\ge 1, if and only if the set E has certain specific properties. In the course of the proof the precise geometry and structure of the subset E_1 of E on which the multiple Fourier series converges almost everywhere to zero are determined. Bibliography: 13 titles.

  14. Mode localization in a class of multidegree-of-freedom nonlinear systems with cyclic symmetry

    NASA Astrophysics Data System (ADS)

    Vakakis, Alexander F.; Cetinkaya, Cetin

    1993-02-01

    The free oscillations of n-degree-of-freedom (DOF) nonlinear systems with cyclic symmetry and weak coupling between substructures are examined. An asymptotic methodology is used to detect localized nonsimilar normal modes, i.e., free periodic motions spatially confined to only a limited number of substructures of the cyclic system. It is shown that nonlinear mode localization occurs in the perfectly symmetric, weakly coupled structure, in contrast to linear mode localization, which exists only in the presence of substructure 'mistuning'. In addition to the localized modes, nonlocalized modes are also found in the weakly coupled system. The stability of the identified modes is investigated by means of an approximate two-timing averaging mothodology, and the general theory is applied to the case of a cyclic system with three-DOF. The theoretical results are then verified by direct numerical integrations of the equations of motion.

  15. Bagging Voronoi classifiers for clustering spatial functional data

    NASA Astrophysics Data System (ADS)

    Secchi, Piercesare; Vantini, Simone; Vitelli, Valeria

    2013-06-01

    We propose a bagging strategy based on random Voronoi tessellations for the exploration of geo-referenced functional data, suitable for different purposes (e.g., classification, regression, dimensional reduction, …). Urged by an application to environmental data contained in the Surface Solar Energy database, we focus in particular on the problem of clustering functional data indexed by the sites of a spatial finite lattice. We thus illustrate our strategy by implementing a specific algorithm whose rationale is to (i) replace the original data set with a reduced one, composed by local representatives of neighborhoods covering the entire investigated area; (ii) analyze the local representatives; (iii) repeat the previous analysis many times for different reduced data sets associated to randomly generated different sets of neighborhoods, thus obtaining many different weak formulations of the analysis; (iv) finally, bag together the weak analyses to obtain a conclusive strong analysis. Through an extensive simulation study, we show that this new procedure - which does not require an explicit model for spatial dependence - is statistically and computationally efficient.

  16. Jamming criticality revealed by removing localized buckling excitations.

    PubMed

    Charbonneau, Patrick; Corwin, Eric I; Parisi, Giorgio; Zamponi, Francesco

    2015-03-27

    Recent theoretical advances offer an exact, first-principles theory of jamming criticality in infinite dimension as well as universal scaling relations between critical exponents in all dimensions. For packings of frictionless spheres near the jamming transition, these advances predict that nontrivial power-law exponents characterize the critical distribution of (i) small interparticle gaps and (ii) weak contact forces, both of which are crucial for mechanical stability. The scaling of the interparticle gaps is known to be constant in all spatial dimensions d-including the physically relevant d=2 and 3, but the value of the weak force exponent remains the object of debate and confusion. Here, we resolve this ambiguity by numerical simulations. We construct isostatic jammed packings with extremely high accuracy, and introduce a simple criterion to separate the contribution of particles that give rise to localized buckling excitations, i.e., bucklers, from the others. This analysis reveals the remarkable dimensional robustness of mean-field marginality and its associated criticality.

  17. The Energy Measure for the Euler and Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Leslie, Trevor M.; Shvydkoy, Roman

    2018-04-01

    The potential failure of energy equality for a solution u of the Euler or Navier-Stokes equations can be quantified using a so-called `energy measure': the weak-* limit of the measures {|u(t)|^2dx} as t approaches the first possible blowup time. We show that membership of u in certain (weak or strong) {L^q L^p} classes gives a uniform lower bound on the lower local dimension of E ; more precisely, it implies uniform boundedness of a certain upper s-density of E . We also define and give lower bounds on the `concentration dimension' associated to E , which is the Hausdorff dimension of the smallest set on which energy can concentrate. Both the lower local dimension and the concentration dimension of E measure the departure from energy equality. As an application of our estimates, we prove that any solution to the 3-dimensional Navier-Stokes Equations which is Type-I in time must satisfy the energy equality at the first blowup time.

  18. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers.

    PubMed

    Saleh, Amr A E; Sheikhoelislami, Sassan; Gastelum, Steven; Dionne, Jennifer A

    2016-09-05

    Subwavelength plasmonic apertures have been foundational for direct optical manipulation of nanoscale specimens including sub-100 nm polymeric beads, metallic nanoparticles and proteins. While most plasmonic traps result in two-dimensional localization, three-dimensional manipulation has been demonstrated by integrating a plasmonic aperture on an optical fiber tip. However, such 3D traps are usually inefficient since the optical mode of the fiber and the subwavelength aperture only weakly couple. In this paper we design more efficient optical-fiber-based plasmonic tweezers combining a coaxial plasmonic aperture with a plasmonic grating coupler at the fiber tip facet. Using full-field finite difference time domain analysis, we optimize the grating design for both gold and silver fiber-based coaxial tweezers such that the optical transmission through the apertures is maximized. With the optimized grating, we show that the maximum transmission efficiency increases from 2.5% to 19.6% and from 1.48% to 16.7% for the gold and silver structures respectively. To evaluate their performance as optical tweezers, we calculate the optical forces and the corresponding trapping potential on dielectric particles interacting with the apertures. We demonstrate that the enahncement in the transmission translates into an equivalent increase in the optical forces. Consequently, the optical power required to achieve stable optical trapping is significantly reduced allowing for efficient localization and 3D manipulation of sub-30 nm dielectric particles.

  19. Stimulated Brillouin scattering in the field of a two-dimensionally localized pumping wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solikhov, D. K., E-mail: davlat56@mail.ru; Dvinin, S. A., E-mail: dvinin@phys.msu.ru

    2016-06-15

    Stimulated Brillouin scattering of electromagnetic waves in the field of a two-dimensionally localized pump wave at arbitrary scattering angles in the regime of forward scattering is analyzed. Spatial variations in the amplitudes of interacting waves are studied for different values of the pump field and different dimensions of the pump wave localization region. The intensity of scattered radiation is determined as a function of the scattering angle and the dimensions of the pump wave localization region. It is shown that the intensity increases with increasing scattering angle.

  20. The Kadomtsev-Petviashvili equation under rapid forcing

    NASA Astrophysics Data System (ADS)

    Moroz, Irene M.

    1997-06-01

    We consider the initial value problem for the forced Kadomtsev-Petviashvili equation (KP) when the forcing is assumed to be fast compared to the evolution of the unforced equation. This suggests the introduction of two time scales. Solutions to the forced KP are sought by expanding the dependent variable in powers of a small parameter, which is inversely related to the forcing time scale. The unforced system describes weakly nonlinear, weakly dispersive, weakly two-dimensional wave propagation and is studied in two forms, depending upon whether gravity dominates surface tension or vice versa. We focus on the effect that the forcing has on the one-lump solution to the KPI equation (where surface tension dominates) and on the one- and two-line soliton solutions to the KPII equation (when gravity dominates). Solutions to second order in the expansion are computed analytically for some specific choices of the forcing function, which are related to the choice of initial data.

  1. Three-dimensional finite element analysis for high velocity impact. [of projectiles from space debris

    NASA Technical Reports Server (NTRS)

    Chan, S. T. K.; Lee, C. H.; Brashears, M. R.

    1975-01-01

    A finite element algorithm for solving unsteady, three-dimensional high velocity impact problems is presented. A computer program was developed based on the Eulerian hydroelasto-viscoplastic formulation and the utilization of the theorem of weak solutions. The equations solved consist of conservation of mass, momentum, and energy, equation of state, and appropriate constitutive equations. The solution technique is a time-dependent finite element analysis utilizing three-dimensional isoparametric elements, in conjunction with a generalized two-step time integration scheme. The developed code was demonstrated by solving one-dimensional as well as three-dimensional impact problems for both the inviscid hydrodynamic model and the hydroelasto-viscoplastic model.

  2. Effective Mass Calculations for Two-dimensional Gas of Dipolar Fermions

    NASA Astrophysics Data System (ADS)

    Seydi, I.; Abedinpour, S. H.; Tanatar, B.

    2017-06-01

    We consider a two-dimensional system of ultracold dipolar fermions with dipole moments aligned in the perpendicular direction. We use the static structure factor information from Fermi-Hypernetted-Chain calculations to obtain the effective many-body dipole-dipole interaction and calculate the many-body effective mass of the system within the G0W approximation to the self-energy. A large cancellation between different contributions to the self-energy results in a weak dependence of the effective mass on the interaction strength over a large range of coupling constants.

  3. Local elasticity map and plasticity in a model Lennard-Jones glass.

    PubMed

    Tsamados, Michel; Tanguy, Anne; Goldenberg, Chay; Barrat, Jean-Louis

    2009-08-01

    In this work we calculate the local elastic moduli in a weakly polydispersed two-dimensional Lennard-Jones glass undergoing a quasistatic shear deformation at zero temperature. The numerical method uses coarse-grained microscopic expressions for the strain, displacement, and stress fields. This method allows us to calculate the local elasticity tensor and to quantify the deviation from linear elasticity (local Hooke's law) at different coarse-graining scales. From the results a clear picture emerges of an amorphous material with strongly spatially heterogeneous elastic moduli that simultaneously satisfies Hooke's law at scales larger than a characteristic length scale of the order of five interatomic distances. At this scale, the glass appears as a composite material composed of a rigid scaffolding and of soft zones. Only recently calculated in nonhomogeneous materials, the local elastic structure plays a crucial role in the elastoplastic response of the amorphous material. For a small macroscopic shear strain, the structures associated with the nonaffine displacement field appear directly related to the spatial structure of the elastic moduli. Moreover, for a larger macroscopic shear strain we show that zones of low shear modulus concentrate most of the strain in the form of plastic rearrangements. The spatiotemporal evolution of this local elasticity map and its connection with long term dynamical heterogeneity as well as with the plasticity in the material is quantified. The possibility to use this local parameter as a predictor of subsequent local plastic activity is also discussed.

  4. Weak- versus strong-disorder superfluid—Bose glass transition in one dimension

    NASA Astrophysics Data System (ADS)

    Doggen, Elmer V. H.; Lemarié, Gabriel; Capponi, Sylvain; Laflorencie, Nicolas

    2017-11-01

    Using large-scale simulations based on matrix product state and quantum Monte Carlo techniques, we study the superfluid to Bose glass transition for one-dimensional attractive hard-core bosons at zero temperature, across the full regime from weak to strong disorder. As a function of interaction and disorder strength, we identify a Berezinskii-Kosterlitz-Thouless critical line with two different regimes. At small attraction where critical disorder is weak compared to the bandwidth, the critical Luttinger parameter Kc takes its universal Giamarchi-Schulz value Kc=3 /2 . Conversely, a nonuniversal Kc>3 /2 emerges for stronger attraction where weak-link physics is relevant. In this strong-disorder regime, the transition is characterized by self-similar power-law-distributed weak links with a continuously varying characteristic exponent α .

  5. Experimental realization of two-dimensional boron sheets

    NASA Astrophysics Data System (ADS)

    Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui

    2016-06-01

    A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp2 hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future.

  6. Discrete-to-continuum modelling of weakly interacting incommensurate two-dimensional lattices.

    PubMed

    Español, Malena I; Golovaty, Dmitry; Wilber, J Patrick

    2018-01-01

    In this paper, we derive a continuum variational model for a two-dimensional deformable lattice of atoms interacting with a two-dimensional rigid lattice. The starting point is a discrete atomistic model for the two lattices which are assumed to have slightly different lattice parameters and, possibly, a small relative rotation. This is a prototypical example of a three-dimensional system consisting of a graphene sheet suspended over a substrate. We use a discrete-to-continuum procedure to obtain the continuum model which recovers both qualitatively and quantitatively the behaviour observed in the corresponding discrete model. The continuum model predicts that the deformable lattice develops a network of domain walls characterized by large shearing, stretching and bending deformation that accommodates the misalignment and/or mismatch between the deformable and rigid lattices. Two integer-valued parameters, which can be identified with the components of a Burgers vector, describe the mismatch between the lattices and determine the geometry and the details of the deformation associated with the domain walls.

  7. Spinons and holons for the one-dimensional three-band Hubbard models of high-temperature superconductors.

    PubMed Central

    Tahir-Kheli, J; Goddard, W A

    1993-01-01

    The one-dimensional three-band Hubbard Hamiltonian is shown to be equivalent to an effective Hamiltonian that has independent spinon and holon quasiparticle excitations plus a weak coupling of the two. The spinon description includes both copper sites and oxygen hole sites leading to a one-dimensional antiferromagnet incommensurate with the copper lattice. The holons are spinless noninteracting fermions in a simple cosine band. Because the oxygen sites are in the Hamiltonian, the quasiparticles are much simpler than in the exact solution of the t-J model for 2t = +/- J. If a similar description is correct for two dimensions, then the holons will attract in a p-wave potential. PMID:11607436

  8. Novel insights into the dynamics of cold-air drainage and pooling on a gentle slope from fiber-optic distributed temperature sensing

    NASA Astrophysics Data System (ADS)

    Pfister, Lena; Sigmund, Armin; Olesch, Johannes; Thomas, Christoph

    2016-04-01

    Urban climate can benefit from cold-air drainage as it may help alleviate the urban heat island. In contrast, stable cold-air pools can damage plants especially in rural areas. In this study, we examined the dynamics of cold-air drainage and pooling in a peri-urban setting over a period of 47 days along a 170 m long slope with an inclination of 1.3° located in the Ecological Botany Gardens of the University of Bayreuth. Air and soil temperatures were measured using distributed temperature sensing of an 2-dimensional fiber-optic array at six heights (-2 cm to 100 cm) along the slope sampling every 1 min and every 1 m. Ancillary measurements of winds, turbulence intensity and momentum exchange were collected using two ultrasonic anemometers installed at 0.1 m and 17 m height at the center of the transect. We hypothesized that cold-air drainage, here defined as a gravity-driven density flow near the bottom originating from local radiative cooling of the surface, is decoupled from non-local flows and can thus be predicted from the local topography. The nocturnal data were stratified by classes of longwave radiation balance, wind speed, and wind direction at 0.1 m agl. The four most abundant classes were tested further for decoupling of wind velocities and directions between 17 and 0.1 m. We further computed the vertical and horizontal temperature perturbations of the fiber-optic array as evaluated for these cases, as well as subject the temperature data to a multiresolution decomposition to investigate the spatial two-point correlation coefficient along the transect. Finally, the cold pool intensity was calculated. The results revealed none of the four most abundant classes followed classical textbook knowledge of locally produced cold-air drainage. Instead, we found that the near-surface flow was strongly forced by two possibly competing non-local flow modes. The first mode caused weak (< 0.4 ms-1) near-surface winds directed perpendicular to the local slope and showed strong vertical decoupling of wind velocities and directions. The vertical and horizontal perturbation of the temperature as well as the cold-pool intensity was high and the two-point correlation coefficient decorrelated fast with increasing distance. In contrast, for the second mode the wind was aligned with the local slope and the wind velocities and directions agreed vertically. However, momentum exchange was much enhanced leading to intense shear-generated mixing and almost vanishing temperature perturbations, higher spatial coherence indicated by slower spatial decorrelations, and a cold-pool intensity of close to zero. In conclusion, the first mode was interpreted as a relatively weak non-local valley-scale cold-air drainage modulating the close to stationary cold-air pool filling the shallow depression the Botanical Gardens are located in. Here, the deeper cold-air drainage causes only weak local movements at the surface as both layers are largely decoupled. The second mode is possibly caused by a recirculation of a stronger valley-scale flow with sufficient synoptic forcing. Our findings challenge the common practice to predict cold-air dynamics solely based on micro-topographic analysis.

  9. When linear stability does not exclude nonlinear instability

    DOE PAGES

    Kevrekidis, P. G.; Pelinovsky, D. E.; Saxena, A.

    2015-05-29

    We describe a mechanism that results in the nonlinear instability of stationary states even in the case where the stationary states are linearly stable. In this study, this instability is due to the nonlinearity-induced coupling of the linearization’s internal modes of negative energy with the continuous spectrum. In a broad class of nonlinear Schrödinger equations considered, the presence of such internal modes guarantees the nonlinear instability of the stationary states in the evolution dynamics. To corroborate this idea, we explore three prototypical case examples: (a) an antisymmetric soliton in a double-well potential, (b) a twisted localized mode in a one-dimensionalmore » lattice with cubic nonlinearity, and (c) a discrete vortex in a two-dimensional saturable lattice. In all cases, we observe a weak nonlinear instability, despite the linear stability of the respective states.« less

  10. Critical behavior of the quasi-two-dimensional weak itinerant ferromagnet trigonal chromium telluride Cr 0.62 Te

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yu; Petrovic, C.

    The critical properties of flux-grown single-crystalline quasi-two-dimensional weak itinerant ferromagnet Cr 0.62 Te were investigated by bulk dc magnetization around the paramagnetic to ferromagnetic phase transition. Critical exponents β = 0.315 ( 7 ) with a critical temperature T c = 230.6 ( 3 ) K and γ = 1.81 ( 2 ) with T c = 229.1 ( 1 ) K are obtained by the Kouvel-Fisher method whereas δ = 6.35 ( 4 ) is obtained by a critical isotherm analysis at T c = 230 K. With these obtained exponents, the magnetization-field-temperature curves collapse into two independentmore » curves following a single scaling equation M | T-T c/T c| -β = f ± ( H |T-T c/T c| -β δ ) around T c , suggesting the reliability of the obtained exponents. Additionally, the determined exponents of Cr 0.62 Te exhibit an Ising-like behavior with a change from short-range order to long-range order in the nature of magnetic interaction and with an extension from two to three dimensions on cooling through T c.« less

  11. Critical behavior of the quasi-two-dimensional weak itinerant ferromagnet trigonal chromium telluride Cr 0.62 Te

    DOE PAGES

    Liu, Yu; Petrovic, C.

    2017-10-09

    The critical properties of flux-grown single-crystalline quasi-two-dimensional weak itinerant ferromagnet Cr 0.62 Te were investigated by bulk dc magnetization around the paramagnetic to ferromagnetic phase transition. Critical exponents β = 0.315 ( 7 ) with a critical temperature T c = 230.6 ( 3 ) K and γ = 1.81 ( 2 ) with T c = 229.1 ( 1 ) K are obtained by the Kouvel-Fisher method whereas δ = 6.35 ( 4 ) is obtained by a critical isotherm analysis at T c = 230 K. With these obtained exponents, the magnetization-field-temperature curves collapse into two independentmore » curves following a single scaling equation M | T-T c/T c| -β = f ± ( H |T-T c/T c| -β δ ) around T c , suggesting the reliability of the obtained exponents. Additionally, the determined exponents of Cr 0.62 Te exhibit an Ising-like behavior with a change from short-range order to long-range order in the nature of magnetic interaction and with an extension from two to three dimensions on cooling through T c.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osipov, D V

    We prove noncommutative reciprocity laws on an algebraic surface defined over a perfect field. These reciprocity laws establish that some central extensions of globally constructed groups split over certain subgroups constructed by points or projective curves on a surface. For a two-dimensional local field with a last finite residue field, the local central extension which is constructed is isomorphic to the central extension which comes from the case of tame ramification of the Abelian two-dimensional local Langlands correspondence suggested by Kapranov. Bibliography: 9 titles.

  13. Geometrical optimization of a local ballistic magnetic sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanda, Yuhsuke; Hara, Masahiro; Nomura, Tatsuya

    2014-04-07

    We have developed a highly sensitive local magnetic sensor by using a ballistic transport property in a two-dimensional conductor. A semiclassical simulation reveals that the sensitivity increases when the geometry of the sensor and the spatial distribution of the local field are optimized. We have also experimentally demonstrated a clear observation of a magnetization process in a permalloy dot whose size is much smaller than the size of an optimized ballistic magnetic sensor fabricated from a GaAs/AlGaAs two-dimensional electron gas.

  14. The kink-soliton and antikink-soliton in quasi-one-dimensional nonlinear monoatomic lattice

    NASA Astrophysics Data System (ADS)

    Xu, Quan; Tian, Qiang

    2005-04-01

    The quasi-one-dimensional nonlinear monoatomic lattice is analyzed. The kink-soliton and antikink-soliton are presented. When the interaction of the lattice is strong in the x-direction and weak in the y-direction, the two-dimensional (2D) lattice changes to a quasi-one-dimensional lattice. Taking nearest-neighbor interaction into account, the vibration equation can be transformed into the KPI, KPII and MKP equation. Considering the cubic nonlinear potential of the vibration in the lattice, the kink-soliton solution is presented. Considering the quartic nonlinear potential and the cubic interaction potential, the kink-soliton and antikink-soliton solutions are presented.

  15. Development and verification of global/local analysis techniques for laminated composites

    NASA Technical Reports Server (NTRS)

    Thompson, Danniella Muheim; Griffin, O. Hayden, Jr.

    1991-01-01

    A two-dimensional to three-dimensional global/local finite element approach was developed, verified, and applied to a laminated composite plate of finite width and length containing a central circular hole. The resulting stress fields for axial compression loads were examined for several symmetric stacking sequences and hole sizes. Verification was based on comparison of the displacements and the stress fields with those accepted trends from previous free edge investigations and a complete three-dimensional finite element solution of the plate. The laminates in the compression study included symmetric cross-ply, angle-ply and quasi-isotropic stacking sequences. The entire plate was selected as the global model and analyzed with two-dimensional finite elements. Displacements along a region identified as the global/local interface were applied in a kinematically consistent fashion to independent three-dimensional local models. Local areas of interest in the plate included a portion of the straight free edge near the hole, and the immediate area around the hole. Interlaminar stress results obtained from the global/local analyses compares well with previously reported trends, and some new conclusions about interlaminar stress fields in plates with different laminate orientations and hole sizes are presented for compressive loading. The effectiveness of the global/local procedure in reducing the computational effort required to solve these problems is clearly demonstrated through examination of the computer time required to formulate and solve the linear, static system of equations which result for the global and local analyses to those required for a complete three-dimensional formulation for a cross-ply laminate. Specific processors used during the analyses are described in general terms. The application of this global/local technique is not limited software system, and was developed and described in as general a manner as possible.

  16. Balancing Newtonian gravity and spin to create localized structures

    NASA Astrophysics Data System (ADS)

    Bush, Michael; Lindner, John

    2015-03-01

    Using geometry and Newtonian physics, we design localized structures that do not require electromagnetic or other forces to resist implosion or explosion. In two-dimensional Euclidean space, we find an equilibrium configuration of a rotating ring of massive dust whose inward gravity is the centripetal force that spins it. We find similar solutions in three-dimensional Euclidean and hyperbolic spaces, but only in the limit of vanishing mass. Finally, in three-dimensional Euclidean space, we generalize the two-dimensional result by finding an equilibrium configuration of a spherical shell of massive dust that supports itself against gravitational collapse by spinning isoclinically in four dimensions so its three-dimensional acceleration is everywhere inward. These Newtonian ``atoms'' illuminate classical physics and geometry.

  17. Large Deviations for Stochastic Models of Two-Dimensional Second Grade Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Jianliang, E-mail: zhaijl@ustc.edu.cn; Zhang, Tusheng, E-mail: Tusheng.Zhang@manchester.ac.uk

    2017-06-15

    In this paper, we establish a large deviation principle for stochastic models of incompressible second grade fluids. The weak convergence method introduced by Budhiraja and Dupuis (Probab Math Statist 20:39–61, 2000) plays an important role.

  18. Effect of non-classical current paths in networks of 1-dimensional wires

    NASA Astrophysics Data System (ADS)

    Echternach, P. M.; Mikhalchuk, A. G.; Bozler, H. M.; Gershenson, M. E.; Bogdanov, A. L.; Nilsson, B.

    1996-04-01

    At low temperatures, the quantum corrections to the resistance due to weak localization and electron-electron interaction are affected by the shape and topology of samples. We observed these effects in the resistance of 2D percolation networks made from 1D wires and in a series of long 1D wires with regularly spaced side branches. Branches outside the classical current path strongly reduce the quantum corrections to the resistance and these reductions become a measure of the quantum lengths.

  19. Depressed scattering across grain boundaries in single crystal graphene

    NASA Astrophysics Data System (ADS)

    Chen, Jiao; Jin, Zhi; Ma, Peng; Wang, Hong; Wang, Haomin; Shi, Jingyuan; Peng, Songang; Liu, Xinyu; Ye, Tianchun

    2012-10-01

    We investigated the electrical and quantum properties of single-crystal graphene (SCG) synthesized by chemical vapor deposition (CVD). Quantum Hall effect and Shubnikov de Hass oscillation, a distinguishing feature of a 2-dimensional electronic material system, were observed during the low temperature transport measurements. Decreased scattering from grain boundaries in SCG was proven through extracting information from weak localization theory. Our results facilitate understanding the electrical properties of SCG grown by CVD and its applications in high speed transistor and quantum devices.

  20. WIND: Computer program for calculation of three dimensional potential compressible flow about wind turbine rotor blades

    NASA Technical Reports Server (NTRS)

    Dulikravich, D. S.

    1980-01-01

    A computer program is presented which numerically solves an exact, full potential equation (FPE) for three dimensional, steady, inviscid flow through an isolated wind turbine rotor. The program automatically generates a three dimensional, boundary conforming grid and iteratively solves the FPE while fully accounting for both the rotating cascade and Coriolis effects. The numerical techniques incorporated involve rotated, type dependent finite differencing, a finite volume method, artificial viscosity in conservative form, and a successive line overrelaxation combined with the sequential grid refinement procedure to accelerate the iterative convergence rate. Consequently, the WIND program is capable of accurately analyzing incompressible and compressible flows, including those that are locally transonic and terminated by weak shocks. The program can also be used to analyze the flow around isolated aircraft propellers and helicopter rotors in hover as long as the total relative Mach number of the oncoming flow is subsonic.

  1. Evidence of Reduced Global Processing in Autism Spectrum Disorder.

    PubMed

    Booth, Rhonda D L; Happé, Francesca G E

    2018-04-01

    Frith's original notion of 'weak central coherence' suggested that increased local processing in autism spectrum disorder (ASD) resulted from reduced global processing. More recent accounts have emphasised superior local perception and suggested intact global integration. However, tasks often place local and global processing in direct trade-off, making it difficult to determine whether group differences reflect reduced global processing, increased local processing, or both. We present two measures of global integration in which poor performance could not reflect increased local processing. ASD participants were slower to identify fragmented figures and less sensitive to global geometric impossibility than IQ-matched controls. These findings suggest that reduced global integration comprises one important facet of weak central coherence in ASD.

  2. Spontaneous time reversal symmetry breaking in atomically confined two-dimensional impurity bands in silicon and germanium

    NASA Astrophysics Data System (ADS)

    Ghosh, Arindam

    Three-dimensional bulk-doped semiconductors, in particular phosphorus (P)-doped silicon (Si) and germanium (Ge), are among the best studied systems for many fundamental concepts in solid state physics, ranging from the Anderson metal-insulator transition to the many-body Coulomb interaction effects on quantum transport. Recent advances in material engineering have led to vertically confined doping of phosphorus (P) atoms inside bulk crystalline silicon and germanium, where the electron transport occurs through one or very few atomic layers, constituting a new and unique platform to investigate many of these phenomena at reduced dimensions. In this talk I shall present results of extensive quantum transport experiments in delta-doped silicon and germanium epilayers, over a wide range of doping density that allow independent tuning of the on-site Coulomb interaction and hopping energy scales. We find that low-frequency flicker noise, or the 1 / f noise, in the electrical conductance of these systems is exceptionally low, and in fact among the lowest when compared with other low-dimensional materials. This is attributed to the physical separation of the conduction electrons, embedded inside the crystalline semiconductor matrix, from the charged fluctuators at the surface. Most importantly, we find a remarkable suppression of weak localization effects, including the quantum correction to conductivity and universal conductance fluctuations, with decreasing doping density or, equivalently, increasing effective on-site Coulomb interaction. In-plane magneto-transport measurements indicate the presence of intrinsic local spin fluctuations at low doping although no signatures of long range magnetic order could be identified. We argue that these results indicate a spontaneous breakdown of time reversal symmetry, which is one of the most fundamental and robust symmetries of nonmagnetic quantum systems. While the microscopic origin of this spontaneous time reversal symmetry breaking remains unknown, we believe this indicates a new many-body electronic phase in two-dimensionally doped silicon and germanium with a half-filled impurity band. We acknowledge financial support from Department of Science and Technology, Government of India, and Australia-India Strategic Research Fund (AISRF).

  3. Geomechanical modeling of reservoir compaction, surface subsidence, and casing damage at the Belridge diatomite field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FREDRICH,JOANNE T.; DEITRICK,G.L.; ARGUELLO JR.,JOSE G.

    2000-05-01

    Geologic, and historical well failure, production, and injection data were analyzed to guide development of three-dimensional geomechanical models of the Belridge diatomite field, California. The central premise of the numerical simulations is that spatial gradients in pore pressure induced by production and injection in a low permeability reservoir may perturb the local stresses and cause subsurface deformation sufficient to result in well failure. Time-dependent reservoir pressure fields that were calculated from three-dimensional black oil reservoir simulations were coupled uni-directionally to three-dimensional non-linear finite element geomechanical simulations. The reservoir models included nearly 100,000 gridblocks (100--200 wells), and covered nearly 20 yearsmore » of production and injection. The geomechanical models were meshed from structure maps and contained more than 300,000 nodal points. Shear strain localization along weak bedding planes that causes casing dog-legs in the field was accommodated in the model by contact surfaces located immediately above the reservoir and at two locations in the overburden. The geomechanical simulations are validated by comparison of the predicted surface subsidence with field measurements, and by comparison of predicted deformation with observed casing damage. Additionally, simulations performed for two independently developed areas at South Belridge, Sections 33 and 29, corroborate their different well failure histories. The simulations suggest the three types of casing damage observed, and show that although water injection has mitigated surface subsidence, it can, under some circumstances, increase the lateral gradients in effective stress, that in turn can accelerate subsurface horizontal motions. Geomechanical simulation is an important reservoir management tool that can be used to identify optimal operating policies to mitigate casing damage for existing field developments, and applied to incorporate the effect of well failure potential in economic analyses of alternative infilling and development options.« less

  4. Novel circuit design for high-impedance and non-local electrical measurements of two-dimensional materials

    NASA Astrophysics Data System (ADS)

    De Sanctis, Adolfo; Mehew, Jake D.; Alkhalifa, Saad; Tate, Callum P.; White, Ashley; Woodgate, Adam R.; Craciun, Monica F.; Russo, Saverio

    2018-02-01

    Two-dimensional materials offer a novel platform for the development of future quantum technologies. However, the electrical characterisation of topological insulating states, non-local resistance, and bandgap tuning in atomically thin materials can be strongly affected by spurious signals arising from the measuring electronics. Common-mode voltages, dielectric leakage in the coaxial cables, and the limited input impedance of alternate-current amplifiers can mask the true nature of such high-impedance states. Here, we present an optical isolator circuit which grants access to such states by electrically decoupling the current-injection from the voltage-sensing circuitry. We benchmark our apparatus against two state-of-the-art measurements: the non-local resistance of a graphene Hall bar and the transfer characteristic of a WS2 field-effect transistor. Our system allows the quick characterisation of novel insulating states in two-dimensional materials with potential applications in future quantum technologies.

  5. Three-Dimensional Simulations of Tearing and Intermittency in Coronal Jets

    NASA Technical Reports Server (NTRS)

    Wyper, P. F.; DeVore, C. R.; Karpen, J. T.; Lynch, B. J.

    2016-01-01

    Observations of coronal jets increasingly suggest that local fragmentation and intermittency play an important role in the dynamics of these events. In this work we investigate this fragmentation in high-resolution simulations of jets in the closed-field corona. We study two realizations of the embedded-bipole model, whereby impulsive helical out flows are driven by reconnection between twisted and untwisted field across the domed fan plane of a magnetic null. We find that the reconnection region fragments following the onset of a tearing-like instability, producing multiple magnetic null points and flux-rope structures within the current layer. The flux ropes formed within the weak- field region in the center of the current layer are associated with \\blobs" of density enhancement that become filamentary threads as the flux ropes are ejected from the layer, whereupon new flux ropes form behind them. This repeated formation and ejection of flux ropes provides a natural explanation for the intermittent out flows, bright blobs of emission, and filamentary structure observed in some jets. Additional observational signatures of this process are discussed. Essentially all jet models invoke reconnection between regions of locally closed and locally open field as the jet-generation mechanism. Therefore, we suggest that this repeated tearing process should occur at the separatrix surface between the two flux systems in all jets. A schematic picture of tearing-mediated jet reconnection in three dimensions is outlined.

  6. THREE-DIMENSIONAL SIMULATIONS OF TEARING AND INTERMITTENCY IN CORONAL JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyper, P. F.; DeVore, C. R.; Karpen, J. T.

    Observations of coronal jets increasingly suggest that local fragmentation and intermittency play an important role in the dynamics of these events. In this work, we investigate this fragmentation in high-resolution simulations of jets in the closed-field corona. We study two realizations of the embedded-bipole model, whereby impulsive helical outflows are driven by reconnection between twisted and untwisted field across the domed fan plane of a magnetic null. We find that the reconnection region fragments following the onset of a tearing-like instability, producing multiple magnetic null points and flux-rope structures within the current layer. The flux ropes formed within the weak-fieldmore » region in the center of the current layer are associated with “blobs” of density enhancement that become filamentary threads as the flux ropes are ejected from the layer, whereupon new flux ropes form behind them. This repeated formation and ejection of flux ropes provides a natural explanation for the intermittent outflows, bright blobs of emission, and filamentary structure observed in some jets. Additional observational signatures of this process are discussed. Essentially all jet models invoke reconnection between regions of locally closed and locally open field as the jet-generation mechanism. Therefore, we suggest that this repeated tearing process should occur at the separatrix surface between the two flux systems in all jets. A schematic picture of tearing-mediated jet reconnection in three dimensions is outlined.« less

  7. Decay of Complex-Time Determinantal and Pfaffian Correlation Functionals in Lattices

    NASA Astrophysics Data System (ADS)

    Aza, N. J. B.; Bru, J.-B.; de Siqueira Pedra, W.

    2018-04-01

    We supplement the determinantal and Pfaffian bounds of Sims and Warzel (Commun Math Phys 347:903-931, 2016) for many-body localization of quasi-free fermions, by considering the high dimensional case and complex-time correlations. Our proof uses the analyticity of correlation functions via the Hadamard three-line theorem. We show that the dynamical localization for the one-particle system yields the dynamical localization for the many-point fermionic correlation functions, with respect to the Hausdorff distance in the determinantal case. In Sims and Warzel (2016), a stronger notion of decay for many-particle configurations was used but only at dimension one and for real times. Considering determinantal and Pfaffian correlation functionals for complex times is important in the study of weakly interacting fermions.

  8. Decay of Complex-Time Determinantal and Pfaffian Correlation Functionals in Lattices

    NASA Astrophysics Data System (ADS)

    Aza, N. J. B.; Bru, J.-B.; de Siqueira Pedra, W.

    2018-06-01

    We supplement the determinantal and Pfaffian bounds of Sims and Warzel (Commun Math Phys 347:903-931, 2016) for many-body localization of quasi-free fermions, by considering the high dimensional case and complex-time correlations. Our proof uses the analyticity of correlation functions via the Hadamard three-line theorem. We show that the dynamical localization for the one-particle system yields the dynamical localization for the many-point fermionic correlation functions, with respect to the Hausdorff distance in the determinantal case. In Sims and Warzel (2016), a stronger notion of decay for many-particle configurations was used but only at dimension one and for real times. Considering determinantal and Pfaffian correlation functionals for complex times is important in the study of weakly interacting fermions.

  9. Shock Structure Analysis and Aerodynamics in a Weakly Ionized Gas Flow

    NASA Technical Reports Server (NTRS)

    Saeks, R.; Popovic, S.; Chow, A. S.

    2006-01-01

    The structure of a shock wave propagating through a weakly ionized gas is analyzed using an electrofluid dynamics model composed of classical conservation laws and Gauss Law. A viscosity model is included to correctly model the spatial scale of the shock structure, and quasi-neutrality is not assumed. A detailed analysis of the structure of a shock wave propagating in a weakly ionized gas is presented, together with a discussion of the physics underlying the key features of the shock structure. A model for the flow behind a shock wave propagating through a weakly ionized gas is developed and used to analyze the effect of the ionization on the aerodynamics and performance of a two-dimensional hypersonic lifting body.

  10. Dynamics of continental rift propagation: the end-member modes

    NASA Astrophysics Data System (ADS)

    Van Wijk, J. W.; Blackman, D. K.

    2005-01-01

    An important aspect of continental rifting is the progressive variation of deformation style along the rift axis during rift propagation. In regions of rift propagation, specifically transition zones from continental rifting to seafloor spreading, it has been observed that contrasting styles of deformation along the axis of rift propagation are bounded by shear zones. The focus of this numerical modeling study is to look at dynamic processes near the tip of a weak zone in continental lithosphere. More specifically, this study explores how modeled rift behavior depends on the value of rheological parameters of the crust. A three-dimensional finite element model is used to simulate lithosphere deformation in an extensional regime. The chosen approach emphasizes understanding the tectonic forces involved in rift propagation. Dependent on plate strength, two end-member modes are distinguished. The stalled rift phase is characterized by absence of rift propagation for a certain amount of time. Extension beyond the edge of the rift tip is no longer localized but occurs over a very wide zone, which requires a buildup of shear stresses near the rift tip and significant intra-plate deformation. This stage represents a situation in which a rift meets a locked zone. Localized deformation changes to distributed deformation in the locked zone, and the two different deformation styles are balanced by a shear zone oriented perpendicular to the trend. In the alternative rift propagation mode, rift propagation is a continuous process when the initial crust is weak. The extension style does not change significantly along the rift axis and lengthening of the rift zone is not accompanied by a buildup of shear stresses. Model predictions address aspects of previously unexplained rift evolution in the Laptev Sea, and its contrast with the tectonic evolution of, for example, the Gulf of Aden and Woodlark Basin.

  11. Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates

    PubMed Central

    Chen, Jin; Venugopal, Vivek; Intes, Xavier

    2011-01-01

    Time-resolved fluorescence optical tomography allows 3-dimensional localization of multiple fluorophores based on lifetime contrast while providing a unique data set for improved resolution. However, to employ the full fluorescence time measurements, a light propagation model that accurately simulates weakly diffused and multiple scattered photons is required. In this article, we derive a computationally efficient Monte Carlo based method to compute time-gated fluorescence Jacobians for the simultaneous imaging of two fluorophores with lifetime contrast. The Monte Carlo based formulation is validated on a synthetic murine model simulating the uptake in the kidneys of two distinct fluorophores with lifetime contrast. Experimentally, the method is validated using capillaries filled with 2.5nmol of ICG and IRDye™800CW respectively embedded in a diffuse media mimicking the average optical properties of mice. Combining multiple time gates in one inverse problem allows the simultaneous reconstruction of multiple fluorophores with increased resolution and minimal crosstalk using the proposed formulation. PMID:21483610

  12. Super Yang Mills, matrix models and geometric transitions

    NASA Astrophysics Data System (ADS)

    Ferrari, Frank

    2005-03-01

    I explain two applications of the relationship between four-dimensional N=1 supersymmetric gauge theories, zero-dimensional gauged matrix models, and geometric transitions in string theory. The first is related to the spectrum of BPS domain walls or BPS branes. It is shown that one can smoothly interpolate between a D-brane state, whose weak coupling tension scales as N˜1/g, and a closed string solitonic state, whose weak coupling tension scales as N˜1/gs2. This is part of a larger theory of N=1 quantum parameter spaces. The second is a new purely geometric approach to sum exactly over planar diagrams in zero dimension. It is an example of open/closed string duality. To cite this article: F. Ferrari, C. R. Physique 6 (2005).

  13. On the dispersionless Kadomtsev-Petviashvili equation with arbitrary nonlinearity and dimensionality: exact solutions, longtime asymptotics of the Cauchy problem, wave breaking and shocks

    NASA Astrophysics Data System (ADS)

    Santucci, F.; Santini, P. M.

    2016-10-01

    We study the generalization of the dispersionless Kadomtsev-Petviashvili (dKP) equation in n+1 dimensions and with nonlinearity of degree m+1, a model equation describing the propagation of weakly nonlinear, quasi one-dimensional waves in the absence of dispersion and dissipation, and arising in several physical contexts, like acoustics, plasma physics, hydrodynamics and nonlinear optics. In 2 + 1 dimensions and with quadratic nonlinearity, this equation is integrable through a novel inverse scattering transform, and it has been recently shown to be a prototype model equation in the description of the two-dimensional wave breaking of localized initial data. In higher dimensions and with higher nonlinearity, the generalized dKP equations are not integrable, but their invariance under motions on the paraboloid allows one to construct in this paper a family of exact solutions describing waves constant on their paraboloidal wave front and breaking simultaneously in all points of it, developing after breaking either multivaluedness or single-valued discontinuous profiles (shocks). Then such exact solutions are used to build the longtime behavior of the solutions of the Cauchy problem, for small and localized initial data, showing that wave breaking of small initial data takes place in the longtime regime if and only if m(n-1)≤slant 2. Lastly, the analytic aspects of such wave breaking are investigated in detail in terms of the small initial data, in both cases in which the solution becomes multivalued after breaking or it develops a shock. These results, contained in the 2012 master’s thesis of one of the authors (FS) [1], generalize those obtained in [2] for the dKP equation in n+1 dimensions with quadratic nonlinearity, and are obtained following the same strategy.

  14. A Non Local Electron Heat Transport Model for Multi-Dimensional Fluid Codes

    NASA Astrophysics Data System (ADS)

    Schurtz, Guy

    2000-10-01

    Apparent inhibition of thermal heat flow is one of the most ancient problems in computational Inertial Fusion and flux-limited Spitzer-Harm conduction has been a mainstay in multi-dimensional hydrodynamic codes for more than 25 years. Theoretical investigation of the problem indicates that heat transport in laser produced plasmas has to be considered as a non local process. Various authors contributed to the non local theory and proposed convolution formulas designed for practical implementation in one-dimensional fluid codes. Though the theory, confirmed by kinetic calculations, actually predicts a reduced heat flux, it fails to explain the very small limiters required in two-dimensional simulations. Fokker-Planck simulations by Epperlein, Rickard and Bell [PRL 61, 2453 (1988)] demonstrated that non local effects could lead to a strong reduction of heat flow in two dimensions, even in situations where a one-dimensional analysis suggests that the heat flow is nearly classical. We developed at CEA/DAM a non local electron heat transport model suitable for implementation in our two-dimensional radiation hydrodynamic code FCI2. This model may be envisionned as the first step of an iterative solution of the Fokker-Planck equations; it takes the mathematical form of multigroup diffusion equations, the solution of which yields both the heat flux and the departure of the electron distribution function to the Maxwellian. Although direct implementation of the model is straightforward, formal solutions of it can be expressed in convolution form, exhibiting a three-dimensional tensor propagator. Reduction to one dimension retrieves the original formula of Luciani, Mora and Virmont [PRL 51, 1664 (1983)]. Intense magnetic fields may be generated by thermal effects in laser targets; these fields, as well as non local effects, will inhibit electron conduction. We present simulations where both effects are taken into account and shortly discuss the coupling strategy between them.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zegadlo, Krzysztof B., E-mail: zegadlo@if.pw.edu.pl; Karpierz, Miroslaw A.; Wasak, Tomasz

    We report results of the analysis for families of one-dimensional (1D) trapped solitons, created by competing self-focusing (SF) quintic and self-defocusing (SDF) cubic nonlinear terms. Two trapping potentials are considered, the harmonic-oscillator (HO) and delta-functional ones. The models apply to optical solitons in colloidal waveguides and other photonic media, and to matter-wave solitons in Bose-Einstein condensates loaded into a quasi-1D trap. For the HO potential, the results are obtained in an approximate form, using the variational and Thomas-Fermi approximations, and in a full numerical form, including the ground state and the first antisymmetric excited one. For the delta-functional attractive potential,more » the results are produced in a fully analytical form, and verified by means of numerical methods. Both exponentially localized solitons and weakly localized trapped modes are found for the delta-functional potential. The most essential conclusions concern the applicability of competing Vakhitov-Kolokolov (VK) and anti-VK criteria to the identification of the stability of solitons created under the action of the competing SF and SDF terms.« less

  16. Stabilization of solitons under competing nonlinearities by external potentials

    NASA Astrophysics Data System (ADS)

    Zegadlo, Krzysztof B.; Wasak, Tomasz; Malomed, Boris A.; Karpierz, Miroslaw A.; Trippenbach, Marek

    2014-12-01

    We report results of the analysis for families of one-dimensional (1D) trapped solitons, created by competing self-focusing (SF) quintic and self-defocusing (SDF) cubic nonlinear terms. Two trapping potentials are considered, the harmonic-oscillator (HO) and delta-functional ones. The models apply to optical solitons in colloidal waveguides and other photonic media, and to matter-wave solitons in Bose-Einstein condensates loaded into a quasi-1D trap. For the HO potential, the results are obtained in an approximate form, using the variational and Thomas-Fermi approximations, and in a full numerical form, including the ground state and the first antisymmetric excited one. For the delta-functional attractive potential, the results are produced in a fully analytical form, and verified by means of numerical methods. Both exponentially localized solitons and weakly localized trapped modes are found for the delta-functional potential. The most essential conclusions concern the applicability of competing Vakhitov-Kolokolov (VK) and anti-VK criteria to the identification of the stability of solitons created under the action of the competing SF and SDF terms.

  17. Fierz Convergence Criterion: A Controlled Approach to Strongly Interacting Systems with Small Embedded Clusters.

    PubMed

    Ayral, Thomas; Vučičević, Jaksa; Parcollet, Olivier

    2017-10-20

    We present an embedded-cluster method, based on the triply irreducible local expansion formalism. It turns the Fierz ambiguity, inherent to approaches based on a bosonic decoupling of local fermionic interactions, into a convergence criterion. It is based on the approximation of the three-leg vertex by a coarse-grained vertex computed from a self-consistently determined cluster impurity model. The computed self-energies are, by construction, continuous functions of momentum. We show that, in three interaction and doping regimes of the two-dimensional Hubbard model, self-energies obtained with clusters of size four only are very close to numerically exact benchmark results. We show that the Fierz parameter, which parametrizes the freedom in the Hubbard-Stratonovich decoupling, can be used as a quality control parameter. By contrast, the GW+extended dynamical mean field theory approximation with four cluster sites is shown to yield good results only in the weak-coupling regime and for a particular decoupling. Finally, we show that the vertex has spatially nonlocal components only at low Matsubara frequencies.

  18. Negative differential photoconductance in gold nanoparticle arrays in the Coulomb blockade regime.

    PubMed

    Mangold, Markus A; Calame, Michel; Mayor, Marcel; Holleitner, Alexander W

    2012-05-22

    We investigate the photoconductance of gold nanoparticle arrays in the Coulomb blockade regime. Two-dimensional, hexagonal crystals of nanoparticles are produced by self-assembly. The nanoparticles are weakly coupled to their neighbors by a tunneling conductance. At low temperatures, the single electron charging energy of the nanoparticles dominates the conductance properties of the array. The Coulomb blockade of the nanoparticles can be lifted by optical excitation with a laser beam. The optical excitation leads to a localized heating of the arrays, which in turn gives rise to a local change in conductance and a redistribution of the overall electrical potential in the arrays. We introduce a dual-beam optical excitation technique to probe the distribution of the electrical potential in the nanoparticle array. A negative differential photoconductance is the direct consequence of the redistribution of the electrical potential upon lifting of the Coulomb blockade. On the basis of our model, we calculate the optically induced current from the dark current-voltage characteristics of the nanoparticle array. The calculations closely reproduce the experimental observations.

  19. Chiral Spin Order in Kondo-Heisenberg Systems

    NASA Astrophysics Data System (ADS)

    Tsvelik, A. M.; Yevtushenko, O. M.

    2017-12-01

    We demonstrate that low dimensional Kondo-Heisenberg systems, consisting of itinerant electrons and localized magnetic moments (Kondo impurities), can be used as a principally new platform to realize scalar chiral spin order. The underlying physics is governed by a competition of the Ruderman-Kittel-Kosuya-Yosida (RKKY) indirect exchange interaction between the local moments with the direct Heisenberg one. When the direct exchange is weak and RKKY dominates, the isotropic system is in the disordered phase. A moderately large direct exchange leads to an Ising-type phase transition to the phase with chiral spin order. Our finding paves the way towards pioneering experimental realizations of the chiral spin liquid in systems with spontaneously broken time-reversal symmetry.

  20. Development and application of computational aerothermodynamics flowfield computer codes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    1993-01-01

    Computations are presented for one-dimensional, strong shock waves that are typical of those that form in front of a reentering spacecraft. The fluid mechanics and thermochemistry are modeled using two different approaches. The first employs traditional continuum techniques in solving the Navier-Stokes equations. The second-approach employs a particle simulation technique (the direct simulation Monte Carlo method, DSMC). The thermochemical models employed in these two techniques are quite different. The present investigation presents an evaluation of thermochemical models for nitrogen under hypersonic flow conditions. Four separate cases are considered. The cases are governed, respectively, by the following: vibrational relaxation; weak dissociation; strong dissociation; and weak ionization. In near-continuum, hypersonic flow, the nonequilibrium thermochemical models employed in continuum and particle simulations produce nearly identical solutions. Further, the two approaches are evaluated successfully against available experimental data for weakly and strongly dissociating flows.

  1. Combined Loadings and Cross-Dimensional Loadings Timeliness of Presentation of Financial Statements of Local Government

    NASA Astrophysics Data System (ADS)

    Muda, I.; Dharsuky, A.; Siregar, H. S.; Sadalia, I.

    2017-03-01

    This study examines the pattern of readiness dimensional accuracy of financial statements of local government in North Sumatra with a routine pattern of two (2) months after the fiscal year ends and patterns of at least 3 (three) months after the fiscal year ends. This type of research is explanatory survey with quantitative methods. The population and the sample used is of local government officials serving local government financial reports. Combined Analysis And Cross-Loadings Loadings are used with statistical tools WarpPLS. The results showed that there was a pattern that varies above dimensional accuracy of the financial statements of local government in North Sumatra.

  2. Management of asymptomatic intracardiac missiles using echocardiography.

    PubMed

    Robison, R J; Brown, J W; Caldwell, R; Stone, K S; King, H

    1988-09-01

    A child sustained a low-velocity airgun pellet injury to the left ventricle. No cardiovascular compromise was produced. The foreign body was localized by two-dimensional echocardiography to the left ventricular chamber near the mitral valve, and subsequently removed through a left atriotomy incision. In asymptomatic patients, missiles clearly embedded within a chamber wall may be observed; all others should be removed. Two-dimensional echocardiography is recommended for localization.

  3. Two dimensional nonplanar evolution of electrostatic shock waves in pair-ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; Rizvi, H.

    2012-01-15

    Electrostatic waves in a two dimensional nonplanar geometry are studied in an unmagnetized, dissipative pair-ion plasma in the presence of weak transverse perturbations. The dissipation in the system is taken into account by incorporating the kinematic viscosity of both positive and negative ions in plasmas. The nonplanar Kadomtsev-Petviashvili-Burgers (KPB) as well as the Burgers Kadomtsev-Petviashvili (Burgers KP) equations are derived using the small amplitude expansion method and the range of applicability of both the equations are discussed. The system under consideration is observed to admit compressive rarefactive shocks. The present study may have relevance to understand the formation of twomore » dimensional nonplanar electrostatic shocks in laboratory plasmas.« less

  4. Modes of self-organization of diluted bubbly liquids in acoustic fields: One-dimensional theory.

    PubMed

    Gumerov, Nail A; Akhatov, Iskander S

    2017-02-01

    The paper is dedicated to mathematical modeling of self-organization of bubbly liquids in acoustic fields. A continuum model describing the two-way interaction of diluted polydisperse bubbly liquids and acoustic fields in weakly-nonlinear approximation is studied analytically and numerically in the one-dimensional case. It is shown that the regimes of self-organization of monodisperse bubbly liquids can be controlled by only a few dimensionless parameters. Two basic modes, clustering and propagating shock waves of void fraction (acoustically induced transparency), are identified and criteria for their realization in the space of parameters are proposed. A numerical method for solving of one-dimensional self-organization problems is developed. Computational results for mono- and polydisperse systems are discussed.

  5. Virtual scanning tunneling microscopy: A local spectroscopic probe of two-dimensional electron systems

    NASA Astrophysics Data System (ADS)

    Sciambi, A.; Pelliccione, M.; Bank, S. R.; Gossard, A. C.; Goldhaber-Gordon, D.

    2010-09-01

    We propose a probe technique capable of performing local low-temperature spectroscopy on a two-dimensional electron system (2DES) in a semiconductor heterostructure. Motivated by predicted spatially-structured electron phases, the probe uses a charged metal tip to induce electrons to tunnel locally, directly below the tip, from a "probe" 2DES to a "subject" 2DES of interest. We test this concept with large-area (nonscanning) tunneling measurements, and predict a high spatial resolution and spectroscopic capability, with minimal influence on the physics in the subject 2DES.

  6. Analysis of the Radar Reflectivity of Aircraft Vortex Wakes

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Wray, Alan; Yan, Jerry (Technical Monitor)

    2000-01-01

    Radar has been proposed as a way to track wake vortices to reduce aircraft spacing and tests have revealed radar echoes from aircraft wakes in clear air. The results are always interpreted qualitatively using Tatarski's theory of weak scattering by isotropic atmospheric turbulence. The goal of the present work was to predict the value of the radar cross-section (RCS) using simpler models. This is accomplished in two steps. First, the refractive index is obtained. Since the structure of the aircraft wakes is different from atmospheric turbulence, three simple mechanisms specific to vortex wakes are considered: (1) Radial density gradient in a two-dimensional vortex, (2) three-dimensional fluctuations in the vortex cores, and (3) Adiabatic transport of the atmospheric fluid in a two-dimensional oval surrounding the pair of vortices. The index of refraction is obtained more precisely for the two-dimensional mechanisms than for the three-dimensional ones. In the second step, knowing the index of refraction, a scattering analysis is performed. Tatarski's weak scattering approximation is kept but the usual assumptions of a far-field and a uniform incident wave are dropped. Neither assumption is generally valid for a wake that is coherent across the radar beam. For analytical insight, a simpler approximation that invokes, in addition to weak scattering, the far-field and wide cylindrical beam assumptions, is also developed and compared with the more general analysis. The predicted RCS values for the oval surround the vortices (mechanism C) agree with the experiments of Bilson conducted over a wide range of frequencies. However, the predictions have a cut-off away from normal incidence which is not present in the measurements. Estimates suggest that this is due to turbulence in the baroclinic vorticity generated at the boundary of the oval. The reflectivity of a vortex itself (mechanism A) is comparable to that of the oval (mechanism C) but cuts-off at frequencies lower than those considered in all the experiments to date. The RCS of a vortex happens to peak at the frequency (about 49 MHz) where atmospheric radars (known as ST radars) operate and so the present prediction could be verified in the future. Finally , we suggest that hot engine exhaust could increase RCE by 40 db and reveal vortex circulation, provided its mixing with the surroundings is prevented in the laminarising flow of the vortices.

  7. Topological insulating phases from two-dimensional nodal loop semimetals

    NASA Astrophysics Data System (ADS)

    Li, Linhu; Araújo, Miguel A. N.

    2016-10-01

    Starting from a minimal model for a two-dimensional nodal loop semimetal, we study the effect of chiral mass gap terms. The resulting Dirac loop anomalous Hall insulator's Chern number is the phase-winding number of the mass gap terms on the loop. We provide simple lattice models, analyze the topological phases, and generalize a previous index characterizing topological transitions. The responses of the Dirac loop anomalous Hall and quantum spin Hall insulators to a magnetic field's vector potential are also studied both in weak- and strong-field regimes, as well as the edge states in a ribbon geometry.

  8. Critical current of SF-NFS Josephson junctions

    NASA Astrophysics Data System (ADS)

    Soloviev, I. I.; Klenov, N. V.; Bakursky, S. V.; Kupriyanov, M. Yu.; Golubov, A. A.

    2015-02-01

    The properties of SF-NFS sandwiches composed of two superconducting (S) electrodes separated by a weak-link region formed by a normal-metal (N) step with the thickness d N situated on the top of a lower S electrode and a ferromagnetic (F) layer with the thickness d F deposited onto the step and the remaining free surface of the lower electrode have been studied theoretically. It has been shown in the approximation of linearized semiclassical Usadel equations that the two-dimensional problem in the weak-link region can be reduced to two one-dimensional problems in its SFS and SNFS segments. The spatial distributions of the critical current density J c in the segments as a function of the layer thickness d F have been calculated. The dependences of the critical current I c of the structure on the magnitude of the magnetization vector M of the ferromagnetic layer have been found for various directions of the magnetization within the junction plane. It has been shown that these dependences are affected considerably by both the orientation of M and the spatial distribution of J c.

  9. Simulation of a Moving Elastic Beam Using Hamilton’s Weak Principle

    DTIC Science & Technology

    2006-03-01

    versions were limited to two-dimensional systems with open tree configurations (where a cut in any component separates the system in half) [48]. This...whose com- ponents experienced large angular rotations (turbomachinery, camshafts , flywheels, etc.). More complex systems required the simultaneous

  10. Relaxation and self-organization in two-dimensional plasma and neutral fluid flow systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Amita

    Extensive numerical studies in the framework of a simplified two-dimensional model for neutral and plasma fluid for a variety of initial configurations and for both decaying and driven cases are carried out to illustrate relaxation toward a self-organized state. The dynamical model equation constitutes a simple choice for this purpose, e.g., the vorticity equation of the Navier-Stokes dynamics for the incompressible neutral fluids and the Hasegawa-Mima equation for plasma fluid flow system. Scatter plots are employed to observe a development of functional relationship, if any, amidst the generalized vorticity and its Laplacian. It is seen that they do not satisfymore » a linear relationship as the well known variational approach of enstrophy minimization subject to constancy of the energy integral for the two-dimensional (2D) system suggests. The observed nonlinear functional relationship is understood by separating the contribution to the scatter plot from spatial regions with intense vorticity patches and those of the background flow region where the background vorticity is weak or absent altogether. It is shown that such a separation has close connection with the known exact analytical solutions of the system. The analytical solutions are typically obtained by assuming a finite source of vorticity for the inner core of the localized structure, which is then matched with the solution in the outer region where vorticity is chosen to be zero. The work also demonstrates that the seemingly ad hoc choice of the linear vorticity source function for the inner region is in fact consistent with the self-organization paradigm of the 2D systems.« less

  11. 2pBAb5. Validation of three-dimensional strain tracking by volumetric ultrasound image correlation in a pubovisceral muscle model

    PubMed Central

    Nagle, Anna S.; Nageswaren, Ashok R.; Haridas, Balakrishna; Mast, T. D.

    2014-01-01

    Little is understood about the biomechanical changes leading to pelvic floor disorders such as stress urinary incontinence. In order to measure regional biomechanical properties of the pelvic floor muscles in vivo, a three dimensional (3D) strain tracking technique employing correlation of volumetric ultrasound images has been implemented. In this technique, local 3D displacements are determined as a function of applied stress and then converted to strain maps. To validate this approach, an in vitro model of the pubovisceral muscle, with a hemispherical indenter emulating the downward stress caused by intra-abdominal pressure, was constructed. Volumetric B-scan images were recorded as a function of indenter displacement while muscle strain was measured independently by a sonomicrometry system (Sonometrics). Local strains were computed by ultrasound image correlation and compared with sonomicrometry-measured strains to assess strain tracking accuracy. Image correlation by maximizing an exponential likelihood function was found more reliable than the Pearson correlation coefficient. Strain accuracy was dependent on sizes of the subvolumes used for image correlation, relative to characteristic speckle length scales of the images. Decorrelation of echo signals was mapped as a function of indenter displacement and local tissue orientation. Strain measurement accuracy was weakly related to local echo decorrelation. PMID:24900165

  12. Engineering light emission of two-dimensional materials in both the weak and strong coupling regimes

    NASA Astrophysics Data System (ADS)

    Brotons-Gisbert, Mauro; Martínez-Pastor, Juan P.; Ballesteros, Guillem C.; Gerardot, Brian D.; Sánchez-Royo, Juan F.

    2018-01-01

    Two-dimensional (2D) materials have promising applications in optoelectronics, photonics, and quantum technologies. However, their intrinsically low light absorption limits their performance, and potential devices must be accurately engineered for optimal operation. Here, we apply a transfer matrix-based source-term method to optimize light absorption and emission in 2D materials and related devices in weak and strong coupling regimes. The implemented analytical model accurately accounts for experimental results reported for representative 2D materials such as graphene and MoS2. The model has been extended to propose structures to optimize light emission by exciton recombination in MoS2 single layers, light extraction from arbitrarily oriented dipole monolayers, and single-photon emission in 2D materials. Also, it has been successfully applied to retrieve exciton-cavity interaction parameters from MoS2 microcavity experiments. The present model appears as a powerful and versatile tool for the design of new optoelectronic devices based on 2D semiconductors such as quantum light sources and polariton lasers.

  13. Statistics of transmission eigenvalues in two-dimensional quantum cavities: Ballistic versus stochastic scattering

    NASA Astrophysics Data System (ADS)

    Rotter, Stefan; Aigner, Florian; Burgdörfer, Joachim

    2007-03-01

    We investigate the statistical distribution of transmission eigenvalues in phase-coherent transport through quantum dots. In two-dimensional ab initio simulations for both clean and disordered two-dimensional cavities, we find markedly different quantum-to-classical crossover scenarios for these two cases. In particular, we observe the emergence of “noiseless scattering states” in clean cavities, irrespective of sharp-edged entrance and exit lead mouths. We find the onset of these “classical” states to be largely independent of the cavity’s classical chaoticity, but very sensitive with respect to bulk disorder. Our results suggest that for weakly disordered cavities, the transmission eigenvalue distribution is determined both by scattering at the disorder potential and the cavity walls. To properly account for this intermediate parameter regime, we introduce a hybrid crossover scheme, which combines previous models that are valid in the ballistic and the stochastic limit, respectively.

  14. Vortex scaling ranges in two-dimensional turbulence

    NASA Astrophysics Data System (ADS)

    Burgess, B. H.; Dritschel, D. G.; Scott, R. K.

    2017-11-01

    We survey the role of coherent vortices in two-dimensional turbulence, including formation mechanisms, implications for classical similarity and inertial range theories, and characteristics of the vortex populations. We review early work on the spatial and temporal scaling properties of vortices in freely evolving turbulence and more recent developments, including a spatiotemporal scaling theory for vortices in the forced inverse energy cascade. We emphasize that Kraichnan-Batchelor similarity theories and vortex scaling theories are best viewed as complementary and together provide a more complete description of two-dimensional turbulence. In particular, similarity theory has a continued role in describing the weak filamentary sea between the vortices. Moreover, we locate both classical inertial and vortex scaling ranges within the broader framework of scaling in far-from-equilibrium systems, which generically exhibit multiple fixed point solutions with distinct scaling behaviour. We describe how stationary transport in a range of scales comoving with the dilatation of flow features, as measured by the growth in vortex area, constrains the vortex number density in both freely evolving and forced two-dimensional turbulence. The new theories for coherent vortices reveal previously hidden nontrivial scaling, point to new dynamical understanding, and provide a novel exciting window into two-dimensional turbulence.

  15. Visuospatial, visuoperceptual, and visuoconstructive abilities in congenital hypothyroidism.

    PubMed

    Simic, Nevena; Khan, Sarah; Rovet, Joanne

    2013-11-01

    Individuals with congenital hypothyroidism (CH), even those diagnosed and treated early, experience selective cognitive deficits, the most striking of which involves the visuocognitive domain. However, the range and nature of their visuocognitive disturbances is not fully understood. We assessed a range of higher-order visuocognitive abilities in 19 children and adolescents with CH and 19 age- and sex-matched typically developing peers (TD) using a battery of neuropsychological tests and a novel self-report measure of sense of direction. CH scored lower than TD on direct tests of visuocognitive function (judging line orientation, parts-to-whole localization, copying three-dimensional block towers, discriminating designs, and matching unfamiliar faces in ¾ profile-view) as well as on self-reported problems in spatial ability. Visuocognitive problems were not global as CH and TD did not differ at copying two-dimensional block designs, mentally rotating and matching abstract shapes, or at matching unfamiliar front-view faces, design features, or designs that engaged either figure-ground segregation, visual constancy, or closure. Early and concurrent thyroid stimulating hormone (TSH) levels were associated with visuocognitive ability, although attention and working memory were not. Individuals with CH exhibit selective visuocognitive weaknesses, some of which are related to early and concurrent TSH levels.

  16. Ashkin-Teller criticality and weak first-order behavior of the phase transition to a fourfold degenerate state in two-dimensional frustrated Ising antiferromagnets

    NASA Astrophysics Data System (ADS)

    Liu, R. M.; Zhuo, W. Z.; Chen, J.; Qin, M. H.; Zeng, M.; Lu, X. B.; Gao, X. S.; Liu, J.-M.

    2017-07-01

    We study the thermal phase transition of the fourfold degenerate phases (the plaquette and single-stripe states) in the two-dimensional frustrated Ising model on the Shastry-Sutherland lattice using Monte Carlo simulations. The critical Ashkin-Teller-like behavior is identified both in the plaquette phase region and the single-stripe phase region. The four-state Potts critical end points differentiating the continuous transitions from the first-order ones are estimated based on finite-size-scaling analyses. Furthermore, a similar behavior of the transition to the fourfold single-stripe phase is also observed in the anisotropic triangular Ising model. Thus, this work clearly demonstrates that the transitions to the fourfold degenerate states of two-dimensional Ising antiferromagnets exhibit similar transition behavior.

  17. Stratification, segregation, and mixing of granular materials in quasi-two-dimensional bounded heaps.

    PubMed

    Fan, Yi; Boukerkour, Youcef; Blanc, Thibault; Umbanhowar, Paul B; Ottino, Julio M; Lueptow, Richard M

    2012-11-01

    Segregation and mixing of granular mixtures during heap formation has important consequences in industry and agriculture. This research investigates three different final particle configurations of bidisperse granular mixtures--stratified, segregated and mixed--during filling of quasi-two-dimensional silos. We consider a large number and wide range of control parameters, including particle size ratio, flow rate, system size, and heap rise velocity. The boundary between stratified and unstratified states is primarily controlled by the two-dimensional flow rate, with the critical flow rate for the transition depending weakly on particle size ratio and flowing layer length. In contrast, the transition from segregated to mixed states is controlled by the rise velocity of the heap, a control parameter not previously considered. The critical rise velocity for the transition depends strongly on the particle size ratio.

  18. Tight-Binding Study of Polarons in Two-Dimensional Systems: Implications for Organic Field-Effect Transistor Materials

    NASA Astrophysics Data System (ADS)

    Lei, Jie

    2011-03-01

    In order to understand the electronic and transport properties of organic field-effect transistor (FET) materials, we theoretically studied the polarons in two-dimensional systems using a tight-binding model with the Holstein type and Su--Schrieffer--Heeger type electron--lattice couplings. By numerical calculations, it was found that a carrier accepts four kinds of localization, which are named the point polaron, two-dimensional polaron, one-dimensional polaron, and the extended state. The degree of localization is sensitive to the following parameters in the model: the strength and type of electron--lattice couplings, and the signs and relative magnitudes of transfer integrals. When a parameter set for a single-crystal phase of pentacene is applied within the Holstein model, a considerably delocalized hole polaron is found, consistent with the bandlike transport mechanism.

  19. Linear instability in the wake of an elliptic wing

    NASA Astrophysics Data System (ADS)

    He, Wei; Tendero, Juan Ángel; Paredes, Pedro; Theofilis, Vassilis

    2017-12-01

    Linear global instability analysis has been performed in the wake of a low aspect ratio three-dimensional wing of elliptic cross section, constructed with appropriately scaled Eppler E387 airfoils. The flow field over the airfoil and in its wake has been computed by full three-dimensional direct numerical simulation at a chord Reynolds number of Rec=1750 and two angles of attack, {AoA}=0° and 5°. Point-vortex methods have been employed to predict the inviscid counterpart of this flow. The spatial BiGlobal eigenvalue problem governing linear small-amplitude perturbations superposed upon the viscous three-dimensional wake has been solved at several axial locations, and results were used to initialize linear PSE-3D analyses without any simplifying assumptions regarding the form of the trailing vortex system, other than weak dependence of all flow quantities on the axial spatial direction. Two classes of linearly unstable perturbations were identified, namely stronger-amplified symmetric modes and weaker-amplified antisymmetric disturbances, both peaking at the vortex sheet which connects the trailing vortices. The amplitude functions of both classes of modes were documented, and their characteristics were compared with those delivered by local linear stability analysis in the wake near the symmetry plane and in the vicinity of the vortex core. While all linear instability analysis approaches employed have delivered qualitatively consistent predictions, only PSE-3D is free from assumptions regarding the underlying base flow and should thus be employed to obtain quantitative information on amplification rates and amplitude functions in this class of configurations.

  20. Direct imaging of atomic-scale ripples in few-layer graphene.

    PubMed

    Wang, Wei L; Bhandari, Sagar; Yi, Wei; Bell, David C; Westervelt, Robert; Kaxiras, Efthimios

    2012-05-09

    Graphene has been touted as the prototypical two-dimensional solid of extraordinary stability and strength. However, its very existence relies on out-of-plane ripples as predicted by theory and confirmed by experiments. Evidence of the intrinsic ripples has been reported in the form of broadened diffraction spots in reciprocal space, in which all spatial information is lost. Here we show direct real-space images of the ripples in a few-layer graphene (FLG) membrane resolved at the atomic scale using monochromated aberration-corrected transmission electron microscopy (TEM). The thickness of FLG amplifies the weak local effects of the ripples, resulting in spatially varying TEM contrast that is unique up to inversion symmetry. We compare the characteristic TEM contrast with simulated images based on accurate first-principles calculations of the scattering potential. Our results characterize the ripples in real space and suggest that such features are likely common in ultrathin materials, even in the nanometer-thickness range.

  1. Kondo scattering in δ-doped LaTiO3/SrTiO3 interfaces: Renormalization by spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Das, Shubhankar; Rastogi, A.; Wu, Lijun; Zheng, Jin-Cheng; Hossain, Z.; Zhu, Yimei; Budhani, R. C.

    2014-08-01

    We present a study of δ doping at the LaTiO3/SrTiO3 interface with isostructural antiferromagnetic perovskite LaCrO3 that dramatically alters the properties of the two-dimensional electron gas at the interface. The effects include a reduction in sheet-carrier density, prominence of the low-temperature resistivity minimum, enhancement of weak antilocalization below 10 K, and observation of a strong anisotropic magnetoresistance (MR). The positive and negative MR for out-of-plane and in-plane fields, respectively, and the field and temperature dependencies of MR suggest Kondo scattering by localized Ti3+ moments renormalized by spin-orbit interaction at T < 10 K, with the increased δ-layer thickness. Electron-energy-loss spectroscopy and density functional calculations provide convincing evidence of blocking of electron transfer from LTO to STO by the δ layer.

  2. Neutron diffraction study of layered Ni dioxides: Ag2NiO2

    NASA Astrophysics Data System (ADS)

    Nozaki, Hiroshi; Sugiyama, Jun; Janoschek, Marc; Roessli, Bertrand; Pomjakushin, Vladimir; Keller, Lukas; Yoshida, Hiroyuki; Hiroi, Zenji

    2008-03-01

    In order to elucidate the antiferromagnetic (AF) nature of hexagonal Ag2NiO2 with TN = 56 K and to know the mechanism of the structural phase transition of TS~270 K, neutron powder diffraction patterns have been measured in the temperature range between 1.5 and 330 K. One magnetic Bragg peak indexed as \\frac {1}{3}~\\frac {1}{3}~0 is clearly observed below TN, confirming the formation of long-range AF order, reported by a muon-spin spectroscopy measurement. The weak intensity of the magnetic peak also suggests the two-dimensional nature of the AF order, but the spin structure is still unknown. In addition, the precise structural analysis of the data between 160 and 330 K shows that only the cH-axis length changes drastically at TS, which suggests the appearance of local Jahn-Teller distortion below TS.

  3. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, George P.; Skeate, Michael F.

    1996-01-01

    An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.

  4. Two-dimensional analytical modeling of a linear variable filter for spectral order sorting.

    PubMed

    Ko, Cheng-Hao; Wu, Yueh-Hsun; Tsai, Jih-Run; Wang, Bang-Ji; Chakraborty, Symphony

    2016-06-10

    A two-dimensional thin film thickness model based on the geometry of a commercial coater which can calculate more effectively the profiles of linear variable filters (LVFs) has been developed. This is done by isolating the substrate plane as an independent coordinate (local coordinate), while the rotation and translation matrices are used to establish the coordinate transformation and combine the characteristic vector with the step function to build a borderline which can conclude whether the local mask will block the deposition or not. The height of the local mask has been increased up to 40 mm in the proposed model, and two-dimensional simulations are developed to obtain a thin film profile deposition on the substrate inside the evaporation chamber to achieve the specific request of producing a LVF zone width in a more economical way than previously reported [Opt. Express23, 5102 (2015)OPEXFF1094-408710.1364/OE.23.005102].

  5. Superconductivity induced by flexural modes in non-σh-symmetric Dirac-like two-dimensional materials: A theoretical study for silicene and germanene

    NASA Astrophysics Data System (ADS)

    Fischetti, Massimo V.; Polley, Arup

    2018-04-01

    In two-dimensional crystals that lack symmetry under reflections on the horizontal plane of the lattice (non-σh-symmetric), electrons can couple to flexural modes (ZA phonons) at first order. We show that in materials of this type that also exhibit a Dirac-like electron dispersion, the strong coupling can result in electron pairing mediated by these phonons, as long as the flexural modes are not damped or suppressed by additional interactions with a supporting substrate or gate insulator. We consider several models: The weak-coupling limit, which is applicable only in the case of gapped and parabolic materials, like stanene and HfSe2, thanks to the weak coupling; the full gap-equation, solved using the constant-gap approximation and considering statically screened interactions; its extensions to energy-dependent gap and to dynamic screening. We argue that in the case of silicene and germanene superconductivity mediated by this process can exhibit a critical temperature of a few degrees K, or even a few tens of degrees K when accounting for the effect of a high-dielectric-constant environment. We conclude that the electron/flexural-modes coupling should be included in studies of possible superconductivity in non-σh-symmetric two-dimensional crystals, even if alternative forms of coupling are considered.

  6. Simulation of plasma double-layer structures

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.; Joyce, G.

    1982-01-01

    Electrostatic plasma double layers are numerically simulated by means of a magnetized 2 1/2 dimensional particle in cell method. The investigation of planar double layers indicates that these one dimensional potential structures are susceptible to periodic disruption by instabilities in the low potential plasmas. Only a slight increase in the double layer thickness with an increase in its obliqueness to the magnetic field is observed. Weak magnetization results in the double layer electric field alignment of accelerated particles and strong magnetization results in their magnetic field alignment. The numerical simulations of spatially periodic two dimensional double layers also exhibit cyclical instability. A morphological invariance in two dimensional double layers with respect to the degree of magnetization implies that the potential structures scale with Debye lengths rather than with gyroradii. Electron beam excited electrostatic electron cyclotron waves and (ion beam driven) solitary waves are present in the plasmas adjacent to the double layers.

  7. The Effect of Three-Dimensional Freestream Disturbances on the Supersonic Flow Past a Wedge

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.; Lasseigne, D. Glenn; Hussaini, M. Y.

    1997-01-01

    The interaction between a shock wave (attached to a wedge) and small amplitude, three-dimensional disturbances of a uniform, supersonic, freestream flow are investigated. The paper extends the two-dimensional study of Duck et al, through the use of vector potentials, which render the problem tractable by the same techniques as in the two-dimensional case, in particular by expansion of the solution by means of a Fourier-Bessel series, in appropriately chosen coordinates. Results are presented for specific classes of freestream disturbances, and the study shows conclusively that the shock is stable to all classes of disturbances (i.e. time periodic perturbations to the shock do not grow downstream), provided the flow downstream of the shock is supersonic (loosely corresponding to the weak shock solution). This is shown from our numerical results and also by asymptotic analysis of the Fourier-Bessel series, valid far downstream of the shock.

  8. Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging.

    PubMed

    Cang, Hu; Labno, Anna; Lu, Changgui; Yin, Xiaobo; Liu, Ming; Gladden, Christopher; Liu, Yongmin; Zhang, Xiang

    2011-01-20

    When light illuminates a rough metallic surface, hotspots can appear, where the light is concentrated on the nanometre scale, producing an intense electromagnetic field. This phenomenon, called the surface enhancement effect, has a broad range of potential applications, such as the detection of weak chemical signals. Hotspots are believed to be associated with localized electromagnetic modes, caused by the randomness of the surface texture. Probing the electromagnetic field of the hotspots would offer much insight towards uncovering the mechanism generating the enhancement; however, it requires a spatial resolution of 1-2 nm, which has been a long-standing challenge in optics. The resolution of an optical microscope is limited to about half the wavelength of the incident light, approximately 200-300 nm. Although current state-of-the-art techniques, including near-field scanning optical microscopy, electron energy-loss spectroscopy, cathode luminescence imaging and two-photon photoemission imaging have subwavelength resolution, they either introduce a non-negligible amount of perturbation, complicating interpretation of the data, or operate only in a vacuum. As a result, after more than 30 years since the discovery of the surface enhancement effect, how the local field is distributed remains unknown. Here we present a technique that uses Brownian motion of single molecules to probe the local field. It enables two-dimensional imaging of the fluorescence enhancement profile of single hotspots on the surfaces of aluminium thin films and silver nanoparticle clusters, with accuracy down to 1.2 nm. Strong fluorescence enhancements, up to 54 and 136 times respectively, are observed in those two systems. This strong enhancement indicates that the local field, which decays exponentially from the peak of a hotspot, dominates the fluorescence enhancement profile.

  9. Control on frontal thrust progression by the mechanically weak Gondwana horizon in the Darjeeling-Sikkim Himalaya

    NASA Astrophysics Data System (ADS)

    Ghosh, Subhajit; Bose, Santanu; Mandal, Nibir; Das, Animesh

    2018-03-01

    This study integrates field evidence with laboratory experiments to show the mechanical effects of a lithologically contrasting stratigraphic sequence on the development of frontal thrusts: Main Boundary Thrust (MBT) and Daling Thrust (DT) in the Darjeeling-Sikkim Himalaya (DSH). We carried out field investigations mainly along two river sections in the DSH: Tista-Kalijhora and Mahanadi, covering an orogen-parallel stretch of 20 km. Our field observations suggest that the coal-shale dominated Gondwana sequence (sandwiched between the Daling Group in the north and Siwaliks in the south) has acted as a mechanically weak horizon to localize the MBT and DT. We simulated a similar mechanical setting in scaled model experiments to validate our field interpretation. In experiments, such a weak horizon at a shallow depth perturbs the sequential thrust progression, and causes a thrust to localize in the vicinity of the weak zone, splaying from the basal detachment. We correlate this weak-zone-controlled thrust with the DT, which accommodates a large shortening prior to activation of the weak zone as a new detachment with ongoing horizontal shortening. The entire shortening in the model is then transferred to this shallow detachment to produce a new sequence of thrust splays. Extrapolating this model result to the natural prototype, we show that the mechanically weak Gondwana Sequence has caused localization of the DT and MBT in the mountain front of DSH.

  10. Approximate Analysis for Interlaminar Stresses in Composite Structures with Thickness Discontinuities

    NASA Technical Reports Server (NTRS)

    Rose, Cheryl A.; Starnes, James H., Jr.

    1996-01-01

    An efficient, approximate analysis for calculating complete three-dimensional stress fields near regions of geometric discontinuities in laminated composite structures is presented. An approximate three-dimensional local analysis is used to determine the detailed local response due to far-field stresses obtained from a global two-dimensional analysis. The stress results from the global analysis are used as traction boundary conditions for the local analysis. A generalized plane deformation assumption is made in the local analysis to reduce the solution domain to two dimensions. This assumption allows out-of-plane deformation to occur. The local analysis is based on the principle of minimum complementary energy and uses statically admissible stress functions that have an assumed through-the-thickness distribution. Examples are presented to illustrate the accuracy and computational efficiency of the local analysis. Comparisons of the results of the present local analysis with the corresponding results obtained from a finite element analysis and from an elasticity solution are presented. These results indicate that the present local analysis predicts the stress field accurately. Computer execution-times are also presented. The demonstrated accuracy and computational efficiency of the analysis make it well suited for parametric and design studies.

  11. Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and FLEX results [Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and RPA+FLEX results

    DOE PAGES

    Nocera, Alberto; Wang, Yan; Patel, Niravkumar D.; ...

    2018-05-31

    Here, we study the magnetic and charge dynamical response of a Hubbard model in a two-leg ladder geometry using the density matrix renormalization group (DMRG) method and the random phase approximation within the fluctuation-exchange approximation (FLEX). Our calculations reveal that FLEX can capture the main features of the magnetic response from weak up to intermediate Hubbard repulsion for doped ladders, when compared with the numerically exact DMRG results. However, while at weak Hubbard repulsion both the spin and charge spectra can be understood in terms of weakly interacting electron-hole excitations across the Fermi surface, at intermediate coupling DMRG shows gappedmore » spin excitations at large momentum transfer that remain gapless within the FLEX approximation. For the charge response, FLEX can only reproduce the main features of the DMRG spectra at weak coupling and high doping levels, while it shows an incoherent character away from this limit. Overall, our analysis shows that FLEX works surprisingly well for spin excitations at weak and intermediate Hubbard U values even in the difficult low-dimensional geometry such as a two-leg ladder. Finally, we discuss the implications of our results for neutron scattering and resonant inelastic x-ray scattering experiments on two-leg ladder cuprate compounds.« less

  12. Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and FLEX results [Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and RPA+FLEX results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nocera, Alberto; Wang, Yan; Patel, Niravkumar D.

    Here, we study the magnetic and charge dynamical response of a Hubbard model in a two-leg ladder geometry using the density matrix renormalization group (DMRG) method and the random phase approximation within the fluctuation-exchange approximation (FLEX). Our calculations reveal that FLEX can capture the main features of the magnetic response from weak up to intermediate Hubbard repulsion for doped ladders, when compared with the numerically exact DMRG results. However, while at weak Hubbard repulsion both the spin and charge spectra can be understood in terms of weakly interacting electron-hole excitations across the Fermi surface, at intermediate coupling DMRG shows gappedmore » spin excitations at large momentum transfer that remain gapless within the FLEX approximation. For the charge response, FLEX can only reproduce the main features of the DMRG spectra at weak coupling and high doping levels, while it shows an incoherent character away from this limit. Overall, our analysis shows that FLEX works surprisingly well for spin excitations at weak and intermediate Hubbard U values even in the difficult low-dimensional geometry such as a two-leg ladder. Finally, we discuss the implications of our results for neutron scattering and resonant inelastic x-ray scattering experiments on two-leg ladder cuprate compounds.« less

  13. Characteristics of plasma plume in ultrafast laser ablation with a weakly ionized air channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Huaming; Yang, Bo; Mao, Xianglei

    We report the influence of femtosecond (fs) laser weakly ionized air channel on characteristics of plasma induced from fs-laser ablation of solid Zr metal target. A novel method to create high temperature, low electron density plasma with intense elemental emission and weak bremsstrahlung emission was demonstrated. Weakly ionized air channel was generated as a result of a non-linear phenomenon. Two-dimensional time-resolved optical-emission images of plasma plumes were taken for plume dynamics analysis. Dynamic physical properties of filament channels were simulated. In particular, we investigated the influence of weakly ionized air channel on the evolution of solid plasma plume. Plasma plumemore » splitting was observed whilst longer weakly ionized air channel formed above the ablation spot. The domination mechanism for splitting is attributed to the long-lived underdense channel created by fs-laser induced weakly ionization of air. The evolutions of atomic/molecular emission intensity, peak broadening, and plasma temperature were analyzed, and the results show that the part of plasma entering weakly ionized air channel features higher initial temperature, lower electron density and faster decay.« less

  14. Characteristics of plasma plume in ultrafast laser ablation with a weakly ionized air channel

    DOE PAGES

    Hou, Huaming; Yang, Bo; Mao, Xianglei; ...

    2018-05-10

    We report the influence of femtosecond (fs) laser weakly ionized air channel on characteristics of plasma induced from fs-laser ablation of solid Zr metal target. A novel method to create high temperature, low electron density plasma with intense elemental emission and weak bremsstrahlung emission was demonstrated. Weakly ionized air channel was generated as a result of a non-linear phenomenon. Two-dimensional time-resolved optical-emission images of plasma plumes were taken for plume dynamics analysis. Dynamic physical properties of filament channels were simulated. In particular, we investigated the influence of weakly ionized air channel on the evolution of solid plasma plume. Plasma plumemore » splitting was observed whilst longer weakly ionized air channel formed above the ablation spot. The domination mechanism for splitting is attributed to the long-lived underdense channel created by fs-laser induced weakly ionization of air. The evolutions of atomic/molecular emission intensity, peak broadening, and plasma temperature were analyzed, and the results show that the part of plasma entering weakly ionized air channel features higher initial temperature, lower electron density and faster decay.« less

  15. Theoretical aspects of femtosecond double-pump single-molecule spectroscopy. I. Weak-field regime.

    PubMed

    Palacino-González, Elisa; Gelin, Maxim F; Domcke, Wolfgang

    2017-12-13

    We present a theoretical description of double-pump femtosecond single-molecule signals with fluorescence detection. We simulate these signals in the weak-field regime for a model mimicking a chromophore with a Franck-Condon-active vibrational mode. We establish several signatures of these signals which are characteristic for the weak-field regime. The signatures include the quenching of vibrational beatings by electronic dephasing and a pronounced tilt of the phase-time profiles in the two-dimensional (2D) maps. We study how environment-induced slow modulations of the electronic dephasing and relevant chromophore parameters (electronic energy, orientation, vibrational frequency and relative shift of the potential energy surfaces) affect the signals.

  16. Pythagoras's theorem on a two-dimensional lattice from a `natural' Dirac operator and Connes's distance formula

    NASA Astrophysics Data System (ADS)

    Dai, Jian; Song, Xing-Chang

    2001-07-01

    One of the key ingredients of Connes's noncommutative geometry is a generalized Dirac operator which induces a metric (Connes's distance) on the pure state space. We generalize such a Dirac operator devised by Dimakis et al, whose Connes distance recovers the linear distance on an one-dimensional lattice, to the two-dimensional case. This Dirac operator has the local eigenvalue property and induces a Euclidean distance on this two-dimensional lattice, which is referred to as `natural'. This kind of Dirac operator can be easily generalized into any higher-dimensional lattices.

  17. Development of an unstructured solution adaptive method for the quasi-three-dimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Jiang, Yi-Tsann

    1993-01-01

    A general solution adaptive scheme-based on a remeshing technique is developed for solving the two-dimensional and quasi-three-dimensional Euler and Favre-averaged Navier-Stokes equations. The numerical scheme is formulated on an unstructured triangular mesh utilizing an edge-based pointer system which defines the edge connectivity of the mesh structure. Jameson's four-stage hybrid Runge-Kutta scheme is used to march the solution in time. The convergence rate is enhanced through the use of local time stepping and implicit residual averaging. As the solution evolves, the mesh is regenerated adaptively using flow field information. Mesh adaptation parameters are evaluated such that an estimated local numerical error is equally distributed over the whole domain. For inviscid flows, the present approach generates a complete unstructured triangular mesh using the advancing front method. For turbulent flows, the approach combines a local highly stretched structured triangular mesh in the boundary layer region with an unstructured mesh in the remaining regions to efficiently resolve the important flow features. One-equation and two-equation turbulence models are incorporated into the present unstructured approach. Results are presented for a wide range of flow problems including two-dimensional multi-element airfoils, two-dimensional cascades, and quasi-three-dimensional cascades. This approach is shown to gain flow resolution in the refined regions while achieving a great reduction in the computational effort and storage requirements since solution points are not wasted in regions where they are not required.

  18. Development of an unstructured solution adaptive method for the quasi-three-dimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Jiang, Yi-Tsann; Usab, William J., Jr.

    1993-01-01

    A general solution adaptive scheme based on a remeshing technique is developed for solving the two-dimensional and quasi-three-dimensional Euler and Favre-averaged Navier-Stokes equations. The numerical scheme is formulated on an unstructured triangular mesh utilizing an edge-based pointer system which defines the edge connectivity of the mesh structure. Jameson's four-stage hybrid Runge-Kutta scheme is used to march the solution in time. The convergence rate is enhanced through the use of local time stepping and implicit residual averaging. As the solution evolves, the mesh is regenerated adaptively using flow field information. Mesh adaptation parameters are evaluated such that an estimated local numerical error is equally distributed over the whole domain. For inviscid flows, the present approach generates a complete unstructured triangular mesh using the advancing front method. For turbulent flows, the approach combines a local highly stretched structured triangular mesh in the boundary layer region with an unstructured mesh in the remaining regions to efficiently resolve the important flow features. One-equation and two-equation turbulence models are incorporated into the present unstructured approach. Results are presented for a wide range of flow problems including two-dimensional multi-element airfoils, two-dimensional cascades, and quasi-three-dimensional cascades. This approach is shown to gain flow resolution in the refined regions while achieving a great reduction in the computational effort and storage requirements since solution points are not wasted in regions where they are not required.

  19. The dimension split element-free Galerkin method for three-dimensional potential problems

    NASA Astrophysics Data System (ADS)

    Meng, Z. J.; Cheng, H.; Ma, L. D.; Cheng, Y. M.

    2018-06-01

    This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.

  20. Two-dimensional solitons in dipolar Bose-Einstein condensates with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Jiang, Xunda; Fan, Zhiwei; Chen, Zhaopin; Pang, Wei; Li, Yongyao; Malomed, Boris A.

    2016-02-01

    We report families of two-dimensional (2D) composite solitons in spinor dipolar Bose-Einstein condensates, with two localized components linearly mixed by the spin-orbit coupling (SOC), and the intrinsic nonlinearity represented by the dipole-dipole interaction (DDI) between atomic magnetic moments polarized in plane by an external magnetic field. Recently, stable solitons were predicted in the form of semivortices (composites built of coupled fundamental and vortical components) in the 2D system combining the SOC and contact attractive interactions. Replacing the latter by the anisotropic long-range DDI, we demonstrate that, for a fixed norm of the soliton, the system supports a continuous family of stable spatially asymmetric vortex solitons (AVSs), parameterized by an offset of the pivot of the vortical component relative to its fundamental counterpart. The offset is limited by a certain maximum value, while the energy of the AVS practically does not depend on the offset. At small values of the norm, the vortex solitons are subject to a weak oscillatory instability. In the present system, with the Galilean invariance broken by the SOC, the composite solitons are set in motion by a kick the strength of which exceeds a certain depinning value. The kicked solitons feature a negative effective mass, drifting along a spiral trajectory opposite to the direction of the kick. A critical angular velocity, up to which the semivortices may follow rotation of the polarizing magnetic field, is found too.

  1. Crossover between weak anti-localization and weak localization by Co doping and annealing in gapless PbPdO{sub 2} and spin gapless Co-doped PbPdO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choo, S. M.; Lee, K. J.; Park, S. M.

    2015-04-27

    The magnetotransport properties of Pb(Pd,Co)O{sub 2} and PbPdO{sub 2} thin films were investigated. In magnetoconductance curves, we observed a crossover between weak anti-localization (WAL) and weak localization (WL) depending on the annealing and Co doping in PbPdO{sub 2} thin films. For the Pb(Pd,Co)O{sub 2} case showing WAL signals, the ex-situ annealing weakens the Pd-O hybridization by stabilizing Co{sup 3+} states and generating Pd{sup 1+} states, instead of Pd{sup 2+}, so that the spin-orbit coupling (SOC) strength is significantly reduced. It causes the dominant magnetotransport mechanism change from WAL to WL. This annealing effect is compared with the PbPdO{sub 2} case,more » which possesses WL signals. The annealing process stabilizes the oxygen states and enhances the Pd-O hybridization, and consequently the SOC strength is enhanced. Our experimental results are well explained by the Hikami-Larkin-Nagaoka theory in terms of two important physical parameters; SOC strength-related α and inelastic scattering length l{sub ϕ}.« less

  2. Electron density and gas density measurements in a millimeter-wave discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaub, S. C., E-mail: sschaub@mit.edu; Hummelt, J. S.; Guss, W. C.

    2016-08-15

    Electron density and neutral gas density have been measured in a non-equilibrium air breakdown plasma using optical emission spectroscopy and two-dimensional laser interferometry, respectively. A plasma was created with a focused high frequency microwave beam in air. Experiments were run with 110 GHz and 124.5 GHz microwaves at powers up to 1.2 MW. Microwave pulses were 3 μs long at 110 GHz and 2.2 μs long at 124.5 GHz. Electron density was measured over a pressure range of 25 to 700 Torr as the input microwave power was varied. Electron density was found to be close to the critical density, where the collisional plasma frequency is equal tomore » the microwave frequency, over the pressure range studied and to vary weakly with input power. Neutral gas density was measured over a pressure range from 150 to 750 Torr at power levels high above the threshold for initiating breakdown. The two-dimensional structure of the neutral gas density was resolved. Intense, localized heating was found to occur hundreds of nanoseconds after visible plasma formed. This heating led to neutral gas density reductions of greater than 80% where peak plasma densities occurred. Spatial structure and temporal dynamics of gas heating at atmospheric pressure were found to agree well with published numerical simulations.« less

  3. Bulk local states and crosscaps in holographic CFT

    DOE PAGES

    Nakayama, Yu; Ooguri, Hirosi

    2016-10-17

    In a weakly coupled gravity theory in the anti-de Sitter space, local states in the bulk are linear superpositions of Ishibashi states for a crosscap in the dual conformal field theory. The superposition structure can be constrained either by the microscopic causality in the bulk gravity or the bootstrap condition in the boundary conformal field theory. We show, contrary to some expectation, that these two conditions are not compatible to each other in the weak gravity regime. As a result, we also present an evidence to show that bulk local states in three dimensions are not organized by the Virasoromore » symmetry.« less

  4. Quantum-interference transport through surface layers of indium-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Chiu, Shao-Pin; Lu, Jia Grace; Lin, Juhn-Jong

    2013-06-01

    We have fabricated indium-doped ZnO (IZO) nanowires (NWs) and carried out four-probe electrical-transport measurements on two individual NWs with geometric diameters of ≈70 and ≈90 nm in a wide temperature T interval of 1-70 K. The NWs reveal overall charge conduction behavior characteristic of disordered metals. In addition to the T dependence of resistance R, we have measured the magnetoresistance (MR) in magnetic fields applied either perpendicular or parallel to the NW axis. Our R(T) and MR data in different T intervals are consistent with the theoretical predictions of the one- (1D), two- (2D) or three-dimensional (3D) weak-localization (WL) and the electron-electron interaction (EEI) effects. In particular, a few dimensionality crossovers in the two effects are observed. These crossover phenomena are consistent with the model of a ‘core-shell-like structure’ in individual IZO NWs, where an outer shell of thickness t (≃15-17 nm) is responsible for the quantum-interference transport. In the WL effect, as the electron dephasing length Lφ gradually decreases with increasing T from the lowest measurement temperatures, a 1D-to-2D dimensionality crossover takes place around a characteristic temperature where Lφ approximately equals d, an effective NW diameter which is slightly smaller than the geometric diameter. As T further increases, a 2D-to-3D dimensionality crossover occurs around another characteristic temperature where Lφ approximately equals t (

  5. Quantum-interference transport through surface layers of indium-doped ZnO nanowires.

    PubMed

    Chiu, Shao-Pin; Lu, Jia Grace; Lin, Juhn-Jong

    2013-06-21

    We have fabricated indium-doped ZnO (IZO) nanowires (NWs) and carried out four-probe electrical-transport measurements on two individual NWs with geometric diameters of ≈70 and ≈90 nm in a wide temperature T interval of 1-70 K. The NWs reveal overall charge conduction behavior characteristic of disordered metals. In addition to the T dependence of resistance R, we have measured the magnetoresistance (MR) in magnetic fields applied either perpendicular or parallel to the NW axis. Our R(T) and MR data in different T intervals are consistent with the theoretical predictions of the one- (1D), two- (2D) or three-dimensional (3D) weak-localization (WL) and the electron-electron interaction (EEI) effects. In particular, a few dimensionality crossovers in the two effects are observed. These crossover phenomena are consistent with the model of a 'core-shell-like structure' in individual IZO NWs, where an outer shell of thickness t (~15-17 nm) is responsible for the quantum-interference transport. In the WL effect, as the electron dephasing length Lφ gradually decreases with increasing T from the lowest measurement temperatures, a 1D-to-2D dimensionality crossover takes place around a characteristic temperature where Lφ approximately equals d, an effective NW diameter which is slightly smaller than the geometric diameter. As T further increases, a 2D-to-3D dimensionality crossover occurs around another characteristic temperature where Lφ approximately equals t (

  6. Chiral Spin Order in Kondo-Heisenberg systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsvelik, A. M.; Yevtushenko, O. M.

    We demonstrate that Kondo-Heisenberg systems, consisting of itinerant electrons and localized magnetic moments (Kondo impurities), can be used as a principally new platform to realize scalar chiral spin order. The underlying physics is governed by a competition of the Ruderman-Kittel- Kosuya-Yosida (RKKY) indirect exchange interaction between the local moments with the direct Heisenberg one. When the direct exchange is weak and RKKY dominates the isotropic system is in the disordered phase. A moderately large direct exchange leads to an Ising-type phase transition to the phase with chiral spin order. Our nding paves the way towards pioneering experimental realizations of themore » chiral spin liquid in low dimensional systems with spontaneously broken time reversal symmetry.« less

  7. Chiral Spin Order in Kondo-Heisenberg systems

    DOE PAGES

    Tsvelik, A. M.; Yevtushenko, O. M.

    2017-12-15

    We demonstrate that Kondo-Heisenberg systems, consisting of itinerant electrons and localized magnetic moments (Kondo impurities), can be used as a principally new platform to realize scalar chiral spin order. The underlying physics is governed by a competition of the Ruderman-Kittel- Kosuya-Yosida (RKKY) indirect exchange interaction between the local moments with the direct Heisenberg one. When the direct exchange is weak and RKKY dominates the isotropic system is in the disordered phase. A moderately large direct exchange leads to an Ising-type phase transition to the phase with chiral spin order. Our nding paves the way towards pioneering experimental realizations of themore » chiral spin liquid in low dimensional systems with spontaneously broken time reversal symmetry.« less

  8. The Kardar-Parisi-Zhang Equation as Scaling Limit of Weakly Asymmetric Interacting Brownian Motions

    NASA Astrophysics Data System (ADS)

    Diehl, Joscha; Gubinelli, Massimiliano; Perkowski, Nicolas

    2017-09-01

    We consider a system of infinitely many interacting Brownian motions that models the height of a one-dimensional interface between two bulk phases. We prove that the large scale fluctuations of the system are well approximated by the solution to the KPZ equation provided the microscopic interaction is weakly asymmetric. The proof is based on the martingale solutions of Gonçalves and Jara (Arch Ration Mech Anal 212(2):597-644, 2014) and the corresponding uniqueness result of Gubinelli and Perkowski (Energy solutions of KPZ are unique, 2015).

  9. Excitonic effects in two-dimensional semiconductors: Path integral Monte Carlo approach

    DOE PAGES

    Velizhanin, Kirill A.; Saxena, Avadh

    2015-11-01

    The most striking features of novel two-dimensional semiconductors (e.g., transition metal dichalcogenide monolayers or phosphorene) is a strong Coulomb interaction between charge carriers resulting in large excitonic effects. In particular, this leads to the formation of multicarrier bound states upon photoexcitation (e.g., excitons, trions, and biexcitons), which could remain stable at near-room temperatures and contribute significantly to the optical properties of such materials. In our work we have used the path integral Monte Carlo methodology to numerically study properties of multicarrier bound states in two-dimensional semiconductors. Specifically, we have accurately investigated and tabulated the dependence of single-exciton, trion, and biexcitonmore » binding energies on the strength of dielectric screening, including the limiting cases of very strong and very weak screening. Our results of this work are potentially useful in the analysis of experimental data and benchmarking of theoretical and computational models.« less

  10. Dynamic Optical Tuning of Interlayer Interactions in the Transition Metal Dichalcogenides

    DOE PAGES

    Mannebach, Ehren M.; Nyby, Clara; Ernst, Friederike; ...

    2017-11-09

    Modulation of weak interlayer interactions between quasi-two-dimensional atomic planes in the transition metal dichalcogenides (TMDCs) provides avenues for tuning their functional properties. Here we show that above-gap optical excitation in the TMDCs leads to an unexpected large-amplitude, ultrafast compressive force between the two-dimensional layers, as probed by in situ measurements of the atomic layer spacing at femtosecond time resolution. We show that this compressive response arises from a dynamic modulation of the interlayer van der Waals interaction and that this represents the dominant light-induced stress at low excitation densities. A simple analytic model predicts the magnitude and carrier density dependencemore » of the measured strains. Furthermore, this work establishes a new method for dynamic, nonequilibrium tuning of correlation-driven dispersive interactions and of the optomechanical functionality of TMDC quasi-two-dimensional materials.« less

  11. Density functional of a two-dimensional gas of dipolar atoms: Thomas-Fermi-Dirac treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Bess; Englert, Berthold-Georg

    We derive the density functional for the ground-state energy of a two-dimensional, spin-polarized gas of neutral fermionic atoms with magnetic-dipole interaction, in the Thomas-Fermi-Dirac approximation. For many atoms in a harmonic trap, we give analytical solutions for the single-particle spatial density and the ground-state energy, in dependence on the interaction strength, and we discuss the weak-interaction limit that is relevant for experiments. We then lift the restriction of full spin polarization and account for a time-independent inhomogeneous external magnetic field. The field strength necessary to ensure full spin polarization is derived.

  12. Two-dimensional crystals: managing light for optoelectronics.

    PubMed

    Eda, Goki; Maier, Stefan A

    2013-07-23

    Semiconducting two-dimensional (2D) crystals such as MoS2 and WSe2 exhibit unusual optical properties that can be exploited for novel optoelectronics ranging from flexible photovoltaic cells to harmonic generation and electro-optical modulation devices. Rapid progress of the field, particularly in the growth area, is beginning to enable ways to implement 2D crystals into devices with tailored functionalities. For practical device performance, a key challenge is to maximize light-matter interactions in the material, which is inherently weak due to its atomically thin nature. Light management around the 2D layers with the use of plasmonic nanostructures can provide a compelling solution.

  13. Nonlinear low-frequency electrostatic wave dynamics in a two-dimensional quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Samiran, E-mail: sran_g@yahoo.com; Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in

    2016-08-15

    The problem of two-dimensional arbitrary amplitude low-frequency electrostatic oscillation in a quasi-neutral quantum plasma is solved exactly by elementary means. In such quantum plasmas we have treated electrons quantum mechanically and ions classically. The exact analytical solution of the nonlinear system exhibits the formation of dark and black solitons. Numerical simulation also predicts the possible periodic solution of the nonlinear system. Nonlinear analysis reveals that the system does have a bifurcation at a critical Mach number that depends on the angle of propagation of the wave. The small-amplitude limit leads to the formation of weakly nonlinear Kadomstev–Petviashvili solitons.

  14. Vortex properties of two-dimensional superconducting Pb films.

    PubMed

    Ning, Y X; Song, C L; Wang, Y L; Chen, Xi; Jia, J F; Xue, Q K; Ma, X C

    2010-02-17

    Using low temperature scanning tunnelling microscopy/spectroscopy (STM/STS) we have investigated the vortex behaviours of two-dimensional superconducting Pb films at different thicknesses. STS at the vortex core shows an evolution of electronic states with film thickness. Transition from the clean limit to the dirty limit of superconductivity is identified, which can be ascribed to the decreased electronic mean free path induced by stronger scattering from the disordered interface at smaller thicknesses. A magnetic field dependent vortex core size is observed even for such a low- κ superconductor. The weak pinning induced by surface defects leads to the formation of a distorted hexagonal vortex lattice.

  15. Devaney chaos, Li-Yorke chaos, and multi-dimensional Li-Yorke chaos for topological dynamics

    NASA Astrophysics Data System (ADS)

    Dai, Xiongping; Tang, Xinjia

    2017-11-01

    Let π : T × X → X, written T↷π X, be a topological semiflow/flow on a uniform space X with T a multiplicative topological semigroup/group not necessarily discrete. We then prove: If T↷π X is non-minimal topologically transitive with dense almost periodic points, then it is sensitive to initial conditions. As a result of this, Devaney chaos ⇒ Sensitivity to initial conditions, for this very general setting. Let R+↷π X be a C0-semiflow on a Polish space; then we show: If R+↷π X is topologically transitive with at least one periodic point p and there is a dense orbit with no nonempty interior, then it is multi-dimensional Li-Yorke chaotic; that is, there is a uncountable set Θ ⊆ X such that for any k ≥ 2 and any distinct points x1 , … ,xk ∈ Θ, one can find two time sequences sn → ∞ ,tn → ∞ with Moreover, let X be a non-singleton Polish space; then we prove: Any weakly-mixing C0-semiflow R+↷π X is densely multi-dimensional Li-Yorke chaotic. Any minimal weakly-mixing topological flow T↷π X with T abelian is densely multi-dimensional Li-Yorke chaotic. Any weakly-mixing topological flow T↷π X is densely Li-Yorke chaotic. We in addition construct a completely Li-Yorke chaotic minimal SL (2 , R)-acting flow on the compact metric space R ∪ { ∞ }. Our various chaotic dynamics are sensitive to the choices of the topology of the phase semigroup/group T.

  16. Computer implemented empirical mode decomposition method, apparatus, and article of manufacture for two-dimensional signals

    NASA Technical Reports Server (NTRS)

    Huang, Norden E. (Inventor)

    2001-01-01

    A computer implemented method of processing two-dimensional physical signals includes five basic components and the associated presentation techniques of the results. The first component decomposes the two-dimensional signal into one-dimensional profiles. The second component is a computer implemented Empirical Mode Decomposition that extracts a collection of Intrinsic Mode Functions (IMF's) from each profile based on local extrema and/or curvature extrema. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the profiles. In the third component, the IMF's of each profile are then subjected to a Hilbert Transform. The fourth component collates the Hilbert transformed IMF's of the profiles to form a two-dimensional Hilbert Spectrum. A fifth component manipulates the IMF's by, for example, filtering the two-dimensional signal by reconstructing the two-dimensional signal from selected IMF(s).

  17. Effect of the fiber-matrix interphase on the transverse tensile strength of the unidirectional composite material

    NASA Technical Reports Server (NTRS)

    Tsai, H. C.; Arocho, A. M.

    1992-01-01

    A simple one-dimensional fiber-matrix interphase model has been developed and analytical results obtained correlated well with available experimental data. It was found that by including the interphase between the fiber and matrix in the model, much better local stress results were obtained than with the model without the interphase. A more sophisticated two-dimensional micromechanical model, which included the interphase properties was also developed. Both one-dimensional and two-dimensional models were used to study the effect of the interphase properties on the local stresses at the fiber, interphase and matrix. From this study, it was found that interphase modulus and thickness have significant influence on the transverse tensile strength and mode of failure in fiber reinforced composites.

  18. Collision efficiency of water in the unimolecular reaction CH4 (+H2O) ⇆ CH3 + H (+H2O): one-dimensional and two-dimensional solutions of the low-pressure-limit master equation.

    PubMed

    Jasper, Ahren W; Miller, James A; Klippenstein, Stephen J

    2013-11-27

    The low-pressure-limit unimolecular decomposition of methane, CH4 (+M) ⇆ CH3 + H (+M), is characterized via low-order moments of the total energy, E, and angular momentum, J, transferred due to collisions. The low-order moments are calculated using ensembles of classical trajectories, with new direct dynamics results for M = H2O and new results for M = O2 compared with previous results for several typical atomic (M = He, Ne, Ar, Kr) and diatomic (M = H2 and N2) bath gases and one polyatomic bath gas, M = CH4. The calculated moments are used to parametrize three different models of the energy transfer function, from which low-pressure-limit rate coefficients for dissociation, k0, are calculated. Both one-dimensional and two-dimensional collisional energy transfer models are considered. The collision efficiency for M = H2O relative to the other bath gases (defined as the ratio of low-pressure limit rate coefficients) is found to depend on temperature, with, e.g., k0(H2O)/k0(Ar) = 7 at 2000 K but only 3 at 300 K. We also consider the rotational collision efficiency of the various baths. Water is the only bath gas found to fully equilibrate rotations, and only at temperatures below 1000 K. At elevated temperatures, the kinetic effect of "weak-collider-in-J" collisions is found to be small. At room temperature, however, the use of an explicitly two-dimensional master equation model that includes weak-collider-in-J effects predicts smaller rate coefficients by 50% relative to the use of a statistical model for rotations. The accuracies of several methods for predicting relative collision efficiencies that do not require solving the master equation and that are based on the calculated low-order moments are tested. Troe's weak collider efficiency, βc, includes the effect of saturation of collision outcomes above threshold and accurately predicts the relative collision efficiencies of the nine baths. Finally, a brief discussion is presented of mechanistic details of the energy transfer process, as inferred from the trajectories.

  19. Measuring Incompatible Observables by Exploiting Sequential Weak Values.

    PubMed

    Piacentini, F; Avella, A; Levi, M P; Gramegna, M; Brida, G; Degiovanni, I P; Cohen, E; Lussana, R; Villa, F; Tosi, A; Zappa, F; Genovese, M

    2016-10-21

    One of the most intriguing aspects of quantum mechanics is the impossibility of measuring at the same time observables corresponding to noncommuting operators, because of quantum uncertainty. This impossibility can be partially relaxed when considering joint or sequential weak value evaluation. Indeed, weak value measurements have been a real breakthrough in the quantum measurement framework that is of the utmost interest from both a fundamental and an applicative point of view. In this Letter, we show how we realized for the first time a sequential weak value evaluation of two incompatible observables using a genuine single-photon experiment. These (sometimes anomalous) sequential weak values revealed the single-operator weak values, as well as the local correlation between them.

  20. Measuring Incompatible Observables by Exploiting Sequential Weak Values

    NASA Astrophysics Data System (ADS)

    Piacentini, F.; Avella, A.; Levi, M. P.; Gramegna, M.; Brida, G.; Degiovanni, I. P.; Cohen, E.; Lussana, R.; Villa, F.; Tosi, A.; Zappa, F.; Genovese, M.

    2016-10-01

    One of the most intriguing aspects of quantum mechanics is the impossibility of measuring at the same time observables corresponding to noncommuting operators, because of quantum uncertainty. This impossibility can be partially relaxed when considering joint or sequential weak value evaluation. Indeed, weak value measurements have been a real breakthrough in the quantum measurement framework that is of the utmost interest from both a fundamental and an applicative point of view. In this Letter, we show how we realized for the first time a sequential weak value evaluation of two incompatible observables using a genuine single-photon experiment. These (sometimes anomalous) sequential weak values revealed the single-operator weak values, as well as the local correlation between them.

  1. 4-Benzyl-4-ethyl-morpholin-1-ium hexa-fluoro-phosphate.

    PubMed

    Yang, Fang; Zang, Hongjun; Cheng, Bowen; Xu, Xianlin; Ren, Yuanlin

    2012-03-01

    The asymmetric unit of the title compound, C(13)H(20)NO(+)·PF(6) (-), contains two cations, one complete anion and two half hexa-fluoro-phosphate anions having crystallographically imposed twofold rotation symmetry. In the cations, the morpholine rings are in a chair conformation. In the crystal, ions are linked by weak C-H⋯F hydrogen bonds into a three-dimensional network.

  2. Intrinsic two-dimensional states on the pristine surface of tellurium

    NASA Astrophysics Data System (ADS)

    Li, Pengke; Appelbaum, Ian

    2018-05-01

    Atomic chains configured in a helical geometry have fascinating properties, including phases hosting localized bound states in their electronic structure. We show how the zero-dimensional state—bound to the edge of a single one-dimensional helical chain of tellurium atoms—evolves into two-dimensional bands on the c -axis surface of the three-dimensional trigonal bulk. We give an effective Hamiltonian description of its dispersion in k space by exploiting confinement to a virtual bilayer, and elaborate on the diminished role of spin-orbit coupling. These intrinsic gap-penetrating surface bands were neglected in the interpretation of seminal experiments, where two-dimensional transport was otherwise attributed to extrinsic accumulation layers.

  3. Generalized Parameter-Adjusted Stochastic Resonance of Duffing Oscillator and Its Application to Weak-Signal Detection.

    PubMed

    Lai, Zhi-Hui; Leng, Yong-Gang

    2015-08-28

    A two-dimensional Duffing oscillator which can produce stochastic resonance (SR) is studied in this paper. We introduce its SR mechanism and present a generalized parameter-adjusted SR (GPASR) model of this oscillator for the necessity of parameter adjustments. The Kramers rate is chosen as the theoretical basis to establish a judgmental function for judging the occurrence of SR in this model; and to analyze and summarize the parameter-adjusted rules under unmatched signal amplitude, frequency, and/or noise-intensity. Furthermore, we propose the weak-signal detection approach based on this GPASR model. Finally, we employ two practical examples to demonstrate the feasibility of the proposed approach in practical engineering application.

  4. Magnon Dirac materials

    NASA Astrophysics Data System (ADS)

    Fransson, J.; Black-Schaffer, A. M.; Balatsky, A. V.

    2016-08-01

    We demonstrate how a Dirac-like magnon spectrum is generated for localized magnetic moments forming a two-dimensional honeycomb lattice. The Dirac crossing point is proven to be robust against magnon-magnon interactions, as these only shift the spectrum. Local defects induce impurity resonances near the Dirac point, as well as magnon Friedel oscillations. The energy of the Dirac point is controlled by the exchange coupling, and thus a two-dimensional array of magnetic dots is an experimentally feasible realization of Dirac magnons with tunable dispersion.

  5. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, G.P.; Skeate, M.F.

    1996-10-15

    An apparatus for multi-dimensional computation is disclosed which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination. 10 figs.

  6. Non-Gaussian information from weak lensing data via deep learning

    NASA Astrophysics Data System (ADS)

    Gupta, Arushi; Matilla, José Manuel Zorrilla; Hsu, Daniel; Haiman, Zoltán

    2018-05-01

    Weak lensing maps contain information beyond two-point statistics on small scales. Much recent work has tried to extract this information through a range of different observables or via nonlinear transformations of the lensing field. Here we train and apply a two-dimensional convolutional neural network to simulated noiseless lensing maps covering 96 different cosmological models over a range of {Ωm,σ8} . Using the area of the confidence contour in the {Ωm,σ8} plane as a figure of merit, derived from simulated convergence maps smoothed on a scale of 1.0 arcmin, we show that the neural network yields ≈5 × tighter constraints than the power spectrum, and ≈4 × tighter than the lensing peaks. Such gains illustrate the extent to which weak lensing data encode cosmological information not accessible to the power spectrum or even other, non-Gaussian statistics such as lensing peaks.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Yuyuan; Wang, Siqi; Wang, Rui

    The spin-orbit coupling strength of graphene can be enhanced by depositing iridium nanoclusters. Weak localization is intensely suppressed near zero fields after the cluster deposition, rather than changing to weak anti-localization. Fitting the magnetoresistance gives the spin relaxation time, which increases by two orders with the application of a back gate. The spin relaxation time is found to be proportional to the electronic elastic scattering time, demonstrating the Elliot–Yafet spin relaxation mechanism. A sizeable Kane–Mele-like coupling strength of over 5.5 meV is determined by extrapolating the temperature dependence to zero.

  8. Low-dimensional quantum magnetism in Cu (NCS) 2: A molecular framework material

    NASA Astrophysics Data System (ADS)

    Cliffe, Matthew J.; Lee, Jeongjae; Paddison, Joseph A. M.; Schott, Sam; Mukherjee, Paromita; Gaultois, Michael W.; Manuel, Pascal; Sirringhaus, Henning; Dutton, Siân E.; Grey, Clare P.

    2018-04-01

    Low-dimensional magnetic materials with spin-1/2 moments can host a range of exotic magnetic phenomena due to the intrinsic importance of quantum fluctuations to their behavior. Here, we report the structure, magnetic structure, and magnetic properties of copper ii thiocyanate, Cu(NCS ) 2, a one-dimensional coordination polymer which displays low-dimensional quantum magnetism. Magnetic susceptibility, electron paramagnetic resonance spectroscopy, 13C magic-angle spinning nuclear magnetic resonance spectroscopy, and density functional theory investigations indicate that Cu(NCS ) 2 behaves as a two-dimensional array of weakly coupled antiferromagnetic spin chains [J2=133 (1 ) K , α =J1/J2=0.08 ] . Powder neutron-diffraction measurements confirm that Cu(NCS ) 2 orders as a commensurate antiferromagnet below TN=12 K , with a strongly reduced ordered moment (0.3 μB ) due to quantum fluctuations.

  9. Promotion of cooperation in evolutionary game dynamics with local information.

    PubMed

    Liu, Xuesong; Pan, Qiuhui; He, Mingfeng

    2018-01-21

    In this paper, we propose a strategy-updating rule driven by local information, which is called Local process. Unlike the standard Moran process, the Local process does not require global information about the strategic environment. By analyzing the dynamical behavior of the system, we explore how the local information influences the fixation of cooperation in two-player evolutionary games. Under weak selection, the decreasing local information leads to an increase of the fixation probability when natural selection does not favor cooperation replacing defection. In the limit of sufficiently large selection, the analytical results indicate that the fixation probability increases with the decrease of the local information, irrespective of the evolutionary games. Furthermore, for the dominance of defection games under weak selection and for coexistence games, the decreasing of local information will lead to a speedup of a single cooperator taking over the population. Overall, to some extent, the local information is conducive to promoting the cooperation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Network properties of interstitial cells of Cajal affect intestinal pacemaker activity and motor patterns, according to a mathematical model of weakly coupled oscillators.

    PubMed

    Wei, Ruihan; Parsons, Sean P; Huizinga, Jan D

    2017-03-01

    What is the central question of this study? What are the effects of interstitial cells of Cajal (ICC) network perturbations on intestinal pacemaker activity and motor patterns? What is the main finding and its importance? Two-dimensional modelling of the ICC pacemaker activity according to a phase model of weakly coupled oscillators showed that network properties (coupling strength between oscillators, frequency gradient and frequency noise) strongly influence pacemaker network activity and subsequent motor patterns. The model explains motor patterns observed in physiological conditions and provides predictions and testable hypotheses for effects of ICC loss and frequency modulation on the motor patterns. Interstitial cells of Cajal (ICC) are the pacemaker cells of gut motility and are associated with motility disorders. Interstitial cells of Cajal form a network, but the contributions of its network properties to gut physiology and dysfunction are poorly understood. We modelled an ICC network as a two-dimensional network of weakly coupled oscillators with a frequency gradient and showed changes over time in video and graphical formats. Model parameters were obtained from slow-wave-driven contraction patterns in the mouse intestine and pacemaker slow-wave activities from the cat intestine. Marked changes in propagating oscillation patterns (including changes from propagation to non-propagating) were observed by changing network parameters (coupling strength between oscillators, the frequency gradient and frequency noise), which affected synchronization, propagation velocity and occurrence of dislocations (termination of an oscillation). Complete uncoupling of a circumferential ring of oscillators caused the proximal and distal section to desynchronize, but complete synchronization was maintained with only a single oscillator connecting the sections with high enough coupling. The network of oscillators could withstand loss; even with 40% of oscillators lost randomly within the network, significant synchronization and anterograde propagation remained. A local increase in pacemaker frequency diminished anterograde propagation; the effects were strongly dependent on location, frequency gradient and coupling strength. In summary, the model puts forth the hypothesis that fundamental changes in oscillation patterns (ICC slow-wave activity or circular muscle contractions) can occur through physiological modulation of network properties. Strong evidence is provided to accept the ICC network as a system of coupled oscillators. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  11. The P1-RKDG method for two-dimensional Euler equations of gas dynamics

    NASA Technical Reports Server (NTRS)

    Cockburn, Bernardo; Shu, Chi-Wang

    1991-01-01

    A class of nonlinearly stable Runge-Kutta local projection discontinuous Galerkin (RKDG) finite element methods for conservation laws is investigated. Two dimensional Euler equations for gas dynamics are solved using P1 elements. The generalization of the local projections, which for scalar nonlinear conservation laws was designed to satisfy a local maximum principle, to systems of conservation laws such as the Euler equations of gas dynamics using local characteristic decompositions is discussed. Numerical examples include the standard regular shock reflection problem, the forward facing step problem, and the double Mach reflection problem. These preliminary numerical examples are chosen to show the capacity of the approach to obtain nonlinearly stable results comparable with the modern nonoscillatory finite difference methods.

  12. Online 3D Ear Recognition by Combining Global and Local Features.

    PubMed

    Liu, Yahui; Zhang, Bob; Lu, Guangming; Zhang, David

    2016-01-01

    The three-dimensional shape of the ear has been proven to be a stable candidate for biometric authentication because of its desirable properties such as universality, uniqueness, and permanence. In this paper, a special laser scanner designed for online three-dimensional ear acquisition was described. Based on the dataset collected by our scanner, two novel feature classes were defined from a three-dimensional ear image: the global feature class (empty centers and angles) and local feature class (points, lines, and areas). These features are extracted and combined in an optimal way for three-dimensional ear recognition. Using a large dataset consisting of 2,000 samples, the experimental results illustrate the effectiveness of fusing global and local features, obtaining an equal error rate of 2.2%.

  13. Online 3D Ear Recognition by Combining Global and Local Features

    PubMed Central

    Liu, Yahui; Zhang, Bob; Lu, Guangming; Zhang, David

    2016-01-01

    The three-dimensional shape of the ear has been proven to be a stable candidate for biometric authentication because of its desirable properties such as universality, uniqueness, and permanence. In this paper, a special laser scanner designed for online three-dimensional ear acquisition was described. Based on the dataset collected by our scanner, two novel feature classes were defined from a three-dimensional ear image: the global feature class (empty centers and angles) and local feature class (points, lines, and areas). These features are extracted and combined in an optimal way for three-dimensional ear recognition. Using a large dataset consisting of 2,000 samples, the experimental results illustrate the effectiveness of fusing global and local features, obtaining an equal error rate of 2.2%. PMID:27935955

  14. Exchange Enhancement of the Electron-Phonon Interaction: The Case of Weakly Doped Two-Dimensional Multivalley Semiconductors

    NASA Astrophysics Data System (ADS)

    Pamuk, Betül; Zoccante, Paolo; Baima, Jacopo; Mauri, Francesco; Calandra, Matteo

    2018-04-01

    The effect of the exchange interaction on the vibrational properties and on the electron-phonon coupling were investigated in several recent works. In most of the cases, exchange tends to enhance the electron-phonon interaction, although the motivations for such behaviour are not completely understood. Here we consider the class of weakly doped two-dimensional multivalley semiconductors and we demonstrate that a more global picture emerges. In particular we show that in these systems, at low enough doping, even a moderate electron-electron interaction enhances the response to any perturbation inducing a valley polarization. If the valley polarization is due to the electron-phonon coupling, the electron-electron interaction results in an enhancement of the superconducting critical temperature. We demonstrate the applicability of the theory by performing random phase approximation and first principles calculations in transition metal chloronitrides. We find that exchange is responsible for the enhancement of the superconducting critical temperature in LixZrNCl and that much larger Tcs could be obtained in intercalated HfNCl if the synthesis of cleaner samples could remove the Anderson insulating state competing with superconductivity.

  15. Lobster eye X-ray optics: Data processing from two 1D modules

    NASA Astrophysics Data System (ADS)

    Nentvich, O.; Urban, M.; Stehlikova, V.; Sieger, L.; Hudec, R.

    2017-07-01

    The X-ray imaging is usually done by Wolter I telescopes. They are suitable for imaging of a small part of the sky, not for all-sky monitoring. This monitoring could be done by a Lobster eye optics which can theoretically have a field of view up to 360 deg. All sky monitoring system enables a quick identification of source and its direction. This paper describes the possibility of using two independent one-dimensional Lobster Eye modules for this purpose instead of Wolter I and their post-processing into an 2D image. This arrangement allows scanning with less energy loss compared to Wolter I or two-dimensional Lobster Eye optics. It is most suitable especially for very weak sources.

  16. Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide

    DOE PAGES

    Bao, Wei; Borys, Nicholas J.; Ko, Changhyun; ...

    2015-08-13

    The ideal building blocks for atomically thin, flexible optoelectronic and catalytic devices are two-dimensional monolayer transition metal dichalcogenide semiconductors. Although challenging for two-dimensional systems, sub-diffraction optical microscopy provides a nanoscale material understanding that is vital for optimizing their optoelectronic properties. We use the ‘Campanile’ nano-optical probe to spectroscopically image exciton recombination within monolayer MoS2 with sub-wavelength resolution (60 nm), at the length scale relevant to many critical optoelectronic processes. Moreover, synthetic monolayer MoS2 is found to be composed of two distinct optoelectronic regions: an interior, locally ordered but mesoscopically heterogeneous two-dimensional quantum well and an unexpected ~300-nm wide, energetically disorderedmore » edge region. Further, grain boundaries are imaged with sufficient resolution to quantify local exciton-quenching phenomena, and complimentary nano-Auger microscopy reveals that the optically defective grain boundary and edge regions are sulfur deficient. In conclusion, the nanoscale structure–property relationships established here are critical for the interpretation of edge- and boundary-related phenomena and the development of next-generation two-dimensional optoelectronic devices.« less

  17. Weak correlations between local density and dynamics near the glass transition.

    PubMed

    Conrad, J C; Starr, F W; Weitz, D A

    2005-11-17

    We perform experiments on two different dense colloidal suspensions with confocal microscopy to probe the relationship between local structure and dynamics near the glass transition. We calculate the Voronoi volume for our particles and show that this quantity is not a universal probe of glassy structure for all colloidal suspensions. We correlate the Voronoi volume to displacement and find that these quantities are only weakly correlated. We observe qualitatively similar results in a simulation of a polymer melt. These results suggest that the Voronoi volume does not predict dynamical behavior in experimental colloidal suspensions; a purely structural approach based on local single particle volume likely cannot describe the colloidal glass transition.

  18. Symmetry breaking motion of a vortex pair in a driven cavity

    NASA Astrophysics Data System (ADS)

    McHugh, John; Osman, Kahar; Farias, Jason

    2002-11-01

    The two-dimensional driven cavity problem with an anti-symmetric sinusoidal forcing has been found to exhibit a subcritical symmetry breaking bifurcation (Farias and McHugh, Phys. Fluids, 2002). Equilibrium solutions are either a symmetric vortex pair or an asymmetric motion. The asymmetric motion is an asymmetric vortex pair at low Reynolds numbers, but merges into a three vortex motion at higher Reynolds numbers. The asymmetric solution is obtained by initiating the flow with a single vortex centered in the domain. Symmetric motion is obtained with no initial vortex, or weak initial vortex. The steady three-vortex motion occurs at a Reynolds number of approximately 3000, where the symmetric vortex pair has already gone through a Hopf bifurcation. Further two-dimensional results show that forcing with two full oscillations across the top of the cavity results in two steady vortex motions, depending on initial conditions. Three-dimensional results have even more steady solutions. The results are computational and theoretical.

  19. Investigation of a four-body coupling in the one-dimensional extended Penson-Kolb-Hubbard model

    NASA Astrophysics Data System (ADS)

    Ding, Hanqin; Ma, Xiaojuan; Zhang, Jun

    2017-09-01

    The experimental advances in cold fermion gases motivates the investigation of a one-dimensional (1D) correlated electronic system by incorporating a four-body coupling. Using the low-energy field theory scheme and focusing on the weak-coupling regime, we extend the 1D Penson-Kolb-Hubbard (PKH) model at half filling. It is found that the additional four-body interaction may significantly modify the quantum phase diagram, favoring the presence of the superconducting phase even in the case of two-body repulsions.

  20. Global Phase Diagram of a Three-Dimensional Dirty Topological Superconductor

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Alavirad, Yahya; Sau, Jay D.

    2017-06-01

    We investigate the phase diagram of a three-dimensional, time-reversal symmetric topological superconductor in the presence of charge impurities and random s -wave pairing. Combining complimentary field theoretic and numerical methods, we show that the quantum phase transition between two topologically distinct paired states (or thermal insulators), described by thermal Dirac semimetal, remains unaffected in the presence of sufficiently weak generic randomness. At stronger disorder, however, these two phases are separated by an intervening thermal metallic phase of diffusive Majorana fermions. We show that across the insulator-insulator and metal-insulator transitions, normalized thermal conductance displays single parameter scaling, allowing us to numerically extract the critical exponents across them. The pertinence of our study in strong spin-orbit coupled, three-dimensional doped narrow gap semiconductors, such as CuxBi2Se3 , is discussed.

  1. Nonlinear convective analysis of a rotating Oldroyd-B nanofluid layer under thermal non-equilibrium utilizing Al2O3-EG colloidal suspension

    NASA Astrophysics Data System (ADS)

    Agarwal, Shilpi; Rana, Puneet

    2016-04-01

    In this paper, we examine a layer of Oldroyd-B nanofluid for linear and nonlinear regimes under local thermal non-equilibrium conditions for the classical Rayleigh-Bénard problem. The free-free boundary condition has been implemented with the flux for nanoparticle concentration being zero at edges. The Oberbeck-Boussinesq approximation holds good and for the rotational effect Coriolis term is included in the momentum equation. A two-temperature model explains the effect of local thermal non-equilibrium among the particle and fluid phases. The criteria for onset of stationary convection has been derived as a function of the non-dimensionalized parameters involved including the Taylor number. The assumed boundary conditions negate the possibility of overstability due to the absence of opposing forces responsible for it. The thermal Nusselt number has been obtained utilizing a weak nonlinear theory in terms of various pertinent parameters in the steady and transient mode, and has been depicted graphically. The main findings signify that the rotation has a stabilizing effect on the system. The stress relaxation parameter λ_1 inhibits whereas the strain retardation parameter λ_2 exhibits heat transfer utilizing Al2O3 nanofluids.

  2. Propagation of acoustic shock waves between parallel rigid boundaries and into shadow zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desjouy, C., E-mail: cyril.desjouy@gmail.com; Ollivier, S.; Dragna, D.

    2015-10-28

    The study of acoustic shock propagation in complex environments is of great interest for urban acoustics, but also for source localization, an underlying problematic in military applications. To give a better understanding of the phenomenon taking place during the propagation of acoustic shocks, laboratory-scale experiments and numerical simulations were performed to study the propagation of weak shock waves between parallel rigid boundaries, and into shadow zones created by corners. In particular, this work focuses on the study of the local interactions taking place between incident, reflected, and diffracted waves according to the geometry in both regular or irregular – alsomore » called Von Neumann – regimes of reflection. In this latter case, an irregular reflection can lead to the formation of a Mach stem that can modify the spatial distribution of the acoustic pressure. Short duration acoustic shock waves were produced by a 20 kilovolts electric spark source and a schlieren optical method was used to visualize the incident shockfront and the reflection/diffraction patterns. Experimental results are compared to numerical simulations based on the high-order finite difference solution of the two dimensional Navier-Stokes equations.« less

  3. Localization effects in radiationally disordered high-temperature superconductors: Theoretical interpretation

    NASA Technical Reports Server (NTRS)

    Goshchitskii, B. N.; Davydov, S. A.; Karkin, A. E.; Mirmelstein, A. V.; Sadovskii, M. V.

    1990-01-01

    Theoretical interpretation of recent experiments on radiationally disordered high-temperature superconductors is presented, based on the concepts of mutual interplay of Anderson localization and superconductivity. Microscopic derivation of Ginzburg-Landau coefficients for the quasi-two-dimensional system in the vicinity of localization transition is given in the framework of the self-consistent theory of localization. The 'minimal metallic conductivity' for the quasi-two-dimensional case is enhanced due to a small overlap of electronic states on the nearest neighbor conducting planes. This leads to a stronger influence of localization effects than in ordinary (three-dimensional) superconductors. From this point of view even the initial samples of high-temperature superconductors are already very close to Anderson transition. Anomalies of H(c2) are also analyzed, explaining the upward curvature of H(c2)(T) and apparent independence of dH(c2)/dT (T = T(sub c)) on the degree of disorder as due to localization effects. Researchers discuss the possible reasons of fast T(sub c) degradation due to the enhanced Coulomb effects caused by the disorder induced decrease of localization length. The appearance and growth of localized magnetic moments is also discussed. The disorder dependence of localization length calculated from the experimental data on conductivity correlates reasonably with the theoretical criterion for suppression of superconductivity in the system with localized electronic states.

  4. Earthquake cycle deformation in the Tibetan plateau with a weak mid-crustal layer

    NASA Astrophysics Data System (ADS)

    DeVries, Phoebe M. R.; Meade, Brendan J.

    2013-06-01

    observations of interseismic deformation across the Tibetan plateau contain information about both tectonic and earthquake cycle processes. Time-variations in surface velocities between large earthquakes are sensitive to the rheological structure of the subseismogenic crust, and, in particular, the viscosity of the middle and lower crust. Here we develop a semianalytic solution for time-dependent interseismic velocities resulting from viscoelastic stress relaxation in a localized midcrustal layer in response to forcing by a sequence of periodic earthquakes. Earthquake cycle models with a weak midcrustal layer exhibit substantially more near-fault preseismic strain localization than do classic two-layer models at short (<100 yr) Maxwell times. We apply both this three-layer model and the classic two-layer model to geodetic observations before and after the 1997 MW = 7.6 Manyi and 2001 MW = 7.8 Kokoxili strike-slip earthquakes in Tibet to estimate the viscosity of the crust below a 20 km thick seismogenic layer. For these events, interseismic stress relaxation in a weak (viscosity ≤1018.5 Paṡs) and thin (height ≤20 km) midcrustal layer explains observations of both preseismic near-fault strain localization and rapid (>50 mm/yr) postseismic velocities in the years following the coseismic ruptures. We suggest that earthquake cycle models with a localized midcrustal layer can simultaneously explain both preseismic and postseismic geodetic observations with a single Maxwell viscosity, while the classic two-layer model requires a rheology with multiple relaxation time scales.

  5. Direct extraction of electron parameters from magnetoconductance analysis in mesoscopic ring array structures

    NASA Astrophysics Data System (ADS)

    Sawada, A.; Faniel, S.; Mineshige, S.; Kawabata, S.; Saito, K.; Kobayashi, K.; Sekine, Y.; Sugiyama, H.; Koga, T.

    2018-05-01

    We report an approach for examining electron properties using information about the shape and size of a nanostructure as a measurement reference. This approach quantifies the spin precession angles per unit length directly by considering the time-reversal interferences on chaotic return trajectories within mesoscopic ring arrays (MRAs). Experimentally, we fabricated MRAs using nanolithography in InGaAs quantum wells which had a gate-controllable spin-orbit interaction (SOI). As a result, we observed an Onsager symmetry related to relativistic magnetic fields, which provided us with indispensable information for the semiclassical billiard ball simulation. Our simulations, developed based on the real-space formalism of the weak localization/antilocalization effect including the degree of freedom for electronic spin, reproduced the experimental magnetoconductivity (MC) curves with high fidelity. The values of five distinct electron parameters (Fermi wavelength, spin precession angles per unit length for two different SOIs, impurity scattering length, and phase coherence length) were thereby extracted from a single MC curve. The methodology developed here is applicable to wide ranges of nanomaterials and devices, providing a diagnostic tool for exotic properties of two-dimensional electron systems.

  6. Selective enhancement of Selényi rings induced by the cross-correlation between the interfaces of a two-dimensional randomly rough dielectric film

    NASA Astrophysics Data System (ADS)

    Banon, J.-P.; Hetland, Ø. S.; Simonsen, I.

    2018-02-01

    By the use of both perturbative and non-perturbative solutions of the reduced Rayleigh equation, we present a detailed study of the scattering of light from two-dimensional weakly rough dielectric films. It is shown that for several rough film configurations, Selényi interference rings exist in the diffusely scattered light. For film systems supported by dielectric substrates where only one of the two interfaces of the film is weakly rough and the other planar, Selényi interference rings are observed at angular positions that can be determined from simple phase arguments. For such single-rough-interface films, we find and explain by a single scattering model that the contrast in the interference patterns is better when the top interface of the film (the interface facing the incident light) is rough than when the bottom interface is rough. When both film interfaces are rough, Selényi interference rings exist but a potential cross-correlation of the two rough interfaces of the film can be used to selectively enhance some of the interference rings while others are attenuated and might even disappear. This feature may in principle be used in determining the correlation properties of interfaces of films that otherwise would be difficult to access.

  7. Butyrophenone on O-TiO2(110): one-dimensional motion in a weakly confined potential well.

    PubMed

    Jensen, Stephen C; Shank, Alex; Madix, Robert J; Friend, Cynthia M

    2012-04-24

    We demonstrate the one-dimensional confinement of weakly bound butyrophenone molecules between strongly bound complexes formed via reaction with oxygen on TiO(2)(110). Butyrophenone weakly bound to Ti rows through the carbonyl oxygen diffuses freely in one dimension along the rows even at 55 K, persisting for many minutes before hopping out of the 1-D well. Quantitative analysis yields an estimate of the migration barrier of 0.11 eV and a frequency factor of 6.5 × 10(9) Hz. These studies demonstrate that weakly bound organic molecules can be confined on a surface by creating molecular barriers, potentially altering their assembly.

  8. A Reduced Basis Method with Exact-Solution Certificates for Symmetric Coercive Equations

    DTIC Science & Technology

    2013-11-06

    the energy associated with the infinite - dimensional weak solution of parametrized symmetric coercive partial differential equations with piecewise...builds bounds with respect to the infinite - dimensional weak solution, aims to entirely remove the issue of the “truth” within the certified reduced basis...framework. We in particular introduce a reduced basis method that provides rigorous upper and lower bounds

  9. Quantum melting of a two-dimensional Wigner crystal

    NASA Astrophysics Data System (ADS)

    Dolgopolov, V. T.

    2017-10-01

    The paper reviews theoretical predictions about the behavior of two-dimensional low-density electron systems at nearly absolute zero temperatures, including the formation of an electron (Wigner) crystal, crystal melting at a critical electron density, and transitions between crystal modifications in more complex (for example, two-layer) systems. The paper presents experimental results obtained from real two-dimensional systems in which the nonconducting (solid) state of the electronic system with indications of collective localization is actually realized. Experimental methods for detecting a quantum liquid-solid phase interface are discussed.

  10. Irregular synchronous activity in stochastically-coupled networks of integrate-and-fire neurons.

    PubMed

    Lin, J K; Pawelzik, K; Ernst, U; Sejnowski, T J

    1998-08-01

    We investigate the spatial and temporal aspects of firing patterns in a network of integrate-and-fire neurons arranged in a one-dimensional ring topology. The coupling is stochastic and shaped like a Mexican hat with local excitation and lateral inhibition. With perfect precision in the couplings, the attractors of activity in the network occur at every position in the ring. Inhomogeneities in the coupling break the translational invariance of localized attractors and lead to synchronization within highly active as well as weakly active clusters. The interspike interval variability is high, consistent with recent observations of spike time distributions in visual cortex. The robustness of our results is demonstrated with more realistic simulations on a network of McGregor neurons which model conductance changes and after-hyperpolarization potassium currents.

  11. The effect of dissipative inhomogeneous medium on the statistics of the wave intensity

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.

    1993-01-01

    One of the main theoretical points in the theory of wave propagation in random medium is the derivation of closed form equations to describe the statistics of the propagating waves. In particular, in one dimensional problems, the closed form representation of the multiple scattering effects is important since it contributes in understanding such problems like wave localization, backscattering enhancement, and intensity fluctuations. In this the propagation of plane waves in a layer of one-dimensional dissipative random medium is considered. The medium is modeled by a complex permittivity whose real part is a constant representing the absorption. The one dimensional problem is mathematically equivalent to the analysis of a transmission line with randomly perturbed distributed parameters and a single mode lossy waveguide and the results can be used to study the propagation of radio waves through atmosphere and the remote sensing of geophysical media. It is assumed the scattering medium consists of an ensemble of one-dimensional point scatterers randomly positioned in a layer of thickness L with diffuse boundaries. A Poisson impulse process with density lambda is used to model the position of scatterers in the medium. By employing the Markov properties of this process an exact closed form equation of Kolmogorov-Feller type was obtained for the probability density of the reflection coefficient. This equation was solved by combining two limiting cases: (1) when the density of scatterers is small; and (2) when the medium is weakly dissipative. A two variable perturbation method for small lambda was used to obtain solutions valid for thick layers. These solutions are then asymptotically evaluated for small dissipation. To show the effect of dissipation, the mean and fluctuations of the reflected power are obtained. The results were compared with a lossy homogeneous medium and with a lossless inhomogeneous medium and the regions where the effect of absorption is not essential were discussed.

  12. Wigner's quantum phase-space current in weakly-anharmonic weakly-excited two-state systems

    NASA Astrophysics Data System (ADS)

    Kakofengitis, Dimitris; Steuernagel, Ole

    2017-09-01

    There are no phase-space trajectories for anharmonic quantum systems, but Wigner's phase-space representation of quantum mechanics features Wigner current J . This current reveals fine details of quantum dynamics —finer than is ordinarily thought accessible according to quantum folklore invoking Heisenberg's uncertainty principle. Here, we focus on the simplest, most intuitive, and analytically accessible aspects of J. We investigate features of J for bound states of time-reversible, weakly-anharmonic one-dimensional quantum-mechanical systems which are weakly-excited. We establish that weakly-anharmonic potentials can be grouped into three distinct classes: hard, soft, and odd potentials. We stress connections between each other and the harmonic case. We show that their Wigner current fieldline patterns can be characterised by J's discrete stagnation points, how these arise and how a quantum system's dynamics is constrained by the stagnation points' topological charge conservation. We additionally show that quantum dynamics in phase space, in the case of vanishing Planck constant ℏ or vanishing anharmonicity, does not pointwise converge to classical dynamics.

  13. Phase Diagram of the Bose Hubbard Model with Weak Links

    NASA Astrophysics Data System (ADS)

    Hettiarachchilage, Kalani; Rousseau, Valy; Tam, Ka-Ming; Moreno, Juana; Jarrell, Mark; Sheehy, Daniel

    2012-02-01

    We study the ground state phase diagram of strongly interacting ultracold Bose gas in a one-dimensional optical lattice with a tunable weak link, by means of Quantum Monte Carlo simulation. This model contains an on-site repulsive interaction (U) and two different near-neighbor hopping terms, J and t, for the weak link and the remainder of the chain, respectively. We show that by reducing the strength of J, a novel intermediate phase develops which is compressible and non-superfluid. This novel phase is identified as a Normal Bose Liquid (NBL) which does not appear in the phase diagram of the homogeneous bosonic Hubbard model. Further, we find a linear variation of the phase boundary of Normal Bose Liquid (NBL) to SuperFluid (SF) as a function of the strength of the weak link. These results may provide a new path to design advanced atomtronic devices in the future.

  14. Guided-mode interactions in thin films with surface corrugation

    NASA Astrophysics Data System (ADS)

    Seshadri, S. R.

    1994-12-01

    The guided modes in a thin-film planar dielectric waveguide sandwiched between a cover and a substrate (two different dielectrics) are considered. The interface between the cover and the film has a smooth corrugation in the longitudinal direction. For weak corrugations, the guided-mode interactions are investigated using the expansion in terms of ideal normal modes. A corresponding treament is given for the not-so-weak corrugations using the expansion in terms of local normal modes. The coupling coefficients are evaluated and reduced to simple forms. The theories are specialized for the treatment of contradirectional coupling between two guided modes taking place selectively in the neighborhood of the Bragg frequency. The coupled-mode equations governing the contradirectional interaction obtained from the local normal mode expansion procedure, in the limit of weak periodic corrugations, are identical to those deduced directly using the ideal normal mode expansion technique. The treatments for both the transverse electric and the transvers magnetic modes are included.

  15. A versatile electrostatic trap with open optical access

    NASA Astrophysics Data System (ADS)

    Li, Sheng-Qiang; Yin, Jian-Ping

    2018-04-01

    A versatile electrostatic trap with open optical access for cold polar molecules in weak-field-seeking state is proposed in this paper. The trap is composed of a pair of disk electrodes and a hexapole. With the help of a finite element software, the spatial distribution of the electrostatic field is calculated. The results indicate that a three-dimensional closed electrostatic trap is formed. Taking ND3 molecules as an example, the dynamic process of loading and trapping is simulated. The results show that when the velocity of the molecular beam is 10 m/s and the loading time is 0.9964 ms, the maximum loading efficiency reaches 94.25% and the temperature of the trapped molecules reaches about 30.3 mK. A single well can be split into two wells, which is of significant importance to the precision measurement and interference of matter waves. This scheme, in addition, can be further miniaturized to construct one-dimensional, two-dimensional, and three-dimensional spatial electrostatic lattices.

  16. DOA estimation of noncircular signals for coprime linear array via locally reduced-dimensional Capon

    NASA Astrophysics Data System (ADS)

    Zhai, Hui; Zhang, Xiaofei; Zheng, Wang

    2018-05-01

    We investigate the issue of direction of arrival (DOA) estimation of noncircular signals for coprime linear array (CLA). The noncircular property enhances the degree of freedom and improves angle estimation performance, but it leads to a more complex angle ambiguity problem. To eliminate ambiguity, we theoretically prove that the actual DOAs of noncircular signals can be uniquely estimated by finding the coincide results from the two decomposed subarrays based on the coprimeness. We propose a locally reduced-dimensional (RD) Capon algorithm for DOA estimation of noncircular signals for CLA. The RD processing is used in the proposed algorithm to avoid two dimensional (2D) spectral peak search, and coprimeness is employed to avoid the global spectral peak search. The proposed algorithm requires one-dimensional locally spectral peak search, and it has very low computational complexity. Furthermore, the proposed algorithm needs no prior knowledge of the number of sources. We also derive the Crámer-Rao bound of DOA estimation of noncircular signals in CLA. Numerical simulation results demonstrate the effectiveness and superiority of the algorithm.

  17. Comparison of theoretical and flight-measured local flow aerodynamics for a low-aspect-ratio fin

    NASA Technical Reports Server (NTRS)

    Johnson, J. B.; Sandlin, D. R.

    1984-01-01

    Flight test and theoretical aerodynamic data were obtained for a flight test fixture mounted on the underside of an F-104G aircraft. The theoretical data were generated using two codes, a two dimensional transonic code called Code H, and a three dimensional subsonic and supersonic code call wing-body. Pressure distributions generated by the codes for the flight test fixture as well as boundary layer displacement thickness generated by the two dimensional code were compared to the flight test data. The two dimensional code pressure distributions compared well except at the minimum pressure point and trailing edge. Shock locations compared well except at high transonic speeds. The three dimensional code pressure distributions compared well except at the trailing edge of the flight test fixture. The two dimensional code does not predict displacement thickness of the flight test fixture well.

  18. Generalized Parameter-Adjusted Stochastic Resonance of Duffing Oscillator and Its Application to Weak-Signal Detection

    PubMed Central

    Lai, Zhi-Hui; Leng, Yong-Gang

    2015-01-01

    A two-dimensional Duffing oscillator which can produce stochastic resonance (SR) is studied in this paper. We introduce its SR mechanism and present a generalized parameter-adjusted SR (GPASR) model of this oscillator for the necessity of parameter adjustments. The Kramers rate is chosen as the theoretical basis to establish a judgmental function for judging the occurrence of SR in this model; and to analyze and summarize the parameter-adjusted rules under unmatched signal amplitude, frequency, and/or noise-intensity. Furthermore, we propose the weak-signal detection approach based on this GPASR model. Finally, we employ two practical examples to demonstrate the feasibility of the proposed approach in practical engineering application. PMID:26343671

  19. Convergence Time and Phase Transition in a Non-monotonic Family of Probabilistic Cellular Automata

    NASA Astrophysics Data System (ADS)

    Ramos, A. D.; Leite, A.

    2017-08-01

    In dynamical systems, some of the most important questions are related to phase transitions and convergence time. We consider a one-dimensional probabilistic cellular automaton where their components assume two possible states, zero and one, and interact with their two nearest neighbors at each time step. Under the local interaction, if the component is in the same state as its two neighbors, it does not change its state. In the other cases, a component in state zero turns into a one with probability α , and a component in state one turns into a zero with probability 1-β . For certain values of α and β , we show that the process will always converge weakly to δ 0, the measure concentrated on the configuration where all the components are zeros. Moreover, the mean time of this convergence is finite, and we describe an upper bound in this case, which is a linear function of the initial distribution. We also demonstrate an application of our results to the percolation PCA. Finally, we use mean-field approximation and Monte Carlo simulations to show coexistence of three distinct behaviours for some values of parameters α and β.

  20. A consensus embedding approach for segmentation of high resolution in vivo prostate magnetic resonance imagery

    NASA Astrophysics Data System (ADS)

    Viswanath, Satish; Rosen, Mark; Madabhushi, Anant

    2008-03-01

    Current techniques for localization of prostatic adenocarcinoma (CaP) via blinded trans-rectal ultrasound biopsy are associated with a high false negative detection rate. While high resolution endorectal in vivo Magnetic Resonance (MR) prostate imaging has been shown to have improved contrast and resolution for CaP detection over ultrasound, similarity in intensity characteristics between benign and cancerous regions on MR images contribute to a high false positive detection rate. In this paper, we present a novel unsupervised segmentation method that employs manifold learning via consensus schemes for detection of cancerous regions from high resolution 1.5 Tesla (T) endorectal in vivo prostate MRI. A significant contribution of this paper is a method to combine multiple weak, lower-dimensional representations of high dimensional feature data in a way analogous to classifier ensemble schemes, and hence create a stable and accurate reduced dimensional representation. After correcting for MR image intensity artifacts, such as bias field inhomogeneity and intensity non-standardness, our algorithm extracts over 350 3D texture features at every spatial location in the MR scene at multiple scales and orientations. Non-linear dimensionality reduction schemes such as Locally Linear Embedding (LLE) and Graph Embedding (GE) are employed to create multiple low dimensional data representations of this high dimensional texture feature space. Our novel consensus embedding method is used to average object adjacencies from within the multiple low dimensional projections so that class relationships are preserved. Unsupervised consensus clustering is then used to partition the objects in this consensus embedding space into distinct classes. Quantitative evaluation on 18 1.5 T prostate MR data against corresponding histology obtained from the multi-site ACRIN trials show a sensitivity of 92.65% and a specificity of 82.06%, which suggests that our method is successfully able to detect suspicious regions in the prostate.

  1. CVD-MPFA full pressure support, coupled unstructured discrete fracture-matrix Darcy-flux approximations

    NASA Astrophysics Data System (ADS)

    Ahmed, Raheel; Edwards, Michael G.; Lamine, Sadok; Huisman, Bastiaan A. H.; Pal, Mayur

    2017-11-01

    Two novel control-volume methods are presented for flow in fractured media, and involve coupling the control-volume distributed multi-point flux approximation (CVD-MPFA) constructed with full pressure support (FPS), to two types of discrete fracture-matrix approximation for simulation on unstructured grids; (i) involving hybrid grids and (ii) a lower dimensional fracture model. Flow is governed by Darcy's law together with mass conservation both in the matrix and the fractures, where large discontinuities in permeability tensors can occur. Finite-volume FPS schemes are more robust than the earlier CVD-MPFA triangular pressure support (TPS) schemes for problems involving highly anisotropic homogeneous and heterogeneous full-tensor permeability fields. We use a cell-centred hybrid-grid method, where fractures are modelled by lower-dimensional interfaces between matrix cells in the physical mesh but expanded to equi-dimensional cells in the computational domain. We present a simple procedure to form a consistent hybrid-grid locally for a dual-cell. We also propose a novel hybrid-grid for intersecting fractures, for the FPS method, which reduces the condition number of the global linear system and leads to larger time steps for tracer transport. The transport equation for tracer flow is coupled with the pressure equation and provides flow parameter assessment of the fracture models. Transport results obtained via TPS and FPS hybrid-grid formulations are compared with the corresponding results of fine-scale explicit equi-dimensional formulations. The results show that the hybrid-grid FPS method applies to general full-tensor fields and provides improved robust approximations compared to the hybrid-grid TPS method for fractured domains, for both weakly anisotropic permeability fields and very strong anisotropic full-tensor permeability fields where the TPS scheme exhibits spurious oscillations. The hybrid-grid FPS formulation is extended to compressible flow and the results demonstrate the method is also robust for transient flow. Furthermore, we present FPS coupled with a lower-dimensional fracture model, where fractures are strictly lower-dimensional in the physical mesh as well as in the computational domain. We present a comparison of the hybrid-grid FPS method and the lower-dimensional fracture model for several cases of isotropic and anisotropic fractured media which illustrate the benefits of the respective methods.

  2. Local yield stress statistics in model amorphous solids

    NASA Astrophysics Data System (ADS)

    Barbot, Armand; Lerbinger, Matthias; Hernandez-Garcia, Anier; García-García, Reinaldo; Falk, Michael L.; Vandembroucq, Damien; Patinet, Sylvain

    2018-03-01

    We develop and extend a method presented by Patinet, Vandembroucq, and Falk [Phys. Rev. Lett. 117, 045501 (2016), 10.1103/PhysRevLett.117.045501] to compute the local yield stresses at the atomic scale in model two-dimensional Lennard-Jones glasses produced via differing quench protocols. This technique allows us to sample the plastic rearrangements in a nonperturbative manner for different loading directions on a well-controlled length scale. Plastic activity upon shearing correlates strongly with the locations of low yield stresses in the quenched states. This correlation is higher in more structurally relaxed systems. The distribution of local yield stresses is also shown to strongly depend on the quench protocol: the more relaxed the glass, the higher the local plastic thresholds. Analysis of the magnitude of local plastic relaxations reveals that stress drops follow exponential distributions, justifying the hypothesis of an average characteristic amplitude often conjectured in mesoscopic or continuum models. The amplitude of the local plastic rearrangements increases on average with the yield stress, regardless of the system preparation. The local yield stress varies with the shear orientation tested and strongly correlates with the plastic rearrangement locations when the system is sheared correspondingly. It is thus argued that plastic rearrangements are the consequence of shear transformation zones encoded in the glass structure that possess weak slip planes along different orientations. Finally, we justify the length scale employed in this work and extract the yield threshold statistics as a function of the size of the probing zones. This method makes it possible to derive physically grounded models of plasticity for amorphous materials by directly revealing the relevant details of the shear transformation zones that mediate this process.

  3. Well-posedness of the Cauchy problem for models of large amplitude internal waves

    NASA Astrophysics Data System (ADS)

    Guyenne, Philippe; Lannes, David; Saut, Jean-Claude

    2010-02-01

    We consider in this paper the 'shallow-water/shallow-water' asymptotic model obtained in Choi and Camassa (1999 J. Fluid Mech. 396 1-36), Craig et al (2005 Commun. Pure. Appl. Math. 58 1587-641) (one-dimensional interface) and Bona et al (2008 J. Math. Pures Appl. 89 538-66) (two-dimensional interface) from the two-layer system with rigid lid, for the description of large amplitude internal waves at the interface of two layers of immiscible fluids of different densities. For one-dimensional interfaces, this system is of hyperbolic type and its local well-posedness does not raise serious difficulties, although other issues (blow-up, loss of hyperbolicity, etc) turn out to be delicate. For two-dimensional interfaces, the system is nonlocal. Nevertheless, we prove that it conserves some properties of 'hyperbolic type' and show that the associated Cauchy problem is locally well posed in suitable Sobolev classes provided some natural restrictions are imposed on the data. These results are illustrated by numerical simulations with emphasis on the formation of shock waves.

  4. Interpenetration of a 3D Icosahedral M@Ni12 (M=Al, Ga) Framework with Porphyrin-Reminiscent Boron Layers in MNi9 B8.

    PubMed

    Zheng, Qiang; Wagner, Frank R; Ormeci, Alim; Prots, Yurii; Burkhardt, Ulrich; Schmidt, Marcus; Schnelle, Walter; Grin, Yuri; Leithe-Jasper, Andreas

    2015-11-09

    Two ternary borides MNi9 B8 (M=Al, Ga) were synthesized by thermal treatment of mixtures of the elements. Single-crystal X-ray diffraction data reveal AlNi9 B8 and GaNi9 B8 crystallizing in a new type of structure within the space group Cmcm and the lattice parameters a=7.0896(3) Å, b=8.1181(3) Å, c=10.6497(4) Å and a=7.0897(5) Å, b=8.1579(4) Å, c=10.6648(7) Å, respectively. The boron atoms build up two-dimensional layers, which consist of puckered [B16 ] rings with two tailing B atoms, whereas the M atoms reside in distorted vertices-condensed [Ni12 ] icosahedra, which form a three-dimensional framework interpenetrated by boron porphyrin-reminiscent layers. An unusual local arrangement resembling a giant metallo-porphyrin entity is formed by the [B16 ] rings, which, due to their large annular size of approximately 8 Å, chelate four of the twelve icosahedral Ni atoms. An analysis of the chemical bonding by means of the electron localizability approach reveals strong covalent B-B interactions and weak Ni-Ni interactions. Multi-center dative B-Ni interaction occurs between the Al-Ni framework and the boron layers. In agreement with the chemical bonding analysis and band structure calculations, AlNi9 B8 is a Pauli-paramagnetic metal. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Major effect of inherited rheology weakening in the crust and mantle on continental intraplate strain and seismicity rates

    NASA Astrophysics Data System (ADS)

    Gueydan, Frédéric; Mazzotti, Stephane

    2017-04-01

    Stable Continental Regions (SCR, i.e., intraplate) are commonly viewed as non-deforming and very high resistance lithosphere domains, except in localized regions of higher strain and seismicity rates that often related to fossilized tectonic zones acting as weaker domains (e.g., Rhine Graben, New Madrid). Two main categories of models have been proposed to explain strain concentration in SCR: Local stress concentration (fault intersection, erosion pulse, …) and local lithosphere weakness (high geotherm, mantle anisotropy, …). In order to test the respective role of these various parameters of the stress - rheology - strain relationship, we propose a simple 1D model to quantify first-order continental strain rate variations using laboratory and field-based rheology laws for the crust and mantle. In particular, we include new strain-weakening rheologies in order to simulate tectonic heritage. Within the framework of near-failure equilibrium between tectonic forces and strain rates, we show that inherited rheology weakening plays a fundamental role in allowing for and explaining strain and seismicity concentration in intraplate weak zones. A comparison with empirical strain rate estimations in SCR and intraplate weak zones shows that inherited weakening rheologies can increase local strain rates by as much as three orders of magnitude, about one to two orders higher than that permitted by other processes such as stress concentration, thermal anomaly, etc.

  6. Hyperspectral Super-Resolution of Locally Low Rank Images From Complementary Multisource Data.

    PubMed

    Veganzones, Miguel A; Simoes, Miguel; Licciardi, Giorgio; Yokoya, Naoto; Bioucas-Dias, Jose M; Chanussot, Jocelyn

    2016-01-01

    Remote sensing hyperspectral images (HSIs) are quite often low rank, in the sense that the data belong to a low dimensional subspace/manifold. This has been recently exploited for the fusion of low spatial resolution HSI with high spatial resolution multispectral images in order to obtain super-resolution HSI. Most approaches adopt an unmixing or a matrix factorization perspective. The derived methods have led to state-of-the-art results when the spectral information lies in a low-dimensional subspace/manifold. However, if the subspace/manifold dimensionality spanned by the complete data set is large, i.e., larger than the number of multispectral bands, the performance of these methods mainly decreases because the underlying sparse regression problem is severely ill-posed. In this paper, we propose a local approach to cope with this difficulty. Fundamentally, we exploit the fact that real world HSIs are locally low rank, that is, pixels acquired from a given spatial neighborhood span a very low-dimensional subspace/manifold, i.e., lower or equal than the number of multispectral bands. Thus, we propose to partition the image into patches and solve the data fusion problem independently for each patch. This way, in each patch the subspace/manifold dimensionality is low enough, such that the problem is not ill-posed anymore. We propose two alternative approaches to define the hyperspectral super-resolution through local dictionary learning using endmember induction algorithms. We also explore two alternatives to define the local regions, using sliding windows and binary partition trees. The effectiveness of the proposed approaches is illustrated with synthetic and semi real data.

  7. Experiment of flow regime map and local condensing heat transfer coefficients inside three dimensional inner microfin tubes

    NASA Astrophysics Data System (ADS)

    Du, Yang; Xin, Ming Dao

    1999-03-01

    This paper developed a new type of three dimensional inner microfin tube. The experimental results of the flow patterns for the horizontal condensation inside these tubes are reported in the paper. The flow patterns for the horizontal condensation inside the new made tubes are divided into annular flow, stratified flow and intermittent flow within the test conditions. The experiments of the local heat transfer coefficients for the different flow patterns have been systematically carried out. The experiments of the local heat transfer coefficients changing with the vapor dryness fraction have also been carried out. As compared with the heat transfer coefficients of the two dimensional inner microfin tubes, those of the three dimensional inner microfin tubes increase 47-127% for the annular flow region, 38-183% for the stratified flow and 15-75% for the intermittent flow, respectively. The enhancement factor of the local heat transfer coefficients is from 1.8-6.9 for the vapor dryness fraction from 0.05 to 1.

  8. Proton tunneling in low dimensional cesium silicate LDS-1

    NASA Astrophysics Data System (ADS)

    Matsui, Hiroshi; Iwamoto, Kei; Mochizuki, Dai; Osada, Shimon; Asakura, Yusuke; Kuroda, Kazuyuki

    2015-07-01

    In low dimensional cesium silicate LDS-1 (monoclinic phase of CsHSi2O5), anomalous infrared absorption bands observed at 93, 155, 1210, and 1220 cm-1 are assigned to the vibrational mode of protons, which contribute to the strong hydrogen bonding between terminal oxygen atoms of silicate chain (O-O distance = 2.45 Å). The integrated absorbance (oscillator strength) for those modes is drastically enhanced at low temperatures. The analysis of integrated absorbance employing two different anharmonic double-minimum potentials makes clear that proton tunneling through the potential barrier yields an energy splitting of the ground state. The absorption bands at 93 and 155 cm-1, which correspond to the different vibrational modes of protons, are attributed to the optical transition between the splitting levels (excitation from the ground state (n = 0) to the first excited state (n = 1)). Moreover, the absorption bands at 1210 and 1220 cm-1 are identified as the optical transition from the ground state (n = 0) to the third excited state (n = 3). Weak Coulomb interactions in between the adjacent protons generate two types of vibrational modes: symmetric mode (93 and 1210 cm-1) and asymmetric mode (155 and 1220 cm-1). The broad absorption at 100-600 cm-1 reveals an emergence of collective mode due to the vibration of silicate chain coupled not only with the local oscillation of Cs+ but also with the proton oscillation relevant to the second excited state (n = 2).

  9. Influence of a depletion interaction on dynamical heterogeneity in a dense quasi-two-dimensional colloid liquid.

    PubMed

    Ho, Hau My; Cui, Bianxiao; Repel, Stephen; Lin, Binhua; Rice, Stuart A

    2004-11-01

    We report the results of digital video microscopy studies of the large particle displacements in a quasi-two-dimensional binary mixture of large (L) and small (S) colloid particles with diameter ratio sigma(L)/sigma(S)=4.65, as a function of the large and small colloid particle densities. As in the case of the one-component quasi-two-dimensional colloid system, the binary mixtures exhibit structural and dynamical heterogeneity. The distribution of large particle displacements over the time scale examined provides evidence for (at least) two different mechanisms of motion, one associated with particles in locally ordered regions and the other associated with particles in locally disordered regions. When rhoL*=Npisigma(L) (2)/4A< or =0.35, the addition of small colloid particles leads to a monotonic decrease in the large particle diffusion coefficient with increasing small particle volume fraction. When rhoL* > or =0.35 the addition of small colloid particles to a dense system of large colloid particles at first leads to an increase in the large particle diffusion coefficient, which is then followed by the expected decrease of the large particle diffusion coefficient with increasing small colloid particle volume fraction. The mode coupling theory of the ideal glass transition in three-dimensional systems makes a qualitative prediction that agrees with the initial increase in the large particle diffusion coefficient with increasing small particle density. Nevertheless, because the structural and dynamical heterogeneities of the quasi-two-dimensional colloid liquid occur within the field of equilibrium states, and the fluctuations generate locally ordered domains rather than just disordered regions of higher and lower density, it is suggested that mode coupling theory does not account for all classes of relevant fluctuations in a quasi-two-dimensional liquid. (c) 2004 American Institute of Physics.

  10. Parametric Loop Division for 3D Localization in Wireless Sensor Networks

    PubMed Central

    Ahmad, Tanveer

    2017-01-01

    Localization in Wireless Sensor Networks (WSNs) has been an active topic for more than two decades. A variety of algorithms were proposed to improve the localization accuracy. However, they are either limited to two-dimensional (2D) space, or require specific sensor deployment for proper operations. In this paper, we proposed a three-dimensional (3D) localization scheme for WSNs based on the well-known parametric Loop division (PLD) algorithm. The proposed scheme localizes a sensor node in a region bounded by a network of anchor nodes. By iteratively shrinking that region towards its center point, the proposed scheme provides better localization accuracy as compared to existing schemes. Furthermore, it is cost-effective and independent of environmental irregularity. We provide an analytical framework for the proposed scheme and find its lower bound accuracy. Simulation results shows that the proposed algorithm provides an average localization accuracy of 0.89 m with a standard deviation of 1.2 m. PMID:28737714

  11. 4-Benzyl-4-ethyl­morpholin-1-ium hexa­fluoro­phosphate

    PubMed Central

    Yang, Fang; Zang, Hongjun; Cheng, Bowen; Xu, Xianlin; Ren, Yuanlin

    2012-01-01

    The asymmetric unit of the title compound, C13H20NO+·PF6 −, contains two cations, one complete anion and two half hexa­fluoro­phosphate anions having crystallographically imposed twofold rotation symmetry. In the cations, the morpholine rings are in a chair conformation. In the crystal, ions are linked by weak C—H⋯F hydrogen bonds into a three-dimensional network. PMID:22412701

  12. (+/-)-Gelliusines A and B, two diastereomeric brominated tris-indole alkaloids from a deep water new caledonian marine sponge (Gellius or Orina sp.).

    PubMed

    Bifulco, G; Bruno, I; Minale, L; Riccio, R; Calignano, A; Debitus, C

    1994-09-01

    Two new diastereomeric brominated tris-indole alkaloids occurring as enantiomeric pairs, (+/-)-gelliusines A [1] and B [2], have been isolated from a deep water New Caledonian sponge (Gellius or Orina sp.), whose crude extract exhibited cytotoxicity against KB cells. Their structures were elucidated by spectroscopic methods including one- and two-dimensional nmr spectroscopy. The major compound, (+/-) gelliusine A [1], which showed very weak cytotoxicity, proved to be active at the serotonin receptor.

  13. Flavor and topological current correlators in parity-invariant three-dimensional QED

    NASA Astrophysics Data System (ADS)

    Karthik, Nikhil; Narayanan, Rajamani

    2017-09-01

    We use lattice regularization to study the flow of the flavor-triplet fermion current central charge CJf from its free field value in the ultraviolet limit to its conformal value in the infrared limit of the parity-invariant three-dimensional QED with two flavors of two-component fermions. The dependence of CJf on the scale is weak with a tendency to be below the free field value at intermediate distances. Our numerical data suggest that the flavor-triplet fermion current and the topological current correlators become degenerate within numerical errors in the infrared limit, thereby supporting an enhanced O(4) symmetry predicted by strong self-duality. Further, we demonstrate that fermion dynamics is necessary for the scale-invariant behavior of parity-invariant three-dimensional QED by showing that the pure gauge theory with noncompact gauge action has a nonzero bilinear condensate.

  14. Normal Modes of Magnetized Finite Two-Dimensional Yukawa Crystals

    NASA Astrophysics Data System (ADS)

    Marleau, Gabriel-Dominique; Kaehlert, Hanno; Bonitz, Michael

    2009-11-01

    The normal modes of a finite two-dimensional dusty plasma in an isotropic parabolic confinement, including the simultaneous effects of friction and an external magnetic field, are studied. The ground states are found from molecular dynamics simulations with simulated annealing, and the influence of screening, friction, and magnetic field on the mode frequencies is investigated in detail. The two-particle problem is solved analytically and the limiting cases of weak and strong magnetic fields are discussed.[4pt] [1] C. Henning, H. K"ahlert, P. Ludwig, A. Melzer, and M.Bonitz. J. Phys. A 42, 214023 (2009)[2] B. Farokhi, M. Shahmansouri, and P. K. Shukla. Phys.Plasmas 16, 063703 (2009)[3] L. Cândido, J.-P. Rino, N. Studart, and F. M. Peeters. J. Phys.: Condens. Matter 10, 11627--11644 (1998)

  15. Generalized description of few-electron quantum dots at zero and nonzero magnetic fields

    NASA Astrophysics Data System (ADS)

    Ciftja, Orion

    2007-01-01

    We introduce a generalized ground state variational wavefunction for parabolically confined two-dimensional quantum dots that equally applies to both cases of weak (or zero) and strong magnetic field. The wavefunction has a Laughlin-like form in the limit of infinite magnetic field, but transforms into a Jastrow-Slater wavefunction at zero magnetic field. At intermediate magnetic fields (where a fraction of electrons is spin-reversed) it resembles Halperin's spin-reversed wavefunction for the fractional quantum Hall effect. The properties of this variational wavefunction are illustrated for the case of two-dimensional quantum dot helium (a system of two interacting electrons in a parabolic confinement potential) where we find the description to be an excellent representation of the true ground state for the whole range of magnetic fields.

  16. Detection of Multiple Stationary Humans Using UWB MIMO Radar.

    PubMed

    Liang, Fulai; Qi, Fugui; An, Qiang; Lv, Hao; Chen, Fuming; Li, Zhao; Wang, Jianqi

    2016-11-16

    Remarkable progress has been achieved in the detection of single stationary human. However, restricted by the mutual interference of multiple humans (e.g., strong sidelobes of the torsos and the shadow effect), detection and localization of the multiple stationary humans remains a huge challenge. In this paper, ultra-wideband (UWB) multiple-input and multiple-output (MIMO) radar is exploited to improve the detection performance of multiple stationary humans for its multiple sight angles and high-resolution two-dimensional imaging capacity. A signal model of the vital sign considering both bi-static angles and attitude angle of the human body is firstly developed, and then a novel detection method is proposed to detect and localize multiple stationary humans. In this method, preprocessing is firstly implemented to improve the signal-to-noise ratio (SNR) of the vital signs, and then a vital-sign-enhanced imaging algorithm is presented to suppress the environmental clutters and mutual affection of multiple humans. Finally, an automatic detection algorithm including constant false alarm rate (CFAR), morphological filtering and clustering is implemented to improve the detection performance of weak human targets affected by heavy clutters and shadow effect. The simulation and experimental results show that the proposed method can get a high-quality image of multiple humans and we can use it to discriminate and localize multiple adjacent human targets behind brick walls.

  17. Detection of Multiple Stationary Humans Using UWB MIMO Radar

    PubMed Central

    Liang, Fulai; Qi, Fugui; An, Qiang; Lv, Hao; Chen, Fuming; Li, Zhao; Wang, Jianqi

    2016-01-01

    Remarkable progress has been achieved in the detection of single stationary human. However, restricted by the mutual interference of multiple humans (e.g., strong sidelobes of the torsos and the shadow effect), detection and localization of the multiple stationary humans remains a huge challenge. In this paper, ultra-wideband (UWB) multiple-input and multiple-output (MIMO) radar is exploited to improve the detection performance of multiple stationary humans for its multiple sight angles and high-resolution two-dimensional imaging capacity. A signal model of the vital sign considering both bi-static angles and attitude angle of the human body is firstly developed, and then a novel detection method is proposed to detect and localize multiple stationary humans. In this method, preprocessing is firstly implemented to improve the signal-to-noise ratio (SNR) of the vital signs, and then a vital-sign-enhanced imaging algorithm is presented to suppress the environmental clutters and mutual affection of multiple humans. Finally, an automatic detection algorithm including constant false alarm rate (CFAR), morphological filtering and clustering is implemented to improve the detection performance of weak human targets affected by heavy clutters and shadow effect. The simulation and experimental results show that the proposed method can get a high-quality image of multiple humans and we can use it to discriminate and localize multiple adjacent human targets behind brick walls. PMID:27854356

  18. Ensemble Sparse Classification of Alzheimer’s Disease

    PubMed Central

    Liu, Manhua; Zhang, Daoqiang; Shen, Dinggang

    2012-01-01

    The high-dimensional pattern classification methods, e.g., support vector machines (SVM), have been widely investigated for analysis of structural and functional brain images (such as magnetic resonance imaging (MRI)) to assist the diagnosis of Alzheimer’s disease (AD) including its prodromal stage, i.e., mild cognitive impairment (MCI). Most existing classification methods extract features from neuroimaging data and then construct a single classifier to perform classification. However, due to noise and small sample size of neuroimaging data, it is challenging to train only a global classifier that can be robust enough to achieve good classification performance. In this paper, instead of building a single global classifier, we propose a local patch-based subspace ensemble method which builds multiple individual classifiers based on different subsets of local patches and then combines them for more accurate and robust classification. Specifically, to capture the local spatial consistency, each brain image is partitioned into a number of local patches and a subset of patches is randomly selected from the patch pool to build a weak classifier. Here, the sparse representation-based classification (SRC) method, which has shown effective for classification of image data (e.g., face), is used to construct each weak classifier. Then, multiple weak classifiers are combined to make the final decision. We evaluate our method on 652 subjects (including 198 AD patients, 225 MCI and 229 normal controls) from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database using MR images. The experimental results show that our method achieves an accuracy of 90.8% and an area under the ROC curve (AUC) of 94.86% for AD classification and an accuracy of 87.85% and an AUC of 92.90% for MCI classification, respectively, demonstrating a very promising performance of our method compared with the state-of-the-art methods for AD/MCI classification using MR images. PMID:22270352

  19. Thermally activated phase slips of one-dimensional Bose gases in shallow optical lattices

    NASA Astrophysics Data System (ADS)

    Kunimi, Masaya; Danshita, Ippei

    2017-03-01

    We study the decay of superflow via thermally activated phase slips in one-dimensional Bose gases in a shallow optical lattice. By using the Kramers formula, we numerically calculate the nucleation rate of a thermally activated phase slip for various values of the filling factor and flow velocity in the absence of a harmonic trapping potential. Within the local density approximation, we derive a formula connecting the phase-slip nucleation rate with the damping rate of a dipole oscillation of the Bose gas in the presence of a harmonic trap. We use the derived formula to directly compare our theory with the recent experiment done by the LENS group [L. Tanzi et al., Sci. Rep. 6, 25965 (2016), 10.1038/srep25965]. From the comparison, the observed damping of dipole oscillations in a weakly correlated and small velocity regime is attributed dominantly to thermally activated phase slips rather than quantum phase slips.

  20. de Sitter space as a tensor network: Cosmic no-hair, complementarity, and complexity

    NASA Astrophysics Data System (ADS)

    Bao, Ning; Cao, ChunJun; Carroll, Sean M.; Chatwin-Davies, Aidan

    2017-12-01

    We investigate the proposed connection between de Sitter spacetime and the multiscale entanglement renormalization ansatz (MERA) tensor network, and ask what can be learned via such a construction. We show that the quantum state obeys a cosmic no-hair theorem: the reduced density operator describing a causal patch of the MERA asymptotes to a fixed point of a quantum channel, just as spacetimes with a positive cosmological constant asymptote to de Sitter space. The MERA is potentially compatible with a weak form of complementarity (local physics only describes single patches at a time, but the overall Hilbert space is infinite dimensional) or, with certain specific modifications to the tensor structure, a strong form (the entire theory describes only a single patch plus its horizon, in a finite-dimensional Hilbert space). We also suggest that de Sitter evolution has an interpretation in terms of circuit complexity, as has been conjectured for anti-de Sitter space.

  1. A Variational Reduction and the Existence of a Fully Localised Solitary Wave for the Three-Dimensional Water-Wave Problem with Weak Surface Tension

    NASA Astrophysics Data System (ADS)

    Buffoni, Boris; Groves, Mark D.; Wahlén, Erik

    2017-12-01

    Fully localised solitary waves are travelling-wave solutions of the three- dimensional gravity-capillary water wave problem which decay to zero in every horizontal spatial direction. Their existence has been predicted on the basis of numerical simulations and model equations (in which context they are usually referred to as `lumps'), and a mathematically rigorous existence theory for strong surface tension (Bond number {β} greater than {1/3} ) has recently been given. In this article we present an existence theory for the physically more realistic case {0 < β < 1/3} . A classical variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle featuring a perturbation of the functional associated with the Davey-Stewartson equation. A nontrivial critical point of the reduced functional is found by minimising it over its natural constraint set.

  2. A Variational Reduction and the Existence of a Fully Localised Solitary Wave for the Three-Dimensional Water-Wave Problem with Weak Surface Tension

    NASA Astrophysics Data System (ADS)

    Buffoni, Boris; Groves, Mark D.; Wahlén, Erik

    2018-06-01

    Fully localised solitary waves are travelling-wave solutions of the three- dimensional gravity-capillary water wave problem which decay to zero in every horizontal spatial direction. Their existence has been predicted on the basis of numerical simulations and model equations (in which context they are usually referred to as `lumps'), and a mathematically rigorous existence theory for strong surface tension (Bond number {β} greater than {1/3}) has recently been given. In this article we present an existence theory for the physically more realistic case {0 < β < 1/3}. A classical variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle featuring a perturbation of the functional associated with the Davey-Stewartson equation. A nontrivial critical point of the reduced functional is found by minimising it over its natural constraint set.

  3. Pacemakers in large arrays of oscillators with nonlocal coupling

    NASA Astrophysics Data System (ADS)

    Jaramillo, Gabriela; Scheel, Arnd

    2016-02-01

    We model pacemaker effects of an algebraically localized heterogeneity in a 1 dimensional array of oscillators with nonlocal coupling. We assume the oscillators obey simple phase dynamics and that the array is large enough so that it can be approximated by a continuous nonlocal evolution equation. We concentrate on the case of heterogeneities with positive average and show that steady solutions to the nonlocal problem exist. In particular, we show that these heterogeneities act as a wave source. This effect is not possible in 3 dimensional systems, such as the complex Ginzburg-Landau equation, where the wavenumber of weak sources decays at infinity. To obtain our results we use a series of isomorphisms to relate the nonlocal problem to the viscous eikonal equation. We then use Fredholm properties of the Laplace operator in Kondratiev spaces to obtain solutions to the eikonal equation, and by extension to the nonlocal problem.

  4. The stability of aluminium oxide monolayer and its interface with two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Song, Ting Ting; Yang, Ming; Chai, Jian Wei; Callsen, Martin; Zhou, Jun; Yang, Tong; Zhang, Zheng; Pan, Ji Sheng; Chi, Dong Zhi; Feng, Yuan Ping; Wang, Shi Jie

    2016-07-01

    The miniaturization of future electronic devices requires the knowledge of interfacial properties between two-dimensional channel materials and high-κ dielectrics in the limit of one atomic layer thickness. In this report, by combining particle-swarm optimization method with first-principles calculations, we present a detailed study of structural, electronic, mechanical, and dielectric properties of Al2O3 monolayer. We predict that planar Al2O3 monolayer is globally stable with a direct band gap of 5.99 eV and thermal stability up to 1100 K. The stability of this high-κ oxide monolayer can be enhanced by substrates such as graphene, for which the interfacial interaction is found to be weak. The band offsets between the Al2O3 monolayer and graphene are large enough for electronic applications. Our results not only predict a stable high-κ oxide monolayer, but also improve the understanding of interfacial properties between a high-κ dielectric monolayer and two-dimensional material.

  5. Efficient local representations for three-dimensional palmprint recognition

    NASA Astrophysics Data System (ADS)

    Yang, Bing; Wang, Xiaohua; Yao, Jinliang; Yang, Xin; Zhu, Wenhua

    2013-10-01

    Palmprints have been broadly used for personal authentication because they are highly accurate and incur low cost. Most previous works have focused on two-dimensional (2-D) palmprint recognition in the past decade. Unfortunately, 2-D palmprint recognition systems lose the shape information when capturing palmprint images. Moreover, such 2-D palmprint images can be easily forged or affected by noise. Hence, three-dimensional (3-D) palmprint recognition has been regarded as a promising way to further improve the performance of palmprint recognition systems. We have developed a simple, but efficient method for 3-D palmprint recognition by using local features. We first utilize shape index representation to describe the geometry of local regions in 3-D palmprint data. Then, we extract local binary pattern and Gabor wavelet features from the shape index image. The two types of complementary features are finally fused at a score level for further improvements. The experimental results on the Hong Kong Polytechnic 3-D palmprint database, which contains 8000 samples from 400 palms, illustrate the effectiveness of the proposed method.

  6. Pulse-coupled neural nets: translation, rotation, scale, distortion, and intensity signal invariance for images.

    PubMed

    Johnson, J L

    1994-09-10

    The linking-field neural network model of Eckhorn et al. [Neural Comput. 2, 293-307 (1990)] was introduced to explain the experimentally observed synchronous activity among neural assemblies in the cat cortex induced by feature-dependent visual activity. The model produces synchronous bursts of pulses from neurons with similar activity, effectively grouping them by phase and pulse frequency. It gives a basic new function: grouping by similarity. The synchronous bursts are obtained in the limit of strong linking strengths. The linking-field model in the limit of moderate-to-weak linking characterized by few if any multiple bursts is investigated. In this limit dynamic, locally periodic traveling waves exist whose time signal encodes the geometrical structure of a two-dimensional input image. The signal can be made insensitive to translation, scale, rotation, distortion, and intensity. The waves transmit information beyond the physical interconnect distance. The model is implemented in an optical hybrid demonstration system. Results of the simulations and the optical system are presented.

  7. Raman vibrational spectra of bulk to monolayer Re S 2 with lower symmetry

    DOE PAGES

    Feng, Yanqing; Zhou, Wei; Wang, Yaojia; ...

    2015-08-26

    Lattice structure and symmetry of two-dimensional (2D) layered materials are of key importance to their fundamental mechanical, thermal, electronic and optical properties. Raman spectroscopy, as a convenient and nondestructive tool, however has its limitations on identifying all symmetry allowing Raman modes and determining the corresponding crystal structure of 2D layered materials with high symmetry like graphene and MoS 2. Due to lower structural symmetry and extraordinary weak interlayer coupling of ReS 2, we successfully identified all 18 first-order Raman active modes for bulk and monolayer ReS 2. Without van der Waals (vdW) correction, our local density approximation (LDA) calculations successfullymore » reproduce all the Raman modes. Our calculations also suggest no surface reconstruction effect and the absence of low frequency rigid-layer Raman modes below 100 cm -1. As a result, combining with Raman and LDA thus provides a general approach for studying the vibrational and structural properties of 2D layered materials with lower symmetry.« less

  8. Speed of fast and slow rupture fronts along frictional interfaces

    NASA Astrophysics Data System (ADS)

    Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Thøgersen, Kjetil; Scheibert, Julien; Malthe-Sørenssen, Anders

    2015-07-01

    The transition from stick to slip at a dry frictional interface occurs through the breaking of microjunctions between the two contacting surfaces. Typically, interactions between junctions through the bulk lead to rupture fronts propagating from weak and/or highly stressed regions, whose junctions break first. Experiments find rupture fronts ranging from quasistatic fronts, via fronts much slower than elastic wave speeds, to fronts faster than the shear wave speed. The mechanisms behind and selection between these fronts are still imperfectly understood. Here we perform simulations in an elastic two-dimensional spring-block model where the frictional interaction between each interfacial block and the substrate arises from a set of junctions modeled explicitly. We find that material slip speed and rupture front speed are proportional across the full range of front speeds we observe. We revisit a mechanism for slow slip in the model and demonstrate that fast slip and fast fronts have a different, inertial origin. We highlight the long transients in front speed even along homogeneous interfaces, and we study how both the local shear to normal stress ratio and the local strength are involved in the selection of front type and front speed. Last, we introduce an experimentally accessible integrated measure of block slip history, the Gini coefficient, and demonstrate that in the model it is a good predictor of the history-dependent local static friction coefficient of the interface. These results will contribute both to building a physically based classification of the various types of fronts and to identifying the important mechanisms involved in the selection of their propagation speed.

  9. Photoexcited energy transfer in a weakly coupled dimer

    DOE PAGES

    Hernandez, Laura Alfonso; Nelson, Tammie; Tretiak, Sergei; ...

    2015-01-08

    Nonadiabatic excited-state molecular dynamics (NA-ESMD) simulations have been performed in order to study the time-dependent exciton localization during energy transfer between two chromophore units of the weakly coupled anthracene dimer dithia-anthracenophane (DTA). Simulations are done at both low temperature (10 K) and room temperature (300 K). The initial photoexcitation creates an exciton which is primarily localized on a single monomer unit. Subsequently, the exciton experiences an ultrafast energy transfer becoming localized on either one monomer unit or the other, whereas delocalization between both monomers never occurs. In half of the trajectories, the electronic transition density becomes completely localized on themore » same monomer as the initial excitation, while in the other half, it becomes completely localized on the opposite monomer. In this article, we present an analysis of the energy transfer dynamics and the effect of thermally induced geometry distortions on the exciton localization. Finally, simulated fluorescence anisotropy decay curves for both DTA and the monomer unit dimethyl anthracene (DMA) are compared. As a result, our analysis reveals that changes in the transition density localization caused by energy transfer between two monomers in DTA is not the only source of depolarization and exciton relaxation within a single DTA monomer unit can also cause reorientation of the transition dipole.« less

  10. Photoexcited Energy Transfer in a Weakly Coupled Dimer.

    PubMed

    Alfonso Hernandez, Laura; Nelson, Tammie; Tretiak, Sergei; Fernandez-Alberti, Sebastian

    2015-06-18

    Nonadiabatic excited-state molecular dynamics (NA-ESMD) simulations have been performed in order to study the time-dependent exciton localization during energy transfer between two chromophore units of the weakly coupled anthracene dimer dithia-anthracenophane (DTA). Simulations are done at both low temperature (10 K) and room temperature (300 K). The initial photoexcitation creates an exciton which is primarily localized on a single monomer unit. Subsequently, the exciton experiences an ultrafast energy transfer becoming localized on either one monomer unit or the other, whereas delocalization between both monomers never occurs. In half of the trajectories, the electronic transition density becomes completely localized on the same monomer as the initial excitation, while in the other half, it becomes completely localized on the opposite monomer. In this article, we present an analysis of the energy transfer dynamics and the effect of thermally induced geometry distortions on the exciton localization. Finally, simulated fluorescence anisotropy decay curves for both DTA and the monomer unit dimethyl anthracene (DMA) are compared. Our analysis reveals that changes in the transition density localization caused by energy transfer between two monomers in DTA is not the only source of depolarization and exciton relaxation within a single DTA monomer unit can also cause reorientation of the transition dipole.

  11. Defect propagation in one-, two-, and three-dimensional compounds doped by magnetic atoms

    DOE PAGES

    Furrer, A.; Podlesnyak, A.; Krämer, K. W.; ...

    2014-10-29

    Inelastic neutron scattering experiments were performed to study manganese(II) dimer excitations in the diluted one-, two-, and three-dimensional compounds CsMn xMg 1-xBr 3, K 2Mn xZn 1-xF 4, and KMn xZn 1-xF 3 (x≤0.10), respectively. The transitions from the ground-state singlet to the excited triplet, split into a doublet and a singlet due to the single-ion anisotropy, exhibit remarkable fine structures. These unusual features are attributed to local structural inhomogeneities induced by the dopant Mn atoms which act like lattice defects. Statistical models support the theoretically predicted decay of atomic displacements according to 1/r 2, 1/r, and constant (for three-,more » two-, and one-dimensional compounds, respectively) where r denotes the distance of the displaced atoms from the defect. In conclusion, the observed fine structures allow a direct determination of the local exchange interactions J, and the local intradimer distances R can be derived through the linear law dJ/dR.« less

  12. WIND- THREE DIMENSIONAL POTENTIAL COMPRESSIBLE FLOW ABOUT WIND TURBINE ROTOR BLADES

    NASA Technical Reports Server (NTRS)

    Dulikravich, D. S.

    1994-01-01

    This computer program, WIND, was developed to numerically solve the exact, full-potential equation for three-dimensional, steady, inviscid flow through an isolated wind turbine rotor. The program automatically generates a three-dimensional, boundary-conforming grid and iteratively solves the full-potential equation while fully accounting for both the rotating and Coriolis effects. WIND is capable of numerically analyzing the flow field about a given blade shape of the horizontal-axis type wind turbine. The rotor hub is assumed representable by a doubly infinite circular cylinder. An arbitrary number of blades may be attached to the hub and these blades may have arbitrary spanwise distributions of taper and of the twist, sweep, and dihedral angles. An arbitrary number of different airfoil section shapes may be used along the span as long as the spanwise variation of all the geometeric parameters is reasonably smooth. The numerical techniques employed in WIND involve rotated, type-dependent finite differencing, a finite volume method, artificial viscosity in conservative form, and a successive overrelaxation combined with the sequential grid refinement procedure to accelerate the iterative convergence rate. Consequently, WIND is cabable of accurately analyzing incompressible and compressible flows, including those that are locally transonic and terminated by weak shocks. Along with the three-dimensional results, WIND provides the results of the two-dimensional calculations to aid the user in locating areas of possible improvement in the aerodynamic design of the blade. Output from WIND includes the chordwise distribution of the coefficient of pressure, the Mach number, the density, and the relative velocity components at spanwise stations along the blade. In addition, the results specify local values of the lift coefficient and the tangent and axial aerodynamic force components. These are also given in integrated form expressing the total torque and the total axial force acting on the shaft. WIND can also be used to analyze the flow around isolated aircraft propellers and helicopter rotors in hover as long as the relative oncoming flow is subsonic. The WIND program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 253K of 8 bit bytes. WIND was developed in 1980.

  13. Global/local methods research using the CSM testbed

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Ransom, Jonathan B.; Griffin, O. Hayden, Jr.; Thompson, Danniella M.

    1990-01-01

    Research activities in global/local stress analysis are described including both two- and three-dimensional analysis methods. These methods are being developed within a common structural analysis framework. Representative structural analysis problems are presented to demonstrate the global/local methodologies being developed.

  14. Global/local methods research using a common structural analysis framework

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Ransom, Jonathan B.; Griffin, O. H., Jr.; Thompson, Danniella M.

    1991-01-01

    Methodologies for global/local stress analysis are described including both two- and three-dimensional analysis methods. These methods are being developed within a common structural analysis framework. Representative structural analysis problems are presented to demonstrate the global/local methodologies being developed.

  15. Electronic Structure and Surface Physics of Two-dimensional Material Molybdenum Disulfide

    NASA Astrophysics Data System (ADS)

    Jin, Wencan

    The interest in two-dimensional materials and materials physics has grown dramatically over the past decade. The family of two-dimensional materials, which includes graphene, transition metal dichalcogenides, phosphorene, hexagonal boron nitride, etc., can be fabricated into atomically thin films since the intralayer bonding arises from their strong covalent character, while the interlayer interaction is mediated by weak van der Waals forces. Among them, molybdenum disulfide (MoS2) has attracted much interest for its potential applications in opto-electronic and valleytronics devices. Previously, much of the experimental studies have concentrated on optical and transport measurements while neglecting direct experimental determination of the electronic structure of MoS2, which is crucial to the full understanding of its distinctive properties. In particular, like other atomically thin materials, the interactions with substrate impact the surface structure and morphology of MoS2, and as a result, its structural and physical properties can be affected. In this dissertation, the electronic structure and surface structure of MoS2 are directly investigated using angle-resolved photoemission spectroscopy and cathode lens microscopy. Local-probe angle-resolved photoemission spectroscopy measurements of monolayer, bilayer, trilayer, and bulk MoS 2 directly demonstrate the indirect-to-direct bandgap transition due to quantum confinement as the MoS2 thickness is decreased from multilayer to monolayer. The evolution of the interlayer coupling in this transition is also investigated using density functional theory calculations. Also, the thickness-dependent surface roughness is characterized using selected-area low energy electron diffraction (LEED) and the surface structural relaxation is investigated using LEED I-V measurements combined with dynamical LEED calculations. Finally, bandgap engineering is demonstrated via tuning of the interlayer interactions in van der Waals interfaces by twisting the relative orientation in bilayer-MoS2 and graphene-MoS 2-heterostructure systems.

  16. Weakly and strongly coupled Belousov-Zhabotinsky patterns.

    PubMed

    Weiss, Stephan; Deegan, Robert D

    2017-02-01

    We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.

  17. Weakly and strongly coupled Belousov-Zhabotinsky patterns

    NASA Astrophysics Data System (ADS)

    Weiss, Stephan; Deegan, Robert D.

    2017-02-01

    We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.

  18. Aqua­{6,6′-dimeth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolato}nickel(II)

    PubMed Central

    Guo, Zhenghua; Li, Lianzhi; Xu, Tao; Li, Jinghong; Wang, Daqi

    2009-01-01

    The title complex, [Ni(C18H18N2O4)(H2O)], lies on a mirror plane with the NiII ion coordinated by two N and two O atoms of a tetra­dentate Schiff base ligand and one water O atom in a distorted square-pyramidal enviroment. The –CH2–CH2– group of the ligand is disordered equally over two sites about the mirror plane. The dihedral angle between the mean planes of the two symmetry-related chelate rings is 37.16 (6)°. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link complex mol­ecules into one-dimensional chains along [100] and these chains are linked, in turn, by very weak inter­molecular C—H⋯O hydrogen bonds into a two-dimensional network. PMID:21577698

  19. Towards an understanding of the mechanisms of weak central coherence effects: experiments in visual configural learning and auditory perception.

    PubMed

    Plaisted, Kate; Saksida, Lisa; Alcántara, José; Weisblatt, Emma

    2003-02-28

    The weak central coherence hypothesis of Frith is one of the most prominent theories concerning the abnormal performance of individuals with autism on tasks that involve local and global processing. Individuals with autism often outperform matched nonautistic individuals on tasks in which success depends upon processing of local features, and underperform on tasks that require global processing. We review those studies that have been unable to identify the locus of the mechanisms that may be responsible for weak central coherence effects and those that show that local processing is enhanced in autism but not at the expense of global processing. In the light of these studies, we propose that the mechanisms which can give rise to 'weak central coherence' effects may be perceptual. More specifically, we propose that perception operates to enhance the representation of individual perceptual features but that this does not impact adversely on representations that involve integration of features. This proposal was supported in the two experiments we report on configural and feature discrimination learning in high-functioning children with autism. We also examined processes of perception directly, in an auditory filtering task which measured the width of auditory filters in individuals with autism and found that the width of auditory filters in autism were abnormally broad. We consider the implications of these findings for perceptual theories of the mechanisms underpinning weak central coherence effects.

  20. Quasi-two-dimensional Bose-Einstein condensation of spin triplets in the dimerized quantum magnet Ba 2 CuSi 2 O 6 Cl 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, Makiko; Tanaka, Hidekazu; Kurita, Nobuyuki

    We synthesized single crystals of composition Ba 2CuSi 2O 6Cl 2 and investigated their quantum magnetic properties. The crystal structure is closely related to that of the quasi-two-dimensional (2D) dimerized magnet BaCuSi 2O 6 also known as Han purple. Ba 2CuSi 2O 6Cl 2 has a singlet ground state with an excitation gap of Δ/k B = 20.8 K. The magnetization curves for two different field directions almost perfectly coincide when normalized by the g factor except for a small jump anomaly for a magnetic field perpendicular to the c axis. The magnetization curve with a nonlinear slope above themore » critical field is in excellent agreement with exact-diagonalization calculations based on a 2D coupled spin-dimer model. Individual exchange constants are also evaluated using density functional theory (DFT). The DFT results demonstrate a 2D exchange network and weak frustration between interdimer exchange interactions, supported by weak spin-lattice coupling implied from our magnetostriction data. Lastly, the magnetic-field-induced spin ordering in Ba 2CuSi 2O 6Cl 2 is described as the quasi-2D Bose-Einstein condensation of triplets.« less

  1. Quasi-two-dimensional Bose-Einstein condensation of spin triplets in the dimerized quantum magnet Ba 2 CuSi 2 O 6 Cl 2

    DOE PAGES

    Okada, Makiko; Tanaka, Hidekazu; Kurita, Nobuyuki; ...

    2016-09-20

    We synthesized single crystals of composition Ba 2CuSi 2O 6Cl 2 and investigated their quantum magnetic properties. The crystal structure is closely related to that of the quasi-two-dimensional (2D) dimerized magnet BaCuSi 2O 6 also known as Han purple. Ba 2CuSi 2O 6Cl 2 has a singlet ground state with an excitation gap of Δ/k B = 20.8 K. The magnetization curves for two different field directions almost perfectly coincide when normalized by the g factor except for a small jump anomaly for a magnetic field perpendicular to the c axis. The magnetization curve with a nonlinear slope above themore » critical field is in excellent agreement with exact-diagonalization calculations based on a 2D coupled spin-dimer model. Individual exchange constants are also evaluated using density functional theory (DFT). The DFT results demonstrate a 2D exchange network and weak frustration between interdimer exchange interactions, supported by weak spin-lattice coupling implied from our magnetostriction data. Lastly, the magnetic-field-induced spin ordering in Ba 2CuSi 2O 6Cl 2 is described as the quasi-2D Bose-Einstein condensation of triplets.« less

  2. Magnetic Interactions at the Nanoscale in Trilayer Titanates

    NASA Astrophysics Data System (ADS)

    Cao, Yanwei; Yang, Zhenzhong; Kareev, M.; Liu, Xiaoran; Meyers, D.; Middey, S.; Choudhury, D.; Shafer, P.; Guo, Jiandong; Freeland, J. W.; Arenholz, E.; Gu, Lin; Chakhalian, J.

    2016-02-01

    We report on the phase diagram of competing magnetic interactions at the nanoscale in engineered ultrathin trilayer heterostructures of LaTiO3 /SrTiO3/YTiO3 , in which the interfacial inversion symmetry is explicitly broken. Combined atomic layer resolved scanning transmission electron microscopy with electron energy loss spectroscopy and electrical transport have confirmed the formation of a spatially separated two-dimensional electron liquid and high density two-dimensional localized magnetic moments at the LaTiO3 /SrTiO3 and SrTiO3 /YTiO3 interfaces, respectively. Resonant soft x-ray linear dichroism spectroscopy has demonstrated the presence of orbital polarization of the conductive LaTiO3 /SrTiO3 and localized SrTiO3 /YTiO3 electrons. Our results provide a route with prospects for exploring new magnetic interfaces, designing a tunable two-dimensional d -electron Kondo lattice, and potential spin Hall applications.

  3. Confirmatory factor analysis of the Frommelt Attitude Toward Care of the Dying Scale (FATCOD-B) among Italian medical students.

    PubMed

    Leombruni, Paolo; Loera, Barbara; Miniotti, Marco; Zizzi, Francesca; Castelli, Lorys; Torta, Riccardo

    2015-10-01

    A steady increase in the number of patients requiring end-of-life care has been observed during the last decades. The assessment of healthcare students' attitudes toward end-of-life care is an important step in their curriculum, as it provides information about their disposition to practice palliative medicine. The Frommelt Attitude Toward Care of the Dying Scale (FATCOD-B) was developed to detect such a disposition, but its psychometric properties are yet to be clearly defined. A convenience sample of 608 second-year medical students participated in our study in the 2012/2013 and 2013/2014 academic years. All participants completed the FATCOD-B. The sample was randomly divided in two subsamples. In the item analysis, reliability (Cronbach's α), internal consistency (item-total correlations), and an exploratory factor analysis (EFA) were conducted using the first subsample (n = 300). Using the second subsample (n = 308), confirmatory factor analysis (CFA) was performed using the robust ML method in the Lisrel program. Reliability for all items was 0.699. Item-total correlations, ranging from 0.03 to 0.39, were weak. EFA identified a two-dimensional orthogonal solution, explaining 20% of total variance. CFA upheld the two-dimensional model, but the loadings on the dimensions and their respective indicators were weak and equal to zero for certain items. The findings of the present study suggest that the FATCOD-B measures a two-dimensional construct and that several items seem in need of revision. Future research oriented toward building a revised version of the scale should pay attention to item ambiguity and take particular care to distinguish among items that concern emotions and beliefs related to end-of-life care, as well as their subjects (e.g., the healthcare provider, the patient, his family).

  4. Full melting of a two-dimensional complex plasma crystal triggered by localized pulsed laser heating

    NASA Astrophysics Data System (ADS)

    Couëdel, L.; Nosenko, V.; Rubin-Zuzic, M.; Zhdanov, S.; Elskens, Y.; Hall, T.; Ivlev, A. V.

    2018-04-01

    The full melting of a two-dimensional plasma crystal was induced in a principally stable monolayer by localized laser stimulation. Two distinct behaviors of the crystal after laser stimulation were observed depending on the amount of injected energy: (i) below a well-defined threshold, the laser melted area recrystallized; (ii) above the threshold, it expanded outwards in a similar fashion to mode-coupling instability-induced melting, rapidly destroying the crystalline order of the whole complex plasma monolayer. The reported experimental observations are due to the fluid mode-coupling instability, which can pump energy into the particle monolayer at a rate surpassing the heat transport and damping rates in the energetic localized melted spot, resulting in its further growth. This behavior exhibits remarkable similarities with impulsive spot heating in ordinary reactive matter.

  5. Time Harmonic Two-Dimensional Cavity Scar Statistics: Convex Mirrors and Bowtie

    DOE PAGES

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; ...

    2011-02-10

    Here, this article examines the localization of time harmonic high-frequency modal fields in two-dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This article examines the enhancements for these unstable orbits when the opposing mirrors are convex, constructing the high-frequency field in the scar region using elliptic cylinder coordinates in combination with a random reflection phase from the outer chaotic region. Finally, the enhancements when the cavity is symmetric as well as asymmetric about the orbit are examined.

  6. Solitary solutions including spatially localized chaos and their interactions in two-dimensional Kolmogorov flow.

    PubMed

    Hiruta, Yoshiki; Toh, Sadayoshi

    2015-12-01

    Two-dimensional Kolmogorov flow in wide periodic boxes is numerically investigated. It is shown that the total flow rate in the direction perpendicular to the force controls the characteristics of the flow, especially the existence of spatially localized solitary solutions such as traveling waves, periodic solutions, and chaotic solutions, which can behave as elementary components of the flow. We propose a procedure to construct approximate solutions consisting of solitary solutions. It is confirmed by direct numerical simulations that these solutions are stable and represent interactions between elementary components such as collisions, coexistence, and collapse of chaos.

  7. Multidetector Scattering as a Probe of Local Structure in Disordered Phases

    NASA Astrophysics Data System (ADS)

    Clark, Noel A.; Ackerson, Bruce J.; Hurd, Alan J.

    1983-05-01

    The local translational structure of a two-dimensional colloidal liquid is observed by use of cross correlation of the intensity fluctuations of light scattered by the liquid through two different wave vectors. The utility of multidetector scattering in probing multipoint correlations in disordered phases is thereby demonstrated unambiguously.

  8. Stabilization of hydrodynamic flows by small viscosity variations.

    PubMed

    Govindarajan, Rama; L'vov, Victor S; Procaccia, Itamar; Sameen, A

    2003-02-01

    Motivated by the large effect of turbulent drag reduction by minute concentrations of polymers, we study the effects of a weakly space-dependent viscosity on the stability of hydrodynamic flows. In a recent paper [Phys. Rev. Lett. 87, 174501, (2001)], we exposed the crucial role played by a localized region where the energy of fluctuations is produced by interactions with the mean flow (the "critical layer"). We showed that a layer of a weakly space-dependent viscosity placed near the critical layer can have a very large stabilizing effect on hydrodynamic fluctuations, retarding significantly the onset of turbulence. In this paper we extend these observations in two directions: first we show that the strong stabilization of the primary instability is also obtained when the viscosity profile is realistic (inferred from simulations of turbulent flows with a small concentration of polymers). Second, we analyze the secondary instability (around the time-dependent primary instability) and find similar strong stabilization. Since the secondary instability develops around a time-dependent solution and is three dimensional, this brings us closer to the turbulent case. We reiterate that the large effect is not due to a modified dissipation (as is assumed in some theories of drag reduction), but due to reduced energy intake from the mean flow to the fluctuations. We propose that similar physics act in turbulent drag reduction.

  9. Formation of Hydro-acoustic Waves in Dissipative Coupled Weakly Compressible Fluids

    NASA Astrophysics Data System (ADS)

    Abdolali, A.; Kirby, J. T., Jr.; Bellotti, G.

    2014-12-01

    Recent advances in deep sea measurement technology provide an increasing opportunity to detect and interpret hydro-acoustic waves as a component in improved Tsunami Early Warning Systems (TEWS). For the idealized case of a homogeneous water column above a moving but otherwise rigid bottom (in terms of assessing acoustic wave interaction), the description of the infinite family of acoustic modes is characterized by local water depth at source area; i.e. the period of the first acoustic mode is given by four times the required time for sound to travel from the seabed to the surface. Spreading off from earthquake zone, the dominant spectrum is filtered and enriched by seamounts and barriers. This study focuses on the characteristics of hydro-acoustic waves generated by sudden sea bottom motion in a weakly compressible fluid coupled with an underlying sedimentary layer, where the added complexity of the sediment layer rheology leads to both the lowering of dominant spectral peaks and wave attenuation across the full spectrum. To overcome the computational difficulties of three-dimensional models, we derive a depth integrated equation valid for varying water depth and sediment thickness. Damping behavior of the two layered system is initially taken into account by introducing the viscosity of fluid-like sedimentary layer. We show that low frequency pressure waves which are precursor components of tsunamis contain information of seafloor motion.

  10. Low-power adiabatic sequences for in-vivo localized two-dimensional chemical shift correlated MR spectroscopy

    PubMed Central

    Andronesi, Ovidiu C.; Ramadan, Saadallah; Mountford, Carolyn E.; Sorensen, A. Gregory

    2011-01-01

    Novel low-power adiabatic sequences are demonstrated for in-vivo localized two-dimensional (2D) correlated MR spectroscopy, such as COSY (Correlated Spectroscopy) and TOCSY (Total Correlated Spectroscopy). The design is based on three new elements for in-vivo 2D MRS: the use of gradient modulated constant adiabaticity GOIA-W(16,4) pulses for i) localization (COSY and TOCSY) and ii) mixing (TOCSY), and iii) the use of longitudinal mixing (z-filter) for magnetization transfer during TOCSY. GOIA-W(16,4) provides accurate signal localization, and more importantly, lowers the SAR for both TOCSY mixing and localization. Longitudinal mixing improves considerably (five-folds) the efficiency of TOCSY transfer. These are markedly different from previous 1D editing TOCSY sequences using spatially non-selective pulses and transverse mixing. Fully adiabatic (adiabatic mixing with adiabatic localization) and semi-adiabatic (adiabatic mixing with non-adiabatic localization) methods for 2D TOCSY are compared. Results are presented for simulations, phantoms, and in-vivo 2D spectra from healthy volunteers and patients with brain tumors obtained on 3T clinical platforms equipped with standard hardware. To the best of our knowledge this is the first demonstration of in-vivo adiabatic 2D TOCSY and fully adiabatic 2D COSY. It is expected that these methodological developments will advance the in-vivo applicability of multi(spectrally)dimensional MRS to reliably identify metabolic biomarkers. PMID:20890988

  11. Viscous magnetoresistance of correlated electron liquids

    NASA Astrophysics Data System (ADS)

    Levchenko, Alex; Xie, Hong-Yi; Andreev, A. V.

    2017-03-01

    We develop a theory of magnetoresistance of two-dimensional electron systems in a smooth disorder potential in the hydrodynamic regime. Our theory applies to two-dimensional semiconductor structures with strongly correlated carriers when the mean free path due to electron-electron collisions is sufficiently short. The dominant contribution to magnetoresistance arises from the modification of the flow pattern by the Lorentz force, rather than the magnetic field dependence of the kinetic coefficients of the electron liquid. The resulting magnetoresistance is positive and quadratic at weak fields. Although the resistivity is governed by both the viscosity and thermal conductivity of the electron fluid, the magnetoresistance is controlled by the viscosity only. This enables the extraction of viscosity of the electron liquid from magnetotransport measurements.

  12. 4π-periodic Josephson supercurrent in HgTe-based topological Josephson junctions

    PubMed Central

    Wiedenmann, J.; Bocquillon, E.; Deacon, R. S.; Hartinger, S.; Herrmann, O.; Klapwijk, T. M.; Maier, L.; Ames, C.; Brüne, C.; Gould, C.; Oiwa, A.; Ishibashi, K.; Tarucha, S.; Buhmann, H.; Molenkamp, L. W.

    2016-01-01

    The Josephson effect describes the generic appearance of a supercurrent in a weak link between two superconductors. Its exact physical nature deeply influences the properties of the supercurrent. In recent years, considerable efforts have focused on the coupling of superconductors to the surface states of a three-dimensional topological insulator. In such a material, an unconventional induced p-wave superconductivity should occur, with a doublet of topologically protected gapless Andreev bound states, whose energies vary 4π-periodically with the superconducting phase difference across the junction. In this article, we report the observation of an anomalous response to rf irradiation in a Josephson junction made of a HgTe weak link. The response is understood as due to a 4π-periodic contribution to the supercurrent, and its amplitude is compatible with the expected contribution of a gapless Andreev doublet. Our work opens the way to more elaborate experiments to investigate the induced superconductivity in a three-dimensional insulator. PMID:26792013

  13. Weak form of Stokes-Dirac structures and geometric discretization of port-Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Kotyczka, Paul; Maschke, Bernhard; Lefèvre, Laurent

    2018-05-01

    We present the mixed Galerkin discretization of distributed parameter port-Hamiltonian systems. On the prototypical example of hyperbolic systems of two conservation laws in arbitrary spatial dimension, we derive the main contributions: (i) A weak formulation of the underlying geometric (Stokes-Dirac) structure with a segmented boundary according to the causality of the boundary ports. (ii) The geometric approximation of the Stokes-Dirac structure by a finite-dimensional Dirac structure is realized using a mixed Galerkin approach and power-preserving linear maps, which define minimal discrete power variables. (iii) With a consistent approximation of the Hamiltonian, we obtain finite-dimensional port-Hamiltonian state space models. By the degrees of freedom in the power-preserving maps, the resulting family of structure-preserving schemes allows for trade-offs between centered approximations and upwinding. We illustrate the method on the example of Whitney finite elements on a 2D simplicial triangulation and compare the eigenvalue approximation in 1D with a related approach.

  14. Weakly Nonlinear Analysis of Vortex Formation in a Dissipative Variant of the Gross--Pitaevskii Equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzou, J. C.; Kevrekidis, P. G.; Kolokolnikov, T.

    2016-05-10

    For a dissipative variant of the two-dimensional Gross--Pitaevskii equation with a parabolic trap under rotation, we study a symmetry breaking process that leads to the formation of vortices. The first symmetry breaking leads to the formation of many small vortices distributed uniformly near the Thomas$-$Fermi radius. The instability occurs as a result of a linear instability of a vortex-free steady state as the rotation is increased above a critical threshold. We focus on the second subsequent symmetry breaking, which occurs in the weakly nonlinear regime. At slightly above threshold, we derive a one-dimensional amplitude equation that describes the slow evolutionmore » of the envelope of the initial instability. Here, we show that the mechanism responsible for initiating vortex formation is a modulational instability of the amplitude equation. We also illustrate the role of dissipation in the symmetry breaking process. All analyses are confirmed by detailed numerical computations« less

  15. Three-Dimensional Direct Numerical Simulation of Methane-Air Turbulent Premixed Flames with Reduced Kinetic Mechanism

    NASA Astrophysics Data System (ADS)

    Tanahashi, Mamoru; Kikuta, Satoshi; Miyauchi, Toshio

    2004-11-01

    Three-dimensional DNS of methane-air turbulent premixed flames have been conducted to investigate local extinction mechanism of turbulent premixed flames. A reduced kinetic mechanism (MeCH-19), which is created from GRI-Mech. 2.11 and includes 23 reactive species and 19 step reactions, are used to simulate CH_4-O_2-N2 reaction in turbulence. The effectiveness of this reduced kinetic mechanism has been conformed by preliminary two-dimensional DNS with the reduced kinetic mechanism and two detailed kinetic mechanisms; GRI-Mech. 2.11 and Miller & Bowman. Flame structures of methane-air turbulent premixed flames are compared with those of hydrogen-air turbulent premixed flames which have been obtained by 3D-DNS with a detailed kinetic mechanism in our previous study. Local extinctions occur in methane-air turbulent premixed flames, whereas no extinction is observed for hydrogen-air flames in nearly same turbulence condition. The local extinction mechanism is discussed based on eddy/flame interaction in small scales.

  16. Probing density and spin correlations in two-dimensional Hubbard model with ultracold fermions

    NASA Astrophysics Data System (ADS)

    Chan, Chun Fai; Drewes, Jan Henning; Gall, Marcell; Wurz, Nicola; Cocchi, Eugenio; Miller, Luke; Pertot, Daniel; Brennecke, Ferdinand; Koehl, Michael

    2017-04-01

    Quantum gases of interacting fermionic atoms in optical lattices is a promising candidate to study strongly correlated quantum phases of the Hubbard model such as the Mott-insulator, spin-ordered phases, or in particular d-wave superconductivity. We experimentally realise the two-dimensional Hubbard model by loading a quantum degenerate Fermi gas of 40 K atoms into a three-dimensional optical lattice geometry. High-resolution absorption imaging in combination with radiofrequency spectroscopy is applied to spatially resolve the atomic distribution in a single 2D layer. We investigate in local measurements of spatial correlations in both the density and spin sector as a function of filling, temperature and interaction strength. In the density sector, we compare the local density fluctuations and the global thermodynamic quantities, and in the spin sector, we observe the onset of non-local spin correlation, signalling the emergence of the anti-ferromagnetic phase. We would report our recent experimental endeavours to investigate further down in temperature in the spin sector.

  17. Tuning the Spin-Alignment of Interstitial Electrons in Two-Dimensional Y2C Electride via Chemical Pressure.

    PubMed

    Park, Jongho; Hwang, Jae-Yeol; Lee, Kyu Hyoung; Kim, Seong-Gon; Lee, Kimoon; Kim, Sung Wng

    2017-12-06

    We report that the spin-alignment of interstitial anionic electrons (IAEs) in two-dimensional (2D) interlayer spacing can be tuned by chemical pressure that controls the magnetic properties of 2D electrides. It was clarified from the isovalent Sc substitution on the Y site in the 2D Y 2 C electride that the localization degree of IAEs at the interlayer becomes stronger as the unit cell volume and c-axis lattice parameter were systematically reduced by increasing the Sc contents, thus eventually enhancing superparamagnetic behavior originated from the increase in ferromagnetic particle concentration. It was also found that the spin-aligned localized IAEs dominated the electrical conduction of heavily Sc-substituted Y 2 C electride. These results indicate that the physcial properties of 2D electrides can be tailored by adjusting the localization of IAEs at interlayer spacing via structural modification that controls the spin instability as found in three-dimensional elemental electrides of pressurized potassium metals.

  18. Gamma-Ray Imager With High Spatial And Spectral Resolution

    NASA Technical Reports Server (NTRS)

    Callas, John L.; Varnell, Larry S.; Wheaton, William A.; Mahoney, William A.

    1996-01-01

    Gamma-ray instrument developed to enable both two-dimensional imaging at relatively high spatial resolution and spectroscopy at fractional-photon-energy resolution of about 10 to the negative 3rd power in photon-energy range from 10 keV to greater than 10 MeV. In its spectroscopic aspect, instrument enables identification of both narrow and weak gamma-ray spectral peaks.

  19. Local Gram-Schmidt and covariant Lyapunov vectors and exponents for three harmonic oscillator problems

    NASA Astrophysics Data System (ADS)

    Hoover, Wm. G.; Hoover, Carol G.

    2012-02-01

    We compare the Gram-Schmidt and covariant phase-space-basis-vector descriptions for three time-reversible harmonic oscillator problems, in two, three, and four phase-space dimensions respectively. The two-dimensional problem can be solved analytically. The three-dimensional and four-dimensional problems studied here are simultaneously chaotic, time-reversible, and dissipative. Our treatment is intended to be pedagogical, for use in an updated version of our book on Time Reversibility, Computer Simulation, and Chaos. Comments are very welcome.

  20. Topological mosaics in moiré superlattices of van der Waals heterobilayers

    NASA Astrophysics Data System (ADS)

    Tong, Qingjun; Yu, Hongyi; Zhu, Qizhong; Wang, Yong; Xu, Xiaodong; Yao, Wang

    2017-04-01

    Van der Waals (vdW) heterostructures formed by two-dimensional atomic crystals provide a powerful approach towards designer condensed matter systems. Incommensurate heterobilayers with small twisting and/or lattice mismatch lead to the interesting concept of moiré superlattices, where the atomic registry is locally indistinguishable from commensurate bilayers but has local-to-local variation over long range. Here we show that such moiré superlattices can lead to periodic modulation of local topological order in vdW heterobilayers formed by two massive Dirac materials. By tuning the vdW heterojunction from normal to the inverted type-II regime via an interlayer bias, the commensurate heterobilayer can become a topological insulator (TI), depending on the interlayer hybridization controlled by the atomic registry between the vdW layers. This results in a mosaic pattern of TI regions and normal insulator (NI) regions in moiré superlattices, where topologically protected helical modes exist at the TI/NI phase boundaries. By using symmetry-based k .p and tight-binding models, we predict that this topological phenomenon can be present in inverted transition metal dichalcogenides heterobilayers. Our work points to a new means of realizing programmable and electrically switchable topological superstructures from two-dimensional arrays of TI nano-dots to one-dimensional arrays of TI nano-stripes.

  1. Effects of non-local electron transport in one-dimensional and two-dimensional simulations of shock-ignited inertial confinement fusion targets

    NASA Astrophysics Data System (ADS)

    Marocchino, A.; Atzeni, S.; Schiavi, A.

    2014-01-01

    In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaï-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies.

  2. Scaling relations for watersheds

    NASA Astrophysics Data System (ADS)

    Fehr, E.; Kadau, D.; Araújo, N. A. M.; Andrade, J. S., Jr.; Herrmann, H. J.

    2011-09-01

    We study the morphology of watersheds in two and three dimensional systems subjected to different degrees of spatial correlations. The response of these objects to small, local perturbations is also investigated with extensive numerical simulations. We find the fractal dimension of the watersheds to generally decrease with the Hurst exponent, which quantifies the degree of spatial correlations. Moreover, in two dimensions, our results match the range of fractal dimensions 1.10≤df≤1.15 observed for natural landscapes. We report that the watershed is strongly affected by local perturbations. For perturbed two and three dimensional systems, we observe a power-law scaling behavior for the distribution of areas (volumes) enclosed by the original and the displaced watershed and for the distribution of distances between outlets. Finite-size effects are analyzed and the resulting scaling exponents are shown to depend significantly on the Hurst exponent. The intrinsic relation between watershed and invasion percolation, as well as relations between exponents conjectured in previous studies with two dimensional systems, are now confirmed by our results in three dimensions.

  3. Elastic interactions between two-dimensional geometric defects

    NASA Astrophysics Data System (ADS)

    Moshe, Michael; Sharon, Eran; Kupferman, Raz

    2015-12-01

    In this paper, we introduce a methodology applicable to a wide range of localized two-dimensional sources of stress. This methodology is based on a geometric formulation of elasticity. Localized sources of stress are viewed as singular defects—point charges of the curvature associated with a reference metric. The stress field in the presence of defects can be solved using a scalar stress function that generalizes the classical Airy stress function to the case of materials with nontrivial geometry. This approach allows the calculation of interaction energies between various types of defects. We apply our methodology to two physical systems: shear-induced failure of amorphous materials and the mechanical interaction between contracting cells.

  4. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices

    NASA Astrophysics Data System (ADS)

    Cao, Yuan; Fatemi, Valla; Demir, Ahmet; Fang, Shiang; Tomarken, Spencer L.; Luo, Jason Y.; Sanchez-Yamagishi, Javier D.; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Ashoori, Ray C.; Jarillo-Herrero, Pablo

    2018-04-01

    A van der Waals heterostructure is a type of metamaterial that consists of vertically stacked two-dimensional building blocks held together by the van der Waals forces between the layers. This design means that the properties of van der Waals heterostructures can be engineered precisely, even more so than those of two-dimensional materials. One such property is the ‘twist’ angle between different layers in the heterostructure. This angle has a crucial role in the electronic properties of van der Waals heterostructures, but does not have a direct analogue in other types of heterostructure, such as semiconductors grown using molecular beam epitaxy. For small twist angles, the moiré pattern that is produced by the lattice misorientation between the two-dimensional layers creates long-range modulation of the stacking order. So far, studies of the effects of the twist angle in van der Waals heterostructures have concentrated mostly on heterostructures consisting of monolayer graphene on top of hexagonal boron nitride, which exhibit relatively weak interlayer interaction owing to the large bandgap in hexagonal boron nitride. Here we study a heterostructure consisting of bilayer graphene, in which the two graphene layers are twisted relative to each other by a certain angle. We show experimentally that, as predicted theoretically, when this angle is close to the ‘magic’ angle the electronic band structure near zero Fermi energy becomes flat, owing to strong interlayer coupling. These flat bands exhibit insulating states at half-filling, which are not expected in the absence of correlations between electrons. We show that these correlated states at half-filling are consistent with Mott-like insulator states, which can arise from electrons being localized in the superlattice that is induced by the moiré pattern. These properties of magic-angle-twisted bilayer graphene heterostructures suggest that these materials could be used to study other exotic many-body quantum phases in two dimensions in the absence of a magnetic field. The accessibility of the flat bands through electrical tunability and the bandwidth tunability through the twist angle could pave the way towards more exotic correlated systems, such as unconventional superconductors and quantum spin liquids.

  5. Observation of Three-Dimensional Magnetic Reconnection in the Terrestrial Magnetotail

    NASA Astrophysics Data System (ADS)

    Zhou, Meng; Ashour-Abdalla, Maha; Deng, Xiaohua; Pang, Ye; Fu, Huishan; Walker, Raymond; Lapenta, Giovanni; Huang, Shiyong; Xu, Xiaojun; Tang, Rongxin

    2017-09-01

    Study of magnetic reconnection has been focused on two-dimensional geometry in the past decades, whereas three-dimensional structures and dynamics of reconnection X line are poorly understood. In this paper, we report Cluster multispacecraft observations of a three-dimensional magnetic reconnection X line with a weak guide field ( 25% of the upstream magnetic field) in the Earth's magnetotail. We find that the X line not only retreated tailward but also expanded across the tail following the electron flow direction with a maximum average speed of (0.04-0.15) VA,up, where VA,up is the upstream Alfvén speed, or (0.14-0.57) Vde, where Vde is the electron flow speed in the out-of-plane direction. An ion diffusion region was observed by two spacecraft that were separated about 10 ion inertial lengths along the out-of-plane direction; however, these two spacecraft observed distinct magnetic structures associated with reconnection: one spacecraft observed dipolarization fronts, while the other one observed flux ropes. This indicates that reconnection proceeds in drastically different ways in different segments along the X line only a few ion inertial lengths apart.

  6. Two dimensional kinetic analysis of electrostatic harmonic plasma waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca-Pongutá, E. C.; Ziebell, L. F.; Gaelzer, R.

    2016-06-15

    Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas, first observed in early laboratory beam-plasma experiments as well as in rocket-borne active experiments in space. However, their unequivocal presence was confirmed through computer simulated experiments and subsequently theoretically explained. The peculiarity of harmonic Langmuir waves is that while their existence requires nonlinear response, their excitation mechanism and subsequent early time evolution are governed by essentially linear process. One of the unresolved theoretical issues regards the role of nonlinear wave-particle interaction process over longer evolution time period. Another outstanding issue is that existing theories for these modes aremore » limited to one-dimensional space. The present paper carries out two dimensional theoretical analysis of fundamental and (first) harmonic Langmuir waves for the first time. The result shows that harmonic Langmuir wave is essentially governed by (quasi)linear process and that nonlinear wave-particle interaction plays no significant role in the time evolution of the wave spectrum. The numerical solutions of the two-dimensional wave spectra for fundamental and harmonic Langmuir waves are also found to be consistent with those obtained by direct particle-in-cell simulation method reported in the literature.« less

  7. Electrical transport properties of epitaxial titanium nitride nanowire

    NASA Astrophysics Data System (ADS)

    Makise, K.; Shinozaki, B.

    2018-03-01

    We have measured the transport properties of epitaxial titanium nitride (TiN) nanowires. Epitaxial TiN layer, deposited by dc magnetron sputtering on MgO(100) substrates at growth temperature T = 1073 K. Samples of nanowire were fabricated by e-beam lithography and reactive ion etching. Although TiN films with 100 nm-thickness have superconducting transition temperature T C ∼ 5 K, nanowires does not appear resistive transition until 0.15 K. The magnetoresistance (MR) are always negative. Furthermore for MR experimental results, we attempt to fit the data using one-dimensional weak localization theory. In addition we observed oscillations of magnetoresistance below 5 K.

  8. p -wave superconductivity in weakly repulsive 2D Hubbard model with Zeeman splitting and weak Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Hugdal, Henning G.; Sudbø, Asle

    2018-01-01

    We study the superconducting order in a two-dimensional square lattice Hubbard model with weak repulsive interactions, subject to a Zeeman field and weak Rashba spin-orbit interactions. Diagonalizing the noninteracting Hamiltonian leads to two separate bands, and by deriving an effective low-energy interaction we find the mean field gap equations for the superconducting order parameter on the bands. Solving the gap equations just below the critical temperature, we find that superconductivity is caused by Kohn-Luttinger-type interaction, while the pairing symmetry of the bands is indirectly affected by the spin-orbit coupling. The dominating attractive momentum channel of the Kohn-Luttinger term depends on the filling fraction n of the system, and it is therefore possible to change the momentum dependence of the order parameter by tuning n . Moreover, n also determines which band has the highest critical temperature. Rotating the magnetic field changes the momentum dependence from states that for small momenta reduce to a chiral px±i py type state for out-of-plane fields, to a nodal p -wave-type state for purely in-plane fields.

  9. Propagation of gaseous detonation waves in a spatially inhomogeneous reactive medium

    NASA Astrophysics Data System (ADS)

    Mi, XiaoCheng; Higgins, Andrew J.; Ng, Hoi Dick; Kiyanda, Charles B.; Nikiforakis, Nikolaos

    2017-05-01

    Detonation propagation in a compressible medium wherein the energy release has been made spatially inhomogeneous is examined via numerical simulation. The inhomogeneity is introduced via step functions in the reaction progress variable, with the local value of energy release correspondingly increased so as to maintain the same average energy density in the medium and thus a constant Chapman-Jouguet (CJ) detonation velocity. A one-step Arrhenius rate governs the rate of energy release in the reactive zones. The resulting dynamics of a detonation propagating in such systems with one-dimensional layers and two-dimensional squares are simulated using a Godunov-type finite-volume scheme. The resulting wave dynamics are analyzed by computing the average wave velocity and one-dimensional averaged wave structure. In the case of sufficiently inhomogeneous media wherein the spacing between reactive zones is greater than the inherent reaction zone length, average wave speeds significantly greater than the corresponding CJ speed of the homogenized medium are obtained. If the shock transit time between reactive zones is less than the reaction time scale, then the classical CJ detonation velocity is recovered. The spatiotemporal averaged structure of the waves in these systems is analyzed via a Favre-averaging technique, with terms associated with the thermal and mechanical fluctuations being explicitly computed. The analysis of the averaged wave structure identifies the super-CJ detonations as weak detonations owing to the existence of mechanical nonequilibrium at the effective sonic point embedded within the wave structure. The correspondence of the super-CJ behavior identified in this study with real detonation phenomena that may be observed in experiments is discussed.

  10. Generic superweak chaos induced by Hall effect

    NASA Astrophysics Data System (ADS)

    Ben-Harush, Moti; Dana, Itzhack

    2016-05-01

    We introduce and study the "kicked Hall system" (KHS), i.e., charged particles periodically kicked in the presence of uniform magnetic (B ) and electric (E ) fields that are perpendicular to each other and to the kicking direction. We show that for resonant values of B and E and in the weak-chaos regime of sufficiently small nonintegrability parameter κ (the kicking strength), there exists a generic family of periodic kicking potentials for which the Hall effect from B and E significantly suppresses the weak chaos, replacing it by "superweak" chaos (SWC). This means that the system behaves as if the kicking strength were κ2 rather than κ . For E =0 , SWC is known to be a classical fingerprint of quantum antiresonance, but it occurs under much less generic conditions, in particular only for very special kicking potentials. Manifestations of SWC are a decrease in the instability of periodic orbits and a narrowing of the chaotic layers, relative to the ordinary weak-chaos case. Also, for global SWC, taking place on an infinite "stochastic web" in phase space, the chaotic diffusion on the web is much slower than the weak-chaos one. Thus, the Hall effect can be relatively stabilizing for small κ . In some special cases, the effect is shown to cause ballistic motion for almost all parameter values. The generic global SWC on stochastic webs in the KHS appears to be the two-dimensional closest analog to the Arnol'd web in higher dimensional systems.

  11. The Magnetohydrodynamic Kelvin-Helmholtz Instability: A Three-dimensional Study of Nonlinear Evolution

    NASA Astrophysics Data System (ADS)

    Ryu, Dongsu; Jones, T. W.; Frank, Adam

    2000-12-01

    We investigate through high-resolution three-dimensional simulations the nonlinear evolution of compressible magnetohydrodynamic flows subject to the Kelvin-Helmholtz instability. As in our earlier work, we have considered periodic sections of flows that contain a thin, transonic shear layer but are otherwise uniform. The initially uniform magnetic field is parallel to the shear plane but oblique to the flow itself. We confirm in three-dimensional flows the conclusion from our two-dimensional work that even apparently weak magnetic fields embedded in Kelvin-Helmholtz unstable plasma flows can be fundamentally important to nonlinear evolution of the instability. In fact, that statement is strengthened in three dimensions by this work because it shows how field-line bundles can be stretched and twisted in three dimensions as the quasi-two-dimensional Cat's Eye vortex forms out of the hydrodynamical motions. In our simulations twisting of the field may increase the maximum field strength by more than a factor of 2 over the two-dimensional effect. If, by these developments, the Alfvén Mach number of flows around the Cat's Eye drops to unity or less, our simulations suggest that magnetic stresses will eventually destroy the Cat's Eye and cause the plasma flow to self-organize into a relatively smooth and apparently stable flow that retains memory of the original shear. For our flow configurations, the regime in three dimensions for such reorganization is 4<~MAx<~50, expressed in terms of the Alfvén Mach number of the original velocity transition and the initial Alfvén speed projected to the flow plan. When the initial field is stronger than this, the flow either is linearly stable (if MAx<~2) or becomes stabilized by enhanced magnetic tension as a result of the corrugated field along the shear layer before the Cat's Eye forms (if MAx>~2). For weaker fields the instability remains essentially hydrodynamic in early stages, and the Cat's Eye is destroyed by the hydrodynamic secondary instabilities of a three-dimensional nature. Then, the flows evolve into chaotic structures that approach decaying isotropic turbulence. In this stage, there is considerable enhancement to the magnetic energy due to stretching, twisting, and turbulent amplification, which is retained long afterward. The magnetic energy eventually catches up to the kinetic energy, and the nature of flows becomes magnetohydrodynamic. Decay of the magnetohydrodynamic turbulence is enhanced by dissipation accompanying magnetic reconnection. Hence, in three dimensions as in two dimensions, very weak fields do not modify substantially the character of the flow evolution but do increase global dissipation rates.

  12. Integrability of conformal fishnet theory

    NASA Astrophysics Data System (ADS)

    Gromov, Nikolay; Kazakov, Vladimir; Korchemsky, Gregory; Negro, Stefano; Sizov, Grigory

    2018-01-01

    We study integrability of fishnet-type Feynman graphs arising in planar four-dimensional bi-scalar chiral theory recently proposed in arXiv:1512.06704 as a special double scaling limit of gamma-deformed N = 4 SYM theory. We show that the transfer matrix "building" the fishnet graphs emerges from the R-matrix of non-compact conformal SU(2 , 2) Heisenberg spin chain with spins belonging to principal series representations of the four-dimensional conformal group. We demonstrate explicitly a relationship between this integrable spin chain and the Quantum Spectral Curve (QSC) of N = 4 SYM. Using QSC and spin chain methods, we construct Baxter equation for Q-functions of the conformal spin chain needed for computation of the anomalous dimensions of operators of the type tr( ϕ 1 J ) where ϕ 1 is one of the two scalars of the theory. For J = 3 we derive from QSC a quantization condition that fixes the relevant solution of Baxter equation. The scaling dimensions of the operators only receive contributions from wheel-like graphs. We develop integrability techniques to compute the divergent part of these graphs and use it to present the weak coupling expansion of dimensions to very high orders. Then we apply our exact equations to calculate the anomalous dimensions with J = 3 to practically unlimited precision at any coupling. These equations also describe an infinite tower of local conformal operators all carrying the same charge J = 3. The method should be applicable for any J and, in principle, to any local operators of bi-scalar theory. We show that at strong coupling the scaling dimensions can be derived from semiclassical quantization of finite gap solutions describing an integrable system of noncompact SU(2 , 2) spins. This bears similarities with the classical strings arising in the strongly coupled limit of N = 4 SYM.

  13. Mathematical analysis of a sharp-diffuse interfaces model for seawater intrusion

    NASA Astrophysics Data System (ADS)

    Choquet, C.; Diédhiou, M. M.; Rosier, C.

    2015-10-01

    We consider a new model mixing sharp and diffuse interface approaches for seawater intrusion phenomena in free aquifers. More precisely, a phase field model is introduced in the boundary conditions on the virtual sharp interfaces. We thus include in the model the existence of diffuse transition zones but we preserve the simplified structure allowing front tracking. The three-dimensional problem then reduces to a two-dimensional model involving a strongly coupled system of partial differential equations of parabolic type describing the evolution of the depths of the two free surfaces, that is the interface between salt- and freshwater and the water table. We prove the existence of a weak solution for the model completed with initial and boundary conditions. We also prove that the depths of the two interfaces satisfy a coupled maximum principle.

  14. Quantum droplet of one-dimensional bosons with a three-body attraction

    NASA Astrophysics Data System (ADS)

    Sekino, Yuta; Nishida, Yusuke

    2018-01-01

    Ultracold atoms offer valuable opportunities where interparticle interactions can be controlled at will. In particular, by extinguishing the two-body interaction, one can realize unique systems governed by the three-body interaction, which is otherwise hidden behind the two-body interaction. Here we study one-dimensional bosons with a weak three-body attraction and show that they form few-body bound states as well as a many-body droplet stabilized by the quantum mechanical effect. Their binding energies relative to that of three bosons are all universal and the ground-state energy of the dilute droplet is found to grow exponentially as EN/E3→exp(8 N2/√{3 }π ) with increasing particle number N ≫1 . The realization of our system with coupled two-component bosons in an optical lattice is also discussed.

  15. Control of two-dimensional electronic states at anatase Ti O2(001 ) surface by K adsorption

    NASA Astrophysics Data System (ADS)

    Yukawa, R.; Minohara, M.; Shiga, D.; Kitamura, M.; Mitsuhashi, T.; Kobayashi, M.; Horiba, K.; Kumigashira, H.

    2018-04-01

    The nature of the intriguing metallic electronic structures appearing at the surface of anatase titanium dioxide (a-Ti O2 ) remains to be elucidated, mainly owing to the difficulty of controlling the depth distribution of the oxygen vacancies generated by photoirradiation. In this study, K atoms were adsorbed onto the (001) surface of a-Ti O2 to dope electrons into the a-Ti O2 and to confine the electrons in the surface region. The success of the electron doping and its controllability were confirmed by performing in situ angle-resolved photoemission spectroscopy as well as core-level measurements. Clear subband structures were observed in the surface metallic states, indicating the creation of quasi-two-dimensional electron liquid (q2DEL) states in a controllable fashion. With increasing electron doping (K adsorption), the q2DEL states exhibited crossover from polaronic liquid states with multiple phonon-loss structures originating from the long-range Fröhlich interaction to "weakly correlated metallic" states. In the q2DEL states in the weakly correlated metallic region, a kink due to short-range electron-phonon coupling was clearly observed at about 80 ±10 meV . The characteristic energy is smaller than that previously observed for the metallic states of a-Ti O2 with three-dimensional nature (˜110 meV ) . These results suggest that the dominant electron-phonon coupling is modulated by anisotropic carrier screening in the q2DEL states.

  16. On the Charge transport regime of crystalline organic semiconductors: diffusion limited by thermal off-diagonal electronic disorder

    NASA Astrophysics Data System (ADS)

    Troisi, Alessandro

    2006-03-01

    In organic crystalline semiconductor molecular components are held together by very weak interactions and the transfer integrals between neighboring molecular orbitals are extremely sensitive to small nuclear displacements. We used a mixed quantum chemical and molecular dynamic methodology to assess the effect of thermal structural fluctuations on the modulation of the transfer integrals between close molecules. We have found that the fluctuations of the transfer integrals are of the same order of magnitude of their average value for pentacene and anthracene. This condition makes the band description inadequate because a dynamic localization takes place and the translational symmetry is completely broken for the electronic states. We also present a simple one-dimensional semiclassical model that incorporates the effects of dynamical localization and allows the numerical computation of the charge mobility for ordered organic semiconductors. These results explain several contrasting experimental observations pointing sometimes to a delocalized ``band-like'' transport and sometimes to the existence of strongly localized charge carriers.

  17. Ductile shear zones beneath strike-slip faults: Implications for the thermomechanics of the San Andreas fault zone

    USGS Publications Warehouse

    Thatcher, W.; England, P.C.

    1998-01-01

    We have carried out two-dimensional (2-D) numerical experiments on the bulk flow of a layer of fluid that is driven in a strike-slip sense by constant velocities applied at its boundaries. The fluid has the (linearized) conventional rheology assumed to apply to lower crust/upper mantle rocks. The temperature dependence of the effective viscosity of the fluid and the shear heating that accompanies deformation have been incorporated into the calculations, as has thermal conduction in an overlying crustal layer. Two end-member boundary conditions have been considered, corresponding to a strong upper crust driving a weaker ductile substrate and a strong ductile layer driving a passive, weak crust. In many cases of practical interest, shear heating is concentrated close to the axial plane of the shear zone for either boundary condition. For these cases, the resulting steady state temperature field is well approximated by a cylindrical heat source embedded in a conductive half-space at a depth corresponding to the top of the fluid layer. This approximation, along with the application of a theoretical result for one-dimensional shear zones, permits us to obtain simple analytical approximations to the thermal effects of 2-D ductile shear zones for a range of assumed rheologies and crustal geotherms, making complex numerical calculations unnecessary. Results are compared with observable effects on heat flux near the San Andreas fault using constraints on the slip distribution across the entire fault system. Ductile shearing in the lower crust or upper mantle can explain the observed increase in surface heat flux southeast of the Mendocino triple junction and match the amplitude of the regional heat flux anomaly in the California Coast Ranges. Because ductile dissipation depends only weakly on slip rate, faults moving only a few millimeters per year can be important heat sources, and the superposition of effects of localized ductile shearing on both currently active and now inactive strands of the San Andreas system can explain the breadth of the heat flux anomaly across central California.

  18. Nonlinear mechanisms of two-dimensional wave-wave transformations in the initially coupled acoustic structure

    NASA Astrophysics Data System (ADS)

    Vorotnikov, K.; Starosvetsky, Y.

    2018-01-01

    The present study concerns two-dimensional nonlinear mechanisms of bidirectional and unidirectional channeling of longitudinal and shear waves emerging in the locally resonant acoustic structure. The system under consideration comprises an oscillatory chain of the axially coupled masses. Each mass of the chain is subject to the local linear potential along the lateral direction and incorporates the lightweight internal rotator. In the present work, we demonstrate the emergence of special resonant regimes of complete bi- and unidirectional transitions between the longitudinal and the shear waves of the locally resonant chain. These regimes are manifested by the two-dimensional energy channeling between the longitudinal and the shear traveling waves in the recurrent as well as the irreversible fashion. We show that the spatial control of the two dimensional energy flow between the longitudinal and the shear waves is solely governed by the motion of the internal rotators. Nonlinear analysis of the regimes of a bidirectional wave channeling unveils their global bifurcation structure and predicts the zones of their spontaneous transitions from a complete bi-directional wave channeling to the one-directional entrapment. An additional regime of a complete irreversible resonant transformation of the longitudinal wave into a shear wave is analyzed in the study. The intrinsic mechanism governing the unidirectional wave reorientation is described analytically. The results of the analysis of both mechanisms are substantiated by the numerical simulations of the full model and are found to be in a good agreement.

  19. Tailoring the structures and photonic properties of low-dimensional organic materials by crystal engineering.

    PubMed

    Li, Qing; Jin, Wang; Chu, Manman; Zhang, Wei; Gu, Jianmin; Shahid, Bilal; Chen, Aibing; Yu, Yifeng; Qiao, Shanlin; Zhao, Yong Sheng

    2018-03-08

    Low-dimensional organic materials have given rise to tremendous interest in optoelectronic applications, owing to their controllable photonic properties. However, the controlled-synthesis approaches for organic nano-/micro-architectures are very difficult to attain, because the weak interaction (van der Waals force) between the organic molecules cannot dominate the kinetic process of crystal growth. We report a simple method, which involves selective adhesion to the organic crystal plane by hydrogen-bonding interaction for modulating the crystal growth process, which leads either to the self-assembly of one organic molecule into two-dimensional (2D) microsheets with an obvious asymmetric light propagation or one-dimensional (1D) microrods with low propagation loss. The method of tailoring the structures and photonic properties for fabricating different micro-structures would provide enlightenment for the development of tailor-made mini-sized devices for photonic integrated circuits.

  20. Matrix decompositions of two-dimensional nuclear magnetic resonance spectra.

    PubMed

    Havel, T F; Najfeld, I; Yang, J X

    1994-08-16

    Two-dimensional NMR spectra are rectangular arrays of real numbers, which are commonly regarded as digitized images to be analyzed visually. If one treats them instead as mathematical matrices, linear algebra techniques can also be used to extract valuable information from them. This matrix approach is greatly facilitated by means of a physically significant decomposition of these spectra into a product of matrices--namely, S = PAPT. Here, P denotes a matrix whose columns contain the digitized contours of each individual peak or multiple in the one-dimensional spectrum, PT is its transpose, and A is an interaction matrix specific to the experiment in question. The practical applications of this decomposition are considered in detail for two important types of two-dimensional NMR spectra, double quantum-filtered correlated spectroscopy and nuclear Overhauser effect spectroscopy, both in the weak-coupling approximation. The elements of A are the signed intensities of the cross-peaks in a double quantum-filtered correlated spectrum, or the integrated cross-peak intensities in the case of a nuclear Overhauser effect spectrum. This decomposition not only permits these spectra to be efficiently simulated but also permits the corresponding inverse problems to be given an elegant mathematical formulation to which standard numerical methods are applicable. Finally, the extension of this decomposition to the case of strong coupling is given.

  1. Matrix decompositions of two-dimensional nuclear magnetic resonance spectra.

    PubMed Central

    Havel, T F; Najfeld, I; Yang, J X

    1994-01-01

    Two-dimensional NMR spectra are rectangular arrays of real numbers, which are commonly regarded as digitized images to be analyzed visually. If one treats them instead as mathematical matrices, linear algebra techniques can also be used to extract valuable information from them. This matrix approach is greatly facilitated by means of a physically significant decomposition of these spectra into a product of matrices--namely, S = PAPT. Here, P denotes a matrix whose columns contain the digitized contours of each individual peak or multiple in the one-dimensional spectrum, PT is its transpose, and A is an interaction matrix specific to the experiment in question. The practical applications of this decomposition are considered in detail for two important types of two-dimensional NMR spectra, double quantum-filtered correlated spectroscopy and nuclear Overhauser effect spectroscopy, both in the weak-coupling approximation. The elements of A are the signed intensities of the cross-peaks in a double quantum-filtered correlated spectrum, or the integrated cross-peak intensities in the case of a nuclear Overhauser effect spectrum. This decomposition not only permits these spectra to be efficiently simulated but also permits the corresponding inverse problems to be given an elegant mathematical formulation to which standard numerical methods are applicable. Finally, the extension of this decomposition to the case of strong coupling is given. PMID:8058742

  2. Wide applicability of high-Tc pairing originating from coexisting wide and incipient narrow bands in quasi-one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Matsumoto, Karin; Ogura, Daisuke; Kuroki, Kazuhiko

    2018-01-01

    We study superconductivity in the Hubbard model on various quasi-one-dimensional lattices with coexisting wide and narrow bands originating from multiple sites within a unit cell, where each site corresponds to a single orbital. The systems studied are the two-leg and three-leg ladders, the diamond chain, and the crisscross ladder. These one-dimensional lattices are weakly coupled to form two-dimensional (quasi-one-dimensional) ones, and the fluctuation exchange approximation is adopted to study spin-fluctuation-mediated superconductivity. When one of the bands is perfectly flat and the Fermi level intersecting the wide band is placed in the vicinity of, but not within, the flat band, superconductivity arising from the interband scattering processes is found to be strongly enhanced owing to the combination of the light electron mass of the wide band and the strong pairing interaction due to the large density of states of the flat band. Even when the narrow band has finite bandwidth, the pairing mechanism still works since the edge of the narrow band, due to its large density of states, plays the role of the flat band. The results indicate the wide applicability of the high-Tc pairing mechanism due to coexisting wide and "incipient" narrow bands in quasi-one-dimensional systems.

  3. Bending response of cross-ply laminated composite plates with diagonally perturbed localized interfacial degeneration.

    PubMed

    Kam, Chee Zhou; Kueh, Ahmad Beng Hong

    2013-01-01

    A laminated composite plate element with an interface description is developed using the finite element approach to investigate the bending performance of two-layer cross-ply laminated composite plates in presence of a diagonally perturbed localized interfacial degeneration between laminae. The stiffness of the laminate is expressed through the assembly of the stiffnesses of lamina sub-elements and interface element, the latter of which is formulated adopting the well-defined virtually zero-thickness concept. To account for the extent of both shear and axial weak bonding, a degeneration ratio is introduced in the interface formulation. The model has the advantage of simulating a localized weak bonding at arbitrary locations, with various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. Numerical results show that the bending behavior of laminate is significantly affected by the aforementioned parameters, the greatest effect of which is experienced by those with a localized total interface degeneration, representing the case of local delamination.

  4. Effects of spanwise rotation on the structure of two-dimensional fully developed turbulent channel flow.

    NASA Technical Reports Server (NTRS)

    Johnston, J. P.; Halleen, R. M.; Lezius, D. K.

    1972-01-01

    Experiments on fully developed turbulent flow in a channel which is rotating at a steady rate about a spanwise axis are described. The Coriolis force components in the region of two-dimensional mean flow affect both local and global stability. Three stability-related phenomena were observed or inferred: (1) the reduction (increase) of the rate of wall-layer streak bursting in locally stabilized (destabilized) wall layers; (2) the total suppression of transition to turbulence in a stabilized layer; (3) the development of large-scale roll cells on the destabilized side of the channel by growth of a Taylor-Gortler vortex instability. Local effects of rotational stabilization, such as reduction of the turbulent stress in wall layers, can be related to the local Richardson number in a simple way. This paper not only investigates this effect, but also, by methods of flow visualization, exposes some of the underlying structure changes caused by rotation.-

  5. Opening complete band gaps in two dimensional locally resonant phononic crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoling; Wang, Longqi

    2018-05-01

    Locally resonant phononic crystals (LRPCs) which have low frequency band gaps attract a growing attention in both scientific and engineering field recently. Wide complete locally resonant band gaps are the goal for researchers. In this paper, complete band gaps are achieved by carefully designing the geometrical properties of the inclusions in two dimensional LRPCs. The band structures and mechanisms of different types of models are investigated by the finite element method. The translational vibration patterns in both the in-plane and out-of-plane directions contribute to the full band gaps. The frequency response of the finite periodic structures demonstrate the attenuation effects in the complete band gaps. Moreover, it is found that the complete band gaps can be further widened and lowered by increasing the height of the inclusions. The tunable properties by changing the geometrical parameters provide a good way to open wide locally resonant band gaps.

  6. One-Dimensional Brownian Motion of Charged Nanoparticles along Microtubules: A Model System for Weak Binding Interactions

    PubMed Central

    Minoura, Itsushi; Katayama, Eisaku; Sekimoto, Ken; Muto, Etsuko

    2010-01-01

    Abstract Various proteins are known to exhibit one-dimensional Brownian motion along charged rodlike polymers, such as microtubules (MTs), actin, and DNA. The electrostatic interaction between the proteins and the rodlike polymers appears to be crucial for one-dimensional Brownian motion, although the underlying mechanism has not been fully clarified. We examined the interactions of positively-charged nanoparticles composed of polyacrylamide gels with MTs. These hydrophilic nanoparticles bound to MTs and displayed one-dimensional Brownian motion in a charge-dependent manner, which indicates that nonspecific electrostatic interaction is sufficient for one-dimensional Brownian motion. The diffusion coefficient decreased exponentially with an increasing particle charge (with the exponent being 0.10 kBT per charge), whereas the duration of the interaction increased exponentially (exponent of 0.22 kBT per charge). These results can be explained semiquantitatively if one assumes that a particle repeats a cycle of binding to and movement along an MT until it finally dissociates from the MT. During the movement, a particle is still electrostatically constrained in the potential valley surrounding the MT. This entire process can be described by a three-state model analogous to the Michaelis-Menten scheme, in which the two parameters of the equilibrium constant between binding and movement, and the rate of dissociation from the MT, are derived as a function of the particle charge density. This study highlights the possibility that the weak binding interactions between proteins and rodlike polymers, e.g., MTs, are mediated by a similar, nonspecific charge-dependent mechanism. PMID:20409479

  7. One-dimensional Brownian motion of charged nanoparticles along microtubules: a model system for weak binding interactions.

    PubMed

    Minoura, Itsushi; Katayama, Eisaku; Sekimoto, Ken; Muto, Etsuko

    2010-04-21

    Various proteins are known to exhibit one-dimensional Brownian motion along charged rodlike polymers, such as microtubules (MTs), actin, and DNA. The electrostatic interaction between the proteins and the rodlike polymers appears to be crucial for one-dimensional Brownian motion, although the underlying mechanism has not been fully clarified. We examined the interactions of positively-charged nanoparticles composed of polyacrylamide gels with MTs. These hydrophilic nanoparticles bound to MTs and displayed one-dimensional Brownian motion in a charge-dependent manner, which indicates that nonspecific electrostatic interaction is sufficient for one-dimensional Brownian motion. The diffusion coefficient decreased exponentially with an increasing particle charge (with the exponent being 0.10 kBT per charge), whereas the duration of the interaction increased exponentially (exponent of 0.22 kBT per charge). These results can be explained semiquantitatively if one assumes that a particle repeats a cycle of binding to and movement along an MT until it finally dissociates from the MT. During the movement, a particle is still electrostatically constrained in the potential valley surrounding the MT. This entire process can be described by a three-state model analogous to the Michaelis-Menten scheme, in which the two parameters of the equilibrium constant between binding and movement, and the rate of dissociation from the MT, are derived as a function of the particle charge density. This study highlights the possibility that the weak binding interactions between proteins and rodlike polymers, e.g., MTs, are mediated by a similar, nonspecific charge-dependent mechanism. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. The continuum theory of shear localization in two-dimensional foam.

    PubMed

    Weaire, Denis; Barry, Joseph D; Hutzler, Stefan

    2010-05-19

    We review some recent advances in the rheology of two-dimensional liquid foams, which should have implications for three-dimensional foams, as well as other mechanical systems that have a yield stress. We focus primarily on shear localization under steady shear, an effect first highlighted in an experiment by Debrégeas et al. A continuum theory which incorporates wall drag has reproduced the effect. Its further refinements are successful in matching results of more extensive observations and making interesting predictions regarding experiments for low strain rates and non-steady shear. Despite these successes, puzzles remain, particularly in relation to quasistatic simulations. The continuum model is semi-empirical: the meaning of its parameters may be sought in comparison with more detailed simulations and other experiments. The question of the origin of the Herschel-Bulkley relation is particularly interesting.

  9. Supersymmetric interactions of a six-dimensional self-dual tensor and fixed-shape second quantized strings

    NASA Astrophysics Data System (ADS)

    Ganor, Ori J.

    2018-02-01

    "Curvepole (2,0)-theory" is a deformation of the (2,0)-theory with nonlocal interactions. A curvepole is defined as a two-dimensional generalization of a dipole. It is an object of fixed two-dimensional shape of which the boundary is a charged curve that interacts with a 2-form gauge field. Curvepole theory was previously only defined indirectly via M-theory. Here, we propose a supersymmetric Lagrangian, constructed explicitly up to quartic terms, for an "Abelian" curvepole theory, which is an interacting deformation of the free (2,0) tensor multiplet. This theory contains fields of which the quanta are curvepoles (i.e., fixed-shape strings). Supersymmetry is preserved (at least up to quartic terms) if the shape of the curvepoles is (two-dimensional) planar. This nonlocal six-dimensional quantum field theory may also serve as a UV completion for certain (local) five-dimensional gauge theories.

  10. Orbits of two electrons released from rest in a uniform transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Mungan, Carl E.

    2018-03-01

    Two identical charged particles released from rest repel each other radially. A uniform perpendicular magnetic field will then cause their trajectories to curve into a flower petal pattern. The orbit of each particle is approximately circular with a long period for a strong magnetic field, whereas it becomes a figure-eight for a weak magnetic field with each lobe completed in a cyclotron period. For example, such radially bound motions arise for two-dimensional electron gases. The level of treatment is appropriate for an undergraduate calculus-based electromagnetism course.

  11. Magnetization dynamics of weak stripe domains in Fe-N thin films: a multi-technique complementary approach.

    PubMed

    Camara, Ibrahima; Tacchi, Silvia; Garnier, Louis-Charles; Eddrief, Mahmoud; Fortuna, Franck; Carlotti, Giovanni; Marangolo, Massimiliano

    2017-09-26

    The resonant eigenmodes of a nitrogen-implanted iron α'-FeN characterized by weak stripe domains are investigated by Brillouin light scattering and broadband ferromagnetic resonance experiments, assisted by micromagnetic simulations. The spectrum of the dynamic eigenmodes in the presence of the weak stripes is very rich and two different families of modes can be selectively detected using different techniques or different experimental configurations. Attention is paid to the evolution of the mode frequencies and spatial profiles under the application of an external magnetic field, of variable intensity, in the direction parallel or transverse to the stripes. The different evolution of the modes with the external magnetic field is accompanied by a distinctive spatial localization in specific regions, such as the closure domains at the surface of the stripes and the bulk domains localized in the inner part of the stripes. The complementarity of BLS and FMR techniques, based on different selection rules, is found to be a fruitful tool for the study of the wealth of localized mag-netic excitations generally found in nanostructures. © 2017 IOP Publishing Ltd.

  12. Magnetization dynamics of weak stripe domains in Fe-N thin films: a multi-technique complementary approach

    NASA Astrophysics Data System (ADS)

    Camara, I. S.; Tacchi, S.; Garnier, L.-C.; Eddrief, M.; Fortuna, F.; Carlotti, G.; Marangolo, M.

    2017-11-01

    The resonant eigenmodes of an α‧-FeN thin film characterized by weak stripe domains are investigated by Brillouin light scattering and broadband ferromagnetic resonance experiments, assisted by micromagnetic simulations. The spectrum of the dynamic eigenmodes in the presence of the weak stripes is very rich and two different families of modes can be selectively detected using different techniques or different experimental configurations. Attention is paid to the evolution of the mode frequencies and spatial profiles under the application of an external magnetic field, of variable intensity, in the direction parallel or transverse to the stripes. The different evolution of the modes with the external magnetic field is accompanied by a distinctive spatial localization in specific regions, such as the closure domains at the surface of the stripes and the bulk domains localized in the inner part of the stripes. The complementarity of BLS and FMR techniques, based on different selection rules, is found to be a fruitful tool for the study of the wealth of localized magnetic excitations generally found in nanostructures.

  13. Rovibrational states of Wigner molecules in spherically symmetric confining potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cioslowski, Jerzy

    2016-08-07

    The strong-localization limit of three-dimensional Wigner molecules, in which repulsively interacting particles are confined by a weak spherically symmetric potential, is investigated. An explicit prescription for computation of rovibrational wavefunctions and energies that are asymptotically exact at this limit is presented. The prescription is valid for systems with arbitrary angularly-independent interparticle and confining potentials, including those involving Coulombic and screened (i.e., Yukawa/Debye) interactions. The necessary derivations are greatly simplified by explicit constructions of the Eckart frame and the parity-adapted primitive wavefunctions. The performance of the new formalism is illustrated with the three- and four-electron harmonium atoms at their strong-correlation limits.more » In particular, the involvement of vibrational modes with the E symmetry is readily pinpointed as the origin of the “anomalous” weak-confinement behavior of the {sup 1}S{sub +} state of the four-electron species that is absent in its {sup 1}D{sub +} companion of the strong-confinement regime.« less

  14. Magnetoresistance behavior in nanobulk assembled Bi2Se3 topological insulator

    NASA Astrophysics Data System (ADS)

    Bera, Sumit; Behera, P.; Mishra, A. K.; Krishnan, M.; Patidar, Manju Mishra; Singh, Durgesh; Venkatesh, R.; Phase, D. M.; Ganesan, V.

    2018-05-01

    Temperature and magnetic field dependent magnetoresistance (MR) including structural, morphological studies of Bi2Se3 nanoflower like structure synthesized by microwave assisted solvothermal method has been investigated. Powder X-ray diffraction (XRD) has confirmed the formation of single phase. Morphology of the material shows nanoflower kind of structures with edge to edge size of around 4 µm and such occurrences are quite high. The temperature dependent resistance invokes a metallic behavior up to a certain lower temperature, below which it follows -ln(T) behavior that has been elucidated in literature using electron-electron interaction and weak anti-localization effects. High temperature magnetoresistance is consistent with parabolic field dependence indicating a classical magnetoresistance in metals as a result of Lorenz force. In low temperature regime magnetoresistance as a function of magnetic field at different temperatures obeys power law near low field which indicates a three dimensional weak-antilocalization. A linear magnetoresistance at low temperature and high magnetic field shows the domination of surface state conduction.

  15. Aberrated surface soliton formation in a nonlinear 1D and 2D photonic crystal

    PubMed Central

    Lysak, Tatiana M.; Trykin, Evgenii M.

    2018-01-01

    We discuss a novel type of surface soliton—aberrated surface soliton—appearance in a nonlinear one dimensional photonic crystal and a possibility of this surface soliton formation in two dimensional photonic crystal. An aberrated surface soliton possesses a nonlinear distribution of the wavefront. We show that, in one dimensional photonic crystal, the surface soliton is formed at the photonic crystal boundary with the ambient medium. Essentially, that it occupies several layers at the photonic crystal boundary and penetrates into the ambient medium at a distance also equal to several layers, so that one can infer about light energy localization at the lateral surface of the photonic crystal. In the one dimensional case, the surface soliton is formed from an earlier formed soliton that falls along the photonic crystal layers at an angle which differs slightly from the normal to the photonic crystal face. In the two dimensional case, the soliton can appear if an incident Gaussian beam falls on the photonic crystal face. The influence of laser radiation parameters, optical properties of photonic crystal layers and ambient medium on the one dimensional surface soliton formation is investigated. We also discuss the influence of two dimensional photonic crystal configuration on light energy localization near the photonic crystal surface. It is important that aberrated surface solitons can be created at relatively low laser pulse intensity and for close values of alternating layers dielectric permittivity which allows their experimental observation. PMID:29558497

  16. On the local well-posedness of Lovelock and Horndeski theories

    NASA Astrophysics Data System (ADS)

    Papallo, Giuseppe; Reall, Harvey S.

    2017-08-01

    We investigate local well-posedness of the initial value problem for Lovelock and Horndeski theories of gravity. A necessary condition for local well-posedness is strong hyperbolicity of the equations of motion. Even weak hyperbolicity can fail for strong fields so we restrict to weak fields. The Einstein equation is known to be strongly hyperbolic in harmonic gauge so we study Lovelock theories in harmonic gauge. We show that the equation of motion is always weakly hyperbolic for weak fields but, in a generic weak-field background, it is not strongly hyperbolic. For Horndeski theories, we prove that, for weak fields, the equation of motion is always weakly hyperbolic in any generalized harmonic gauge. For some Horndeski theories there exists a generalized harmonic gauge for which the equation of motion is strongly hyperbolic in a weak-field background. This includes "k-essence" like theories. However, for more general Horndeski theories, there is no generalized harmonic gauge for which the equation of motion is strongly hyperbolic in a generic weak-field background. Our results show that the standard method used to establish local well-posedness of the Einstein equation does not extend to Lovelock or general Horndeski theories. This raises the possibility that these theories may not admit a well-posed initial value problem even for weak fields.

  17. Solving the two-dimensional Fokker-Planck equation for strongly correlated neurons

    NASA Astrophysics Data System (ADS)

    Deniz, Taşkın; Rotter, Stefan

    2017-01-01

    Pairs of neurons in brain networks often share much of the input they receive from other neurons. Due to essential nonlinearities of the neuronal dynamics, the consequences for the correlation of the output spike trains are generally not well understood. Here we analyze the case of two leaky integrate-and-fire neurons using an approach which is nonperturbative with respect to the degree of input correlation. Our treatment covers both weakly and strongly correlated dynamics, generalizing previous results based on linear response theory.

  18. M553 sphere forming experiment: Pure nickel specimen evaluation

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.; Peters, E. T.

    1973-01-01

    A region or cap of very fine two-dimensional surface growth structure was observed at the top of three of the six pure nickel flight specimens. Such two-dimensional surface growth structures have been observed both on the ground-based specimens and on other surface areas of the flight specimens. However, the fine structures observed on the three flight samples are at least an order of magnitude finer than those previously observed, and resemble similar localized, fine, two-dimensional surface structures observed in both ground and flight specimens for the nickel alloys. The two-dimensional growth areas consist primarily of fine equiaxed grains, specimen SL-2.6, fine dendrites, specimen SL-2.5, or a core of fine equiaxed grains surrounded by a ring of fine dendrites, specimen SL-1.9.

  19. Shallow cells in directional solidification

    NASA Technical Reports Server (NTRS)

    Merchant, G. J.; Davis, S. H.

    1989-01-01

    The existing theory on two-dimensional transitions (appropriate to thin parallel-plate geometries) is presented in such a way that it is possible to identify easily conditions for the onset of shallow cells. Conditions are given under which succinonitrile-acetone mixtures should undergo supercritical bifurcation in experimentally accessible ranges. These results suggest a means for the quantitative test of the Mullins and Sekerka (1964) model and its weakly nonlinear extensions.

  20. Lubricant Foaming and Aeration Study. Part 1

    DTIC Science & Technology

    1983-11-23

    referred the stability of foam lamellae to its influence. This property is the two-dimensional analog of ordinary viscosity and its coefficient is...dimensions •- MT-. Weakly foaming solutions have little surface viscosity , soap solutions a moderate amount, and some solutions of proteins , saponin, etc...changes might occur in the surface properties . All surface viscosities previously reported had been measured while the solutions had been exposed for

  1. Three-dimensional spatially curved local Bessel beams generated by metasurface

    NASA Astrophysics Data System (ADS)

    Liu, Dawei; Wu, Jiawen; Cheng, Bo; Li, Hongliang

    2018-03-01

    We propose a reflective metasurface based on an artificial admittance modulation surface to generate three-dimensional spatially curved beams. The phase acquisition utilized to modulate this sinusoidally varying surface admittance combines the enveloping theory of differential geometry and the method for producing two-dimensional Bessel beams. The metasurface is fabricated, and the comparison between the full-wave simulations and experimental results demonstrates good performance of three-dimensional spatially curved beams generated by the metasurface.

  2. Transient response in granular quasi-two-dimensional bounded heap flow.

    PubMed

    Xiao, Hongyi; Ottino, Julio M; Lueptow, Richard M; Umbanhowar, Paul B

    2017-10-01

    We study the transition between steady flows of noncohesive granular materials in quasi-two-dimensional bounded heaps by suddenly changing the feed rate. In both experiments and simulations, the primary feature of the transition is a wedge of flowing particles that propagates downstream over the rising free surface with a wedge front velocity inversely proportional to the square root of time. An additional longer duration transient process continues after the wedge front reaches the downstream wall. The entire transition is well modeled as a moving boundary problem with a diffusionlike equation derived from local mass balance and a local relation between the flux and the surface slope.

  3. Reconstruction of explicit structural properties at the nanoscale via spectroscopic microscopy

    NASA Astrophysics Data System (ADS)

    Cherkezyan, Lusik; Zhang, Di; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2016-02-01

    The spectrum registered by a reflected-light bright-field spectroscopic microscope (SM) can quantify the microscopically indiscernible, deeply subdiffractional length scales within samples such as biological cells and tissues. Nevertheless, quantification of biological specimens via any optical measures most often reveals ambiguous information about the specific structural properties within the studied samples. Thus, optical quantification remains nonintuitive to users from the diverse fields of technique application. In this work, we demonstrate that the SM signal can be analyzed to reconstruct explicit physical measures of internal structure within label-free, weakly scattering samples: characteristic length scale and the amplitude of spatial refractive-index (RI) fluctuations. We present and validate the reconstruction algorithm via finite-difference time-domain solutions of Maxwell's equations on an example of exponential spatial correlation of RI. We apply the validated algorithm to experimentally measure structural properties within isolated cells from two genetic variants of HT29 colon cancer cell line as well as within a prostate tissue biopsy section. The presented methodology can lead to the development of novel biophotonics techniques that create two-dimensional maps of explicit structural properties within biomaterials: the characteristic size of macromolecular complexes and the variance of local mass density.

  4. Comparisons of time explicit hybrid kinetic-fluid code Architect for Plasma Wakefield Acceleration with a full PIC code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massimo, F., E-mail: francesco.massimo@ensta-paristech.fr; Dipartimento SBAI, Università di Roma “La Sapienza“, Via A. Scarpa 14, 00161 Roma; Atzeni, S.

    Architect, a time explicit hybrid code designed to perform quick simulations for electron driven plasma wakefield acceleration, is described. In order to obtain beam quality acceptable for applications, control of the beam-plasma-dynamics is necessary. Particle in Cell (PIC) codes represent the state-of-the-art technique to investigate the underlying physics and possible experimental scenarios; however PIC codes demand the necessity of heavy computational resources. Architect code substantially reduces the need for computational resources by using a hybrid approach: relativistic electron bunches are treated kinetically as in a PIC code and the background plasma as a fluid. Cylindrical symmetry is assumed for themore » solution of the electromagnetic fields and fluid equations. In this paper both the underlying algorithms as well as a comparison with a fully three dimensional particle in cell code are reported. The comparison highlights the good agreement between the two models up to the weakly non-linear regimes. In highly non-linear regimes the two models only disagree in a localized region, where the plasma electrons expelled by the bunch close up at the end of the first plasma oscillation.« less

  5. Matrix models for 5d super Yang-Mills

    NASA Astrophysics Data System (ADS)

    Minahan, Joseph A.

    2017-11-01

    In this contribution to the issue on localization in gauge theories we investigate the matrix models derived from localizing N=1 super Yang-Mills on S 5. We consider the large-N limit and attempt to solve the matrix model by a saddle-point approximation. In general it is not possible to find an analytic solution, but at the weak and the strong limits of the ’t Hooft coupling there are dramatic simplifications that allows us to extract most of the interesting information. At weak coupling we show that the matrix model is close to the Gaussian matrix model and that the free-energy scales as N 2. At strong coupling we show that if the theory contains one adjoint hypermultiplet then the free-energy scales as N 3. We also find the expectation value of a supersymmetric Wilson loop that wraps the equator. We demonstrate how to extract the effective couplings and reproduce results of Seiberg. Finally, we compare to results for the six-dimensional (2,0) theory derived using the AdS/CFT correspondence. We show that by choosing the hypermultiplet mass such that the supersymmetry is enhanced to N=2 , the Wilson loop result matches the analogous calculation using AdS/CFT. The free-energies differ by a rational fraction. This is a contribution to the review issue ‘Localization techniques in quantum field theories’ (ed Pestun and Zabzine) which contains 17 chapters available at [1].

  6. The effect of compliant walls on three-dimensional primary and secondary instabilities in boundary layer transition

    NASA Astrophysics Data System (ADS)

    Joslin, R. D.

    1991-04-01

    The use of passive devices to obtain drag and noise reduction or transition delays in boundary layers is highly desirable. One such device that shows promise for hydrodynamic applications is the compliant coating. The present study extends the mechanical model to allow for three-dimensional waves. This study also looks at the effect of compliant walls on three-dimensional secondary instabilities. For the primary and secondary instability analysis, spectral and shooting approximations are used to obtain solutions of the governing equations and boundary conditions. The spectral approximation consists of local and global methods of solution while the shooting approach is local. The global method is used to determine the discrete spectrum of eigenvalue without any initial guess. The local method requires a sufficiently accurate initial guess to converge to the eigenvalue. Eigenvectors may be obtained with either local approach. For the initial stage of this analysis, two and three dimensional primary instabilities propagate over compliant coatings. Results over the compliant walls are compared with the rigid wall case. Three-dimensional instabilities are found to dominate transition over the compliant walls considered. However, transition delays are still obtained and compared with transition delay predictions for rigid walls. The angles of wave propagation are plotted with Reynolds number and frequency. Low frequency waves are found to be highly three-dimensional.

  7. Towards an understanding of the mechanisms of weak central coherence effects: experiments in visual configural learning and auditory perception.

    PubMed Central

    Plaisted, Kate; Saksida, Lisa; Alcántara, José; Weisblatt, Emma

    2003-01-01

    The weak central coherence hypothesis of Frith is one of the most prominent theories concerning the abnormal performance of individuals with autism on tasks that involve local and global processing. Individuals with autism often outperform matched nonautistic individuals on tasks in which success depends upon processing of local features, and underperform on tasks that require global processing. We review those studies that have been unable to identify the locus of the mechanisms that may be responsible for weak central coherence effects and those that show that local processing is enhanced in autism but not at the expense of global processing. In the light of these studies, we propose that the mechanisms which can give rise to 'weak central coherence' effects may be perceptual. More specifically, we propose that perception operates to enhance the representation of individual perceptual features but that this does not impact adversely on representations that involve integration of features. This proposal was supported in the two experiments we report on configural and feature discrimination learning in high-functioning children with autism. We also examined processes of perception directly, in an auditory filtering task which measured the width of auditory filters in individuals with autism and found that the width of auditory filters in autism were abnormally broad. We consider the implications of these findings for perceptual theories of the mechanisms underpinning weak central coherence effects. PMID:12639334

  8. Enhancing robustness of multiparty quantum correlations using weak measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Uttam, E-mail: uttamsingh@hri.res.in; Mishra, Utkarsh, E-mail: utkarsh@hri.res.in; Dhar, Himadri Shekhar, E-mail: dhar.himadri@gmail.com

    Multipartite quantum correlations are important resources for the development of quantum information and computation protocols. However, the resourcefulness of multipartite quantum correlations in practical settings is limited by its fragility under decoherence due to environmental interactions. Though there exist protocols to protect bipartite entanglement under decoherence, the implementation of such protocols for multipartite quantum correlations has not been sufficiently explored. Here, we study the effect of local amplitude damping channel on the generalized Greenberger–Horne–Zeilinger state, and use a protocol of optimal reversal quantum weak measurement to protect the multipartite quantum correlations. We observe that the weak measurement reversal protocol enhancesmore » the robustness of multipartite quantum correlations. Further it increases the critical damping value that corresponds to entanglement sudden death. To emphasize the efficacy of the technique in protection of multipartite quantum correlation, we investigate two proximately related quantum communication tasks, namely, quantum teleportation in a one sender, many receivers setting and multiparty quantum information splitting, through a local amplitude damping channel. We observe an increase in the average fidelity of both the quantum communication tasks under the weak measurement reversal protocol. The method may prove beneficial, for combating external interactions, in other quantum information tasks using multipartite resources. - Highlights: • Extension of weak measurement reversal scheme to protect multiparty quantum correlations. • Protection of multiparty quantum correlation under local amplitude damping noise. • Enhanced fidelity of quantum teleportation in one sender and many receivers setting. • Enhanced fidelity of quantum information splitting protocol.« less

  9. Electronic correlation in the infrared optical properties of the quasi-two-dimensional κ-type BEDT-TTF dimer system

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Ito, I.; Yoneyama, N.; Kobayashi, N.; Hanasaki, N.; Tajima, H.; Ito, T.; Iwasa, Y.

    2004-02-01

    The polarized optical reflectance spectra of the quasi-two-dimensional organic correlated electron system κ-(BEDT-TTF)2Cu[N(CN)2]Y, Y=Br and Cl are measured in the infrared region. The former shows the superconductivity at Tc≃11.6 K and the latter does the antiferromagnetic insulator transition at TN≃28 K. Both the specific molecular vibration mode ν3(ag) of the BEDT-TTF molecule and the optical conductivity hump in the mid-infrared region change correlatively at T*≃38 K of κ-(BEDT-TTF)2Cu[N(CN)2]Br, although no indication of T* but the insulating behavior below Tins≃50 60 K are found in κ-(BEDT-TTF)2Cu[N(CN)2]Cl. The results suggest that the electron-molecular vibration coupling on the ν3(ag) mode becomes weak due to the enhancement of the itinerant nature of the carriers on the dimer of the BEDT-TTF molecules below T*, while it does strong below Tins because of the localized carriers on the dimer. These changes are in agreement with the reduction and the enhancement of the mid-infrared conductivity hump below T* and Tins, respectively, which originates from the transitions between the upper and lower Mott-Hubbard bands. The present observations demonstrate that two different metallic states of κ-(BEDT-TTF)2Cu[N(CN)2]Br are regarded as a correlated good metal below T* including the superconducting state and a half filling bad metal above T*. In contrast the insulating state of κ-(BEDT-TTF)2Cu[N(CN)2]Cl below Tins is the Mott insulator.

  10. Towards adjoint-based inversion for rheological parameters in nonlinear viscous mantle flow

    NASA Astrophysics Data System (ADS)

    Worthen, Jennifer; Stadler, Georg; Petra, Noemi; Gurnis, Michael; Ghattas, Omar

    2014-09-01

    We address the problem of inferring mantle rheological parameter fields from surface velocity observations and instantaneous nonlinear mantle flow models. We formulate this inverse problem as an infinite-dimensional nonlinear least squares optimization problem governed by nonlinear Stokes equations. We provide expressions for the gradient of the cost functional of this optimization problem with respect to two spatially-varying rheological parameter fields: the viscosity prefactor and the exponent of the second invariant of the strain rate tensor. Adjoint (linearized) Stokes equations, which are characterized by a 4th order anisotropic viscosity tensor, facilitates efficient computation of the gradient. A quasi-Newton method for the solution of this optimization problem is presented, which requires the repeated solution of both nonlinear forward Stokes and linearized adjoint Stokes equations. For the solution of the nonlinear Stokes equations, we find that Newton’s method is significantly more efficient than a Picard fixed point method. Spectral analysis of the inverse operator given by the Hessian of the optimization problem reveals that the numerical eigenvalues collapse rapidly to zero, suggesting a high degree of ill-posedness of the inverse problem. To overcome this ill-posedness, we employ Tikhonov regularization (favoring smooth parameter fields) or total variation (TV) regularization (favoring piecewise-smooth parameter fields). Solution of two- and three-dimensional finite element-based model inverse problems show that a constant parameter in the constitutive law can be recovered well from surface velocity observations. Inverting for a spatially-varying parameter field leads to its reasonable recovery, in particular close to the surface. When inferring two spatially varying parameter fields, only an effective viscosity field and the total viscous dissipation are recoverable. Finally, a model of a subducting plate shows that a localized weak zone at the plate boundary can be partially recovered, especially with TV regularization.

  11. A note on two-dimensional asymptotic magnetotail equilibria

    NASA Technical Reports Server (NTRS)

    Voigt, Gerd-Hannes; Moore, Brian D.

    1994-01-01

    In order to understand, on the fluid level, the structure, the time evolution, and the stability of current sheets, such as the magnetotail plasma sheet in Earth's magnetosphere, one has to consider magnetic field configurations that are in magnetohydrodynamic (MHD) force equilibrium. Any reasonable MHD current sheet model has to be two-dimensional, at least in an asymptotic sense (B(sub z)/B (sub x)) = epsilon much less than 1. The necessary two-dimensionality is described by a rather arbitrary function f(x). We utilize the free function f(x) to construct two-dimensional magnetotail equilibria are 'equivalent' to current sheets in empirical three-dimensional models. We obtain a class of asymptotic magnetotail equilibria ordered with respect to the magnetic disturbance index Kp. For low Kp values the two-dimensional MHD equilibria reflect some of the realistic, observation-based, aspects of three-dimensional models. For high Kp values the three-dimensional models do not fit the asymptotic MHD equlibria, which is indicative of their inconsistency with the assumed pressure function. This, in turn, implies that high magnetic activity levels of the real magnetosphere might be ruled by thermodynamic conditions different from local thermodynamic equilibrium.

  12. A two-dimensional silver(I) coordination polymer constructed from 4-aminophenylarsonate and triphenylphosphane: poly[[(μ₃-4-aminophenylarsonato-κ³N:O:O)(triphenylphosphane-κP)silver(I)] monohydrate].

    PubMed

    Xiao, Zu-Ping; Wen, Meng; Wang, Chun-Ya; Huang, Xi-He

    2015-04-01

    The title compound, {[Ag(C6H7AsNO3)(C18H15P)]·H2O}n, has been synthesized from the reaction of 4-aminophenylarsonic acid with silver nitrate, in aqueous ammonia, with the addition of triphenylphosphane (PPh3). The Ag(I) centre is four-coordinated by one amino N atom, one PPh3 P atom and two arsonate O atoms, forming a severely distorted [AgNPO2] tetrahedron. Two Ag(I)-centred tetrahedra are held together to produce a dinuclear [Ag2O2N2P2] unit by sharing an O-O edge. 4-Aminophenylarsonate (Hapa(-)) adopts a μ3-κ(3)N:O:O-tridentate coordination mode connecting two dinuclear units, resulting in a neutral [Ag(Hapa)(PPh3)]n layer lying parallel to the (101̄) plane. The PPh3 ligands are suspended on both sides of the [Ag(Hapa)(PPh3)]n layer, displaying up and down orientations. There is an R2(2)(8) hydrogen-bonded dimer involving two arsonate groups from two Hapa(-) ligands related by a centre of inversion. Additionally, there are hydrogen-bonding interactions involving the solvent water molecules and the arsonate and amine groups of the Hapa(-) ligands, and weak π-π stacking interactions within the [Ag(Hapa)(PPh3)]n layer. These two-dimensional layers are further assembled by weak van der Waals interactions to form the final architecture.

  13. Viscous electron flow in mesoscopic two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Gusev, G. M.; Levin, A. D.; Levinson, E. V.; Bakarov, A. K.

    2018-02-01

    We report electrical and magneto transport measurements in mesoscopic size, two-dimensional (2D) electron gas in a GaAs quantum well. Remarkably, we find that the probe configuration and sample geometry strongly affects the temperature evolution of local resistance. We attribute all transport properties to the presence of hydrodynamic effects. Experimental results confirm the theoretically predicted significance of viscous flow in mesoscopic devices.

  14. Gravitational matter-antimatter asymmetry and four-dimensional Yang-Mills gauge symmetry

    NASA Technical Reports Server (NTRS)

    Hsu, J. P.

    1981-01-01

    A formulation of gravity based on the maximum four-dimensional Yang-Mills gauge symmetry is studied. The theory predicts that the gravitational force inside matter (fermions) is different from that inside antimatter. This difference could lead to the cosmic separation of matter and antimatter in the evolution of the universe. Moreover, a new gravitational long-range spin-force between two fermions is predicted, in addition to the usual Newtonian force. The geometrical foundation of such a gravitational theory is the Riemann-Cartan geometry, in which there is a torsion. The results of the theory for weak fields are consistent with previous experiments.

  15. Matrix-assisted laser desorption ionization time-of-flight mass spectrometric analysis of degradation products after treatment of methylene blue aqueous solution with three-dimensionally integrated microsolution plasma

    NASA Astrophysics Data System (ADS)

    Shirafuji, Tatsuru; Nomura, Ayano; Hayashi, Yui; Tanaka, Kenji; Goto, Motonobu

    2016-01-01

    Methylene blue can be degraded in three-dimensionally integrated microsolution plasma. The degradation products have been analyzed by matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry to understand the degradation mechanisms. The results of MALDI TOF mass spectrometry have shown that sulfoxide is formed at the first stage of the oxidation. Then, partial oxidation proceeds on the methyl groups left on the sulfoxide. The sulfoxide is subsequently separated to two benzene derivatives. Finally, weak functional groups are removed from the benzene derivatives.

  16. General n-dimensional quadrature transform and its application to interferogram demodulation.

    PubMed

    Servin, Manuel; Quiroga, Juan Antonio; Marroquin, Jose Luis

    2003-05-01

    Quadrature operators are useful for obtaining the modulating phase phi in interferometry and temporal signals in electrical communications. In carrier-frequency interferometry and electrical communications, one uses the Hilbert transform to obtain the quadrature of the signal. In these cases the Hilbert transform gives the desired quadrature because the modulating phase is monotonically increasing. We propose an n-dimensional quadrature operator that transforms cos(phi) into -sin(phi) regardless of the frequency spectrum of the signal. With the quadrature of the phase-modulated signal, one can easily calculate the value of phi over all the domain of interest. Our quadrature operator is composed of two n-dimensional vector fields: One is related to the gradient of the image normalized with respect to local frequency magnitude, and the other is related to the sign of the local frequency of the signal. The inner product of these two vector fields gives us the desired quadrature signal. This quadrature operator is derived in the image space by use of differential vector calculus and in the frequency domain by use of a n-dimensional generalization of the Hilbert transform. A robust numerical algorithm is given to find the modulating phase of two-dimensional single-image closed-fringe interferograms by use of the ideas put forward.

  17. Density functional theory versus quantum Monte Carlo simulations of Fermi gases in the optical-lattice arena★

    NASA Astrophysics Data System (ADS)

    Pilati, Sebastiano; Zintchenko, Ilia; Troyer, Matthias; Ancilotto, Francesco

    2018-04-01

    We benchmark the ground state energies and the density profiles of atomic repulsive Fermi gases in optical lattices (OLs) computed via density functional theory (DFT) against the results of diffusion Monte Carlo (DMC) simulations. The main focus is on a half-filled one-dimensional OLs, for which the DMC simulations performed within the fixed-node approach provide unbiased results. This allows us to demonstrate that the local spin-density approximation (LSDA) to the exchange-correlation functional of DFT is very accurate in the weak and intermediate interactions regime, and also to underline its limitations close to the strongly-interacting Tonks-Girardeau limit and in very deep OLs. We also consider a three-dimensional OL at quarter filling, showing also in this case the high accuracy of the LSDA in the moderate interaction regime. The one-dimensional data provided in this study may represent a useful benchmark to further develop DFT methods beyond the LSDA and they will hopefully motivate experimental studies to accurately measure the equation of state of Fermi gases in higher-dimensional geometries. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2018-90021-1.

  18. Effect of alkali cations on two-dimensional networks of two new quaternary thioarsenates (III) prepared by a facile surfactant-thermal method

    NASA Astrophysics Data System (ADS)

    Yan, Dongming; Hou, Peipei; Liu, Chang; Chai, Wenxiang; Zheng, Xuerong; Zhang, Luodong; Zhi, Mingjia; Zhou, Chunmei; Liu, Yi

    2016-09-01

    Two new quaternary thioarsenates(III) NaAg2AsS3·H2O (1) and KAg2AsS3 (2) with high yields have been successfully prepared through a facile surfactant-thermal method. It is interesting that 2 can only be obtained with the aid of ethanediamine (en), which indicates that weak basicity of solvent is beneficial to the growth of 2 compared with 1. Both 1 and 2 feature the similar two-dimensional (2D) layer structures. However, the distortion of the primary honeycomb-like nets in 2 is more severe than that of 1, which demonstrates that Na+ and K+ cations have different structure directing effects on these two thioarsenates(III). Both experimental and theoretical studies confirm 1 and 2 are semiconductors with band gaps in the visible region. Our success in preparing these two quaternary thioarsenates(III) proves that surfactant-thermal technique is a powerful yet facile synthetic method to explore new complex chalcogenides.

  19. Lump-type solutions for the (4+1)-dimensional Fokas equation via symbolic computations

    NASA Astrophysics Data System (ADS)

    Cheng, Li; Zhang, Yi

    2017-09-01

    Based on the Hirota bilinear form, two classes of lump-type solutions of the (4+1)-dimensional nonlinear Fokas equation, rationally localized in almost all directions in the space are obtained through a direct symbolic computation with Maple. The resulting lump-type solutions contain free parameters. To guarantee the analyticity and rational localization of the solutions, the involved parameters need to satisfy certain constraints. A few particular lump-type solutions with special choices of the involved parameters are given.

  20. Flexible non-diffractive vortex microscope for three-dimensional depth-enhanced super-localization of dielectric, metal and fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Bouchal, Petr; Bouchal, Zdeněk

    2017-10-01

    In the past decade, probe-based super-resolution using temporally resolved localization of emitters became a groundbreaking imaging strategy in fluorescence microscopy. Here we demonstrate a non-diffractive vortex microscope (NVM), enabling three-dimensional super-resolution fluorescence imaging and localization and tracking of metal and dielectric nanoparticles. The NVM benefits from vortex non-diffractive beams (NBs) creating a double-helix point spread function that rotates under defocusing while maintaining its size and shape unchanged. Using intrinsic properties of the NBs, the dark-field localization of weakly scattering objects is achieved in a large axial range exceeding the depth of field of the microscope objective up to 23 times. The NVM was developed using an upright microscope Nikon Eclipse E600 operating with a spiral lithographic mask optimized using Fisher information and built into an add-on imaging module or microscope objective. In evaluation of the axial localization accuracy the root mean square error below 18 nm and 280 nm was verified over depth ranges of 3.5 μm and 13.6 μm, respectively. Subwavelength gold and polystyrene beads were localized with isotropic precision below 10 nm in the axial range of 3.5 μm and the axial precision reduced to 30 nm in the extended range of 13.6 μm. In the fluorescence imaging, the localization with isotropic precision below 15 nm was demonstrated in the range of 2.5 μm, whereas in the range of 8.3 μm, the precision of 15 nm laterally and 30-50 nm axially was achieved. The tracking of nanoparticles undergoing Brownian motion was demonstrated in the volume of 14 × 10 × 16 μm3. Applicability of the NVM was tested by fluorescence imaging of LW13K2 cells and localization of cellular proteins.

  1. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Weisenstein, Debra; Shia, Run-Lie; Sze, N. D.

    1998-01-01

    The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the AER two-dimensional chemistry-transport model, the AER two-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. We will continue developing our three-wave model so that we can help NASA determine the strength and weakness of the next generation assessment models.

  2. A ballistic two-dimensional-electron-gas Andreev interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amado, M., E-mail: mario.amadomontero@sns.it; Fornieri, A.; Sorba, L.

    2014-06-16

    We report the realization and investigation of a ballistic Andreev interferometer based on an InAs two dimensional electron gas coupled to a superconducting Nb loop. We observe strong magnetic modulations in the voltage drop across the device due to quasiparticle interference within the weak-link. The interferometer exhibits flux noise down to ∼80 μΦ{sub 0}/√(Hz) and a robust behavior in temperature with voltage oscillations surviving up to ∼7 K. Besides this remarkable performance, the device represents a crucial first step for the realization of a fully-tunable ballistic superconducting magnetometer and embodies a potential advanced platform for the investigation of Majorana bound states, non-localmore » entanglement of Cooper pairs, as well as the manipulation and control of spin triplet correlations.« less

  3. Magic tilt angle for stabilizing two-dimensional solitons by dipole-dipole interactions

    NASA Astrophysics Data System (ADS)

    Chen, Xing-You; Chuang, You-Lin; Lin, Chun-Yan; Wu, Chien-Ming; Li, Yongyao; Malomed, Boris A.; Lee, Ray-Kuang

    2017-10-01

    In the framework of the Gross-Pitaevskii equation, we study the formation and stability of effectively two-dimensional solitons in dipolar Bose-Einstein condensates (BECs), with dipole moments polarized at an arbitrary angle θ relative to the direction normal to the system's plane. Using numerical methods and the variational approximation, we demonstrate that unstable Townes solitons, created by the contact attractive interaction, may be completely stabilized (with an anisotropic shape) by the dipole-dipole interaction (DDI), in the interval θcr<θ ≤π /2 . The stability boundary θcr weakly depends on the relative strength of the DDI, remaining close to the magic angle θm=arccos(1 /√{3 }) . The results suggest that DDIs provide a generic mechanism for the creation of stable BEC solitons in higher dimensions.

  4. Betatron motion with coupling of horizontal and vertical degrees of freedom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. A. Bogacz; V. A. Lebedev

    2002-11-21

    The Courant-Snyder parameterization of one-dimensional linear betatron motion is generalized to two-dimensional coupled linear motion. To represent the 4 x 4 symplectic transfer matrix the following ten parameters were chosen: four beta-functions, four alpha-functions and two betatron phase advances which have a meaning similar to the Courant-Snyder parameterization. Such a parameterization works equally well for weak and strong coupling and can be useful for analysis of coupled betatron motion in circular accelerators as well as in transfer lines. Similarly, the transfer matrix, the bilinear form describing the phase space ellipsoid and the second order moments are related to the eigen-vectors.more » Corresponding equations can be useful in interpreting tracking results and experimental data.« less

  5. Extension of lattice cluster theory to strongly interacting, self-assembling polymeric systems.

    PubMed

    Freed, Karl F

    2009-02-14

    A new extension of the lattice cluster theory is developed to describe the influence of monomer structure and local correlations on the free energy of strongly interacting and self-assembling polymer systems. This extension combines a systematic high dimension (1/d) and high temperature expansion (that is appropriate for weakly interacting systems) with a direct treatment of strong interactions. The general theory is illustrated for a binary polymer blend whose two components contain "sticky" donor and acceptor groups, respectively. The free energy is determined as an explicit function of the donor-acceptor contact probabilities that depend, in turn, on the local structure and both the strong and weak interactions.

  6. Magnetophoretic transistors in a tri-axial magnetic field.

    PubMed

    Abedini-Nassab, Roozbeh; Joh, Daniel Y; Albarghouthi, Faris; Chilkoti, Ashutosh; Murdoch, David M; Yellen, Benjamin B

    2016-10-18

    The ability to direct and sort individual biological and non-biological particles into spatially addressable locations is fundamentally important to the emerging field of single cell biology. Towards this goal, we demonstrate a new class of magnetophoretic transistors, which can switch single magnetically labeled cells and magnetic beads between different paths in a microfluidic chamber. Compared with prior work on magnetophoretic transistors driven by a two-dimensional in-plane rotating field, the addition of a vertical magnetic field bias provides significant advantages in preventing the formation of particle clumps and in better replicating the operating principles of circuits in general. However, the three-dimensional driving field requires a complete redesign of the magnetic track geometry and switching electrodes. We have solved this problem by developing several types of transistor geometries which can switch particles between two different tracks by either presenting a local energy barrier or by repelling magnetic objects away from a given track, hereby denoted as "barrier" and "repulsion" transistors, respectively. For both types of transistors, we observe complete switching of magnetic objects with currents of ∼40 mA, which is consistent over a range of particle sizes (8-15 μm). The switching efficiency was also tested at various magnetic field strengths (50-90 Oe) and driving frequencies (0.1-0.6 Hz); however, we again found that the device performance only weakly depended on these parameters. These findings support the use of these novel transistor geometries to form circuit architectures in which cells can be placed in defined locations and retrieved on demand.

  7. High resolution approach to the native state ensemble kinetics and thermodynamics.

    PubMed

    Wu, Sangwook; Zhuravlev, Pavel I; Papoian, Garegin A

    2008-12-15

    Many biologically interesting functions such as allosteric switching or protein-ligand binding are determined by the kinetics and mechanisms of transitions between various conformational substates of the native basin of globular proteins. To advance our understanding of these processes, we constructed a two-dimensional free energy surface (FES) of the native basin of a small globular protein, Trp-cage. The corresponding order parameters were defined using two native substructures of Trp-cage. These calculations were based on extensive explicit water all-atom molecular dynamics simulations. Using the obtained two-dimensional FES, we studied the transition kinetics between two Trp-cage conformations, finding that switching process shows a borderline behavior between diffusive and weakly-activated dynamics. The transition is well-characterized kinetically as a biexponential process. We also introduced a new one-dimensional reaction coordinate for the conformational transition, finding reasonable qualitative agreement with the two-dimensional kinetics results. We investigated the distribution of all the 38 native nuclear magnetic resonance structures on the obtained FES, analyzing interactions that stabilize specific low-energy conformations. Finally, we constructed a FES for the same system but with simple dielectric model of water instead of explicit water, finding that the results were surprisingly similar in a small region centered on the native conformations. The dissimilarities between the explicit and implicit model on the larger-scale point to the important role of water in mediating interactions between amino acid residues.

  8. Dimensionality reduction based on distance preservation to local mean for symmetric positive definite matrices and its application in brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Davoudi, Alireza; Shiry Ghidary, Saeed; Sadatnejad, Khadijeh

    2017-06-01

    Objective. In this paper, we propose a nonlinear dimensionality reduction algorithm for the manifold of symmetric positive definite (SPD) matrices that considers the geometry of SPD matrices and provides a low-dimensional representation of the manifold with high class discrimination in a supervised or unsupervised manner. Approach. The proposed algorithm tries to preserve the local structure of the data by preserving distances to local means (DPLM) and also provides an implicit projection matrix. DPLM is linear in terms of the number of training samples. Main results. We performed several experiments on the multi-class dataset IIa from BCI competition IV and two other datasets from BCI competition III including datasets IIIa and IVa. The results show that our approach as dimensionality reduction technique—leads to superior results in comparison with other competitors in the related literature because of its robustness against outliers and the way it preserves the local geometry of the data. Significance. The experiments confirm that the combination of DPLM with filter geodesic minimum distance to mean as the classifier leads to superior performance compared with the state of the art on brain-computer interface competition IV dataset IIa. Also the statistical analysis shows that our dimensionality reduction method performs significantly better than its competitors.

  9. Analysis of the Fisher solution

    NASA Astrophysics Data System (ADS)

    Abdolrahimi, Shohreh; Shoom, Andrey A.

    2010-01-01

    We study the d-dimensional Fisher solution which represents a static, spherically symmetric, asymptotically flat spacetime with a massless scalar field. The solution has two parameters, the mass M and the “scalar charge” Σ. The Fisher solution has a naked curvature singularity which divides the spacetime manifold into two disconnected parts. The part which is asymptotically flat we call the Fisher spacetime, and another part we call the Fisher universe. The d-dimensional Schwarzschild-Tangherlini solution and the Fisher solution belong to the same theory and are dual to each other. The duality transformation acting in the parameter space (M,Σ) maps the exterior region of the Schwarzschild-Tangherlini black hole into the Fisher spacetime which has a naked timelike singularity, and interior region of the black hole into the Fisher universe, which is an anisotropic expanding-contracting universe and which has two spacelike singularities representing its “big bang” and “big crunch.” The big bang singularity and the singularity of the Fisher spacetime are radially weak in the sense that a 1-dimensional object moving along a timelike radial geodesic can arrive to the singularities intact. At the vicinity of the singularity the Fisher spacetime of nonzero mass has a region where its Misner-Sharp energy is negative. The Fisher universe has a marginally trapped surface corresponding to the state of its maximal expansion in the angular directions. These results and derived relations between geometric quantities of the Fisher spacetime, the Fisher universe, and the Schwarzschild-Tangherlini black hole may suggest that the massless scalar field transforms the black hole event horizon into the naked radially weak disjoint singularities of the Fisher spacetime and the Fisher universe which are “dual to the horizon.”

  10. Analysis of the Fisher solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdolrahimi, Shohreh; Shoom, Andrey A.

    2010-01-15

    We study the d-dimensional Fisher solution which represents a static, spherically symmetric, asymptotically flat spacetime with a massless scalar field. The solution has two parameters, the mass M and the 'scalar charge' {Sigma}. The Fisher solution has a naked curvature singularity which divides the spacetime manifold into two disconnected parts. The part which is asymptotically flat we call the Fisher spacetime, and another part we call the Fisher universe. The d-dimensional Schwarzschild-Tangherlini solution and the Fisher solution belong to the same theory and are dual to each other. The duality transformation acting in the parameter space (M,{Sigma}) maps the exteriormore » region of the Schwarzschild-Tangherlini black hole into the Fisher spacetime which has a naked timelike singularity, and interior region of the black hole into the Fisher universe, which is an anisotropic expanding-contracting universe and which has two spacelike singularities representing its 'big bang' and 'big crunch'. The big bang singularity and the singularity of the Fisher spacetime are radially weak in the sense that a 1-dimensional object moving along a timelike radial geodesic can arrive to the singularities intact. At the vicinity of the singularity the Fisher spacetime of nonzero mass has a region where its Misner-Sharp energy is negative. The Fisher universe has a marginally trapped surface corresponding to the state of its maximal expansion in the angular directions. These results and derived relations between geometric quantities of the Fisher spacetime, the Fisher universe, and the Schwarzschild-Tangherlini black hole may suggest that the massless scalar field transforms the black hole event horizon into the naked radially weak disjoint singularities of the Fisher spacetime and the Fisher universe which are 'dual to the horizon'.« less

  11. On Multiple Hall-Like Electron Currents and Tripolar Guide Magnetic Field Perturbations During Kelvin-Helmholtz Waves

    NASA Astrophysics Data System (ADS)

    Sturner, Andrew P.; Eriksson, Stefan; Nakamura, Takuma; Gershman, Daniel J.; Plaschke, Ferdinand; Ergun, Robert E.; Wilder, Frederick D.; Giles, Barbara; Pollock, Craig; Paterson, William R.; Strangeway, Robert J.; Baumjohann, Wolfgang; Burch, James L.

    2018-02-01

    Two magnetopause current sheet crossings with tripolar guide magnetic field signatures were observed by multiple Magnetosphere Multiscale (MMS) spacecraft during Kelvin-Helmholtz wave activity. The two out-of-plane magnetic field depressions of the tripolar guide magnetic field are largely supported by the observed in-plane electron currents, which are reminiscent of two clockwise Hall current loop systems. A comparison with a three-dimensional kinetic simulation of Kelvin-Helmholtz waves and vortex-induced reconnection suggests that MMS likely encountered the two Hall magnetic field depressions on either side of a magnetic reconnection X-line. Moreover, MMS observed an out-of-plane current reversal and a corresponding in-plane magnetic field rotation at the center of one of the current sheets, suggesting the presence of two adjacent flux ropes. The region inside one of the ion-scale flux ropes was characterized by an observed decrease of the total magnetic field, a strong axial current, and significant enhancements of electron density and parallel electron temperature. The flux rope boundary was characterized by currents opposite this axial current, strong in-plane and converging electric fields, parallel electric fields, and weak electron-frame Joule dissipation. These return current region observations may reflect a need to support the axial current rather than representing local reconnection signatures in the absence of any exhausts.

  12. Reversible and Selective Encapsulation of Dextromethorphan and β-Estradiol Using an Asymmetric Molecular Capsule Assembled via the Weak-Link Approach.

    PubMed

    Mendez-Arroyo, Jose; d'Aquino, Andrea I; Chinen, Alyssa B; Manraj, Yashin D; Mirkin, Chad A

    2017-02-01

    An allosterically regulated, asymmetric receptor featuring a binding cavity large enough to accommodate three-dimensional pharmaceutical guest molecules as opposed to planar, rigid aromatics, was synthesized via the Weak-Link Approach. This architecture is capable of switching between an expanded, flexible "open" configuration and a collapsed, rigid "closed" one. The structure of the molecular receptor can be completely modulated in situ through the use of simple ionic effectors, which reversibly control the coordination state of the Pt(II) metal hinges to open and close the molecular receptor. The substantial change in binding cavity size and electrostatic charge between the two configurations is used to explore the capture and release of two guest molecules, dextromethorphan and β-estradiol, which are widely found as pollutants in groundwater.

  13. Ultrafast optical excitations in supramolecular metallacycles with charge transfer properties.

    PubMed

    Flynn, Daniel C; Ramakrishna, Guda; Yang, Hai-Bo; Northrop, Brian H; Stang, Peter J; Goodson, Theodore

    2010-02-03

    New organometallic materials such as two-dimensional metallacycles and three-dimensional metallacages are important for the development of novel optical, electronic, and energy related applications. In this article, the ultrafast dynamics of two different platinum-containing metallacycles have been investigated by femtosecond fluorescence upconversion and transient absorption. These measurements were carried out in an effort to probe the charge transfer dynamics and the rate of intersystem crossing in metallacycles of different geometries and dimensions. The processes of ultrafast intersystem crossing and charge transfer vary between the two different classes of metallacyclic systems studied. For rectangular anthracene-containing metallacycles, the electronic coupling between adjacent ligands was relatively weak, whereas for the triangular phenanthrene-containing structures, there was a clear interaction between the conjugated ligand and the metal complex center. The transient lifetimes increased with increasing conjugation in that case. The results show that differences in the dimensionality and structure of metallacycles result in different optical properties, which may be utilized in the design of nonlinear optical materials and potential new, longer-lived excited state materials for further electronic applications.

  14. Two novel copper(II) complexes constructed from dicarboxylate ligands with different spacer lengths and 2-phenylimidazo[4,5- f]1,10-phenanthroline (PIP): Synthesis, structures and properties

    NASA Astrophysics Data System (ADS)

    Wang, X.-L.; Chen, Yongqiang; Liu, Guocheng; Lin, Hongyan; Zhang, Jinxia

    2009-09-01

    Two novel metal-organic coordination polymers [Cu(PIP)(bpea)(H 2O)]·H 2O ( 1) and [Cu(PIP)(1,4-bdc)] ( 2) have been obtained from hydrothermal reaction of copper(II) with the mixed ligands [biphenylethene-4,4'-dicarboxylic acid (bpea) for 1, benzene-1,4-dicarboxylic acid (1,4-H 2bdc) for 2, and 2-phenylimidazo[4,5- f]1,10-phenanthroline (PIP)]. Both complexes have been structurally characterized by elemental analyses, IR and single-crystal X-ray diffraction analyses. Structural analyses reveal that complex 1 possesses infinite one-dimensional zigzag chain, 2 exhibits a two-dimensional (4,4) network, both of which are extended into three-dimensional supramolecular network by weak interactions. The different structures of the title complexes illustrate the influence of the flexibility (the spacer length of carboxyl groups and the structural rigidity of the spacer) of organic dicarboxylate ligands on the formation of such coordination architectures. Moreover, the thermal properties and the voltammetric behavior of complexes 1 and 2 have been reported.

  15. An improved stochastic fractal search algorithm for 3D protein structure prediction.

    PubMed

    Zhou, Changjun; Sun, Chuan; Wang, Bin; Wang, Xiaojun

    2018-05-03

    Protein structure prediction (PSP) is a significant area for biological information research, disease treatment, and drug development and so on. In this paper, three-dimensional structures of proteins are predicted based on the known amino acid sequences, and the structure prediction problem is transformed into a typical NP problem by an AB off-lattice model. This work applies a novel improved Stochastic Fractal Search algorithm (ISFS) to solve the problem. The Stochastic Fractal Search algorithm (SFS) is an effective evolutionary algorithm that performs well in exploring the search space but falls into local minimums sometimes. In order to avoid the weakness, Lvy flight and internal feedback information are introduced in ISFS. In the experimental process, simulations are conducted by ISFS algorithm on Fibonacci sequences and real peptide sequences. Experimental results prove that the ISFS performs more efficiently and robust in terms of finding the global minimum and avoiding getting stuck in local minimums.

  16. Periodic, complexiton solutions and stability for a (2+1)-dimensional variable-coefficient Gross-Pitaevskii equation in the Bose-Einstein condensation

    NASA Astrophysics Data System (ADS)

    Yin, Hui-Min; Tian, Bo; Zhao, Xin-Chao

    2018-06-01

    This paper presents an investigation of a (2 + 1)-dimensional variable-coefficient Gross-Pitaevskii equation in the Bose-Einstein condensation. Periodic and complexiton solutions are obtained. Solitons solutions are also gotten through the periodic solutions. Numerical solutions via the split step method are stable. Effects of the weak and strong modulation instability on the solitons are shown: the weak modulation instability permits an observable soliton, and the strong one overwhelms its development.

  17. Mass gap in the weak coupling limit of (2 +1 )-dimensional SU(2) lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Anishetty, Ramesh; Sreeraj, T. P.

    2018-04-01

    We develop the dual description of (2 +1 )-dimensional SU(2) lattice gauge theory as interacting "Abelian-like" electric loops by using Schwinger bosons. "Point splitting" of the lattice enables us to construct explicit Hilbert space for the gauge invariant theory which in turn makes dynamics more transparent. Using path integral representation in phase space, the interacting closed loop dynamics is analyzed in the weak coupling limit to get the mass gap.

  18. Collective phase description of oscillatory convection

    NASA Astrophysics Data System (ADS)

    Kawamura, Yoji; Nakao, Hiroya

    2013-12-01

    We formulate a theory for the collective phase description of oscillatory convection in Hele-Shaw cells. It enables us to describe the dynamics of the oscillatory convection by a single degree of freedom which we call the collective phase. The theory can be considered as a phase reduction method for limit-cycle solutions in infinite-dimensional dynamical systems, namely, stable time-periodic solutions to partial differential equations, representing the oscillatory convection. We derive the phase sensitivity function, which quantifies the phase response of the oscillatory convection to weak perturbations applied at each spatial point, and analyze the phase synchronization between two weakly coupled Hele-Shaw cells exhibiting oscillatory convection on the basis of the derived phase equations.

  19. Bose-Einstein condensate of rigid rotor molecules

    NASA Astrophysics Data System (ADS)

    Jones, Evan; Smith, Joseph; Rittenhouse, Seth; Peden, Brandon; Wilson, Ryan

    2017-04-01

    We study the ground state phases of a quasi-two-dimensional Bose-Einstein condensate (BEC) of dipolar rigid rotor molecules subject to a DC electric field. In the high-field limit, this system acquires the properties of the fully polarized dipolar BEC, which exhibits a roton-maxon excitation spectrum, and has been thoroughly studied in the theoretical literature. In the weak-field limit, however, qualitatively new physics emerges due to the competition between the (weak) applied field and internal electric fields, which are produced by the molecules themselves. We characterize the ground states of this system, and study its unique dielectric properties. We gratefully acknowledge support from the National Science Foundation under Grant No. PHYS-1516421.

  20. Inter-ribbon tunneling in graphene: An atomistic Bardeen approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van de Put, Maarten L., E-mail: maarten.vandeput@uantwerpen.be; Magnus, Wim; imec, B-3001 Heverlee

    A weakly coupled system of two crossed graphene nanoribbons exhibits direct tunneling due to the overlap of the wavefunctions of both ribbons. We apply the Bardeen transfer Hamiltonian formalism, using atomistic band structure calculations to account for the effect of the atomic structure on the tunneling process. The strong quantum-size confinement of the nanoribbons is mirrored by the one-dimensional character of the electronic structure, resulting in properties that differ significantly from the case of inter-layer tunneling, where tunneling occurs between bulk two-dimensional graphene sheets. The current-voltage characteristics of the inter-ribbon tunneling structures exhibit resonance, as well as stepwise increases inmore » current. Both features are caused by the energetic alignment of one-dimensional peaks in the density-of-states of the ribbons. Resonant tunneling occurs if the sign of the curvature of the coupled energy bands is equal, whereas a step-like increase in the current occurs if the signs are opposite. Changing the doping modulates the onset-voltage of the effects as well as their magnitude. Doping through electrostatic gating makes these structures promising for application towards steep slope switching devices. Using the atomistic empirical pseudopotentials based Bardeen transfer Hamiltonian method, inter-ribbon tunneling can be studied for the whole range of two-dimensional materials, such as transition metal dichalcogenides. The effects of resonance and of step-like increases in the current we observe in graphene ribbons are also expected in ribbons made from these alternative two-dimensional materials, because these effects are manifestations of the one-dimensional character of the density-of-states.« less

  1. Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials

    PubMed Central

    Khanikaev, A. B.; Arju, N.; Fan, Z.; Purtseladze, D.; Lu, F.; Lee, J.; Sarriugarte, P.; Schnell, M.; Hillenbrand, R.; Belkin, M. A.; Shvets, G.

    2016-01-01

    Optical activity and circular dichroism are fascinating physical phenomena originating from the interaction of light with chiral molecules or other nano objects lacking mirror symmetries in three-dimensional (3D) space. While chiral optical properties are weak in most of naturally occurring materials, they can be engineered and significantly enhanced in synthetic optical media known as chiral metamaterials, where the spatial symmetry of their building blocks is broken on a nanoscale. Although originally discovered in 3D structures, circular dichroism can also emerge in a two-dimensional (2D) metasurface. The origin of the resulting circular dichroism is rather subtle, and is related to non-radiative (Ohmic) dissipation of the constituent metamolecules. Because such dissipation occurs on a nanoscale, this effect has never been experimentally probed and visualized. Using a suite of recently developed nanoscale-measurement tools, we establish that the circular dichroism in a nanostructured metasurface occurs due to handedness-dependent Ohmic heating. PMID:27329108

  2. Magnetic Interactions at the Nanoscale in Trilayer Titanates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yanwei; Yang, Zhenzhong; Kareev, M.

    2016-02-17

    We report on the phase diagram of competing magnetic interactions at the nanoscale in engineered ultrathin trilayer heterostructures of LaTiO3/SrTiO3/YTiO3, in which the interfacial inversion symmetry is explicitly broken. Combined atomic layer resolved scanning transmission electron microscopy with electron energy loss spectroscopy and electrical transport have confirmed the formation of a spatially separated two-dimensional electron liquid and high density two-dimensional localized magnetic moments at the LaTiO3/SrTiO3 and SrTiO3/YTiO3 interfaces, respectively. Resonant soft x-ray linear dichroism spectroscopy has demonstrated the presence of orbital polarization of the conductive LaTiO3/SrTiO3 and localized SrTiO3/YTiO3 electrons. Our results provide a route with prospects for exploringmore » new magnetic interfaces, designing a tunable two-dimensional d-electron Kondo lattice, and potential spin Hall applications.« less

  3. Nocturnal Near-Surface Temperature, but not Flow Dynamics, can be Predicted by Microtopography in a Mid-Range Mountain Valley

    NASA Astrophysics Data System (ADS)

    Pfister, Lena; Sigmund, Armin; Olesch, Johannes; Thomas, Christoph K.

    2017-11-01

    We investigate nocturnal flow dynamics and temperature behaviour near the surface of a 170-m long gentle slope in a mid-range mountain valley. In contrast to many existing studies focusing on locations with significant topographic variations, gentle slopes cover a greater spatial extent of the Earth's surface. Air temperatures were measured using the high-resolution distributed-temperature-sensing method within a two-dimensional fibre-optic array in the lowest metre above the surface. The main objectives are to characterize the spatio-temporal patterns in the near-surface temperature and flow dynamics, and quantify their responses to the microtopography and land cover. For the duration of the experiment, including even clear-sky nights with weak winds and strong radiative forcing, the classical cold-air drainage predicted by theory could not be detected. In contrast, we show that the airflow for the two dominant flow modes originates non-locally. The most abundant flow mode is characterized by vertically-decoupled layers featuring a near-surface flow perpendicular to the slope and strong stable stratification, which contradicts the expectation of a gravity-driven downslope flow of locally produced cold air. Differences in microtopography and land cover clearly affect spatio-temporal temperature perturbations. The second most abundant flow mode is characterized by strong mixing, leading to vertical coupling with airflow directed down the local slope. Here variations of microtopography and land cover lead to negligible near-surface temperature perturbations. We conclude that spatio-temporal temperature perturbations, but not flow dynamics, can be predicted by microtopography, which complicates the prediction of advective-heat components and the existence and dynamics of cold-air pools in gently sloped terrain in the absence of observations.

  4. Research Capacity and Dissemination among Academics in Tanzania: Examining Knowledge Production and the Perceived Binary of 'Local' and 'International' Journals

    ERIC Educational Resources Information Center

    Thomas, Matthew A. M.

    2018-01-01

    This article explores two distinct strategies suggested by academics in Tanzania for publishing and disseminating their research amidst immense higher education expansion. It draws on Arjun Appadurai's notions of 'strong' and 'weak' internationalisation to analyse the perceived binary between 'international' and 'local' academic journals and their…

  5. The role of local repulsion in superconductivity in the Hubbard-Holstein model

    NASA Astrophysics Data System (ADS)

    Lin, Chungwei; Wang, Bingnan; Teo, Koon Hoo

    2017-01-01

    We examine the superconducting solution in the Hubbard-Holstein model using Dynamical Mean Field Theory. The Holstein term introduces the site-independent Boson fields coupling to local electron density, and has two competing influences on superconductivity: The Boson field mediates the effective electron-electron attraction, which is essential for the S-wave electron pairing; the same coupling to the Boson fields also induces the polaron effect, which makes the system less metallic and thus suppresses superconductivity. The Hubbard term introduces an energy penalty U when two electrons occupy the same site, which is expected to suppress superconductivity. By solving the Hubbard-Holstein model using Dynamical Mean Field theory, we find that the Hubbard U can be beneficial to superconductivity under some circumstances. In particular, we demonstrate that when the Boson energy Ω is small, a weak local repulsion actually stabilizesthe S-wave superconducting state. This behavior can be understood as an interplay between superconductivity, the polaron effect, and the on-site repulsion: As the polaron effect is strong and suppresses superconductivity in the small Ω regime, the weak on-site repulsion reduces the polaron effect and effectively enhances superconductivity. Our calculation elucidates the role of local repulsion in the conventional S-wave superconductors.

  6. Lagrangian statistics in weakly forced two-dimensional turbulence.

    PubMed

    Rivera, Michael K; Ecke, Robert E

    2016-01-01

    Measurements of Lagrangian single-point and multiple-point statistics in a quasi-two-dimensional stratified layer system are reported. The system consists of a layer of salt water over an immiscible layer of Fluorinert and is forced electromagnetically so that mean-squared vorticity is injected at a well-defined spatial scale ri. Simultaneous cascades develop in which enstrophy flows predominately to small scales whereas energy cascades, on average, to larger scales. Lagrangian correlations and one- and two-point displacements are measured for random initial conditions and for initial positions within topological centers and saddles. Some of the behavior of these quantities can be understood in terms of the trapping characteristics of long-lived centers, the slow motion near strong saddles, and the rapid fluctuations outside of either centers or saddles. We also present statistics of Lagrangian velocity fluctuations using energy spectra in frequency space and structure functions in real space. We compare with complementary Eulerian velocity statistics. We find that simultaneous inverse energy and enstrophy ranges present in spectra are not directly echoed in real-space moments of velocity difference. Nevertheless, the spectral ranges line up well with features of moment ratios, indicating that although the moments are not exhibiting unambiguous scaling, the behavior of the probability distribution functions is changing over short ranges of length scales. Implications for understanding weakly forced 2D turbulence with simultaneous inverse and direct cascades are discussed.

  7. A spherical model for orientation and spatial-frequency tuning in a cortical hypercolumn.

    PubMed Central

    Bressloff, Paul C; Cowan, Jack D

    2003-01-01

    A theory is presented of the way in which the hypercolumns in primary visual cortex (V1) are organized to detect important features of visual images, namely local orientation and spatial-frequency. Given the existence in V1 of dual maps for these features, both organized around orientation pinwheels, we constructed a model of a hypercolumn in which orientation and spatial-frequency preferences are represented by the two angular coordinates of a sphere. The two poles of this sphere are taken to correspond, respectively, to high and low spatial-frequency preferences. In Part I of the paper, we use mean-field methods to derive exact solutions for localized activity states on the sphere. We show how cortical amplification through recurrent interactions generates a sharply tuned, contrast-invariant population response to both local orientation and local spatial frequency, even in the case of a weakly biased input from the lateral geniculate nucleus (LGN). A major prediction of our model is that this response is non-separable with respect to the local orientation and spatial frequency of a stimulus. That is, orientation tuning is weaker around the pinwheels, and there is a shift in spatial-frequency tuning towards that of the closest pinwheel at non-optimal orientations. In Part II of the paper, we demonstrate that a simple feed-forward model of spatial-frequency preference, unlike that for orientation preference, does not generate a faithful representation when amplified by recurrent interactions in V1. We then introduce the idea that cortico-geniculate feedback modulates LGN activity to generate a faithful representation, thus providing a new functional interpretation of the role of this feedback pathway. Using linear filter theory, we show that if the feedback from a cortical cell is taken to be approximately equal to the reciprocal of the corresponding feed-forward receptive field (in the two-dimensional Fourier domain), then the mismatch between the feed-forward and cortical frequency representations is eliminated. We therefore predict that cortico-geniculate feedback connections innervate the LGN in a pattern determined by the orientation and spatial-frequency biases of feed-forward receptive fields. Finally, we show how recurrent cortical interactions can generate cross-orientation suppression. PMID:14561324

  8. Weak signal transmission in complex networks and its application in detecting connectivity.

    PubMed

    Liang, Xiaoming; Liu, Zonghua; Li, Baowen

    2009-10-01

    We present a network model of coupled oscillators to study how a weak signal is transmitted in complex networks. Through both theoretical analysis and numerical simulations, we find that the response of other nodes to the weak signal decays exponentially with their topological distance to the signal source and the coupling strength between two neighboring nodes can be figured out by the responses. This finding can be conveniently used to detect the topology of unknown network, such as the degree distribution, clustering coefficient and community structure, etc., by repeatedly choosing different nodes as the signal source. Through four typical networks, i.e., the regular one dimensional, small world, random, and scale-free networks, we show that the features of network can be approximately given by investigating many fewer nodes than the network size, thus our approach to detect the topology of unknown network may be efficient in practical situations with large network size.

  9. Designing perturbative metamaterials from discrete models.

    PubMed

    Matlack, Kathryn H; Serra-Garcia, Marc; Palermo, Antonio; Huber, Sebastian D; Daraio, Chiara

    2018-04-01

    Identifying material geometries that lead to metamaterials with desired functionalities presents a challenge for the field. Discrete, or reduced-order, models provide a concise description of complex phenomena, such as negative refraction, or topological surface states; therefore, the combination of geometric building blocks to replicate discrete models presenting the desired features represents a promising approach. However, there is no reliable way to solve such an inverse problem. Here, we introduce 'perturbative metamaterials', a class of metamaterials consisting of weakly interacting unit cells. The weak interaction allows us to associate each element of the discrete model with individual geometric features of the metamaterial, thereby enabling a systematic design process. We demonstrate our approach by designing two-dimensional elastic metamaterials that realize Veselago lenses, zero-dispersion bands and topological surface phonons. While our selected examples are within the mechanical domain, the same design principle can be applied to acoustic, thermal and photonic metamaterials composed of weakly interacting unit cells.

  10. Spatial solitons and stability in the one-dimensional and the two-dimensional generalized nonlinear Schrödinger equation with fourth-order diffraction and parity-time-symmetric potentials

    NASA Astrophysics Data System (ADS)

    Tiofack, C. G. L.; Ndzana, F., II; Mohamadou, A.; Kofane, T. C.

    2018-03-01

    We investigate the existence and stability of solitons in parity-time (PT )-symmetric optical media characterized by a generic complex hyperbolic refractive index distribution and fourth-order diffraction (FOD). For the linear case, we demonstrate numerically that the FOD parameter can alter the PT -breaking points. For nonlinear cases, the exact analytical expressions of the localized modes are obtained both in one- and two-dimensional nonlinear Schrödinger equations with self-focusing and self-defocusing Kerr nonlinearity. The effect of FOD on the stability structure of these localized modes is discussed with the help of linear stability analysis followed by the direct numerical simulation of the governing equation. Examples of stable and unstable solutions are given. The transverse power flow density associated with these localized modes is also discussed. It is found that the relative strength of the FOD coefficient can utterly change the direction of the power flow, which may be used to control the energy exchange among gain or loss regions.

  11. Surface operators, chiral rings and localization in N =2 gauge theories

    NASA Astrophysics Data System (ADS)

    Ashok, S. K.; Billò, M.; Dell'Aquila, E.; Frau, M.; Gupta, V.; John, R. R.; Lerda, A.

    2017-11-01

    We study half-BPS surface operators in supersymmetric gauge theories in four and five dimensions following two different approaches. In the first approach we analyze the chiral ring equations for certain quiver theories in two and three dimensions, coupled respectively to four- and five-dimensional gauge theories. The chiral ring equations, which arise from extremizing a twisted chiral superpotential, are solved as power series in the infrared scales of the quiver theories. In the second approach we use equivariant localization and obtain the twisted chiral superpotential as a function of the Coulomb moduli of the four- and five-dimensional gauge theories, and find a perfect match with the results obtained from the chiral ring equations. In the five-dimensional case this match is achieved after solving a number of subtleties in the localization formulas which amounts to choosing a particular residue prescription in the integrals that yield the Nekrasov-like partition functions for ramified instantons. We also comment on the necessity of including Chern-Simons terms in order to match the superpotentials obtained from dual quiver descriptions of a given surface operator.

  12. Three-Particle Complexes in Two-Dimensional Semiconductors

    NASA Astrophysics Data System (ADS)

    Ganchev, Bogdan; Drummond, Neil; Aleiner, Igor; Fal'ko, Vladimir

    2015-03-01

    We evaluate binding energies of trions X±, excitons bound by a donor or acceptor charge XD (A ) , and overcharged acceptors or donors in two-dimensional atomic crystals by mapping the three-body problem in two dimensions onto one particle in a three-dimensional potential treatable by a purposely developed boundary-matching-matrix method. We find that in monolayers of transition metal dichalcogenides the dissociation energy of X± is typically much larger than that of localized exciton complexes, so that trions are more resilient to heating, despite the fact that their recombination line in optics is less redshifted from the exciton line than the line of XD (A ) .

  13. Re-forming supercritical quasi-parallel shocks. I - One- and two-dimensional simulations

    NASA Technical Reports Server (NTRS)

    Thomas, V. A.; Winske, D.; Omidi, N.

    1990-01-01

    The process of reforming supercritical quasi-parallel shocks is investigated using one-dimensional and two-dimensional hybrid (particle ion, massless fluid electron) simulations both of shocks and of simpler two-stream interactions. It is found that the supercritical quasi-parallel shock is not steady. Instread of a well-defined shock ramp between upstream and downstream states that remains at a fixed position in the flow, the ramp periodically steepens, broadens, and then reforms upstream of its former position. It is concluded that the wave generation process is localized at the shock ramp and that the reformation process proceeds in the absence of upstream perturbations intersecting the shock.

  14. Conical wave propagation and diffraction in two-dimensional hexagonally packed granular lattices

    DOE PAGES

    Chong, C.; Kevrekidis, P. G.; Ablowitz, M. J.; ...

    2016-01-25

    We explore linear and nonlinear mechanisms for conical wave propagation in two-dimensional lattices in the realm of phononic crystals. As a prototypical example, a statically compressed granular lattice of spherical particles arranged in a hexagonal packing configuration is analyzed. Upon identifying the dispersion relation of the underlying linear problem, the resulting diffraction properties are considered. Analysis both via a heuristic argument for the linear propagation of a wave packet and via asymptotic analysis leading to the derivation of a Dirac system suggests the occurrence of conical diffraction. This analysis is valid for strong precompression, i.e., near the linear regime. Formore » weak precompression, conical wave propagation is still possible, but the resulting expanding circular wave front is of a nonoscillatory nature, resulting from the complex interplay among the discreteness, nonlinearity, and geometry of the packing. Lastly, the transition between these two types of propagation is explored.« less

  15. Semiclassical magnetotransport in strongly spin-orbit coupled Rashba two-dimensional electron systems.

    PubMed

    Xiao, Cong; Li, Dingping

    2016-06-15

    Semiclassical magnetoelectric and magnetothermoelectric transport in strongly spin-orbit coupled Rashba two-dimensional electron systems is investigated. In the presence of a perpendicular classically weak magnetic field and short-range impurity scattering, we solve the linearized Boltzmann equation self-consistently. Using the solution, it is found that when Fermi energy E F locates below the band crossing point (BCP), the Hall coefficient is a nonmonotonic function of electron density n e and not inversely proportional to n e. While the magnetoresistance (MR) and Nernst coefficient vanish when E F locates above the BCP, non-zero MR and enhanced Nernst coefficient emerge when E F decreases below the BCP. Both of them are nonmonotonic functions of E F below the BCP. The different semiclassical magnetotransport behaviors between the two sides of the BCP can be helpful to experimental identifications of the band valley regime and topological change of Fermi surface in considered systems.

  16. Semiclassical magnetotransport in strongly spin-orbit coupled Rashba two-dimensional electron systems

    NASA Astrophysics Data System (ADS)

    Xiao, Cong; Li, Dingping

    2016-06-01

    Semiclassical magnetoelectric and magnetothermoelectric transport in strongly spin-orbit coupled Rashba two-dimensional electron systems is investigated. In the presence of a perpendicular classically weak magnetic field and short-range impurity scattering, we solve the linearized Boltzmann equation self-consistently. Using the solution, it is found that when Fermi energy E F locates below the band crossing point (BCP), the Hall coefficient is a nonmonotonic function of electron density n e and not inversely proportional to n e. While the magnetoresistance (MR) and Nernst coefficient vanish when E F locates above the BCP, non-zero MR and enhanced Nernst coefficient emerge when E F decreases below the BCP. Both of them are nonmonotonic functions of E F below the BCP. The different semiclassical magnetotransport behaviors between the two sides of the BCP can be helpful to experimental identifications of the band valley regime and topological change of Fermi surface in considered systems.

  17. General theoretical description of angle-resolved photoemission spectroscopy of van der Waals structures

    NASA Astrophysics Data System (ADS)

    Amorim, B.

    2018-04-01

    We develop a general theory to model the angle-resolved photoemission spectroscopy (ARPES) of commensurate and incommensurate van der Waals (vdW) structures, formed by lattice mismatched and/or misaligned stacked layers of two-dimensional materials. The present theory is based on a tight-binding description of the structure and the concept of generalized umklapp processes, going beyond previous descriptions of ARPES in incommensurate vdW structures, which are based on continuous, low-energy models, being limited to structures with small lattice mismatch/misalignment. As applications of the general formalism, we study the ARPES bands and constant energy maps for two structures: twisted bilayer graphene and twisted bilayer MoS2. The present theory should be useful in correctly interpreting experimental results of ARPES of vdW structures and other systems displaying competition between different periodicities, such as two-dimensional materials weakly coupled to a substrate and materials with density wave phases.

  18. Laser-pulse compression in a collisional plasma under weak-relativistic ponderomotive nonlinearity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Mamta; Gupta, D. N., E-mail: dngupta@physics.du.ac.in

    We present theory and numerical analysis which demonstrate laser-pulse compression in a collisional plasma under the weak-relativistic ponderomotive nonlinearity. Plasma equilibrium density is modified due to the ohmic heating of electrons, the collisions, and the weak relativistic-ponderomotive force during the interaction of a laser pulse with plasmas. First, within one-dimensional analysis, the longitudinal self-compression mechanism is discussed. Three-dimensional analysis (spatiotemporal) of laser pulse propagation is also investigated by coupling the self-compression with the self-focusing. In the regime in which the laser becomes self-focused due to the weak relativistic-ponderomotive nonlinearity, we provide results for enhanced pulse compression. The results show thatmore » the matched interplay between self-focusing and self-compression can improve significantly the temporal profile of the compressed pulse. Enhanced pulse compression can be achieved by optimizing and selecting the parameters such as collision frequency, ion-temperature, and laser intensity.« less

  19. Quasi-one-dimensional magnetism in MnxFe1-xNb2O6 compounds: From Heisenberg to Ising chains

    NASA Astrophysics Data System (ADS)

    Hneda, M. L.; Oliveira Neto, S. R.; da Cunha, J. B. M.; Gusmão, M. A.; Isnard, O.

    2018-06-01

    A series of MnxFe1-xNb2O6 compounds (0 ⩽ x ⩽ 1) is investigated by both X-ray and neutron powder diffraction, as well as specific-heat and magnetic measurements. The samples present orthorhombic Pbcn crystal symmetry, and exhibit weakly coupled magnetic chains. These chains are of Heisenberg type (weak anisotropy) on the Mn-rich side, and Ising-like (strong anisotropy) on the Fe-rich side. Except for 100% Fe (x = 0) , which has weakly-interacting ferromagnetic Ising chains, a negative Curie-Weiss temperature is obtained from the magnetic susceptibility, indicating dominant antiferromagnetic interactions. At the lowest probed temperature, T = 1.5K , true long-range magnetic order is only observed for x = 1 , 0.8, and 0. Although the ordering is globally antiferromagnetic in all cases, the first two are characterized by a two-sublattice structure with propagation vector k = (0, 0, 0) , while the latter presents alternatingly oriented ferromagnetic chains described by k = (0,1/2, 0) . For other compositions, short-range magnetic correlations are extracted from diffuse neutron-scattering data.

  20. Topological entanglement entropy of fracton stabilizer codes

    NASA Astrophysics Data System (ADS)

    Ma, Han; Schmitz, A. T.; Parameswaran, S. A.; Hermele, Michael; Nandkishore, Rahul M.

    2018-03-01

    Entanglement entropy provides a powerful characterization of two-dimensional gapped topological phases of quantum matter, intimately tied to their description by topological quantum field theories (TQFTs). Fracton topological orders are three-dimensional gapped topologically ordered states of matter that lack a TQFT description. We show that three-dimensional fracton phases are nevertheless characterized, at least partially, by universal structure in the entanglement entropy of their ground-state wave functions. We explicitly compute the entanglement entropy for two archetypal fracton models, the "X-cube model" and "Haah's code," and demonstrate the existence of a nonlocal contribution that scales linearly in subsystem size. We show via Schrieffer-Wolff transformations that this piece of the entanglement entropy of fracton models is robust against arbitrary local perturbations of the Hamiltonian. Finally, we argue that these results may be extended to characterize localization-protected fracton topological order in excited states of disordered fracton models.

Top