Active microwave remote sensing of an anisotropic random medium layer
NASA Technical Reports Server (NTRS)
Lee, J. K.; Kong, J. A.
1985-01-01
A two-layer anisotropic random medium model has been developed to study the active remote sensing of the earth. The dyadic Green's function for a two-layer anisotropic medium is developed and used in conjunction with the first-order Born approximation to calculate the backscattering coefficients. It is shown that strong cross-polarization occurs in the single scattering process and is indispensable in the interpretation of radar measurements of sea ice at different frequencies, polarizations, and viewing angles. The effects of anisotropy on the angular responses of backscattering coefficients are also illustrated.
Passive microwave remote sensing of an anisotropic random-medium layer
NASA Technical Reports Server (NTRS)
Lee, J. K.; Kong, J. A.
1985-01-01
The principle of reciprocity is invoked to calculate the brightness temperatures for passive microwave remote sensing of a two-layer anisotropic random medium. The bistatic scattering coefficients are first computed with the Born approximation and then integrated over the upper hemisphere to be subtracted from unity, in order to obtain the emissivity for the random-medium layer. The theoretical results are illustrated by plotting the emissivities as functions of viewing angles and polarizations. They are used to interpret remote sgnsing data obtained from vegetation canopy where the anisotropic random-medium model applies. Field measurements with corn stalks arranged in various configurations with preferred azimuthal directions are successfully interpreted with this model.
Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2
NASA Astrophysics Data System (ADS)
Qiao, Xiao-Fen; Wu, Jiang-Bin; Zhou, Linwei; Qiao, Jingsi; Shi, Wei; Chen, Tao; Zhang, Xin; Zhang, Jun; Ji, Wei; Tan, Ping-Heng
2016-04-01
Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and anisotropic-like (AI) N layer (NL, N > 1) ReS2 are revealed by ultralow- and high-frequency Raman spectroscopy, photoluminescence and first-principles density functional theory calculation. Two interlayer shear modes are observed in AI-NL-ReS2 while only one shear mode appears in IS-NL-ReS2, suggesting anisotropic- and isotropic-like stacking orders in IS- and AI-NL-ReS2, respectively. This explicit difference in the observed frequencies identifies an unexpected strong interlayer coupling in IS- and AI-NL-ReS2. Quantitatively, the force constants of them are found to be around 55-90% of those of multilayer MoS2. The revealed strong interlayer coupling and polytypism in multi-layer ReS2 may stimulate future studies on engineering physical properties of other anisotropic 2D materials by stacking orders.Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and anisotropic-like (AI) N layer (NL, N > 1) ReS2 are revealed by ultralow- and high-frequency Raman spectroscopy, photoluminescence and first-principles density functional theory calculation. Two interlayer shear modes are observed in AI-NL-ReS2 while only one shear mode appears in IS-NL-ReS2, suggesting anisotropic- and isotropic-like stacking orders in IS- and AI-NL-ReS2, respectively. This explicit difference in the observed frequencies identifies an unexpected strong interlayer coupling in IS- and AI-NL-ReS2. Quantitatively, the force constants of them are found to be around 55-90% of those of multilayer MoS2. The revealed strong interlayer coupling and polytypism in multi-layer ReS2 may stimulate future studies on engineering physical properties of other anisotropic 2D materials by stacking orders. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01569g
Mean dyadic Green's function for a two layer random medium
NASA Technical Reports Server (NTRS)
Zuniga, M. A.
1981-01-01
The mean dyadic Green's function for a two-layer random medium with arbitrary three-dimensional correlation functions has been obtained with the zeroth-order solution to the Dyson equation by applying the nonlinear approximation. The propagation of the coherent wave in the random medium is similar to that in an anisotropic medium with different propagation constants for the characteristic transverse electric and transverse magnetic polarizations. In the limit of a laminar structure, two propagation constants for each polarization are found to exist.
A Model with Ellipsoidal Scatterers for Polarimetric Remote Sensing of Anisotropic Layered Media
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Kwok, R.; Kong, J. A.; Shin, R. T.
1993-01-01
This paper presents a model with ellipsoidal scatterers for applications to polarimetric remote sensing of anisotropic layered media at microwave frequencies. The physical configuration includes an isotropic layer covering an anisotropic layer above a homogeneous half space. The isotropic layer consists of randomly oriented spheroids. The anisotropic layer contains ellipsoidal scatterers with a preferential vertical alignment and random azimuthal orientations. Effective permittivities of the scattering media are calculated with the strong fluctuation theory extended to account for the nonspherical shapes and the scatterer orientation distributions. On the basis of the analytic wave theory, dyadic Green's functions for layered media are used to derive polarimetric backscattering coefficients under the distorted Born approximation. The ellipsoidal shape of the scatterers gives rise to nonzero cross-polarized returns from the untilted anisotropic medium in the first-order approximation. Effects of rough interfaces are estimated by an incoherent addition method. Theoretical results and experimental data are matched at 9 GHz for thick first-year sea ice with a bare surface and with a snow cover at Point Barrow, Alaska. The model is then used to study the sensitivity of polarimetric backscattering coefficients with respect to correlation lengths representing the geometry of brine inclusions. Polarimetric signatures of bare and snow-covered sea ice are also simulated based on the model to investigate effects of different scattering mechanisms.
van der Waals torque and force between dielectrically anisotropic layered media.
Lu, Bing-Sui; Podgornik, Rudolf
2016-07-28
We analyse van der Waals interactions between a pair of dielectrically anisotropic plane-layered media interacting across a dielectrically isotropic solvent medium. We develop a general formalism based on transfer matrices to investigate the van der Waals torque and force in the limit of weak birefringence and dielectric matching between the ordinary axes of the anisotropic layers and the solvent. We apply this formalism to study the following systems: (i) a pair of single anisotropic layers, (ii) a single anisotropic layer interacting with a multilayered slab consisting of alternating anisotropic and isotropic layers, and (iii) a pair of multilayered slabs each consisting of alternating anisotropic and isotropic layers, looking at the cases where the optic axes lie parallel and/or perpendicular to the plane of the layers. For the first case, the optic axes of the oppositely facing anisotropic layers of the two interacting slabs generally possess an angular mismatch, and within each multilayered slab the optic axes may either be the same or undergo constant angular increments across the anisotropic layers. In particular, we examine how the behaviors of the van der Waals torque and force can be "tuned" by adjusting the layer thicknesses, the relative angular increment within each slab, and the angular mismatch between the slabs.
Remote sensing of Earth terrain
NASA Technical Reports Server (NTRS)
Kong, Jin AU
1987-01-01
Earth terrain covers were modeled as random media characterized by different dielectric constants and correlation functions. In order to model sea ice with brine inclusions and vegetation with row structures, the random medium is assumed to be anisotropic. A three layer model is used to simulate a vegetation field or a snow covered ice field with the top layer being snow or leaves, the middle layer being ice or trunks, and the bottom layer being sea water or ground. The strong fluctuation theory with the distorted Born approximation is applied to the solution of the radar backscattering coefficients.
NASA Astrophysics Data System (ADS)
Csáki, Endre; Csörgő, Miklós; Földes, Antónia; Révész, Pál
2018-04-01
We consider random walks on the square lattice of the plane along the lines of Heyde (J Stat Phys 27:721-730, 1982, Stochastic processes, Springer, New York, 1993) and den Hollander (J Stat Phys 75:891-918, 1994), whose studies have in part been inspired by the so-called transport phenomena of statistical physics. Two-dimensional anisotropic random walks with anisotropic density conditions á la Heyde (J Stat Phys 27:721-730, 1982, Stochastic processes, Springer, New York, 1993) yield fixed column configurations and nearest-neighbour random walks in a random environment on the square lattice of the plane as in den Hollander (J Stat Phys 75:891-918, 1994) result in random column configurations. In both cases we conclude simultaneous weak Donsker and strong Strassen type invariance principles in terms of appropriately constructed anisotropic Brownian motions on the plane, with self-contained proofs in both cases. The style of presentation throughout will be that of a semi-expository survey of related results in a historical context.
NASA Astrophysics Data System (ADS)
Csáki, Endre; Csörgő, Miklós; Földes, Antónia; Révész, Pál
2018-06-01
We consider random walks on the square lattice of the plane along the lines of Heyde (J Stat Phys 27:721-730, 1982, Stochastic processes, Springer, New York, 1993) and den Hollander (J Stat Phys 75:891-918, 1994), whose studies have in part been inspired by the so-called transport phenomena of statistical physics. Two-dimensional anisotropic random walks with anisotropic density conditions á la Heyde (J Stat Phys 27:721-730, 1982, Stochastic processes, Springer, New York, 1993) yield fixed column configurations and nearest-neighbour random walks in a random environment on the square lattice of the plane as in den Hollander (J Stat Phys 75:891-918, 1994) result in random column configurations. In both cases we conclude simultaneous weak Donsker and strong Strassen type invariance principles in terms of appropriately constructed anisotropic Brownian motions on the plane, with self-contained proofs in both cases. The style of presentation throughout will be that of a semi-expository survey of related results in a historical context.
NASA Astrophysics Data System (ADS)
Chanyshev, AI; Abdulin, IM
2018-03-01
Two problems are solved in the paper: on ultimate loads in the initial stage of indentation of an absolutely rigid smooth wedge into a layer of an initially anisotropic plastic medium and in the final stage when the tool penetrates through the layer. The problems are solved with Chanyshev’s constitutive relations of plasticity of the initially anisotropic medium based on use of the eigen elasticity tensors.
Optical transmission properties of an anisotropic defect cavity in one-dimensional photonic crystal
NASA Astrophysics Data System (ADS)
Ouchani, Noama; El Moussaouy, Abdelaziz; Aynaou, Hassan; El Hassouani, Youssef; El Boudouti, El Houssaine; Djafari-Rouhani, Bahram
2018-01-01
We investigate theoretically the possibility to control the optical transmission in the visible and infrared regions by a defective one dimensional photonic crystal formed by a combination of a finite isotropic superlattice and an anisotropic defect layer. The Green's function approach has been used to derive the reflection and the transmission coefficients, as well as the densities of states of the optical modes. We evaluate the delay times of the localized modes and we compare their behavior with the total densities of states. We show that the birefringence of an anisotropic defect layer has a significant impact on the behavior of the optical modes in the electromagnetic forbidden bands of the structure. The amplitudes of the defect modes in the transmission and the delay time spectrum, depend strongly on the position of the cavity layer within the photonic crystal. The anisotropic defect layer induces transmission zeros in one of the two components of the transmission as a consequence of a destructive interference of the two polarized waves within this layer, giving rise to negative delay times for some wavelengths in the visible and infrared light ranges. This property is a typical characteristic of the anisotropic photonic layer and is without analogue in their counterpart isotropic defect layers. This structure offers several possibilities for controlling the frequencies, transmitted intensities and the delay times of the optical modes in the visible and infrared regions. It can be a good candidate for realizing high-precision optical filters.
NASA Astrophysics Data System (ADS)
Pekşen, Ertan; Yas, Türker; Kıyak, Alper
2014-09-01
We examine the one-dimensional direct current method in anisotropic earth formation. We derive an analytic expression of a simple, two-layered anisotropic earth model. Further, we also consider a horizontally layered anisotropic earth response with respect to the digital filter method, which yields a quasi-analytic solution over anisotropic media. These analytic and quasi-analytic solutions are useful tests for numerical codes. A two-dimensional finite difference earth model in anisotropic media is presented in order to generate a synthetic data set for a simple one-dimensional earth. Further, we propose a particle swarm optimization method for estimating the model parameters of a layered anisotropic earth model such as horizontal and vertical resistivities, and thickness. The particle swarm optimization is a naturally inspired meta-heuristic algorithm. The proposed method finds model parameters quite successfully based on synthetic and field data. However, adding 5 % Gaussian noise to the synthetic data increases the ambiguity of the value of the model parameters. For this reason, the results should be controlled by a number of statistical tests. In this study, we use probability density function within 95 % confidence interval, parameter variation of each iteration and frequency distribution of the model parameters to reduce the ambiguity. The result is promising and the proposed method can be used for evaluating one-dimensional direct current data in anisotropic media.
Enhanced Raman Scattering on In-plane Anisotropic Layered Materials
Liang, Liangbo; Meunier, Vincent; Sumpter, Bobby G.; ...
2015-11-19
Surface-enhanced Raman scattering (SERS) on two-dimensional (2D) layered materials has provided a unique platform to study the chemical mechanism (CM) of the enhancement due to its natural separation from electromagnetic enhancement. The CM stems from the basic charge interactions between the substrate and molecules. Despite the extensive studies of the energy alignment between 2D materials and molecules, an understanding of how the electronic properties of the substrate are explicitly involved in the charge interaction is still unclear. Lately, a new group of 2D layered materials with anisotropic structure, including orthorhombic black phosphorus (BP) and triclinic rhenium disulphide (ReS2), has attractedmore » great interest due to their unique anisotropic electrical and optical properties. Herein, we report a unique anisotropic Raman enhancement on few-layered BP and ReS2 using copper phthalocyanine (CuPc) molecules as a Raman probe, which is absent on isotropic graphene and h-BN. According to detailed Raman tensor analysis and density functional theory calculations, anisotropic charge interactions due to the anisotropic carrier mobilities of the 2D materials are responsible for the angular dependence of the Raman enhancement. Our findings not only provide new insights into the CM process in SERS, but also open up new avenues for the exploration and application of the electronic properties of anisotropic 2D layered materials.« less
A Study for Anisotropic Wavefield Analysis with Elastic Layered Models
NASA Astrophysics Data System (ADS)
Yoneki, R.; Mikada, H.; Takekawa, J.
2015-12-01
Subsurface materials are generally anisotropic due to complicated geological conditions, for example, sedimentary materials, fractures reflecting various stress conditions in the past and present in the subsurface. There are many studies on seismic wave propagation in TI (transversely isotropic) and orthorhombic media (e.g., Thomsen, 1986; Alkhalifah, 2000; Bansal and Sen, 2008). In most of those studies, the magnitude of anisotropy is assumed to be weak. Therefore, it may be not appropriate to apply their theories directly to strongly anisotropic subsurface media in seismic exploration. It is necessary to understand the effects of the anisotropy on the behavior of seismic wave propagation in strongly anisotropic media in the seismic exploration. In this study, we investigate the influence of strong anisotropy on received seismic waveforms using three-dimensional numerical models, and verified capability of detecting subsurface anisotropy. Our numerical models contain an isotropic and an anisotropic (VTI, transversely isotropic media with vertical symmetry axis) layer, respectively, in the isotropic background subsurface. Since the difference between the two models is only the anisotropy in the vertical propagation velocity, we could look at the influence of anisotropy in the residual wavefield that is the difference in the observed wavefields of two models. We analyzed the orbital motions of the residual wavefield to see what kind of wave motions the waveforms show. We found that the residual waveforms generated by the anisotropic layer include the orbital motions of shear waves right after the first arrival, i.e., mode conversion from the compressional waves due to the anisotropy. The residual waveforms could be exploited to estimate both the order of anisotropy and the thickness of anisotropic layer in subsurface.
Probing in-plane anisotropy in few-layer ReS2 using low frequency noise measurement.
Mitra, Richa; Jariwala, Bhakti; Bhattacharya, Arnab; Das, Anindya
2018-02-19
ReS 2 , a layered two-dimensional material popular for its in-plane anisotropic properties, is emerging as one of the potential candidates for flexible electronics and ultrafast optical applications. It is an n-type semiconducting material having a layer independent bandgap of 1.55 eV. In this paper we have characterized the intrinsic electronic noise level of few-layer ReS 2 for the first time. Few-layer ReS 2 field effect transistor devices show a 1/f nature of noise for frequency ranging over three orders of magnitude. We have also observed that not only the electrical response of the material is anisotropic; the noise level is also dependent on direction. In fact the noise is found to be more sensitive towards the anisotropy. This fact has been explained by evoking the theory where the Hooge parameter is not a constant quantity, but has a distinct power law dependence on mobility along the two-axes direction. The anisotropy in 1/f noise measurement will pave the way to quantify the anisotropic nature of two-dimensional (2D) materials, which will be helpful for the design of low-noise transistors in future.
Probing in-plane anisotropy in few-layer ReS2 using low frequency noise measurement
NASA Astrophysics Data System (ADS)
Mitra, Richa; Jariwala, Bhakti; Bhattacharya, Arnab; Das, Anindya
2018-04-01
ReS2, a layered two-dimensional material popular for its in-plane anisotropic properties, is emerging as one of the potential candidates for flexible electronics and ultrafast optical applications. It is an n-type semiconducting material having a layer independent bandgap of 1.55 eV. In this paper we have characterized the intrinsic electronic noise level of few-layer ReS2 for the first time. Few-layer ReS2 field effect transistor devices show a 1/f nature of noise for frequency ranging over three orders of magnitude. We have also observed that not only the electrical response of the material is anisotropic; the noise level is also dependent on direction. In fact the noise is found to be more sensitive towards the anisotropy. This fact has been explained by evoking the theory where the Hooge parameter is not a constant quantity, but has a distinct power law dependence on mobility along the two-axes direction. The anisotropy in 1/f noise measurement will pave the way to quantify the anisotropic nature of two-dimensional (2D) materials, which will be helpful for the design of low-noise transistors in future.
Magnetoelastic shear wave propagation in pre-stressed anisotropic media under gravity
NASA Astrophysics Data System (ADS)
Kumari, Nirmala; Chattopadhyay, Amares; Singh, Abhishek K.; Sahu, Sanjeev A.
2017-03-01
The present study investigates the propagation of shear wave (horizontally polarized) in two initially stressed heterogeneous anisotropic (magnetoelastic transversely isotropic) layers in the crust overlying a transversely isotropic gravitating semi-infinite medium. Heterogeneities in both the anisotropic layers are caused due to exponential variation (case-I) and linear variation (case-II) in the elastic constants with respect to the space variable pointing positively downwards. The dispersion relations have been established in closed form using Whittaker's asymptotic expansion and were found to be in the well-agreement to the classical Love wave equations. The substantial effects of magnetoelastic coupling parameters, heterogeneity parameters, horizontal compressive initial stresses, Biot's gravity parameter, and wave number on the phase velocity of shear waves have been computed and depicted by means of a graph. As a special case, dispersion equations have been deduced when the two layers and half-space are isotropic and homogeneous. The comparative study for both cases of heterogeneity of the layers has been performed and also depicted by means of graphical illustrations.
NASA Astrophysics Data System (ADS)
Schutt, D.; Breidt, J.; Corbalan Castejon, A.; Witt, D. R.
2017-12-01
Shear wave splitting is a commonly used and powerful method for constraining such phenomena as lithospheric strain history or asthenospheric flow. However, a number of challenges with the statistics of shear wave splitting have been noted. This creates difficulties in assessing whether two separate measurements are statistically similar or are indicating real differences in anisotropic structure, as well as for created proper station averaged sets of parameters for more complex situations such as multiple or dipping layers of anisotropy. We present a new method for calculating the most likely splitting parameters using the Menke and Levin [2003] method of cross-convolution. The Menke and Levin method is used because it can more readily be applied to a wider range of anisotropic scenarios than the commonly used Silver and Chan [1991] technique. In our approach, we derive a formula for the spectral density of a function of the microseismic noise and the impulse response of the correct anisotropic model that holds for the true anisotropic model parameters. This is compared to the spectral density of the observed signal convolved with the impulse response for an estimated set of anisotropic parameters. The most likely parameters are found when the former and latter spectral densities are the same. By using the Whittle likelihood to compare the two spectral densities, a likelihood grid for all possible anisotropic parameter values is generated. Using bootstrapping, the uncertainty and covariance between the various anisotropic parameters can be evaluated. We will show this works with a single layer of anisotropy and a vertically incident ray, and discuss the usefulness for a more complex case. The method shows great promise for calculating multiple layer anisotropy parameters with proper assessment of uncertainty. References: Menke, W., and Levin, V. 2003. The cross-convolution method for interpreting SKS splitting observations, with application to one and two-layer anisotropic earth models. Geophysical Journal International, 154: 379-392. doi:10.1046/j.1365-246X.2003.01937.x. Silver, P.G., and Chan, W.W. 1991. Shear Wave Splitting and Sub continental Mantle Deformation. Journal of Geophysical Research, 96: 429-454. doi:10.1029/91JB00899.
Chen, Tianwu; Zhao, Peng; Guo, Xu; Zhang, Sulin
2017-04-12
Phosphorus represents a promising anode material for sodium ion batteries owing to its extremely high theoretical capacity. Recent in situ transmission electron microscopy studies evidenced anisotropic swelling in sodiated black phosphorus, which may find an origin from the two intrinsic anisotropic properties inherent to the layered structure of black phosphorus: sodium diffusional directionality and insertion strain anisotropy. To understand the morphological evolution and stress generation in sodiated black phosphorus, we develop a chemo-mechanical model by incorporating the intrinsic anisotropic properties into the large elasto-plastic deformation. Our modeling results reveal that the apparent morphological evolution in sodiated black phosphorus is critically controlled by the coupled effect of the two intrinsic anisotropic properties. In particular, sodium diffusional directionality generates sharp interphases along the [010] and [001] directions, which constrain anisotropic development of the insertion strain. The coupled effect renders distinctive stress-generation and fracture mechanisms when sodiation starts from different crystal facets. In addition to providing a powerful modeling framework for sodiation and lithiation of layered structures, our findings shed significant light on the sodiation-induced chemo-mechanical degradation of black phosphorus as a promising anode for the next-generation sodium ion batteries.
NASA Astrophysics Data System (ADS)
Licciardi, A.; Piana Agostinetti, N.
2016-06-01
Information about seismic anisotropy is embedded in the variation of the amplitude of the Ps pulses as a function of the azimuth, on both the Radial and the Transverse components of teleseismic receiver functions (RF). We develop a semi-automatic method to constrain the presence and the depth of anisotropic layers beneath a single seismic broad-band station. An algorithm is specifically designed to avoid trial and error methods and subjective crustal parametrizations in RF inversions, providing a suitable tool for large-size data set analysis. The algorithm couples together information extracted from a 1-D VS profile and from a harmonic decomposition analysis of the RF data set. This information is used to determine the number of anisotropic layers and their approximate position at depth, which, in turn, can be used to, for example, narrow the search boundaries for layer thickness and S-wave velocity in a subsequent parameter space search. Here, the output of the algorithm is used to invert an RF data set by means of the Neighbourhood Algorithm (NA). To test our methodology, we apply the algorithm to both synthetic and observed data. We make use of synthetic RF with correlated Gaussian noise to investigate the resolution power for multiple and thin (1-3 km) anisotropic layers in the crust. The algorithm successfully identifies the number and position of anisotropic layers at depth prior the NA inversion step. In the NA inversion, strength of anisotropy and orientation of the symmetry axis are correctly retrieved. Then, the method is applied to field measurement from station BUDO in the Tibetan Plateau. Two consecutive layers of anisotropy are automatically identified with our method in the first 25-30 km of the crust. The data are then inverted with the retrieved parametrization. The direction of the anisotropic axis in the uppermost layer correlates well with the orientation of the major planar structure in the area. The deeper anisotropic layer is associated with an older phase of crustal deformation. Our results are compared with previous anisotropic RF studies at the same station, showing strong similarities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagiwara, Teruhiko
1996-12-31
Induction log responses to layered, dipping, and anisotropic formations are examined analytically. The analytical model is especially helpful in understanding induction log responses to thinly laminated binary formations, such as sand/shale sequences, that exhibit macroscopically anisotropic: resistivity. Two applications of the analytical model are discussed. In one application we examine special induction log shoulder-bed corrections for use when thin anisotropic beds are encountered. It is known that thinly laminated sand/shale sequences act as macroscopically anisotropic: formations. Hydrocarbon-bearing formations also act as macroscopically anisotropic formations when they consist of alternating layers of different grain-size distributions. When such formations are thick, inductionmore » logs accurately read the macroscopic conductivity, from which the hydrocarbon saturation in the formations can be computed. When the laminated formations are not thick, proper shoulder-bed corrections (or thin-bed corrections) should be applied to obtain the true macroscopic formation conductivity and to estimate the hydrocarbon saturation more accurately. The analytical model is used to calculate the thin-bed effect and to evaluate the shoulder-bed corrections. We will show that the formation resistivity and hence the hydrocarbon saturation are greatly overestimated when the anisotropy effect is not accounted for and conventional shoulder-bed corrections are applied to the log responses from such laminated formations.« less
Effect of anisotropy on defect mode peculiarities in chiral liquid crystals
NASA Astrophysics Data System (ADS)
Gevorgyan, A. H.; Oganesyan, K. B.
2018-01-01
The effect of anisotropy on defect mode peculiarities in cholesteric liquid crystals is investigated. The light transmission through the cholesteric liquid crystal layer with an anisotropic layer defect inside is solved by Ambartsumian’s layer addition modified method. Two cases are considered. In the first case, it is assumed that the defect layer is non-absorbing, and the effect of refraction anisotropy on the reflection, relative photonic density of states and the total field intensity produced in the defect layer are studied. In the second case, the defect layer is assumed to be isotropic for refraction and anisotropic for absorption, and the influence of defect layer absorption anisotropy on reflection, absorption, relative photonic density of states and the total field intensity produced in the defect layer are investigated.
Integrated digital inverters based on two-dimensional anisotropic ReS₂ field-effect transistors
Liu, Erfu; Fu, Yajun; Wang, Yaojia; ...
2015-05-07
Semiconducting two-dimensional transition metal dichalcogenides are emerging as top candidates for post-silicon electronics. While most of them exhibit isotropic behaviour, lowering the lattice symmetry could induce anisotropic properties, which are both scientifically interesting and potentially useful. Here we present atomically thin rhenium disulfide (ReS₂) flakes with unique distorted 1T structure, which exhibit in-plane anisotropic properties. We fabricated monolayer and few-layer ReS₂ field-effect transistors, which exhibit competitive performance with large current on/off ratios (~10⁷) and low subthreshold swings (100 mV per decade). The observed anisotropic ratio along two principle axes reaches 3.1, which is the highest among all known two-dimensional semiconductingmore » materials. Furthermore, we successfully demonstrated an integrated digital inverter with good performance by utilizing two ReS₂ anisotropic field-effect transistors, suggesting the promising implementation of large-scale two-dimensional logic circuits. Our results underscore the unique properties of two-dimensional semiconducting materials with low crystal symmetry for future electronic applications.« less
NASA Astrophysics Data System (ADS)
Kim, Jongmyeong; Moon, Daeyoung; Lee, Seungmin; Lee, Donghyun; Yang, Duyoung; Jang, Jeonghwan; Park, Yongjo; Yoon, Euijoon
2018-05-01
Anisotropic in-plane strain and resultant linearly polarized photoluminescence (PL) of c-plane GaN layers were realized by using a stripe-shaped cavity-engineered sapphire substrate (SCES). High resolution X-ray reciprocal space mapping measurements revealed that the GaN layers on the SCES were under significant anisotropic in-plane strain of -0.0140% and -0.1351% along the directions perpendicular and parallel to the stripe pattern, respectively. The anisotropic in-plane strain in the GaN layers was attributed to the anisotropic strain relaxation due to the anisotropic arrangement of cavity-incorporated membranes. Linearly polarized PL behavior such as the observed angle-dependent shift in PL peak position and intensity comparable with the calculated value based on k.p perturbation theory. It was found that the polarized PL behavior was attributed to the modification of valence band structures induced by anisotropic in-plane strain in the GaN layers on the SCES.
Xiao, Fanrong; Nicholson, Charles; Hrabe, Jan; Hrabetová, Sabina
2008-08-01
There are a limited number of methods available to quantify the extracellular diffusion of macromolecules in an anisotropic brain region, e.g., an area containing numerous aligned fibers where diffusion is faster along the fibers than across. We applied the integrative optical imaging method to measure diffusion of the fluorophore Alexa Fluor 488 (molecular weight (MW) 547) and fluorophore-labeled flexible random-coil dextran polymers (dex3, MW 3000; dex75, MW 75,000; dex282, MW 282,000; dex525, MW 525,000) in the extracellular space (ECS) of the anisotropic molecular layer of the isolated turtle cerebellum. For all molecules, two-dimensional images acquired an elliptical shape with major and minor axes oriented along and across, respectively, the unmyelinated parallel fibers. The effective diffusion coefficients, D*(major) and D*(minor), decreased with molecular size. The diffusion anisotropy ratio (DAR = D*(major)/D*(minor)) increased for Alexa Fluor 488 through dex75 but then unexpectedly reached a plateau. We argue that dex282 and dex525 approach the ECS width and deform to diffuse. In support of this concept, scaling theory shows the diffusion behavior of dex282 and dex525 to be consistent with transition to a reptation regime, and estimates the average ECS width at approximately 31 nm. These findings have implications for the interstitial transport of molecules and drugs, and for modeling neurotransmitter diffusion during ectopic release and spillover.
Remote sensing of Earth terrain
NASA Technical Reports Server (NTRS)
Kong, Jin AU; Yueh, Herng-Aung
1990-01-01
The layered random medium model is used to investigate the fully polarimetric scattering of electromagnetic waves from vegetation. The vegetation canopy is modeled as an anisotropic random medium containing nonspherical scatterers with preferred alignment. The underlying medium is considered as a homogeneous half space. The scattering effect of the vegetation canopy are characterized by 3-D correlation functions with variances and correlation lengths respectively corresponding to the fluctuation strengths and the physical geometries of the scatterers. The strong fluctuation theory is used to calculate the anisotropic effective permittivity tensor of the random medium and the distorted Born approximation is then applied to obtain the covariance matrix which describes the fully polarimetric scattering properties of the vegetation field. This model accounts for all the interaction processes between the boundaries and the scatterers and includes all the coherent effects due to wave propagation in different directions such as the constructive and destructive interferences. For a vegetation canopy with low attenuation, the boundary between the vegetation and the underlying medium can give rise to significant coherent effects.
NASA Astrophysics Data System (ADS)
Tezkan, Bülent; Červ, Václav; Pek, Josef
1992-12-01
Anisotropy in magnetotelluric (MT) data has been found very often and has been explained as the result of local structures of different conductivities. In this paper, an observed anisotropy in MT data is not interpreted qualitatively in terms of local structures but is modelled quantitatively by a quasi-anisotropic layer. Besides the MT transfer functions, measurements of the vertical magnetic component are required. The second goal of this paper is to describe a method which permits the resolution of mid-crustal conductive layers in the presence of an additional high-conductivity layer at the surface. This method is possible in a two-dimensional (2-D) situation that limits the spatial extension of the surface structure. Again, vertical magnetic field recordings are necessary, but the phase of the E-polarization with respect to the 2-D structure is the most sensitive parameter. Using two field sites in Southern Germany, it has been possible to give a quantitative explanation of anisotropy and an improved depth resolution, and to derive an integrated conductivity of the highly conductive mid-crustal layers using MT and geomagnetic depth sounding data. The anisotropic highly conductive layer is located 12 km beneath the poorly conductive Black Forest crystalline rocks, whereas it is at a depth of 6 km beneath the highly conductive Rhine Graben sediments.
Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors
Liu, Erfu; Fu, Yajun; Wang, Yaojia; Feng, Yanqing; Liu, Huimei; Wan, Xiangang; Zhou, Wei; Wang, Baigeng; Shao, Lubin; Ho, Ching-Hwa; Huang, Ying-Sheng; Cao, Zhengyi; Wang, Laiguo; Li, Aidong; Zeng, Junwen; Song, Fengqi; Wang, Xinran; Shi, Yi; Yuan, Hongtao; Hwang, Harold Y.; Cui, Yi; Miao, Feng; Xing, Dingyu
2015-01-01
Semiconducting two-dimensional transition metal dichalcogenides are emerging as top candidates for post-silicon electronics. While most of them exhibit isotropic behaviour, lowering the lattice symmetry could induce anisotropic properties, which are both scientifically interesting and potentially useful. Here we present atomically thin rhenium disulfide (ReS2) flakes with unique distorted 1T structure, which exhibit in-plane anisotropic properties. We fabricated monolayer and few-layer ReS2 field-effect transistors, which exhibit competitive performance with large current on/off ratios (∼107) and low subthreshold swings (100 mV per decade). The observed anisotropic ratio along two principle axes reaches 3.1, which is the highest among all known two-dimensional semiconducting materials. Furthermore, we successfully demonstrated an integrated digital inverter with good performance by utilizing two ReS2 anisotropic field-effect transistors, suggesting the promising implementation of large-scale two-dimensional logic circuits. Our results underscore the unique properties of two-dimensional semiconducting materials with low crystal symmetry for future electronic applications. PMID:25947630
Evidence of multifaceted SKS/SKKS splitting directions in the Sikkim Himalaya, India
NASA Astrophysics Data System (ADS)
Kumar, Narendra; Kumar, Sushil
2018-06-01
We have investigated the anisotropy strength and fast-axis orientation using an SKS/SKKS splitting technique of seismic phases at Sikkim Himalaya, which is a seismically active zone situated in the central portion of the Great Himalyan Arc in the Indian region. This region lies between two major plate boundary faults, the Main Central Thrust (MCT) and the Main Boundary Thrust (MBT) at its north and south respectively, along with a few regional lineaments. In this study we deployed eight broadband seismic stations and acquired two years of tele-seismic earthquake data, from which we derived 66 good quality anisotropic measurements. In general, the splitting results from both the SKS and SKKS phases show a complex pattern of fast-axis orientation along the northern periphery of the MCT. However, at the central part of the Sikkim between the MBT and the MCT, both results are consistent with the upper mantle deformation of the Indian Plate. We also observed that the anisotropic strength varies between 0.6 s to 3 s and is skewed towards higher anisotropy with orthogonal polarization, which indicate the presence of a two-layer anisotropy. Results of the modelling of 66 anisotropic measurements indicate that the bottom-layer fast-axis orientations are towards N180E with higher anisotropic strength of ∂t = 1.3 s, which elucidates the pristine nature of the upper mantle deformation as a result of asthenospheric flow. But the tectonic deformation of the upper mantle within the lithosphere is prominently observed in the top layer, where the fast axis orientations are towards N480E with lower anisotropic strength of ∂t = 0.6 s.
Anisotropic electrical conduction in ferromagnetic-antiferromagnetic-ferromagnetic oxide trilayers
NASA Astrophysics Data System (ADS)
Padhan, P.; Prellier, W.
2007-07-01
An antiferromagnetic layer of an insulator PrMnO3 , CaMnO3 , or Pr0.5Ca0.5MnO3 has been sandwiched between two layers of ferromagnetic SrRuO3 on (001)-oriented SrTiO3 and LaAlO3 substrates using the pulsed laser deposition technique. Magnetotransport measurements reveal a change of anisotropy in the case of trilayers having a Pr0.5Ca0.5MnO3 or a CaMnO3 spacer layer as compared to that of 20unit cells thick film of SrRuO3 , while in the case of PrMnO3 spacer layer, the change of anisotropy is negligible. In addition, two switching magnetic fields are observed with the trilayer made of PrMnO3 spacer layer in the field-dependent anisotropic magnetoresistance. The results are discussed using the concept of spin-orbit coupling and spin mixing conduction process at the interfaces.
Anisotropic attosecond charge carrier dynamics and layer decoupling in quasi-2D layered SnS 2
Eads, Calley N.; Bandak, Dmytro; Neupane, Mahesh R.; ...
2017-11-08
Strong quantum confinement effects lead to striking new physics in two-dimensional materials such as graphene or transition metal dichalcogenides. While spectroscopic fingerprints of such quantum confinement have been demonstrated widely, the consequences for carrier dynamics are at present less clear, particularly on ultrafast timescales. This is important for tailoring, probing, and understanding spin and electron dynamics in layered and two-dimensional materials even in cases where the desired bandgap engineering has been achieved. Here in this paper we show by means of core–hole clock spectroscopy that SnS 2 exhibits spindependent attosecond charge delocalization times (τ deloc) for carriers confined within amore » layer, τ deloc < 400 as, whereas interlayer charge delocalization is dynamically quenched in excess of a factor of 10, τ deloc > 2.7 fs. These layer decoupling dynamics are a direct consequence of strongly anisotropic screening established within attoseconds, and demonstrate that important two-dimensional characteristics are also present in bulk crystals of van der Waalslayered materials, at least on ultrafast timescales.« less
Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties
Island, Joshua O.; Biele, Robert; Barawi, Mariam; Clamagirand, José M.; Ares, José R.; Sánchez, Carlos; van der Zant, Herre S. J.; Ferrer, Isabel J.; D’Agosta, Roberto; Castellanos-Gomez, Andres
2016-01-01
We present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures. Based on the preferential growth axis of TiS3 nanoribbons, we develop a simple method to identify the in-plane crystalline axes of exfoliated few-layer flakes through angle resolved polarization Raman spectroscopy. Optical transmission measurements show that TiS3 flakes display strong linear dichroism with a magnitude (transmission ratios up to 30) much greater than that observed for other anisotropic two-dimensional (2D) materials. Finally, we calculate the absorption and transmittance spectra of TiS3 in the random-phase-approximation (RPA) and find that the calculations are in qualitative agreement with the observed experimental optical transmittance. PMID:26931161
Elastic guided waves in a layered plate with rectangular cross section.
Mukdadi, O M; Desai, Y M; Datta, S K; Shah, A H; Niklasson, A J
2002-11-01
Guided waves in a layered elastic plate of rectangular cross section (finite width and thickness) has been studied in this paper. A semianalytical finite element method in which the deformation of the cross section is modeled by two-dimensional finite elements and analytical representation of propagating waves along the length of the plate has been used. The method is applicable to arbitrary number of layers and general anisotropic material properties of each layer, and is similar to the stiffness method used earlier to study guided waves in a laminated composite plate of infinite width. Numerical results showing the effect of varying the width of the plate on the dispersion of guided waves are presented and are compared with those for an infinite plate. In addition, effect of thin anisotropic coating or interface layers on the guided waves is investigated.
NASA Astrophysics Data System (ADS)
Diener, J.; Künzner, N.; Kovalev, D.; Gross, E.; Koch, F.; Fujii, M.
2003-05-01
Electro-chemical etching of heavily doped, (110) oriented, p+ (boron) doped silicon wafers results in porous silicon (PSi) layers which exhibit a strong in-plane anisotropy of the refractive index (birefringence). Single- and multiple layers of anisotropically nanostructured silicon (Si) have been fabricated and studied by polarization-resolved reflection and transmission measurements. Dielectric stacks of birefringent PSi acting as distributed Bragg reflectors have two distinct reflection bands depending on the polarization of the incident linearly polarized light. This effect is caused by a three-dimensional (in plane and in-depth) variation of the refraction index. The possibility of fine tuning the two orthogonally polarized reflection bands and their spectral splitting is demonstrated.
NASA Astrophysics Data System (ADS)
Ren, Zhengyong; Qiu, Lewen; Tang, Jingtian; Wu, Xiaoping; Xiao, Xiao; Zhou, Zilong
2018-01-01
Although accurate numerical solvers for 3-D direct current (DC) isotropic resistivity models are current available even for complicated models with topography, reliable numerical solvers for the anisotropic case are still an open question. This study aims to develop a novel and optimal numerical solver for accurately calculating the DC potentials for complicated models with arbitrary anisotropic conductivity structures in the Earth. First, a secondary potential boundary value problem is derived by considering the topography and the anisotropic conductivity. Then, two a posteriori error estimators with one using the gradient-recovery technique and one measuring the discontinuity of the normal component of current density are developed for the anisotropic cases. Combing the goal-oriented and non-goal-oriented mesh refinements and these two error estimators, four different solving strategies are developed for complicated DC anisotropic forward modelling problems. A synthetic anisotropic two-layer model with analytic solutions verified the accuracy of our algorithms. A half-space model with a buried anisotropic cube and a mountain-valley model are adopted to test the convergence rates of these four solving strategies. We found that the error estimator based on the discontinuity of current density shows better performance than the gradient-recovery based a posteriori error estimator for anisotropic models with conductivity contrasts. Both error estimators working together with goal-oriented concepts can offer optimal mesh density distributions and highly accurate solutions.
NASA Astrophysics Data System (ADS)
Chun, Sehun
2017-07-01
Applying the method of moving frames to Maxwell's equations yields two important advancements for scientific computing. The first is the use of upwind flux for anisotropic materials in Maxwell's equations, especially in the context of discontinuous Galerkin (DG) methods. Upwind flux has been available only to isotropic material, because of the difficulty of satisfying the Rankine-Hugoniot conditions in anisotropic media. The second is to solve numerically Maxwell's equations on curved surfaces without the metric tensor and composite meshes. For numerical validation, spectral convergences are displayed for both two-dimensional anisotropic media and isotropic spheres. In the first application, invisible two-dimensional metamaterial cloaks are simulated with a relatively coarse mesh by both the lossless Drude model and the piecewisely-parametered layered model. In the second application, extremely low frequency propagation on various surfaces such as spheres, irregular surfaces, and non-convex surfaces is demonstrated.
Xia, Fengnian; Wang, Han; Jia, Yichen
2014-07-21
Graphene and transition metal dichalcogenides (TMDCs) are the two major types of layered materials under intensive investigation. However, the zero-bandgap nature of graphene and the relatively low mobility in TMDCs limit their applications. Here we reintroduce black phosphorus (BP), the most stable allotrope of phosphorus with strong intrinsic in-plane anisotropy, to the layered-material family. For 15-nm-thick BP, we measure a Hall mobility of 1,000 and 600 cm(2)V(-1)s(-1) for holes along the light (x) and heavy (y) effective mass directions at 120 K. BP thin films also exhibit large and anisotropic in-plane optical conductivity from 2 to 5 μm. Field-effect transistors using 5 nm BP along x direction exhibit an on-off current ratio exceeding 10(5), a field-effect mobility of 205 cm(2)V(-1)s(-1), and good current saturation characteristics all at room temperature. BP shows great potential for thin-film electronics, infrared optoelectronics and novel devices in which anisotropic properties are desirable.
Higher Order Lagrange Finite Elements In M3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Chen; H.R. Strauss; S.C. Jardin
The M3D code has been using linear finite elements to represent multilevel MHD on 2-D poloidal planes. Triangular higher order elements, up to third order, are constructed here in order to provide M3D the capability to solve highly anisotropic transport problems. It is found that higher order elements are essential to resolve the thin transition layer characteristic of the anisotropic transport equation, particularly when the strong anisotropic direction is not aligned with one of the Cartesian coordinates. The transition layer is measured by the profile width, which is zero for infinite anisotropy. It is shown that only higher order schemesmore » have the ability to make this layer converge towards zero when the anisotropy gets stronger and stronger. Two cases are considered. One has the strong transport direction partially aligned with one of the element edges, the other doesn't have any alignment. Both cases have the strong transport direction misaligned with the grid line by some angles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yan; Gu, Chongjie; Ruan, Xiulin, E-mail: ruan@purdue.edu
2015-02-16
A low lattice thermal conductivity (κ) is desired for thermoelectrics, and a highly anisotropic κ is essential for applications such as magnetic layers for heat-assisted magnetic recording, where a high cross-plane (perpendicular to layer) κ is needed to ensure fast writing while a low in-plane κ is required to avoid interaction between adjacent bits of data. In this work, we conduct molecular dynamics simulations to investigate the κ of superlattice (SL), random multilayer (RML) and alloy, and reveal that RML can have 1–2 orders of magnitude higher anisotropy in κ than SL and alloy. We systematically explore how the κmore » of SL, RML, and alloy changes relative to each other for different bond strength, interface roughness, atomic mass, and structure size, which provides guidance for choosing materials and structural parameters to build RMLs with optimal performance for specific applications.« less
Emergence of anisotropic Gilbert damping in ultrathin Fe layers on GaAs(001)
NASA Astrophysics Data System (ADS)
Chen, L.; Mankovsky, S.; Wimmer, S.; Schoen, M. A. W.; Körner, H. S.; Kronseder, M.; Schuh, D.; Bougeard, D.; Ebert, H.; Weiss, D.; Back, C. H.
2018-05-01
As a fundamental parameter in magnetism, the phenomenological Gilbert damping constant α determines the performance of many spintronic devices. For most magnetic materials, α is treated as an isotropic parameter entering the Landau-Lifshitz-Gilbert equation. However, could the Gilbert damping be anisotropic? Although several theoretical approaches have suggested that anisotropic α could appear in single-crystalline bulk systems, experimental evidence of its existence is scarce. Here, we report the emergence of anisotropic magnetic damping by exploring a quasi-two-dimensional single-crystalline ferromagnetic metal/semiconductor interface—that is, a Fe/GaAs(001) heterojunction. The observed anisotropic damping shows twofold C2v symmetry, which is expected from the interplay of interfacial Rashba and Dresselhaus spin-orbit interaction, and is manifested by the anisotropic density of states at the Fe/GaAs (001) interface. This discovery of anisotropic damping will enrich the understanding of magnetization relaxation mechanisms and can provide a route towards the search for anisotropic damping at other ferromagnetic metal/semiconductor interfaces.
Band gaps in periodically magnetized homogeneous anisotropic media
NASA Astrophysics Data System (ADS)
Merzlikin, A. M.; Levy, M.; Vinogradov, A. P.; Wu, Z.; Jalali, A. A.
2010-11-01
In [A. M. Merzlikin, A. P. Vinogradov, A. V. Dorofeenko, M. Inoue, M. Levy, A. B. Granovsky, Physica B 394 (2007) 277] it is shown that in anisotropic magnetophotonic crystal made of anisotropic dielectric layers and isotropic magneto-optical layers the magnetization leads to formation of additional band gaps (BG) inside the Brillouin zones. Due to the weakness of the magneto-optical effects the width of these BG is much smaller than that of usual BG forming on the boundaries of Brillouin zones. In the present communication we show that though the anisotropy suppresses magneto-optical effects. An anisotropic magnetophotonic crystal made of anisotropic dielectric layers and anisotropic magneto-optical; the width of additional BG may be much greater than the width of the usual Brillouin BG. Anisotropy tends to suppress Brillouin zone boundary band gap formation because the anisotropy suppresses magneto-optical properties, while degenerate band gap formation occurs around points of effective isotropy and is not suppressed.
Finite element modeling of mitral leaflet tissue using a layered shell approximation
Ratcliffe, Mark B.; Guccione, Julius M.
2012-01-01
The current study presents a finite element model of mitral leaflet tissue, which incorporates the anisotropic material response and approximates the layered structure. First, continuum mechanics and the theory of layered composites are used to develop an analytical representation of membrane stress in the leaflet material. This is done with an existing anisotropic constitutive law from literature. Then, the concept is implemented in a finite element (FE) model by overlapping and merging two layers of transversely isotropic membrane elements in LS-DYNA, which homogenizes the response. The FE model is then used to simulate various biaxial extension tests and out-of-plane pressure loading. Both the analytical and FE model show good agreement with experimental biaxial extension data, and show good mutual agreement. This confirms that the layered composite approximation presented in the current study is able to capture the exponential stiffening seen in both the circumferential and radial directions of mitral leaflets. PMID:22971896
Imaging Anisotropic Layering with Bayesian Inversion of Multiple Data Types
NASA Astrophysics Data System (ADS)
Bodin, T.; Leiva, J.; Romanowicz, B. A.; Maupin, V.; Yuan, H.
2015-12-01
Anisotropic images of the upper-mantle are usually obtained by analyzing different types of seismic observables, such as surface wave dispersion curves or waveforms, SKS splitting data, or receiver functions. These different data types sample different volumes of the earth, they are sensitive to separate length-scales, and hence are associated with various levels of uncertainties. They are traditionally interpreted separately, and often result in incompatible models. We present a Bayesian inversion approach to jointly invert these different data types. Seismograms for SKS and P phases are directly inverted, thus avoiding intermediate processing steps such as numerical deconvolution or computation of splitting parameters. Probabilistic 1D profiles are obtained with a transdimensional Markov chain Monte Carlo scheme, in which the number of layers, as well as the presence or absence of anisotropy in each layer, are treated as unknown parameters. In this way, seismic anisotropy is only introduced if required by the data. The algorithm is used to resolve both isotropic and anisotropic layering down to a depth of 350 km beneath two seismic stations in North America in two different tectonic settings: the stable Canadian shield (station FFC), and the tectonically active southern Basin and Range Province (station TA-214A). In both cases, the lithosphere-asthenosphere boundary is clearly visible, and marked by a change in direction of the fast axis of anisotropy. Our study confirms that azimuthal anisotropy is a powerful tool for detecting layering in the upper mantle.
Tang, Dalin; Yang, Chun; Geva, Tal; Gaudette, Glenn; del Nido, Pedro J.
2011-01-01
Multi-physics right and left ventricle (RV/LV) fluid-structure interaction (FSI) models were introduced to perform mechanical stress analysis and evaluate the effect of patch materials on RV function. The FSI models included three different patch materials (Dacron scaffold, treated pericardium, and contracting myocardium), two-layer construction, fiber orientation, and active anisotropic material properties. The models were constructed based on cardiac magnetic resonance (CMR) images acquired from a patient with severe RV dilatation and solved by ADINA. Our results indicate that the patch model with contracting myocardium leads to decreased stress level in the patch area, improved RV function and patch area contractility. PMID:21765559
NASA Astrophysics Data System (ADS)
Kang, Yeon June
In this thesis an elastic-absorption finite element model of isotropic elastic porous noise control materials is first presented as a means of investigating the effects of finite dimension and edge constraints on the sound absorption by, and transmission through, layers of acoustical foams. Methods for coupling foam finite elements with conventional acoustic and structural finite elements are also described. The foam finite element model based on the Biot theory allows for the simultaneous propagation of the three types of waves known to exist in an elastic porous material. Various sets of boundary conditions appropriate for modeling open, membrane-sealed and panel-bonded foam surfaces are formulated and described. Good agreement was achieved when finite element predictions were compared with previously established analytical results for the plane wave absorption coefficient and transmission loss in the case of wave propagation both in foam-filled waveguides and through foam-lined double panel structures of infinite lateral extent. The primary effect of the edge constraints of a foam layer was found to be an acoustical stiffening of the foam. Constraining the ends of the facing panels in foam-lined double panel systems was also found to increase the sound transmission loss significantly in the low frequency range. In addition, a theoretical multi-dimensional model for wave propagation in anisotropic elastic porous materials was developed to study the effect of anisotropy on the sound transmission of foam-lined noise control treatments. The predictions of the theoretical anisotropic model have been compared with experimental measurements for the random incidence sound transmission through double panel structure lined with polyimide foam. The predictions were made by using the measured and estimated macroscopic physical parameters of polyimide foam samples which were known to be anisotropic. It has been found that the macroscopic physical parameters in the direction normal to the face of foam layer play the principal role in determining the acoustical behavior of polyimide foam layers, although more satisfactory agreement between experimental measurements and theoretical predictions of transmission loss is obtained when the anisotropic properties are allowed in the model.
NASA Astrophysics Data System (ADS)
Ghaffar, A.; Hussan, M. M.; Illahi, A.; Alkanhal, Majeed A. S.; Ur Rehman, Sajjad; Naz, M. Y.
2018-01-01
Effects on RCS of perfect electromagnetic conductor (PEMC) sphere by coating with anisotropic plasma layer are studied in this paper. The incident, scattered and transmitted electromagnetic fields are expanded in term of spherical vector wave functions using extended classical theory of scattering. Co and cross-polarized scattered field coefficients are obtained at the interface of free space-anisotropic plasma and at anisotropic plasma-PEMC sphere core by scattering matrices method. The presented analytical expressions are general for any perfect conducting sphere (PMC, PEC, or PEMC) with general anisotropic/isotropic material coatings that include plasma and metamaterials. The behavior of the forward and backscattered radar cross section of PEMC sphere with the variation of the magnetic field strength, incident frequency, plasma density, and effective collision frequency for the co-polarized and the cross polarized fields are investigated. It is also observed from the obtained results that anisotropic layer on PEMC sphere shows reciprocal behavior as compared to isotopic plasma layer on PEMC sphere. The comparisons of the numerical results of the presented analytical expressions with available results of some special cases show the correctness of the analysis.
Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus
Luo, Zhe; Maassen, Jesse; Deng, Yexin; Du, Yuchen; Garrelts, Richard P.; Lundstrom, Mark S; Ye, Peide D.; Xu, Xianfan
2015-01-01
Black phosphorus has been revisited recently as a new two-dimensional material showing potential applications in electronics and optoelectronics. Here we report the anisotropic in-plane thermal conductivity of suspended few-layer black phosphorus measured by micro-Raman spectroscopy. The armchair and zigzag thermal conductivities are ∼20 and ∼40 W m−1 K−1 for black phosphorus films thicker than 15 nm, respectively, and decrease to ∼10 and ∼20 W m−1 K−1 as the film thickness is reduced, exhibiting significant anisotropy. The thermal conductivity anisotropic ratio is found to be ∼2 for thick black phosphorus films and drops to ∼1.5 for the thinnest 9.5-nm-thick film. Theoretical modelling reveals that the observed anisotropy is primarily related to the anisotropic phonon dispersion, whereas the intrinsic phonon scattering rates are found to be similar along the armchair and zigzag directions. Surface scattering in the black phosphorus films is shown to strongly suppress the contribution of long mean-free-path acoustic phonons. PMID:26472191
The anisotropic tunneling behavior of spin transport in graphene-based magnetic tunneling junction
NASA Astrophysics Data System (ADS)
Pan, Mengchun; Li, Peisen; Qiu, Weicheng; Zhao, Jianqiang; Peng, Junping; Hu, Jiafei; Hu, Jinghua; Tian, Wugang; Hu, Yueguo; Chen, Dixiang; Wu, Xuezhong; Xu, Zhongjie; Yuan, Xuefeng
2018-05-01
Due to the theoretical prediction of large tunneling magnetoresistance (TMR), graphene-based magnetic tunneling junction (MTJ) has become an important branch of high-performance spintronics device. In this paper, the non-collinear spin filtering and transport properties of MTJ with the Ni/tri-layer graphene/Ni structure were studied in detail by utilizing the non-equilibrium Green's formalism combined with spin polarized density functional theory. The band structure of Ni-C bonding interface shows that Ni-C atomic hybridization facilitates the electronic structure consistency of graphene and nickel, which results in a perfect spin filtering effect for tri-layer graphene-based MTJ. Furthermore, our theoretical results show that the value of tunneling resistance changes with the relative magnetization angle of two ferromagnetic layers, displaying the anisotropic tunneling behavior of graphene-based MTJ. This originates from the resonant conduction states which are strongly adjusted by the relative magnetization angles. In addition, the perfect spin filtering effect is demonstrated by fitting the anisotropic conductance with the Julliere's model. Our work may serve as guidance for researches and applications of graphene-based spintronics device.
NASA Astrophysics Data System (ADS)
Zhao, L.; Wen, L.
2009-12-01
The shear wave splitting measurements provide important information on mantle flow, deformation and mineralogy. They are now routinely made using the method developed by Silver and Chan (1994). More and more dense regional observations also begin to reveal sharp spatial variations of seismic anisotropy which could not be explained by simplified horizontal homogeneous anisotropic structures. To better constrain the mantle anisotropy beneath those regions, we developed a two-dimensional hybrid method for simulating seismic wave propagation in laterally-varying anisotropic media [Zhao et al., 2008]. In this presentation, we apply the method to study anisotropic structures beneath central Tibet by waveform modeling the teleseismic SKS phases recorded in the International Deep Profiling of Tibet and the Himalayas project (INDEPTH) III. Using data from two events that were selected such that the stations and sources can be approximated as a two-dimensional profile, we derived an optimal model for the anisotropic structures of the upper mantle beneath the study region: a 50-70 km thick anisotropic layer with a fast direction trending N95°E beneath the Qiangtang block, a 150 km thick and 60 km wide anisotropic segment with an axis trending N95°E beneath the northernmost Lhasa block, and a ~30 km wide transition zone in between within which the fast direction trends N45°E and the depth extent of anisotropy decreases northward sharply. Synthetic waveform modeling further suggests that an anisotropic model with a horizontal symmetry axis can explain the observations better than that with a dipping symmetry, and a low velocity zone possibly underlies or mixes with the anisotropic structures in the northern portion of the region. The optimal model yields synthetic seismograms that are in good agreement with the observations in both amplitudes and relative arrival times of SKS phases. Synthetic tests also indicate that different elastic constants, source parameters and depth extents of anisotropy adopted in the calculations do not affect the general conclusions, although trade-offs exist between the model parameters. Our modeling results suggest that, if the complex seismic structures in central Tibet are associated with the underthrusting of the Indian lithosphere beneath the Asian lithosphere, the inferred horizontal symmetry of anisotropy was likely generated during the collision because an inherited anisotropy would have a dipping angle of symmetry axis that is parallel to the underthrusting direction. References Silver, P. G., and M. K. Savage (1994), The interpretation of shear-wave splitting parameters in the presence of two anisotropic layers, Geophys. J. Int., 119, 949-963. Zhao L., L.X. Wen, L. Chen, T.Y. Zheng (2008). A two-dimensional hybrid method for modeling seismic wave propagation in anisotropic media, J. Geophys. Res., 113, B12307, doi:10.1029/2008JB005733.
Evidence for Bulk Ripplocations in Layered Solids
NASA Astrophysics Data System (ADS)
Gruber, Jacob; Lang, Andrew C.; Griggs, Justin; Taheri, Mitra L.; Tucker, Garritt J.; Barsoum, Michel W.
2016-09-01
Plastically anisotropic/layered solids are ubiquitous in nature and understanding how they deform is crucial in geology, nuclear engineering, microelectronics, among other fields. Recently, a new defect termed a ripplocation-best described as an atomic scale ripple-was proposed to explain deformation in two-dimensional solids. Herein, we leverage atomistic simulations of graphite to extend the ripplocation idea to bulk layered solids, and confirm that it is essentially a buckling phenomenon. In contrast to dislocations, bulk ripplocations have no Burgers vector and no polarity. In graphite, ripplocations are attracted to other ripplocations, both within the same, and on adjacent layers, the latter resulting in kink boundaries. Furthermore, we present transmission electron microscopy evidence consistent with the existence of bulk ripplocations in Ti3SiC2. Ripplocations are a topological imperative, as they allow atomic layers to glide relative to each other without breaking the in-plane bonds. A more complete understanding of their mechanics and behavior is critically important, and could profoundly influence our current understanding of how graphite, layered silicates, the MAX phases, and many other plastically anisotropic/layered solids, deform and accommodate strain.
PdSe2: Pentagonal Two-Dimensional Layers with High Air Stability for Electronics.
Oyedele, Akinola D; Yang, Shize; Liang, Liangbo; Puretzky, Alexander A; Wang, Kai; Zhang, Jingjie; Yu, Peng; Pudasaini, Pushpa R; Ghosh, Avik W; Liu, Zheng; Rouleau, Christopher M; Sumpter, Bobby G; Chisholm, Matthew F; Zhou, Wu; Rack, Philip D; Geohegan, David B; Xiao, Kai
2017-10-11
Most studied two-dimensional (2D) materials exhibit isotropic behavior due to high lattice symmetry; however, lower-symmetry 2D materials such as phosphorene and other elemental 2D materials exhibit very interesting anisotropic properties. In this work, we report the atomic structure, electronic properties, and vibrational modes of few-layered PdSe 2 exfoliated from bulk crystals, a pentagonal 2D layered noble transition metal dichalcogenide with a puckered morphology that is air-stable. Micro-absorption optical spectroscopy and first-principles calculations reveal a wide band gap variation in this material from 0 (bulk) to 1.3 eV (monolayer). The Raman-active vibrational modes of PdSe 2 were identified using polarized Raman spectroscopy, and a strong interlayer interaction was revealed from large, thickness-dependent Raman peak shifts, agreeing with first-principles Raman simulations. Field-effect transistors made from the few-layer PdSe 2 display tunable ambipolar charge carrier conduction with a high electron field-effect mobility of ∼158 cm 2 V -1 s -1 , indicating the promise of this anisotropic, air-stable, pentagonal 2D material for 2D electronics.
NASA Astrophysics Data System (ADS)
Wang, Fang; Liu, Chang; Liu, Xiaoning; Niu, Tiaoming; Wang, Jing; Mei, Zhonglei; Qin, Jiayong
2017-06-01
In this paper, a flat and incident angle independence absorbing material is proposed and numerically verified in the optical spectrum. A homogeneous and anisotropic dielectric slab as a non-reflecting layer is first reviewed, and a feasible realization strategy of the slab is then given by using layered isotropic materials. When the loss components of the constitutive materials are not zero, the slab will work as an angle insensitive absorbing layer, and the absorption rate augments with increase of the losses. As the numerical verifications, the field distributions of a metallic cylinder and a triangular metallic object individually covered by the designed absorbing layer are demonstrated. The simulation results show that the designed absorbing layer can efficiently absorb the incident waves with the property of incident angle independence at the operation frequency. This homogeneous slab can be used in one and two dimensional situations for the realization of an invisibility cloak, a carpet cloak and even a skin cloak, if it is used to conformally cover target objects.
Anisotropic Exciton Rabi Oscillation in Single Telecommunication-Band Quantum Dot
NASA Astrophysics Data System (ADS)
Miyazawa, Toshiyuki; Nakaoka, Toshihiro; Watanabe, Katsuyuki; Kumagai, Naoto; Yokoyama, Naoki; Arakawa, Yasuhiko
2010-06-01
Anisotropic Rabi oscillation in the exciton state in a single InAs/GaAs quantum dot (QD) was demonstrated in the telecommunication-band by selecting two orthogonal polarization angles of the excitation laser. Our InAs QDs were embedded in an intrinsic layer of an n-i-Schottky diode, which provides an electric field to extract photoexcited carriers from QDs. Owing to the potential anisotropy of QDs, the fine structure splitting (FSS) energy in the exciton state in single InAs QDs was ˜110 µeV, measured by polarization-resolved photocurrent spectroscopy. The ratio between two different Rabi frequencies, which reflect anisotropic dipole moments of two orthogonal exciton states, was estimated to be ˜1.2. This demonstrates that the selective control of two orthogonal polarized exciton states is a promising technique for exciton-based-quantum information devices compatible with fiber optics.
Anisotropic Exciton Rabi Oscillation in Single Telecommunication-Band Quantum Dot
NASA Astrophysics Data System (ADS)
Toshiyuki Miyazawa,; Toshihiro Nakaoka,; Katsuyuki Watanabe,; Naoto Kumagai,; Naoki Yokoyama,; Yasuhiko Arakawa,
2010-06-01
Anisotropic Rabi oscillation in the exciton state in a single InAs/GaAs quantum dot (QD) was demonstrated in the telecommunication-band by selecting two orthogonal polarization angles of the excitation laser. Our InAs QDs were embedded in an intrinsic layer of an n-i-Schottky diode, which provides an electric field to extract photoexcited carriers from QDs. Owing to the potential anisotropy of QDs, the fine structure splitting (FSS) energy in the exciton state in single InAs QDs was ˜110 μeV, measured by polarization-resolved photocurrent spectroscopy. The ratio between two different Rabi frequencies, which reflect anisotropic dipole moments of two orthogonal exciton states, was estimated to be ˜1.2. This demonstrates that the selective control of two orthogonal polarized exciton states is a promising technique for exciton-based-quantum information devices compatible with fiber optics.
Transient analysis of spectrally asymmetric magnetic photonic crystals with ferromagnetic losses
NASA Astrophysics Data System (ADS)
Jung, K.-Y.; Donderici, B.; Teixeira, F. L.
2006-10-01
We analyze transient electromagnetic pulse propagation in spectrally asymmetric magnetic photonic crystals (MPCs) with ferromagnetic losses. MPCs are dispersion-engineered materials consisting of a periodic arrangement of misaligned anisotropic dielectric and ferromagnetic layers that exhibit a stationary inflection point in the (asymmetric) dispersion diagram and unidirectional frozen modes. The analysis is performed via a late-time stable finite-difference time-domain method (FDTD) implemented with perfectly matched layer (PML) absorbing boundary conditions, and extended to handle (simultaneously) dispersive and anisotropic media. The proposed PML-FDTD algorithm is based on a D - H and B - E combined field approach that naturally decouples the FDTD update into two steps, one involving the (anisotropic and dispersive) constitutive material tensors and the other involving Maxwell’s equations in a complex coordinate space (to incorporate the PML). For ferromagnetic layers, a fully dispersive modeling of the permeability tensor is implemented to include magnetic losses in a consistent fashion. The numerical results illustrate some striking properties of MPCs, such as wave slowdown (frozen modes), amplitude increase (pulse compression), and unidirectional characteristics. The numerical model is also used to investigate the sensitivity of the MPC response against excitation (frequency and bandwidth), material (ferromagnetic losses), and geometric (layer misalignment and thickness) parameter variations.
NASA Astrophysics Data System (ADS)
Liu, Ying; Xu, Zhenhuan; Li, Yuguo
2018-04-01
We present a goal-oriented adaptive finite element (FE) modelling algorithm for 3-D magnetotelluric fields in generally anisotropic conductivity media. The model consists of a background layered structure, containing anisotropic blocks. Each block and layer might be anisotropic by assigning to them 3 × 3 conductivity tensors. The second-order partial differential equations are solved using the adaptive finite element method (FEM). The computational domain is subdivided into unstructured tetrahedral elements, which allow for complex geometries including bathymetry and dipping interfaces. The grid refinement process is guided by a global posteriori error estimator and is performed iteratively. The system of linear FE equations for electric field E is solved with a direct solver MUMPS. Then the magnetic field H can be found, in which the required derivatives are computed numerically using cubic spline interpolation. The 3-D FE algorithm has been validated by comparisons with both the 3-D finite-difference solution and 2-D FE results. Two model types are used to demonstrate the effects of anisotropy upon 3-D magnetotelluric responses: horizontal and dipping anisotropy. Finally, a 3D sea hill model is modelled to study the effect of oblique interfaces and the dipping anisotropy.
Extrinsic Versus Intrinsic Seismic Anisotropy and Attenuation
NASA Astrophysics Data System (ADS)
Montagner, J. P.; Ricard, Y. R.; Capdeville, Y.; Bodin, T.; Wang, N.
2015-12-01
The apparent large scale anisotropy is the mixing of intrinsic anisotropic minerals (LPO) and extrinsic anisotropy due to materials with fine layering, fluid inclusions, cracks (SPO) . The same issue arises for attenuation (with many different anelastic processes). The proportion of extrinsic and intrinsic anisotropy and attenuation in the Earth mantle is still an open question. The interpretation of observations of seismic anisotropy and attenuation is the subject of controversies and often contradictory according to their intrinsic or extrinsic nature. Fine layering is a good candidate for explaining at the same time a large part of observed radial anisotropy (Wang et al., Geophys. Res. Lett., 2013) and attenuation (Ricard et al., Earth Planet. Sci. Lett., 2014). A plausible model of mixing of materials in a chaotic convecting fluid creates a spectrum of heterogeneity varying like 1/k (k wavenumber of the heterogeneity). A body wave propagating in a finely layered medium will be scattered and its distorted waveform can be interpreted as due to attenuation with a quality factor Q. We showed that, with the specific 1/k spectrum and only 6-9% RMS heterogeneity, the resulting apparent attenuation Q is frequency independent. Aggregates of randomly orientated anisotropic minerals are good candidates for giving rise to this extrinsic apparent attenuation. The relationship for a 1/k spectrum with apparent seismic anisotropy is also explored.
Anisotropic capillary barrier for waste site surface covers
Stormont, J.C.
1996-08-27
Waste sites are capped or covered upon closure. The cover structure incorporates a number of different layers each having a contributory function. One such layer is the barrier layer. Traditionally the barriers have been compacted soil and geosynthetics. These types of barriers have not been successfully implemented in unsaturated ground conditions like those found in dry climates. Capillary barriers have been proposed as barrier layers in dry environments, but the divergence length of these barriers has been found to be inadequate. An alternative to the capillary barrier is a anisotropic capillary barrier. An anisotropic capillary barrier has an increased divergence length which results in more water being diverted laterally preventing the majority of water from percolating in a downward direction through the barrier. 10 figs.
Anisotropic capillary barrier for waste site surface covers
Stormont, John C.
1996-01-01
Waste sites are capped or covered upon closure. The cover structure incorporates a number of different layers each having a contributory function. One such layer is the barrier layer. Traditionally the barriers have been compacted soil and geosynthetics. These types of barriers have not been successfully implemented in unsaturated ground conditions like those found in dry climates. Capillary barriers have been proposed as barrier layers in dry environments, but the divergence length of these barriers has been found to be inadequate. An alternative to the capillary barrier is a anisotropic capillary barrier. An anisotropic capillary barrier has an increased divergence length which results in more water being diverted laterally preventing the majority of water from percolating in a downward direction through the barrier.
Plasmon modes in monolayer and double-layer black phosphorus under applied uniaxial strain
NASA Astrophysics Data System (ADS)
Saberi-Pouya, S.; Vazifehshenas, T.; Saleh, M.; Farmanbar, M.; Salavati-fard, T.
2018-05-01
We study the effects of an applied in-plane uniaxial strain on the plasmon dispersions of monolayer, bilayer, and double-layer black phosphorus structures in the long-wavelength limit within the linear elasticity theory. In the low-energy limit, these effects can be modeled through the change in the curvature of the anisotropic energy band along the armchair and zigzag directions. We derive analytical relations of the plasmon modes under uniaxial strain and show that the direction of the applied strain is important. Moreover, we observe that along the armchair direction, the changes of the plasmon dispersion with strain are different and larger than those along the zigzag direction. Using the analytical relations of two-layer phosphorene systems, we found that the strain-dependent orientation factor of layers could be considered as a means to control the variations of the plasmon energy. Furthermore, our study shows that the plasmonic collective modes are more affected when the strain is applied equally to the layers compared to the case in which the strain is applied asymmetrically to the layers. We also calculate the effect of strain on the drag resistivity in a double-layer black phosphorus structure and obtain that the changes in the plasmonic excitations, due to an applied strain, are mainly responsible for the predicted results. This study can be readily extended to other anisotropic two-dimensional materials.
Anisotropic carrier mobility in single- and bi-layer C3N sheets
NASA Astrophysics Data System (ADS)
Wang, Xueyan; Li, Qingfang; Wang, Haifeng; Gao, Yan; Hou, Juan; Shao, Jianxin
2018-05-01
Based on the density functional theory combined with the Boltzmann transport equation with relaxation time approximation, we investigate the electronic structure and predict the carrier mobility of single- and bi-layer newly fabricated 2D carbon nitrides C3N. Although C3N sheets possess graphene-like planar hexagonal structure, the calculated carrier mobility is remarkably anisotropic, which is found mainly induced by the anisotropic effective masses and deformation potential constants. Importantly, we find that both the electron and hole mobilities are considerable high, for example, the hole mobility along the armchair direction of single-layer C3N sheets can arrive as high as 1.08 ×104 cm2 V-1 s-1, greatly larger than that of C2N-h2D and many other typical 2D materials. Owing to the high and anisotropic carrier mobility and appropriate band gap, single- and bi-layer semiconducting C3N sheets may have great potential applications in high performance electronic and optoelectronic devices.
Probing in-plane anisotropy in fewlayer ReS2 using low frequency noise measurement.
Mitra, Richa; Jariwala, Bhakti; Bhattacharya, Arnab; Das, Anindya
2018-01-31
ReS<sub>2</sub>, a layered two-dimensional material popular for its in-plane anisotropic properties is emerging as one of the potential candidates for flexible electronics and ultrafast optical applications. It is an n-type semiconducting material having a layer independent bandgap of 1.55 eV. In this paper we have characterized the intrinsic electronic noise level of fewlayer ReS<sub>2</sub> for the first time. Fewlayer ReS<sub>2</sub> FET devices show 1/f nature of noise for frequency ranging over three orders of magnitude. We have also observed that not only the electrical response of the material is anisotropic; the noise level is also direction dependent. In fact the noise is found to be more sensitive towards the anisotropy. This fact has been explained by evoking the theory where the Hooge parameter is not a constant quantity, but has a distinct power law dependence on mobility along the two axes direction. The anisotropy in 1/f noise measurement will pave the way to quantify the anisotropic nature of two-dimensional (2D) materials, which will be helpful for the design of low noise transistor in future. © 2018 IOP Publishing Ltd.
Plasmonic reflectance anisotropy spectroscopy of metal nanoparticles on a semiconductor surface
NASA Astrophysics Data System (ADS)
Kosobukin, V. A.; Korotchenkov, A. V.
2016-12-01
A theory of plasmonic differential anisotropic reflection of light from nanoparticles located near the interface between media is developed. The model of a monolayer consisting of identical ellipsoidal metal particles occupying sites of a rectangular lattice is investigated. Effective plasmonic polarizabilities of nanoparticles in the layer are calculated self-consistently using the Green's function technique in the quasipoint dipole approximation. The local-field effect caused by anisotropic dipole plasmons of particles in the layer and their image dipoles is taken into account. The lately observed resonant reflectance anisotropy spectra of indium nanoclusters on InAs surface are explained by the difference between frequencies of plasmons with the orthogonal polarizations in the surface plane. The difference between the plasmon frequencies is attributed to anisotropy of the particles shape or/and the layer structure; the signs of frequency difference for the two types of anisotropy being different.
PdSe 2: Pentagonal Two-Dimensional Layers with High Air Stability for Electronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyedele, Akinola D.; Yang, Shize; Liang, Liangbo
Most studied two-dimensional (2D) materials exhibit isotropic behavior due to high lattice symmetry; however, lower-symmetry 2D materials such as phosphorene and other elemental 2D materials exhibit very interesting anisotropic properties. In this work, we report the atomic structure, electronic properties, and vibrational modes of few-layered PdSe 2, exfoliated from bulk crystals, a pentagonal 2D layered noble transition metal dichalcogenide with a puckered morphology that is air-stable. Micro-absorption optical spectroscopy and first-principles calculations reveal a wide band gap variation in this material from ~0 (bulk) to ~1.3 eV (monolayer). The Raman active vibrational modes of PdSe 2 were identified using polarizedmore » Raman spectroscopy, and the strong interlayer interaction was revealed from the large thickness-dependent Raman peak shifts, agreeing with first-principles Raman simulations. Field-effect transistors made from the few-layer PdSe 2 display tunable ambipolar charge carrier conduction with a high electron apparent field-effect mobility of ~158 cm 2V -1s -1, indicating the promise of this anisotropic, air-stable, pentagonal 2D material for 2D electronics.« less
PdSe 2: Pentagonal Two-Dimensional Layers with High Air Stability for Electronics
Oyedele, Akinola D.; Yang, Shize; Liang, Liangbo; ...
2017-09-05
Most studied two-dimensional (2D) materials exhibit isotropic behavior due to high lattice symmetry; however, lower-symmetry 2D materials such as phosphorene and other elemental 2D materials exhibit very interesting anisotropic properties. In this work, we report the atomic structure, electronic properties, and vibrational modes of few-layered PdSe 2, exfoliated from bulk crystals, a pentagonal 2D layered noble transition metal dichalcogenide with a puckered morphology that is air-stable. Micro-absorption optical spectroscopy and first-principles calculations reveal a wide band gap variation in this material from ~0 (bulk) to ~1.3 eV (monolayer). The Raman active vibrational modes of PdSe 2 were identified using polarizedmore » Raman spectroscopy, and the strong interlayer interaction was revealed from the large thickness-dependent Raman peak shifts, agreeing with first-principles Raman simulations. Field-effect transistors made from the few-layer PdSe 2 display tunable ambipolar charge carrier conduction with a high electron apparent field-effect mobility of ~158 cm 2V -1s -1, indicating the promise of this anisotropic, air-stable, pentagonal 2D material for 2D electronics.« less
Bi/In thermal resist for both Si anisotropic wet etching and Si/SiO2 plasma etching
NASA Astrophysics Data System (ADS)
Chapman, Glenn H.; Tu, Yuqiang; Peng, Jun
2004-01-01
Bi/In thermal resist is a bilayer structure of Bi over In films which can be exposed by laser with a wide range of wavelengths and can be developed by diluted RCA2 solutions. Current research shows bimetallic resist can work as etch masking layer for both dry plasma etching and wet anisotropic etching. It can act as both patterning and masking layers for Si and SiO2 with plasma "dry" etch using CF4/CHF3. The etching condition is CF4 flow rate 50 sccm, pressure 150 mTorr, and RF power 100 - 600W. The profile of etched structures can be tuned by adding CHF3 and other gases such as Ar, and by changing the CF4/CHF3 ratio. Depending on the fluorocarbon plasma etching recipe the etch rate of laser exposed Bi/In can be as low as 0.1 nm/min, 500 times lower than organic photoresists. O2 plasma ashing has little etching effect on exposed Bi/In. Bi/In also creates etch masking layers for alkaline-based (KOH, TMAH and EDP) "wet" anisotropic bulk Si etch without the need of SiO2 masking steps. The laser exposed Bi/In etches two times more slowly than SiO2. Experiment result shows that single metal Indium film exhibits thermal resist characteristics but at twice the exposure levels. It can be developed in diluted RCA2 solution and used as an etch mask layer for Si anisotropic etch. X-ray diffraction analysis shows that laser exposure causes both Bi and In single film to oxidize. In film may become amorphous when exposed to high laser power.
NASA Astrophysics Data System (ADS)
Lin, Guoxing
2018-05-01
Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) anomalous diffusion is complicated, especially in the anisotropic case where limited research has been reported. A general PFG signal attenuation expression, including the finite gradient pulse (FGPW) effect for free general anisotropic fractional diffusion { 0 < α , β ≤ 2 } based on the fractional derivative, has not been obtained, where α and β are time and space derivative orders. It is essential to derive a general PFG signal attenuation expression including the FGPW effect for PFG anisotropic anomalous diffusion research. In this paper, two recently developed modified-Bloch equations, the fractal differential modified-Bloch equation and the fractional integral modified-Bloch equation, were extended to obtain general PFG signal attenuation expressions for anisotropic anomalous diffusion. Various cases of PFG anisotropic anomalous diffusion were investigated, including coupled and uncoupled anisotropic anomalous diffusion. The continuous-time random walk (CTRW) simulation was also carried out to support the theoretical results. The theory and the CTRW simulation agree with each other. The obtained signal attenuation expressions and the three-dimensional fractional modified-Bloch equations are important for analyzing PFG anisotropic anomalous diffusion in NMR and MRI.
Tunneling anisotropic magnetoresistance driven by magnetic phase transition.
Chen, X Z; Feng, J F; Wang, Z C; Zhang, J; Zhong, X Y; Song, C; Jin, L; Zhang, B; Li, F; Jiang, M; Tan, Y Z; Zhou, X J; Shi, G Y; Zhou, X F; Han, X D; Mao, S C; Chen, Y H; Han, X F; Pan, F
2017-09-06
The independent control of two magnetic electrodes and spin-coherent transport in magnetic tunnel junctions are strictly required for tunneling magnetoresistance, while junctions with only one ferromagnetic electrode exhibit tunneling anisotropic magnetoresistance dependent on the anisotropic density of states with no room temperature performance so far. Here, we report an alternative approach to obtaining tunneling anisotropic magnetoresistance in α'-FeRh-based junctions driven by the magnetic phase transition of α'-FeRh and resultantly large variation of the density of states in the vicinity of MgO tunneling barrier, referred to as phase transition tunneling anisotropic magnetoresistance. The junctions with only one α'-FeRh magnetic electrode show a magnetoresistance ratio up to 20% at room temperature. Both the polarity and magnitude of the phase transition tunneling anisotropic magnetoresistance can be modulated by interfacial engineering at the α'-FeRh/MgO interface. Besides the fundamental significance, our finding might add a different dimension to magnetic random access memory and antiferromagnet spintronics.Tunneling anisotropic magnetoresistance is promising for next generation memory devices but limited by the low efficiency and functioning temperature. Here the authors achieved 20% tunneling anisotropic magnetoresistance at room temperature in magnetic tunnel junctions with one α'-FeRh magnetic electrode.
Two-axis magnetic field sensor
NASA Technical Reports Server (NTRS)
Smith, Carl H. (Inventor); Nordman, Catherine A. (Inventor); Jander, Albrecht (Inventor); Qian, Zhenghong (Inventor)
2006-01-01
A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.
Gao, Kai; Chung, Eric T.; Gibson, Richard L.; ...
2015-06-05
The development of reliable methods for upscaling fine scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. We therefore propose a numerical homogenization algorithm based on multiscale finite element methods for simulating elasticmore » wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that is similar to the rotated staggered-grid finite difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity where the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.« less
Magnetic interactions in anisotropic Nd-Dy-Fe-Co-B/α-Fe multilayer magnets
NASA Astrophysics Data System (ADS)
Dai, Z. M.; Liu, W.; Zhao, X. T.; Han, Z.; Kim, D.; Choi, C. J.; Zhang, Z. D.
2016-10-01
The magnetic properties and the possible interaction mechanisms of anisotropic soft- and hard-magnetic multilayers have been investigated by altering the thickness of different kinds of spacer layers. The metal Ta and the insulating oxides MgO, Cr2O3 have been chosen as spacer layers to investigate the characteristics of the interactions between soft- and hard-magnetic layers in the anisotropic Nd-Dy-Fe-Co-B/α-Fe multilayer system. The dipolar and exchange interaction between hard and soft phases are evaluated with the help of the first order reversal curve method. The onset of the nucleation field and the magnetization reversal by domain wall movement are also evident from the first-order-reversal-curve measurements. Reversible/irreversible distributions reveal the natures of the soft- and hard-magnetic components. Incoherent switching fields are observed and the calculations show the semiquantitative contributions of hard and soft components to the system. An antiferromagnetic spacer layer will weaken the interaction between ferromagnetic layers and the effective interaction length decreases. As a consequence, the dipolar magnetostatic interaction may play an important role in the long-range interaction in anisotropic multilayer magnets.
NASA Astrophysics Data System (ADS)
Yin, X.; Xia, J.; Xu, H.
2016-12-01
Rayleigh and Love waves are two types of surface waves that travel along a free surface.Based on the assumption of horizontal layered homogenous media, Rayleigh-wave phase velocity can be defined as a function of frequency and four groups of earth parameters: P-wave velocity, SV-wave velocity, density and thickness of each layer. Unlike Rayleigh waves, Love-wave phase velocities of a layered homogenous earth model could be calculated using frequency and three groups of earth properties: SH-wave velocity, density, and thickness of each layer. Because the dispersion of Love waves is independent of P-wave velocities, Love-wave dispersion curves are much simpler than Rayleigh wave. The research of joint inversion methods of Rayleigh and Love dispersion curves is necessary. (1) This dissertation adopts the combinations of theoretical analysis and practical applications. In both lateral homogenous media and radial anisotropic media, joint inversion approaches of Rayleigh and Love waves are proposed to improve the accuracy of S-wave velocities.A 10% random white noise and a 20% random white noise are added to the synthetic dispersion curves to check out anti-noise ability of the proposed joint inversion method.Considering the influences of the anomalous layer, Rayleigh and Love waves are insensitive to those layers beneath the high-velocity layer or low-velocity layer and the high-velocity layer itself. Low sensitivities will give rise to high degree of uncertainties of the inverted S-wave velocities of these layers. Considering that sensitivity peaks of Rayleigh and Love waves separate at different frequency ranges, the theoretical analyses have demonstrated that joint inversion of these two types of waves would probably ameliorate the inverted model.The lack of surface-wave (Rayleigh or Love waves) dispersion data may lead to inaccuracy S-wave velocities through the single inversion of Rayleigh or Love waves, so this dissertation presents the joint inversion method of Rayleigh and Love waves which will improve the accuracy of S-wave velocities. Finally, a real-world example is applied to verify the accuracy and stability of the proposed joint inversion method. Keywords: Rayleigh wave; Love wave; Sensitivity analysis; Joint inversion method.
Metamaterial-based lossy anisotropic epsilon-near-zero medium for energy collimation
NASA Astrophysics Data System (ADS)
Shen, Nian-Hai; Zhang, Peng; Koschny, Thomas; Soukoulis, Costas M.
2016-06-01
A lossy anisotropic epsilon-near-zero (ENZ) medium may lead to a counterintuitive phenomenon of omnidirectional bending-to-normal refraction [S. Feng, Phys. Rev. Lett. 108, 193904 (2012), 10.1103/PhysRevLett.108.193904], which offers a fabulous strategy for energy collimation and energy harvesting. Here, in the scope of effective medium theory, we systematically investigate two simple metamaterial configurations, i.e., metal-dielectric-layered structures and the wire medium, to explore the possibility of fulfilling the conditions of such an anisotropic lossy ENZ medium by playing with materials' parameters. Both realistic metamaterial structures and their effective medium equivalences have been numerically simulated, and the results are in excellent agreement with each other. Our study provides clear guidance and therefore paves the way towards the search for proper designs of anisotropic metamaterials for a decent effect of energy collimation and wave-front manipulation.
Liang, Ting; van Kuringen, Huub P C; Mulder, Dirk J; Tan, Shuai; Wu, Yong; Borneman, Zandrie; Nijmeijer, Kitty; Schenning, Albertus P H J
2017-10-11
In this work, the decisive role of rigidity, orientation, and order in the smectic liquid crystalline network on the anisotropic proton and adsorbent properties is reported. The rigidity in the hydrogen-bonded polymer network has been altered by changing the cross-link density, the order by using different mesophases (smectic, nematic, and isotropic phases), whereas the orientation of the mesogens was controlled by alignment layers. Adding more cross-linkers improved the integrity of the polymer films. For the proton conduction, an optimum was found in the amount of cross-linker and the smectic organization results in the highest anhydrous proton conduction. The polymer films show anisotropic proton conductivity with a 54 times higher conductivity in the direction perpendicular to the molecular director. After a base treatment of the smectic liquid crystalline network, a nanoporous polymer film is obtained that also shows anisotropic adsorption of dye molecules and again straight smectic pores are favored over disordered pores in nematic and isotropic networks. The highly cross-linked films show size-selective adsorption of dyes. Low cross-linked materials do not show this difference due to swelling, which decreases the order and creates openings in the two-dimensional polymer layers. The latter is, however, beneficial for fast adsorption kinetics.
Modeling of layered anisotropic composite material based on effective medium theory
NASA Astrophysics Data System (ADS)
Bao, Yang; Song, Jiming
2018-04-01
In this paper, we present an efficient method to simulate multilayered anisotropic composite material with effective medium theory. Effective permittivity, permeability and orientation angle for a layered anisotropic composite medium are extracted with this equivalent model. We also derive analytical expressions for effective parameters and orientation angle with low frequency (LF) limit, which will be shown in detail. Numerical results are shown in comparing extracted effective parameters and orientation angle with analytical results from low frequency limit. Good agreements are achieved to demonstrate the accuracy of our efficient model.
Electronic Bandgap and Edge Reconstruction in Phosphorene Materials
Liang, Liangbo; Wang, Jun; Lin, Wenzhi; ...
2014-11-12
Single-layer black phosphorous (BP), or phosphorene, is a highly-anisotropic two-dimensional elemental material possessing promising semiconductor properties for flexible electronics. However, the direct bandgap of single-layer black phosphorus predicted theoretically has not been directly measured, and the properties of its edges have not been considered in detail. Here we report atomic scale electronic variation related to strain-induced anisotropic deformation of the puckered honeycomb structure of freshly cleaved black phosphorus using a highresolved scanning tunneling spectroscopy (STS) survey along the light (x) and heavy (y) effective mass directions. Through a combination of STS measurements and first-principles calculations, a model for edge reconstructionmore » is also determined. The reconstruction is shown to self-passivate any dangling bond by switching the oxidation state of phosphorous from +3 to +5.« less
Effects of anisotropy on the two-dimensional inversion procedure
NASA Astrophysics Data System (ADS)
Heise, Wiebke; Pous, Jaume
2001-12-01
In this paper we show some of the effects that appear in magnetotelluric measurements over 2-D anisotropic structures, and propose a procedure to recover the anisotropy using 2-D inversion algorithms for isotropic models. First, we see how anisotropy affects the usual interpretation steps: dimensionality analysis and 2-D inversion. Two models containing general 2-D azimuthal anisotropic features were chosen to illustrate this approach: an anisotropic block and an anisotropic layer, both forming part of general 2-D models. In addition, a third model with dipping anisotropy was studied. For each model we examined the influence of various anisotropy strikes and resistivity contrasts on the dimensionality analysis and on the behaviour of the induction arrows. We found that, when the anisotropy ratio is higher than five, even if the strike is frequency-dependent it is possible to decide on a direction close to the direction of anisotropy. Then, if the data are rotated to this angle, a 2-D inversion reproduces the anisotropy reasonably well by means of macro-anisotropy. This strategy was tested on field data where anisotropy had been previously recognized.
Intrinsic Charge Carrier Mobility in Single-Layer Black Phosphorus.
Rudenko, A N; Brener, S; Katsnelson, M I
2016-06-17
We present a theory for single- and two-phonon charge carrier scattering in anisotropic two-dimensional semiconductors applied to single-layer black phosphorus (BP). We show that in contrast to graphene, where two-phonon processes due to the scattering by flexural phonons dominate at any practically relevant temperatures and are independent of the carrier concentration n, two-phonon scattering in BP is less important and can be considered negligible at n≳10^{13} cm^{-2}. At smaller n, however, phonons enter in the essentially anharmonic regime. Compared to the hole mobility, which does not exhibit strong anisotropy between the principal directions of BP (μ_{xx}/μ_{yy}∼1.4 at n=10^{13} cm^{-2} and T=300 K), the electron mobility is found to be significantly more anisotropic (μ_{xx}/μ_{yy}∼6.2). Absolute values of μ_{xx} do not exceed 250 (700) cm^{2} V^{-1} s^{-1} for holes (electrons), which can be considered as an upper limit for the mobility in BP at room temperature.
Anisotropic visible photoluminescence from thermally annealed few-layer black phosphorus.
Zhao, Chuan; Sekhar, M Chandra; Lu, Wei; Zhang, Chenglong; Lai, Jiawei; Jia, Shuang; Sun, Dong
2018-06-15
Black phosphorus, a two-dimensional material, with high carrier mobility, tunable direct bandgap and anisotropic electronic properties has attracted enormous research interest towards potential application in electronic, optoelectronic and optomechanical devices. The bandgap of BP is thickness dependent, ranging from 0.3 eV for bulk to 1.3 eV for monolayer, while lacking in the visible region, a widely used optical regime for practical optoelectronic applications. In this work, photoluminescence (PL) centered at 605 nm is observed from the thermally annealed BP with thickness ≤20 nm. This higher energy PL is most likely the consequence of the formation of higher bandgap phosphorene oxides and suboxides on the surface BP layers as a result of the enhanced rate of oxidation. Moreover, the polarization-resolved PL measurements show that the emitted light is anisotropic when the excitation polarization is along the armchair direction. However, if excited along zigzag direction, the PL is nearly isotropic. Our findings suggest that the thermal annealing of BP can be used as a convenient route to fill the visible gap of the BP-based optoelectronic and optomechanical devices.
Anisotropic visible photoluminescence from thermally annealed few-layer black phosphorus
NASA Astrophysics Data System (ADS)
Zhao, Chuan; Sekhar, M. Chandra; Lu, Wei; Zhang, Chenglong; Lai, Jiawei; Jia, Shuang; Sun, Dong
2018-06-01
Black phosphorus, a two-dimensional material, with high carrier mobility, tunable direct bandgap and anisotropic electronic properties has attracted enormous research interest towards potential application in electronic, optoelectronic and optomechanical devices. The bandgap of BP is thickness dependent, ranging from 0.3 eV for bulk to 1.3 eV for monolayer, while lacking in the visible region, a widely used optical regime for practical optoelectronic applications. In this work, photoluminescence (PL) centered at 605 nm is observed from the thermally annealed BP with thickness ≤20 nm. This higher energy PL is most likely the consequence of the formation of higher bandgap phosphorene oxides and suboxides on the surface BP layers as a result of the enhanced rate of oxidation. Moreover, the polarization-resolved PL measurements show that the emitted light is anisotropic when the excitation polarization is along the armchair direction. However, if excited along zigzag direction, the PL is nearly isotropic. Our findings suggest that the thermal annealing of BP can be used as a convenient route to fill the visible gap of the BP-based optoelectronic and optomechanical devices.
Anisotropic thermal transport in van der Waals layered alloys WSe2(1-x)Te2x
NASA Astrophysics Data System (ADS)
Qian, Xin; Jiang, Puqing; Yu, Peng; Gu, Xiaokun; Liu, Zheng; Yang, Ronggui
2018-06-01
Transition metal dichalcogenide (TMD) alloys have attracted great interest in recent years due to their tunable electronic properties and the semiconductor-metal phase transition along with their potential applications in solid-state memories and thermoelectrics among others. However, the thermal conductivity of layered TMD alloys remains largely unexplored despite that it plays a critical role in the reliability and functionality of TMD-enabled devices. In this work, we study the composition- and temperature-dependent anisotropic thermal conductivity of the van der Waals layered TMD alloys WSe2(1-x)Te2x in both the in-plane direction (parallel to the basal planes) and the cross-plane direction (along the c-axis) using time-domain thermoreflectance measurements. In the WSe2(1-x)Te2x alloys, the cross-plane thermal conductivity is observed to be dependent on the heating frequency (modulation frequency of the pump laser) due to the non-equilibrium transport between different phonon modes. Using a two-channel heat conduction model, we extracted the anisotropic thermal conductivity at the equilibrium limit. A clear discontinuity in both the cross-plane and the in-plane thermal conductivity is observed as x increases from 0.4 to 0.6 due to the phase transition from the 2H to the Td phase in the layered alloys. The temperature dependence of thermal conductivity for the TMD alloys was found to become weaker compared with the pristine 2H WSe2 and Td WTe2 due to the atomic disorder. This work serves as an important starting point for exploring phonon transport in layered alloys.
Common reflection point migration and velocity analysis for anisotropic media
NASA Astrophysics Data System (ADS)
Oropeza, Ernesto V.
An efficient Kirchhoff-style prestack depth migration, called 'parsimonious' migration was developed a decade ago for isotropic 2D and 3D media. The common-reflection point (CRP) migration velocity analysis (MVA) was developed later for isotropic media. The isotropic parsimonious migration produces incorrect images when the media is actually anisotropic. Similarly, isotropic CRP MVA produces incorrect inversions when the medium is anisotropic. In this study both parsimonious depth migration and common-reflection point migration velocity analysis are extended for application to 2D tilted transversely isotropic (TTI) media and illustrated with synthetic P-wave data. While the framework of isotropic parsimonious migration may be retained, the extension to TTI media requires redevelopment of each of the numerical components, including calculation of the phase and group velocity for TTI media, development of a new two-point anisotropic ray tracer, and substitution of an initial-angle and anisotropic shooting ray-trace algorithm to replace the isotropic one. The 2D model parameterization consists of Thomsen's parameters (Vpo, epsilon, delta) and the tilt angle of the symmetry axis of the TI medium. The parsimonious anisotropic migration algorithm is successfully applied to synthetic data from a TTI version of the Marmousi-2 model. The quality of the image improves by weighting the impulse response by the calculation of the anisotropic Fresnel radius. The accuracy and speed of this migration makes it useful for anisotropic velocity model building. The common-reflection point migration velocity analysis for TTI media for P-waves includes (and inverts for) Vpo, epsilon, and delta. The orientation of the anisotropic symmetry axis have to be constrained. If it constrained orthogonal to the layer bottom (as it conventionally is), it is estimated at each CRP and updated at each iteration without intermediate picking. The extension to TTI media requires development of a new inversion procedure to include Vpo, epsilon, and delta in the perturbations. The TTI CRP MVA is applied to a single layer to demonstrate its feasibility. Errors in the estimation of the orientation of the symmetry axis larger that 5 degrees affect the inversion of epsilon and delta while Vpo is less sensitive to this parameter. The TTI CRP MVA is also applied to a version of the TTI BP model by layer stripping so one group of CRPs are used do to inversion top to bottom, constraining the model parameter after each previous group of CRPs converges. Vpo, delta and the orientation of the anisotropic symmetry axis (constrained orthogonal to the local reflector orientation) are successfully inverted. epsilon is less well constrained by the small acquisition aperture in the data .
Gao, Kai; Huang, Lianjie
2017-11-13
Conventional perfectly matched layers (PML) can be unstable for certain kinds of anisotropic media. Multi-axial PML removes such instability using nonzero damping coe cients in the directions tangential with the PML interface. While using non-zero damping pro le ratios can stabilize PML, it is important to obtain the smallest possible damping pro le ratios to minimize arti cial re ections caused by these non-zero ratios, particularly for 3D general anisotropic media. Using the eigenvectors of the PML system matrix, we develop a straightforward and e cient numerical algorithm to determine the optimal damping pro le ratios to stabilize PML inmore » 2D and 3D general anisotropic media. Numerical examples show that our algorithm provides optimal damping pro le ratios to ensure the stability of PML and complex-frequency-shifted PML for elastic-wave modeling in 2D and 3D general anisotropic media.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Kai; Huang, Lianjie
Conventional perfectly matched layers (PML) can be unstable for certain kinds of anisotropic media. Multi-axial PML removes such instability using nonzero damping coe cients in the directions tangential with the PML interface. While using non-zero damping pro le ratios can stabilize PML, it is important to obtain the smallest possible damping pro le ratios to minimize arti cial re ections caused by these non-zero ratios, particularly for 3D general anisotropic media. Using the eigenvectors of the PML system matrix, we develop a straightforward and e cient numerical algorithm to determine the optimal damping pro le ratios to stabilize PML inmore » 2D and 3D general anisotropic media. Numerical examples show that our algorithm provides optimal damping pro le ratios to ensure the stability of PML and complex-frequency-shifted PML for elastic-wave modeling in 2D and 3D general anisotropic media.« less
Vibrations and stresses in layered anisotropic cylinders
NASA Technical Reports Server (NTRS)
Mulholland, G. P.; Gupta, B. P.
1976-01-01
An equation describing the radial displacement in a k layered anisotropic cylinder was obtained. The cylinders are initially unstressed but are subjected to either a time dependent normal stress or a displacement at the external boundaries of the laminate. The solution is obtained by utilizing the Vodicka orthogonalization technique. Numerical examples are given to illustrate the procedure.
Seismic receiver function interpretation: Ps splitting or anisotropic underplating?
NASA Astrophysics Data System (ADS)
Liu, Z.; Park, J. J.
2016-12-01
Crustal anisotropy is crucial to understanding the evolutionary history of Earth's lithosphere. Shear-wave splitting of Moho P-to-s converted phases in receiver functions has often been used to infer crustal anisotropy. In addition to estimating birefringence directly, the harmonic variations of Moho Ps phases in delay times can be used to infer splitting parameters of averaged anisotropy in the crust. However, crustal anisotropy may localize at various levels within the crust due to complex deformational processes. Layered anisotropy requires careful investigation of the distribution of anisotropy before interpreting Moho Ps splitting. In this study, we show results from stations ARU in Russia, KIP in Hawaiian Islands and LSA in Tibetan Plateau, where layered anisotropy is well constrained by intra-crust Ps conversions at high frequencies using harmonic decomposition of multiple-taper correlation receiver functions. Anisotropic velocity models are inferred by forward-modeling decomposed RF waveforms. Our results of ARU and KIP show that the harmonic behavior of Moho Ps phases can be explained by a uniformly anisotropic crust model at lower cut-off frequencies, but higher-resolution RF-signals reveal a thin, highly anisotropic layer at the base of the crust. Station LSA tells a similar story with a twist: a modest Ps birefringence is revealed at high frequencies to stem from multiple thin (5-10-km) layers of localized anisotropy within the middle crust, but no strongly-sheared basal layer is inferred. We suggest that the harmonic variation of Moho Ps phases should always be investigated as a result of anisotropic layering using RFs with frequency content above 1Hz, rather than simply reporting averaged anisotropy of the whole crust.
High proton conductivity in the molecular interlayer of a polymer nanosheet multilayer film.
Sato, Takuma; Hayasaka, Yuta; Mitsuishi, Masaya; Miyashita, Tokuji; Nagano, Shusaku; Matsui, Jun
2015-05-12
High proton conductivity was achieved in a polymer multilayer film with a well-defined two-dimensional lamella structure. The multilayer film was prepared by deposition of poly(N-dodecylacryamide-co-acrylic acid) (p(DDA/AA)) monolayers onto a solid substrate using the Langmuir-Blodgett technique. Grazing-angle incidence X-ray diffraction measurement of a 30-layer film of p(DDA/AA) showed strong diffraction peaks in the out-of-plane direction at 2θ = 2.26° and 4.50°, revealing that the multilayer film had a highly uniform layered structure with a monolayer thickness of 2.0 nm. The proton conductivity of the p(DDA/AA) multilayer film parallel to the layer plane direction was 0.051 S/cm at 60 °C and 98% relative humidity with a low activation energy of 0.35 eV, which is comparable to perfluorosulfonic acid membranes. The high conductivity and low activation energy resulted from the formation of uniform two-dimensional proton-conductive nanochannels in the hydrophilic regions of the multilayer film. The proton conductivity of the multilayer film perpendicular to the layer plane was determined to be 2.1 × 10(-13) S/cm. Therefore, the multilayer film showed large anisotropic conductivity with an anisotropic ratio of 2.4 × 10(11).
NASA Astrophysics Data System (ADS)
Xu, Guo-Ming; Ni, Si-Dao
1998-11-01
The `auxiliary' symmetry properties of the system matrix (symmetry with respect to the trailing diagonal) for a general anisotropic dissipative medium and the special form for a monoclinic medium are revealed by rearranging the motion-stress vector. The propagator matrix of a single-layer general anisotropic dissipative medium is also shown to have auxiliary symmetry. For the multilayered case, a relatively simple matrix method is utilized to obtain the inverse of the propagator matrix. Further, Woodhouse's inverse of the propagator matrix for a transversely isotropic medium is extended in a clearer form to handle the monoclinic symmetric medium. The properties of a periodic layer system are studied through its system matrix Aly , which is computed from the propagator matrix P. The matrix Aly is then compared with Aeq , the system matrix for the long-wavelength equivalent medium of the periodic isotropic layers. Then we can find how the periodic layered medium departs from its long-wavelength equivalent medium when the wavelength decreases. In our numerical example, the results show that, when λ/D decreases to 6-8, the components of the two matrices will depart from each other. The component ratio of these two matrices increases to its maximum (more than 15 in our numerical test) when λ/D is reduced to 2.3, and then oscillates with λ/D when it is further reduced. The eigenvalues of the system matrix Aly show that the velocities of P and S waves decrease when λ/D is reduced from 6-8 and reach their minimum values when λ/D is reduced to 2.3 and then oscillate afterwards. We compute the time shifts between the peaks of the transmitted waves and the incident waves. The resulting velocity curves show a similar variation to those computed from the eigenvalues of the system matrix Aly , but on a smaller scale. This can be explained by the spectrum width of the incident waves.
Large-scale trench-normal mantle flow beneath central South America
NASA Astrophysics Data System (ADS)
Reiss, M. C.; Rümpker, G.; Wölbern, I.
2018-01-01
We investigate the anisotropic properties of the fore-arc region of the central Andean margin between 17-25°S by analyzing shear-wave splitting from teleseismic and local earthquakes from the Nazca slab. With partly over ten years of recording time, the data set is uniquely suited to address the long-standing debate about the mantle flow field at the South American margin and in particular whether the flow field beneath the slab is parallel or perpendicular to the trench. Our measurements suggest two anisotropic layers located within the crust and mantle beneath the stations, respectively. The teleseismic measurements show a moderate change of fast polarizations from North to South along the trench ranging from parallel to subparallel to the absolute plate motion and, are oriented mostly perpendicular to the trench. Shear-wave splitting measurements from local earthquakes show fast polarizations roughly aligned trench-parallel but exhibit short-scale variations which are indicative of a relatively shallow origin. Comparisons between fast polarization directions from local earthquakes and the strike of the local fault systems yield a good agreement. To infer the parameters of the lower anisotropic layer we employ an inversion of the teleseismic waveforms based on two-layer models, where the anisotropy of the upper (crustal) layer is constrained by the results from the local splitting. The waveform inversion yields a mantle layer that is best characterized by a fast axis parallel to the absolute plate motion which is more-or-less perpendicular to the trench. This orientation is likely caused by a combination of the fossil crystallographic preferred orientation of olivine within the slab and entrained mantle flow beneath the slab. The anisotropy within the crust of the overriding continental plate is explained by the shape-preferred orientation of micro-cracks in relation to local fault zones which are oriented parallel to the overall strike of the Andean range. Our results do not provide any evidence for a significant contribution of trench-parallel mantle flow beneath the subducting slab.
WKB solution 4×4 for electromagnetic waves in a planar magnetically anisotropic inhomogeneous layer
NASA Astrophysics Data System (ADS)
Moiseeva, Natalya Michailovna; Moiseev, Anton Vladimirovich
2018-04-01
In the paper, an oblique incidence of a plane electromagnetic wave on a planar magnetically anisotropic inhomogeneous layer is considered. We consider the case when all the components of the magnetic permeability tensor are non zero and vary with distance from the interface of media. The WKB method gives a matrix 4 × 4 solution for the projections of the electromagnetic wave fields during its propagation. The dependence of the cross-polarized components on the orientation of the anisotropic medium relative to the plane of incidence of the medium is analyzed.
NASA Astrophysics Data System (ADS)
Yuan, Yufeng; Yu, Xiantong; Ouyang, Qingling; Shao, Yonghong; Song, Jun; Qu, Junle; Yong, Ken-Tye
2018-04-01
This study proposed a novel highly anisotropic surface plasmon resonance (SPR) biosensor employing emerging 2D black phosphorus (BP) and graphene atomic layers. Light absorption and energy loss were well balanced by optimizing gold film thickness and number of BP layers to generate the strongest SPR excitation. The proposed SPR biosensor was designed by the phase-modulation approach and is more sensitive to biomolecule bindings, providing 3 orders of magnitude higher sensitivity than the red-shift in SPR angle. Our results show the optimized configuration was 48 nm Au film coated with 4-layer BP crystal to produce the sharpest phase variation (up to 89.8975°), and lowest minimum reflectivity (1.9119 × 10-7). Detection sensitivity up to 7.4914 × 104 degree/refractive index unit is almost 4.5 times enhanced compared to monolayer graphene-based SPR sensors with 48 nm Au film. The anisotropic BP layers act as a polarizer, so the proposed SPR biosensor would exhibit optically tunable detection sensitivity, making it a promising candidate for exploring highly anisotropic platforms in biosensing.
Mechanism of anisotropic surface self-diffusivity at the prismatic ice-vapor interface.
Gladich, Ivan; Oswald, Amrei; Bowens, Natalie; Naatz, Sam; Rowe, Penny; Roeselova, Martina; Neshyba, Steven
2015-09-21
Predictive theoretical models for mesoscopic roughening of ice require improved understanding of attachment kinetics occurring at the ice-vapor interface. Here, we use classical molecular dynamics to explore the generality and mechanics of a transition from anisotropic to isotropic self-diffusivity on exposed prismatic surfaces. We find that self-diffusion parallel to the crystallographic a-axis is favored over the c-axis at sub-melt temperatures below about -35 °C, for three different representations of the water-water intermolecular potential. In the low-temperature anisotropic regime, diffusion results from interstitial admolecules encountering entropically distinct barriers to diffusion in the two in-plane directions. At higher temperatures, isotropic self-diffusion occurring deeper within the quasi-liquid layer becomes the dominant mechanism, owing to its larger energy of activation.
An automated method for depth-dependent crustal anisotropy detection with receiver function
NASA Astrophysics Data System (ADS)
Licciardi, Andrea; Piana Agostinetti, Nicola
2015-04-01
Crustal seismic anisotropy can be generated by a variety of geological factors (e.g. alignment of minerals/cracks, presence of fluids etc...). In the case of transversely isotropic media approximation, information about strength and orientation of the anisotropic symmetry axis (including dip) can be extracted from the analysis of P-to-S conversions by means of teleseismic receiver functions (RF). Classically this has been achieved through probabilistic inversion encoding a forward solver for anisotropic media. This approach strongly relies on apriori choices regarding Earth's crust parameterization and velocity structure, requires an extensive knowledge of the RF method and involves time consuming trial and error steps. We present an automated method for reducing the non-uniqueness in this kind of inversions and for retrieving depth-dependent seismic anisotropy parameters in the crust with a resolution of some hundreds of meters. The method involves a multi-frequency approach (for better absolute Vs determination) and the decomposition of the RF data-set in its azimuthal harmonics (to separate the effects of isotropic and anisotropic component). A first inversion of the isotropic component (Zero-order harmonics) by means of a Reversible jump Markov Chain Monte Carlo (RjMCMC) provides the posterior probability distribution for the position of the velocity jumps at depth, from which information on the number of layers and the S-wave velocity structure below a broadband seismic station can be extracted. This information together with that encoded in the first order harmonic is jointly used in an automated way to: (1) determine the number of anisotropic layers and their approximate position at depth, and (2) narrow the search boundaries for layer thickness and S-wave velocity. Finaly, an inversion is carried out with a Neighbourhood Algorithm (NA), where the free parameters are represented by the anisotropic structure beneath the seismic station. We tested the method against synthetic RF with correlated Gaussian noise to investigate the resolution power for multiple and thin (1-5 km) anisotropic layers in the crust. The algorithm correctly retrieves the true models for the number and the position of the anisotropic layers, their strength and orientation of the anisotropic symmetry axis, although the trend direction is better constrained than the dip angle. The method is then applied to a real data-set and the results compared with previous RF studies.
NASA Astrophysics Data System (ADS)
Burganos, Vasilis N.; Skouras, Eugene D.; Kalarakis, Alexandros N.
2017-10-01
The lattice-Boltzmann (LB) method is used in this work to reproduce the controlled addition of binder and hydrophobicity-promoting agents, like polytetrafluoroethylene (PTFE), into gas diffusion layers (GDLs) and to predict flow permeabilities in the through- and in-plane directions. The present simulator manages to reproduce spreading of binder and hydrophobic additives, sequentially, into the neat fibrous layer using a two-phase flow model. Gas flow simulation is achieved by the same code, sidestepping the need for a post-processing flow code and avoiding the usual input/output and data interface problems that arise in other techniques. Compression effects on flow anisotropy of the impregnated GDL are also studied. The permeability predictions for different compression levels and for different binder or PTFE loadings are found to compare well with experimental data for commercial GDL products and with computational fluid dynamics (CFD) predictions. Alternatively, the PTFE-impregnated structure is reproduced from Scanning Electron Microscopy (SEM) images using an independent, purely geometrical approach. A comparison of the two approaches is made regarding their adequacy to reproduce correctly the main structural features of the GDL and to predict anisotropic flow permeabilities at different volume fractions of binder and hydrophobic additives.
Scale Properties of Anisotropic and Isotropic Turbulence in the Urban Surface Layer
NASA Astrophysics Data System (ADS)
Liu, Hao; Yuan, Renmin; Mei, Jie; Sun, Jianning; Liu, Qi; Wang, Yu
2017-11-01
The scale properties of anisotropic and isotropic turbulence in the urban surface layer are investigated. A dimensionless anisotropic tensor is introduced and the turbulent tensor anisotropic coefficient, defined as C, where C = 3d3 + 1 (d3 is the minimum eigenvalue of the tensor) is used to characterize the turbulence anisotropy or isotropy. Turbulence is isotropic when C ≈ 1, and anisotropic when C ≪ 1. Three-dimensional velocity data collected using a sonic anemometer are analyzed to obtain the anisotropic characteristics of atmospheric turbulence in the urban surface layer, and the tensor anisotropic coefficient of turbulent eddies at different spatial scales calculated. The analysis shows that C is strongly dependent on atmospheric stability ξ = (z-zd)/L_{{it{MO}}}, where z is the measurement height, zd is the displacement height, and L_{{it{MO}}} is the Obukhov length. The turbulence at a specific scale in unstable conditions (i.e., ξ < 0) is closer to isotropic than that at the same scale under stable conditions. The maximum isotropic scale of turbulence is determined based on the characteristics of the power spectrum in three directions. Turbulence does not behave isotropically when the eddy scale is greater than the maximum isotropic scale, whereas it is horizontally isotropic at relatively large scales. The maximum isotropic scale of turbulence is compared to the outer scale of temperature, which is obtained by fitting the temperature fluctuation spectrum using the von Karman turbulent model. The results show that the outer scale of temperature is greater than the maximum isotropic scale of turbulence.
Stochastic Modelling of the Hydraulic Anisotropy of Ash Impoundment Sediment
NASA Astrophysics Data System (ADS)
Slávik, Ivan
2017-12-01
In the case reported here the impoundments of a 400 MW coal heated power plant with an annual production of about 1.5 million tons of fuel ash are of the cross-valley type, operated by the simple and cheap „upstream method”. The aim of the research was to determine overall and local values of the permeability in horizontal as well as in vertical direction and the anisotropy of the thin-layered sedimented ash. The coal ashes are hydraulically transported through pipelines in form of a slurry and periodically floated on the beach of the impoundment. The ashes are deposited in the form of a thin-layered sediment, with random alternation of layers with a coarser or finer granularity. The ash impoundment sediment is anthropogenic sediment with horizontally laminated texture. Therefore, the sediment is anisotropic from the viewpoint of water seepage. The knowledge of the permeability and the seepage anisotropy of the sediment is a basic requirement for the design of an appropriate dewatering system. The seepage anisotropy of the ash sediment has been checked by means of stochastic modelling, based on the correlation between the effective grain diameter and the coefficient of permeability of the ash: the effective grain diameter and the thickness of individual layers have been proposed to be random events.
NASA Astrophysics Data System (ADS)
de Figueiredo, J. J. S.; Schleicher, J.; Stewart, R. R.; Dayur, N.; Omoboya, B.; Wiley, R.; William, A.
2013-04-01
To understand their influence on elastic wave propagation, anisotropic cracked media have been widely investigated in many theoretical and experimental studies. In this work, we report on laboratory ultrasound measurements carried out to investigate the effect of source frequency on the elastic parameters (wave velocities and the Thomsen parameter γ) and shear wave attenuation) of fractured anisotropic media. Under controlled conditions, we prepared anisotropic model samples containing penny-shaped rubber inclusions in a solid epoxy resin matrix with crack densities ranging from 0 to 6.2 per cent. Two of the three cracked samples have 10 layers and one has 17 layers. The number of uniform rubber inclusions per layer ranges from 0 to 100. S-wave splitting measurements have shown that scattering effects are more prominent in samples where the seismic wavelength to crack aperture ratio ranges from 1.6 to 1.64 than in others where the ratio varied from 2.72 to 2.85. The sample with the largest cracks showed a magnitude of scattering attenuation three times higher compared with another sample that had small inclusions. Our S-wave ultrasound results demonstrate that elastic scattering, scattering and anelastic attenuation, velocity dispersion and crack size interfere directly in shear wave splitting in a source-frequency dependent manner, resulting in an increase of scattering attenuation and a reduction of shear wave anisotropy with increasing frequency.
A Hybrid Seismic Inversion Method for V P/V S Ratio and Its Application to Gas Identification
NASA Astrophysics Data System (ADS)
Guo, Qiang; Zhang, Hongbing; Han, Feilong; Xiao, Wei; Shang, Zuoping
2018-03-01
The ratio of compressional wave velocity to shear wave velocity (V P/V S ratio) has established itself as one of the most important parameters in identifying gas reservoirs. However, considering that seismic inversion process is highly non-linear and geological conditions encountered may be complex, a direct estimation of V P/V S ratio from pre-stack seismic data remains a challenging task. In this paper, we propose a hybrid seismic inversion method to estimate V P/V S ratio directly. In this method, post- and pre-stack inversions are combined in which the pre-stack inversion for V P/V S ratio is driven by the post-stack inversion results (i.e., V P and density). In particular, the V P/V S ratio is considered as a model parameter and is directly inverted from the pre-stack inversion based on the exact Zoeppritz equation. Moreover, anisotropic Markov random field is employed in order to regularise the inversion process as well as taking care of geological structures (boundaries) information. Aided by the proposed hybrid inversion strategy, the directional weighting coefficients incorporated in the anisotropic Markov random field neighbourhoods are quantitatively calculated by the anisotropic diffusion method. The synthetic test demonstrates the effectiveness of the proposed inversion method. In particular, given low quality of the pre-stack data and high heterogeneity of the target layers in the field data, the proposed inversion method reveals the detailed model of V P/V S ratio that can successfully identify the gas-bearing zones.
Rippled graphene in an in-plane magnetic field: effects of a random vector potential.
Lundeberg, Mark B; Folk, Joshua A
2010-10-01
We report measurements of the effects of a random vector potential generated by applying an in-plane magnetic field to a graphene flake. Magnetic flux through the ripples cause orbital effects: Phase-coherent weak localization is suppressed, while quasirandom Lorentz forces lead to anisotropic magnetoresistance. Distinct signatures of these two effects enable the ripple size to be characterized.
Traveltime inversion and error analysis for layered anisotropy
NASA Astrophysics Data System (ADS)
Jiang, Fan; Zhou, Hua-wei
2011-02-01
While tilted transverse isotropy (TTI) is a good approximation of the velocity structure for many dipping and fractured strata, it is still challenging to estimate anisotropic depth models even when the tilted angle is known. With the assumption of weak anisotropy, we present a TTI traveltime inversion approach for models consisting of several thickness-varying layers where the anisotropic parameters are constant for each layer. For each model layer the inversion variables consist of the anisotropic parameters ɛ and δ, the tilted angle φ of its symmetry axis, layer velocity along the symmetry axis, and thickness variation of the layer. Using this method and synthetic data, we evaluate the effects of errors in some of the model parameters on the inverted values of the other parameters in crosswell and Vertical Seismic Profile (VSP) acquisition geometry. The analyses show that the errors in the layer symmetry axes sensitively affect the inverted values of other parameters, especially δ. However, the impact of errors in δ on the inversion of other parameters is much less than the impact on δ from the errors in other parameters. Hence, a practical strategy is first to invert for the most error-tolerant parameter layer velocity, then progressively invert for ɛ in crosswell geometry or δ in VSP geometry.
Longitudinal disordering of vortex lattices in anisotropic superconductors
NASA Astrophysics Data System (ADS)
Harshman, D. R.; Brandt, E. H.; Fiory, A. T.; Inui, M.; Mitzi, D. B.; Schneemeyer, L. F.; Waszczak, J. V.
1993-02-01
Vortex disordering in superconducting crystals is shown to be markedly sensitive to penetration-depth anisotropy. At low temperature and high magnetic field, the muon-spin-rotation spectra for the highly anisotropic Bi2Sr2CaCu2O8+δ material are found to be anomalously narrow and symmetric about the applied field, in a manner consistent with a layered vortex sublattice structure with pinning-induced misalignment between layers. In contrast, spectra for the less-anisotropic YBa2Cu3O7-δ compounds taken at comparable fields are broader and asymmetric, showing that the vortex lattices are aligned parallel to the applied-field direction.
NASA Astrophysics Data System (ADS)
Degan, Gérard; Sanya, Arthur; Akowanou, Christian
2016-10-01
This work analytically investigates the problem of steady film condensation along a vertical surface embedded in an anisotropic porous medium filled with a dry saturated vapor. The porous medium is anisotropic in permeability whose principal axes are oriented in a direction which is oblique to the gravity vector. On the basis of the generalized Darcy's law and within the boundary layer approximations, similar solutions have been obtained for the temperature and flow patterns in the condensate. Moreover, closed form solutions for the boundary layer thickness and heat transfer rate have been obtained in terms of the governing parameters of the problem.
Large-scale trench-perpendicular mantle flow beneath northern Chile
NASA Astrophysics Data System (ADS)
Reiss, M. C.; Rumpker, G.; Woelbern, I.
2017-12-01
We investigate the anisotropic properties of the forearc region of the central Andean margin by analyzing shear-wave splitting from teleseismic and local earthquakes from the Nazca slab. The data stems from the Integrated Plate boundary Observatory Chile (IPOC) located in northern Chile, covering an approximately 120 km wide coastal strip between 17°-25° S with an average station spacing of 60 km. With partly over ten years of data, this data set is uniquely suited to address the long-standing debate about the mantle flow field at the South American margin and in particular whether the flow field beneath the slab is parallel or perpendicular to the trench. Our measurements yield two distinct anisotropic layers. The teleseismic measurements show a change of fast polarizations directions from North to South along the trench ranging from parallel to subparallel to the absolute plate motion and, given the geometry of absolute plate motion and strike of the trench, mostly perpendicular to the trench. Shear-wave splitting from local earthquakes shows fast polarizations roughly aligned trench-parallel but exhibit short-scale variations which are indicative of a relatively shallow source. Comparisons between fast polarization directions and the strike of the local fault systems yield a good agreement. We use forward modelling to test the influence of the upper layer on the teleseismic measurements. We show that the observed variations of teleseismic measurements along the trench are caused by the anisotropy in the upper layer. Accordingly, the mantle layer is best characterized by an anisotropic fast axes parallel to the absolute plate motion which is roughly trench-perpendicular. This anisotropy is likely caused by a combination of crystallographic preferred orientation of the mantle mineral olivine as fossilized anisotropy in the slab and entrained flow beneath the slab. We interpret the upper anisotropic layer to be confined to the crust of the overriding continental plate. This is explained by the shape-preferred orientation of micro-cracks in relation to local fault zones which are oriented parallel the overall strike of the Andean range. Our results do not provide any evidence for a significant contribution of trench-parallel mantle flow beneath the subducting slab to the measurements.
Mueller matrix approach for probing multifractality in the underlying anisotropic connective tissue
NASA Astrophysics Data System (ADS)
Das, Nandan Kumar; Dey, Rajib; Ghosh, Nirmalya
2016-09-01
Spatial variation of refractive index (RI) in connective tissues exhibits multifractality, which encodes useful morphological and ultrastructural information about the disease. We present a spectral Mueller matrix (MM)-based approach in combination with multifractal detrended fluctuation analysis (MFDFA) to exclusively pick out the signature of the underlying connective tissue multifractality through the superficial epithelium layer. The method is based on inverse analysis on selected spectral scattering MM elements encoding the birefringence information on the anisotropic connective tissue. The light scattering spectra corresponding to the birefringence carrying MM elements are then subjected to the Born approximation-based Fourier domain preprocessing to extract ultrastructural RI fluctuations of anisotropic tissue. The extracted RI fluctuations are subsequently analyzed via MFDFA to yield the multifractal tissue parameters. The approach was experimentally validated on a simple tissue model comprising of TiO2 as scatterers of the superficial isotropic layer and rat tail collagen as an underlying anisotropic layer. Finally, the method enabled probing of precancer-related subtle alterations in underlying connective tissue ultrastructural multifractality from intact tissues.
A crossover in anisotropic nanomechanochemistry of van der Waals crystals
NASA Astrophysics Data System (ADS)
Shimamura, Kohei; Misawa, Masaaki; Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Shimojo, Fuyuki; Vashishta, Priya
2015-12-01
In nanoscale mechanochemistry, mechanical forces selectively break covalent bonds to essentially control chemical reactions. An archetype is anisotropic detonation of layered energetic molecular crystals bonded by van der Waals (vdW) interactions. Here, quantum molecular dynamics simulations reveal a crossover of anisotropic nanomechanochemistry of vdW crystal. Within 10-13 s from the passage of shock front, lateral collision produces NO2 via twisting and bending of nitro-groups and the resulting inverse Jahn-Teller effect, which is mediated by strong intra-layer hydrogen bonds. Subsequently, as we transition from heterogeneous to homogeneous mechanochemical regimes around 10-12 s, shock normal to multilayers becomes more reactive, producing H2O assisted by inter-layer N-N bond formation. These time-resolved results provide much needed atomistic understanding of nanomechanochemistry that underlies a wider range of technologies.
Large anisotropic thermoelectricity in perovskite related layered structure: SrnNbnO3n+2 (n = 4,5)
NASA Astrophysics Data System (ADS)
Sakai, Akihiro; Takahashi, Kouhei; Kanno, Tsutomu; Adachi, Hideaki
2011-05-01
We have systematically synthesized a series of perovskite related layered structures, Strontium-Niobates expressed as SrnNbnO3n+2 (n = 4 ~ 5) and focused on the thermoelectricity in n = 4 and 5 type materials here. To explore their thermoelectricities and anisotropic properties, we have measured the thermal and charge transport properties along all crystallographic axes. The values of thermoelectric parameters were strongly anisotropic and there exists a large anisotropy even in in-plane direction of the layered structure. As a result, the best performance of thermoelectricity is commonly observed in the a-axis. The respective ZT for Sr1.8La0.2Nb2O7 and Sr5Nb5O17 at room temperature is 3.5×10-2 and 3.6×10-3.
Thermodynamics of dilute 3He-4He solid solutions with hcp structure
NASA Astrophysics Data System (ADS)
Chishko, K. A.
2018-02-01
To interpret the anomalies in heat capacity CV(T) and temperature-dependent pressure P(T) of solid hexagonal close-packed (hcp) 4He we exploit the model of hcp crystalline polytype with specific lattice degrees of freedom and describe the thermodynamics of impurity-free 4He solid as superposition of phononic and polytypic contributions. The hcp-based polytype is a stack of 2D basal atomic monolayers on triangular lattice packed with arbitrary long (up to infinity) spatial period along the hexagonal c axis perpendicular to the basal planes. It is a crystal with perfect ordering along the layers, but without microscopic translational symmetry in perpendicular direction (which remains, nevertheless, the rotational crystallographic axis of third order, so that the polytype can be considered as semidisordered system). Each atom of the hcp polytype has twelve crystallographic neighbors in both first and second coordination spheres at any arbitrary packing order. It is shown that the crystal of such structure behaves as anisotropic elastic medium with specific dispersion law of phonon excitations along c axis. The free energy and the heat capacity consist of two terms: one of them is a normal contribution [with CV(T) ˜ T3] from phonon excitations in an anisotropic lattice of hexagonal symmetry, and another term (an "excessive" heat) is a contribution resulted by packing entropy from quasi-one-dimensional system of 2D basal planes on triangular lattice stacked randomly along c axis without braking the closest pack between neighboring atomic layers. The excessive part of the free energy has been treated within 1D quasi-Ising (lattice gas) model using the transfer matrix approach. This model makes us possible to interpret successfully the thermodynamic anomaly (heat capacity peak in hcp 4He) observed experimentally.
A bio-inspired microstructure induced by slow injection moulding of cylindrical block copolymers.
Stasiak, Joanna; Brubert, Jacob; Serrani, Marta; Nair, Sukumaran; de Gaetano, Francesco; Costantino, Maria Laura; Moggridge, Geoff D
2014-08-28
It is well known that block copolymers with cylindrical morphology show alignment with shear, resulting in anisotropic mechanical properties. Here we show that well-ordered bi-directional orientation can be achieved in such materials by slow injection moulding. This results in a microstructure, and anisotropic mechanical properties, similar to many natural tissues, making this method attractive for engineering prosthetic fibrous tissues. An application of particular interest to us is prosthetic polymeric heart valve leaflets, mimicking the shape, microstructure and hence performance of the native valve. Anisotropic layers have been observed for cylinder-forming block copolymers centrally injected into thin circular discs. The skin layers exhibit orientation parallel to the flow direction, whilst the core layer shows perpendicularly oriented domains; the balance of skin to core layers can be controlled by processing parameters such as temperature and injection rate. Heart valve leaflets with a similar layered structure have been prepared by injection moulding. Numerical modelling demonstrates that such complex orientation can be explained and predicted by the balance of shear and extensional flow.
NASA Astrophysics Data System (ADS)
Yin, Yaotian; Unsworth, Martyn; Liddell, Mitch; Pana, Dinu; Craven, James A.
2014-10-01
Three magnetotelluric (MT) profiles in northwestern Canada cross the central and western segments of Great Slave Lake shear zone (GSLsz), a continental scale strike-slip structure active during the Slave-Rae collision in the Proterozoic. Dimensionality analysis indicates that (i) the resistivity structure is approximately 2-D with a geoelectric strike direction close to the dominant geological strike of N45°E and that (ii) electrical anisotropy may be present in the crust beneath the two southernmost profiles. Isotropic and anisotropic 2-D inversion and isotropic 3-D inversions show different resistivity structures on different segments of the shear zone. The GSLsz is imaged as a high resistivity zone (>5000 Ω m) that is at least 20 km wide and extends to a depth of at least 50 km on the northern profile. On the southern two profiles, the resistive zone is confined to the upper crust and pierces an east-dipping crustal conductor. Inversions show that this dipping conductor may be anisotropic, likely caused by conductive materials filling a network of fractures with a preferred spatial orientation. These conductive regions would have been disrupted by strike-slip, ductile deformation on the GSLsz that formed granulite to greenschist facies mylonite belts. The pre-dominantly granulite facies mylonites are resistive and explain why the GSLsz appears as a resistive structure piercing the east-dipping anisotropic layer. The absence of a dipping anisotropic/conductive layer on the northern MT profile, located on the central segment of the GSLsz, is consistent with the lack of subduction at this location as predicted by geological and tectonic models.
Theory and generation of conditional, scalable sub-Gaussian random fields
NASA Astrophysics Data System (ADS)
Panzeri, M.; Riva, M.; Guadagnini, A.; Neuman, S. P.
2016-03-01
Many earth and environmental (as well as a host of other) variables, Y, and their spatial (or temporal) increments, ΔY, exhibit non-Gaussian statistical scaling. Previously we were able to capture key aspects of such non-Gaussian scaling by treating Y and/or ΔY as sub-Gaussian random fields (or processes). This however left unaddressed the empirical finding that whereas sample frequency distributions of Y tend to display relatively mild non-Gaussian peaks and tails, those of ΔY often reveal peaks that grow sharper and tails that become heavier with decreasing separation distance or lag. Recently we proposed a generalized sub-Gaussian model (GSG) which resolves this apparent inconsistency between the statistical scaling behaviors of observed variables and their increments. We presented an algorithm to generate unconditional random realizations of statistically isotropic or anisotropic GSG functions and illustrated it in two dimensions. Most importantly, we demonstrated the feasibility of estimating all parameters of a GSG model underlying a single realization of Y by analyzing jointly spatial moments of Y data and corresponding increments, ΔY. Here, we extend our GSG model to account for noisy measurements of Y at a discrete set of points in space (or time), present an algorithm to generate conditional realizations of corresponding isotropic or anisotropic random fields, introduce two approximate versions of this algorithm to reduce CPU time, and explore them on one and two-dimensional synthetic test cases.
Optimal illusion and invisibility of multilayered anisotropic cylinders and spheres.
Zhang, Lin; Shi, Yan; Liang, Chang-Hong
2016-10-03
In this paper, full-wave electromagnetic scattering theory is employed to investigate illusion and invisibility of inhomogeneous anisotropic cylinders and spheres. With the use of a shell designed according to Mie series theory for multiple piecewise anisotropic layers, radar cross section (RCS) of the coated inhomogeneous anisotropic object can be dramatically reduced or disguised as another object in the long-wavelength limit. With the suitable adjustment of the anisotropy parameters of the shell, optimal illusion and invisibility characteristics of the coated inhomogeneous anisotropic object can be achieved. Details of theoretical analysis and numerical examples are presented to validate the proposed methodology.
Effects of Mesh Irregularities on Accuracy of Finite-Volume Discretization Schemes
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
2012-01-01
The effects of mesh irregularities on accuracy of unstructured node-centered finite-volume discretizations are considered. The focus is on an edge-based approach that uses unweighted least-squares gradient reconstruction with a quadratic fit. For inviscid fluxes, the discretization is nominally third order accurate on general triangular meshes. For viscous fluxes, the scheme is an average-least-squares formulation that is nominally second order accurate and contrasted with a common Green-Gauss discretization scheme. Gradient errors, truncation errors, and discretization errors are separately studied according to a previously introduced comprehensive methodology. The methodology considers three classes of grids: isotropic grids in a rectangular geometry, anisotropic grids typical of adapted grids, and anisotropic grids over a curved surface typical of advancing layer grids. The meshes within the classes range from regular to extremely irregular including meshes with random perturbation of nodes. Recommendations are made concerning the discretization schemes that are expected to be least sensitive to mesh irregularities in applications to turbulent flows in complex geometries.
Scattering of Internal Tides by Irregular Bathymetry of Large Extent
NASA Astrophysics Data System (ADS)
Mei, C.
2014-12-01
We present an analytic theory of scattering of tide-generated internal gravity waves in a continuously stratified ocean with a randomly rough seabed. Based on the linearized approximation, the idealized case of constant mean sea depth and Brunt-Vaisala frequency is considered. The depth fluctuation is assumed to be a stationary random function of space characterized by small amplitude and correlation length comparable to the typical wavelength. For both one- and two-dimensional topography the effects of scattering on wave phase over long distances are derived explicitly by the method of multiple scales. For one-dimensional topography, numerical results are compared with Buhler-& Holmes-Cerfon(2011) computed by the method of characteristics. For two-dimensional topography, new results are presented for both statistically isotropic and anisotropic cases. In thi talk we shall apply the perturbation technique of multiple scales to treat analytically the random scattering of internal tides by gently sloped bathymetric irregularities.The basic assumptions are: incompressible fluid, infinitestimal wave amplitudes, constant Brunt-Vaisala frequency, and constant mean depth. In addition, the depth disorder is assumed to be a stationary random function of space with zero mean and small root-mean-square amplitude. The correlation length can be comparable in order of magnitude as the dominant wavelength. Both one- and two-dimensional disorder will be considered. Physical effects of random scattering on the mean wave phase i.e., spatial attenuation and wavenumber shift will be calculated and discussed for one mode of incident wave. For two dimensional topographies, statistically isotropic and anisotropic examples will be presented.
Chiral phases of superfluid 3He in an anisotropic medium
NASA Astrophysics Data System (ADS)
Sauls, J. A.
2013-12-01
Recent advances in the fabrication and characterization of anisotropic silica aerogels with exceptional homogeneity provide new insight into the nature of unconventional pairing in disordered anisotropic media. I report theoretical analysis and predictions for the equilibrium phases of superfluid 3He infused into a low-density, homogeneous uniaxial aerogel. Ginzburg-Landau (GL) theory for a class of equal-spin-pairing (ESP) states in a medium with uniaxial anisotropy is developed and used to analyze recent experiments on uniaxially strained aerogels. For 3He in an axially “stretched” aerogel, GL theory predicts a transition from normal liquid into a chiral Anderson-Morel phase at Tc1 in which the chirality axis l̂ is aligned along the strain axis. This orbitally aligned state is protected from random fluctuations in the anisotropy direction, has a positive nuclear magnetic resonance (NMR) frequency shift, a sharp NMR resonance line, and is identified with the high-temperature ESP-1 phase of superfluid 3He in axially stretched aerogel. A second transition into a biaxial phase is predicted to onset at a slightly lower temperature Tc2
Zhao, Guijuan; Wang, Lianshan; Yang, Shaoyan; Li, Huijie; Wei, Hongyuan; Han, Dongyue; Wang, Zhanguo
2016-02-10
We report the anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using a three-step growth method which consisted of a low temperature AlN buffer layer, followed by a high temperature AlN buffer layer and GaN growth. By introducing double AlN buffer layers, we substantially improve the crystal and optical qualities of semi-polar (11-22) GaN, and significantly reduce the density of stacking faults and dislocations. The high resolution x-ray diffraction measurement revealed that the in-plane anisotropic structural characteristics of GaN layer are azimuthal dependent. Transmission electron microscopy analysis showed that the majority of dislocations in the GaN epitaxial layer grown on m-sapphire are the mixed-type and the orientation of GaN layer was rotated 58.4° against the substrate. The room temperature photoluminescence (PL) spectra showed the PL intensity and wavelength have polarization dependence along parallel and perpendicular to the [1-100] axis (polarization degrees ~ 0.63). The realization of a high polarization semi-polar GaN would be useful to achieve III-nitride based lighting emission device for displays and backlighting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grechka, V.; Tsvankin, I.
2000-02-01
Just as the transversely isotropic model with a vertical symmetry axis (VTI media) is typical for describing horizontally layered sediments, transverse isotropy with a tilted symmetry axis (TTI) describes dipping TI layers (such as tilted shale beds near salt domes) or crack systems. P-wave kinematic signatures in TTI media are controlled by the velocity V{sub PO} in the symmetry direction, Thomsen's anisotropic coefficients {xi} and {delta}, and the orientation (tilt {nu} and azimuth {beta}) of the symmetry axis. Here, the authors show that all five parameters can be obtained from azimuthally varying P-wave NMO velocities measured for two reflectors withmore » different dips and/or azimuths (one of the reflectors can be horizontal). The shear-wave velocity V{sub SO} in the symmetry direction, which has negligible influence on P-wave kinematic signatures, can be found only from the moveout of shear waves. Using the exact NMO equation, the authors examine the propagation of errors in observed moveout velocities into estimated values of the anisotropic parameters and establish the necessary conditions for a stable inversion procedure. Since the azimuthal variation of the NMO velocity is elliptical, each reflection event provides them with up to three constraints on the model parameters. Generally, the five parameters responsible for P-wave velocity can be obtained from two P-wave ellipses, but the feasibility of the moveout inversion strongly depends on the tilt {nu}. While most of the analysis is carried out for a single layer, the authors also extend the inversion algorithm to vertically heterogeneous TTI media above a dipping reflector using the generalized Dix equation. A synthetic example for a strongly anisotropic, stratified TTI medium demonstrates a high accuracy of the inversion.« less
NASA Astrophysics Data System (ADS)
Roy, Corinna; Calo, Marco; Bodin, Thomas; Romanowicz, Barbara
2016-04-01
Competing hypotheses for the formation and evolution of continents are highly under debate, including the theory of underplating by hot plumes or accretion by shallow subduction in continental or arc settings. In order to support these hypotheses, documenting structural layering in the cratonic lithosphere becomes especially important. Recent studies of seismic-wave receiver function data have detected a structural boundary under continental cratons at 100-140 km depths, which is too shallow to be consistent with the lithosphere-asthenosphere boundary, as inferred from seismic tomography and other geophysical studies. This leads to the conclusion that 1) the cratonic lithosphere may be thinner than expected, contradicting tomographic and other geophysical or geochemical inferences, or 2) that the receiver function studies detect a mid-lithospheric discontinuity rather than the LAB. On the other hand, several recent studies documented significant changes in the direction of azimuthal anisotropy with depth that suggest layering in the anisotropic structure of the stable part of the North American continent. In particular, Yuan and Romanowicz (2010) combined long period surface wave and overtone data with core refracted shear wave (SKS) splitting measurements in a joint tomographic inversion. A question that arises is whether the anisotropic layering observed coincides with that obtained from receiver function studies. To address this question, we use a trans-dimensional Markov-chain Monte Carlo (MCMC) algorithm to generate probabilistic 1D radially and azimuthal anisotropic shear wave velocity profiles for selected stations in North America. In the algorithm we jointly invert short period (Ps Receiver Functions, surface wave dispersion for Love and Rayleigh waves) and long period data (SKS waveforms). By including three different data types, which sample different volumes of the Earth and have different sensitivities to structure, we overcome the problem of incompatible interpretations of models provided by only one data set. The resulting 1D profiles include both isotropic and anisotropic discontinuities in the upper mantle (above 350 km depth). The huge advantage of our procedure is the avoidance of any intermediate processing steps such as numerical deconvolution or the calculation of splitting parameters, which can be very sensitive to noise. Additionally, the number of layers, as well as the data noise and the presence of anisotropy are treated as unknowns in the transdimensional Monte Carlo Markov chain algorithm. We recently demonstrated the power of this approach in the case of two stations located in different tectonic settings (Bodin et al., 2015, submitted). Here we extend this approach to a broader range of settings within the north American continent.
Modeling of Ice Flow and Internal Layers Along a Flow Line Through Swiss Camp in West Greenland
NASA Technical Reports Server (NTRS)
Wang, W. L.; Zwally, H. Jay; Abdalati, W.; Luo, S.; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
An anisotropic ice flow line model is applied to a flow line through Swiss Camp (69.57 N, 49.28 W) in West Greenland to estimate the dates of internal layers detected by Radio-Echo Sounding measurements. The effect of an anisotropic ice fabric on ice flow is incorporated into the steady state flow line model. The stress-strain rate relationship for anisotropic ice is characterized by an enhancement factor based on the laboratory observations of ice deformation under combined compression and shear stresses. By using present-day data of accumulation rate, surface temperature, surface elevation and ice thickness along the flow line as model inputs, a very close agreement is found between the isochrones generated from the model and the observed internal layers with confirmed dates. The results indicate that this part of Greenland ice sheet is primarily in steady state.
Localized modes in optics of photonic liquid crystals with local anisotropy of absorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belyakov, V. A., E-mail: bel1937@mail.ru, E-mail: bel@landau.ac.ru; Semenov, S. V.
2016-05-15
The localized optical modes in spiral photonic liquid crystals are theoretically studied for the certainty at the example of chiral liquid crystals (CLCs) for the case of CLC with an anisotropic local absorption. The model adopted here (absence of dielectric interfaces in the structures under investigation) makes it possible to get rid of mixing of polarizations on the surfaces of the CLC layer and of the defect structure and to reduce the corresponding equations to only the equations for light with polarization diffracting in the CLC. The dispersion equations determining connection of the edge mode (EM) and defect mode (DM)more » frequencies with the CLC layer parameters (anisotropy of local absorption, CLC order parameter) and other parameters of the DMS are obtained. Analytic expressions for the transmission and reflection coefficients of CLC layer and DMS for the case of CLC with an anisotropic local absorption are presented and analyzed. It is shown that the CLC layers with locally anisotropic absorption reduce the EM and DM lifetimes (and increase the lasing threshold) in the way different from the case of CLC with an isotropic local absorption. Due to the Borrmann effect revealing of which is different at the opposite stop-band edges in the case of CLC layers with an anisotropic local absorption the EM life-times for the EM frequencies at the opposite stop-bands edges may be significantly different. The options of experimental observations of the theoretically revealed phenomena are briefly discussed.« less
Localized modes in optics of photonic liquid crystals with local anisotropy of absorption
NASA Astrophysics Data System (ADS)
Belyakov, V. A.; Semenov, S. V.
2016-05-01
The localized optical modes in spiral photonic liquid crystals are theoretically studied for the certainty at the example of chiral liquid crystals (CLCs) for the case of CLC with an anisotropic local absorption. The model adopted here (absence of dielectric interfaces in the structures under investigation) makes it possible to get rid of mixing of polarizations on the surfaces of the CLC layer and of the defect structure and to reduce the corresponding equations to only the equations for light with polarization diffracting in the CLC. The dispersion equations determining connection of the edge mode (EM) and defect mode (DM) frequencies with the CLC layer parameters (anisotropy of local absorption, CLC order parameter) and other parameters of the DMS are obtained. Analytic expressions for the transmission and reflection coefficients of CLC layer and DMS for the case of CLC with an anisotropic local absorption are presented and analyzed. It is shown that the CLC layers with locally anisotropic absorption reduce the EM and DM lifetimes (and increase the lasing threshold) in the way different from the case of CLC with an isotropic local absorption. Due to the Borrmann effect revealing of which is different at the opposite stop-band edges in the case of CLC layers with an anisotropic local absorption the EM life-times for the EM frequencies at the opposite stop-bands edges may be significantly different. The options of experimental observations of the theoretically revealed phenomena are briefly discussed.
Rhenium Dichalcogenides: Layered Semiconductors with Two Vertical Orientations.
Hart, Lewis; Dale, Sara; Hoye, Sarah; Webb, James L; Wolverson, Daniel
2016-02-10
The rhenium and technetium diselenides and disulfides are van der Waals layered semiconductors in some respects similar to more well-known transition metal dichalcogenides (TMD) such as molybdenum sulfide. However, their symmetry is lower, consisting only of an inversion center, so that turning a layer upside-down (that is, applying a C2 rotation about an in-plane axis) is not a symmetry operation, but reverses the sign of the angle between the two nonequivalent in-plane crystallographic axes. A given layer thus can be placed on a substrate in two symmetrically nonequivalent (but energetically similar) ways. This has consequences for the exploitation of the anisotropic properties of these materials in TMD heterostructures and is expected to lead to a new source of domain structure in large-area layer growth. We produced few-layer ReS2 and ReSe2 samples with controlled "up" or "down" orientations by micromechanical cleavage and we show how polarized Raman microscopy can be used to distinguish these two orientations, thus establishing Raman as an essential tool for the characterization of large-area layers.
Fabrication of gradient optical filter containing anisotropic Bragg nanostructure.
Cho, Bomin; Um, Sungyong; Woo, Hee-Gweon; Sohn, Honglae
2011-08-01
New gradient optical filters containing asymmetric Bragg structure were prepared from the distributed Bragg reflector (DBR) porous silicon (PSi). Anisotropic DBR PSi displaying a rainbow-colored reflection was generated by using an asymmetric etching configuration. Flexible anisotropic DBR PSi composite films were obtained by casting of polymer solution onto anisotropic DBR PSi thin films. The surface and cross-sectional images images of anisotropic DBR PSi composite films obtained with cold field emission scanning electron microscope indicated that the average pore size and the thickness of porous layer decreased as the lateral distance increased. As lateral distance increased, the reflection resonance shifted to shorter wavelength.
Hu, Tao; Hong, Jisang
2015-10-28
Phosphorene is receiving great research interests because of its peculiar physical properties. Nonetheless, the phosphorus has a trouble of degradation due to oxidation. Hereby, we propose that the electrical and optical anisotropic properties can be preserved by encapsulating into hexagonal boron nitride (h-BN). We found that the h-BN contributed to enhancing the band gap of the phosphorene layer. Comparing the band gap of the pristine phosphorene layer, the band gap of the phosphorene/BN(1ML) system was enhanced by 0.15 eV. It was further enhanced by 0.31 eV in the BN(1ML)/phosphorene/BN(1ML) trilayer structure. However, the band gap was not further enhanced when we increased the thickness of the h-BN layers even up to 4 MLs. Interestingly, the anisotropic effective mass and optical property were still preserved in BN/phosphorene/BN heterostructures. Overall, we predict that the capping of phosphorene by the h-BN layers can be an excellent solution to protect the intrinsic properties of the phosphorene.
NASA Astrophysics Data System (ADS)
Li, Ying; Kalia, Rajiv K.; Misawa, Masaaki; Nakano, Aiichiro; Nomura, Ken-Ichi; Shimamura, Kohei; Shimojo, Fuyuki; Vashishta, Priya
2016-05-01
At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision was found to originate from the twisting and bending to breaking of nitro-groups mediated by strong intra-layer hydrogen bonds. This causes the closing of the electronic energy gap due to an inverse Jahn-Teller effect. On the other hand, the insensitive collisions normal to multilayers are accomplished by more delocalized molecular deformations mediated by inter-layer interactions. Our nano-collision studies provide a much needed atomistic understanding for the rational design of insensitive energetic nanomaterials and the detonation synthesis of novel nanomaterials.At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision was found to originate from the twisting and bending to breaking of nitro-groups mediated by strong intra-layer hydrogen bonds. This causes the closing of the electronic energy gap due to an inverse Jahn-Teller effect. On the other hand, the insensitive collisions normal to multilayers are accomplished by more delocalized molecular deformations mediated by inter-layer interactions. Our nano-collision studies provide a much needed atomistic understanding for the rational design of insensitive energetic nanomaterials and the detonation synthesis of novel nanomaterials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08769d
Lai, Min; Zhang, Xiaodong; Fang, Fengzhou
2017-12-01
Molecular dynamics simulations of nanometric cutting on monocrystalline germanium are conducted to investigate the subsurface deformation during and after nanometric cutting. The continuous random network model of amorphous germanium is established by molecular dynamics simulation, and its characteristic parameters are extracted to compare with those of the machined deformed layer. The coordination number distribution and radial distribution function (RDF) show that the machined surface presents the similar amorphous state. The anisotropic subsurface deformation is studied by nanometric cutting on the (010), (101), and (111) crystal planes of germanium, respectively. The deformed structures are prone to extend along the 110 slip system, which leads to the difference in the shape and thickness of the deformed layer on various directions and crystal planes. On machined surface, the greater thickness of subsurface deformed layer induces the greater surface recovery height. In order to get the critical thickness limit of deformed layer on machined surface of germanium, the optimized cutting direction on each crystal plane is suggested according to the relevance of the nanometric cutting to the nanoindentation.
NASA Astrophysics Data System (ADS)
Mitchell, T. M.; Backeberg, N. R.; Iacoviello, F.; Rittner, M.; Jones, A. P.; Wheeler, J.; Day, R.; Vermeesch, P.; Shearing, P. R.; Striolo, A.
2017-12-01
The permeability of shales is important, because it controls where oil and gas resources can migrate to and where in the Earth hydrocarbons are ultimately stored. Shales have a well-known anisotropic directional permeability that is inherited from the depositional layering of sedimentary laminations, where the highest permeability is measured parallel to laminations and the lowest permeability is perpendicular to laminations. We combine state of the art laboratory permeability experiments with high-resolution X-ray computed tomography and for the first time can quantify the three-dimensional interconnected pathways through a rock that define the anisotropic behaviour of shales. Experiments record a physical anisotropy in permeability of one to two orders of magnitude. Two- and three-dimensional analyses of micro- and nano-scale X-ray computed tomography illuminate that the directional anisotropy is fundamentally controlled by the bulk rock mineral geometry, which determines the finite length (or tortuosity) of the interconnected pathways through the porous/permeable phases in shales. Understanding the mineral-scale control on permeability will allow for better estimations of the extent of recoverable reserves in shale gas plays globally.
NASA Astrophysics Data System (ADS)
Zhou, Bing; Greenhalgh, S. A.
2011-01-01
We present an extension of the 3-D spectral element method (SEM), called the Gaussian quadrature grid (GQG) approach, to simulate in the frequency-domain seismic waves in 3-D heterogeneous anisotropic media involving a complex free-surface topography and/or sub-surface geometry. It differs from the conventional SEM in two ways. The first is the replacement of the hexahedral element mesh with 3-D Gaussian quadrature abscissae to directly sample the physical properties or model parameters. This gives a point-gridded model which more exactly and easily matches the free-surface topography and/or any sub-surface interfaces. It does not require that the topography be highly smooth, a condition required in the curved finite difference method and the spectral method. The second is the derivation of a complex-valued elastic tensor expression for the perfectly matched layer (PML) model parameters for a general anisotropic medium, whose imaginary parts are determined by the PML formulation rather than having to choose a specific class of viscoelastic material. Furthermore, the new formulation is much simpler than the time-domain-oriented PML implementation. The specified imaginary parts of the density and elastic moduli are valid for arbitrary anisotropic media. We give two numerical solutions in full-space homogeneous, isotropic and anisotropic media, respectively, and compare them with the analytical solutions, as well as show the excellent effectiveness of the PML model parameters. In addition, we perform numerical simulations for 3-D seismic waves in a heterogeneous, anisotropic model incorporating a free-surface ridge topography and validate the results against the 2.5-D modelling solution, and demonstrate the capability of the approach to handle realistic situations.
NASA Astrophysics Data System (ADS)
McCormack, K. A.; Wirth, E. A.; Long, M. D.
2011-12-01
The recycling of oceanic plates back into the mantle through subduction is an important process taking place within our planet. However, many fundamental aspects of subduction systems, such as the dynamics of mantle flow, have yet to be completely understood. Subducting slabs transport water down into the mantle, but how and where that water is released, as well as how it affects mantle flow, is still an open question. In this study, we focus on the Ryukyu subduction zone in southwestern Japan and use anisotropic receiver function analysis to characterize the structure of the mantle wedge. We compute radial and transverse P-to-S receiver functions for eight stations of the broadband F-net array using a multitaper receiver function estimator. We observe coherent P-to-SV converted energy in the radial receiver functions at ~6 sec for most of the stations analyzed consistent with conversions originating at the top of the slab. We also observe conversions on the transverse receiver functions that are consistent with the presence of multiple anisotropic and/or dipping layers. The character of the transverse receiver functions varies significantly along strike, with the northernmost three stations exhibiting markedly different behavior than stations located in the center of the Ryukyu arc. We compute synthetic receiver functions using a forward modeling scheme that can handle dipping interfaces and anisotropic layers to create models for the depths, thicknesses, and strengths of anisotropic layers in the mantle wedge beneath Ryukyu.
Novel Layered Supercell Structure from Bi 2AlMnO 6 for Multifunctionalities
Li, Leigang; Boullay, Philippe; Lu, Ping; ...
2017-10-02
Layered materials, e.g., graphene and transition metal (di)chalcogenides, holding great promises in nanoscale device applications have been extensively studied in fundamental chemistry, solid state physics and materials research areas. In parallel, layered oxides (e.g., Aurivillius and Ruddlesden–Popper phases) present an attractive class of materials both because of their rich physics behind and potential device applications. In this work, we report a novel layered oxide material with self-assembled layered supercell structure consisting of two mismatch-layered sublattices of [Bi 3O 3+δ] and [MO 2] 1.84 (M = Al/Mn, simply named BAMO), i.e., alternative layered stacking of two mutually incommensurate sublattices made ofmore » a three-layer-thick Bi–O slab and a one-layer-thick Al/Mn–O octahedra slab in the out-of-plane direction. Strong room-temperature ferromagnetic and piezoelectric responses as well as anisotropic optical property have been demonstrated with great potentials in various device applications. Furthermore, the realization of the novel BAMO layered supercell structure in this work has paved an avenue toward exploring and designing new materials with multifunctionalities.« less
Anisotropically Swelling Gels Attained through Axis-Dependent Crosslinking of MOF Crystals.
Ishiwata, Takumi; Kokado, Kenta; Sada, Kazuki
2017-03-01
Anisotropically deforming objects have attracted considerable interest for use in molecular machines and artificial muscles. Herein, we focus on a new approach based on the crystal crosslinking of organic ligands in a pillared-layer metal-organic framework (PLMOF). The approach involves the transformation from crosslinked PLMOF to polymer gels through hydrolysis of the coordination bonds between the organic ligands and metal ions, giving a network polymer that exhibits anisotropic swelling. The anisotropic monomer arrangement in the PLMOF underwent axis-dependent crosslinking to yield anisotropically swelling gels. Therefore, the crystal crosslinking of MOFs should be a useful method for creating actuators with designable deformation properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wu, Feng
2018-03-01
We report a highly efficient and broad-angle polarization beam filter at visible wavelengths using an anisotropic epsilon-near-zero metamaterial mimicked by a multilayer composed of alternative subwavelength magnesium fluoride and silver layers. The underlying physics can be explained by the dramatic difference between two orthogonal polarizations' iso-frequency curves of anisotropic epsilon-near-zero metamaterials. Transmittance for two orthogonal polarization waves and the polarization extinction ratio are calculated via the transfer matrix method to assess the comprehensive performance of the proposed polarization beam filter. From the simulation results, the proposed polarization beam filter is highly efficient (the polarization extinction ratio is far larger than two orders of magnitude) and has a broad operating angle range (ranging from 30° to 75°). Finally, we show that the proper tailoring of the periodic number enables us to obtain high comprehensive performance of the proposed polarization beam filter.
Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media
NASA Astrophysics Data System (ADS)
Berryman, James G.
1998-02-01
An earlier result of the author showed that an anisotropic spatial correlation function of a random porous medium could be used to compute the specific surface area when it is stationary as well as anisotropic by first performing a three-dimensional radial average and then taking the first derivative with respect to lag at the origin. This result generalized the earlier result for isotropic porous media of Debye et al. [J. Appl. Phys. 28, 679 (1957)]. The present article provides more detailed information about the use of spatial correlation functions for anisotropic porous media and in particular shows that, for stationary anisotropic media, the specific surface area can be related to the derivative of the two-dimensional radial average of the correlation function measured from cross sections taken through the anisotropic medium. The main concept is first illustrated using a simple pedagogical example for an anisotropic distribution of spherical voids. Then, a general derivation of formulas relating the derivative of the planar correlation functions to surface integrals is presented. When the surface normal is uniformly distributed (as is the case for any distribution of spherical voids), our formulas can be used to relate a specific surface area to easily measurable quantities from any single cross section. When the surface normal is not distributed uniformly (as would be the case for an oriented distribution of ellipsoidal voids), our results show how to obtain valid estimates of specific surface area by averaging measurements on three orthogonal cross sections. One important general observation for porous media is that the surface area from nearly flat cracks may be underestimated from measurements on orthogonal cross sections if any of the cross sections happen to lie in the plane of the cracks. This result is illustrated by taking the very small aspect ratio (penny-shaped crack) limit of an oblate spheroid, but holds for other types of flat surfaces as well.
Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berryman, J.G.
1998-02-01
An earlier result of the author showed that an anisotropic spatial correlation function of a random porous medium could be used to compute the specific surface area when it is stationary as well as anisotropic by first performing a three-dimensional radial average and then taking the first derivative with respect to lag at the origin. This result generalized the earlier result for isotropic porous media of Debye {ital et al.} [J. Appl. Phys. {bold 28}, 679 (1957)]. The present article provides more detailed information about the use of spatial correlation functions for anisotropic porous media and in particular shows that,more » for stationary anisotropic media, the specific surface area can be related to the derivative of the two-dimensional radial average of the correlation function measured from cross sections taken through the anisotropic medium. The main concept is first illustrated using a simple pedagogical example for an anisotropic distribution of spherical voids. Then, a general derivation of formulas relating the derivative of the planar correlation functions to surface integrals is presented. When the surface normal is uniformly distributed (as is the case for any distribution of spherical voids), our formulas can be used to relate a specific surface area to easily measurable quantities from any single cross section. When the surface normal is not distributed uniformly (as would be the case for an oriented distribution of ellipsoidal voids), our results show how to obtain valid estimates of specific surface area by averaging measurements on three orthogonal cross sections. One important general observation for porous media is that the surface area from nearly flat cracks may be underestimated from measurements on orthogonal cross sections if any of the cross sections happen to lie in the plane of the cracks. This result is illustrated by taking the very small aspect ratio (penny-shaped crack) limit of an oblate spheroid, but holds for other types of flat surfaces as well.« less
Moffatt, Christine J; McCullagh, Lynn; O'Connor, Theresa; Doherty, Debra C; Hourican, Catherine; Stevens, Julie; Mole, Trevor; Franks, Peter J
2003-01-01
To compare a four-layer bandage system with a two-layer system in the management of chronic venous leg ulceration, a prospective randomized open parallel groups trial was undertaken. In total, 112 patients newly presenting to leg ulcer services with chronic leg ulceration, screened to exclude the presence of arterial disease (ankle brachial pressure index <0.8) and causes of ulceration other than venous disease, were entered into the trial. Patients were randomized to receive either four-layer (Profore) or two-layer (Surepress) high-compression elastic bandage systems. In all, 109 out of 112 patients had at least one follow-up. After 24 weeks, 50 out of 57 (88%) patients randomized to the four-layer bandage system with follow-up had ulcer closure (full epithelialization) compared with 40 out of 52 (77%) on the two-layer bandage, hazard ratio = 1.18 (95% confidence interval 0.69-2.02), p = 0.55. After 12 weeks, 40 out of 57 (70%) patients randomized to the four-layer bandage system with follow-up had ulcer closure compared with 30 out of 52 (58%) on the two-layer bandage, odds ratio = 4.23 (95% confidence interval 1.29-13.86), p = 0.02. Withdrawal rates were significantly greater on the two-layer bandage (30 out of 54; 56%) compared with the four-layer bandage system (8 out of 58; 14%), p < 0.001, and the number of patients with at least one device-related adverse incident was significantly greater on the two-layer bandaging system (15 out of 54; 28%) compared with four-layer bandaging (5 out of 54; 9%), p = 0.01. The higher mean cost of treatment in the two-layer bandaging system arm over 24 weeks ($1374 [ pound 916] vs. $1314 [ pound 876]) was explained by the increased mean number of bandage changes (1.5 vs. 1.1 per week) with the two-layer system. In conclusion, the four-layer bandage offers advantages over the two-layer bandage in terms of reduced withdrawal from treatment, fewer adverse incidents, and lower treatment cost.
On optical imaging through aircraft turbulent boundary layers
NASA Technical Reports Server (NTRS)
Sutton, G. W.
1980-01-01
Optical resolution quality as affected by aircraft turbulent boundary layers is analyzed. Wind-tunnel data was analyzed to obtained the variation of boundary layer turbulence scale length and mass density rms fluctuations with Mach number. The data gave good agreement with a mass density fluctuation turbulence spectrum that is either isotropic of orthogonally anisotropic. The data did not match an isotropic turbulence velocity spectrum which causes an anisotropic non-orthogonal mass density fluctuation spectrum. The results indicate that the average mass density rms fluctuation is about 10% of the maximum mass density across the boundary layer and that the transverse turbulence scale size is about 10% of the boundary layer thickness. The results indicate that the effect of the turbulent boundary layer is large angle scattering which decreases contrast but not resolution. Using extinction as a criteria the range of acceptable aircraft operating conditions are given.
Effect of inhomogeneity due to temperature on the propagation of shear waves in an anisotropic layer
NASA Astrophysics Data System (ADS)
Prasad, Bishwanath; Pal, Prakash Chandra; Kundu, Santimoy; Prasad, Narayan
2017-07-01
The present paper is concerned with the propagation of shear waves in an anisotropic inhomogeneous layer whose elastic constants are functions of temperature. The dependence of material properties on temperature gives rise to inhomogeneity of the layer which is one of the trivial characteristics of the constituent layers of earth which may cause due to the presence of various types of elements and compounds beneath the earth. The layer is lying over a rigid foundation and there is no loading on the upper boundary. The dispersion equation of shear waves has been obtained in closed form. Numerical computations are performed and graphs are plotted to show the effect of inhomogeneity and anisotropy factors on the dimensionless phase velocity. It is found that the phase velocity is considerably influenced by the inhomogeneity and anisotropy of the layer.
Surface ordering of (In,Ga)As quantum dots controlled by GaAs substrate indexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zh.M.; Seydmohamadi, Sh.; Lee, J.H.
Self-organized surface ordering of (In,Ga)As quantum dots in a GaAs matrix was investigated using stacked multiple quantum dot layers prepared by molecular-beam epitaxy. While one-dimensional chain-like ordering is formed on singular and slightly misorientated GaAs(100) surfaces, we report on two-dimensional square-like ordering that appears on GaAs(n11)B, where n is 7, 5, 4, and 3. Using a technique to control surface diffusion, the different ordering patterns are found to result from the competition between anisotropic surface diffusion and anisotropic elastic matrix, a similar mechanism suggested before by Solomon [Appl. Phys. Lett. 84, 2073 (2004)].
Revisiting the anisotropy of metamaterials for water waves
NASA Astrophysics Data System (ADS)
Maurel, A.; Marigo, J.-J.; Cobelli, P.; Petitjeans, P.; Pagneux, V.
2017-10-01
We establish, both theoretically and experimentally, that metamaterials for water waves reach a much higher degree of anisotropy than the one predicted using the analogy between water waves and their electromagnetic or acoustic counterparts. This is due to the fact that this analogy, based on the two-dimensional shallow water approximation, is unable to account for the three-dimensional near field effects in the water depth. To properly capture these effects, we homogenize the fully three-dimensional problem and show that a subwavelength layered structuration of the bathymetry produces significant anisotropic parameters in the shallow water regime. Furthermore, we extend the validity of the homogenized prediction by proposing an empirical anisotropic version of the dispersion relation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetzel, Kyle K.; Hermann, Thomas M.; Locke, James
2005-11-01
Anisotropic carbon/glass hybrid composite laminates have been fabricated, tested, and analyzed. The laminates have been fabricated using vacuum-assisted resin transfer molding (VARTM). Five fiber complexes and a two-part epoxy resin system have been used in the study to fabricate panels of twenty different laminate constructions. These panels have been subjected to physical testing to measure density, fiber volume fraction, and void fraction. Coupons machined from these panels have also been subjected to mechanical testing to measure elastic properties and strength of the laminates using tensile, compressive, transverse tensile, and in-plane shear tests. Interlaminar shear strength has also been measured. Out-of-planemore » displacement, axial strain, transverse strain, and inplane shear strain have also been measured using photogrammetry data obtained during edgewise compression tests. The test data have been reduced to characterize the elastic properties and strength of the laminates. Constraints imposed by test fixtures might be expected to affect measurements of the moduli of anisotropic materials; classical lamination theory has been used to assess the magnitude of such effects and correct the experimental data for the same. The tensile moduli generally correlate well with experiment without correction and indicate that factors other than end constraints dominate. The results suggest that shear moduli of the anisotropic materials are affected by end constraints. Classical lamination theory has also been used to characterize the level of extension-shear coupling in the anisotropic laminates. Three factors affecting the coupling have been examined: the volume fraction of unbalanced off-axis layers, the angle of the off-axis layers, and the composition of the fibers (i.e., carbon or glass) used as the axial reinforcement. The results indicate that extension/shear coupling is maximized with the least loss in axial tensile stiffness by using carbon fibers oriented 15{sup o} from the long axis for approximately two-thirds of the laminate volume (discounting skin layers), with reinforcing carbon fibers oriented axially comprising the remaining one-third of the volume. Finite element analysis of each laminate has been performed to examine first ply failure. Three failure criteria--maximum stress, maximum strain, and Tsai-Wu--have been compared. Failure predicted by all three criteria proves generally conservative, with the stress-based criteria the most conservative. For laminates that respond nonlinearly to loading, large error is observed in the prediction of failure using maximum strain as the criterion. This report documents the methods and results in two volumes. Volume 1 contains descriptions of the laminates, their fabrication and testing, the methods of analysis, the results, and the conclusions and recommendations. Volume 2 contains a comprehensive summary of the individual test results for all laminates.« less
Simulation and analysis of scalable non-Gaussian statistically anisotropic random functions
NASA Astrophysics Data System (ADS)
Riva, Monica; Panzeri, Marco; Guadagnini, Alberto; Neuman, Shlomo P.
2015-12-01
Many earth and environmental (as well as other) variables, Y, and their spatial or temporal increments, ΔY, exhibit non-Gaussian statistical scaling. Previously we were able to capture some key aspects of such scaling by treating Y or ΔY as standard sub-Gaussian random functions. We were however unable to reconcile two seemingly contradictory observations, namely that whereas sample frequency distributions of Y (or its logarithm) exhibit relatively mild non-Gaussian peaks and tails, those of ΔY display peaks that grow sharper and tails that become heavier with decreasing separation distance or lag. Recently we overcame this difficulty by developing a new generalized sub-Gaussian model which captures both behaviors in a unified and consistent manner, exploring it on synthetically generated random functions in one dimension (Riva et al., 2015). Here we extend our generalized sub-Gaussian model to multiple dimensions, present an algorithm to generate corresponding random realizations of statistically isotropic or anisotropic sub-Gaussian functions and illustrate it in two dimensions. We demonstrate the accuracy of our algorithm by comparing ensemble statistics of Y and ΔY (such as, mean, variance, variogram and probability density function) with those of Monte Carlo generated realizations. We end by exploring the feasibility of estimating all relevant parameters of our model by analyzing jointly spatial moments of Y and ΔY obtained from a single realization of Y.
Prediction of weak topological insulators in layered semiconductors.
Yan, Binghai; Müchler, Lukas; Felser, Claudia
2012-09-14
We report the discovery of weak topological insulators by ab initio calculations in a honeycomb lattice. We propose a structure with an odd number of layers in the primitive unit cell as a prerequisite for forming weak topological insulators. Here, the single-layered KHgSb is the most suitable candidate for its large bulk energy gap of 0.24 eV. Its side surface hosts metallic surface states, forming two anisotropic Dirac cones. Although the stacking of even-layered structures leads to trivial insulators, the structures can host a quantum spin Hall layer with a large bulk gap, if an additional single layer exists as a stacking fault in the crystal. The reported honeycomb compounds can serve as prototypes to aid in the finding of new weak topological insulators in layered small-gap semiconductors.
NASA Technical Reports Server (NTRS)
Talham, Daniel R.; Adair, James H.
1999-01-01
There is a growing need for inorganic anisotropic particles in a variety of materials science applications. Structural, optical, and electrical properties can be greatly augmented by the fabrication of composite materials with anisotropic microstructures or with anisotropic particles uniformly dispersed in an isotropic matrix. Examples include structural composites, magnetic and optical recording media, photographic film, certain metal and ceramic alloys, and display technologies including flat panel displays. While considerable progress has been made toward developing an understanding of the synthesis of powders composed of monodispersed, spherical particles, these efforts have not been transferred to the synthesis of anisotropic nanoparticles. The major objective of the program is to develop a fundamental understanding of the growth of anisotropic particles at organic templates, with emphasis on the chemical and structural aspects of layered organic assemblies that contribute to the formation of anisotropic inorganic particles.
NASA Astrophysics Data System (ADS)
Dreher, L.; Donhauser, D.; Daeubler, J.; Glunk, M.; Rapp, C.; Schoch, W.; Sauer, R.; Limmer, W.
2010-06-01
Based on a detailed theoretical examination of the lattice distortion in high-index epilayers in terms of continuum mechanics, expressions are deduced that allow the calculation and experimental determination of the strain tensor for (hhl) -oriented (Ga,Mn)As layers. Analytical expressions are derived for the strain-dependent free-energy density and for the resistivity tensor for monoclinic and orthorhombic crystal symmetries, phenomenologically describing the magnetic anisotropy and anisotropic magnetoresistance by appropriate anisotropy and resistivity parameters, respectively. Applying the results to (113)A orientation with monoclinic crystal symmetry, the expressions are used to determine the strain tensor and the shear angle of a series of (113)A -oriented (Ga,Mn)As layers by high-resolution x-ray diffraction and to probe the magnetic anisotropy and anisotropic magnetoresistance at 4.2 K by means of angle-dependent magnetotransport. Whereas the transverse-resistivity parameters are nearly unaffected by the magnetic field, the parameters describing the longitudinal resistivity are strongly field dependent.
Effect of a CoFeB layer on the anisotropic magnetoresistance of Ta/CoFeB/MgO/NiFe/MgO/CoFeB/Ta films
NASA Astrophysics Data System (ADS)
Li, Minghua; Shi, Hui; Dong, Yuegang; Ding, Lei; Han, Gang; Zhang, Yao; Liu, Ye; Yu, Guanghua
2017-10-01
The anisotropic magnetoresistance (AMR) and magnetic properties of NiFe films can be remarkably enhanced via CoFeB layer. In the case of an ultrathin NiFe film having a Ta/CoFeB/MgO/NiFe/MgO/CoFeB/Ta structure, the CoFeB/MgO layers suppressed the formation of magnetic dead layers and the interdiffusions and interface reactions between the NiFe and Ta layers. The AMR reached a maximum value of 3.56% at 450 °C. More importantly, a single NiFe (1 1 1) peak can be formed resulting in higher AMR values for films having CoFeB layer. This enhanced AMR also originated from the significant specular reflection of electrons owing to the crystalline MgO layer, together with the sharp interfaces with the NiFe layer. These factors together resulted in higher AMR and improved magnetic properties.
Petersson, N. Anders; Sjogreen, Bjorn
2015-07-20
We develop a fourth order accurate finite difference method for solving the three-dimensional elastic wave equation in general heterogeneous anisotropic materials on curvilinear grids. The proposed method is an extension of the method for isotropic materials, previously described in the paper by Sjögreen and Petersson (2012) [11]. The method we proposed discretizes the anisotropic elastic wave equation in second order formulation, using a node centered finite difference method that satisfies the principle of summation by parts. The summation by parts technique results in a provably stable numerical method that is energy conserving. Also, we generalize and evaluate the super-grid far-fieldmore » technique for truncating unbounded domains. Unlike the commonly used perfectly matched layers (PML), the super-grid technique is stable for general anisotropic material, because it is based on a coordinate stretching combined with an artificial dissipation. Moreover, the discretization satisfies an energy estimate, proving that the numerical approximation is stable. We demonstrate by numerical experiments that sufficiently wide super-grid layers result in very small artificial reflections. Applications of the proposed method are demonstrated by three-dimensional simulations of anisotropic wave propagation in crystals.« less
Crack-Free, Soft Wrinkles Enable Switchable Anisotropic Wetting.
Rhee, Dongjoon; Lee, Won-Kyu; Odom, Teri W
2017-06-01
Soft skin layers on elastomeric substrates are demonstrated to support mechano-responsive wrinkle patterns that do not exhibit cracking under applied strain. Soft fluoropolymer skin layers on pre-strained poly(dimethylsiloxane) slabs achieved crack-free surface wrinkling at high strain regimes not possible by using conventional stiff skin layers. A side-by-side comparison between the soft and hard skin layers after multiple cycles of stretching and releasing revealed that the soft skin layer enabled dynamic control over wrinkle topography without cracks or delamination. We systematically characterized the evolution of wrinkle wavelength, amplitude, and orientation as a function of tensile strain to resolve the crack-free structural transformation. We demonstrated that wrinkled surfaces can guide water spreading along wrinkle orientation, and hence switchable, anisotropic wetting was realized. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokorny, M.; Rebicek, J.; Klemes, J.
2015-10-15
This paper presents a rapid non-destructive method that provides information on the anisotropic internal structure of nanofibrous layers. A laser beam of a wavelength of 632.8 nm is directed at and passes through a nanofibrous layer prepared by electrostatic spinning. Information about the structural arrangement of nanofibers in the layer is directly visible in the form of a diffraction image formed on a projection screen or obtained from measured intensities of the laser beam passing through the sample which are determined by the dependency of the angle of the main direction of polarization of the laser beam on the axismore » of alignment of nanofibers in the sample. Both optical methods were verified on Polyvinyl alcohol (PVA) nanofibrous layers (fiber diameter of 470 nm) with random, single-axis aligned and crossed structures. The obtained results match the results of commonly used methods which apply the analysis of electron microscope images. The presented simple method not only allows samples to be analysed much more rapidly and without damaging them but it also makes possible the analysis of much larger areas, up to several square millimetres, at the same time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Leigang; Boullay, Philippe; Lu, Ping
Layered materials, e.g., graphene and transition metal (di)chalcogenides, holding great promises in nanoscale device applications have been extensively studied in fundamental chemistry, solid state physics and materials research areas. In parallel, layered oxides (e.g., Aurivillius and Ruddlesden–Popper phases) present an attractive class of materials both because of their rich physics behind and potential device applications. In this work, we report a novel layered oxide material with self-assembled layered supercell structure consisting of two mismatch-layered sublattices of [Bi 3O 3+δ] and [MO 2] 1.84 (M = Al/Mn, simply named BAMO), i.e., alternative layered stacking of two mutually incommensurate sublattices made ofmore » a three-layer-thick Bi–O slab and a one-layer-thick Al/Mn–O octahedra slab in the out-of-plane direction. Strong room-temperature ferromagnetic and piezoelectric responses as well as anisotropic optical property have been demonstrated with great potentials in various device applications. Furthermore, the realization of the novel BAMO layered supercell structure in this work has paved an avenue toward exploring and designing new materials with multifunctionalities.« less
Anisotropic Josephson-vortex dynamics in layered organic superconductors
NASA Astrophysics Data System (ADS)
Yasuzuka, S.; Uji, S.; Satsukawa, H.; Kimata, M.; Terashima, T.; Koga, H.; Yamamura, Y.; Saito, K.; Akutsu, H.; Yamada, J.
2010-06-01
To study the anisotropic Josephson-vortex dynamics in the d-wave superconductors, the interplane resistance has been measured on layered organic superconductors κ-(ET)2Cu(NCS)2 and β-(BDA-TTP)2SbF6 under magnetic fields precisely parallel to the conducting planes. For κ-(ET)2Cu(NCS)2, in-plane angular dependence of the Josephson-vortex flow resistance is mainly described by the fourfold symmetry and dip structures appear when the magnetic field is applied parallel to the b- and c-axes. The obtained results have a relation to the d-wave superconducting gap symmetry. However, the absence of in-plane fourfold anisotropy was found for β-(BDA-TTP)2SbF6. The different anisotropic behavior is discussed in terms of the interlayer coupling strength.
Mixed Element Type Unstructured Grid Generation for Viscous Flow Applications
NASA Technical Reports Server (NTRS)
Marcum, David L.; Gaither, J. Adam
2000-01-01
A procedure is presented for efficient generation of high-quality unstructured grids suitable for CFD simulation of high Reynolds number viscous flow fields. Layers of anisotropic elements are generated by advancing along prescribed normals from solid boundaries. The points are generated such that either pentahedral or tetrahedral elements with an implied connectivity can be be directly recovered. As points are generated they are temporarily attached to a volume triangulation of the boundary points. This triangulation allows efficient local search algorithms to be used when checking merging layers, The existing advancing-front/local-reconnection procedure is used to generate isotropic elements outside of the anisotropic region. Results are presented for a variety of applications. The results demonstrate that high-quality anisotropic unstructured grids can be efficiently and consistently generated for complex configurations.
NASA Astrophysics Data System (ADS)
Gupta, Shishir; Ahmed, Mostaid; Pramanik, Abhijit
2017-03-01
The paper intends to study the propagation of horizontally polarized shear waves in an elastic medium with void pores constrained between a vertically inhomogeneous and an anisotropic magnetoelastic semi-infinite media. Elasto-dynamical equations of elastic medium with void pores and magnetoelastic solid have been employed to investigate the shear wave propagation in the proposed three-layered earth model. Method of separation of variables has been incorporated to deduce the dispersion relation. All possible special cases have been envisaged and they fairly comply with the corresponding results for classical cases. The role of inhomogeneity parameter, thickness of layer, angle with which the wave crosses the magnetic field and anisotropic magnetoelastic coupling parameter for three different materials has been elucidated and represented by graphs using MATHEMATICA.
Magneto-transport Characterization of Thin Film In-plane and Cross-plane Conductivity
NASA Astrophysics Data System (ADS)
Tang, Yang; Grayson, Matthew
Thin films with highly anisotropic in-plane and cross-plane conductivities are widely used in devices, such as infrared emitters and detectors, and the proper magneto-transport characterization in both directions can reveal information about the doping density, impurities, carrier life times and band structure. This work introduces a novel method for deducing the complete anisotropic electrical conductivity tensor of such an anisotropic resistive layer atop a highly conducting bottom contact, which is a standard part of the device structure. Three strip-line contacts separated by a length scale comparable to the film thickness are applied atop the resistive thin film layer of interest, with the highly conducting back-plane as a back-contact. The potential distribution in the device is modeled, using both scaling and conformal transformation to minimize the calculated volume. As a proof of concept, triple strip-line devices for GaAs and GaAs/AlGaAs superlattice thin films are fabricated. To achieve narrow strip-line contacts with sub-micron scale widths, non-annealed Ni/Au contacts form ohmic contacts to a patterned n+-GaAs cap layer atop the anisotropic thin films. Preliminary experimental data will be presented as a validation of this method. Acknowledgment: Funded by AFOSR FA9550-15-1-0377 and AFOSR FA9550-15-1-0247.
Large anisotropic thermoelectricity in perovskite related layered structure: SrnNbnO3n+2 (n=4,5)
NASA Astrophysics Data System (ADS)
Sakai, Akihiro; Kanno, Tsutomu; Takahashi, Kouhei; Yamada, Yuka; Adachi, Hideaki
2010-11-01
We measured the thermal and charge transport properties of perovskite-related layered structures. Strontium-Niobates, which were expressed as SrnNbnO3n+2 (n =4: Sr1.8La0.2Nb2O7, n =5: Sr5Nb5O17), to explore their thermoelectricities and thermal anisotropies. The behaviors of the thermoelectric parameters (thermal conductivity, Seebeck coefficient, resistivity) were strongly anisotropic in all crystallographic axes (a, b, and c) and large anisotropy exists even in the in-plane direction of the layered structure. Especially, along the a-axis in which corner-sharing NbO6 octahedra aligned straightly, contrastive properties were observed between Sr1.8La0.2Nb2O7 and Sr5Nb5O17. For Sr1.8La0.2Nb2O7, a thermally activated charge conduction is pronounced in the temperature dependence of Seebeck coefficient and resistivity, on the other hand, it was a metallic nature for Sr5Nb5O17. In both compounds, ZT results in anisotropic due to the anisotropic properties of thermoelectric parameters, the best performance is commonly observed in the a-axis. The respective ZT values at room temperature are 3.5×10-2 and 3.6×10-3.
Li, Jia; Wu, Pinghui; Chang, Liping
2015-08-24
Within the accuracy of the first-order Born approximation, sufficient conditions are derived for the invariance of spectrum of an electromagnetic wave, which is generated by the scattering of an electromagnetic plane wave from an anisotropic random media. We show that the following restrictions on properties of incident fields and the anisotropic media must be simultaneously satisfied: 1) the elements of the dielectric susceptibility matrix of the media must obey the scaling law; 2) the spectral components of the incident field are proportional to each other; 3) the second moments of the elements of the dielectric susceptibility matrix of the media are inversely proportional to the frequency.
TOPICAL REVIEW: Experimental study of organic zero-gap conductor α-(BEDT-TTF)2I3
NASA Astrophysics Data System (ADS)
Tajima, Naoya; Kajita, Koji
2009-04-01
A zero-gap state with a Dirac cone type energy dispersion was discovered in the organic conductor α-(BEDT-TTF)2I3 under high hydrostatic pressures. This is the first two-dimensional (2D) zero-gap state discovered in bulk crystals with a layered structure. In contrast to the case of graphene, the Dirac cone in this system is highly anisotropic. The present system, therefore, provides a new type of massless Dirac fermion system with anisotropic Fermi velocity. This system exhibits remarkable transport phenomena characteristic to electrons on the Dirac cone type energy structure. The carrier density, written as n~T2, is a characteristic feature of the 2D zero-gap structure. On the other hand, the resistivity per layer (sheet resistance RS) is given as RS=h/e2 and is independent of temperature. The effect of a magnetic field on samples in the zero-gap system was examined. The difference between zero-gap conductors and conventional conductors is the appearance of a Landau level called the zero mode at the contact points when a magnetic field is applied normal to the conductive layer. Zero-mode Landau carriers give rise to strong negative out-of-plane magnetoresistance.
Application of a new K-tau model to near wall turbulent flows
NASA Technical Reports Server (NTRS)
Thangam, S.; Abid, R.; Speziale, Charles G.
1991-01-01
A recently developed K-tau model for near wall turbulent flows is applied to two severe test cases. The turbulent flows considered include the incompressible flat plate boundary layer with the adverse pressure gradients and incompressible flow past a backward facing step. Calculations are performed for this two-equation model using an anisotropic as well as isotropic eddy-viscosity. The model predictions are shown to compare quite favorably with experimental data.
Heterogeneous dissipative composite structures
NASA Astrophysics Data System (ADS)
Ryabov, Victor; Yartsev, Boris; Parshina, Ludmila
2018-05-01
The paper suggests mathematical models of decaying vibrations in layered anisotropic plates and orthotropic rods based on Hamilton variation principle, first-order shear deformation laminated plate theory (FSDT), as well as on the viscous-elastic correspondence principle of the linear viscoelasticity theory. In the description of the physical relationships between the materials of the layers forming stiff polymeric composites, the effect of vibration frequency and ambient temperature is assumed as negligible, whereas for the viscous-elastic polymer layer, temperature-frequency relationship of elastic dissipation and stiffness properties is considered by means of the experimentally determined generalized curves. Mitigation of Hamilton functional makes it possible to describe decaying vibration of anisotropic structures by an algebraic problem of complex eigenvalues. The system of algebraic equation is generated through Ritz method using Legendre polynomials as coordinate functions. First, real solutions are found. To find complex natural frequencies of the system, the obtained real natural frequencies are taken as input values, and then, by means of the 3rd order iteration method, complex natural frequencies are calculated. The paper provides convergence estimates for the numerical procedures. Reliability of the obtained results is confirmed by a good correlation between analytical and experimental values of natural frequencies and loss factors in the lower vibration tones for the two series of unsupported orthotropic rods formed by stiff GRP and CRP layers and a viscoelastic polymer layer. Analysis of the numerical test data has shown the dissipation & stiffness properties of heterogeneous composite plates and rods to considerably depend on relative thickness of the viscoelastic polymer layer, orientation of stiff composite layers, vibration frequency and ambient temperature.
Low-frequency dispersion and attenuation in anisotropic partially saturated rocks
NASA Astrophysics Data System (ADS)
Cavallini, Fabio; Carcione, José M.; Vidal de Ventós, Daniel; Engell-Sørensen, Lisbeth
2017-06-01
The mesoscopic-loss mechanism is believed to be the most important attenuation mechanism in porous media at seismic frequencies. It is caused by P-wave conversion to slow diffusion (Biot) modes at material inhomogeneity on length scales of the order of centimetres. It is very effective in partially saturated media, particularly in the presence of gas. We explicitly extend the theory of wave propagation at normal incidence to three periodic thin layers and using this result we obtain the five complex and frequency-dependent stiffness components of the corresponding periodic finely layered medium, where the equivalent medium is anisotropic, specifically transversely isotropic. The relaxation behaviour can be described by a single complex and frequency-dependent stiffness component, since the medium consists of plane homogeneous layers. The media can be dissimilar in any property, but a relevant example in hydrocarbon exploration is the case of partial saturation and the same frame skeleton, where the fluid can be brine, oil and gas. The numerical examples illustrate the implementation of the theory to compute the wave velocities (phase and energy) and quality factors. We consider two main cases, namely, the same frame (or skeleton) and different fluids, and the same fluid and different frame properties. Unlike the two-phase case (two fluids), the results show two relaxation peaks. This scenario is more realistic since usually reservoirs rocks contain oil, brine and gas. The theory is quite general since it is not only restricted to partial saturation, but also applies to important properties such as porosity and permeability heterogeneities.
Designing optimal nanofocusing with a gradient hyperlens
NASA Astrophysics Data System (ADS)
Shen, Lian; Prokopeva, Ludmila J.; Chen, Hongsheng; Kildishev, Alexander V.
2017-11-01
We report the design of a high-throughput gradient hyperbolic lenslet built with real-life materials and capable of focusing a beam into a deep sub-wavelength spot of λ/23. This efficient design is achieved through high-order transformation optics and circular effective-medium theory (CEMT), which are used to engineer the radially varying anisotropic artificial material based on the thin alternating cylindrical metal and dielectric layers. The radial gradient of the effective anisotropic optical constants allows for matching the impedances at the input and output interfaces, drastically improving the throughput of the lenslet. However, it is the use of the zeroth-order CEMT that enables the practical realization of a gradient hyperlens with realistic materials. To illustrate the importance of using the CEMT versus the conventional planar effective-medium theory (PEMT) for cylindrical anisotropic systems, such as our hyperlens, both the CEMT and PEMT are adopted to design gradient hyperlenses with the same materials and order of elemental layers. The CEMT- and PEMT-based designs show similar performance if the number of metal-dielectric binary layers is sufficiently large (9+ pairs) and if the layers are sufficiently thin. However, for the manufacturable lenses with realistic numbers of layers (e.g. five pairs) and thicknesses, the performance of the CEMT design continues to be practical, whereas the PEMT-based design stops working altogether. The accurate design of transformation optics-based layered cylindrical devices enabled by CEMT allow for a new class of robustly manufacturable nanophotonic systems, even with relatively thick layers of real-life materials.
NASA Astrophysics Data System (ADS)
Fedorin, Illia V.
2018-01-01
Electrodynamic properties of a photonic hypercrystal formed by periodically alternating two types of anisotropic metamaterials are studied. The first metamaterial consists of ferrite and dielectric layers, while the second metamaterial consists of semiconductor and dielectric layers. The system is assumed to be placed in an external magnetic field, which applied parallel to the boundaries of the layers. An effective medium theory which is suitable for calculation of properties of long-wavelength electromagnetic modes is applied in order to derive averaged expressions for effective constitutive parameters. It has been shown that providing a conscious choice of the constitutive parameters and material fractions of magnetic, semiconductor, and dielectric layers, the system under study shows hypercrystal properties for both TE and TM waves in the different frequency ranges.
Layered Crustal Anisotropy in the NE Tibetan Plateau Inferred from Ambient Noise Tomography
NASA Astrophysics Data System (ADS)
Jiang, C.; Yang, Y.; Zheng, Y.
2016-12-01
The Tibetan Plateau is the highest and largest plateau in the world with an average elevation of 4-5 km and 60-70 km thick crust, about twice of the thickness of average continental crust. Two end-member models have bene invoked to explain the crustal thickening and the growth of the plateau: (1) continuous and uniform thickening of the whole crust and (2) mid/lower crustal channel flow. However, which mechanism dominates the crustal thickening and the growth of the plateau is still under hot debate. Seismic anisotropy can provide observational constraints on deformation mode, which would have distinguished pattern resulting from the two different thickening models. Thus, by studying seismic anisotropy, we can distinguish different models of crustal thickening and plateau growth. In this study, we employ an eikonal tomography method of ambient noise to investigate azimuthal anisotropy of Rayleigh waves in the NE Tibetan Plateau. Our tomography reveals significant anisotropy in the crust. In particular, stratification of crustal azimuthal anisotropy is observed: an upper crustal anisotropic layer characterized by a NE-SW fast direction and a mid/lower crustal anisotropic layer with a NNE-SSW fast direction. The dominantly NE-SW oriented anisotropy in the upper crust is likely caused by shape-preferred orientation (SPO) of faults and fractures in the shallow depths. The anisotropy in the mid/lower crust, however, is nearly orthogonal to that in the shallow crust, suggesting a different mechanism. The NNE-SSW fast direction coincides with the proposed flow direction by the crustal flow model in NE Tibetan Plateau, suggesting anisotropy in the mid/lower crust may be related to the crustal flow. The two-layered crustal stratigraphy observed in the NE Tibetan Plateau is contrary to the continuous thickening model, but favours the crustal flow model.
Superluminal and negative delay times in isotropic-anisotropic one-dimensional photonic crystal
NASA Astrophysics Data System (ADS)
Ouchani, N.; El Moussaouy, A.; Aynaou, H.; El Hassouani, Y.; El Boudouti, E. H.; Djafari-Rouhani, B.
2017-11-01
In this work, we investigate the possibility of superluminal and negative delay times for electromagnetic wave propagation in a linear and passive periodic structure consisting of alternating isotropic and anisotropic media. This phenomenon is due to the birefringence of the anisotropic layers of the structure. By adjusting the orientations of these layers, the delay times of transmitted waves can be controlled from subluminality to superluminality and vice versa. Numerical results indicate that the apparent superluminal propagation of light occurs inside the photonic band-gaps when the principal axes of the anisotropic layers are parallel or perpendicular to the fixed axes. For other orientations of these layers, tunneling and superluminal regimes appear inside the photonic bandgaps and in the allowed bands for frequencies close to the transmission minima. The effect of the number of unit cells of the photonic crystal structure on the propagation of light with superluminal and negative delay times is also investigated. We show that the structure exhibits the Hartman effect in which the tunneling delay time of the electromagnetic wave through the photonic band-gap of the structure converges asymptotically to a finite value with increasing the number of layers. The Green's function approach has been used to derive the transmission and reflection coefficients, the density of states, and the delay times of electromagnetic waves propagating through the structure. The control of the magnitude and the sign of the delay time of light propagation represent a key point in slow and fast light technologies. The proposed structure in this study represents a new system for controlling the delay times of wave propagation without a need of active or non-linear media as well as lossy or asymmetric periodic structures.
2010-10-21
Preprints. 14. ABSTRACT Montmorillonite -smectite clay consists of anisotropic clay platelets, generally a nanometer in thickness by hundreds of...Cation Chemistry and Temperature GregO!)’ R. Yandek, Palrick N. RUlh. Joseph M. Mabry Montmorillonite -smedite clay consists 01 anisotropic clay
Computer program to compute buckling loads of simply supported anisotropic plates
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1973-01-01
Program handles several types of composites and several load conditions for each plate, both compressive or tensile membrane loads, and bending-stretching coupling via the concept of reduced bending rigidities. Vibration frequencies of homogeneous or layered anisotropic plates can be calculated by slightly modifying the program.
Fick's second law transformed: one path to cloaking in mass diffusion.
Guenneau, S; Puvirajesinghe, T M
2013-06-06
Here, we adapt the concept of transformational thermodynamics, whereby the flux of temperature is controlled via anisotropic heterogeneous diffusivity, for the diffusion and transport of mass concentration. The n-dimensional, time-dependent, anisotropic heterogeneous Fick's equation is considered, which is a parabolic partial differential equation also applicable to heat diffusion, when convection occurs, for example, in fluids. This theory is illustrated with finite-element computations for a liposome particle surrounded by a cylindrical multi-layered cloak in a water-based environment, and for a spherical multi-layered cloak consisting of layers of fluid with an isotropic homogeneous diffusivity, deduced from an effective medium approach. Initial potential applications could be sought in bioengineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Leigang; Boullay, Philippe; Lu, Ping
2017-02-01
Room-temperature (RT) multiferroics, possessing ferroelectricity and ferromagnetism simultaneously at RT, hold great promise in miniaturized devices including sensors, actuators, transducers, and multi-state memories. In this work, we report a novel 2D layered RT multiferroic system with self-assembled layered supercell structure consisting of two mismatch-layered sub-lattices of [Bi 3O 3+δ] and [MO 2] 1.84 (M=Al/Mn, simply named as BAMO), i.e., alternative layered stacking of two mutually incommensurate sublattices made of a three-layer-thick Bi-O slab and a one-layer-thick Al/Mn-O octahedra slab along the out-of-plane direction. Strong room-temperature multiferroic responses, e.g., ferromagnetic and ferroelectric properties, have been demonstrated and attributed to the highlymore » anisotropic 2D nature of the non-ferromagnetic and ferromagnetic sublattices which are highly mismatched. The work demonstrates an alternative design approach for new 2D layered oxide materials that hold promises as single-phase multiferroics, 2D oxides with tunable bandgaps, and beyond.« less
Kang, Joon Sang; Ke, Ming; Hu, Yongjie
2017-03-08
Two-dimensional van der Waals materials have shown novel fundamental properties and promise for wide applications. Here, we report for the first time an experimental demonstration of the in situ characterization and highly reversible control of the anisotropic thermal conductivity of black phosphorus. We develop a novel platform based on lithium ion batteries that integrates ultrafast optical spectroscopy and electrochemical control to investigate the interactions between lithium ions and the lattices of the black phosphorus electrode. We discover a strong dependence of the thermal conductivity on battery charge states (lithium concentrations) during the discharge/charge process. The thermal conductivity of black phosphorus is reversibly tunable over a wide range of 2.45-3.86, 62.67-85.80, and 21.66-27.58 W·m -1 ·K -1 in the cross-plan, zigzag, and armchair directions, respectively. The modulation in thermal conductivity is attributed to phonon scattering introduced by the ionic intercalation in between the interspacing layers and shows anisotropic phonon scattering mechanism based on semiclassical model. At the fully discharged state (x ∼ 3 in Li x P), a dramatic reduction of thermal conductivity by up to 6 times from that of the pristine crystal has been observed. This study provides a unique approach to explore the fundamental energy transport involving lattices and ions in the layered structures and may open up new opportunities in controlling energy transport based on novel operation mechanisms and the rational design of nanostructures.
Monoclinic crystal structure of α - RuCl 3 and the zigzag antiferromagnetic ground state
Johnson, R. D.; Williams, S. C.; Haghighirad, A. A.; ...
2015-12-10
We have proposed the layered honeycomb magnet α - RuCl 3 as a candidate to realize a Kitaev spin model with strongly frustrated, bond-dependent, anisotropic interactions between spin-orbit entangled j eff = 1/2 Ru 3 + magnetic moments. We report a detailed study of the three-dimensional crystal structure using x-ray diffraction on untwinned crystals combined with structural relaxation calculations. We consider several models for the stacking of honeycomb layers and find evidence for a parent crystal structure with a monoclinic unit cell corresponding to a stacking of layers with a unidirectional in-plane offset, with occasional in-plane sliding stacking faults, inmore » contrast with the currently assumed trigonal three-layer stacking periodicity. We also report electronic band-structure calculations for the monoclinic structure, which find support for the applicability of the j eff = 1/2 picture once spin-orbit coupling and electron correlations are included. Of the three nearest-neighbor Ru-Ru bonds that comprise the honeycomb lattice, the monoclinic structure makes the bond parallel to the b axis nonequivalent to the other two, and we propose that the resulting differences in the magnitude of the anisotropic exchange along these bonds could provide a natural mechanism to explain the previously reported spin gap in powder inelastic neutron scattering measurements, in contrast to spin models based on the three-fold symmetric trigonal structure, which predict a gapless spectrum within linear spin wave theory. Our susceptibility measurements on both powders and stacked crystals, as well as magnetic neutron powder diffraction, show a single magnetic transition upon cooling below T N ≈ 13 K. Our analysis of our neutron powder diffraction data provides evidence for zigzag magnetic order in the honeycomb layers with an antiferromagnetic stacking between layers. Magnetization measurements on stacked single crystals in pulsed field up to 60 T show a single transition around 8 T for in-plane fields followed by a gradual, asymptotic approach to magnetization saturation, as characteristic of strongly anisotropic exchange interactions.« less
Channeling of Branched Flow in Weakly Scattering Anisotropic Media.
Degueldre, Henri; Metzger, Jakob J; Schultheis, Erik; Fleischmann, Ragnar
2017-01-13
When waves propagate through weakly scattering but correlated, disordered environments they are randomly focused into pronounced branchlike structures, a phenomenon referred to as branched flow, which has been studied in a wide range of isotropic random media. In many natural environments, however, the fluctuations of the random medium typically show pronounced anisotropies. A prominent example is the focusing of tsunami waves by the anisotropic structure of the ocean floor topography. We study the influence of anisotropy on such natural focusing events and find a strong and nonintuitive dependence on the propagation angle which we explain by semiclassical theory.
NASA Astrophysics Data System (ADS)
Juneja, Anurag; Brasseur, James G.
1999-10-01
Large-eddy simulation (LES) of the atmospheric boundary layer (ABL) using eddy viscosity subgrid-scale (SGS) models is known to poorly predict mean shear at the first few grid cells near the ground, a rough surface with no viscous sublayer. It has recently been shown that convective motions carry this localized error vertically to infect the entire ABL, and that the error is more a consequence of the SGS model than grid resolution in the near-surface inertial layer. Our goal was to determine what first-order errors in the predicted SGS terms lead to spurious expectation values, and what basic dynamics in the filtered equation for resolved scale (RS) velocity must be captured by SGS models to correct the deficiencies. Our analysis is of general relevance to LES of rough-wall high Reynolds number boundary layers, where the essential difficulty in the closure is the importance of the SGS acceleration terms, a consequence of necessary under-resolution of relevant energy-containing motions at the first few grid levels, leading to potentially strong couplings between the anisotropies in resolved velocity and predicted SGS dynamics. We analyze these two issues (under-resolution and anisotropy) in the absence of a wall using two direct numerical simulation datasets of homogeneous turbulence with very different anisotropic structure characteristic of the near-surface ABL: shear- and buoyancy-generated turbulence. We uncover three important issues which should be addressed in the design of SGS closures near rough walls and we provide a priori tests for the SGS model. First, we identify a strong spurious coupling between the anisotropic structure of the resolved velocity field and predicted SGS dynamics which can create a feedback loop to incorrectly enhance certain components of the predicted velocity field. Second, we find that eddy viscosity and "similarity" SGS models do not contain enough degrees of freedom to capture, at a sufficient level of accuracy, both RS-SGS energy flux and SGS-RS dynamics. Third, to correctly capture pressure transport near a wall, closures must be made more flexible to accommodate proper partitioning between SGS stress divergence and SGS pressure gradient.
NASA Astrophysics Data System (ADS)
Niu, Jian; Wang, Dong; Qin, Haili; Xiong, Xiong; Tan, Pengli; Li, Youyong; Liu, Rui; Lu, Xuxing; Wu, Jian; Zhang, Ting; Ni, Weihai; Jin, Jian
2014-02-01
Hydrogels are generally thought to be formed by nano- to micrometre-scale fibres or polymer chains, either physically branched or entangled with each other to trap water. Although there are also anisotropic hydrogels with apparently ordered structures, they are essentially polymer fibre/discrete polymer chains-based network without exception. Here we present a type of polymer-free anisotropic lamellar hydrogels composed of 100-nm-thick water layers sandwiched by two bilayer membranes of a self-assembled nonionic surfactant, hexadecylglyceryl maleate. The hydrogels appear iridescent as a result of Bragg’s reflection of visible light from the periodic lamellar plane. The particular lamellar hydrogel with extremely wide water spacing was used as a soft two-dimensional template to synthesize single-crystalline nanosheets in the confined two-dimensional space. As a consequence, flexible, ultrathin and large area single-crystalline gold membranes with atomically flat surface were produced in the hydrogel. The optical and electrical properties were detected on a single gold membrane.
Anisotropic Properties of Single-Crystalline CeNiGe2
NASA Astrophysics Data System (ADS)
Jung, M. H.; Harrison, N.; Lacerda, A. H.; Pagliuso, P. G.; Sarrao, J. L.; Thompson, J. D.
2002-07-01
The anisotropic properties of CeNiGe2 with a layered crystal structure have been studied by measurements of electrical resistivity, magnetic susceptibility and magnetization. It is confirmed that CeNiGe2 undergoes two-step antiferromagnetic transition at TNI = 4 K and TNII = 3 K as reported earlier on polycrystalline samples. CeNiGe2 is found to exhibit highly anisotropic properties with an easy magnetization axis along the longest crystallographic b direction. The magnetization ratio M(H//b)/M(H⊥b) is estimated to be about 15 at 5 T. The in-plane resistivity ρ
Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus
Ling, Xi; Huang, Shengxi; Hasdeo, Eddwi; ...
2016-03-10
Orthorhombic black phosphorus (BP) and other layered materials, such as gallium telluride (GaTe) and tin selenide (SnSe), stand out among two-dimensional (2D) materials owing to their anisotropic in-plane structure. This anisotropy adds a new dimension to the properties of 2D materials and stimulates the development of angle-resolved photonics and electronics. However, understanding the effect of anisotropy has remained unsatisfactory to-date, as shown by a number of inconsistencies in the recent literatures. We use angle-resolved absorption and Raman spectroscopies to investigate the role of anisotropy on the electron-photon and electron-phonon interactions in BP. We highlight a non-trivial dependence between anisotropies andmore » flake thickness, photon and phonon energies. We show that once understood, the anisotropic optical absorption appears to be a reliable and simple way to identify the crystalline orientation of BP, which cannot be determined from Raman spectroscopy without the explicit consideration of excitation wavelength and flake thickness, as commonly used previously.« less
Nguyen, Vu-Hieu; Naili, Salah
2012-08-01
This paper deals with the modeling of guided waves propagation in in vivo cortical long bone, which is known to be anisotropic medium with functionally graded porosity. The bone is modeled as an anisotropic poroelastic material by using Biot's theory formulated in high frequency domain. A hybrid spectral/finite element formulation has been developed to find the time-domain solution of ultrasonic waves propagating in a poroelastic plate immersed in two fluid halfspaces. The numerical technique is based on a combined Laplace-Fourier transform, which allows to obtain a reduced dimension problem in the frequency-wavenumber domain. In the spectral domain, as radiation conditions representing infinite fluid halfspaces may be exactly introduced, only the heterogeneous solid layer needs to be analyzed by using finite element method. Several numerical tests are presented showing very good performance of the proposed procedure. A preliminary study on the first arrived signal velocities computed by using equivalent elastic and poroelastic models will be presented. Copyright © 2012 John Wiley & Sons, Ltd.
Influence of anisotropy on percolation and jamming of linear k-mers on square lattice with defects
NASA Astrophysics Data System (ADS)
Tarasevich, Yu Yu; Laptev, V. V.; Burmistrov, A. S.; Shinyaeva, T. S.
2015-09-01
By means of the Monte Carlo simulation, we study the layers produced by the random sequential adsorption of the linear rigid objects (k-mers also known as rigid or stiff rods, sticks, needles) onto the square lattice with defects in the presence of an external field. The value of k varies from 2 to 32. The point defects randomly and uniformly placed on the substrate hinder adsorption of the elongated objects. The external field affects isotropic deposition of the particles, consequently the deposited layers are anisotropic. We study the influence of the defect concentration, the length of the objects, and the external field on the percolation threshold and the jamming concentration. Our main findings are (i) the critical defect concentration at which the percolation never occurs even at jammed state decreases for short k-mers (k < 16) and increases for long k-mers (k > 16) as anisotropy increases, (ii) the corresponding critical k-mer concentration decreases with anisotropy growth, (iii) the jamming concentration decreases drastically with growth of k-mer length for any anisotropy, (iv) for short k-mers, the percolation threshold is almost insensitive to the defect concentration for any anisotropy.
Electrical anisotropy in the presence of oceans—a sensitivity study
NASA Astrophysics Data System (ADS)
Cembrowski, Marcel; Junge, Andreas
2018-05-01
Electrical anisotropy in the presence of oceans is particularly relevant at continent-ocean subduction zones (e.g. Cascadian and Andean Margin), where seismic anisotropy has been found with trench-parallel or perpendicular fast direction. The identification of electrical anisotropy at such locations sheds new light on the relation between seismic and electrical anisotropies. At areas confined by two opposite oceans, for example the Pyrenean Area and Central America, we demonstrate that the superposed responses of both oceans generate a uniform and large phase split of the main phase tensor axes. The pattern of the tipper arrows is comparatively complicated and it is often difficult to associate their length and orientation to the coast effect. On the basis of simple forward models involving opposite oceans and anisotropic layers, we show that both structures generate similar responses. In the case of a deep anisotropic layer, the resistivity and phase split generated by the oceans alone will be increased or decreased depending on the azimuth of the conducting horizontal principal axes. The 3-D isotropic inversion of the anisotropic forward responses reproduces the input data reasonably well. The anisotropy is explained by large opposed conductors outside the station grid and by tube-like elongated conductors representing a macroscopic anisotropy. If the conductive direction is perpendicular to the shorelines, the anisotropy is not recovered by 3-D isotropic inversion.
Deformation and stress response of composite laminated shells under internal pressure
NASA Technical Reports Server (NTRS)
Yuan, F. G.
1991-01-01
This paper presents a theoretical study of the response of filament wound composite shells under internal pressure. Each layer of the material is generally cylindrically anisotropic. By using cylindrically anisotropic elasticity field equations and Lekhnitskii's stress functions, a system of sixth-order ordinary differential equations is obtained. The general expressions for the stresses and displacements in the laminated composite shells under internal pressure are discussed. Two composite systems, graphite/epoxy and glass/epoxy, are selected to demonstrate the influence of degree of material anisotropy and fiber orientations on the axial and induced twisting deformation. Stress distributions of (45/-45)s symmetric angle-ply fiber-reinforced laminated shells are shown to illustrate the effect of radius-to-thickness ratio.
Niklasson; Datta; Dunn
2000-09-01
In this paper, effective boundary conditions for elastic wave propagation in plates with thin coatings are derived. These effective boundary conditions are used to obtain an approximate dispersion relation for guided waves in an isotropic plate with thin anisotropic coating layers. The accuracy of the effective boundary conditions is investigated numerically by comparison with exact solutions for two different material systems. The systems considered consist of a metallic core with thin superconducting coatings. It is shown that for wavelengths long compared to the coating thickness there is excellent agreement between the approximate and exact solutions for both systems. Furthermore, numerical results presented might be used to characterize coating properties by ultrasonic techniques.
NASA Astrophysics Data System (ADS)
Lv, Yang-Yang; Li, Xiao; Pang, Bin; Cao, Lin; Lin, Dajun; Zhang, Bin-Bin; Yao, Shu-Hua; Chen, Y. B.; Zhou, Jian; Dong, Song-Tao; Zhang, Shan-Tao; Lu, Ming-Hui; Chen, Yan-Feng
2017-07-01
Layered transition-metal dichalcogenides have been recently attracted a lot of attention because of their unique physical properties, such as extremely large and anisotropic magnetoresistance (MR) in WTe2. In this work, we observed the abnormally anisotropic MR on Td-MoTe2 crystal that is strongly dependent on the temperature, as well as the orientations of both magnetic field B and electric field E with respect to crystallographic axes of Td-MoTe2. When E//a-axis and B//c-axis, MR is parabolically dependent on B and is as high as 520% under 9 T and 2 K conditions; the MR is quasi-linearly dependent on B when E//a-axis and B//b-axis (E//b-axis and B//c-axis), and the corresponding MR is only 130% (220%); MR is initially parabolically dependent on B, then linearly on B, and finally shows a saturate trend under E//B//a-axis (or E//B//b-axis) conditions, and the MR is about 16% (30%). These anisotropic MR behaviors can be qualitatively explained by the features of the Fermi surface of Td-MoTe2. This work may demonstrate the rich anisotropic physical behavior in layered transition-metal dichalcognides.
Depinning of an anisotropic interface in random media: The tilt effect
NASA Astrophysics Data System (ADS)
Goh, K.-I.; Jeong, H.; Kahng, B.; Kim, D.
2000-08-01
We study the tilt dependence of the pinning-depinning transition for an interface described by the anisotropic quenched Kardar-Parisi-Zhang equation in 2+1 dimensions, where the two signs of the nonlinear terms are different from each other. When the substrate is tilted by m along the positive sign direction, the critical force Fc(m) depends on m as Fc(m)-Fc(0)~-\\|m\\|1.9(1). The interface velocity v near the critical force follows the scaling form v~\\|f\\|θΨ+/-(m2/\\|f\\|θ+φ) with θ=0.9(1) and φ=0.2(1), where f≡F-Fc(0) and F is the driving force.
Polarized optical scattering by inhomogeneities and surface roughness in an anisotropic thin film
Germer, Thomas A.; Sharma, Katelynn A.; Brown, Thomas G.; ...
2017-10-18
We extend the theory for scattering by oblique columnar structure thin films to include the induced form birefringence and the propagation of radiation in those films. We generalize the 4 × 4 matrix theory to include arbitrary sources in the layer, which are necessary to determine the Green function for the inhomogeneous wave equation. We further extend first-order vector perturbation theory for scattering by roughness in the smooth surface limit, when the layer is anisotropic. Scattering by an inhomogeneous medium is approximated by a distorted Born approximation, where effective medium theory is used to determine the effective properties of themore » medium and strong fluctuation theory is used to determine the inhomogeneous sources. In this manner, we develop a model for scattering by inhomogeneous films, with anisotropic correlation functions. Here, the results are compared to Mueller matrix bidirectional scattering distribution function measurements for a glancing-angle deposition (GLAD) film. While the results are applied to the GLAD film example, the development of the theory is general enough that it can guide simulations for scattering in other anisotropic thin films.« less
NASA Astrophysics Data System (ADS)
Shiogai, Junichi; Kimura, Shojiro; Awaji, Satoshi; Nojima, Tsutomu; Tsukazaki, Atsushi
2018-05-01
Anisotropy of superconductivity is one of the fundamental physical parameters for understanding layered iron-based superconductors (IBSs). Here we investigated the anisotropic response of resistive transition as a function of thickness (d ) in iron selenide (FeSe) based electric-double-layer transistors (EDLTs) on SrTi O3 , which exhibit superconducting transition temperatures Tc as high as 40 K below d =10 nm . According to the analyses of the in-plane (Hc2 //) and out-of-plane (Hc2 ⊥) upper critical fields (Hc 2) and the magnetic field angle dependence of the resistance (Rs-θ ) in ultrathin condition, we found that the anisotropy factor ɛ0=Hc2 ///Hc2 ⊥ is 7.4 in the thin limit of d ˜1 nm , which is larger than that of bulk IBSs. In addition, we observed the shorter out-of-plane coherence length ξc of 0.19 nm compared to the c -axis lattice constant, which implies the confinement of the order parameter in the one unit cell FeSe. These findings suggest that high-Tc superconductivity in the ultrathin FeSe-EDLT exhibits an anisotropic three-dimensional (3D) or quasi-two-dimensional (2D) nature rather than the pure 2D one, leading to the robust superconductivity. Moreover, we carried out the systematic evaluation of the anisotropic Hc 2 against thickness reduction in the FeSe channel. The in-plane Hc 2 as a function of normalized temperature T /Tc is almost independent of d until the thin limit condition. On the other hand, the out-of-plane Hc 2 near T /Tc˜1 decreases with increasing d , resulting in the increase of ɛ0 at around Tc to 32.0 at the thick condition of d =9.3 nm , which is also confirmed by Rs-θ measurements. The counterintuitive behavior can be attributed to the degree of coupling strength between two electron-rich layers possessing a high superconducting order parameter induced by electrostatic gating at the top interface and charge transfer from SrTi O3 substrates at the bottom interface. Besides a large Hc2 ⊥ for d =9.3 nm exceeding 20 T even at T =0.8 Tc , we observe the decoupling crossover of the two superconducting layers at low temperature, which is a unique feature for the high-Tc FeSe-EDLT on SrTi O3 .
Zhao, Guijuan; Li, Huijie; Wang, Lianshan; Meng, Yulin; Ji, Zesheng; Li, Fangzheng; Wei, Hongyuan; Yang, Shaoyan; Wang, Zhanguo
2017-07-03
In this study, the indium composition x as well as the anisotropically biaxial strain in non-polar a-plane In x Ga 1-x N on GaN is studied by X-ray diffraction (XRD) analysis. In accordance with XRD reciprocal lattice space mapping, with increasing indium composition, the maximum of the In x Ga 1-x N reciprocal lattice points progressively shifts from a fully compressive strained to a fully relaxed position, then to reversed tensile strained. To fully understand the strain in the ternary alloy layers, it is helpful to grow high-quality device structures using a-plane nitrides. As the layer thickness increases, the strain of In x Ga 1-x N layer releases through surface roughening and the 3D growth-mode.
NASA Astrophysics Data System (ADS)
Gorskii, P. V.
2011-03-01
It is demonstrated that the dependence of Fermi's energy on the magnetic field causes a set of the Shubnikov - de Haas (SDH) oscillation frequencies to change, and their relative contribution to the total longitudinal conductivity of layered crystals depends on whether the scattering of current carriers is isotropic or anisotropic. Owing to the topological transition in a strong magnetic field, Fermi's surface (FS) is transformed from open into closed one and is compressed in the magnetic field direction. Therefore, in an ultraquantum limit, disregarding the Dingle factor, the longitudinal electrical conductivity of the layered crystal tends to zero as a reciprocal square of the magnetic field for the isotropic scattering and as a reciprocal cube of the magnetic field for the anisotropic scattering. All calculations are performed in the approximation of relaxation time considered to be constant versus the quantum numbers for the isotropic scattering and proportional to the longitudinal velocity of current carriers for the anisotropic scattering.
A priori testing of subgrid-scale models for large-eddy simulation of the atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Juneja, Anurag; Brasseur, James G.
1996-11-01
Subgrid-scale models are generally developed assuming homogeneous isotropic turbulence with the filter cutoff lying in the inertial range. In the surface layer and capping inversion regions of the atmospheric boundary layer, the turbulence is strongly anisotropic and, in general, influenced by both buoyancy and shear. Furthermore, the integral scale motions are under-resolved in these regions. Herein we perform direct numerical simulations of shear and buoyancy-generated homogeneous anisotropic turbulence to compute and analyze the actual subgrid-resolved-scale (SGS-RS) dynamics as the filter cutoff moves into the energy-containing scales. These are compared with the SGS-RS dynamics predicted by Smagorinsky-based models with a focus on motivating improved closures. We find that, in general, the underlying assumption of such models, that the anisotropic part of the subgrid stress tensor be aligned with the resolved strain rate tensor, is a poor approximation. Similarly, we find poor alignment between the actual and predicted stress divergence, and find low correlations between the actual and modeled subgrid-scale contribution to the pressure and pressure gradient. Details will be given in the talk.
NASA Astrophysics Data System (ADS)
Mitra, S.; Dey, S.; Siddartha, G.; Bhattacharya, S.
2016-12-01
We estimate 1-dimensional path average fundamental mode group velocity dispersion curves from regional Rayleigh and Love waves sampling the Indian subcontinent. The path average measurements are combined through a tomographic inversion to obtain 2-dimensional group velocity variation maps between periods of 10 and 80 s. The region of study is parametrised as triangular grids with 1° sides for the tomographic inversion. Rayleigh and Love wave dispersion curves from each node point is subsequently extracted and jointly inverted to obtain a radially anisotropic shear wave velocity model through global optimisation using Genetic Algorithm. The parametrization of the model space is done using three crustal layers and four mantle layers over a half-space with varying VpH , VsV and VsH. The anisotropic parameter (η) is calculated from empirical relations and the density of the layers are taken from PREM. Misfit for the model is calculated as a sum of error-weighted average dispersion curves. The 1-dimensional anisotropic shear wave velocity at each node point is combined using linear interpolation to obtain 3-dimensional structure beneath the region. Synthetic tests are performed to estimate the resolution of the tomographic maps which will be presented with our results. We envision to extend this to a larger dataset in near future to obtain high resolution anisotrpic shear wave velocity structure beneath India, Himalaya and Tibet.
NASA Astrophysics Data System (ADS)
Bâki Iz, H.; Shum, C. K.; Zhang, C.; Kuo, C. Y.
2017-11-01
We report the design of a high-throughput gradient hyperbolic lenslet built with real-life materials and capable of focusing a beam into a deep sub-wavelength spot of λ/23. This efficient design is achieved through high-order transformation optics and circular effective-medium theory (CEMT), which are used to engineer the radially varying anisotropic artificial material based on the thin alternating cylindrical metal and dielectric layers. The radial gradient of the effective anisotropic optical constants allows for matching the impedances at the input and output interfaces, drastically improving the throughput of the lenslet. However, it is the use of the zeroth-order CEMT that enables the practical realization of a gradient hyperlens with realistic materials. To illustrate the importance of using the CEMT versus the conventional planar effective-medium theory (PEMT) for cylindrical anisotropic systems, such as our hyperlens, both the CEMT and PEMT are adopted to design gradient hyperlenses with the same materials and order of elemental layers. The CEMT- and PEMT-based designs show similar performance if the number of metal-dielectric binary layers is sufficiently large (9+ pairs) and if the layers are sufficiently thin. However, for the manufacturable lenses with realistic numbers of layers (e.g. five pairs) and thicknesses, the performance of the CEMT design continues to be practical, whereas the PEMT-based design stops working altogether. The accurate design of transformation optics-based layered cylindrical devices enabled by CEMT allow for a new class of robustly manufacturable nanophotonic systems, even with relatively thick layers of real-life materials.
Flexible and polarization-controllable diffusion metasurface with optical transparency
NASA Astrophysics Data System (ADS)
Zhuang, Yaqiang; Wang, Guangming; Liang, Jiangang; Cai, Tong; Guo, Wenlong; Zhang, Qingfeng
2017-11-01
In this paper, a novel coding metasurface is proposed to realize polarization-controllable diffusion scattering. The anisotropic Jerusalem-cross unit cell is employed as the basic coding element due to its polarization-dependent phase response. The isotropic random coding sequence is firstly designed to obtain diffusion scattering, and the anisotropic random coding sequence is subsequently realized by adding different periodic coding sequences to the original isotropic one along different directions. For demonstration, we designed and fabricated a flexible polarization-controllable diffusion metasurface (PCDM) with both chessboard diffusion and hedge diffusion under different polarizations. The specular scattering reduction performance of the anisotropic metasurface is better than the isotropic one because the scattered energies are redirected away from the specular reflection direction. For potential applications, the flexible PCDM wrapped around a cylinder structure is investigated and tested for polarization-controllable diffusion scattering. The numerical and experimental results coincide well, indicating anisotropic low scatterings with comparable performances. This paper provides an alternative approach for designing high-performance, flexible, low-scattering platforms.
Effects of post-deposition magnetic field annealing on magnetic properties of NiO/Co90Fe10 bilayers
NASA Astrophysics Data System (ADS)
Zheng, Chao; Su, Shan; Chiu, Chun-Cheng; Skoropata, Elizabeth; Desautels, Ryan D.; van Lierop, Johan; Lin, Ko-Wei; Pong, Philip W. T.
2018-01-01
The ferromagnetic (FM)/antiferromagnetic (AF) bilayer structures have drawn intensive attention because of their wide applications in modern spintronic devices. While abundant published works have been reported on the interface effects of the FM/AF bilayers caused by the magnetic field annealing (MFA) process, the volume effects caused by the MFA treatment have been rarely considered. In this work, the microstructural and magnetic properties of the NiO/CoFe bilayers with various CoFe thicknesses were investigated under different annealing temperatures. At high annealing temperature, the interlayer mixing and exchange coupling between NiO and CoFe layers were promoted and consequently the interface effects were facilitated. The interfacial oxides acted as pinning centers and randomly pinned the FM domains, leading to an increase of coercivity and a considerable degradation of uniaxial anisotropy. The increase of coercivity was also contributed by the enhancement of the interfacial exchange coupling between the NiO and CoFe layers after MFA. As the CoFe thickness increased, the volume effects tended to dominate over the interface effects, resulting in the preservation the uniaxially anisotropic features of CoFe. These results indicate that both the coercivity and anisotropic features of the NiO/CoFe bilayers can be directly affected by the MFA process, opening up the possibility of modifying the magnetism in the NiO/CoFe bilayers and offering an effective way to improve the performance of modern spintronic devices.
Scattering rings in optically anisotropic porous silicon
NASA Astrophysics Data System (ADS)
Oton, C. J.; Gaburro, Z.; Ghulinyan, M.; Pancheri, L.; Bettotti, P.; Negro, L. Dal; Pavesi, L.
2002-12-01
We report the observation of strongly anisotropic scattering of laser light at oblique incidence on a (100)-oriented porous silicon layer. The scattered light forms cones tangent to the incident and reflected beams. The conical pattern is caused by scattering on the vertical walls of pores, which are straight along the layer thickness. The light cone defines structured light rings onto a screen normal to the cone axis. We explain the various structures by optical anisotropy of porous silicon. For the sample under analysis, we directly measure from the ring patterns a value of Δn/nord=8% of positive birefringence.
NASA Technical Reports Server (NTRS)
Yin, Wan-Lee
1992-01-01
The stress-function-based variational method of Yin (1991) is extended and modified into a combined layer/sublaminate approach applicable to a laminated strip composed of a large number of differently orientated, anisotropic elastic plies. Lekhnitskii's (1963) stress functions are introduced into two interior layers adjacent to a particular interface. The remaining layers are grouped into an upper sublaminate and a lower sublaminate. The stress functions are expanded in truncated power series of the thickness coordinate, and the differential equations governing the coefficient functions are derived by using the complementary virtual work principle. The layer/sublaminate approach limits the dimension of the eigenvalue problem to a fixed number irrespective of the number of layers in the sublaminate, so that reasonably accurate solutions of the interlaminar stresses can be computed with extreme ease. For symmetric, four-layer, angle-ply and cross-ply laminates, a comparison of the previous analysis results based on the pure layer model and new results based on two different layer/sublaminate models indicates reasonable over-all agreement in the interlaminar stresses and superior agreement in the total peeling and shearing force.
Modeling Geodynamic Mobility of Anisotropic Lithosphere
NASA Astrophysics Data System (ADS)
Perry-Houts, J.; Karlstrom, L.
2016-12-01
The lithosphere is often idealized as a linear, or plastic layer overlying a Newtonian half-space. This approach has led to many insights into lithospheric foundering that include Rayligh-Taylor drips, slab-style delaminations, and small scale convection in the asthenosphere. More recent work has begun to quantify the effect of anisotropic lithosphere viscosity on these same phenomena. Anisotropic viscosity may come about due to stratigraphic deposition in the upper crust, dike/sill emplacement in the mid crust, or volcanic underplating at the Moho related to arcs or plumes. Anisotropic viscosity is also observed in the mantle, due to preferential orientation of olivine grains during flow. Here we extend the work of Lev & Hager (2008) on modeling anisotropic lithospheric foundering to investigate the effects of anisotropic regions which vary in size, magnitude, and orientation. We have extended Aspect, a modern geodynamic finite element code with a large developer and user base, to model exotic constitutive laws with an arbitrary fourth order tensor in place of the viscosity term. We further implement a material model to represent a transverse isotropic medium, such as is expected in a layered, or fractured lithosphere. We have validated our implementation against previous results, and analytic solutions, reproducing the result that horizontally oriented anisotropy tends to inhibit drips, and produce longer-wavelength instabilities. We expect that increased lateral extent of anisotropic regions will exaggerate this effect, to a limit at which the effect will plateau. Varying lithosphere thickness, and mantle anisotropy anisotropy may produce similar behavior. The implications of this effect are significant to lithospheric foundering beneath arcs and hotspots, possibly influencing the recycling of eclogite, production of silicic magmas, and dynamic topography.
Ideal magnetohydrodynamic theory for localized interchange modes in toroidal anisotropic plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Tonghui, E-mail: thshi@ipp.ac.cn; Wan, B. N.; Sun, Y.
2016-08-15
Ideal magnetohydrodynamic theory for localized interchange modes is developed for toroidal plasmas with anisotropic pressure. The work extends the existing theories of Johnson and Hastie [Phys. Fluids 31, 1609 (1988)], etc., to the low n mode case, where n is the toroidal mode number. Also, the plasma compressibility is included, so that the coupling of the parallel motion to perpendicular one, i.e., the so-called apparent mass effect, is investigated in the anisotropic pressure case. The singular layer equation is obtained, and the generalized Mercier's criterion is derived.
In-plane optical anisotropy of layered gallium telluride
Huang, Shengxi; Tatsumi, Yuki; Ling, Xi; ...
2016-08-16
Layered gallium telluride (GaTe) has attracted much attention recently, due to its extremely high photoresponsivity, short response time, and promising thermoelectric performance. Different from most commonly studied two-dimensional (2D) materials, GaTe has in-plane anisotropy and a low symmetry with the C 2h 3 space group. Investigating the in-plane optical anisotropy, including the electron–photon and electron–phonon interactions of GaTe is essential in realizing its applications in optoelectronics and thermoelectrics. In this work, the anisotropic light-matter interactions in the low-symmetry material GaTe are studied using anisotropic optical extinction and Raman spectroscopies as probes. Our polarized optical extinction spectroscopy reveals the weak anisotropymore » in optical extinction spectra for visible light of multilayer GaTe. Polarized Raman spectroscopy proves to be sensitive to the crystalline orientation of GaTe, and shows the intricate dependences of Raman anisotropy on flake thickness, photon and phonon energies. Such intricate dependences can be explained by theoretical analyses employing first-principles calculations and group theory. Furthermore, these studies are a crucial step toward the applications of GaTe especially in optoelectronics and thermoelectrics, and provide a general methodology for the study of the anisotropy of light-matter interactions in 2D layered materials with in-plane anisotropy.« less
Jiang, Puqing; Qian, Xin; Gu, Xiaokun; Yang, Ronggui
2017-09-01
Transition metal dichalcogenides (TMDs) are a group of layered 2D semiconductors that have shown many intriguing electrical and optical properties. However, the thermal transport properties in TMDs are not well understood due to the challenges in characterizing anisotropic thermal conductivity. Here, a variable-spot-size time-domain thermoreflectance approach is developed to simultaneously measure both the in-plane and the through-plane thermal conductivity of four kinds of layered TMDs (MoS 2 , WS 2 , MoSe 2 , and WSe 2 ) over a wide temperature range, 80-300 K. Interestingly, it is found that both the through-plane thermal conductivity and the Al/TMD interface conductance depend on the modulation frequency of the pump beam for all these four compounds. The frequency-dependent thermal properties are attributed to the nonequilibrium thermal resistance between the different groups of phonons in the substrate. A two-channel thermal model is used to analyze the nonequilibrium phonon transport and to derive the intrinsic thermal conductivity at the thermal equilibrium limit. The measurements of the thermal conductivities of bulk TMDs serve as an important benchmark for understanding the thermal conductivity of single- and few-layer TMDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modeling of a rotary motor driven by an anisotropic piezoelectric composite laminate.
Zhu, M L; Lee, S R; Zhang, T Y; Tong, P
2000-01-01
This paper proposes an analytical model of a rotary motor driven by an anisotropic piezoelectric composite laminate. The driving element of the motor is a three-layer laminated plate. A piezoelectric layer is sandwiched between two anti-symmetric composite laminae. Because of the material anisotropy and the anti-symmetric configuration, torsional vibration can be induced through the inplane strain actuated by the piezoelectric layer. The advantages of the motor are its magnetic field immunity, simple structure, easy maintenance, low cost, and good low-speed performance. In this paper, the motor is considered to be a coupled dynamic system. The analytical model includes the longitudinal and torsional vibrations of the laminate and the rotating motion of the rotor under action of contact forces. The analytical model can predict the overall characteristics of the motor, including the modal frequency and the response of motion of the laminate, the rotating speed of the rotor, the input power, the output power, and the efficiency of the motor. The effects of the initial compressive force, the applied voltage, the moment of rotor inertia, and the frictional coefficient of the contact interface on the characteristics of the motor are simulated and discussed. A selection of the numerical results from the analytical model is confirmed by experimental data.
NASA Astrophysics Data System (ADS)
Tajima, N.; Sugawara, S.; Tamura, M.; Kato, R.; Nishio, Y.; Kajita, K.
2007-11-01
A zero-gap state with the Dirac cone-type energy dispersion was found in an organic conductor α-(BEDT-TTF)2I3 under high hydrostatic pressures. This is the first two-dimensional zero-gap state discovered in bulk crystals with layered structures. In contrast to the case of graphene, the Dirac cone in this system is highly anisotropic. The present system, therefore, provides a new type of massless Dirac fermions with anisotropic Fermi velocity. From the galvano-magnetic measurements, the density and mobilities of electrons and holes were determined in the temperature region between 77 K and 2 K. In this region, the carrier density (n) depends on temperature (T) as n~T2 and decreases by about four orders of magnitude. On the other hand, the sheet resistance per BEDT-TTF layer (RS) stays almost constant in the region. The value is written as RS=gh/e2 in terms of the quantum resistance h/e2=25.8 kΩ, where g is a parameter that depends weakly on temperature.
Chiral photonic crystals with an anisotropic defect layer.
Gevorgyan, A H; Harutyunyan, M Z
2007-09-01
In the present paper we consider some properties of defect modes in chiral photonic crystals with an anisotropic defect layer. We solved the problem by Ambartsumian's layer addition method. We investigated the influence of the defect layer thickness variation and its location in the chiral photonic crystal (CPC) and also its optical axes orientation, as well as of CPC thickness variation on defect mode properties. Variations of the optical thickness of the defect layer have its impact on the defect mode linewidth and the light accumulation in the defect. We obtain that CPCs lose their base property at certain defect layer thicknesses; namely, they lose their diffraction reflection dependence on light polarization. We also show that the circular polarization handedness changes from right-handed to left-handed if the defect layer location is changed, and therefore, such systems can be used to create sources of elliptically polarized light with tunable ellipticity. Some nonreciprocity properties of such systems are investigated, too. In particular, it is also shown that such a system can work as a practically ideal wide band optical diode for circularly polarized incident light provided the defect layer thickness is properly chosen, and it can work as a narrow band diode at small defect layer thicknesses.
A Geostatistical Scaling Approach for the Generation of Non Gaussian Random Variables and Increments
NASA Astrophysics Data System (ADS)
Guadagnini, Alberto; Neuman, Shlomo P.; Riva, Monica; Panzeri, Marco
2016-04-01
We address manifestations of non-Gaussian statistical scaling displayed by many variables, Y, and their (spatial or temporal) increments. Evidence of such behavior includes symmetry of increment distributions at all separation distances (or lags) with sharp peaks and heavy tails which tend to decay asymptotically as lag increases. Variables reported to exhibit such distributions include quantities of direct relevance to hydrogeological sciences, e.g. porosity, log permeability, electrical resistivity, soil and sediment texture, sediment transport rate, rainfall, measured and simulated turbulent fluid velocity, and other. No model known to us captures all of the documented statistical scaling behaviors in a unique and consistent manner. We recently proposed a generalized sub-Gaussian model (GSG) which reconciles within a unique theoretical framework the probability distributions of a target variable and its increments. We presented an algorithm to generate unconditional random realizations of statistically isotropic or anisotropic GSG functions and illustrated it in two dimensions. In this context, we demonstrated the feasibility of estimating all key parameters of a GSG model underlying a single realization of Y by analyzing jointly spatial moments of Y data and corresponding increments. Here, we extend our GSG model to account for noisy measurements of Y at a discrete set of points in space (or time), present an algorithm to generate conditional realizations of corresponding isotropic or anisotropic random field, and explore them on one- and two-dimensional synthetic test cases.
Li, Zhancheng; Liu, Wenwei; Cheng, Hua; Liu, Jieying; Chen, Shuqi; Tian, Jianguo
2016-01-01
Optical metasurfaces consisting of single-layer nanostructures have immensely promising applications in wavefront control because they can be used to arbitrarily manipulate wave phase, and polarization. However, anomalous refraction and reflection waves have not yet been simultaneously and asymmetrically generated, and the limited efficiency and bandwidth of pre-existing single-layer metasurfaces hinder their practical applications. Here, a few-layer anisotropic metasurface is presented for simultaneously generating high-efficiency broadband asymmetric anomalous refraction and reflection waves. Moreover, the normal transmission and reflection waves are low and the anomalous waves are the predominant ones, which is quite beneficial for practical applications such as beam deflectors. Our work provides an effective method of enhancing the performance of anomalous wave generation, and the asymmetric performance of the proposed metasurface shows endless possibilities in wavefront control for nanophotonics device design and optical communication applications. PMID:27762286
Magnetic Field Line Random Walk in Arbitrarily Stretched Isotropic Turbulence
NASA Astrophysics Data System (ADS)
Wongpan, P.; Ruffolo, D.; Matthaeus, W. H.; Rowlands, G.
2006-12-01
Many types of space and laboratory plasmas involve turbulent fluctuations with an approximately uniform mean magnetic field B_0, and the field line random walk plays an important role in guiding particle motions. Much of the relevant literature concerns isotropic turbulence, and has mostly been perturbative, i.e., for small fluctuations, or based on numerical simulations for specific conditions. On the other hand, solar wind turbulence is apparently anisotropic, and has been modeled as a sum of idealized two-dimensional and one dimensional (slab) components, but with the deficiency of containing no oblique wave vectors. In the present work, we address the above issues with non-perturbative analytic calculations of diffusive field line random walks for unpolarized, arbitrarily stretched isotropic turbulence, including the limits of nearly one-dimensional (highly stretched) and nearly two-dimensional (highly squashed) turbulence. We develop implicit analytic formulae for the diffusion coefficients D_x and D_z, two coupled integral equations in which D_x and D_z appear inside 3-dimensional integrals over all k-space, are solved numerically with the aid of Mathematica routines for specific cases. We can vary the parameters B0 and β, the stretching along z for constant turbulent energy. Furthermore, we obtain analytic closed-form solutions in all extreme cases. We obtain 0.54 < D_z/D_x < 2, indicating an approximately isotropic random walk even for very anisotropic (unpolarized) turbulence, a surprising result. For a given β, the diffusion coefficient vs. B0 can be described by a Padé approximant. We find quasilinear behavior at high B0 and percolative behavior at low B_0. Partially supported by a Sritrangthong Scholarship from the Faculty of Science, Mahidol University; the Thailand Research Fund; NASA Grant NNG05GG83G; and Thailand's Commission for Higher Education.
Tuminaro, Raymond S.; Perego, Mauro; Tezaur, Irina Kalashnikova; ...
2016-10-06
A multigrid method is proposed that combines ideas from matrix dependent multigrid for structured grids and algebraic multigrid for unstructured grids. It targets problems where a three-dimensional mesh can be viewed as an extrusion of a two-dimensional, unstructured mesh in a third dimension. Our motivation comes from the modeling of thin structures via finite elements and, more specifically, the modeling of ice sheets. Extruded meshes are relatively common for thin structures and often give rise to anisotropic problems when the thin direction mesh spacing is much smaller than the broad direction mesh spacing. Within our approach, the first few multigridmore » hierarchy levels are obtained by applying matrix dependent multigrid to semicoarsen in a structured thin direction fashion. After sufficient structured coarsening, the resulting mesh contains only a single layer corresponding to a two-dimensional, unstructured mesh. Algebraic multigrid can then be employed in a standard manner to create further coarse levels, as the anisotropic phenomena is no longer present in the single layer problem. The overall approach remains fully algebraic, with the minor exception that some additional information is needed to determine the extruded direction. Furthermore, this facilitates integration of the solver with a variety of different extruded mesh applications.« less
NASA Astrophysics Data System (ADS)
Diez, A.; Eisen, O.; Hofstede, C.; Lambrecht, A.; Mayer, C.; Miller, H.; Steinhage, D.; Binder, T.; Weikusat, I.
2015-02-01
We investigate the propagation of seismic waves in anisotropic ice. Two effects are important: (i) sudden changes in crystal orientation fabric (COF) lead to englacial reflections; (ii) the anisotropic fabric induces an angle dependency on the seismic velocities and, thus, recorded travel times. Velocities calculated from the polycrystal elasticity tensor derived for the anisotropic fabric from measured COF eigenvalues of the EDML ice core, Antarctica, show good agreement with the velocity trend determined from vertical seismic profiling. The agreement of the absolute velocity values, however, depends on the choice of the monocrystal elasticity tensor used for the calculation of the polycrystal properties. We make use of abrupt changes in COF as a common reflection mechanism for seismic and radar data below the firn-ice transition to determine COF-induced reflections in either data set by joint comparison with ice-core data. Our results highlight the possibility to complement regional radar surveys with local, surface-based seismic experiments to separate isochrones in radar data from other mechanisms. This is important for the reconnaissance of future ice-core drill sites, where accurate isochrone (i.e. non-COF) layer integrity allows for synchronization with other cores, as well as studies of ice dynamics considering non-homogeneous ice viscosity from preferred crystal orientations.
Puwal, Steffan; Roth, Bradley J; Basser, Peter J
2017-04-01
One goal of MRI is to determine the myelin water fraction in neural tissue. One approach is to measure the reduction in T 2 * arising from microscopic perturbations in the magnetic field caused by heterogeneities in the magnetic susceptibility of myelin. In this paper, analytic expressions for the induced magnetic field distribution are derived within and around an axon, assuming that the myelin susceptibility is anisotropic. Previous models considered the susceptibility to be piecewise continuous, whereas this model considers a sinusoidally varying susceptibility. Many conclusions are common in both models. When the magnetic field is applied perpendicular to the axon, the magnetic field in the intraaxonal space is uniformly perturbed, the magnetic field in the myelin sheath oscillates between the lipid and water layers, and the magnetic field in the extracellular space just outside the myelin sheath is heterogeneous. These field heterogeneities cause the spins to dephase, shortening T 2 *. When the magnetic field is applied along the axon, the field is homogeneous within water-filled regions, including between lipid layers. Therefore the spins do not dephase and the magnetic susceptibility has no effect on T 2 *. Generally, the response of an axon is given as the superposition of these two contributions. The sinusoidal model uses a different set of approximations compared with the piecewise model, so their common predictions indicate that the models are not too sensitive to the details of the myelin-water distribution. Other predictions, such as the sensitivity to water diffusion between myelin and water layers, may highlight differences between the two approaches. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Polarization changes in light beams trespassing anisotropic turbulence.
Korotkova, Olga
2015-07-01
The polarization properties of deterministic or random light with isotropic source correlations propagating in anisotropic turbulence along horizontal paths are considered for the first time and predicted to change on the basis of the second-order coherence theory of beam-like fields and the extended Huygens-Fresnel integral. Our examples illustrate that the beams whose degree of polarization is unaffected by free-space propagation or isotropic turbulence can either decrease or increase on traversing the anisotropic turbulence, depending on the polarization state of the source.
Turbulent Output-Based Anisotropic Adaptation
NASA Technical Reports Server (NTRS)
Park, Michael A.; Carlson, Jan-Renee
2010-01-01
Controlling discretization error is a remaining challenge for computational fluid dynamics simulation. Grid adaptation is applied to reduce estimated discretization error in drag or pressure integral output functions. To enable application to high O(10(exp 7)) Reynolds number turbulent flows, a hybrid approach is utilized that freezes the near-wall boundary layer grids and adapts the grid away from the no slip boundaries. The hybrid approach is not applicable to problems with under resolved initial boundary layer grids, but is a powerful technique for problems with important off-body anisotropic features. Supersonic nozzle plume, turbulent flat plate, and shock-boundary layer interaction examples are presented with comparisons to experimental measurements of pressure and velocity. Adapted grids are produced that resolve off-body features in locations that are not known a priori.
NASA Astrophysics Data System (ADS)
Tan, Shurun
The objective of my research is two-fold: to study wave scattering phenomena in dense volumetric random media and in periodic wave functional materials. For the first part, the goal is to use the microwave remote sensing technique to monitor water resources and global climate change. Towards this goal, I study the microwave scattering behavior of snow and ice sheet. For snowpack scattering, I have extended the traditional dense media radiative transfer (DMRT) approach to include cyclical corrections that give rise to backscattering enhancements, enabling the theory to model combined active and passive observations of snowpack using the same set of physical parameters. Besides DMRT, a fully coherent approach is also developed by solving Maxwell's equations directly over the entire snowpack including a bottom half space. This revolutionary new approach produces consistent scattering and emission results, and demonstrates backscattering enhancements and coherent layer effects. The birefringence in anisotropic snow layers is also analyzed by numerically solving Maxwell's equation directly. The effects of rapid density fluctuations in polar ice sheet emission in the 0.5˜2.0 GHz spectrum are examined using both fully coherent and partially coherent layered media emission theories that agree with each other and distinct from incoherent approaches. For the second part, the goal is to develop integral equation based methods to solve wave scattering in periodic structures such as photonic crystals and metamaterials that can be used for broadband simulations. Set upon the concept of modal expansion of the periodic Green's function, we have developed the method of broadband Green's function with low wavenumber extraction (BBGFL), where a low wavenumber component is extracted and results a non-singular and fast-converging remaining part with simple wavenumber dependence. We've applied the technique to simulate band diagrams and modal solutions of periodic structures, and to construct broadband Green's functions including periodic scatterers.
Complex Anisotropic Structure of the Mantle Wedge Beneath Kamchatka Volcanoes
NASA Astrophysics Data System (ADS)
Levin, V.; Park, J.; Gordeev, E.; Droznin, D.
2002-12-01
A wedge of mantle material above the subducting lithospheric plate at a convergent margin is among the most dynamic environments of the Earth's interior. Deformation and transport of solid and volatile phases within this region control the fundamental process of elemental exchange between the surficial layers and the interior of the planet. A helpful property in the study of material deformation and transport within the upper mantle is seismic anisotropy, which may reflect both microscopic effects of preferentialy aligned crystals of olivine and orthopyroxene and macroscopic effects of systematic cracks, melt lenses, layering etc. Through the mapping of anisotropic properties within the mantle wedge we can establish patterns of deformation. Volatile content affects olivine alignment, so regions of anomalous volatile content may be evident. Indicators of seismic anisotropy commonly employed in upper mantle studies include shear wave birefringence and mode-conversion between compressional and shear body waves. When combined together, these techniques offer complementary constraints on the location and intensity of anisotropic properties. The eastern coast of southern Kamchatka overlies a vigorous convergent margin where the Pacific plate descends at a rate of almost 80 mm/yr towards the northwest. We extracted seismic anisotropy indicators from two data sets sensitive to the anisotropic properties of the uppermost mantle. Firstly, we evaluated teleseismic receiver functions for a number of sites, and found ample evidence for anisotropicaly-influenced P-to-S mode conversion. Secondly, we measured splitting in S waves of earthquakes with sources within the downgoing slab. The first set of observations provides constraints on the depth ranges where strong changes in anisotropic properties take place. The local splitting data provides constraints on the cumulative strength of anisotropic properties along specific pathways through the mantle wedge and possibly parts of the slab. To explain the vertical stratification of anisotropy implied from receiver functions, and the strong lateral dependence of shear-wave splitting observations, we cannot rely on simple models of mantle wedge behaviour e.g., olivine-crystal alignment through subduction-driven corner flow. Diverse mechanisms can contribute to the observed pattern of anisotropic properties, with volatiles likely being a key influence. For instance, we find evidence in favor of a slow-symmetry-axis anisotropy within the uppermost 10-20 km of the mantle wedge, implying either excessive hydration of the mantle or else a presence of systematically aligned volatile-filled cracks or lenses. Also, shear-wave splitting is weak beneath the Avachinsky-Koryaksky volcanic center, suggesting either vertical flow or the influence of volatiles and/or thermally-enhanced diffusion creep.
Topotaxial growth of α-Fe{sub 2}O{sub 3} nanowires on iron substrate in thermal annealing method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Himanshu, E-mail: himsri@rrcat.gov.in; Srivastava, A. K.; Babu, Mahendra
2016-06-28
A detail cross-sectional transmission electron microscopy of as-grown α-Fe{sub 2}O{sub 3} nanowire sample, synthesized on iron substrate by thermal annealing method, was carried out to understand the mechanism of growth in this system. Iron undergoes sequential oxidation to form a layered structure of Fe/FeO/Fe{sub 3}O{sub 4}/α-Fe{sub 2}O{sub 3}. α-Fe{sub 2}O{sub 3} nanowires grow on to the top of α-Fe{sub 2}O{sub 3} layer. It was found that subsequent oxide layers grow topotaxially on the grains of iron, which results in a direct orientation relationship between the α-Fe{sub 2}O{sub 3} nanowire and the parent grain of iron. The results also showed thatmore » the grains of α-Fe{sub 2}O{sub 3} layer, which were uniquely oriented in [110] direction, undergo highly anisotropic growth to form the nanowire. This anisotropic growth occurs at a twin interface, given by (−11−1), in the α-Fe{sub 2}O{sub 3} layer. It was concluded that the growth at twin interface could be the main driving factor for such anisotropic growth. These observations are not only helpful in understanding the growth mechanism of α-Fe{sub 2}O{sub 3} nanowires, but it also demonstrates a way of patterning the nanowires by controlling the texture of iron substrate.« less
Crustal anisotropy across northern Japan from receiver functions.
Bianchi, I; Bokelmann, G; Shiomi, K
2015-07-01
Northern Japan is a tectonically active area, with the presence of several volcanoes, and with frequent earthquakes among which the destructive M w = 8.9-9.0 Tohoku-oki occurred on 11 March 2011. Tectonic activity leaves an imprint on the crustal structures, on both the upper and the lower layers. To investigate the crust in northern Japan, we construct a receiver function data set using teleseismic events recorded at 58 seismic stations belonging to the Japanese National (Hi-net) network. We isolate the signals, in the receiver function wavelet, that witness the presence of anisotropic structures at depth, with the aim of mapping the variation of anisotropy across the northern part of the island. This study focuses on the relation among anisotropy detected in the crust, stresses induced by plate convergence across the subduction zone, and the intrinsic characteristics of the rocks. Our results show how a simple velocity model with two anisotropic layers reproduces the observed data at the stations. We observe a negligible or small amount of signal related to anisotropy in the eastern part of the study area (i.e., the outer arc) for both upper and lower crust. Distinct anisotropic features are observed at the stations on the western part of the study area (i.e., the inner arc) for both upper and lower crust. The symmetry axes are mostly E-W oriented. Deviation from the E-W orientation is observed close to the volcanic areas, where the higher geothermal gradient might influence the deformation processes.
Non-random species loss in a forest herbaceous layer following nitrogen addition
Christopher A. Walter; Mary Beth Adams; Frank S. Gilliam; William T. Peterjohn
2017-01-01
Nitrogen (N) additions have decreased species richness (S) in hardwood forest herbaceous layers, yet the functional mechanisms for these decreases have not been explicitly evaluated.We tested two hypothesized mechanisms, random species loss (RSL) and non-random species loss (NRSL), in the hardwood forest herbaceous layer of a long-term, plot-scale...
Highly Anisotropic Adhesive Film Made from Upside-Down, Flat, and Uniform Vertically Aligned CNTs.
Hong, Sanghyun; Lundstrom, Troy; Ghosh, Ranajay; Abdi, Hamed; Hao, Ji; Jeoung, Sun Kyoung; Su, Paul; Suhr, Jonghwan; Vaziri, Ashkan; Jalili, Nader; Jung, Yung Joon
2016-12-14
We have created a multifunctional dry adhesive film with transferred vertically aligned carbon nanotubes (VA-CNTs). This unique VA-CNT film was fabricated by a multistep transfer process, converting the flat and uniform bottom of VA-CNTs grown on atomically flat silicon wafer substrates into the top surface of an adhesive layer. Unlike as-grown VA-CNTs, which have a nonuniform surface, randomly entangled CNT arrays, and a weak interface between the CNTs and substrates, this transferred VA-CNT film shows an extremely high coefficient of static friction (COF) of up to 60 and a shear adhesion force 30 times higher (12 N/cm 2 ) than that of the as-grown VA-CNTs under a very small preloading of 0.2 N/cm 2 . Moreover, a near-zero normal adhesion force was observed with 20 mN/cm 2 preloading and a maximum 100-μm displacement in a piezo scanner, demonstrating ideal properties for an artificial gecko foot. Using this unique structural feature and anisotropic adhesion properties, we also demonstrate effective removal and assembly of nanoparticles into organized micrometer-scale circular and line patterns by a single brushing of this flat and uniform VA-CNT film.
Dynamics of wave packets in two-dimensional random systems with anisotropic disorder.
Samelsohn, Gregory; Gruzdev, Eugene
2008-09-01
A theoretical model is proposed to describe narrowband pulse dynamics in two-dimensional systems with arbitrary correlated disorder. In anisotropic systems with elongated cigarlike inhomogeneities, fast propagation is predicted in the direction across the structure where the wave is exponentially localized and tunneling of evanescent modes plays a dominant role in typical realizations. Along the structure, where the wave is channeled as in a waveguide, the motion of the wave energy is relatively slow. Numerical simulations performed for ultra-wide-band pulses show that even at the initial stage of wave evolution, the radiation diffuses predominantly in the direction along the major axis of the correlation ellipse. Spectral analysis of the results relates the long tail of the wave observed in the transverse direction to a number of frequency domain "lucky shots" associated with the long-living resonant modes localized inside the sample.
Dynamics of wave packets in two-dimensional random systems with anisotropic disorder
NASA Astrophysics Data System (ADS)
Samelsohn, Gregory; Gruzdev, Eugene
2008-09-01
A theoretical model is proposed to describe narrowband pulse dynamics in two-dimensional systems with arbitrary correlated disorder. In anisotropic systems with elongated cigarlike inhomogeneities, fast propagation is predicted in the direction across the structure where the wave is exponentially localized and tunneling of evanescent modes plays a dominant role in typical realizations. Along the structure, where the wave is channeled as in a waveguide, the motion of the wave energy is relatively slow. Numerical simulations performed for ultra-wide-band pulses show that even at the initial stage of wave evolution, the radiation diffuses predominantly in the direction along the major axis of the correlation ellipse. Spectral analysis of the results relates the long tail of the wave observed in the transverse direction to a number of frequency domain “lucky shots” associated with the long-living resonant modes localized inside the sample.
Slab detachment under the Eastern Alps seen by seismic anisotropy
Qorbani, Ehsan; Bianchi, Irene; Bokelmann, Götz
2015-01-01
We analyze seismic anisotropy for the Eastern Alpine region by inspecting shear-wave splitting from SKS and SKKS phases. The Eastern Alpine region is characterized by a breakdown of the clear mountain-chain-parallel fast orientation pattern that has been previously documented for the Western Alps and for the western part of the Eastern Alps. The main interest of this paper is a more detailed analysis of the anisotropic character of the Eastern Alps, and the transition to the Carpathian–Pannonian region. SK(K)S splitting measurements reveal a rather remarkable lateral change in the anisotropy pattern from the west to the east of the Eastern Alps with a transition area at about 12°E. We also model the backazimuthal variation of the measurements by a vertical change of anisotropy. We find that the eastern part of the study area is characterized by the presence of two layers of anisotropy, where the deeper layer has characteristics similar to those of the Central Alps, in particular SW–NE fast orientations of anisotropic axes. We attribute the deeper layer to a detached slab from the European plate. Comparison with tomographic studies of the area indicates that the detached slab might possibly connect with the lithosphere that is still in place to the west of our study area, and may also connect with the slab graveyard to the East, at the depth of the upper mantle transition zone. On the other hand, the upper layer has NW–SE fast orientations coinciding with a low-velocity layer which is found above a more-or-less eastward dipping high-velocity body. The anisotropy of the upper layer shows large-scale NW–SE fast orientation, which is consistent with the presence of asthenospheric flow above the detached slab foundering into the deeper mantle. PMID:25843968
Slab detachment under the Eastern Alps seen by seismic anisotropy
NASA Astrophysics Data System (ADS)
Qorbani, Ehsan; Bianchi, Irene; Bokelmann, Götz
2015-01-01
We analyze seismic anisotropy for the Eastern Alpine region by inspecting shear-wave splitting from SKS and SKKS phases. The Eastern Alpine region is characterized by a breakdown of the clear mountain-chain-parallel fast orientation pattern that has been previously documented for the Western Alps and for the western part of the Eastern Alps. The main interest of this paper is a more detailed analysis of the anisotropic character of the Eastern Alps, and the transition to the Carpathian-Pannonian region. SK(K)S splitting measurements reveal a rather remarkable lateral change in the anisotropy pattern from the west to the east of the Eastern Alps with a transition area at about 12°E. We also model the backazimuthal variation of the measurements by a vertical change of anisotropy. We find that the eastern part of the study area is characterized by the presence of two layers of anisotropy, where the deeper layer has characteristics similar to those of the Central Alps, in particular SW-NE fast orientations of anisotropic axes. We attribute the deeper layer to a detached slab from the European plate. Comparison with tomographic studies of the area indicates that the detached slab might possibly connect with the lithosphere that is still in place to the west of our study area, and may also connect with the slab graveyard to the East, at the depth of the upper mantle transition zone. On the other hand, the upper layer has NW-SE fast orientations coinciding with a low-velocity layer which is found above a more-or-less eastward dipping high-velocity body. The anisotropy of the upper layer shows large-scale NW-SE fast orientation, which is consistent with the presence of asthenospheric flow above the detached slab foundering into the deeper mantle.
Single-Layer Limit of Metallic Indium Overlayers on Si(111).
Park, Jae Whan; Kang, Myung Ho
2016-09-09
Density-functional calculations are used to identify one-atom-thick metallic In phases grown on the Si(111) surface, which have long been sought in quest of the ultimate two-dimensional (2D) limit of metallic properties. We predict two metastable single-layer In phases, one sqrt[7]×sqrt[3] phase with a coverage of 1.4 monolayer (ML; here 1 ML refers to one In atom per top Si atom) and the other sqrt[7]×sqrt[7] phase with 1.43 ML, which indeed agree with experimental evidences. Both phases reveal quasi-1D arrangements of protruded In atoms, leading to 2D-metallic but anisotropic band structures and Fermi surfaces. This directional feature contrasts with the free-electron-like In-overlayer properties that are known to persist up to the double-layer thickness, implying that the ultimate 2D limit of In overlayers may have been achieved in previous studies of double-layer In phases.
A new oxytelluride: Perovskite and CsCl intergrowth in Ba 3Yb 2O 5Te
Whalen, J. B.; Besara, T.; Vasquez, R.; ...
2013-04-27
The new oxytelluride Ba 3Yb 2O 5Te was obtained from an alkaline earth flux. Ba3Yb2O5Te crystallizes in the tetragonal space group P4/ mmm (#123), with a=4.3615(3) Å and c=11.7596(11) angstrom, Z=1. The structure combines two distinct building blocks, a Ba 2Yb 2O 5 perovskite-like double layer with square bipyramidal coordination of the ytterbium ions, and a CsCl-type BaTe layer. Short range magnetic order is apparent at below 5 K, with the magnetic behavior above this temperature dominated by crystal field effects. The structure may be considered as an analog to the Ruddlesden-Popper phases, where the NaCl-type layer has been replacedmore » by the CsCl-type layer. Finally, the two-dimensional magnetic behavior is expected based on the highly anisotropic nature of the structure.« less
Visualizing heavy fermion confinement and Pauli-limited superconductivity in layered CeCoIn 5
Gyenis, András; Feldman, Benjamin E.; Randeria, Mallika T.; ...
2018-02-07
Layered material structures play a key role in enhancing electron–electron interactions to create correlated metallic phases that can transform into unconventional superconducting states. The quasi-two-dimensional electronic properties of such compounds are often inferred indirectly through examination of bulk properties. Here we use scanning tunneling microscopy to directly probe in cross-section the quasi-two-dimensional electronic states of the heavy fermion superconductor CeCoIn 5. Our measurements reveal the strong confined nature of quasiparticles, anisotropy of tunneling characteristics, and layer-by-layer modulated behavior of the precursor pseudogap gap phase. In the interlayer coupled superconducting state, the orientation of line defects relative to the d-wave ordermore » parameter determines whether in-gap states form due to scattering. Spectroscopic imaging of the anisotropic magnetic vortex cores directly characterizes the short interlayer superconducting coherence length and shows an electronic phase separation near the upper critical in-plane magnetic field, consistent with a Pauli-limited first-order phase transition into a pseudogap phase.« less
New Perspectives on the Dynamical State of Extraplanar Diffuse Ionized Gas Layers
NASA Astrophysics Data System (ADS)
Boettcher, Erin; Zweibel, Ellen; Gallagher, John S.; Benjamin, Robert A.
2018-01-01
Gaseous, disk-halo interfaces are an important boundary in the baryon cycle in galaxies like the Milky Way, and their structure, support, and kinematics carry clues about the star formation feedback and accretion processes that produce them. Due to their unexpectedly large scale heights, which are often several times greater than their thermal scale heights, it is unclear whether they are in dynamical equilibrium, or are evidence of a galactic fountain, wind, or accretion flow. In the nearby, edge-on disk galaxies NGC 891 and NGC 5775, we test a dynamical equilibrium model of the extraplanar diffuse ionized gas (eDIG) layer by quantifying the thermal, turbulent, magnetic field, and cosmic ray pressure gradients using optical emission-line spectroscopy from the SparsePak IFU at the WIYN Observatory and the Robert Stobie Spectrograph on the Southern African Large Telescope and radio continuum observations from Continuum Halos in Nearby Galaxies - an EVLA Survey. The vertical pressure gradients are too shallow to produce the observed scale heights at the moderate galactocentric radii where the gas is believed to be found (R < 8 kpc). For the low-inclination galaxy M83, we develop a Markov Chain Monte Carlo method to decompose the [NII]λλ6548, 6583, Hα, and [SII]λλ6717, 6731 emission lines into multiple components, and identify eDIG emission based on its rotational velocity lag and elevated [NII]/Hα and [SII]/Hα line ratios. The median, line-of-sight velocity dispersion of the eDIG layer, σ = 96 km/s, greatly exceeds the horizontal velocity dispersions observed in edge-on eDIG layers (σ = 20 - 60 km/s), presenting the possibility that these layers have anisotropic random motions. The role of an anisotropic velocity dispersion in producing eDIG scale heights, as well as the absence of evidence for large-scale inflow or outflow, motivates further study of eDIG dynamics in face-on galaxies with a range of star formation rates. This work was supported by the NSF GRFP under Grant No. DGE-1256259.
Coupled atmosphere/canopy model for remote sensing of plant reflectance features
NASA Technical Reports Server (NTRS)
Gerstl, S. A.; Zardecki, A.
1985-01-01
Solar radiative transfer through a coupled system of atmosphere and plant canopy is modeled as a multiple-scattering problem through a layered medium of random scatterers. The radiative transfer equation is solved by the discrete-ordinates finite-element method. Analytic expressions are derived that allow the calculation of scattering and absorption cross sections for any plant canopy layer form measurable biophysical parameters such as the leaf area index, leaf angle distribution, and individual leaf reflectance and transmittance data. An expression for a canopy scattering phase function is also given. Computational results are in good agreement with spectral reflectance measurements directly above a soybean canopy, and the concept of greenness- and brightness-transforms of Landsat MSS data is reconfirmed with the computed results. A sensitivity analysis with the coupled atmosphere/canopy model quantifies how satellite-sensed spectral radiances are affected by increased atmospheric aerosols, by varying leaf area index, by anisotropic leaf scattering, and by non-Lambertian soil boundary conditions. Possible extensions to a 2-D model are also discussed.
Anisotropic Thermoelectric Devices Made from Single-Crystal Semimetal Microwires in Glass Coating
NASA Astrophysics Data System (ADS)
Konopko, L. A.; Nikolaeva, A. A.; Kobylianskaya, A. K.; Huber, T. E.
2018-06-01
Thermoelectric heat conversion based on the Seebeck and Peltier effects generated at the junction between two materials of type- n and type- p is well known. Here, we present a demonstration of an unconventional thermoelectric energy conversion that is based on a single element made of an anisotropic material. In such materials, a heat flow generates a transverse thermoelectric electric field lying across the heat flow. Potentially, in applications involving miniature devices, the anisotropic thermoelectric (AT) effect has the advantage over traditional thermoelectrics that it simplifies the thermoelectric generator architecture. This is because the generator can be made of a single thermoelectric material without the complexity of a series of contacts forming a pile. A feature of anisotropic thermoelectrics is that the thermoelectric voltage is proportional to the element length and inversely proportional to the effective thickness. The AT effect has been demonstrated with artificial anisotropic thin film consisting of layers of alternating thermoelectric type, but there has been no demonstration of this effect in a long single-crystal. Electronic transport measurements have shown that the semimetal bismuth is highly anisotropic. We have prepared an experimental sample consisting of a 10-m-long glass-insulated single-crystal tin-doped bismuth microwire ( d = 4 μm). Crucial for this experiment is the ability to grow the microwire as a single-crystal using a technique of recrystallization with laser heating and under a strong electric field. The sample was wound as a spiral, bonded to a copper disk, and used in various experiments. The sensitivity of the sample to heat flow is as high as 10-2 V/W with a time constant τ of about 0.5 s.
Anisotropic Thermoelectric Devices Made from Single-Crystal Semimetal Microwires in Glass Coating
NASA Astrophysics Data System (ADS)
Konopko, L. A.; Nikolaeva, A. A.; Kobylianskaya, A. K.; Huber, T. E.
2018-04-01
Thermoelectric heat conversion based on the Seebeck and Peltier effects generated at the junction between two materials of type-n and type-p is well known. Here, we present a demonstration of an unconventional thermoelectric energy conversion that is based on a single element made of an anisotropic material. In such materials, a heat flow generates a transverse thermoelectric electric field lying across the heat flow. Potentially, in applications involving miniature devices, the anisotropic thermoelectric (AT) effect has the advantage over traditional thermoelectrics that it simplifies the thermoelectric generator architecture. This is because the generator can be made of a single thermoelectric material without the complexity of a series of contacts forming a pile. A feature of anisotropic thermoelectrics is that the thermoelectric voltage is proportional to the element length and inversely proportional to the effective thickness. The AT effect has been demonstrated with artificial anisotropic thin film consisting of layers of alternating thermoelectric type, but there has been no demonstration of this effect in a long single-crystal. Electronic transport measurements have shown that the semimetal bismuth is highly anisotropic. We have prepared an experimental sample consisting of a 10-m-long glass-insulated single-crystal tin-doped bismuth microwire (d = 4 μm). Crucial for this experiment is the ability to grow the microwire as a single-crystal using a technique of recrystallization with laser heating and under a strong electric field. The sample was wound as a spiral, bonded to a copper disk, and used in various experiments. The sensitivity of the sample to heat flow is as high as 10-2 V/W with a time constant τ of about 0.5 s.
SplitRacer - a new Semi-Automatic Tool to Quantify And Interpret Teleseismic Shear-Wave Splitting
NASA Astrophysics Data System (ADS)
Reiss, M. C.; Rumpker, G.
2017-12-01
We have developed a semi-automatic, MATLAB-based GUI to combine standard seismological tasks such as the analysis and interpretation of teleseismic shear-wave splitting. Shear-wave splitting analysis is widely used to infer seismic anisotropy, which can be interpreted in terms of lattice-preferred orientation of mantle minerals, shape-preferred orientation caused by fluid-filled cracks or alternating layers. Seismic anisotropy provides a unique link between directly observable surface structures and the more elusive dynamic processes in the mantle below. Thus, resolving the seismic anisotropy of the lithosphere/asthenosphere is of particular importance for geodynamic modeling and interpretations. The increasing number of seismic stations from temporary experiments and permanent installations creates a new basis for comprehensive studies of seismic anisotropy world-wide. However, the increasingly large data sets pose new challenges for the rapid and reliably analysis of teleseismic waveforms and for the interpretation of the measurements. Well-established routines and programs are available but are often impractical for analyzing large data sets from hundreds of stations. Additionally, shear wave splitting results are seldom evaluated using the same well-defined quality criteria which may complicate comparison with results from different studies. SplitRacer has been designed to overcome these challenges by incorporation of the following processing steps: i) downloading of waveform data from multiple stations in mseed-format using FDSNWS tools; ii) automated initial screening and categorizing of XKS-waveforms using a pre-set SNR-threshold; iii) particle-motion analysis of selected phases at longer periods to detect and correct for sensor misalignment; iv) splitting analysis of selected phases based on transverse-energy minimization for multiple, randomly-selected, relevant time windows; v) one and two-layer joint-splitting analysis for all phases at one station by simultaneously minimizing their transverse energy - this includes the analysis of null measurements. vi) comparison of results with theoretical splitting parameters determined for one, two, or continuously-varying anisotropic layer(s). Examples for the application of SplitRacer will be presented.
Ordering transitions of weakly anisotropic hard rods in narrow slitlike pores.
Aliabadi, Roohollah; Gurin, Péter; Velasco, Enrique; Varga, Szabolcs
2018-01-01
The effect of strong confinement on the positional and orientational ordering is examined in a system of hard rectangular rods with length L and diameter D (L>D) using the Parsons-Lee modification of the second virial density-functional theory. The rods are nonmesogenic (L/D<3) and confined between two parallel hard walls, where the width of the pore (H) is chosen in such a way that both planar (particle's long axis parallel to the walls) and homeotropic (particle's long axis perpendicular to the walls) orderings are possible and a maximum of two layers is allowed to form in the pore. In the extreme confinement limit of H≤2D, where only one-layer structures appear, we observe a structural transition from a planar to a homeotropic fluid layer with increasing density, which becomes sharper as L→H. In wider pores (2D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eads, Calley N.; Bandak, Dmytro; Neupane, Mahesh R.
Strong quantum confinement effects lead to striking new physics in two-dimensional materials such as graphene or transition metal dichalcogenides. While spectroscopic fingerprints of such quantum confinement have been demonstrated widely, the consequences for carrier dynamics are at present less clear, particularly on ultrafast timescales. This is important for tailoring, probing, and understanding spin and electron dynamics in layered and two-dimensional materials even in cases where the desired bandgap engineering has been achieved. Here in this paper we show by means of core–hole clock spectroscopy that SnS 2 exhibits spindependent attosecond charge delocalization times (τ deloc) for carriers confined within amore » layer, τ deloc < 400 as, whereas interlayer charge delocalization is dynamically quenched in excess of a factor of 10, τ deloc > 2.7 fs. These layer decoupling dynamics are a direct consequence of strongly anisotropic screening established within attoseconds, and demonstrate that important two-dimensional characteristics are also present in bulk crystals of van der Waalslayered materials, at least on ultrafast timescales.« less
Simulation of multiple scattering in a medium with an anisotropic scattering pattern
NASA Astrophysics Data System (ADS)
Kuzmin, V. L.; Val'kov, A. Yu.
2017-03-01
Multiple backscattering from layers with various thicknesses, including the case of half-space, is numerically simulated and a comparative analysis is performed for systems with the anisotropy of scattering described by the Henyey-Greenstein and Rayleigh-Gans phase functions. It is shown that the intensity of backscattering depends on the form of the phase function; the difference between the intensities obtained within the two models increases with anisotropy.
Towards Thermal Wavelength Scale Two- and Three-Dimensional Photonic Crystals
2016-04-01
this now. We studied the anisotropic thermal conductivity of nanoscale graphite layers deposited by chemical vapor deposition on Ni substrates at...Braun, and David G. Cahill, “Thermal conductivity of graphite thin films grown by low temperature chemical vapor deposition on Ni (111),” submitted...that there is no degradation in the power factor. In the carbon work, we studied the deposited by chemical vapor deposition on Ni substrates at
Variable range hopping electric and thermoelectric transport in anisotropic black phosphorus
Liu, Huili; Sung Choe, Hwan; Chen, Yabin; ...
2017-09-05
Black phosphorus (BP) is a layered semiconductor with a high mobility of up to ~1000 cm 2 V -1 s -1 and a narrow bandgap of ~0.3 eV, and shows potential applications in thermoelectrics. In stark contrast to most other layered materials, electrical and thermoelectric properties in the basal plane of BP are highly anisotropic. In order to elucidate the mechanism for such anisotropy, we fabricated BP nanoribbons (~100 nm thick) along the armchair and zigzag directions, and measured the transport properties. It is found that both the electrical conductivity and Seebeck co efficient increase with temperature, a behavior contradictorymore » to that of traditional semiconductors. The three-dimensional variable range hopping model is adopted to analyze this abnormal temperature dependency of electrical conductivity and Seebeck coefficient. Furthermore, the hopping transport of the BP nanoribbons, attributed to high density of trap states in the samples, provides a fundamental understanding of the anisotropic BP for potential thermoelectric applications.« less
Variable range hopping electric and thermoelectric transport in anisotropic black phosphorus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Huili; Sung Choe, Hwan; Chen, Yabin
Black phosphorus (BP) is a layered semiconductor with a high mobility of up to ~1000 cm 2 V -1 s -1 and a narrow bandgap of ~0.3 eV, and shows potential applications in thermoelectrics. In stark contrast to most other layered materials, electrical and thermoelectric properties in the basal plane of BP are highly anisotropic. In order to elucidate the mechanism for such anisotropy, we fabricated BP nanoribbons (~100 nm thick) along the armchair and zigzag directions, and measured the transport properties. It is found that both the electrical conductivity and Seebeck co efficient increase with temperature, a behavior contradictorymore » to that of traditional semiconductors. The three-dimensional variable range hopping model is adopted to analyze this abnormal temperature dependency of electrical conductivity and Seebeck coefficient. Furthermore, the hopping transport of the BP nanoribbons, attributed to high density of trap states in the samples, provides a fundamental understanding of the anisotropic BP for potential thermoelectric applications.« less
Magnetization reversal in exchange biased Co/CoO probed with anisotropic magnetoresistance
NASA Astrophysics Data System (ADS)
Gredig, Thomas; Krivorotov, Ilya N.; Dahlberg, E. Dan
2002-05-01
The magnetization reversal in exchange coupled polycrystalline Co/CoO bilayers has been investigated as a function of CoO thickness using anisotropic magnetoresistance as a probe. The anisotropic magnetoresistance (AMR) was measured during the magnetization reversal and it was used to determine the orientation of the magnetization. For thin CoO layers large training effects were present; ergo the first hysteresis loop after field cooling was not the same as the second. The magnitude of the observed training was found to decrease with increasing CoO thickness. In the samples where substantial training was observed, the first magnetization reversal was dominated by nucleation of reversed domains. For the reversal from the antiparallel state back to the parallel direction, the AMR is consistent with a rotation process. In thicker CoO films where the training was less, the asymmetry was drastically reduced. A simple model that couples the antiferromagnetic grains to the ferromagnetic layer simulates qualitatively the observed magnetoresistance.
Anisotropic spectra of acoustic type turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, E.; P.N. Lebedev Physical Institute, 53 Leninsky Ave., 119991 Moscow; Krasnoselskikh, V.
2008-06-15
The problem of spectra for acoustic type of turbulence generated by shocks being randomly distributed in space is considered. It is shown that for turbulence with a weak anisotropy, such spectra have the same dependence in k-space as the Kadomtsev-Petviashvili spectrum: E(k){approx}k{sup -2}. However, the frequency spectrum has always the falling {approx}{omega}{sup -2}, independent of anisotropy. In the strong anisotropic case the energy distribution relative to wave vectors takes anisotropic dependence, forming in the large-k region spectra of the jet type.
Effect of Layering on Cracking Initiation and Propagation under Uniaxial Compression
NASA Astrophysics Data System (ADS)
Modiriasari, A.; Jiang, L.; Yoon, H.; Bobet, A.; Pyrak-Nolte, L. J.
2017-12-01
Rock anisotropy can arise from textural and structural causes both of which contribute to anisotropic strength and moduli. Rock variability makes it difficult to determine which properties dominate failure. Here, laboratory experiments were performed on 3D printed samples to examine the effect of layering on crack formation. Samples with two pre-existing coplanar flaws were fabricated using an additive 3D printing process (Projet CJP 360). Layers of gypsum (0.2 mm thick) were printed in either a horizontal (H) or a vertical (V) orientation to create prismatic samples (152.4 mm x 76.2 mm x 25.1 mm) with two 12.7 mm long coplanar flaws (19.05 mm apart) oriented at 450 with the load. Cracks were induced under uniaxial loading conditions. Digital image correlation (DIC) and acoustic emission (AE) (18 AE sensors with a frequency range of 100-450 kHz) were used to monitor crack evolution. DIC imaging of the V specimen during uniaxial compression showed that smooth cracks were initiated and propagated from the tips of the flaws parallel to the layering. Unlike the strongly bonded samples, no cracks were formed between the pre-existing flaws. The failure mechanism between the flaws was controlled by the weak bonding between the layers, and not by the coalescence of the new cracks. However, for the H specimen, failure was caused by crack coalescence between the two flaws. The new cracks exhibited a step-like roughness that was influenced by the layering in the sample. AE events were only detected when a synchronized mode was used. 3D printed samples can be effectively used to study the effect of anisotropic layering on crack initiation and propagation in a repeatable and controlled manner. Acknowledgements: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This material is also based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022) and by the National Science Foundation, Geomechanics and Geotechnical Systems Program (award No. CMMI-1162082).
Microstructure and micromechanical elastic properties of weak layers
NASA Astrophysics Data System (ADS)
Köchle, Berna; Matzl, Margret; Proksch, Martin; Schneebeli, Martin
2014-05-01
Weak layers are the mechanically most important stratigraphic layer for avalanches. Yet, there is little known about their exact geometry and their micromechanical properties. To distinguish weak layers or interfaces is essential to assess stability. However, except by destructive mechanical tests, they cannot be easily identified and characterized in the field. We casted natural weak layers and their adjacent layers in the field during two winter seasons and scanned them non-destructively with X-ray computer tomography with a resolution between 10 - 20 µm. Reconstructed three-dimensional models of centimeter-sized layered samples allow for calculating the change of structural properties. We found that structural transitions cannot always by expressed by geometry like density or grain size. In addition, we calculated the Young's modulus and Poisson's ratio of the individual layers with voxel-based finite element simulations. As any material has its characteristic elastic parameters, they may potentially differentiate individual layers, and therefore different microstructures. Our results show that Young's modulus correlates well with density but do not indicate snow's microstructure, in contrast to Poisson's ratio which tends to be lower for strongly anisotropic forms like cup crystals and facets.
NASA Technical Reports Server (NTRS)
Putcha, N. S.; Reddy, J. N.
1986-01-01
A mixed shear flexible finite element, with relaxed continuity, is developed for the geometrically linear and nonlinear analysis of layered anisotropic plates. The element formulation is based on a refined higher order theory which satisfies the zero transverse shear stress boundary conditions on the top and bottom faces of the plate and requires no shear correction coefficients. The mixed finite element developed herein consists of eleven degrees of freedom per node which include three displacements, two rotations and six moment resultants. The element is evaluated for its accuracy in the analysis of the stability and vibration of anisotropic rectangular plates with different lamination schemes and boundary conditions. The mixed finite element described here for the higher order theory gives very accurate results for buckling loads and natural frequencies.
Guo, Kai; Liu, Jianlong; Zhang, Yan; Liu, Shutian
2012-12-17
The dispersion of a hyperbolic anisotropic metamaterial (HAM) and the chromatic aberration of light focusing in this kind of HAM are studied. The HAM is formed by alternately stacking metal and dielectric layers. The rules of materials and filling factors affecting the optical property of HAM are given. The chromatic aberration of light focusing is demonstrated both theoretically and numerically. By comparing the theory with the simulation results, the factors influencing the focal length, including the heat loss of material and low spatial frequency modes, are discussed. The investigation emphasizes the anomalous properties, such as chromatic aberration and low spatial frequency modes influencing focus position, of HAM compared with that in conventional lens. Based on the analysis, the possibility of using HAM to focus light with two different wavelengths at the same point is studied.
NASA Astrophysics Data System (ADS)
Eakin, Caroline M.; Long, Maureen D.; Wagner, Lara S.; Beck, Susan L.; Tavera, Hernando
2015-02-01
The Peruvian flat slab is by far the largest region of flat subduction in the world today, but aspects of its structure and dynamics remain poorly understood. In particular, questions remain over whether the relatively narrow Nazca Ridge subducting beneath southern Peru provides dynamic support for the flat slab or it is just a passive feature. We investigate the dynamics and interaction of the Nazca Ridge and the flat slab system by studying upper mantle seismic anisotropy across southern Peru. We analyze shear wave splitting of SKS, sSKS, and PKS phases at 49 stations distributed across the area, primarily from the PerU Lithosphere and Slab Experiment (PULSE). We observe distinct spatial variations in anisotropic structure along strike, most notably a sharp transition from coherent splitting in the north to pervasive null (non-split) arrivals in the south, with the transition coinciding with the northern limit of the Nazca Ridge. For both anisotropic domains there is evidence for complex and multi-layered anisotropy. To the north of the ridge our *KS splitting measurements likely reflect trench-normal mantle flow beneath the flat slab. This signal is then modified by shallower anisotropic layers, most likely in the supra-slab mantle, but also potentially from within the slab. To the south the sub-slab mantle is similarly anisotropic, with a trench-oblique fast direction, but widespread nulls appear to reflect dramatic heterogeneity in anisotropic structure above the flat slab. Overall the regional anisotropic structure, and thus the pattern of deformation, appears to be closely tied to the location of the Nazca Ridge, which further suggests that the ridge plays a key role in the mantle dynamics of the Peruvian flat slab system.
Single-particle excitations in periodically modulated two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Kushwaha, Manvir S.
2008-06-01
A theoretical investigation is made of the plasmon excitations in a two-dimensional electron gas subjected to a one-dimensional periodic potential. We embark on the single-particle excitations within a two-subband model in the framework of Bohm-Pines’ random-phase approximation. For such an anisotropic system with spatially modulated charge density, we observe the existence of interesting esthetic necktie gaps that are found to center at the zone boundaries within the intersubband single-particle excitations. We discuss the dependence of the size of necktie gaps on the modulation potential.
Accuracy and sensitivity analysis on seismic anisotropy parameter estimation
NASA Astrophysics Data System (ADS)
Yan, Fuyong; Han, De-Hua
2018-04-01
There is significant uncertainty in measuring the Thomsen’s parameter δ in laboratory even though the dimensions and orientations of the rock samples are known. It is expected that more challenges will be encountered in the estimating of the seismic anisotropy parameters from field seismic data. Based on Monte Carlo simulation of vertical transversely isotropic layer cake model using the database of laboratory anisotropy measurement from the literature, we apply the commonly used quartic non-hyperbolic reflection moveout equation to estimate the seismic anisotropy parameters and test its accuracy and sensitivities to the source-receive offset, vertical interval velocity error and time picking error. The testing results show that the methodology works perfectly for noise-free synthetic data with short spread length. However, this method is extremely sensitive to the time picking error caused by mild random noises, and it requires the spread length to be greater than the depth of the reflection event. The uncertainties increase rapidly for the deeper layers and the estimated anisotropy parameters can be very unreliable for a layer with more than five overlain layers. It is possible that an isotropic formation can be misinterpreted as a strong anisotropic formation. The sensitivity analysis should provide useful guidance on how to group the reflection events and build a suitable geological model for anisotropy parameter inversion.
NASA Astrophysics Data System (ADS)
Garrett, S. J.; Cooper, A. J.; Harris, J. H.; Özkan, M.; Segalini, A.; Thomas, P. J.
2016-01-01
We summarise results of a theoretical study investigating the distinct convective instability properties of steady boundary-layer flow over rough rotating disks. A generic roughness pattern of concentric circles with sinusoidal surface undulations in the radial direction is considered. The goal is to compare predictions obtained by means of two alternative, and fundamentally different, modelling approaches for surface roughness for the first time. The motivating rationale is to identify commonalities and isolate results that might potentially represent artefacts associated with the particular methodologies underlying one of the two modelling approaches. The most significant result of practical relevance obtained is that both approaches predict overall stabilising effects on type I instability mode of rotating disk flow. This mode leads to transition of the rotating-disk boundary layer and, more generally, the transition of boundary-layers with a cross-flow profile. Stabilisation of the type 1 mode means that it may be possible to exploit surface roughness for laminar-flow control in boundary layers with a cross-flow component. However, we also find differences between the two sets of model predictions, some subtle and some substantial. These will represent criteria for establishing which of the two alternative approaches is more suitable to correctly describe experimental data when these become available.
Topography-specific isotropic tunneling in nanoparticle monolayer with sub-nm scale crevices.
Wang, Guisheng; Jiao, Weihong; Yi, Lizhi; Zhang, Yuejiao; Wu, Ke; Zhang, Chao; Lv, Xianglong; Qian, Lihua; Li, Jianfeng; Yuan, Songliu; Chen, Liang
2016-10-07
Material used in flexible devices may experience anisotropic strain with identical magnitude, outputting coherent signals that tend to have a serious impact on device reliability. In this work, the surface topography of the nanoparticles (NPs) is proposed to be a parameter to control the performance of strain gauge based on tunneling behavior. In contrast to anisotropic tunneling in a monolayer of spherical NPs, electron tunneling in a monolayer of urchin-like NPs actually exhibits a nearly isotropic response to strain with different loading orientations. Isotropic tunneling of the urchin-like NPs is caused by the interlocked pikes of these urchin-like NPs in a random manner during external mechanical stimulus. Topography-dependent isotropic tunneling in two dimensions reported here opens a new opportunity to create highly reliable electronics with superior performance.
Anisotropic Energy Transport Properties of 1,3,5-Triamino-2,4,6-Trinitrobenzene (TATB)
NASA Astrophysics Data System (ADS)
Kroonblawd, Matthew P.
Anisotropic energy transport properties were determined theoretically for crystals of the insensitive explosive 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) using molecular dynamics simulations. Determination of these properties is necessary for the analysis and interpretation of molecular dynamics predictions of transient processes such as shock response and hot spot formation/relaxation and is similarly important for the accurate parameterization of meso- and continuum-scale engineering models aimed at understanding complex processes such as ignition and growth leading to detonation. TATB crystal exhibits a graphitic-like layered packing structure with a two-dimensional hydrogen-bonding network that forms within, but not between, the molecule-thick layers that comprise the crystal. This structure is thought to be the primary factor behind the significant anisotropy in many physical properties of TATB crystals. Anisotropic thermal conductivity coefficients were determined for initially defect-free and defective TATB crystals and isotropic values were determined for the liquid at temperatures and pressures up to (1800 K, 2.0 GPa). The room temperature, atmospheric pressure thermal conductivity for TATB is predicted to be generally greater and more anisotropic than the thermal conductivities of other molecular explosives; conduction within the layers is approximately 70% greater than conduction between the layers. The conductivity is predicted to decrease with temperature approximately as λ ∝ 1/T over the interval 200 K ≤ T ≤ 700 K and to linearly increase with pressure up to 2.5 GPa. Direction-dependent relaxation of idealized one-dimensional hot spots was studied. Results from hot spot relaxation simulations were compared with and fit to solutions for the one-dimensional diffusive heat equation by treating the thermal di.usivity as a parameter to assess the validity of using continuum models to describe heat transport in TATB on length scales below 10 nm. A dissipative particle dynamics (DPD) at constant energy (DPDE) coarsegrained model is developed for TATB and applied to micron-scale shock simulations wherein the predicted shock response is shown to be highly sensitive to a model parameter controlling kinetics of energy transport between inter- and intramolecular degrees of freedom. A generalized crystal-cutting method is developed that enables facile construction of three-dimensionally periodic simulation cells containing arbitrarily oriented single crystals and crystal-crystal interfaces for materials of arbitrary symmetry class. Strategies for non-uniform sampling of molecular dynamics simulations of transient phenomena are proposed that have the potential to drastically reduce data storage costs.
Quasi-static analysis of elastic behavior for some systems having higher fracture densities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berryman, J.G.; Aydin, A.
2009-10-15
Elastic behavior of geomechanical systems with interacting (but not intersecting) fractures is treated using generalizations of the Backus and the Schoenberg-Muir methods for analyzing layered systems whose layers are intrinsically anisotropic due to locally aligned fractures. By permitting the axis of symmetry of the locally anisotropic compliance matrix for individual layers to differ from that of the layering direction, we derive analytical formulas for interacting fractured regions with arbitrary orientations to each other. This procedure provides a systematic tool for studying how contiguous, but not yet intersecting, fractured domains interact, and provides a direct (though approximate) means of predicting whenmore » and how such interactions lead to more dramatic weakening effects and ultimately to failure of these complicated systems. The method permits decomposition of the system elastic behavior into specific eigenmodes that can all be analyzed, and provides a better understanding about which of these specific modes are expected to be most important to the evolving failure process.« less
Chirp optical coherence tomography of layered scattering media.
Haberland, U H; Blazek, V; Schmitt, H J
1998-07-01
A new noninvasive technique that reveals cross sectional images of scattering media is presented. It is based on a continuous wave frequency modulated radar, but uses a tunable laser in the near infrared. As the full width at half maximum resolution of 16 μm is demonstrated with an external cavity laser, the chirp optical coherence tomography becomes an alternative to conventional short coherence tomography with the advantage of a simplified optical setup. The analysis of two-layer solid phantoms shows that the backscattered light gets stronger with decreasing anisotropic factor and increasing scattering coefficient, as predicted by Monte Carlo simulations. By introducing a two-phase chirp sequence, the combination of lateral resolved perfusion and depth resolved structure is shown. © 1998 Society of Photo-Optical Instrumentation Engineers.
NASA Astrophysics Data System (ADS)
Mahmud, M. N.
2018-04-01
The chaotic dynamical behaviour of thermal convection in an anisotropic porous layer subject to gravity, heated from below and cooled from above, is studied based on theory of dynamical system in the presence of feedback control. The extended Darcy model, which includes the time derivative has been employed in the momentum equation to derive a low dimensional Lorenz-like equation by using Galerkin-truncated approximation. The classical fourth-order Runge-Kutta method is used to obtain the numerical solution in order to exemplify the dynamics of the nonlinear autonomous system. The results show that stability enhancement of chaotic convection is feasible via feedback control.
Grid adaption based on modified anisotropic diffusion equations formulated in the parametic domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagmeijer, R.
1994-11-01
A new grid-adaption algorithm for problems in computational fluid dynamics is presented. The basic equations are derived from a variational problem formulated in the parametric domain of the mapping that defines the existing grid. Modification of the basic equations provides desirable properties in boundary layers. The resulting modified anisotropic diffusion equations are solved for the computational coordinates as functions of the parametric coordinates and these functions are numerically inverted. Numerical examples show that the algorithm is robust, that shocks and boundary layers are well-resolved on the adapted grid, and that the flow solution becomes a globally smooth function of themore » computational coordinates.« less
Cunningham, Patrick D; Souza, João B; Fedin, Igor; She, Chunxing; Lee, Byeongdu; Talapin, Dmitri V
2016-06-28
Semiconductor nanorods can emit linear-polarized light at efficiencies over 80%. Polarization of light in these systems, confirmed through single-rod spectroscopy, can be explained on the basis of the anisotropy of the transition dipole moment and dielectric confinement effects. Here we report emission polarization in macroscopic semiconductor-polymer composite films containing CdSe/CdS nanorods and colloidal CdSe nanoplatelets. Anisotropic nanocrystals dispersed in polymer films of poly butyl-co-isobutyl methacrylate (PBiBMA) can be stretched mechanically in order to obtain unidirectionally aligned arrays. A high degree of alignment, corresponding to an orientation factor of 0.87, was achieved and large areas demonstrated polarized emission, with the contrast ratio I∥/I⊥ = 5.6, making these films viable candidates for use in liquid crystal display (LCD) devices. To some surprise, we observed significant optical anisotropy and emission polarization for 2D CdSe nanoplatelets with the electronic structure of quantum wells. The aligned nanorod arrays serve as optical funnels, absorbing unpolarized light and re-emitting light from deep-green to red with quantum efficiencies over 90% and high degree of linear polarization. Our results conclusively demonstrate the benefits of anisotropic nanostructures for LCD backlighting. The polymer films with aligned CdSe/CdS dot-in-rod and rod-in-rod nanostructures show more than 2-fold enhancement of brightness compared to the emitter layers with randomly oriented nanostructures. This effect can be explained as the combination of linearly polarized luminescence and directional emission from individual nanostructures.
Lee, Myung W.
2012-01-01
Through the use of three-dimensional seismic amplitude mapping, several gas hydrate prospects were identified in the Alaminos Canyon area of the Gulf of Mexico. Two of the prospects were drilled as part of the Gulf of Mexico Gas Hydrate Joint Industry Program Leg II in May 2009, and a suite of logging-while-drilling logs was acquired at each well site. Logging-while-drilling logs at the Alaminos Canyon 21–A site indicate that resistivities of approximately 2 ohm-meter and P-wave velocities of approximately 1.9 kilometers per second were measured in a possible gas-hydrate-bearing target sand interval between 540 and 632 feet below the sea floor. These values are slightly elevated relative to those measured in the hydrate-free sediment surrounding the sands. The initial well log analysis is inconclusive in determining the presence of gas hydrate in the logged sand interval, mainly because large washouts in the target interval degraded well log measurements. To assess gas-hydrate saturations, a method of compensating for the effect of washouts on the resistivity and acoustic velocities is required. To meet this need, a method is presented that models the washed-out portion of the borehole as a vertical layer filled with seawater (drilling fluid). Owing to the anisotropic nature of this geometry, the apparent anisotropic resistivities and velocities caused by the vertical layer are used to correct measured log values. By incorporating the conventional marine seismic data into the well log analysis of the washout-corrected well logs, the gas-hydrate saturation at well site AC21–A was estimated to be in the range of 13 percent. Because gas hydrates in the vertical fractures were observed, anisotropic rock physics models were also applied to estimate gas-hydrate saturations.
Anisotropic in-Plane Thermal Conductivity Observed in Few-Layer Black Phosphorus
2015-10-16
optoelectronic devices where the anisotropic properties might be used10,21–23. Although electronic and photovoltaic properties have been extensively...investigated, thermal transport studies of BP, especially experimental ones, are still lacking. Recently, the thermoelectric power of bulk BP has been...reported, indicating that BP could be used as an efficient thermoelectric material at around 380K24. Some recent first-principles studies also raised
Polarized optical scattering by inhomogeneities and surface roughness in an anisotropic thin film.
Germer, Thomas A; Sharma, Katelynn A; Brown, Thomas G; Oliver, James B
2017-11-01
We extend the theory of Kassam et al. [J. Opt. Soc. Am. A12, 2009 (1995)JOAOD60740-323210.1364/JOSAA.12.002009] for scattering by oblique columnar structure thin films to include the induced form birefringence and the propagation of radiation in those films. We generalize the 4×4 matrix theory of Berreman [J. Opt. Soc. Am.62, 502 (1972)JOSAAH0030-394110.1364/JOSA.62.000502] to include arbitrary sources in the layer, which are necessary to determine the Green function for the inhomogeneous wave equation. We further extend first-order vector perturbation theory for scattering by roughness in the smooth surface limit, when the layer is anisotropic. Scattering by an inhomogeneous medium is approximated by a distorted Born approximation, where effective medium theory is used to determine the effective properties of the medium, and strong fluctuation theory is used to determine the inhomogeneous sources. In this manner, we develop a model for scattering by inhomogeneous films, with anisotropic correlation functions. The results are compared with Mueller matrix bidirectional scattering distribution function measurements for a glancing-angle deposition (GLAD) film. While the results are applied to the GLAD film example, the development of the theory is general enough that it can guide simulations for scattering in other anisotropic thin films.
The Control of Anisotropic Transport in Manganites by Stripy Domains
NASA Astrophysics Data System (ADS)
Ju, Changcheng; Lu, Xiaomei; Chu, Yinghao
2014-03-01
Epitaxial thin film acts as a significant tool to investigate novel phenomena of complex oxide systems. Extrinsic constraint1 of uniform or certain designed buffer layer strain could be easily implanted to these materials. However, the strain distribution might be quite complicated by involving micro- or nano-lattice distortions which could partially relax the strain and determine the complex phase diagrams of thin film, meanwhile introducing structural and physical inhomogeneities. In this work , we report 71° striped ferroelectric domains created in BFO can also epitaxially lock the perovskite manganites leading to the emerge of ordered structural domain. LSMO/BFO hetero-epitaxial samples are deposited by PLD. The 71° periodic striped domains and coherent growth are demonstrated by PFM and X-ray analysis. Plan-view TEM and X-ray RSM have been used to confirm the epitaxial relationships of the functional layers and IP lattice constant. Both the simulation and structural analysis demonstrate we can create a periodic ordered stripe structural domain in LSMO. And this will leave an anisotropic distribution of structural domain walls which makes it possible to capture the anisotropic tunneling for strong electron-lattice coupling in manganites. Temperature-dependent resistivity measurements reveal a substantial anisotropic resistivities and a remarkable shift of the MI transition between the perpendicular and parallel to the stripe domain directions.
Control of Polarization of Vertical-Cavity Surface - Lasers
NASA Astrophysics Data System (ADS)
Sun, Decai
1995-01-01
To date, most vertical-cavity surface-emitting lasers (VCSELs) have been fabricated from structures grown on GaAs (InP) substrates oriented in the (001) crystallographic axis. For the most part, these devices have exhibited linear, but random polarization states with no definite relationship to the in-plane crystallographic axes. The control of the polarization states of these devices is important for polarization-sensitive applications. Such applications include magneto-optic disk recording and coherent detection in advanced communication systems. In this thesis, a novel approach for controlling the polarization eigen-states of VCSELs is investigated. The approach utilizes anisotropic optical properties found in quantum wells (QW) oriented in directions other than the (001) to stabilize their polarization states. Specifically, the (110) direction is chosen for this work. An analysis of the in-plane optical matrix element connected with the gain coefficient of (In,Ga)As/GaAs QW structures grown on (110) GaAs substrates is conducted. It is found that the in-plane gain distribution is elliptically anisotropic--with a maximum directed along the (110) - (110) crystallographic axis. The design and growth of (In,Ga)As/GaAs QW VCSEL structures is studied in this work. The transition wavelengths of the (001) - and (110) -oriented (In,Ga)As/GaAs QW structures are calculated using a finite QW model. Distributed Bragg reflector mirrors consisting of GaAs/AlAs quarter wave layers are modeled using a characteristic matrix method. Threshold gain, internal and differential quantum efficiencies are analyzed. The growth of III-V compounds on (110) GaAs substrates by molecular beam epitaxy is investigated. High quality materials are successfully grown on the misoriented (110) GaAs substrates tilted by 6^circ toward the (111)B surface. (In,Ga)As/GaAs QW VCSEL structures are grown on (001) and (110) GaAs substrates. (In,Ga)As/GaAs QW VCSELs are fabricated from structures grown on the (001) and (110) surfaces. Experimental characterization shows that the devices fabricated from the (110) surface exhibit stable, well-defined polarization states at room temperature; this is in contrast to the random polarization characteristics observed from the VCSELs fabricated from the (001) surface. This stability is believed to be a consequence of the predicted anisotropic gain distribution on the (110) surface. Of the two orthogonal eigen-polarizations observed, the one with the higher optical intensity is found to be aligned along the (110) - (110) crystallographic axis; this is in agreement with theoretical predictions.
Sainath, Kamalesh; Teixeira, Fernando L; Donderici, Burkay
2014-01-01
We develop a general-purpose formulation, based on two-dimensional spectral integrals, for computing electromagnetic fields produced by arbitrarily oriented dipoles in planar-stratified environments, where each layer may exhibit arbitrary and independent anisotropy in both its (complex) permittivity and permeability tensors. Among the salient features of our formulation are (i) computation of eigenmodes (characteristic plane waves) supported in arbitrarily anisotropic media in a numerically robust fashion, (ii) implementation of an hp-adaptive refinement for the numerical integration to evaluate the radiation and weakly evanescent spectra contributions, and (iii) development of an adaptive extension of an integral convergence acceleration technique to compute the strongly evanescent spectrum contribution. While other semianalytic techniques exist to solve this problem, none have full applicability to media exhibiting arbitrary double anisotropies in each layer, where one must account for the whole range of possible phenomena (e.g., mode coupling at interfaces and nonreciprocal mode propagation). Brute-force numerical methods can tackle this problem but only at a much higher computational cost. The present formulation provides an efficient and robust technique for field computation in arbitrary planar-stratified environments. We demonstrate the formulation for a number of problems related to geophysical exploration.
Geometrically nonlinear analysis of layered composite plates and shells
NASA Technical Reports Server (NTRS)
Chao, W. C.; Reddy, J. N.
1983-01-01
A degenerated three dimensional finite element, based on the incremental total Lagrangian formulation of a three dimensional layered anisotropic medium was developed. Its use in the geometrically nonlinear, static and dynamic, analysis of layered composite plates and shells is demonstrated. A two dimenisonal finite element based on the Sanders shell theory with the von Karman (nonlinear) strains was developed. It is shown that the deflections obtained by the 2D shell element deviate from those obtained by the more accurate 3D element for deep shells. The 3D degenerated element can be used to model general shells that are not necessarily doubly curved. The 3D degenerated element is computationally more demanding than the 2D shell theory element for a given problem. It is found that the 3D element is an efficient element for the analysis of layered composite plates and shells undergoing large displacements and transient motion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oudriss, A.; Le Guernic, Solenne; Wang, Zhaoying
2016-02-15
To study anisotropic hydrogen segregation and diffusion in nickel polycrystalline, Secondary Ion Mass Spectrometry (SIMS) and Electron Back Scattered Diffraction (EBSD) are integrated to investigate hydrogen distribution around grain boundaries. Hydrogen distribution in pre-charged samples were correlated with grain boundary character by integrating high-resolution grain microstructure from EBSD inverse pole figure map and low-resolution hydrogen concentration profile map from SIMS. This multimodal imaging instrumentation shows that grain boundaries in nickel can be categorized into two families based on behavior of hydrogen distribution crossing grain boundary: the first one includes random grain boundaries with fast hydrogen diffusivity, showing a sharp gapmore » for hydrogen concentration profile cross the grain boundaries. The second family are special Σ3n grain boundaries with low hydrogen diffusivity, showing a smooth gradient of hydrogen concentration cross the grain boundary. Heterogeneous hydrogen distributions due to grain boundary family revealed by SIMS/EBSD on mesoscale further validate the recent hydrogen permeation data and anisotropic ab-initio calculations in nanoscale. The results highlight the fact that grain boundaries character impacts hydrogen distribution significantly.« less
Yang, Jian; Zhao, Jingbo; Liao, Donghua; Gregersen, Hans
2006-01-01
Passive biomechanical properties in term of the stress-strain relationship and the shear modulus were studied in separated muscle layer and mucosa-submucosa layer in the oesophagus of normal and STZ (streptozotocin)-induced diabetic rats. The mucosa-submucosa and muscle layers were separated using microsurgery and studied in vitro using a self-developed test machine. Stepwise elongation and inflation plus continuous twist were applied to the samples. A constitutive equation based on a strain energy function was used for the stress-strain analysis. Five material constants were obtained for both layers. The mucosa-submucosa layer was significantly stiffer than the muscle layer in longitudinal, circumferential and circumferential-longitudinal shear direction. The mechanical constants of the oesophagus show that the oesophageal wall was anisotropic, the stiffness in the longitudinal direction was higher than in the circumferential direction in the intact oesophagus (P < 0.001) and in the muscle layer (P < 0.05). Diabetes-induced pronounced increase in the outer perimeter, inner perimeter and lumen area in both the muscle and mucosa-submucosa layer. The growth of the mucosa-submucosa layer (P < 0.001) was more pronounced than the muscle layer (P < 0.05). Furthermore, the circumferential stiffness of the mucosa-submucosa layer increased 28 days after STZ treatment. In conclusion, the oesophagus is a non-homogeneous anisotropic tube. Thus, the mechanical properties differed between layers as well as in different directions. Morphological and biomechanical remodelling is prominent in the diabetic oesophagus.
NASA Astrophysics Data System (ADS)
Roy, C.; Calo, M.; Bodin, T.; Romanowicz, B. A.
2016-12-01
Competing hypotheses for the formation and evolution of continents are highly under debate, including the theory of underplating by hot plumes or accretion by shallow subduction in continental or arc settings. In order to support these hypotheses, documenting structural layering in the cratonic lithosphere becomes especially important. Studies of seismic-wave receiver function data have detected a structural boundary under continental cratons at 100-140 km depths, which is too shallow to be consistent with the lithosphere-asthenosphere boundary, as inferred from seismic tomography and other geophysical studies. This leads to the conclusion that 1) the cratonic lithosphere may be thinner than expected, contradicting tomographic and other geophysical or geochemical inferences, or 2) that the receiver function studies detect a mid-lithospheric discontinuity rather than the LAB. Recent studies (Bodin et al., 2015, Calo et al. 2016) confirmed the presence of a structural boundary under the north American craton at 100-140 km depths by taking advantage of the power of a trans-dimensional Monte Carlo Markov chain (TMCMC). They generated probabilistic 1D radially shear wave velocity profiles for selected stations in North America by jointly inverting 2 different data types (PS Receiver Functions, surface wave dispersion for Love and Rayleigh waves), which sample different volumes of the Earth and have different sensitivities to structure. The resulting 1D profiles include both isotropic and anisotropic discontinuities in the upper mantle (above 350 km depth). Here we extend this approach and include the vp/vs ratio as an unknown in the TMCMC algorithm to avoid artificial layers induced by multiples of the receiver functions. Additionally, we include SKS waveforms in the joint inversion and invert for azimuthal anisotropy to verify if layering in the anisotropic structure of the stable part of the North American continent involves significant changes in the direction of azimuthal anisotropy as suggested by Yuan and Romanowicz (2010). We recently demonstrated the power of this approach in the case of two stations located in different tectonic settings (Bodin et al., 2016. Here we extend this approach to a broader range of settings within the north American continent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yanfei; Larson, Ben C.
There are large classes of materials problems that involve the solutions of stress, displacement, and strain energy of dislocation loops in elastically anisotropic solids, including increasingly detailed investigations of the generation and evolution of irradiation induced defect clusters ranging in sizes from the micro- to meso-scopic length scales. Based on a two-dimensional Fourier transform and Stroh formalism that are ideal for homogeneous and layered anisotropic solids, we have developed robust and computationally efficient methods to calculate the displacement fields for circular and polygonal dislocation loops. Using the homogeneous nature of the Green tensor of order -1, we have shown thatmore » the displacement and stress fields of dislocation loops can be obtained by numerical quadrature of a line integral. In addition, it is shown that the sextuple integrals associated with the strain energy of loops can be represented by the product of a pre-factor containing elastic anisotropy effects and a universal term that is singular and equal to that for elastic isotropic case. Furthermore, we have found that the self-energy pre-factor of prismatic loops is identical to the effective modulus of normal contact, and the pre-factor of shear loops differs from the effective indentation modulus in shear by only a few percent. These results provide a convenient method for examining dislocation reaction energetic and efficient procedures for numerical computation of local displacements and stresses of dislocation loops, both of which play integral roles in quantitative defect analyses within combined experimental–theoretical investigations.« less
Gao, Yanfei; Larson, Ben C.
2015-06-19
There are large classes of materials problems that involve the solutions of stress, displacement, and strain energy of dislocation loops in elastically anisotropic solids, including increasingly detailed investigations of the generation and evolution of irradiation induced defect clusters ranging in sizes from the micro- to meso-scopic length scales. Based on a two-dimensional Fourier transform and Stroh formalism that are ideal for homogeneous and layered anisotropic solids, we have developed robust and computationally efficient methods to calculate the displacement fields for circular and polygonal dislocation loops. Using the homogeneous nature of the Green tensor of order -1, we have shown thatmore » the displacement and stress fields of dislocation loops can be obtained by numerical quadrature of a line integral. In addition, it is shown that the sextuple integrals associated with the strain energy of loops can be represented by the product of a pre-factor containing elastic anisotropy effects and a universal term that is singular and equal to that for elastic isotropic case. Furthermore, we have found that the self-energy pre-factor of prismatic loops is identical to the effective modulus of normal contact, and the pre-factor of shear loops differs from the effective indentation modulus in shear by only a few percent. These results provide a convenient method for examining dislocation reaction energetic and efficient procedures for numerical computation of local displacements and stresses of dislocation loops, both of which play integral roles in quantitative defect analyses within combined experimental–theoretical investigations.« less
Diverse anisotropy of phonon transport in two-dimensional group IV-VI compounds: A comparative study
NASA Astrophysics Data System (ADS)
Qin, Guangzhao; Qin, Zhenzhen; Fang, Wu-Zhang; Zhang, Li-Chuan; Yue, Sheng-Ying; Yan, Qing-Bo; Hu, Ming; Su, Gang
2016-05-01
New classes of two-dimensional (2D) materials beyond graphene, including layered and non-layered, and their heterostructures, are currently attracting increasing interest due to their promising applications in nanoelectronics, optoelectronics and clean energy, where thermal transport is a fundamental physical parameter. In this paper, we systematically investigated the phonon transport properties of the 2D orthorhombic group IV-VI compounds of GeS, GeSe, SnS and SnSe by solving the Boltzmann transport equation (BTE) based on first-principles calculations. Despite their similar puckered (hinge-like) structure along the armchair direction as phosphorene, the four monolayer compounds possess diverse anisotropic properties in many aspects, such as phonon group velocity, Young's modulus and lattice thermal conductivity (κ), etc. Especially, the κ along the zigzag and armchair directions of monolayer GeS shows the strongest anisotropy while monolayer SnS and SnSe show almost isotropy in phonon transport. The origin of the diverse anisotropy is fully studied and the underlying mechanism is discussed in details. With limited size, the κ could be effectively lowered, and the anisotropy could be effectively modulated by nanostructuring, which would extend the applications to nanoscale thermoelectrics and thermal management. Our study offers fundamental understanding of the anisotropic phonon transport properties of 2D materials, and would be of significance for further study, modulation and applications in emerging technologies.
Anisotropic Broadband Photoresponse of Layered Type-II Weyl Semimetal MoTe2.
Lai, Jiawei; Liu, Xin; Ma, Junchao; Wang, Qinsheng; Zhang, Kenan; Ren, Xiao; Liu, Yinan; Gu, Qiangqiang; Zhuo, Xiao; Lu, Wei; Wu, Yang; Li, Yuan; Feng, Ji; Zhou, Shuyun; Chen, Jian-Hao; Sun, Dong
2018-05-01
Photodetectors based on Weyl semimetal promise extreme performance in terms of highly sensitive, broadband and self-powered operation owing to its extraordinary material properties. Layered Type-II Weyl semimetal that break Lorentz invariance can be further integrated with other two-dimensional materials to form van der Waals heterostructures and realize multiple functionalities inheriting the advantages of other two-dimensional materials. Herein, we report the realization of a broadband self-powered photodetector based on Type-II Weyl semimetal T d -MoTe 2 . The prototype metal-MoTe 2 -metal photodetector exhibits a responsivity of 0.40 mA W -1 and specific directivity of 1.07 × 10 8 Jones with 43 μs response time at 532 nm. Broadband responses from 532 nm to 10.6 μm are experimentally tested with a potential detection range extendable to far-infrared and terahertz. Furthermore, we identify the response of the detector is polarization angle sensitive due to the anisotropic response of MoTe 2 . The anisotropy is found to be wavelength dependent, and the degree of anisotropy increases as the excitation wavelength gets closer to the Weyl nodes. In addition, with power and temperature dependent photoresponse measurements, the photocurrent generation mechanisms are investigated. Our results suggest this emerging class of materials can be harnessed for broadband angle sensitive, self-powered photodetection with decent responsivities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electromagnetic characterization of layered biaxial media is a critical step in the design of modern low observable (LO) coatings, and with the...the flexibility they provide for control over magnitude, phase, and polarization of the material systems response to interrogating electromagnetic (EM
Nanorod mediated surface plasmon resonance sensor based on effective medium theory
USDA-ARS?s Scientific Manuscript database
A novel nanorod mediated surface plasmon resonance (SPR) sensor was investigated for enhancing sensitivity of the sensor. The theoretical model containing an anisotropic layer of nanorod was investigated using four-layer Fresnel equations and effective medium theory. The properties of the nanorod me...
NASA Astrophysics Data System (ADS)
da Silva, O. E.; de Siqueira, J. V.; Kern, P. R.; Garcia, W. J. S.; Beck, F.; Rigue, J. N.; Carara, M.
2018-04-01
Exchange bias properties of NiFe/FeMn thin films have been investigated through X-ray diffraction, hysteresis loops, angular measurements of anisotropic magnetoresistance (AMR) and magnetic torque. As first predicted by Meiklejohn and Bean we found a decrease on the bias field as the NiFe layer thickness increases. However such reduction is not as strong as expected and it was attributed to the increase on the number of uncompensed antiferromagnetic spins resulting from the increase on the number of FeMn grains at the interface as the thickness of the NiFe layer is increased. The angular evolution of AMR and the magnetic torque were calculated and compared to the experimental ones using the minimization of the free magnetic energy and finding the magnetization equilibrium angle. The free energy, for each grain of the polycrystalline sample, is composed by the following terms: Zeeman, uniaxial, unidirectional and the rotatable energies. While from the AMR curves we obtain stable anisotropy fields independently on the measuring fields, from the torque curves we obtain increasing values of the uniaxial and rotatable fields, as the measuring field is increased. These results were attributed to the physical origin and sensitivity of the two different techniques. Magnetoresistance is mainly sensitive to the inner portion of the ferromagnetic layer, and the torque brings out information of the whole ferromagnetic layer including the interface of the layers. In this way, we believe that the increase in the uniaxial and rotatable values were due to an increase on the volume of the ferromagnetic layer, near the interfaces, which is made to rotate with the measuring field. Studying the rotational hysteresis by both techniques allows to separately obtain the contributions coming from the inner portion of ferromagnetic layer and from the interface.
Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet.
Bons, Paul D; Jansen, Daniela; Mundel, Felicitas; Bauer, Catherine C; Binder, Tobias; Eisen, Olaf; Jessell, Mark W; Llorens, Maria-Gema; Steinbach, Florian; Steinhage, Daniel; Weikusat, Ilka
2016-04-29
The increasing catalogue of high-quality ice-penetrating radar data provides a unique insight in the internal layering architecture of the Greenland ice sheet. The stratigraphy, an indicator of past deformation, highlights irregularities in ice flow and reveals large perturbations without obvious links to bedrock shape. In this work, to establish a new conceptual model for the formation process, we analysed the radar data at the onset of the Petermann Glacier, North Greenland, and created a three-dimensional model of several distinct stratigraphic layers. We demonstrate that the dominant structures are cylindrical folds sub-parallel to the ice flow. By numerical modelling, we show that these folds can be formed by lateral compression of mechanically anisotropic ice, while a general viscosity contrast between layers would not lead to folding for the same boundary conditions. We conclude that the folds primarily form by converging flow as the mechanically anisotropic ice is channelled towards the glacier.
Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet
NASA Astrophysics Data System (ADS)
Bons, Paul D.; Jansen, Daniela; Mundel, Felicitas; Bauer, Catherine C.; Binder, Tobias; Eisen, Olaf; Jessell, Mark W.; Llorens, Maria-Gema; Steinbach, Florian; Steinhage, Daniel; Weikusat, Ilka
2016-04-01
The increasing catalogue of high-quality ice-penetrating radar data provides a unique insight in the internal layering architecture of the Greenland ice sheet. The stratigraphy, an indicator of past deformation, highlights irregularities in ice flow and reveals large perturbations without obvious links to bedrock shape. In this work, to establish a new conceptual model for the formation process, we analysed the radar data at the onset of the Petermann Glacier, North Greenland, and created a three-dimensional model of several distinct stratigraphic layers. We demonstrate that the dominant structures are cylindrical folds sub-parallel to the ice flow. By numerical modelling, we show that these folds can be formed by lateral compression of mechanically anisotropic ice, while a general viscosity contrast between layers would not lead to folding for the same boundary conditions. We conclude that the folds primarily form by converging flow as the mechanically anisotropic ice is channelled towards the glacier.
Wei, Linlin; Sun, Shuaishuai; Guo, Cong; Li, Zhongwen; Sun, Kai; Liu, Yu; Lu, Wenjian; Sun, Yuping; Tian, Huanfang; Yang, Huaixin; Li, Jianqi
2017-01-01
Anisotropic lattice movements due to the difference between intralayer and interlayer bonding are observed in the layered transition-metal dichalcogenide 1T-TaSeTe following femtosecond laser pulse excitation. Our ultrafast electron diffraction investigations using 4D-transmission electron microscopy (4D-TEM) clearly reveal that the intensity of Bragg reflection spots often changes remarkably due to the dynamic diffraction effects and anisotropic lattice movement. Importantly, the temporal diffracted intensity from a specific crystallographic plane depends on the deviation parameter s, which is commonly used in the theoretical study of diffraction intensity. Herein, we report on lattice thermalization and structural oscillations in layered 1T-TaSeTe, analyzed by dynamic diffraction theory. Ultrafast alterations of satellite spots arising from the charge density wave in the present system are also briefly discussed. PMID:28470025
Self-consistent theory of nanodomain formation on non-polar surfaces of ferroelectrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozovska, Anna N.; Obukhovskii, Vyacheslav; Fomichov, Evhen
2016-04-28
We propose a self-consistent theoretical approach capable of describing the features of the anisotropic nanodomain formation induced by a strongly inhomogeneous electric field of a charged scanning probe microscopy tip on nonpolar cuts of ferroelectrics. We obtained that a threshold field, previously regarded as an isotropic parameter, is an anisotropic function that is specified from the polar properties and lattice pinning anisotropy of a given ferroelectric in a self-consistent way. The proposed method for the calculation of the anisotropic threshold field is not material specific, thus the field should be anisotropic in all ferroelectrics with the spontaneous polarization anisotropy alongmore » the main crystallographic directions. The most evident examples are uniaxial ferroelectrics, layered ferroelectric perovskites, and low-symmetry incommensurate ferroelectrics. Obtained results quantitatively describe the differences at several times in the nanodomain length experimentally observed on X and Y cuts of LiNbO3 and can give insight into the anisotropic dynamics of nanoscale polarization reversal in strongly inhomogeneous electric fields.« less
Li, Meng; Shi, Jialin; Liu, Lianqing; Yu, Peng; Xi, Ning; Wang, Yuechao
2016-01-01
Physical properties of two-dimensional materials, such as graphene, black phosphorus, molybdenum disulfide (MoS 2 ) and tungsten disulfide, exhibit significant dependence on their lattice orientations, especially for zigzag and armchair lattice orientations. Understanding of the atomic probe motion on surfaces with different orientations helps in the study of anisotropic materials. Unfortunately, there is no comprehensive model that can describe the probe motion mechanism. In this paper, we report a tribological study of MoS 2 in zigzag and armchair orientations. We observed a characteristic power spectrum and friction force values. To explain our results, we developed a modified, two-dimensional, stick-slip Tomlinson model that allows simulation of the probe motion on MoS 2 surfaces by combining the motion in the Mo layer and S layer. Our model fits well with the experimental data and provides a theoretical basis for tribological studies of two-dimensional materials.
Time-independent Anisotropic Plastic Behavior by Mechanical Subelement Models
NASA Technical Reports Server (NTRS)
Pian, T. H. H.
1983-01-01
The paper describes a procedure for modelling the anisotropic elastic-plastic behavior of metals in plane stress state by the mechanical sub-layer model. In this model the stress-strain curves along the longitudinal and transverse directions are represented by short smooth segments which are considered as piecewise linear for simplicity. The model is incorporated in a finite element analysis program which is based on the assumed stress hybrid element and the iscoplasticity-theory.
Single-layer nanosheets with exceptionally high and anisotropic hydroxyl ion conductivity
Sun, Pengzhan; Ma, Renzhi; Bai, Xueyin; Wang, Kunlin; Zhu, Hongwei; Sasaki, Takayoshi
2017-01-01
When the dimensionality of layered materials is reduced to the physical limit, an ultimate two-dimensional (2D) anisotropy and/or confinement effect may bring about extraordinary physical and chemical properties. Layered double hydroxides (LDHs), bearing abundant hydroxyl groups covalently bonded within 2D host layers, have been proposed as inorganic anion conductors. However, typical hydroxyl ion conductivities for bulk or lamellar LDHs, generally up to 10−3 S cm−1, are considered not high enough for practical applications. We show that single-layer LDH nanosheets exhibited exceptionally high in-plane conductivities approaching 10−1 S cm−1, which were the highest among anion conductors and comparable to proton conductivities in commercial proton exchange membranes (for example, Nafion). The in-plane conductivities were four to five orders of magnitude higher than the cross-plane or cross-membrane values of restacked LDH nanosheets. This 2D superionic transport characteristic might have great promises in a variety of applications including alkaline fuel cells and water electrolysis. PMID:28439551
Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; Wang, Shibing; Lin, Yu; Zeng, Qiaoshi; Xu, Gang; Liu, Zhenxian; Solanki, G. K.; Patel, K. D.; Cui, Yi; Hwang, Harold Y.; Mao, Wendy L.
2015-01-01
Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe2 up to ∼60 GPa using multiple experimental techniques and ab-initio calculations. MoSe2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSe2 possesses highly tunable transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides. PMID:26088416
Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; ...
2015-06-19
Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe 2 up to ~60 GPa using multiple experimental techniques and ab-initio calculations. MoSe 2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS 2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSemore » 2 possesses highly tunable transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides.« less
Sun, Pengzhan; Sasaki, Takayoshi
2017-01-01
Ion conducting membranes/electrolytes have been employed extensively in some important industrial and biological systems, especially in fuel cells, water electrolyzers, gas separation, sensors and biological selective ion transport, acting as one of the core components and sometimes directly determining the device performance. However, the traditional polymeric proton exchange membranes (PEMs)/anion exchange membranes (AEMs) suffer from highly toxic preparation procedures, poor thermal and chemical stabilities, and unsatisfactory ion conductivities. This has triggered researchers worldwide to explore alternative inorganic building blocks with high ion conductivities and stabilities from the new materials library, hoping to solve the above long-lasting problems. The recent burgeoning research on two-dimensional (2D) materials has unveiled exceptionally high ionic conductivities, which raises the feasibility of fabricating high-performance nanosheet-based ion conductors/membranes. In this perspective, the recent advances in measuring and understanding the exceptionally high and anisotropic H+/OH– ion conductivities of representative 2D materials, e.g. graphene oxide (GO), vermiculite and layered double hydroxide (LDH) nanosheets, are reviewed. In particular, regarding the anisotropic ionic conduction in 2D nanosheets, possible design strategies and technological innovations for fabricating macroscopic nanosheet-based ionic conductors/membranes are proposed for maximizing the high in-plane conduction, which may serve to guide future development of high-performance industrial and biological systems relying on H+/OH– conducting membranes. PMID:29629071
Sun, Pengzhan; Ma, Renzhi; Sasaki, Takayoshi
2018-01-07
Ion conducting membranes/electrolytes have been employed extensively in some important industrial and biological systems, especially in fuel cells, water electrolyzers, gas separation, sensors and biological selective ion transport, acting as one of the core components and sometimes directly determining the device performance. However, the traditional polymeric proton exchange membranes (PEMs)/anion exchange membranes (AEMs) suffer from highly toxic preparation procedures, poor thermal and chemical stabilities, and unsatisfactory ion conductivities. This has triggered researchers worldwide to explore alternative inorganic building blocks with high ion conductivities and stabilities from the new materials library, hoping to solve the above long-lasting problems. The recent burgeoning research on two-dimensional (2D) materials has unveiled exceptionally high ionic conductivities, which raises the feasibility of fabricating high-performance nanosheet-based ion conductors/membranes. In this perspective, the recent advances in measuring and understanding the exceptionally high and anisotropic H + /OH - ion conductivities of representative 2D materials, e.g. graphene oxide (GO), vermiculite and layered double hydroxide (LDH) nanosheets, are reviewed. In particular, regarding the anisotropic ionic conduction in 2D nanosheets, possible design strategies and technological innovations for fabricating macroscopic nanosheet-based ionic conductors/membranes are proposed for maximizing the high in-plane conduction, which may serve to guide future development of high-performance industrial and biological systems relying on H + /OH - conducting membranes.
NASA Astrophysics Data System (ADS)
Farokhnezhad, M.; Esmaeilzadeh, M.; Shakouri, Kh.
2017-11-01
Strained two-dimensional crystals often offer novel physical properties that are usable to improve their electronic performance. Here we show by the theory of elasticity combined with the tight-binding approximation that local strains in silicene can open up new prospects for generating fully polarized spin and valley currents. The trajectory of electrons flowing through locally strained regions obeys the same behavior as light waves propagating in uniaxial anisotropic materials. The refraction angle of electrons at local strain boundaries exhibits a strong dependence on the valley degree of freedom, allowing for valley filtering based on the strain direction. The ability to control the spin polarization direction additionally requires a perpendicular electric field to be involved in combination with the local strain. Further similarities of the problem with optics of anisotropic materials are elucidated and possible applications in spin- and valleytronic nanodevices are discussed.
Elastic Green’s Function in Anisotropic Bimaterials Considering Interfacial Elasticity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juan, Pierre -Alexandre; Dingreville, Remi
Here, the two-dimensional elastic Green’s function is calculated for a general anisotropic elastic bimaterial containing a line dislocation and a concentrated force while accounting for the interfacial structure by means of a generalized interfacial elasticity paradigm. The introduction of the interface elasticity model gives rise to boundary conditions that are effectively equivalent to those of a weakly bounded interface. The equations of elastic equilibrium are solved by complex variable techniques and the method of analytical continuation. The solution is decomposed into the sum of the Green’s function corresponding to the perfectly bonded interface and a perturbation term corresponding to themore » complex coupling nature between the interface structure and a line dislocation/concentrated force. Such construct can be implemented into the boundary integral equations and the boundary element method for analysis of nano-layered structures and epitaxial systems where the interface structure plays an important role.« less
Elastic Green’s Function in Anisotropic Bimaterials Considering Interfacial Elasticity
Juan, Pierre -Alexandre; Dingreville, Remi
2017-09-13
Here, the two-dimensional elastic Green’s function is calculated for a general anisotropic elastic bimaterial containing a line dislocation and a concentrated force while accounting for the interfacial structure by means of a generalized interfacial elasticity paradigm. The introduction of the interface elasticity model gives rise to boundary conditions that are effectively equivalent to those of a weakly bounded interface. The equations of elastic equilibrium are solved by complex variable techniques and the method of analytical continuation. The solution is decomposed into the sum of the Green’s function corresponding to the perfectly bonded interface and a perturbation term corresponding to themore » complex coupling nature between the interface structure and a line dislocation/concentrated force. Such construct can be implemented into the boundary integral equations and the boundary element method for analysis of nano-layered structures and epitaxial systems where the interface structure plays an important role.« less
NASA Astrophysics Data System (ADS)
Park, J. J.
2017-12-01
Sheared Layers in the Continental Crust: Nonlinear and Linearized inversion for Ps receiver functions Jeffrey Park, Yale University The interpretation of seismic receiver functions (RFs) in terms of isotropic and anisotropic layered structure can be complex. The relationship between structure and body-wave scattering is nonlinear. The anisotropy can involve more parameters than the observations can readily constrain. Finally, reflectivity-predicted layer reverberations are often not prominent in data, so that nonlinear waveform inversion can search in vain to match ghost signals. Multiple-taper correlation (MTC) receiver functions have uncertainties in the frequency domain that follow Gaussian statistics [Park and Levin, 2016a], so grid-searches for the best-fitting collections of interfaces can be performed rapidly to minimize weighted misfit variance. Tests for layer-reverberations can be performed in the frequency domain without reflectivity calculations, allowing flexible modelling of weak, but nonzero, reverberations. Park and Levin [2016b] linearized the hybridization of P and S body waves in an anisotropic layer to predict first-order Ps conversion amplitudes at crust and mantle interfaces. In an anisotropic layer, the P wave acquires small SV and SH components. To ensure continuity of displacement and traction at the top and bottom boundaries of the layer, shear waves are generated. Assuming hexagonal symmetry with an arbitrary symmetry axis, theory confirms the empirical stacking trick of phase-shifting transverse RFs by 90 degrees in back-azimuth [Shiomi and Park, 2008; Schulte-Pelkum and Mahan, 2014] to enhance 2-lobed and 4-lobed harmonic variation. Ps scattering is generated by sharp interfaces, so that RFs resemble the first derivative of the model. MTC RFs in the frequency domain can be manipulated to obtain a first-order reconstruction of the layered anisotropy, under the above modeling constraints and neglecting reverberations. Examples from long-running continental stations will be discussed. Park, J., and V. Levin, 2016a. doi:10.1093/gji/ggw291. Park, J., and V. Levin, 2016b. doi:10.1093/gji/ggw323. Schulte-Pelkum, V., and Mahan, K. H., 2014. doi:10.1007/s00024-014-0853-4. Shiomi, K., & Park, J., 2008. doi:10.1029/2007JB005535.
Biometrics encryption combining palmprint with two-layer error correction codes
NASA Astrophysics Data System (ADS)
Li, Hengjian; Qiu, Jian; Dong, Jiwen; Feng, Guang
2017-07-01
To bridge the gap between the fuzziness of biometrics and the exactitude of cryptography, based on combining palmprint with two-layer error correction codes, a novel biometrics encryption method is proposed. Firstly, the randomly generated original keys are encoded by convolutional and cyclic two-layer coding. The first layer uses a convolution code to correct burst errors. The second layer uses cyclic code to correct random errors. Then, the palmprint features are extracted from the palmprint images. Next, they are fused together by XORing operation. The information is stored in a smart card. Finally, the original keys extraction process is the information in the smart card XOR the user's palmprint features and then decoded with convolutional and cyclic two-layer code. The experimental results and security analysis show that it can recover the original keys completely. The proposed method is more secure than a single password factor, and has higher accuracy than a single biometric factor.
Anisotropic metamaterial waveguide driven by a cold and relativistic electron beam
NASA Astrophysics Data System (ADS)
Torabi, Mahmoud; Shokri, Babak
2018-03-01
We study the interaction of a cold and relativistic electron beam with a cylindrical waveguide loaded by an anisotropic and dispersive metamaterial layer. The general dispersion relation for the transverse magnetic (TM) mode, through the linear fluid model and Maxwell equations decomposition method, is derived. The effects of some metamaterial parameters on dispersion relation are presented. A qualitative discussion shows the possibility of monomodal propagation band widening and obtaining more control on dispersion relation behavior. Especially for epsilon negative near zero metamaterials, these effects are considerable. Finally, the anisotropy and metamaterial layer thickness impacts on wave growth rate for different metamaterials are considered. The results demonstrate that we can control both wave growth rate and voltage of saturation peak by metamaterial parameters.
NASA Astrophysics Data System (ADS)
Fu, H. R.; Ma, L.; Tian, N.; You, C. Y.; Wang, K.
2018-05-01
A systematic study of anomalous Hall effect (AHE) was performed in perpendicular magnetic anisotropic Pd/Co2MnSi(tCMS)/MgO/Pd films. The AHE was significantly intensified by inserting MgO layer, which can be ascribed to the enhancement of spin-orbit coupling and interfacial scattering contribution. Moreover, it was found that the Co and Mn ions were reduced at the interface of Co2MnSi/MgO with annealing process. The stable amount of Mn-O bonding was observed at the Co2MnSi/MgO interface after annealing, implying that the proper Mn-O bonding could be favorable for achieving large AHE.
Random walks of colloidal probes in viscoelastic materials
NASA Astrophysics Data System (ADS)
Khan, Manas; Mason, Thomas G.
2014-04-01
To overcome limitations of using a single fixed time step in random walk simulations, such as those that rely on the classic Wiener approach, we have developed an algorithm for exploring random walks based on random temporal steps that are uniformly distributed in logarithmic time. This improvement enables us to generate random-walk trajectories of probe particles that span a highly extended dynamic range in time, thereby facilitating the exploration of probe motion in soft viscoelastic materials. By combining this faster approach with a Maxwell-Voigt model (MVM) of linear viscoelasticity, based on a slowly diffusing harmonically bound Brownian particle, we rapidly create trajectories of spherical probes in soft viscoelastic materials over more than 12 orders of magnitude in time. Appropriate windowing of these trajectories over different time intervals demonstrates that random walk for the MVM is neither self-similar nor self-affine, even if the viscoelastic material is isotropic. We extend this approach to spatially anisotropic viscoelastic materials, using binning to calculate the anisotropic mean square displacements and creep compliances along different orthogonal directions. The elimination of a fixed time step in simulations of random processes, including random walks, opens up interesting possibilities for modeling dynamics and response over a highly extended temporal dynamic range.
Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites.
Guo, Peijun; Stoumpos, Constantinos C; Mao, Lingling; Sadasivam, Sridhar; Ketterson, John B; Darancet, Pierre; Kanatzidis, Mercouri G; Schaller, Richard D
2018-05-22
Two-dimensional Ruddlesden-Popper organic-inorganic hybrid layered perovskites (2D RPs) are solution-grown semiconductors with prospective applications in next-generation optoelectronics. The heat-carrying, low-energy acoustic phonons, which are important for heat management of 2D RP-based devices, have remained unexplored. Here we report on the generation and propagation of coherent longitudinal acoustic phonons along the cross-plane direction of 2D RPs, following separate characterizations of below-bandgap refractive indices. Through experiments on single crystals of systematically varied perovskite layer thickness, we demonstrate significant reduction in both group velocity and propagation length of acoustic phonons in 2D RPs as compared to the three-dimensional methylammonium lead iodide counterpart. As borne out by a minimal coarse-grained model, these vibrational properties arise from a large acoustic impedance mismatch between the alternating layers of perovskite sheets and bulky organic cations. Our results inform on thermal transport in highly impedance-mismatched crystal sub-lattices and provide insights towards design of materials that exhibit highly anisotropic thermal dissipation properties.
NASA Astrophysics Data System (ADS)
Jin, Zhao-Hui; Li, Zhong-Yu; Kasatani, Kazuo; Okamoto, Hiroaki
2006-03-01
A squarylium dye is dissolved in 4-cyano-4'-pentylbiphenyl (5CB) and oriented by sandwiching mixtures between two pieces of rubbed glass plates. The optical absorption spectra of the oriented squarylium dye-5CB layers exhibit high anisotropy. The third-order nonlinear optical responses and susceptibilities χ(3)e of squarylium dye in 5CB are measured with light polarizations parallel and perpendicular to the orientational direction by the resonant femtosecond degenerate four-wave mixing (DFWM) technique. Temporal profiles of the DFWM signal of the oriented squarylium dye-5CB layers with light polarizations parallel and perpendicular to the orientational direction are measured with a time resolution of 0.3 ps (FWHM), and are found to consist of two components, i.e., the coherent instantaneous nonlinear response and slow response due to the formation of excited molecules. A high anisotropic ratio of χ(3)e, 10.8±1.2, is observed for the oriented layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyenis, András; Feldman, Benjamin E.; Randeria, Mallika T.
Layered material structures play a key role in enhancing electron–electron interactions to create correlated metallic phases that can transform into unconventional superconducting states. The quasi-two-dimensional electronic properties of such compounds are often inferred indirectly through examination of bulk properties. Here we use scanning tunneling microscopy to directly probe in cross-section the quasi-two-dimensional electronic states of the heavy fermion superconductor CeCoIn 5. Our measurements reveal the strong confined nature of quasiparticles, anisotropy of tunneling characteristics, and layer-by-layer modulated behavior of the precursor pseudogap gap phase. In the interlayer coupled superconducting state, the orientation of line defects relative to the d-wave ordermore » parameter determines whether in-gap states form due to scattering. Spectroscopic imaging of the anisotropic magnetic vortex cores directly characterizes the short interlayer superconducting coherence length and shows an electronic phase separation near the upper critical in-plane magnetic field, consistent with a Pauli-limited first-order phase transition into a pseudogap phase.« less
M-Split: A Graphical User Interface to Analyze Multilayered Anisotropy from Shear Wave Splitting
NASA Astrophysics Data System (ADS)
Abgarmi, Bizhan; Ozacar, A. Arda
2017-04-01
Shear wave splitting analysis are commonly used to infer deep anisotropic structure. For simple cases, obtained delay times and fast-axis orientations are averaged from reliable results to define anisotropy beneath recording seismic stations. However, splitting parameters show systematic variations with back azimuth in the presence of complex anisotropy and cannot be represented by average time delay and fast axis orientation. Previous researchers had identified anisotropic complexities at different tectonic settings and applied various approaches to model them. Most commonly, such complexities are modeled by using multiple anisotropic layers with priori constraints from geologic data. In this study, a graphical user interface called M-Split is developed to easily process and model multilayered anisotropy with capabilities to properly address the inherited non-uniqueness. M-Split program runs user defined grid searches through the model parameter space for two-layer anisotropy using formulation of Silver and Savage (1994) and creates sensitivity contour plots to locate local maximas and analyze all possible models with parameter tradeoffs. In order to minimize model ambiguity and identify the robust model parameters, various misfit calculation procedures are also developed and embedded to M-Split which can be used depending on the quality of the observations and their back-azimuthal coverage. Case studies carried out to evaluate the reliability of the program using real noisy data and for this purpose stations from two different networks are utilized. First seismic network is the Kandilli Observatory and Earthquake research institute (KOERI) which includes long term running permanent stations and second network comprises seismic stations deployed temporary as part of the "Continental Dynamics-Central Anatolian Tectonics (CD-CAT)" project funded by NSF. It is also worth to note that M-Split is designed as open source program which can be modified by users for additional capabilities or for other applications.
Controlling coupled bending-twisting vibrations of anisotropic composite wing
NASA Astrophysics Data System (ADS)
Ryabov, Victor; Yartsev, Boris
2018-05-01
The paper discusses the possibility to control coupled bending-twisting vibrations of anisotropic composite wing by means of the monoclinic structures in the reinforcement of the plating. Decomposing the potential straining energy and kinetic energy of natural vibration modes into interacting and non-interacting parts, it became possible to introduce the two coefficients that integrally consider the effect of geometry and reinforcement structure upon the dynamic response parameters of the wing. The first of these coefficients describes the elastic coupling of the natural vibration modes, the second coefficient describes the inertial one. The paper describes the numerical studies showing how the orientation of considerably anisotropic CRP layers in the plating affects natural frequencies, loss factors, coefficients of elastic and inertial coupling for several lower tones of natural bending-twisting vibrations of the wing. Besides, for each vibration mode, partial values of the above mentioned dynamic response parameters were determined by means of the relationships for orthotropic structures where instead of "free" shearing modulus in the reinforcement plant, "pure" shearing modulus is used. Joint analysis of the obtained results has shown that each pair of bending-twisting vibration modes has its orientation angle ranges of the reinforcing layers where the inertial coupling caused by asymmetry of the cross-section profile with respect to the main axes of inertia decreases, down to the complete extinction, due to the generation of the elastic coupling in the plating material. These ranges are characterized by the two main features: 1) the difference in the natural frequencies of the investigated pair of bending-twisting vibration modes is the minimum and 2) natural frequencies of bending-twisting vibrations belong to a stretch restricted by corresponding partial natural frequencies of the investigated pair of vibration modes. This result is of practical importance because it enables approximate analysis of real composite wings with complex geometry in the existing commercial software packages.
Magnetotransport study of Dirac fermions in YbMnBi 2 antiferromagnet
Wang, Aifeng; Zaliznyak, I.; Ren, Weijun; ...
2016-10-15
We report quantum transport and Dirac fermions in YbMnBi 2 single crystals. YbMnBi 2 is a layered material with anisotropic conductivity and magnetic order below 290 K. Magnetotransport properties, nonzero Berry phase, and small cyclotron mass indicate the presence of Dirac fermions. Lastly, angular-dependent magnetoresistance indicates a possible quasi-two-dimensional Fermi surface, whereas the deviation from the nontrivial Berry phase expected for Dirac states suggests the contribution of parabolic bands at the Fermi level or spin-orbit coupling.
Seismic Anisotropy Beneath Eastern North America: Results from Multi-Event Inversion
NASA Astrophysics Data System (ADS)
Li, Y.; Levin, V. L.; Chen, X.
2017-12-01
Seismic anisotropy observed from the split core-refracted shear phases reflects upper mantle deformation. To characterize anisotropic signatures beneath eastern North America, we collected observations along a 1300 km long array from James Bay to the Fundy Basin. The averaged splitting parameters of individual sites show uniform fast polarization orientation of 80° and delay times linearly decreasing from 1.0 s in the Appalachians to 0.5 s in the Superior Province. We also see directional variation of fast polarizations at most sites, which is a likely effect of vertical changes in anisotropic properties. For sites with 10 or more observations, we used a multi-event inversion technique to solve for the underlying anisotropic structure. The technique considers the NULL observations from single-event analysis that are excluded from the averaged splitting parameters. For models with a single 100 km thick anisotropic layer with a horizontal fast axis, we find up to 6% of anisotropy in the Appalachian Orogen, equivalent to a splitting delay time of 1.5 s. Anisotropy strength reduces to 1.8% in the Superior Province, equivalent to delay times under 0.5 s. The overall decrease in anisotropic strength is modified by local changes of up to 2%, suggesting small-scale local variations near the surface. Orientations of the fast axes change from 60° in the Appalachian Orogen to 90° in the Superior Province, and are also modulated by local deviations. In the Appalachian Orogen the fast axes are close to the absolute plate motion in a hot-spot reference frame, while those in the Superior Province differ from it by almost 30°. Average values of splitting delays agree well with results of inversions in the Superior Province, and diverge in the Appalachians. Conversely, averaged fast polarizations match inversion results in the Appalachians, and are systematically different in the Superior Province. For an set of sites with recording periods exceeding 5 years, we will test more complicated models of anisotropy, including dipping fast axes and multiple layers. Figure 1. The best fit anisotropic parameters, orientations of fast axes (top) and strength of anisotropy (bottom), assuming a single 100 km thick horizontal layer with a horizontal fast axis. The red line in top represents the absolute plate motion in a hot spot reference frame.
3D-fabrication of tunable and high-density arrays of crystalline silicon nanostructures
NASA Astrophysics Data System (ADS)
Wilbers, J. G. E.; Berenschot, J. W.; Tiggelaar, R. M.; Dogan, T.; Sugimura, K.; van der Wiel, W. G.; Gardeniers, J. G. E.; Tas, N. R.
2018-04-01
In this report, a procedure for the 3D-nanofabrication of ordered, high-density arrays of crystalline silicon nanostructures is described. Two nanolithography methods were utilized for the fabrication of the nanostructure array, viz. displacement Talbot lithography (DTL) and edge lithography (EL). DTL is employed to perform two (orthogonal) resist-patterning steps to pattern a thin Si3N4 layer. The resulting patterned double layer serves as an etch mask for all further etching steps for the fabrication of ordered arrays of silicon nanostructures. The arrays are made by means of anisotropic wet etching of silicon in combination with an isotropic retraction etch step of the etch mask, i.e. EL. The procedure enables fabrication of nanostructures with dimensions below 15 nm and a potential density of 1010 crystals cm-2.
Theoretical study in carrier mobility of two-dimensional materials
NASA Astrophysics Data System (ADS)
Huang, R.
2017-09-01
Recently, the theoretical prediction on carrier mobility of two-dimensional (2D) materials has aroused wild attention. At present, there is still a large gap between the theoretical prediction and the device performance of the semiconductor based on the 2D layer semiconductor materials such as graphene. It is particularly important to theoretically design and screen the high-performance 2D layered semiconductor materials with suitable band gap and high carrier mobility. This paper introduces some 2D materials with fine properties and deduces the formula for mobility of the isotropic materials on the basis of the deformation potential theory and Fermic golden rule under acoustic phonon scattering conditions, and then discusses the carrier mobility of anisotropic materials with Dirac cones. We point out the misconceptions in the existing literature and discuss the correct ones.
NASA Astrophysics Data System (ADS)
Saberi-Pouya, S.; Zarenia, M.; Perali, A.; Vazifehshenas, T.; Peeters, F. M.
2018-05-01
Excitonic superfluidity in double phosphorene monolayers is investigated using the BCS mean-field equations. Highly anisotropic superfluidity is predicted where we found that the maximum superfluid gap is in the Bose-Einstein condensate (BEC) regime along the armchair direction and in the BCS-BEC crossover regime along the zigzag direction. We estimate the highest Kosterlitz-Thouless transition temperature with maximum value up to ˜90 K with onset carrier densities as high as 4 ×1012cm-2 . This transition temperature is significantly larger than what is found in double electron-hole few-layers graphene. Our results can guide experimental research toward the realization of anisotropic condensate states in electron-hole phosphorene monolayers.
WS2 mode-locked ultrafast fiber laser
Mao, Dong; Wang, Yadong; Ma, Chaojie; Han, Lei; Jiang, Biqiang; Gan, Xuetao; Hua, Shijia; Zhang, Wending; Mei, Ting; Zhao, Jianlin
2015-01-01
Graphene-like two dimensional materials, such as WS2 and MoS2, are highly anisotropic layered compounds that have attracted growing interest from basic research to practical applications. Similar with MoS2, few-layer WS2 has remarkable physical properties. Here, we demonstrate for the first time that WS2 nanosheets exhibit ultrafast nonlinear saturable absorption property and high optical damage threshold. Soliton mode-locking operations are achieved separately in an erbium-doped fiber laser using two types of WS2-based saturable absorbers, one of which is fabricated by depositing WS2 nanosheets on a D-shaped fiber, while the other is synthesized by mixing WS2 solution with polyvinyl alcohol, and then evaporating them on a substrate. At the maximum pump power of 600 mW, two saturable absorbers can work stably at mode-locking state without damage, indicating that few-layer WS2 is a promising high-power flexible saturable absorber for ultrafast optics. Numerous applications may benefit from the ultrafast nonlinear features of WS2 nanosheets, such as high-power pulsed laser, materials processing, and frequency comb spectroscopy. PMID:25608729
Unusual Enhancement in Intrinsic Thermal Conductivity of Multilayer Graphene by Tensile Strains
Kuang, Youdi; Lindsay, Lucas R.; Huang, Baoling
2015-01-01
High basal plane thermal conductivity k of multi-layer graphene makes it promising for thermal management applications. Here we examine the effects of tensile strain on thermal transport in this system. Using a first principles Boltzmann-Peierls equation for phonon transport approach, we calculate the room-temperature in-plane lattice k of multi-layer graphene (up to four layers) and graphite under different isotropic tensile strains. The calculated in-plane k of graphite, finite mono-layer graphene and 3-layer graphene agree well with previous experiments. The dimensional transitions of the intrinsic k and the extent of the diffusive transport regime from mono-layer graphene to graphite are presented.more » We find a peak enhancement of intrinsic k for multi-layer graphene and graphite with increasing strain and the largest enhancement amplitude is about 40%. In contrast the calculated intrinsic k with tensile strain decreases for diamond and diverges for graphene, we show that the competition between the decreased mode heat capacities and the increased lifetimes of flexural phonons with increasing strain contribute to this k behavior. Similar k behavior is observed for 2-layer hexagonal boron nitride systems, suggesting that it is an inherent thermal transport property in multi-layer systems assembled of purely two dimensional atomic layers. This study provides insights into engineering k of multi-layer graphene and boron nitride by strain and into the nature of thermal transport in quasi-two-dimensional and highly anisotropic systems.« less
Faraday polarization fluctuations of satellite beacon signals
NASA Technical Reports Server (NTRS)
Lee, M. C.; Klobuchar, J. A.
1988-01-01
The anisotropic effects of random density irregularities in causing Faraday polarization fluctuations of VHF radio signals are examined, taking both rod-like and sheet-like irregularities into consideration. It is found that the variance of Faraday polarization fluctuations depends on the ratio of perpendicular to parallel correlation lengths. The anisotropic effect of rod-like ionospheric irregularities are shown to be most appreciable for longitudinal propagation. The anisotropic effect of sheet-like ionospheric irregularities, however, is not strongly dependent on the radio propagation angle. During transionospheric propagation at large angles with respect to the geomagnetic field, sheet-like irregularities may cause greater Faraday polarization fluctuations than rod-like irregularities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, A.B.; Clothiaux, E.
Because of Earth`s gravitational field, its atmosphere is strongly anisotropic with respect to the vertical; the effect of the Earth`s rotation on synoptic wind patterns also causes a more subtle form of anisotropy in the horizontal plane. The authors survey various approaches to statistically robust anisotropy from a wavelet perspective and present a new one adapted to strongly non-isotropic fields that are sampled on a rectangular grid with a large aspect ratio. This novel technique uses an anisotropic version of Multi-Resolution Analysis (MRA) in image analysis; the authors form a tensor product of the standard dyadic Haar basis, where themore » dividing ratio is {lambda}{sub z} = 2, and a nonstandard triadic counterpart, where the dividing ratio is {lambda}{sub x} = 3. The natural support of the field is therefore 2{sup n} pixels (vertically) by 3{sup n} pixels (horizontally) where n is the number of levels in the MRA. The natural triadic basis includes the French top-hat wavelet which resonates with bumps in the field whereas the Haar wavelet responds to ramps or steps. The complete 2D basis has one scaling function and five wavelets. The resulting anisotropic MRA is designed for application to the liquid water content (LWC) field in boundary-layer clouds, as the prevailing wind advects them by a vertically pointing mm-radar system. Spatial correlations are notoriously long-range in cloud structure and the authors use the wavelet coefficients from the new MRA to characterize these correlations in a multifractal analysis scheme. In the present study, the MRA is used (in synthesis mode) to generate fields that mimic cloud structure quite realistically although only a few parameters are used to control the randomness of the LWC`s wavelet coefficients.« less
Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Marinova, Krastanka G; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Cox, Andrew R; Pelan, Eddie G
2016-07-01
Here, we review the principle and applications of two recently developed methods: the capillary meniscus dynamometry (CMD) for measuring the surface tension of bubbles/drops, and the capillary bridge dynamometry (CBD) for quantifying the bubble/drop adhesion to solid surfaces. Both methods are based on a new data analysis protocol, which allows one to decouple the two components of non-isotropic surface tension. For an axisymmetric non-fluid interface (e.g. bubble or drop covered by a protein adsorption layer with shear elasticity), the CMD determines the two different components of the anisotropic surface tension, σs and σφ, which are acting along the "meridians" and "parallels", and vary throughout the interface. The method uses data for the instantaneous bubble (drop) profile and capillary pressure, but the procedure for data processing is essentially different from that of the conventional drop shape analysis (DSA) method. In the case of bubble or drop pressed against a substrate, which forms a capillary bridge, the CBD method allows one to determine also the capillary-bridge force for both isotropic (fluid) and anisotropic (solidified) adsorption layers. The experiments on bubble (drop) detachment from the substrate show the existence of a maximal pulling force, Fmax, that can be resisted by an adherent fluid particle. Fmax can be used to quantify the strength of adhesion of bubbles and drops to solid surfaces. Its value is determined by a competition of attractive transversal tension and repulsive disjoining pressure forces. The greatest Fmax values have been measured for bubbles adherent to glass substrates in pea-protein solutions. The bubble/wall adhesion is lower in solutions containing the protein HFBII hydrophobin, which could be explained with the effect of sandwiched protein aggregates. The applicability of the CBD method to emulsion systems is illustrated by experiments with soybean-oil drops adherent to hydrophilic and hydrophobic substrates in egg yolk solutions. The results reveal how the interfacial rigidity, as well as the bubble/wall and drop/wall adhesion forces, can be quantified and controlled in relation to optimizing the properties of foams and emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.
correlcalc: Two-point correlation function from redshift surveys
NASA Astrophysics Data System (ADS)
Rohin, Yeluripati
2017-11-01
correlcalc calculates two-point correlation function (2pCF) of galaxies/quasars using redshift surveys. It can be used for any assumed geometry or Cosmology model. Using BallTree algorithms to reduce the computational effort for large datasets, it is a parallelised code suitable for running on clusters as well as personal computers. It takes redshift (z), Right Ascension (RA) and Declination (DEC) data of galaxies and random catalogs as inputs in form of ascii or fits files. If random catalog is not provided, it generates one of desired size based on the input redshift distribution and mangle polygon file (in .ply format) describing the survey geometry. It also calculates different realisations of (3D) anisotropic 2pCF. Optionally it makes healpix maps of the survey providing visualization.
Zachary, Chase E; Jiao, Yang; Torquato, Salvatore
2011-05-01
We extend the results from the first part of this series of two papers by examining hyperuniformity in heterogeneous media composed of impenetrable anisotropic inclusions. Specifically, we consider maximally random jammed (MRJ) packings of hard ellipses and superdisks and show that these systems both possess vanishing infinite-wavelength local-volume-fraction fluctuations and quasi-long-range pair correlations scaling as r(-(d+1)) in d Euclidean dimensions. Our results suggest a strong generalization of a conjecture by Torquato and Stillinger [Phys. Rev. E 68, 041113 (2003)], namely, that all strictly jammed saturated packings of hard particles, including those with size and shape distributions, are hyperuniform with signature quasi-long-range correlations. We show that our arguments concerning the constrained distribution of the void space in MRJ packings directly extend to hard-ellipse and superdisk packings, thereby providing a direct structural explanation for the appearance of hyperuniformity and quasi-long-range correlations in these systems. Additionally, we examine general heterogeneous media with anisotropic inclusions and show unexpectedly that one can decorate a periodic point pattern to obtain a hard-particle system that is not hyperuniform with respect to local-volume-fraction fluctuations. This apparent discrepancy can also be rationalized by appealing to the irregular distribution of the void space arising from the anisotropic shapes of the particles. Our work suggests the intriguing possibility that the MRJ states of hard particles share certain universal features independent of the local properties of the packings, including the packing fraction and average contact number per particle.
Single layer of MX3(M = Ti, Zr; X = S, Se, Te): a new platform for nano-electronics and optics
NASA Astrophysics Data System (ADS)
Jin, Yingdi; Li, Xingxing; Yang, Jinlong
A serial of two dimensional titanium and zirconium trichalcogenides nanosheets MX3 (M=Ti, Zr; X=S, Se, Te) are investigated based on first-principles calculations. The evaluated low cleavage energy indicates that stable two dimensional monolayers can be exfoliated from their bulk crystals in experiment. Electronic studies reveal very rich electronic properties in these monolayers, including metallic TiTe3 and ZrTe3, direct band gap semiconductor TiS3 and indirect band gap semiconductors TiSe3, ZrS3 and ZrSe3. The band gaps of all the semiconductors are between 0.57~1.90 eV, which implies their potential applications in nano-electronics. And the calculated effective masses demonstrate highly anisotropic conduction properties for all the semiconductors. Optically, TiS3 and TiSe3 monolayers exhibit good light absorption in the visible and near-infrared region respectively, indicating their potential applications in optical devices. In particular, the highly anisotropic optical absorption of TiS3 monolayer suggests it could be used in designing nano optical waveguide polarizers.
Electromagnetic analysis of arbitrarily shaped pinched carpets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupont, Guillaume; Guenneau, Sebastien; Enoch, Stefan
2010-09-15
We derive the expressions for the anisotropic heterogeneous tensors of permittivity and permeability associated with two-dimensional and three-dimensional carpets of an arbitrary shape. In the former case, we map a segment onto smooth curves whereas in the latter case we map an arbitrary region of the plane onto smooth surfaces. Importantly, these carpets display no singularity of the permeability and permeability tensor components. Moreover, a reduced set of parameters leads to nonmagnetic two-dimensional carpets in p polarization (i.e., for a magnetic field orthogonal to the plane containing the carpet). Such an arbitrarily shaped carpet is shown to work over amore » finite bandwidth when it is approximated by a checkerboard with 190 homogeneous cells of piecewise constant anisotropic permittivity. We finally perform some finite element computations in the full vector three-dimensional case for a plane wave in normal incidence and a Gaussian beam in oblique incidence. The latter requires perfectly matched layers set in a rotated coordinate axis which exemplifies the role played by geometric transforms in computational electromagnetism.« less
NASA Astrophysics Data System (ADS)
Kuo, B. Y.
2017-12-01
We measured shear wave splitting for the intraslab events in the Middle America and Izu-Bonin subduction zones recorded at Pacific stations to infer the anisotropic structure in the subslab mantle. The receiver-side anisotropy is accounted for by considering both azimuthal anisotropy determined by SKS splitting and radial anisotropy given in global tomographic model, although the latter does not change the overall pattern of subslab anisotropy. By removing the anisotropy effects from both receiver and source sides, the initial polarization directions (p) of the shear waves used were recovered, most of which are in reasonable agreement with that predicted form the CMT solutions. For both subduction zones, the polarization-splitting plots strongly suggest the presence of two layers of anisotropy. To constrain the two-layer model, we perform inversions which minimize the misfit in both the splitting parameters and p. In the MASZ, the best model contains an upper layer with the fast direction in parallel with the absolute plate motion of the Cocos plate and a lower layer 40-60 degree clockwise from the APM. The delay times are 1.5 and 1.9 s respectively. The interference of the double layer produced dts in excess of 3 s at a certain range of p. The SKS splitting were also inverted for a two-layer model, yielding similar splitting characters and the clockwise rotation. We are investigating why this rotation takes place and how this observation is related to the dynamics of the asthenosphere.
Anisotropic Growth of Otavite on Calcite: Implications for Heteroepitaxial Growth Mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riechers, Shawn L.; Kerisit, Sebastien N.
Elucidating how cation intermixing can affect the mechanisms of heteroepitaxial growth in aqueous media has remained a challenging endeavor. Toward this goal, in situ atomic force microscopy was employed to image the heteroepitaxial growth of otavite (CdCO3) at the (10-14) surface of calcite (CaCO3) single crystals in static aqueous conditions. Heteroepitaxial growth proceeded via spreading of three-dimensional (3D) islands and two-dimensional (2D) atomic layers at low and high initial saturation levels, respectively. Experiments were carried out as a function of applied force and imaging mode thus enabling determination of growth mechanisms unaltered by imaging artifacts. This approach revealed the significantmore » anisotropic nature of heteroepitaxial growth on calcite in both growth modes and its dependence on supersaturation, intermixing, and substrate topography. The 3D islands not only grew preferentially along the [42-1] direction relative to the [010] direction, resulting in rod-like surface precipitates, but also showed clear preference for growth from the island end rich in obtuse/obtuse kink sites. Pinning to step edges was observed to often reverse this tendency. In the 2D growth mode, the relative velocities of acute and obtuse steps were observed to switch between the first and second atomic layers. This phenomenon stemmed from the significant Cd-Ca intermixing in the first layer, despite bulk thermodynamics predicting the formation of almost pure otavite. Composition effects were also responsible for the inability of 3D islands to grow on 2D layers in cases where both modes were observed to occur simultaneously. Overall, the AFM images highlighted the effects of intermixing on heteroepitaxial growth, particularly how it can induce thickness-dependent growth mechanisms at the nanoscale.« less
Methods of making wind turbine rotor blades
Livingston, Jamie T.; Burke, Arthur H. E.; Bakhuis, Jan Willem; Van Breugel, Sjef; Billen, Andrew
2008-04-01
A method of manufacturing a root portion of a wind turbine blade includes, in an exemplary embodiment, providing an outer layer of reinforcing fibers including at least two woven mats of reinforcing fibers, providing an inner layer of reinforcing fibers including at least two woven mats of reinforcing fibers, and positioning at least two bands of reinforcing fibers between the inner and outer layers, with each band of reinforcing fibers including at least two woven mats of reinforcing fibers. The method further includes positioning a mat of randomly arranged reinforcing fibers between each pair of adjacent bands of reinforcing fibers, introducing a polymeric resin into the root potion of the wind turbine blade, infusing the resin through the outer layer, the inner layer, each band of reinforcing fibers, and each mat of random reinforcing fibers, and curing the resin to form the root portion of the wind turbine blade.
NASA Astrophysics Data System (ADS)
Abe, Masanori; Nakagawa, Hidenobu; Gomi, Manabu; Nomura, Shoichiro
1982-01-01
The film thickness allowance and the waveguide length in a 3-layer (substrate/film/air) magneto-optical unidirectional TE-TM mode converter which utilizes the intrinsic birefringence in an anisotropic material are calculated at λ0{=}1.55 μm. The film material should be gyrotropic in order to make the waveguide length short, and the film thickness allowance is relaxed by reducing the ratio of the dielectric constant of the film to that of the substrate. When the waveguide is made of an isotropic gyrotropic film of YIG deposited on an anisotropic substrate (which may be gyrotropic or not), the restriction on the film thickness can in practice be removed, but this requires precise control of the dielectric constant of the film and the substrate instead.
NASA Astrophysics Data System (ADS)
Andresen, Juan Carlos; Katzgraber, Helmut G.; Schechter, Moshe
2017-12-01
Random fields disorder Ising ferromagnets by aligning single spins in the direction of the random field in three space dimensions, or by flipping large ferromagnetic domains at dimensions two and below. While the former requires random fields of typical magnitude similar to the interaction strength, the latter Imry-Ma mechanism only requires infinitesimal random fields. Recently, it has been shown that for dilute anisotropic dipolar systems a third mechanism exists, where the ferromagnetic phase is disordered by finite-size glassy domains at a random field of finite magnitude that is considerably smaller than the typical interaction strength. Using large-scale Monte Carlo simulations and zero-temperature numerical approaches, we show that this mechanism applies to disordered ferromagnets with competing short-range ferromagnetic and antiferromagnetic interactions, suggesting its generality in ferromagnetic systems with competing interactions and an underlying spin-glass phase. A finite-size-scaling analysis of the magnetization distribution suggests that the transition might be first order.
Formation and anisotropic magnetoresistance of Co/Pt nano-contacts through aluminum oxide barrier
NASA Astrophysics Data System (ADS)
Al-Mahdawi, Muftah; Sahashi, Masashi
2014-01-01
We report on the observation of anisotropic magnetoresistance (AMR) in vertical asymmetric nano-contacts (NCs) made through AlOx nano-oxide layer (NOL) formed by ion-assisted oxidation method in the film stack of Co/AlOx-NOL/Pt. Analysis of NC formation was based on in situ conductive atomic force microscopy and transmission electron microscopy. Depending on the purity of NCs from Al contamination, we observed up to 29% AMR ratio at room temperature.
Imprint of DESI fiber assignment on the anisotropic power spectrum of emission line galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinol, Lucas; Cahn, Robert N.; Hand, Nick
The Dark Energy Spectroscopic Instrument (DESI), a multiplexed fiber-fed spectrograph, is a Stage-IV ground-based dark energy experiment aiming to measure redshifts for 29 million Emission-Line Galaxies (ELG), 4 million Luminous Red Galaxies (LRG), and 2 million Quasi-Stellar Objects (QSO). The survey design includes a pattern of tiling on the sky, the locations of the fiber positioners in the focal plane of the telescope, and an observation strategy determined by a fiber assignment algorithm that optimizes the allocation of fibers to targets. This strategy allows a given region to be covered on average five times for a five-year survey, with amore » typical variation of about 1.5 about the mean, which imprints a spatially-dependent pattern on the galaxy clustering. We investigate the systematic effects of the fiber assignment coverage on the anisotropic galaxy clustering of ELGs and show that, in the absence of any corrections, it leads to discrepancies of order ten percent on large scales for the power spectrum multipoles. We introduce a method where objects in a random catalog are assigned a coverage, and the mean density is separately computed for each coverage factor. We show that this method reduces, but does not eliminate the effect. We next investigate the angular dependence of the contaminated signal, arguing that it is mostly localized to purely transverse modes. We demonstrate that the cleanest way to remove the contaminating signal is to perform an analysis of the anisotropic power spectrum P ( k ,μ) and remove the lowest μ bin, leaving μ > 0 modes accurate at the few-percent level. Here, μ is the cosine of the angle between the line-of-sight and the direction of k-vector . We also investigate two alternative definitions of the random catalog and show that they are comparable but less effective than the coverage randoms method.« less
Imprint of DESI fiber assignment on the anisotropic power spectrum of emission line galaxies
NASA Astrophysics Data System (ADS)
Pinol, Lucas; Cahn, Robert N.; Hand, Nick; Seljak, Uroš; White, Martin
2017-04-01
The Dark Energy Spectroscopic Instrument (DESI), a multiplexed fiber-fed spectrograph, is a Stage-IV ground-based dark energy experiment aiming to measure redshifts for 29 million Emission-Line Galaxies (ELG), 4 million Luminous Red Galaxies (LRG), and 2 million Quasi-Stellar Objects (QSO). The survey design includes a pattern of tiling on the sky, the locations of the fiber positioners in the focal plane of the telescope, and an observation strategy determined by a fiber assignment algorithm that optimizes the allocation of fibers to targets. This strategy allows a given region to be covered on average five times for a five-year survey, with a typical variation of about 1.5 about the mean, which imprints a spatially-dependent pattern on the galaxy clustering. We investigate the systematic effects of the fiber assignment coverage on the anisotropic galaxy clustering of ELGs and show that, in the absence of any corrections, it leads to discrepancies of order ten percent on large scales for the power spectrum multipoles. We introduce a method where objects in a random catalog are assigned a coverage, and the mean density is separately computed for each coverage factor. We show that this method reduces, but does not eliminate the effect. We next investigate the angular dependence of the contaminated signal, arguing that it is mostly localized to purely transverse modes. We demonstrate that the cleanest way to remove the contaminating signal is to perform an analysis of the anisotropic power spectrum P(k,μ) and remove the lowest μ bin, leaving μ > 0 modes accurate at the few-percent level. Here, μ is the cosine of the angle between the line-of-sight and the direction of vec k. We also investigate two alternative definitions of the random catalog and show that they are comparable but less effective than the coverage randoms method.
Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet
Bons, Paul D.; Jansen, Daniela; Mundel, Felicitas; Bauer, Catherine C.; Binder, Tobias; Eisen, Olaf; Jessell, Mark W.; Llorens, Maria-Gema; Steinbach, Florian; Steinhage, Daniel; Weikusat, Ilka
2016-01-01
The increasing catalogue of high-quality ice-penetrating radar data provides a unique insight in the internal layering architecture of the Greenland ice sheet. The stratigraphy, an indicator of past deformation, highlights irregularities in ice flow and reveals large perturbations without obvious links to bedrock shape. In this work, to establish a new conceptual model for the formation process, we analysed the radar data at the onset of the Petermann Glacier, North Greenland, and created a three-dimensional model of several distinct stratigraphic layers. We demonstrate that the dominant structures are cylindrical folds sub-parallel to the ice flow. By numerical modelling, we show that these folds can be formed by lateral compression of mechanically anisotropic ice, while a general viscosity contrast between layers would not lead to folding for the same boundary conditions. We conclude that the folds primarily form by converging flow as the mechanically anisotropic ice is channelled towards the glacier. PMID:27126274
Fluoride Thin Films: from Exchange Bias to Multferroicity
NASA Astrophysics Data System (ADS)
Johnson, Trent A.
This dissertation concerns research into the growth and characterization fluoride thin films by molecular beam epitaxy. After a discussion of relevant background material and experimental procedures in the first two chapters, we study exchange bias in magnetic multilayers incorporating the uniaxial antiferromagnet FeF2, grown to varying thicknesses, sandwiched between ferromagnetic Co layers with fixed thicknesses of 5 and 20 nm. Several bilayers with only the 20 nm thick Co layer were grown for comparative study. The samples were grown on Al2O3 (112¯0) substrates at room temperature. In-situ RHEED and x-ray diffraction indicated the films were polycrystalline. The films were determined to have low surface and interlayer roughness, as determined by AFM and x-ray reflectivity. After field-cooling to below the Neel temperature of FeF2 in a magnetic field of 1 kOe, magnetic hysteresis loops were measured as a function of temperature. We found that both layers had a negative exchange bias, with the exchange bias of the thinner layer larger than that of the thicker layer. In addition, the coercivity below the blocking temperature TB of the thinner layer was significantly larger than that of the thick layer, even though the coercivity of the two layers was the same for T > TB. The exchange bias effect, manifested by a shift in these hysteresis loops, showed a strong dependence on the thickness of the antiferromagnet. Anisotropic magnetoresistance measurements provided additional insight into the magnetization reversal mechanism within the ferromagnets. The thickness dependent exchange anisotropy of trilayer and bilayer samples is explained by adapting a random field model to the antiferromagnet/ferromagnet interface. Finally, We investigate the temperature dependent growth, as well as the magnetic and ferroelectric properties of thin films of the multiferroic compounds BaMF4, where M = Fe, Co, Ni. The films were grown to thicknesses of 50 or 100 nm on single crystal Al2O3 (0001) substrates. X-ray diffraction showed that this family of films grew epitaxially in the (010) orientation, but were twinned in the plane, with three domain orientations rotated by 120 degrees relative to one another. Measurements of the remanent hysteresis via interdigitated electrodes showed that the compounds M = Co, and Ni were ferroelectric, but no switching behavior was observed in the Fe system at electric fields up to 400 kV/cm. Measurements of the field-cooled and zero-field-cooled magnetic moment confirmed low temperature antiferromagnetic behavior, and found new weak ferromagnetic phases induced by strain.
One-dimensional arrangement of nanoparticles utilizing the V-groove and cage shaped proteins
NASA Astrophysics Data System (ADS)
Ban, Takahiko; Uenuma, Mutsunori; Migita, Shinji; Okamoto, Naofumi; Ishikawa, Yasuaki; Uraoka, Yukiharu; Yamashita, Ichiro; Yamamoto, Shin-ichi
2017-06-01
The one-dimensional arrangement of nanoparticles (NPs) was performed using a V-groove and ferritins as spherical shell proteins. The V-groove was synthesized by lithography and anisotropic etching of a Si substrate. Ferritin has an outer diameter of 12 nm and an inner diameter of 6 nm, and various inorganic substances can be formed into the cavity. In this study, iron oxide, cobalt oxide, and indium oxide cores were used. The surface potential of ferritin can be changed by genetic modification. Particularly, by using Fer8-K98E, NPs could be arranged one-dimensionally onto the bottom of the V-groove. In addition, we succeeded in selectively forming a one-dimensional array of one layer, two layers, and three layers by changing the protein concentration. This experiment is expected to be applicable to various one-dimensional devices.
Crystal and Magnetic Structures in Layered, Transition Metal Dihalides and Trihalides
McGuire, Michael A.
2017-04-27
Materials composed of two dimensional layers bonded to one another through weak van der Waals interactions often exhibit strongly anisotropic behaviors and can be cleaved into very thin specimens and sometimes into monolayer crystals. Interest in such materials is driven by the study of low dimensional physics and the design of functional heterostructures. Binary compounds with the compositions MX 2 and MX 3 where M is a metal cation and X is a halogen anion often form such structures. Magnetism can be incorporated by choosing a transition metal with a partially filled d-shell for M, enabling ferroic responses for enhancedmore » functionality. Here we give a brief overview of binary transition metal dihalides and trihalides, summarizing their crystallographic properties and long-range-ordered magnetic structures, focusing on those materials with layered crystal structures and partially filled d-shells required for combining low dimensionality and cleavability with magnetism.« less
Intrinsic Josephson junction behaviour of the low Tc superconductor (LaSe) 1.14(NbSe 2)
NASA Astrophysics Data System (ADS)
Kačmarčík, J.; Szabó, P.; Samuely, P.; Rodrigo, J. G.; Suderow, H.; Vieira, S.; Lafond, A.; Meerschaut, A.
2008-04-01
Interlayer magnetotransport measurements on the highly anisotropic (LaSe)1.14(NbSe2) superconductor with Tc ∼ 1.2 K have indicated that this layered compound represents a model system of intrinsic Josephson junctions [P. Szabó et al., Phys. Rev. Lett. 86 (2001) 5990]. Scanning tunneling microscopy at room temperature and tunneling spectroscopy measurements at very low temperatures are presented in this work. STM imaging has revealed the presence of two types of surfaces which can be attributed to the appearance of LaSe or NbSe2 layers on the surface. The use of STM tip made of superconducting lead enabled a precise measurement of the temperature dependence of the superconducting energy gap Δ(T) on the NbSe2 layer. Δ(T) obtained from the surface sensitive STS data support the scenario obtained from our previous interlayer - ergo bulk sensitive magnetotransport measurements.
Preparation and transport properties of superconducting layers in the Ca-Sr-Bi-Cu-O system
NASA Astrophysics Data System (ADS)
Klee, M.; Stollman, G. M.; Stotz, S.; de Vries, J. W. C.
1988-08-01
Superconducting layers in the CaSrBiCuO system are prepared by thermal decomposition of metal carboxylates using a spin-coating and a dip-coating method onto ceramic MgO substrates. The samples consist of a tetragonal calcium-strontium-bismuth-cuprate and two bismuth-free calcium-strontium-cuprates. A step in the resistance versus temperature curve is observed which, together with the influence of magnetic fields, is interpreted as typical for a granular superconductor. The analysis shows that the critical current density is determined by domains of the order of some unit cells. The strong dependence of the superconducting transition on the orientation of an applied magnetic field is probably caused by the anisotropic layer structure. The coherence length perpendicular to the c-axis of the material is estimated to be ξab(0) = 4.0 nm and parallel to the c-axis ξc(0) = 0.6 nm.
Multiplexing topologies and time scales: The gains and losses of synchrony
NASA Astrophysics Data System (ADS)
Makovkin, Sergey; Kumar, Anil; Zaikin, Alexey; Jalan, Sarika; Ivanchenko, Mikhail
2017-11-01
Inspired by the recent interest in collective dynamics of biological neural networks immersed in the glial cell medium, we investigate the frequency and phase order, i.e., Kuramoto type of synchronization in a multiplex two-layer network of phase oscillators of different time scales and topologies. One of them has a long-range connectivity, exemplified by the Erdős-Rényi random network, and supports both kinds of synchrony. The other is a locally coupled two-dimensional lattice that can reach frequency synchronization but lacks phase order. Drastically different layer frequencies disentangle intra- and interlayer synchronization. We find that an indirect but sufficiently strong coupling through the regular layer can induce both phase order in the originally nonsynchronized random layer and global order, even when an isolated regular layer does not manifest it in principle. At the same time, the route to global synchronization is complex: an initial onset of (partial) synchrony in the regular layer, when its intra- and interlayer coupling is increased, provokes the loss of synchrony even in the originally synchronized random layer. Ultimately, a developed asynchronous dynamics in both layers is abruptly taken over by the global synchrony of both kinds.
Statistical crossover characterization of the heterotic localized-extended transition.
Ugajin, Ryuichi
2003-07-01
We investigated the spectral statistics of a quantum particle in a superlattice consisting of a disordered layer and a clean layer, possibly accompanied by random magnetic fields. Because a disordered layer has localized states and a clean layer has extended states, our quantum system shows a heterotic phase of an Anderson insulator and a normal metal. As the ratio of the volume of these two layers changes, the spectral statistics change from Poissonian to one of the Gaussian ensembles which characterize quantum chaos. A crossover distribution specified by two parameters is introduced to distinguish the transition from an integrable system to a quantum chaotic system during the heterotic phase from an Anderson transition in which the degree of random potentials is homogenous.
Effect of heat treatment on interface driven magnetic properties of CoFe films
NASA Astrophysics Data System (ADS)
Singh, Akhilesh Kr.; Hsu, Jen-Hwa
2017-06-01
We report systematic studies on non-magnetic Ta underlayer and cap layer driven microstructural and magnetic properties at a wide temperature range for CoFe films. All the films were grown at room temperature and post annealed at different annealing temperatures (TA = 200 °C, 250 °C, 300 °C, 350 °C, 400 °C and 450 °C). The in-plane magnetic hysteresis (M-H) loops of 10 nm thick CoFe single layer films, grown directly on thermally oxidized Si substrate, exhibit anisotropic nature for TA above 250 °C. However, the CoFe (10 nm) films grown on the 5 nm thick Ta underlayer show reduced anisotropy. Moreover, with underlayer and cap layers (2 nm) the anisotropy is disappeared. The in-plane coercivity (HC) shows a strong variation with TA, underlayer and cap layers. HC increases significantly with Ta underlayer and cap layers. The out of plane M-H loops exhibit increase in the remanence magnetization and squareness with both Ta underlayer and cap layers due to transition of in-plane magnetization component to the out of plane direction. The atomic force microscopic observations revealed that grain/particle size and shape depend strongly on TA and Ta layers. Moreover, a large reduction in the surface roughness is observed with the Ta cap layer. The magnetic domain patterns depend on the TA, and Ta layers. However, for Ta/CoFe/Ta films no clear domains were observed for all the TA. Hence, the Ta cap layers not only protect the CoFe magnetic layer against the heat treatment, but also show a smooth surface at a wide temperature range. These results could be discussed on the basis of random anisotropy model, TA, underlayer and cap layers driven microstructure and magnetization orientation of the CoFe films.
Dynamic Negative Compressibility of Few-Layer Graphene, h-BN, and MoS2
NASA Astrophysics Data System (ADS)
Neves, Bernardo; Barboza, Ana Paula; Chacham, Helio; Oliveira, Camilla; Fernandes, Thales; Martins Ferreira, Erlon; Archanjo, Braulio; Batista, Ronaldo; Oliveira, Alan
2013-03-01
We report a novel mechanical response of few-layer graphene, h-BN, and MoS2 to the simultaneous compression and shear by an atomic force microscope (AFM) tip. The response is characterized by the vertical expansion of these two-dimensional (2D) layered materials upon compression. Such effect is proportional to the applied load, leading to vertical strain values (opposite to the applied force) of up to 150%. The effect is null in the absence of shear, increases with tip velocity, and is anisotropic. It also has similar magnitudes in these solid lubricant materials (few-layer graphene, h-BN, and MoS2), but it is absent in single-layer graphene and in few-layer mica and Bi2Se3. We propose a physical mechanism for the effect where the combined compressive and shear stresses from the tip induce dynamical wrinkling on the upper material layers, leading to the observed flake thickening. The new effect (and, therefore, the proposed wrinkling) is reversible in the three materials where it is observed.[2] Financial support from CNPq, Fapemig, Rede Nacional de Pesquisa em Nanotubos de Carbono and INCT-Nano-Carbono
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yan; Sheremetyeva, Natalya; Liang, Liangbo
When layered transition-metal dichalcogenides (TMDs) are scaled down from a three- to a two-dimensional geometry, electronic and structural transitions occur, leading to the emergence of properties not usually found in the bulk. Here, we report a systematic Raman study of exfoliated semi-metallic WTe 2 flakes with thickness ranging from few layers down to a single layer. A dramatic change in the Raman spectra occurs between the monolayer and few-layer WTe 2 as a vibrational mode centered at ~86.9 cm -1 in the monolayer splits into two active modes at 82.9 and 89.6 cm -1 in the bilayer. Davydov splitting ofmore » these two modes is found in the bilayer, as further evidenced by polarized Raman measurements. Strong angular dependence of Raman modes on the WTe 2 film thickness reflects that the existence of directional interlayer interaction, rather than isotropic van der Waals (vdw) coupling, is playing an essential role affecting the phonon modes, especially in anisotropic 2D WTe 2 material. Therefore, the strong evolution of Raman modes with thickness and polarization direction, can not only be a reliable fingerprint for the determination of the thickness and the crystallographic orientation, but can also be an ideal probe for such strong and directional interlayer interaction.« less
Cao, Yan; Sheremetyeva, Natalya; Liang, Liangbo; ...
2017-08-02
When layered transition-metal dichalcogenides (TMDs) are scaled down from a three- to a two-dimensional geometry, electronic and structural transitions occur, leading to the emergence of properties not usually found in the bulk. Here, we report a systematic Raman study of exfoliated semi-metallic WTe 2 flakes with thickness ranging from few layers down to a single layer. A dramatic change in the Raman spectra occurs between the monolayer and few-layer WTe 2 as a vibrational mode centered at ~86.9 cm -1 in the monolayer splits into two active modes at 82.9 and 89.6 cm -1 in the bilayer. Davydov splitting ofmore » these two modes is found in the bilayer, as further evidenced by polarized Raman measurements. Strong angular dependence of Raman modes on the WTe 2 film thickness reflects that the existence of directional interlayer interaction, rather than isotropic van der Waals (vdw) coupling, is playing an essential role affecting the phonon modes, especially in anisotropic 2D WTe 2 material. Therefore, the strong evolution of Raman modes with thickness and polarization direction, can not only be a reliable fingerprint for the determination of the thickness and the crystallographic orientation, but can also be an ideal probe for such strong and directional interlayer interaction.« less
Analysis in temporal regime of dispersive invisible structures designed from transformation optics
NASA Astrophysics Data System (ADS)
Gralak, B.; Arismendi, G.; Avril, B.; Diatta, A.; Guenneau, S.
2016-03-01
A simple invisible structure made of two anisotropic homogeneous layers is analyzed theoretically in temporal regime. The frequency dispersion is introduced and analytic expression of the transient part of the field is derived for large times when the structure is illuminated by a causal excitation. This expression shows that the limiting amplitude principle applies with transient fields decaying as the power -3 /4 of the time. The quality of the cloak is then reduced at short times and remains preserved at large times. The one-dimensional theoretical analysis is supplemented with full-wave numerical simulations in two-dimensional situations which confirm the effect of dispersion.
Electron-hole asymmetry, Dirac fermions, and quantum magnetoresistance in BaMnBi 2
Li, Lijun; Wang, Kefeng; Graf, D.; ...
2016-03-28
Here, we report two-dimensional quantum transport and Dirac fermions in BaMnBi 2 single crystals. BaMnBi 2 is a layered bad metal with highly anisotropic conductivity and magnetic order below 290 K. Magnetotransport properties, nonzero Berry phase, small cyclotron mass, and the first-principles band structure calculations indicate the presence of Dirac fermions in Bi square nets. Quantum oscillations in the Hall channel suggest the presence of both electron and hole pockets, whereas Dirac and parabolic states coexist at the Fermi level.
Microwave scattering and emission from a half-space anisotropic random medium
NASA Astrophysics Data System (ADS)
Mudaliar, Saba; Lee, Jay Kyoon
1990-12-01
This paper is a sequel to an earlier paper (Lee and Mudaliar, 1988) where the backscattering coefficients of a half-space anisotropic random medium were obtained. Here the bistatic scattering coefficients are calculated by solving the modified radiative transfer equations under a first-order approximation. The effects of multiple scattering on the results are observed. Emissivities are calculated and compared with those obtained using the Born approximation (single scattering). Several interesting properties of the model are brought to notice using numerical examples. Finally, as an application, the theory is used to interpret the passive remote sensing data of multiyear sea ice in the microwave frequency range. A quite close agreement between theoretical prediction and the measured data is found.
NASA Astrophysics Data System (ADS)
Ivankina, T. I.; Zel, I. Yu.; Lokajicek, T.; Kern, H.; Lobanov, K. V.; Zharikov, A. V.
2017-08-01
In this paper we present experimental and theoretical studies on a highly anisotropic layered rock sample characterized by alternating layers of biotite and muscovite (retrogressed from sillimanite) and plagioclase and quartz, respectively. We applied two different experimental methods to determine seismic anisotropy at pressures up to 400 MPa: (1) measurement of P- and S-wave phase velocities on a cube in three foliation-related orthogonal directions and (2) measurement of P-wave group velocities on a sphere in 132 directions The combination of the spatial distribution of P-wave velocities on the sphere (converted to phase velocities) with S-wave velocities of three orthogonal structural directions on the cube made it possible to calculate the bulk elastic moduli of the anisotropic rock sample. On the basis of the crystallographic preferred orientations (CPOs) of major minerals obtained by time-of-flight neutron diffraction, effective media modeling was performed using different inclusion methods and averaging procedures. The implementation of a nonlinear approximation of the P-wave velocity-pressure relation was applied to estimate the mineral matrix properties and the orientation distribution of microcracks. Comparison of theoretical calculations of elastic properties of the mineral matrix with those derived from the nonlinear approximation showed discrepancies in elastic moduli and P-wave velocities of about 10%. The observed discrepancies between the effective media modeling and ultrasonic velocity data are a consequence of the inhomogeneous structure of the sample and inability to perform long-wave approximation. Furthermore, small differences between elastic moduli predicted by the different theoretical models, including specific fabric characteristics such as crystallographic texture, grain shape and layering were observed. It is shown that the bulk elastic anisotropy of the sample is basically controlled by the CPO of biotite and muscovite and their volume proportions in the layers dominated by phyllosilicate minerals.
Ahadian, Samad; Ramón-Azcón, Javier; Estili, Mehdi; Liang, Xiaobin; Ostrovidov, Serge; Shiku, Hitoshi; Ramalingam, Murugan; Nakajima, Ken; Sakka, Yoshio; Bae, Hojae; Matsue, Tomokazu; Khademhosseini, Ali
2014-03-19
Biological scaffolds with tunable electrical and mechanical properties are of great interest in many different fields, such as regenerative medicine, biorobotics, and biosensing. In this study, dielectrophoresis (DEP) was used to vertically align carbon nanotubes (CNTs) within methacrylated gelatin (GelMA) hydrogels in a robust, simple, and rapid manner. GelMA-aligned CNT hydrogels showed anisotropic electrical conductivity and superior mechanical properties compared with pristine GelMA hydrogels and GelMA hydrogels containing randomly distributed CNTs. Skeletal muscle cells grown on vertically aligned CNTs in GelMA hydrogels yielded a higher number of functional myofibers than cells that were cultured on hydrogels with randomly distributed CNTs and horizontally aligned CNTs, as confirmed by the expression of myogenic genes and proteins. In addition, the myogenic gene and protein expression increased more profoundly after applying electrical stimulation along the direction of the aligned CNTs due to the anisotropic conductivity of the hybrid GelMA-vertically aligned CNT hydrogels. We believe that platform could attract great attention in other biomedical applications, such as biosensing, bioelectronics, and creating functional biomedical devices.
Ahadian, Samad; Ramón-Azcón, Javier; Estili, Mehdi; Liang, Xiaobin; Ostrovidov, Serge; Shiku, Hitoshi; Ramalingam, Murugan; Nakajima, Ken; Sakka, Yoshio; Bae, Hojae; Matsue, Tomokazu; Khademhosseini, Ali
2014-01-01
Biological scaffolds with tunable electrical and mechanical properties are of great interest in many different fields, such as regenerative medicine, biorobotics, and biosensing. In this study, dielectrophoresis (DEP) was used to vertically align carbon nanotubes (CNTs) within methacrylated gelatin (GelMA) hydrogels in a robust, simple, and rapid manner. GelMA-aligned CNT hydrogels showed anisotropic electrical conductivity and superior mechanical properties compared with pristine GelMA hydrogels and GelMA hydrogels containing randomly distributed CNTs. Skeletal muscle cells grown on vertically aligned CNTs in GelMA hydrogels yielded a higher number of functional myofibers than cells that were cultured on hydrogels with randomly distributed CNTs and horizontally aligned CNTs, as confirmed by the expression of myogenic genes and proteins. In addition, the myogenic gene and protein expression increased more profoundly after applying electrical stimulation along the direction of the aligned CNTs due to the anisotropic conductivity of the hybrid GelMA-vertically aligned CNT hydrogels. We believe that platform could attract great attention in other biomedical applications, such as biosensing, bioelectronics, and creating functional biomedical devices. PMID:24642903
NASA Astrophysics Data System (ADS)
Ahadian, Samad; Ramón-Azcón, Javier; Estili, Mehdi; Liang, Xiaobin; Ostrovidov, Serge; Shiku, Hitoshi; Ramalingam, Murugan; Nakajima, Ken; Sakka, Yoshio; Bae, Hojae; Matsue, Tomokazu; Khademhosseini, Ali
2014-03-01
Biological scaffolds with tunable electrical and mechanical properties are of great interest in many different fields, such as regenerative medicine, biorobotics, and biosensing. In this study, dielectrophoresis (DEP) was used to vertically align carbon nanotubes (CNTs) within methacrylated gelatin (GelMA) hydrogels in a robust, simple, and rapid manner. GelMA-aligned CNT hydrogels showed anisotropic electrical conductivity and superior mechanical properties compared with pristine GelMA hydrogels and GelMA hydrogels containing randomly distributed CNTs. Skeletal muscle cells grown on vertically aligned CNTs in GelMA hydrogels yielded a higher number of functional myofibers than cells that were cultured on hydrogels with randomly distributed CNTs and horizontally aligned CNTs, as confirmed by the expression of myogenic genes and proteins. In addition, the myogenic gene and protein expression increased more profoundly after applying electrical stimulation along the direction of the aligned CNTs due to the anisotropic conductivity of the hybrid GelMA-vertically aligned CNT hydrogels. We believe that platform could attract great attention in other biomedical applications, such as biosensing, bioelectronics, and creating functional biomedical devices.
Li, Meng; Shi, Jialin; Liu, Lianqing; Yu, Peng; Xi, Ning; Wang, Yuechao
2016-01-01
Abstract Physical properties of two-dimensional materials, such as graphene, black phosphorus, molybdenum disulfide (MoS2) and tungsten disulfide, exhibit significant dependence on their lattice orientations, especially for zigzag and armchair lattice orientations. Understanding of the atomic probe motion on surfaces with different orientations helps in the study of anisotropic materials. Unfortunately, there is no comprehensive model that can describe the probe motion mechanism. In this paper, we report a tribological study of MoS2 in zigzag and armchair orientations. We observed a characteristic power spectrum and friction force values. To explain our results, we developed a modified, two-dimensional, stick-slip Tomlinson model that allows simulation of the probe motion on MoS2 surfaces by combining the motion in the Mo layer and S layer. Our model fits well with the experimental data and provides a theoretical basis for tribological studies of two-dimensional materials. PMID:27877869
Critical thickness investigation of magnetic properties in exchange-coupled bilayers
NASA Astrophysics Data System (ADS)
Rodríguez-Suárez, R. L.; Vilela-Leão, L. H.; Bueno, T.; Oliveira, A. B.; de Almeida, J. R. L.; Landeros, P.; Rezende, S. M.; Azevedo, A.
2011-06-01
We present a systematic investigation of the magnetic properties of two series of polycrystalline ferromagnetic-antiferromagnetic bilayers (FM-AF) of Ni81Fe19(10nm)/Ir20Mn80(tAF) grown by dc magnetron sputtering. One series was grown at an oblique angle of 50° and the other one was grown at 0°. Ferromagnetic resonance (FMR) was used to measure the exchange bias field HE, the rotatable anisotropy field HRA, and the FMR linewidth ΔH as a function of the antiferromagnetic layer thickness tAF. Three relaxation channels due to isotropic Gilbert damping, anisotropic two-magnon scattering, and mosaicity effects are simultaneously distinguished through the angular dependence of the FMR linewidth. In the regime of small IrMn layer thicknesses, not enough to establish the exchange bias anisotropy, the FMR linewidth shows a sharp peak due to the contribution of the two-magnon scattering mechanism. The results presented here are of general importance for understanding the dynamics of magnetization in the FM-AF structures.
Geometric phase and o -mode blueshift in a chiral anisotropic medium inside a Fabry-Pérot cavity
NASA Astrophysics Data System (ADS)
Timofeev, Ivan V.; Gunyakov, Vladimir A.; Sutormin, Vitaly S.; Myslivets, Sergey A.; Arkhipkin, Vasily G.; Vetrov, Stepan Ya.; Lee, Wei; Zyryanov, Victor Ya.
2015-11-01
Anomalous spectral shift of transmission peaks is observed in a Fabry-Pérot cavity filled with a chiral anisotropic medium. The effective refractive index value resides out of the interval between the ordinary and the extraordinary refractive indices. The spectral shift is explained by contribution of a geometric phase. The problem is solved analytically using the approximate Jones matrix method, numerically using the accurate Berreman method, and geometrically using the generalized Mauguin-Poincaré rolling cone method. The o -mode blueshift is measured for a 4-methoxybenzylidene-4 '-n -butylaniline twisted-nematic layer inside the Fabry-Pérot cavity. The twist is electrically induced due to the homeoplanar-twisted configuration transition in an ionic-surfactant-doped liquid crystal layer. Experimental evidence confirms the validity of the theoretical model.
NASA Astrophysics Data System (ADS)
Kundin, Julia; Ajmal Choudhary, Muhammad
2017-07-01
In this article, we present the recent advances in the development of the anisotropic phase-field crystal (APFC) model. These advances are important in basic researches for multiferroic and thermoelectric materials with anisotropic crystal lattices and in thin-film applications. We start by providing a general description of the model derived in our previous studies based on the crystal symmetry and the microscopic dynamical density functional theory for anisotropic interactions and show that there exist only two possible degrees of freedom for the anisotropic lattices which are described by two independent parameters. New findings concerning the applications of the APFC model for the estimation of the elastic modules of anisotropic systems including sheared and stretched lattices as well as for the investigation of the heterogeneous thin film growth are described. The simulation results demonstrate the strong dependency of the misfit dislocation formation during the film growth on the anisotropy and reveal the asymmetric behavior in the cases of positive and negative misfits. We also present the development of the amplitude representation for the full APFC model of two orientation variants and show the relationship between the wave vectors and the base angles of the anisotropic lattices.
Layering, interface and edge effects in multi-layered composite medium
NASA Technical Reports Server (NTRS)
Datta, S. K.; Shah, A. H.; Karunesena, W.
1990-01-01
Guided waves in a cross-ply laminated plate are studied. Because of the complexity of the exact dispersion equation that governs the wave propagation in a multi-layered fiber-reinforced plate, a stiffness method that can be applied to any number of layers is presented. It is shown that, for a sufficiently large number of layers, the plate can be modeled as a homogeneous anisotropic plate. Also studied is the reflection of guided waves from the edge of a multilayered plate. These results are quite different than in the case of a single homogeneous plate.
Optical losses in p-type layers of GaN ridge waveguides in the IR region
NASA Astrophysics Data System (ADS)
Westreich, Ohad; Katz, Moti; Atar, Gil; Paltiel, Yossi; Sicron, Noam
2017-07-01
Optical losses in c-plane (0001) GaN ridge waveguides, containing Mg-doped layers, were measured at 1064 nm, using the Fabry-Perot method. The losses increase linearly with the modal content of the p-layer, indicating that the absorption in these waveguides is dominated by p-layer absorption. The p-layer absorption is strongly anisotropic with E⊥c losses 4 times higher than E∥c. The absorption is temperature independent between 10 °C and 60 °C, supporting the possibility that it is related to Mg-bound holes.
Xu, Fei; Matsumoto, Kazuhiko; Hagiwara, Rika
2012-08-23
The effects of the HF composition, n, in 1-dodecyl-3-methylimidazolium fluorohydrogenate salts (C(12)MIm(FH)(n)F, n = 1.0-2.3) on their physicochemical and structural properties have been investigated using infrared spectroscopy, thermal analysis, polarized optical microscopy, X-ray diffraction, and anisotropic ionic conductivity measurements. The phase diagram of C(12)MIm(FH)(n)F (n vs transition temperature) suggests that C(12)MIm(FH)(n)F is a mixed crystal system that has a boundary around n = 1.9. For all compositions, a liquid crystalline mesophase with a smectic A interdigitated bilayer structure is observed. The temperature range of the mesophase decreases with increasing n value (from 61.8 °C for C(12)MIm(FH)(1.0)F to 37.0 °C for C(12)MIm(FH)(2.3)F). The layer spacing of the smectic structure decreases with increasing n value or increasing temperature. Two structural types with different layer spacings are observed in the crystalline phase (type I, 1.0 ≤ n ≤ 1.9, and type II, 1.9 ≤ n ≤ 2.3). Ionic conductivities parallel and perpendicular to the smectic layers (σ(||) and σ([perpendicular])) increase with increasing n value, whereas the anisotropy of the ionic conductivities (σ(||)/σ([perpendicular])) is independent of the n value, since the thickness of the insulating sheet formed by the dodecyl group remains nearly unchanged.
Charge-transport anisotropy in black phosphorus: critical dependence on the number of layers.
Banerjee, Swastika; Pati, Swapan K
2016-06-28
Phosphorene is a promising candidate for modern electronics because of the anisotropy associated with high electron-hole mobility. Additionally, superior mechanical flexibility allows the strain-engineering of various properties including the transport of charge carriers in phosphorene. In this work, we have shown the criticality of the number of layers to dictate the transport properties of black phosphorus. Trilayer black phosphorus (TBP) has been proposed as an excellent anisotropic material, based on the transport parameters using Boltzmann transport formalisms coupled with density functional theory. The mobilities of both the electron and the hole are found to be higher along the zigzag direction (∼10(4) cm(2) V(-1) s(-1) at 300 K) compared to the armchair direction (∼10(2) cm(2) V(-1) s(-1)), resulting in the intrinsic directional anisotropy. Application of strain leads to additional electron-hole anisotropy with 10(3) fold higher mobility for the electron compared to the hole. Critical strain for maximum anisotropic response has also been determined. Whether the transport anisotropy is due to the spatial or charge-carrier has been determined through analyses of the scattering process of electrons and holes, and their recombination as well as relaxation dynamics. In this context, we have derived two descriptors (S and F(k)), which are general enough for any 2D or quasi-2D systems. Information on the scattering involving purely the carrier states also helps to understand the layer-dependent photoluminescence and electron (hole) relaxation in black phosphorus. Finally, we justify trilayer black phosphorus (TBP) as the material of interest with excellent transport properties.
NASA Astrophysics Data System (ADS)
Wei, Tongbo; Duan, Ruifei; Wang, Junxi; Li, Jinmin; Huo, Ziqiang; Yang, Jiankun; Zeng, Yiping
2008-05-01
Thick nonpolar (1010) GaN layers were grown on m-plane sapphire substrates by hydride vapor phase epitaxy (HVPE) using magnetron sputtered ZnO buffers, while semipolar (1013) GaN layers were obtained by the conventional two-step growth method using the same substrate. The in-plane anisotropic structural characteristics and stress distribution of the epilayers were revealed by high resolution X-ray diffraction and polarized Raman scattering measurements. Atomic force microscopy (AFM) images revealed that the striated surface morphologies correlated with the basal plane stacking faults for both (1010) and (1013) GaN films. The m-plane GaN surface showed many triangular-shaped pits aligning uniformly with the tips pointing to the c-axis after etching in boiled KOH, whereas the oblique hillocks appeared on the semipolar epilayers. In addition, the dominant emission at 3.42 eV in m-plane GaN films displayed a red shift with respect to that in semipolar epilayers, maybe owing to the different strain states present in the two epitaxial layers.
Anisotropic Negative Differential Resistance in Monolayer Black Phosphorus
NASA Astrophysics Data System (ADS)
Zhang, Wanting; Kang, Peng; Chen, Huahui
2018-01-01
The tremendous potential application in emerging two-dimensional layered materials such as black phosphorus (BP) has attracted great attention as nanoscale devices. In this paper, the effect of anisotropic negative differential resistance (NDR) in monolayer black phosphorus field-effect transistors (FETs) is reported by the first-principles computational study based on the non-equilibrium Green’s function approach combined with density functional theory. The transport properties including current-voltage (I-V) relation and transmission spectrum of monolayer BP are investigated at different gate voltages (Vg). Further studies indicate that NDR occurs at a specific gate voltage in the armchair direction rather than in the zigzag direction. The decrease of current in I-V characteristics can be understood from the generation of non-conducting states region moving towards the Fermi level resulting in a reduction of the integration within corresponding energy range in the transmission spectrum. Our results offer useful guidance for designing FETs and other potential applications in nanoelectronic devices based on BP.
Magnetic preferential orientation of metal oxide superconducting materials
Capone, D.W.; Dunlap, B.D.; Veal, B.W.
1990-07-17
A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) exhibits superconducting properties and is capable of conducting very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the conduction of high current densities. The highly anisotropic diamagnetic susceptibility of the polycrystalline metal oxide material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state. 4 figs.
Scaling of Guide-Field Magnetic Reconnection using Anisotropic Fluid Closure
NASA Astrophysics Data System (ADS)
Ohia, O.; Egedal, J.; Lukin, V. S.; Daughton, W.; Le, A.
2012-10-01
Collisionless magnetic reconnection, a process linked to solar flares, coronal mass ejections, and magnetic substorms, has been widely studied through fluid models and fully kinetic simulations. While fluid models often reproduce the fast reconnection rate of fully kinetic simulations, significant differences are observed in the structure of the reconnection regions [1]. However, guide-field fluid simulations implementing new equations of state that accurately account for the anisotropic electron pressure [2] reproduce the detailed reconnection region observed in kinetic simulations [3]. Implementing this two-fluid simulation using the HiFi framework [4], we study the force balance of the electron layers in guide-field reconnection and derive scaling laws for their characteristics.[1ex] [1] Daughton W et al., Phys. Plasmas 13, 072101 (2006).[0ex] [2] Le A et al., Phys. Rev. Lett. 102, 085001 (2009). [0ex] [3] Ohia O, et al., Phys. Rev. Lett. In Press (2012).[0ex] [4] Lukin VS, Linton MG, Nonlinear Proc. Geoph. 18, 871 (2011)
Magnetic preferential orientation of metal oxide superconducting materials
Capone, Donald W.; Dunlap, Bobby D.; Veal, Boyd W.
1990-01-01
A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0
Anisotropic charge density wave in layered 1 T - TiS e 2
Qiao, Qiao; Zhou, Songsong; Tao, Jing; ...
2017-10-04
We present a three-dimensional study on the anisotropy of the charge density wave (CDW) in 1T-TiSe 2, by means of in situ atomically resolved electron microscopy at cryogenic temperatures in both reciprocal and real spaces. Using coherent nanoelectron diffraction, we observed short-range coherence of the in-plane CDW component while the long-range coherence of out-of-plane CDW component remains intact. An in-plane CDW coherence length of ~10 nm and an out-of-plane CDW coherence length of 17.5 nm, as a lower bound, were determined. The electron modulation was observed using electron energy-loss spectroscopy and verified by an orbital-projected density of states. Our integratedmore » approach reveals anisotropic CDW domains at the nanoscale, and illustrates electron modulation-induced symmetry breaking of a two-dimensional material in three dimensions, offering an opportunity to study the effect of reduced dimensionality in strongly correlated systems.« less
Pu, Juan; Komvopoulos, Kyriakos
2014-06-01
Bilayer fibrous membranes of poly(l-lactic acid) (PLLA) were fabricated by electrospinning, using a parallel-disk mandrel configuration that resulted in the sequential deposition of a layer with fibers aligned across the two parallel disks and a layer with randomly oriented fibers, both layers deposited in a single process step. Membrane structure and fiber alignment were characterized by scanning electron microscopy and two-dimensional fast Fourier transform. Because of the intricacies of the generated electric field, bilayer membranes exhibited higher porosity than single-layer membranes consisting of randomly oriented fibers fabricated with a solid-drum collector. However, despite their higher porosity, bilayer membranes demonstrated generally higher elastic modulus, yield strength and toughness than single-layer membranes with random fibers. Bilayer membrane deformation at relatively high strain rates comprised multiple abrupt microfracture events characterized by discontinuous fiber breakage. Bilayer membrane elongation yielded excessive necking of the layer with random fibers and remarkable fiber stretching (on the order of 400%) in the layer with fibers aligned in the stress direction. In addition, fibers in both layers exhibited multiple localized necking, attributed to the nonuniform distribution of crystalline phases in the fibrillar structure. The high membrane porosity, good mechanical properties, and good biocompatibility and biodegradability of PLLA (demonstrated in previous studies) make the present bilayer membranes good scaffold candidates for a wide range of tissue engineering applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Šljivančanin, Željko; Belić, Milivoj
2017-09-01
Preparation of single-atom-thick layers of ordinary metals has been a challenging task since their closely packed atoms lack layered structure with highly anisotropic bonding. Using computational modeling based on density functional theory we showed that graphene/MoS2 heterostructures can be used as suitable templates to grow stable two-dimensional (2D) clusters, as well as extended monoatomic layers of metals with nonlayered structure in the bulk. Considering gold and lithium as two metals with markedly different properties, we found that Li intercalants strengthen coupling between graphene (G) and MoS2, mainly due to electrostatic attraction of 2D materials with positively charged Li atoms. However, intercalation with large Au atoms gives rise to a significant increase in the distance between G and MoS2 and thus, weakens their interaction. In addition to strong preference for 2D growth, we demonstrated that Au intercalants weakly interact with both G and MoS2, and hence G /MoS2 vertical heterostructures could be a promising framework to prepare gold 2D structures with electronic properties closely resembling those of the hypothetical free-standing hexagonal gold monolayer.
NASA Astrophysics Data System (ADS)
Thomas, R. N.; Ebigbo, A.; Paluszny, A.; Zimmerman, R. W.
2016-12-01
The macroscopic permeability of 3D anisotropic geomechanically-generated fractured rock masses is investigated. The explicitly computed permeabilities are compared to the predictions of classical inclusion-based effective medium theories, and to the permeability of networks of randomly oriented and stochastically generated fractures. Stochastically generated fracture networks lack features that arise from fracture interaction, such as non-planarity, and termination of fractures upon intersection. Recent discrete fracture network studies include heuristic rules that introduce these features to some extent. In this work, fractures grow and extend under tension from a finite set of initial flaws. The finite element method is used to compute displacements, and modal stress intensity factors are computed around each fracture tip using the interaction integral accumulated over a set of virtual discs. Fracture apertures emerge as a result of simulations that honour the constraints of stress equilibrium and mass conservation. The macroscopic permeabilities are explicitly calculated by solving the local cubic law in the fractures, on an element-by-element basis, coupled to Darcy's law in the matrix. The permeabilities are then compared to the estimates given by the symmetric and asymmetric versions of the self-consistent approximation, which, for randomly fractured volumes, were previously demonstrated to be most accurate of the inclusion-based effective medium methods (Ebigbo et al., Transport in Porous Media, 2016). The permeabilities of several dozen geomechanical networks are computed as a function of density and in situ stresses. For anisotropic networks, we find that the asymmetric and symmetric self-consistent methods overestimate the effective permeability in the direction of the dominant fracture set. Effective permeabilities that are more strongly dependent on the connectivity of two or more fracture sets are more accurately captured by the effective medium models.
Differential 3D Mueller-matrix mapping of optically anisotropic depolarizing biological layers
NASA Astrophysics Data System (ADS)
Ushenko, O. G.; Grytsyuk, M.; Ushenko, V. O.; Bodnar, G. B.; Vanchulyak, O.; Meglinskiy, I.
2018-01-01
The paper consists of two parts. The first part is devoted to the short theoretical basics of the method of differential Mueller-matrix description of properties of partially depolarizing layers. It was provided the experimentally measured maps of differential matrix of the 2nd order of polycrystalline structure of the histological section of rectum wall tissue. It was defined the values of statistical moments of the1st-4th orders, which characterize the distribution of matrix elements. In the second part of the paper it was provided the data of statistic analysis of birefringence and dichroism of the histological sections of connecting component of vagina wall tissue (normal and with prolapse). It were defined the objective criteria of differential diagnostics of pathologies of vagina wall.
The origin of uniaxial negative thermal expansion in layered perovskites
NASA Astrophysics Data System (ADS)
Ablitt, Chris; Craddock, Sarah; Senn, Mark S.; Mostofi, Arash A.; Bristowe, Nicholas C.
2017-10-01
Why is it that ABO3 perovskites generally do not exhibit negative thermal expansion (NTE) over a wide temperature range, whereas layered perovskites of the same chemical family often do? It is generally accepted that there are two key ingredients that determine the extent of NTE: the presence of soft phonon modes that drive contraction (have negative Grüneisen parameters); and anisotropic elastic compliance that predisposes the material to the deformations required for NTE along a specific axis. This difference in thermal expansion properties is surprising since both ABO3 and layered perovskites often possess these ingredients in equal measure in their high-symmetry phases. Using first principles calculations and symmetry analysis, we show that in layered perovskites there is a significant enhancement of elastic anisotropy due to symmetry breaking that results from the combined effect of layering and condensed rotations of oxygen octahedra. This feature, unique to layered perovskites of certain symmetry, is what allows uniaxial NTE to persist over a large temperature range. This fundamental insight means that symmetry and the elastic tensor can be used as descriptors in high-throughput screening and to direct materials design.
Ferromagnetic GaAs structures with single Mn delta-layer fabricated using laser deposition.
Danilov, Yuri A; Vikhrova, Olga V; Kudrin, Alexey V; Zvonkov, Boris N
2012-06-01
The new technique combining metal-organic chemical vapor epitaxy with laser ablation of solid targets was used for fabrication of ferromagnetic GaAs structures with single Mn delta-doped layer. The structures demonstrated anomalous Hall effect, planar Hall effect, negative and anisotropic magnetoresistance in temperature range of 10-35 K. In GaAs structures with only single Mn delta-layer (without additional 2D hole gas channel or quantum well) ferromagnetism was observed for the first time.
Recursive recovery of Markov transition probabilities from boundary value data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patch, Sarah Kathyrn
1994-04-01
In an effort to mathematically describe the anisotropic diffusion of infrared radiation in biological tissue Gruenbaum posed an anisotropic diffusion boundary value problem in 1989. In order to accommodate anisotropy, he discretized the temporal as well as the spatial domain. The probabilistic interpretation of the diffusion equation is retained; radiation is assumed to travel according to a random walk (of sorts). In this random walk the probabilities with which photons change direction depend upon their previous as well as present location. The forward problem gives boundary value data as a function of the Markov transition probabilities. The inverse problem requiresmore » finding the transition probabilities from boundary value data. Problems in the plane are studied carefully in this thesis. Consistency conditions amongst the data are derived. These conditions have two effects: they prohibit inversion of the forward map but permit smoothing of noisy data. Next, a recursive algorithm which yields a family of solutions to the inverse problem is detailed. This algorithm takes advantage of all independent data and generates a system of highly nonlinear algebraic equations. Pluecker-Grassmann relations are instrumental in simplifying the equations. The algorithm is used to solve the 4 x 4 problem. Finally, the smallest nontrivial problem in three dimensions, the 2 x 2 x 2 problem, is solved.« less
NASA Astrophysics Data System (ADS)
Shiomi, K.; Takeda, T.; Sekiguchi, S.
2012-12-01
By the recent dense GPS observation, the high strain rate zone (HSRZ) crossing the central Japan was discovered. In the HSRZ, E-W compressive stress field is observed, and large earthquakes with M>6 are frequently occurred. In this study, we try to reveal depth-dependent anisotropic feature in this region by using teleseismic receiver functions (RFs) and S-wave splitting information. As a target, we select NIED Hi-net stations N.TGWH and N.TSTH, which are located inside and outside of the HSRZ respectively. For RF analysis, we choose M>5.5 teleseismic events from October 2000 to November 2011. Low-pass filters with fc = 1 and 2 Hz are applied to estimate RFs. In the radial RFs, we find clear positive phase arrivals at 4 to 4.5 s in delay time for both stations. Since this time delay corresponds to 35 km-depth velocity discontinuity existence, these phases may be the converted phases generated at the Moho discontinuity. Seeing the back-azimuth paste-ups of the transverse RFs, we can find polarity changes of later phases at 4 to 4.5 s in delay time at the N.TSTH station. This polarity change occurs for direction of N0E (north), N180E (south), and N270E (west). Although we have no data in N90E (east) direction, this feature implies that anisotropic rocks may exist around the Moho. In order to check this feature, we consider 6-layered subsurface model and compare synthetic RFs with the observation. The first three layers are for thick sediments and upper crust including a dipping velocity interface. The fourth, fifth and sixth layer corresponds to the mid crust, lower crust and uppermost mantle, respectively. The best model infers that the mid- and lower-crust beneath the N.TSTH station should have strong anisotropy whose fast axis directs to the N-S, though the fast axis in the uppermost mantle seems to show E-W direction. Moreover, to explain the observation, the symmetric axes in the lower crust and the uppermost mantle should be dipping about 20 degrees. To check anisotropic feature of this station, we also apply S-wave splitting analysis to the local events. In order to avoid contaminations of scattered phases, we select seismic waveforms with incident angle less than 35 degrees. We select good S/N records and apply 2-8 Hz butter-worth type band-pass filter to the waveforms. Then, we estimate the leading S wave polarization direction (LSPD) and delay time of each event. At the N.TSTH station, we can select crustal earthquakes (< 30 km in depth) and the deep earthquakes (> 90 km) which occur along the subducting Pacific slab. For deeper events, LSPD shows two possibilities: ENE-WSW or NNW-SSE. On the other hand, only for shallow events, LSPD indicates NS. This result is consistent with the feature of RFs. We can conclude that the crustal anisotropic feature beneath the station N.TSTH corresponds to the lineament on the ground surface, not to the E-W compressive stress field. The LSPD in the uppermost mantle reflects to the lattice-preferred orientation of anisotropic minerals beneath this station.
Studies of anisotropic in-plane aligned a-axis oriented YBa(2)Cu(3)O(7-x) thin films
NASA Astrophysics Data System (ADS)
Trajanovic, Zoran
1997-12-01
Due to their layered planar structure, cuprate oxide superconductors possess remarkable anisotropic properties which may be related to their high transition temperatures. In-plane aligned a-axis YBa2Cu3O7 (YBCO) films are good candidates for such anisotropic studies. Furthermore, the full advantage of favorable material characteristics can be then utilized in applications such as vertical SNS junctions with the leads along the b-direction of YBCO and other novel junction configurations. High quality, smooth, in-plane aligned films are obtained on (100) LaSrGaO4. Form x-ray data, the films show complete b- and c-axes separation for the measured a-axis orientation. The anisotropic resistivity ratio (ρ c/ρ b), measured along the two crystallographic axes of single films gives ρ c/ρ b of ≈20 near the transition, with T cs near 90 K. In such films the grain boundary effects can be decoupled from the intrinsic anisotropic properties of YBCO. From oxygen annealing studies it was estimated that the CuO chains supply about 60% of the carriers. From J c measurements it is determined that the orientation of magnetic field with respect to the crystallographic film axes is the primary factor governing the J c values. The angular dependence of J c on the applied magnetic field is compared against various theoretical models showing the best agreement with the modified Ginzburg-Landau's anisotropic mass model (at T ≈ T c) and Tinkham's thin film model (at T < T c). By utilizing the Co-dopant, the coupling between CuO2 planes and the resulting enhancement of the intrinsic anisotropy of YBCO can be studied. Deposition and cooling conditions are shown to be the primary factor that influence the quality of dopant incorporation and the resulting oxygen ordering within the YBCO lattice. Various complex structures and devices utilizing in-plane aligned, a-axis films are presented. Other materials exhibiting in-plane alignment and a-axis growth are described. Optional substrates for achieving such films are also discussed.
A Shear Deformable Shell Element for Laminated Composites
NASA Technical Reports Server (NTRS)
Chao, W. C.; Reddy, J. N.
1984-01-01
A three-dimensional element based on the total Lagrangian description of the motion of a layered anisotropic composite medium is developed, validated, and used to analyze layered composite shells. The element contains the following features: geometric nonlinearity, dynamic (transient) behavior, and arbitrary lamination scheme and lamina properties. Numerical results of nonlinear bending, natural vibration, and transient response are presented to illustrate the capabilities of the element.
Polarized photoluminescence of nc-Si–SiO{sub x} nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michailovska, E. V.; Indutnyi, I. Z.; Shepeliavyi, P. E.
2016-01-15
The effect of photoluminescence polarization memory in nc-Si–SiO{sub x} light-emitting structures containing Si nanoparticles (nc-Si) in an oxide matrix is for the first time studied. The polarization properties of continuous and porous nanostructures passivated in HF vapors (or solutions) are studied. It is established that the polarization memory effect is manifested only after treatment of the structures in HF. The effect is also accompanied by a shift of the photoluminescence peak to shorter wavelengths and by a substantial increase in the photoluminescence intensity. It is found that, in anisotropic nc-Si–SiO{sub x} samples produced by oblique deposition in vacuum, the degreemore » of linear photoluminescence polarization in the sample plane exhibits a noticeable orientation dependence and correlates with the orientation of SiO{sub x} nanocolumns forming the structure of the porous layer. These effects are attributed to the transformation of symmetrically shaped Si nanoparticles into asymmetric elongated nc-Si particles upon etching in HF. In continuous layers, nc-Si particles are oriented randomly, whereas in porous structures, their preferential orientation coincides with the orientation of oxide nanocolumns.« less
Hyperuniformity and its generalizations.
Torquato, Salvatore
2016-08-01
Disordered many-particle hyperuniform systems are exotic amorphous states of matter that lie between crystal and liquid: They are like perfect crystals in the way they suppress large-scale density fluctuations and yet are like liquids or glasses in that they are statistically isotropic with no Bragg peaks. These exotic states of matter play a vital role in a number of problems across the physical, mathematical as well as biological sciences and, because they are endowed with novel physical properties, have technological importance. Given the fundamental as well as practical importance of disordered hyperuniform systems elucidated thus far, it is natural to explore the generalizations of the hyperuniformity notion and its consequences. In this paper, we substantially broaden the hyperuniformity concept along four different directions. This includes generalizations to treat fluctuations in the interfacial area (one of the Minkowski functionals) in heterogeneous media and surface-area driven evolving microstructures, random scalar fields, divergence-free random vector fields, and statistically anisotropic many-particle systems and two-phase media. In all cases, the relevant mathematical underpinnings are formulated and illustrative calculations are provided. Interfacial-area fluctuations play a major role in characterizing the microstructure of two-phase systems (e.g., fluid-saturated porous media), physical properties that intimately depend on the geometry of the interface, and evolving two-phase microstructures that depend on interfacial energies (e.g., spinodal decomposition). In the instances of random vector fields and statistically anisotropic structures, we show that the standard definition of hyperuniformity must be generalized such that it accounts for the dependence of the relevant spectral functions on the direction in which the origin in Fourier space is approached (nonanalyticities at the origin). Using this analysis, we place some well-known energy spectra from the theory of isotropic turbulence in the context of this generalization of hyperuniformity. Among other results, we show that there exist many-particle ground-state configurations in which directional hyperuniformity imparts exotic anisotropic physical properties (e.g., elastic, optical, and acoustic characteristics) to these states of matter. Such tunability could have technological relevance for manipulating light and sound waves in ways heretofore not thought possible. We show that disordered many-particle systems that respond to external fields (e.g., magnetic and electric fields) are a natural class of materials to look for directional hyperuniformity. The generalizations of hyperuniformity introduced here provide theoreticians and experimentalists new avenues to understand a very broad range of phenomena across a variety of fields through the hyperuniformity "lens."
Hyperuniformity and its generalizations
NASA Astrophysics Data System (ADS)
Torquato, Salvatore
2016-08-01
Disordered many-particle hyperuniform systems are exotic amorphous states of matter that lie between crystal and liquid: They are like perfect crystals in the way they suppress large-scale density fluctuations and yet are like liquids or glasses in that they are statistically isotropic with no Bragg peaks. These exotic states of matter play a vital role in a number of problems across the physical, mathematical as well as biological sciences and, because they are endowed with novel physical properties, have technological importance. Given the fundamental as well as practical importance of disordered hyperuniform systems elucidated thus far, it is natural to explore the generalizations of the hyperuniformity notion and its consequences. In this paper, we substantially broaden the hyperuniformity concept along four different directions. This includes generalizations to treat fluctuations in the interfacial area (one of the Minkowski functionals) in heterogeneous media and surface-area driven evolving microstructures, random scalar fields, divergence-free random vector fields, and statistically anisotropic many-particle systems and two-phase media. In all cases, the relevant mathematical underpinnings are formulated and illustrative calculations are provided. Interfacial-area fluctuations play a major role in characterizing the microstructure of two-phase systems (e.g., fluid-saturated porous media), physical properties that intimately depend on the geometry of the interface, and evolving two-phase microstructures that depend on interfacial energies (e.g., spinodal decomposition). In the instances of random vector fields and statistically anisotropic structures, we show that the standard definition of hyperuniformity must be generalized such that it accounts for the dependence of the relevant spectral functions on the direction in which the origin in Fourier space is approached (nonanalyticities at the origin). Using this analysis, we place some well-known energy spectra from the theory of isotropic turbulence in the context of this generalization of hyperuniformity. Among other results, we show that there exist many-particle ground-state configurations in which directional hyperuniformity imparts exotic anisotropic physical properties (e.g., elastic, optical, and acoustic characteristics) to these states of matter. Such tunability could have technological relevance for manipulating light and sound waves in ways heretofore not thought possible. We show that disordered many-particle systems that respond to external fields (e.g., magnetic and electric fields) are a natural class of materials to look for directional hyperuniformity. The generalizations of hyperuniformity introduced here provide theoreticians and experimentalists new avenues to understand a very broad range of phenomena across a variety of fields through the hyperuniformity "lens."
NASA Astrophysics Data System (ADS)
Bai, Chao-Ying; Huang, Guo-Jiao; Li, Xiao-Ling; Zhou, Bing; Greenhalgh, Stewart
2013-11-01
To overcome the deficiency of some current grid-/cell-based ray tracing algorithms, which are only able to handle first arrivals or primary reflections (or conversions) in anisotropic media, we have extended the functionality of the multistage irregular shortest-path method to 2-D/3-D tilted transversely isotropic (TTI) media. The new approach is able to track multiple transmitted/reflected/converted arrivals composed of any kind of combinations of transmissions, reflections and mode conversions. The basic principle is that the seven parameters (five elastic parameters plus two polar angles defining the tilt of the symmetry axis) of the TTI media are sampled at primary nodes, and the group velocity values at secondary nodes are obtained by tri-linear interpolation of the primary nodes across each cell, from which the group velocities of the three wave modes (qP, qSV and qSH) are calculated. Finally, we conduct grid-/cell-based wave front expansion to trace multiple transmitted/reflected/converted arrivals from one region to the next. The results of calculations in uniform anisotropic media indicate that the numerical results agree with the analytical solutions except in directions of SV-wave triplications, at which only the lowest velocity value is selected at the singularity points by the multistage irregular shortest-path anisotropic ray tracing method. This verifies the accuracy of the methodology. Several simulation results show that the new method is able to efficiently and accurately approximate situations involving continuous velocity variations and undulating discontinuities, and that it is suitable for any combination of multiple transmitted/reflected/converted arrival tracking in TTI media of arbitrary strength and tilt. Crosshole synthetic traveltime tomographic tests have been performed, which highlight the importance of using such code when the medium is distinctly anisotropic.
NASA Astrophysics Data System (ADS)
Wenzlau, F.; Altmann, J. B.; Müller, T. M.
2010-07-01
Heterogeneous porous media such as hydrocarbon reservoir rocks are effectively described as anisotropic viscoelastic solids. They show characteristic velocity dispersion and attenuation of seismic waves within a broad frequency band, and an explanation for this observation is the mechanism of wave-induced pore fluid flow. Various theoretical models quantify dispersion and attenuation of normal incident compressional waves in finely layered porous media. Similar models of shear wave attenuation are not known, nor do general theories exist to predict wave-induced fluid flow effects in media with a more complex distribution of medium heterogeneities. By using finite element simulations of poroelastic relaxation, the total frequency-dependent complex stiffness tensor can be computed for a porous medium with arbitrary internal heterogeneity. From the stiffness tensor, velocity dispersion and frequency-dependent attenuation are derived for compressional and shear waves as a function of the angle of incidence. We apply our approach to the case of layered media and to that of an ellipsoidal poroelastic inclusion. In the case of the ellipsoidal inclusion, compressional and shear wave modes show significant attenuation, and the characteristic frequency dependence of the effect is governed by the spatiotemporal scale of the pore fluid pressure relaxation. In our anisotropic examples, the angle dependence of the attenuation is stronger than that of the velocity dispersion. It becomes clear that the spatial attenuation patterns show specific characteristics of wave-induced fluid flow, implying that anisotropic attenuation measurements may contribute to the inversion of fluid transport properties in heterogeneous porous media.
NASA Astrophysics Data System (ADS)
Ushenko, Yu. A.
2015-06-01
The results of a new physical study of polarization manifestations of laser autofluorescence of optically anisotropic structures in human female reproductive tissues are presented. A Mueller-matrix model of describing the complex anisotropy (linear and circular birefringence, linear and circular dichroism) of such biological layers is proposed. Interrelations between mechanisms of optical anisotropy and polarization manifestations of laser autofluorescence of histological layers of the uterine cervix tissue in different spectral regions are determined. Magnitudes and variation ranges of statistical moments from the first to the fourth order describing the distributions of azimuthally stable elements of Mueller matrices of autofluorescence in human female reproductive tissues in different physiological states are found. The informative value of the proposed method is determined and the differentiation of histological biopsy sections of benign (dysplasia) and malignant (adenocarcinoma) uterine cervix tumors is implemented for the first time.
NASA Astrophysics Data System (ADS)
Ushenko, A. G.; Boychuk, T. M.; Mincer, O. P.; Bodnar, G. B.; Kushnerick, L. Ya.; Savich, V. O.
2013-12-01
The bases of method of the space-frequency of the filtering phase allocation of blood plasma pellicle are given here. The model of the optical-anisotropic properties of the albumen chain of blood plasma pellicle with regard to linear and circular double refraction of albumen and globulin crystals is proposed. Comparative researches of the effectiveness of methods of the direct polarized mapping of the azimuth images of blood plasma pcllicle layers and space-frequency polarimetry of the laser radiation transformed by divaricate and holelikc optical-anisotropic chains of blood plasma pellicles were held. On the basis of the complex statistic, correlative and fracta.1 analysis of the filtered frcquencydimensional polarizing azimuth maps of the blood plasma pellicles structure a set of criteria of the change of the double refraction of the albumen chains caused by the prostate cancer was traced and proved.
Magnetic Control of MOF Crystal Orientation and Alignment.
Cheng, Fei; Marshall, Ellis S; Young, Adam J; Robinson, Peter J; Bouillard, Jean-Sebastien G; Adawi, Ali M; Vermeulen, Nicolaas A; Farha, Omar K; Reithofer, Michael R; Chin, Jia Min
2017-11-07
Most metal-organic frameworks (MOFs) possess anisotropic properties, the full exploitation of which necessitates a general strategy for the controllable orientation of such MOF crystals. Current methods largely rely upon layer-by-layer MOF epitaxy or tuning of MOF crystal growth on appropriate substrates, yielding MOFs with fixed crystal orientations. Here, the dynamic magnetic alignment of different MOF crystals (NH 2 -MIL-53(Al) and NU-1000) is shown. The MOFs were magnetized by electrostatic adsorption of iron oxide nanoparticles, dispersed in curable polymer resins (Formlabs 1+ clear resin/ Sylgard 184), magnetically oriented, and fixed by resin curing. The importance of crystal orientation on MOF functionality was demonstrated whereby magnetically aligned NU-1000/Sylgard 184 composite was excited with linearly polarized 405 nm light, affording an anisotropic fluorescence response dependent on the polarization angle of the excitation beam relative to NU-1000 crystal orientation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ballistic Anisotropic Magnetoresistance of Single-Atom Contacts.
Schöneberg, J; Otte, F; Néel, N; Weismann, A; Mokrousov, Y; Kröger, J; Berndt, R; Heinze, S
2016-02-10
Anisotropic magnetoresistance, that is, the sensitivity of the electrical resistance of magnetic materials on the magnetization direction, is expected to be strongly enhanced in ballistic transport through nanoscale junctions. However, unambiguous experimental evidence of this effect is difficult to achieve. We utilize single-atom junctions to measure this ballistic anisotropic magnetoresistance (AMR). Single Co and Ir atoms are deposited on domains and domain walls of ferromagnetic Fe layers on W(110) to control their magnetization directions. They are contacted with nonmagnetic tips in a low-temperature scanning tunneling microscope to measure the junction conductances. Large changes of the magnetoresistance occur from the tunneling to the ballistic regime due to the competition of localized and delocalized d-orbitals, which are differently affected by spin-orbit coupling. This work shows that engineering the AMR at the single atom level is feasible.
Electrical impedance tomography in anisotropic media with known eigenvectors
NASA Astrophysics Data System (ADS)
Abascal, Juan-Felipe P. J.; Lionheart, William R. B.; Arridge, Simon R.; Schweiger, Martin; Atkinson, David; Holder, David S.
2011-06-01
Electrical impedance tomography is an imaging method, with which volumetric images of conductivity are produced by injecting electrical current and measuring boundary voltages. It has the potential to become a portable non-invasive medical imaging technique. Until now, most implementations have neglected anisotropy even though human tissues like bone, muscle and brain white matter are markedly anisotropic. The recovery of an anisotropic conductivity tensor is uniquely determined by boundary measurements only up to a diffeomorphism that fixes the boundary. Nevertheless, uniqueness can be restored by providing information about the diffeomorphism. There are uniqueness results for two constraints: one eigenvalue and a multiple scalar of a general tensor. A useable constraint for medical applications is when the eigenvectors of the underlying tissue are known, which can be approximated from MRI or estimated from DT-MRI, although the eigenvalues are unknown. However there is no known theoretical result guaranteeing uniqueness for this constraint. In fact, only a few previous inversion studies have attempted to recover one or more eigenvalues assuming certain symmetries while ignoring nonuniqueness. In this work, the aim was to undertake a numerical study of the feasibility of the recovery of a piecewise linear finite element conductivity tensor in anisotropic media with known eigenvectors from the complete boundary data. The work suggests that uniqueness holds for this constraint, in addition to proposing a methodology for the incorporation of this prior for general conductivity tensors. This was carried out by performing an analysis of the Jacobian rank and by reconstructing four conductivity distributions: two diagonal tensors whose eigenvalues were linear and sinusoidal functions, and two general tensors whose eigenvectors resembled physiological tissue, one with eigenvectors spherically orientated like a spherical layered structure, and a sample of DT-MRI data of brain white matter. The Jacobian with respect to three eigenvalues was full-rank and it was possible to recover three eigenvalues for the four simulated distributions. This encourages further theoretical study of the uniqueness for this constraint and supports the use of this as a relevant usable method for medical applications.
Optimized hardware framework of MLP with random hidden layers for classification applications
NASA Astrophysics Data System (ADS)
Zyarah, Abdullah M.; Ramesh, Abhishek; Merkel, Cory; Kudithipudi, Dhireesha
2016-05-01
Multilayer Perceptron Networks with random hidden layers are very efficient at automatic feature extraction and offer significant performance improvements in the training process. They essentially employ large collection of fixed, random features, and are expedient for form-factor constrained embedded platforms. In this work, a reconfigurable and scalable architecture is proposed for the MLPs with random hidden layers with a customized building block based on CORDIC algorithm. The proposed architecture also exploits fixed point operations for area efficiency. The design is validated for classification on two different datasets. An accuracy of ~ 90% for MNIST dataset and 75% for gender classification on LFW dataset was observed. The hardware has 299 speed-up over the corresponding software realization.
NASA Astrophysics Data System (ADS)
Berkov, D. V.; Gorn, N. L.
2018-06-01
In this paper we present a simple and effective numerical method which allows a fast Fourier transformation-based evaluation of stress generated by dislocations with arbitrary directions and Burgers vectors if the (site-dependent) dislocation density is known. Our method allows the evaluation of the dislocation stress using a rectangular grid with shape-anisotropic discretization cells without employing higher multipole moments of the dislocation interaction coefficients. Using the proposed method, we first simulate the stress created by relatively simple non-homogeneous distributions of vertical edge and so-called ‘mixed’ dislocations in a disk-shaped sample, which is necessary to understand the dislocation behavior in more complicated systems. The main part of our research is devoted to the stress distribution in polycrystalline layers with the dislocation density rapidly varying with the distance to the layer bottom. Considering GaN as a typical example of such systems, we investigate dislocation-induced stress for edge and mixed dislocations, having random orientations of Burgers vectors among crystal grains. We show that the rapid decay of the dislocation density leads to many highly non-trivial features of the stress distributions in such layers and study in detail the dependence of these features on the average grain size. Finally we develop an analytical approach which allows us to predict the evolution of the stress variance with the grain size and compare analytical predictions with numerical results.
Bulk anisotropic excitons in type-II semiconductors built with 1D and 2D low-dimensional structures
NASA Astrophysics Data System (ADS)
Coyotecatl, H. A.; Del Castillo-Mussot, M.; Reyes, J. A.; Vazquez, G. J.; Montemayor-Aldrete, J. A.; Reyes-Esqueda, J. A.; Cocoletzi, G. H.
2005-08-01
We used a simple variational approach to account for the difference in the electron and hole effective masses in Wannier-Mott excitons in type-II semiconducting heterostructures in which the electron is constrained in an one-dimensional quantum wire (1DQW) and the hole is in a two-dimensional quantum layer (2DQL) perpendicular to the wire or viceversa. The resulting Schrodinger equation is similar to that of a 3D bulk exciton because the number of free (nonconfined) variables is three; two coming from the 2DQL and one from the 1DQW. In this system the effective electron-hole interaction depends on the confinement potentials.
Toselli, Italo; Korotkova, Olga
2015-06-01
We generalize a recently introduced model for nonclassic turbulent spatial power spectrum involving anisotropy along two mutually orthogonal axes transverse to the direction of beam propagation by including two scale-dependent weighting factors for these directions. Such a turbulent model may be pertinent to atmospheric fluctuations in the refractive index in stratified regions well above the boundary layer and employed for air-air communication channels. When restricting ourselves to an unpolarized, coherent Gaussian beam and a weak turbulence regime, we examine the effects of such a turbulence type on the OOK FSO link performance by including the results on scintillation flux, probability of fade, SNR, and BERs.
The symmetry and coupling properties of solutions in general anisotropic multilayer waveguides.
Hernando Quintanilla, F; Lowe, M J S; Craster, R V
2017-01-01
Multilayered plate and shell structures play an important role in many engineering settings where, for instance, coated pipes are commonplace such as in the petrochemical, aerospace, and power generation industries. There are numerous demands, and indeed requirements, on nondestructive evaluation (NDE) to detect defects or to measure material properties using guided waves; to choose the most suitable inspection approach, it is essential to know the properties of the guided wave solutions for any given multilayered system and this requires dispersion curves computed reliably, robustly, and accurately. Here, the circumstances are elucidated, and possible layer combinations, under which guided wave solutions, in multilayered systems composed of generally anisotropic layers in flat and cylindrical geometries, have specific properties of coupling and parity; the partial wave decomposition of the wave field is utilised to unravel the behaviour. A classification into five families is introduced and the authors claim that this is the fundamental way to approach generally anisotropic waveguides. This coupling and parity provides information to be used in the design of more efficient and robust dispersion curve tracing algorithms. A critical benefit is that the analysis enables the separation of solutions into categories for which dispersion curves do not cross; this allows the curves to be calculated simply and without ambiguity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Bingtao; Wang, Xiaodong, E-mail: xiaodong-wang@tongji.edu.cn; Niu, Yanyan
2016-04-15
Lithium triborate (LiB{sub 3}O{sub 5}, LBO) crystal is now one of the most useful nonlinear optical materials for frequency conversion of high power lasers. The use of the crystal, however, has been hampered by the unavailability of antireflective (AR) coatings with high laser damage resistance. In this work, a “point contact” dip-coating method is developed to prepare sol–gel SiO{sub 2} AR coatings on small-size LBO crystals. Using this approach, we obtain a homogenous coating surface on an 8 mm×8 mm×3 mm LBO crystal. The stress measurements show that the stresses in sol–gel SiO{sub 2} coatings vary with the time ofmore » natural drying, which is beyond our expectation. The anisotropic Young’s modulus of the LBO crystal and the different evolution tendency of the stress in the different SiO{sub 2} coating layers are found to be responsible for the crack of the double-layer AR coatings on anisotropic LBO crystal. Meanwhile, the resulting coatings on LBO crystal achieve a LIDT of over 15 J/cm{sup 2} (532 nm, 3ns) and the coated LBO is expected to have a transmittance of over 99% at 800 nm.« less
Anisotropic fibrous thermal insulator of relatively thick cross section and method for making same
Reynolds, Carl D.; Ardary, Zane L.
1979-01-01
The present invention is directed to an anisotropic thermal insulator formed of carbon-bonded organic or inorganic fibers and having a thickness or cross section greater than about 3 centimeters. Delaminations and deleterious internal stresses generated during binder curing and carbonizing operations employed in the fabrication of thick fibrous insulation of thicknesses greater than 3 centimeters are essentially obviated by the method of the present invention. A slurry of fibers, thermosetting resin binder and water is vacuum molded into the selected insulator configuration with the total thickness of the molded slurry being less than about 3 centimeters, the binder is thermoset to join the fibers together at their nexaes, and then the binder is carbonized to form the carbon bond. A second slurry of the fibers, binder and water is then applied over the carbonized body with the vacuum molding, binder thermosetting and carbonizing steps being repeated to form a layered insulator with the binder providing a carbon bond between the layers. The molding, thermosetting and carbonizing steps may be repeated with additional slurries until the thermal insulator is of the desired final thickness. An additional feature of the present invention is provided by incorporating opacifying materials in any of the desired layers so as to provide different insulating properties at various temperatures. Concentration and/or type of additive can be varied from layer-to-layer.
Vogelsberg, Cortnie S; Bracco, Silvia; Beretta, Mario; Comotti, Angiolina; Sozzani, Piero; Garcia-Garibay, Miguel A
2012-02-09
The motional behavior of p-phenylene-d(4) rotators confined within the 2D layers of a hierarchically ordered periodic mesoporous p-divinylbenzenesilica has been elucidated to evaluate the effects of reduced dimensionality on the engineered dynamics of artificial molecular machines. The hybrid mesoporous material, characterized by a honeycomb lattice structure, has arrays of alternating p-divinylbenzene rotors and siloxane layers forming the molecularly ordered walls of the mesoscopic channels. The p-divinylbenzene rotors are strongly anchored between two adjacent siloxane sheets, so that the p-phenylene rotators are unable to experience translational diffusion and are allowed to rotate about only one fixed axis. Variable-temperature (2)H NMR experiments revealed that the p-phenylene rotators undergo an exchange process between sites related by 180° and a non-Arrhenius temperature dependence of the dynamics, with reorientational rates ranging from 10(3) to 10(8) Hz between 215 to 305 K. The regime of motion changes rapidly at about 280 K indicating the occurrence of a dynamical transition. The transition was also recognized by a steep change in the heat capacity at constant pressure. As a result of the robust lamellar architecture comprising the pore walls, the orientational dynamic disorder related to the phase transition is only realized in two dimensions within the layers, that is in the plane perpendicular to the channel axis. Thus, the aligned rotors that form the organic layers exhibit unique anisotropic dynamical properties as a result of the architecture's reduced dimensionality. The dynamical disorder restricted to two dimensions constitutes a highly mobile fluidlike rotational phase at room temperature, which upon cooling undergoes a transition to a more rigid glasslike phase. Activation energies of 5.9 and 9.5 kcal/mol respectively have been measured for the two dynamical regimes of rotation. Collectively, our investigation has led to the discovery of an orientationally disordered 2D rotational glass and its transition from rigid to soft at increasing temperature. The spectral narrowing observed in the (2)H NMR experiments at higher temperatures (310-420 K) is consistent with fast rotational dynamics, which remain anisotropic in nature within the robust lamellar architecture. This study suggests that exploiting reduced dimensionality in the design of solid-state artificial molecular machines and functional materials may yield access to behavior previously unrealized in 3D materials. © 2012 American Chemical Society
Analysis of electromagnetic scattering by uniaxial anisotropic bispheres.
Li, Zheng-Jun; Wu, Zhen-Sen; Li, Hai-Ying
2011-02-01
Based on the generalized multiparticle Mie theory and the Fourier transformation approach, electromagnetic (EM) scattering of two interacting homogeneous uniaxial anisotropic spheres with parallel primary optical axes is investigated. By introducing the Fourier transformation, the EM fields in the uniaxial anisotropic spheres are expanded in terms of the spherical vector wave functions. The interactive scattering coefficients and the expansion coefficients of the internal fields are derived through the continuous boundary conditions on which the interaction of the bispheres is considered. Some selected calculations on the effects of the size parameter, the uniaxial anisotropic absorbing dielectric, and the sphere separation distance are described. The backward radar cross section of two uniaxial anisotropic spheres with a complex permittivity tensor changing with the sphere separation distance is numerically studied. The authors are hopeful that the work in this paper will help provide an effective calibration for further research on the scattering characteristic of an aggregate of anisotropic spheres or other shaped anisotropic particles.
Random Interchange of Magnetic Connectivity
NASA Astrophysics Data System (ADS)
Matthaeus, W. H.; Ruffolo, D. J.; Servidio, S.; Wan, M.; Rappazzo, A. F.
2015-12-01
Magnetic connectivity, the connection between two points along a magnetic field line, has a stochastic character associated with field lines random walking in space due to magnetic fluctuations, but connectivity can also change in time due to dynamical activity [1]. For fluctuations transverse to a strong mean field, this connectivity change be caused by stochastic interchange due to component reconnection. The process may be understood approximately by formulating a diffusion-like Fokker-Planck coefficient [2] that is asymptotically related to standard field line random walk. Quantitative estimates are provided, for transverse magnetic field models and anisotropic models such as reduced magnetohydrodynamics. In heliospheric applications, these estimates may be useful for understanding mixing between open and close field line regions near coronal hole boundaries, and large latitude excursions of connectivity associated with turbulence. [1] A. F. Rappazzo, W. H. Matthaeus, D. Ruffolo, S. Servidio & M. Velli, ApJL, 758, L14 (2012) [2] D. Ruffolo & W. Matthaeus, ApJ, 806, 233 (2015)
Synchronization and Inter-Layer Interactions of Noise-Driven Neural Networks
Yuniati, Anis; Mai, Te-Lun; Chen, Chi-Ming
2017-01-01
In this study, we used the Hodgkin-Huxley (HH) model of neurons to investigate the phase diagram of a developing single-layer neural network and that of a network consisting of two weakly coupled neural layers. These networks are noise driven and learn through the spike-timing-dependent plasticity (STDP) or the inverse STDP rules. We described how these networks transited from a non-synchronous background activity state (BAS) to a synchronous firing state (SFS) by varying the network connectivity and the learning efficacy. In particular, we studied the interaction between a SFS layer and a BAS layer, and investigated how synchronous firing dynamics was induced in the BAS layer. We further investigated the effect of the inter-layer interaction on a BAS to SFS repair mechanism by considering three types of neuron positioning (random, grid, and lognormal distributions) and two types of inter-layer connections (random and preferential connections). Among these scenarios, we concluded that the repair mechanism has the largest effect for a network with the lognormal neuron positioning and the preferential inter-layer connections. PMID:28197088
Synchronization and Inter-Layer Interactions of Noise-Driven Neural Networks.
Yuniati, Anis; Mai, Te-Lun; Chen, Chi-Ming
2017-01-01
In this study, we used the Hodgkin-Huxley (HH) model of neurons to investigate the phase diagram of a developing single-layer neural network and that of a network consisting of two weakly coupled neural layers. These networks are noise driven and learn through the spike-timing-dependent plasticity (STDP) or the inverse STDP rules. We described how these networks transited from a non-synchronous background activity state (BAS) to a synchronous firing state (SFS) by varying the network connectivity and the learning efficacy. In particular, we studied the interaction between a SFS layer and a BAS layer, and investigated how synchronous firing dynamics was induced in the BAS layer. We further investigated the effect of the inter-layer interaction on a BAS to SFS repair mechanism by considering three types of neuron positioning (random, grid, and lognormal distributions) and two types of inter-layer connections (random and preferential connections). Among these scenarios, we concluded that the repair mechanism has the largest effect for a network with the lognormal neuron positioning and the preferential inter-layer connections.
Simple anisotropic three-dimensional quantum spin liquid with fractonlike topological order
NASA Astrophysics Data System (ADS)
Petrova, O.; Regnault, N.
2017-12-01
We present a three-dimensional cubic lattice spin model, anisotropic in the z ̂ direction, that exhibits fractonlike order. This order can be thought of as the result of interplay between two-dimensional Z2 topological order and spontaneous symmetry breaking along the z ̂ direction. Fracton order is a novel type of topological order characterized by the presence of immobile pointlike excitations, named fractons, residing at the corners of an operator with two-dimensional support. As other recent fracton models, ours exhibits a subextensive ground-state degeneracy: On an Lx×Ly×Lz three-torus, it has a 22 Lz topological degeneracy and an additional symmetry-breaking nontopological degeneracy equal to 2LxLy-2. The fractons can be combined into composite excitations that move either in a straight line along the z ̂ direction or freely in the x y plane at a given height z . While our model draws inspiration from the toric code, we demonstrate that it cannot be adiabatically connected to a layered toric code construction. Additionally, we investigate the effects of imposing open boundary conditions on our system. We find zero energy modes on the surfaces perpendicular to either the x ̂ or y ̂ directions and their absence on the surfaces normal to z ̂. This result can be explained using the properties of the two kinds of composite two-fracton mobile excitations.
Vibration and damping of laminated, composite-material plates including thickness-shear effects
NASA Technical Reports Server (NTRS)
Bert, C. W.; Siu, C. C.
1972-01-01
An analytical investigation of sinusoidally forced vibration of laminated, anisotropic plates including bending-stretching coupling, thickness-shear flexibility, all three types of inertia effects, and material damping is presented. In the analysis the effects of thickness-shear deformation are considered by the use of a shear correction factor K, analogous to that used by Mindlin for homogeneous plates. Two entirely different approaches for calculating the thickness-shear factor for a laminate are presented. Numerical examples indicate that the value of K depends on the layer properties and the stacking sequence of the laminate.
NASA Astrophysics Data System (ADS)
Tiwari, Ashwani Kant; Bhushan, Kirti; Eken, Tuna; Singh, Arun
2018-06-01
New shear wave splitting measurements are obtained from the Bengal Basin using core-mantle refracted SKS, PKS, and SKKS phases. The splitting parameters, namely time delays (δ t) and fast polarization directions (ϕ), were estimated through analysis of 54 high-quality waveforms (⩾ 2.5 signal to noise ratio) from 30 earthquakes with magnitude ⩾ 5.5 recorded at ten seismic stations deployed over Bangladesh. No evidence of splitting was found, which indicates azimuthal isotropy beneath the region. These null measurements can be explained by either vertically dipping anisotropic fast axes or by the presence of multiple horizontal anisotropic layers with different fast polarization directions, where the combined effect results in a null characterization. The anisotropic fabric preserved from rifting episodes of Antarctica and India, subduction-related dynamics of the Indo-Burmese convergence zone, and northward movement of the Indian plate creating shear at the base of the lithosphere can explain the observed null measurements. The combined effect of all these most likely results in a strong vertical anisotropic heterogeneity, creating the observed null results.
High-Performance Few-layer Mo-doped ReSe2 Nanosheet Photodetectors
Yang, Shengxue; Tongay, Sefaattin; Yue, Qu; Li, Yongtao; Li, Bo; Lu, Fangyuan
2014-01-01
Transition metal dichalcogenides (TMDCs) have recently been the focus of extensive research activity owing to their fascinating physical properties. As a new member of TMDCs, Mo doped ReSe2 (Mo:ReSe2) is an octahedral structure semiconductor being optically biaxial and highly anisotropic, different from most of hexagonal layered TMDCs with optically uniaxial and relatively high crystal symmetry. We investigated the effects of physisorption of gas molecule on the few-layer Mo:ReSe2 nanosheet based photodetectors. We compared the photoresponse of the as-exfoliated device with annealed device both in air or ammonia (NH3) environment. After annealing at sub-decomposition temperatures, the Mo:ReSe2 photodetectors show a better photoresponsivity (~55.5 A/W) and higher EQE (10893%) in NH3 than in air. By theoretical investigation, we conclude that the physisorption of NH3 molecule on Mo:ReSe2 monolayer can cause the charge transfer between NH3 molecule and Mo:ReSe2 monolayer, increasing the n-type carrier density of Mo:ReSe2 monolayer. The prompt photoswitching, high photoresponsivity and different sensitivity to surrounding environment from the few-layer anisotropic Mo:ReSe2 can be used to design multifunctional optoelectronic and sensing devices. PMID:24962077
Intricate Short-Range Ordering and Strongly Anisotropic Transport Properties of Li 1–x Sn 2+x As 2
Lee, Kathleen; Kaseman, Derrick; Sen, Sabyasachi; ...
2015-02-22
A new ternary compound, Li 1-xSn 2+xAs 2, 0.2 < x < 0.4, was synthesized via solid-state reaction of elements. The compound crystallizes in a layered structure in the Rmore » $$\\overline{3}m$$ space group (No. 166) with Sn-As layers separated by layers of jointly occupied Li/Sn. The Sn-As layers are comprised of Sn 3As 3 puckered hexagons in a chair conformation that share all edges. Li/Sn atoms in the interlayer space are surrounded by a regular As 6 octahedron. Thorough investigations by synchrotron x-ray and neutron powder diffraction indicate no long-range Li/Sn ordering. In contrast, local Sn/Li ordering was revealed by synergistic investigations via solid-state 6,7Li NMR spectroscopy, HR-TEM, and neutron and X-ray pair distribution function analyses. Due to their different chemical natures, Li and Sn atoms tend to segregate into Li-rich and Sn-rich regions creating substantial inhomogeneity on the nanoscale. Inhomogeneous local structure has high impact on the physical properties of the synthesized compounds: local Li/Sn ordering and multiple nanoscale interfaces result in unexpectedly low thermal conductivity and highly anisotropic resistivity in Li 1-xSn 2+xAs 2.« less
Robust numerical electromagnetic eigenfunction expansion algorithms
NASA Astrophysics Data System (ADS)
Sainath, Kamalesh
This thesis summarizes developments in rigorous, full-wave, numerical spectral-domain (integral plane wave eigenfunction expansion [PWE]) evaluation algorithms concerning time-harmonic electromagnetic (EM) fields radiated by generally-oriented and positioned sources within planar and tilted-planar layered media exhibiting general anisotropy, thickness, layer number, and loss characteristics. The work is motivated by the need to accurately and rapidly model EM fields radiated by subsurface geophysical exploration sensors probing layered, conductive media, where complex geophysical and man-made processes can lead to micro-laminate and micro-fractured geophysical formations exhibiting, at the lower (sub-2MHz) frequencies typically employed for deep EM wave penetration through conductive geophysical media, bulk-scale anisotropic (i.e., directional) electrical conductivity characteristics. When the planar-layered approximation (layers of piecewise-constant material variation and transversely-infinite spatial extent) is locally, near the sensor region, considered valid, numerical spectral-domain algorithms are suitable due to their strong low-frequency stability characteristic, and ability to numerically predict time-harmonic EM field propagation in media with response characterized by arbitrarily lossy and (diagonalizable) dense, anisotropic tensors. If certain practical limitations are addressed, PWE can robustly model sensors with general position and orientation that probe generally numerous, anisotropic, lossy, and thick layers. The main thesis contributions, leading to a sensor and geophysical environment-robust numerical modeling algorithm, are as follows: (1) Simple, rapid estimator of the region (within the complex plane) containing poles, branch points, and branch cuts (critical points) (Chapter 2), (2) Sensor and material-adaptive azimuthal coordinate rotation, integration contour deformation, integration domain sub-region partition and sub-region-dependent integration order (Chapter 3), (3) Integration partition-extrapolation-based (Chapter 3) and Gauss-Laguerre Quadrature (GLQ)-based (Chapter 4) evaluations of the deformed, semi-infinite-length integration contour tails, (4) Robust in-situ-based (i.e., at the spectral-domain integrand level) direct/homogeneous-medium field contribution subtraction and analytical curbing of the source current spatial spectrum function's ill behavior (Chapter 5), and (5) Analytical re-casting of the direct-field expressions when the source is embedded within a NBAM, short for non-birefringent anisotropic medium (Chapter 6). The benefits of these contributions are, respectively, (1) Avoiding computationally intensive critical-point location and tracking (computation time savings), (2) Sensor and material-robust curbing of the integrand's oscillatory and slow decay behavior, as well as preventing undesirable critical-point migration within the complex plane (computation speed, precision, and instability-avoidance benefits), (3) sensor and material-robust reduction (or, for GLQ, elimination) of integral truncation error, (4) robustly stable modeling of scattered fields and/or fields radiated from current sources modeled as spatially distributed (10 to 1000-fold compute-speed acceleration also realized for distributed-source computations), and (5) numerically stable modeling of fields radiated from sources within NBAM layers. Having addressed these limitations, are PWE algorithms applicable to modeling EM waves in tilted planar-layered geometries too? This question is explored in Chapter 7 using a Transformation Optics-based approach, allowing one to model wave propagation through layered media that (in the sensor's vicinity) possess tilted planar interfaces. The technique leads to spurious wave scattering however, whose induced computation accuracy degradation requires analysis. Mathematical exhibition, and exhaustive simulation-based study and analysis of the limitations of, this novel tilted-layer modeling formulation is Chapter 7's main contribution.
NASA Astrophysics Data System (ADS)
Gao, S. S.; Reed, C. A.; Yu, Y.; Liu, K. H.; Chindandali, P. R. N.; Mdala, H. S.; Massinque, B.; Mutamina, D. M.
2016-12-01
Measuring the magnitude and orientation of seismic anisotropy beneath actively extending rift zones provides invaluable estimates of the influence of numerous geodynamic parameters upon their evolution. In order to infer the character and origin of extensional forces acting upon the Malawi Rift Zone (MRZ) and Luangwa Rift Zone (LRZ) of southern Africa, we installed 33 Seismic Arrays For African Rift Initiation (SAFARI) three-component broadband seismic stations in Malawi, Mozambique, and Zambia between 2012-2014. Shear-wave splitting parameters, including the fast-component polarization orientation and the splitting time, are extracted from 142 events recorded during that time period for a total of 642 well-defined PKS, SKKS, and SKS phase measurements. Polarizations trend NE-SW along the western flank of the LRZ, whereupon they demonstrate an abrupt shift to N-S within the rift valley and the eastern flank. SWS orientations shift increasingly counterclockwise toward the east until, at 33°E, they shift from WNW-ESE to ENE-WSW, suggesting a systematic change in dominant mantle fabric orientation. The resulting fast orientations demonstrate remarkable variability within the MRZ, with E-W measurements in the north rotating counterclockwise toward the south to N-S within the southernmost MRZ. Measurements revert to E-W and NE-SW orientations toward the east in Mozambique, suggesting the presence of complex two-layer anisotropy. Azimuthal variations of SWS parameters recorded by stations within the central MRZ exhibit excellent 90° periodicity, further suggesting complex anisotropic layering. Lateral variation of measurements between the northern and southern MRZ imply the modulation of the mantle flow system beneath the active rift zone.
Seismic imaging of lithospheric discontinuities and continental evolution
NASA Astrophysics Data System (ADS)
Bostock, M. G.
1999-09-01
Discontinuities in physical properties within the continental lithosphere reflect a range of processes that have contributed to craton stabilization and evolution. A survey of recent seismological studies concerning lithospheric discontinuities is made in an attempt to document their essential characteristics. Results from long-period seismology are inconsistent with the presence of continuous, laterally invariant, isotropic boundaries within the upper mantle at the global scale. At regional scales, two well-defined interfaces termed H (˜60 km depth) and L (˜200 km depth) of continental affinity are identified, with the latter boundary generally exhibiting an anisotropic character. Long-range refraction profiles are frequently characterized by subcontinental mantle that exhibits a complex stratification within the top 200 km. The shallow layering of this package can behave as an imperfect waveguide giving rise to the so-called teleseismic Pn phase, while the L-discontinuity may define its lower base as the culmination of a low velocity zone. High-resolution, seismic reflection profiling provides sufficient detail in a number of cases to document the merging of mantle interfaces into lower continental crust below former collisional sutures and magmatic arcs, thus unambiguously identifying some lithospheric discontinuities with thrust faults and subducted oceanic lithosphere. Collectively, these and other seismic observations point to a continental lithosphere whose internal structure is dominated by a laterally variable, subhorizontal layering. This stratigraphy appears to be more pronounced at shallower lithospheric levels, includes dense, anisotropic layers of order 10 km in thickness, and exhibits horizontal correlation lengths comparable to the lateral dimensions of overlying crustal blocks. A model of craton evolution which relies on shallow subduction as a principal agent of craton stabilization is shown to be broadly compatible with these characteristics.
Optical contrast for identifying the thickness of two-dimensional materials
NASA Astrophysics Data System (ADS)
Bing, Dan; Wang, Yingying; Bai, Jing; Du, Ruxia; Wu, Guoqing; Liu, Liyan
2018-01-01
One of the most intriguing properties of two-dimensional (2D) materials is their thickness dependent properties. A quick and precise technique to identify the layer number of 2D materials is therefore highly desirable. In this review, we will introduce the basic principle of using optical contrast to determine the thickness of 2D material and also its advantage as compared to other modern techniques. Different 2D materials, including graphene, graphene oxide, transitional metal dichalcogenides, black phosphorus, boron nitride, have been used as examples to demonstrate the capability of optical contrast methods. A simple and more efficient optical contrast image technique is also emphasized, which is suitable for quick and large-scale thickness identification. We have also discussed the factors that could affect the experimental results of optical contrast, including incident light angle, anisotropic nature of materials, and also the twisted angle between 2D layers. Finally, we give perspectives on future development of optical contrast methods for the study and application of 2D materials.
Wallner, P; Ruile, W; Weigel, R
2000-01-01
Theoretical studies on the behavior of leaky-SAW (LSAW) properties in layered structures were performed. For these calculations rotYX LiTaO (3) and rotYX LiNbO(3) LSAW crystal cuts were used, assuming different layer materials. For LSAWs both the velocity and the inherent loss due to bulk wave emission into the substrate are strongly influenced by distinct layer parameters. As a result, these layer properties like elastic constants or thickness have shown a strong influence on the crystal cut angle of minimum LSAW loss. Moreover, for soft and stiff layer materials, a different shift of the LSAW loss minimum can occur. Therefore, using double-layer structures, the shift of the LSAW loss minimum can be influenced by appropriate chosen layers and ratios.
Texture and anisotropy in ferroelectric lead metaniobate
NASA Astrophysics Data System (ADS)
Iverson, Benjamin John
Ferroelectric lead metaniobate, PbNb2O6, is a piezoelectric ceramic typically used because of its elevated Curie temperature and anisotropic properties. However, the piezoelectric constant, d33, is relatively low in randomly oriented ceramics when compared to other ferroelectrics. Crystallographic texturing is often employed to increase the piezoelectric constant because the spontaneous polarization axes of grains are better aligned. In this research, crystallographic textures induced through tape casting are distinguished from textures induced through electrical poling. Texture is described using multiple quantitative approaches utilizing X-ray and neutron time-of-flight diffraction. Tape casting lead metaniobate with an inclusion of acicular template particles induces an orthotropic texture distribution. Templated grain growth from seed particles oriented during casting results in anisotropic grain structures. The degree of preferred orientation is directly linked to the shear behavior of the tape cast slurry. Increases in template concentration, slurry viscosity, and casting velocity lead to larger textures by inducing more particle orientation in the tape casting plane. The maximum 010 texture distributions were two and a half multiples of a random distribution. Ferroelectric texture was induced by electrical poling. Electric poling increases the volume of material oriented with the spontaneous polarization direction in the material. Samples with an initial paraelectric texture exhibit a greater change in the domain volume fraction during electrical poling than randomly oriented ceramics. In tape cast samples, the resulting piezoelectric response is proportional to the 010 texture present prior to poling. This results in property anisotropy dependent on initial texture. Piezoelectric properties measured on the most textured ceramics were similar to those obtained with a commercial standard.
Align and random electrospun mat of PEDOT:PSS and PEDOT:PSS/RGO
NASA Astrophysics Data System (ADS)
Sarabi, Ghazale Asghari; Latifi, Masoud; Bagherzadeh, Roohollah
2018-01-01
In this research work we fabricated two ultrafine conductive nanofibrous layers to investigate the materilas composition and their properties for the preparation of supercapacitor materials application. In first layer, a polymer and a conductive polymer were used and second layer was a composition of polymer, conductive polymer and carbon-base material. In both cases align and randomized mat of conductive nanofibers were fabricated using electrospinning set up. Conductive poly (3,4-ethylenedioxythiophene)/ polystyrene sulfonate (PEDOT:PSS) nanofibers were electrospun by dissolving fiber-forming polymer and polyvinyl alcohol (PVA) in an aqueous dispersion of PEDOT:PSS. The effect of addition of reduced graphene oxide (RGO) was considered for nanocomposite layer. The ultrafine conductive polymer fibers and conductive nanocomposite fibrous materials were also fabricated using an electrospinning process. A fixed collector and a rotating drum were used for random and align nanofibers production, respectively. The resulted fibers were characterized and analyzed by SEM, FTIR and two-point probe conductivity test. The average diameter of nanofibers measured by ImageJ software indicated that the average fiber diameter for first layer was 100 nm and for nanocomposite layer was about 85 nm. The presence of PEDOT:PSS and RGO in the nanofibers was confirmed by FT-IR spectroscopy. The conductivity of align and random layers was characterized. The conductivity of PEDOT:PSS nanofibers showed higher enhancement by addition of RGO in aqueous dispersion. The obtained results showed that alignment of fibrous materials can be considered as an engineering tool for tuning the conductivity of fibrous materials for many different applications such as supercapacitors, conductive and transparent materials.
Ultraviolet laser-induced lateral photovoltaic response in anisotropic black shale
NASA Astrophysics Data System (ADS)
Miao, Xinyang; Zhu, Jing; Zhao, Kun; Yue, Wenzheng
2017-12-01
The anisotropy of shale has significant impact on oil and gas exploration and engineering. In this paper, a-248 nm ultraviolet laser was employed to assess the anisotropic lateral photovoltaic (LPV) response of shale. Anisotropic angle-depending voltage signals were observed with different peak amplitudes ( V p) and decay times. We employed exponential models to explain the charge carrier transport in horizontal and vertical directions. Dependences of the laser-induced LPV on the laser spot position were observed. Owing to the Dember effect and the layered structure of shale, V p shows an approximately linear dependence with the laser-irradiated position for the 0° shale sample but nonlinearity for the 45° and 90° ones. The results demonstrate that the laser-induced voltage method is very sensitive to the structure of materials, and thus has a great potential in oil and gas reservoir characterization.
Spherical shock-wave propagation in three-dimensional granular packings.
Xue, Kun; Bai, Chun-Hua
2011-02-01
We investigate numerically the spherical shock-wave propagation in an open dense granular packing perturbed by the sudden expansion of a spherical intruder in the interior of the pack, focusing on the correlation between geometrical fabrics and propagating properties. The measurements of the temporal and spatial variations in a variety of propagating properties define a consistent serrated wave substructure with characteristic length on the orders of particle diameters. Further inspection of particle packing reveals a well-defined particle layering that persists several particle diameters away from the intruder, although its dominant effects are only within one to two diameters. This interface-induced layering not only exactly coincides with the serrated wave profile, but also highlights the competition between two energy transmission mechanisms involving distinct transport speeds. The alternating dominances between these two mechanisms contribute to the nonlinear wave propagation on the particle scale. Moreover, the proliferation of intricate three-dimensional contact force networks suggests the anisotropic stress transmission, which is found to also arise from the localized packing structure in the vicinity of the intruder.
Tunable two-dimensional interfacial coupling in molecular heterostructures
Xu, Beibei; Chakraborty, Himanshu; Yadav, Vivek K.; ...
2017-08-22
Two-dimensional van der Waals heterostructures are of considerable interest for the next generation nanoelectronics because of their unique interlayer coupling and optoelectronic properties. Here, we report a modified Langmuir–Blodgett method to organize twodimensional molecular charge transfer crystals into arbitrarily and vertically stacked heterostructures, consisting of bis(ethylenedithio)tetrathiafulvalene (BEDT–TTF)/C 60 and poly (3-dodecylthiophene-2,5-diyl) (P3DDT)/C 60 nanosheets. A strong and anisotropic interfacial coupling between the charge transfer pairs is demonstrated. The van der Waals heterostructures exhibit pressure dependent sensitivity with a high piezoresistance coefficient of -4.4 × 10 -6 Pa -1, and conductance and capacitance tunable by external stimuli (ferroelectric field and magneticmore » field). Density functional theory calculations confirm charge transfer between the n-orbitals of the S atoms in BEDT–TTF of the BEDT–TTF/C 60 layer and the π* orbitals of C atoms in C 60 of the P3DDT/C 60 layer contribute to the inter-complex CT. Thus, the two-dimensional molecular van der Waals heterostructures with tunable optical–electronic–magnetic coupling properties are promising for flexible electronic applications.« less
NASA Astrophysics Data System (ADS)
Vattré, A.
2017-08-01
The long- and short-range interactions as well as planar reactions between two infinitely periodic sets of crossing dislocations are investigated using anisotropic elasticity theory in face- (fcc) and body- (bcc) centered cubic materials. Two preliminary cases are proposed to examine the substantial changes in the elastic stress states and the corresponding strain energies due to a slight rearrangement in the internal dislocation geometries and characters. In general, significant differences and discrepancies resulting from the considered cubic crystal structure and the approximation of isotropic elasticity are exhibited. In a third scenario, special attention is paid to connecting specific internal dislocation structures from the previous cases with non-equilibrium configurations predicted by the quantized Frank-Bilby equation for the (111) fcc and (110) bcc twist grain boundaries. The present solutions lead to the formation of energetically favorable dislocation junctions with non-randomly strain-relaxed configurations of lower energy. In particular, the local dislocation interactions and reactions form equilibrium hexagonal-shaped patterns with planar three-fold dislocation nodes without producing spurious far-field stresses.Numerical application results are presented from a selection of cubic metals including aluminum, copper, tantalum, and niobium. In contrast to the fcc materials, asymmetric dislocation nodes occur in the anisotropic bcc cases, within which the minimum-energy paths for predicting the fully strain-relaxed dislocation patterns depend on the Zener anisotropic factor with respect to unity. The associated changes in the dislocation structures as well as the removal of the elastic strain energy upon relaxations are quantified and also discussed.
NASA Astrophysics Data System (ADS)
Cai, Li; Wen, Ji-Hong; Yu, Dian-Long; Lu, Zhi-Miao; Wen, Xi-Sen
2014-09-01
Acoustic cloak based on coordinate transformation is of great topical interest and has promise in potential applications such as sound transparency and insulation. The frequency response of acoustic cloaks with a quantity of discrete homogeneous layers is analyzed by the acoustic scattering theory. The effect of coordinate transformation function on the acoustic total scattering cross section is discussed to achieve low scattering with only a few layers of anisotropic metamaterials. Also, the physics of acoustic wave interaction with the interfaces between the discrete layers inside the cloak shell is discussed. These results provide a better way of designing a multilayered acoustic cloak with fewer layers.
Zhang, Y S; Gao, B R; Wang, H J; Su, Y F; Yang, Y Z; Zhang, J H; Wang, C
2010-01-01
The objective of this prospective, randomized, controlled trial, conducted from May 2002 to December 2007, was to compare post-operative anastomotic leakage and stricture formation following layered manual versus stapler oesophagogastric anastomosis in patients who underwent resection of oesophageal or gastric cardia carcinoma. Patients (n = 516) were randomized to receive either layered manual or circular stapled oesophagogastric anastomosis. Mean follow-up time was > 12 months. Anastomotic leakage occurred in one (0.4%) patient in the layered group and six (2.2%) in the stapler group; no statistically significant between-group difference. After operation, two (0.8%) patients in the layered group and 13 (5.0%) in the stapler group developed a benign oesophageal stricture; the difference between the groups was statistically significant. Compared with stapler anastomosis, layered manual anastomosis may significantly reduce the incidence of anastomotic strictures. This method is easy to apply and could be used as an alternative procedure for oesophagogastric anastomosis after resection for oesophageal or cardia carcinoma.
NASA Technical Reports Server (NTRS)
Wang, S. S.; Choi, I.
1982-01-01
The fundamental nature of the boundary-layer effect in fiber-reinforced composite laminates is formulated in terms of the theory of anisotropic elasticity. The basic structure of the boundary-layer field solution is obtained by using Lekhnitskii's stress potentials (1963). The boundary-layer stress field is found to be singular at composite laminate edges, and the exact order or strength of the boundary layer stress singularity is determined using an eigenfunction expansion method. A complete solution to the boundary-layer problem is then derived, and the convergence and accuracy of the solution are analyzed, comparing results with existing approximate numerical solutions. The solution method is demonstrated for a symmetric graphite-epoxy composite.
Effects of the PPy layer thickness on Co-PPy composite films
NASA Astrophysics Data System (ADS)
Haciismailoglu, Murside
2015-11-01
Co-PPy composite films were electrodeposited on ITO substrate from two different solutions potentiostatically. Firstly, the PPy layers with the thicknesses changing from 20 to 5000 nm were produced on ITO. Then Co was electrodeposited on these PPy/ITO substrates with a charge density of 1000 mC cm-2. The electrochemical properties were investigated by the current density-time transients and the variation of the elapsed time for the Co deposition depending on the PPy layer thickness. X-ray photoelectron (XPS) spectra indicated the presence of both Co metal and its oxides on the surface. The weak reflections of the Co3O4, CoO and hcp Co were detected by the X-ray diffraction (XRD) technique. According to scanning electron microscopy (SEM) images, the thickness of the PPy layer strongly affects the Co nucleation. The composite films with the PPy layer thinner than 200 nm and thicker than 2000 nm have an isotropic magnetic behavior due to the symmetrical crystal field. The composite films with the PPy layer thicknesses between 200 and 2000 nm have an anisotropic magnetic behavior attributable to the deterioration of this symmetrical crystal field by the PPy bubbles on the surface. All films are hard magnetic material, since the coercivities are larger than 125 Oe.
Anomalous transmission of an ultrashort ionizing laser pulse through a thin foil.
Ferrante, G; Zarcone, M; Uryupin, S A
2003-08-22
The formation of a highly anisotropic photoelectron velocity distribution as a result of the interaction of a powerful ultrashort laser pulse with a thin foil is found to yield a large skin-layer depth and an anomalous increase of the transmission coefficient. The physical reason for the effect is the influence of the incident wave magnetic field, through the Lorenz force, on the electron kinetics in the skin layer.
2014-06-26
supercapacitors .11 On the other hand, because of the anisotropic graphene structure, it exhibits strong direction- dependent properties, including...GNPs has the advantage of increased surface area for supercapacitor .11 2. EXPERIMENTAL SECTION 2.1. Materials and Instruments. All chemicals and...rectangular, which means that this material has good potential for applications such as supercapacitors .22 In an ideal situation, it can be envisioned that
TURBULENT MAGNETOHYDRODYNAMIC RECONNECTION MEDIATED BY THE PLASMOID INSTABILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yi-Min; Bhattacharjee, A., E-mail: yiminh@princeton.edu
2016-02-10
It has been established that the Sweet–Parker current layer in high Lundquist number reconnection is unstable to the super-Alfvénic plasmoid instability. Past two-dimensional magnetohydrodynamic simulations have demonstrated that the plasmoid instability leads to a new regime where the Sweet–Parker current layer changes into a chain of plasmoids connected by secondary current sheets, and the averaged reconnection rate becomes nearly independent of the Lundquist number. In this work, a three-dimensional simulation with a guide field shows that the additional degree of freedom allows plasmoid instabilities to grow at oblique angles, which interact and lead to self-generated turbulent reconnection. The averaged reconnectionmore » rate in the self-generated turbulent state is of the order of a hundredth of the characteristic Alfvén speed, which is similar to the two-dimensional result but is an order of magnitude lower than the fastest reconnection rate reported in recent studies of externally driven three-dimensional turbulent reconnection. Kinematic and magnetic energy fluctuations both form elongated eddies along the direction of the local magnetic field, which is a signature of anisotropic magnetohydrodynamic turbulence. Both energy fluctuations satisfy power-law spectra in the inertial range, where the magnetic energy spectral index is in the range from −2.3 to −2.1, while the kinetic energy spectral index is slightly steeper, in the range from −2.5 to −2.3. The anisotropy of turbulence eddies is found to be nearly scale-independent, in contrast with the prediction of the Goldreich–Sridhar theory for anisotropic turbulence in a homogeneous plasma permeated by a uniform magnetic field.« less
NASA Astrophysics Data System (ADS)
Song, X.; Jordan, T. H.
2017-12-01
The seismic anisotropy of the continental crust is dominated by two mechanisms: the local (intrinsic) anisotropy of crustal rocks caused by the lattice-preferred orientation of their constituent minerals, and the geometric (extrinsic) anisotropy caused by the alignment and layering of elastic heterogeneities by sedimentation and deformation. To assess the relative importance of these mechanisms, we have applied Jordan's (GJI, 2015) self-consistent, second-order theory to compute the effective elastic parameters of stochastic media with hexagonal local anisotropy and small-scale 3D heterogeneities that have transversely isotropic (TI) statistics. The theory pertains to stochastic TI media in which the eighth-order covariance tensor of the elastic moduli can be separated into a one-point variance tensor that describes the local anisotropy in terms of a anisotropy orientation ratio (ξ from 0 to ∞), and a two-point correlation function that describes the geometric anisotropy in terms of a heterogeneity aspect ratio (η from 0 to ∞). If there is no local anisotropy, then, in the limiting case of a horizontal stochastic laminate (η→∞), the effective-medium equations reduce to the second-order equations derived by Backus (1962) for a stochastically layered medium. This generalization of the Backus equations to 3D stochastic media, as well as the introduction of local, stochastically rotated anisotropy, provides a powerful theory for interpreting the anisotropic signatures of sedimentation and deformation in continental environments; in particular, the parameterizations that we propose are suitable for tomographic inversions. We have verified this theory through a series high-resolution numerical experiments using both isotropic and anisotropic wave-propagation codes.
The First Multiple Layer Doppler Imaging of an Active Binary
NASA Technical Reports Server (NTRS)
Dempsey, Robert C.
1997-01-01
Preliminary results were presented at the Cool Stars, Stellar Systems, and the Sun in Cambridge, MA in July 1997. A copy of the two published papers (in press) is attached. The project has met or exceeded our expectations. The rapid readout data have given us an excellent data set to model in detail the flare behavior. The large number of spectral features observed between the EUVE and HST data have allowed us to compute a mean model atmosphere and compare the results to another well studied system (HR 1099 - Cycle 3 HST observation previously published). I developed a model (anisotropic macroturbulence) that fits the CIV and MgII better than previously achieved. These results have been constrained by the EUVE data. In early studies, 2 gaussians were applied to the profile. The interpretation of these features was unclear. The anisotropic macroturbulence model fits the data better than previously possible and gives a physically reasonable interpretation: there appears to be an asymmetrical distribution between the radial and tangential velocity fields. This is similar to case of the Sun.
Identification of Anisotropic Criteria for Stratified Soil Based on Triaxial Tests Results
NASA Astrophysics Data System (ADS)
Tankiewicz, Matylda; Kawa, Marek
2017-09-01
The paper presents the identification methodology of anisotropic criteria based on triaxial test results. The considered material is varved clay - a sedimentary soil occurring in central Poland which is characterized by the so-called "layered microstructure". The strength examination outcomes were identified by standard triaxial tests. The results include the estimated peak strength obtained for a wide range of orientations and confining pressures. Two models were chosen as potentially adequate for the description of the tested material, namely Pariseau and its conjunction with the Jaeger weakness plane. Material constants were obtained by fitting the model to the experimental results. The identification procedure is based on the least squares method. The optimal values of parameters are searched for between specified bounds by sequentially decreasing the distance between points and reducing the length of the searched range. For both considered models the optimal parameters have been obtained. The comparison of theoretical and experimental results as well as the assessment of the suitability of selected criteria for the specified range of confining pressures are presented.
Strong anisotropy effect in an iron-based superconductor CaFe0.882Co0.118AsF
NASA Astrophysics Data System (ADS)
Ma, Yonghui; Ji, Qiucheng; Hu, Kangkang; Gao, Bo; Li, Wei; Mu, Gang; Xie, Xiaoming
2017-07-01
The anisotropy of iron-based superconductors is much smaller than that of the cuprates and that predicted by theoretical calculations. A credible understanding for this experimental fact is still lacking up to now. Here we experimentally study the magnetic-field-angle dependence of electronic resistivity in the superconducting phase of an iron-based superconductor CaFe{}0.882Co{}0.118AsF, and find the strongest anisotropy effect of the upper critical field among the iron-based superconductors based on the framework of Ginzburg-Landau theory. The evidence of the energy band structure and charge density distribution from electronic structure calculations demonstrates that the observed strong anisotropic effect mainly comes from the strong ionic bonding in between the ions of Ca2+ and F-, which weakens the interlayer coupling between the layers of FeAs and CaF. This finding provides a significant insight into the nature of the experimentally-observed strong anisotropic effect of electronic resistivity, and also paves the way for designing exotic two-dimensional artificial unconventional superconductors in the future.
Velocity sensitivity of seismic body waves to the anisotropic parameters of a TTI-medium
NASA Astrophysics Data System (ADS)
Zhou, Bing; Greenhalgh, Stewart
2008-09-01
We formulate the derivatives of the phase and group velocities for each of the anisotropic parameters in a tilted transversely isotropic medium (TTI-medium). This is a common geological model in seismic exploration and has five elastic moduli or related Thomsen parameters and two orientation angles defining the axis of symmetry of the rock. We present two independent methods to compute the derivatives and examine the formulae with real anisotropic rocks. The formulations and numerical computations do not encounter any singularity problem when applied to the two quasi shear waves, which is a problem with other approaches. The two methods yield the same results, which show in a quantitative way the sensitivity behaviour of the phase and the group velocities to all of the elastic moduli or Thomsen's anisotropic parameters as well as the orientation angles in the 2D and 3D cases. One can recognize the dominant (strong effect) and weak (or 'dummy') parameters for the three seismic body-wave modes (qP, qSV, qSH) and their effective domains over the whole range of phase-slowness directions. These sensitivity patterns indicate the possibility of nonlinear kinematic inversion with the three wave modes for determining the anisotropic parameters and imaging an anisotropic medium.
NASA Astrophysics Data System (ADS)
Liu, Xiwu; Guo, Zhiqi; Han, Xu
2018-06-01
A set of parallel vertical fractures embedded in a vertically transverse isotropy (VTI) background leads to orthorhombic anisotropy and corresponding azimuthal seismic responses. We conducted seismic modeling of full waveform amplitude variations versus azimuth (AVAZ) responses of anisotropic shale by integrating a rock physics model and a reflectivity method. The results indicate that the azimuthal variation of P-wave velocity tends to be more complicated for orthorhombic medium compared to the horizontally transverse isotropy (HTI) case, especially at high polar angles. Correspondingly, for the HTI layer in the theoretical model, the short axis of the azimuthal PP amplitudes at the top interface is parallel to the fracture strike, while the long axis at the bottom reflection directs the fracture strike. In contrast, the orthorhombic layer in the theoretical model shows distinct AVAZ responses in terms of PP reflections. Nevertheless, the azimuthal signatures of the R- and T-components of the mode-converted PS reflections show similar AVAZ features for the HTI and orthorhombic layers, which may imply that the PS responses are dominated by fractures. For the application to real data, a seismic-well tie based on upscaled data and a reflectivity method illustrate good agreement between the reference layers and the corresponding reflected events. Finally, the full waveform seismic AVAZ responses of the Longmaxi shale formation are computed for the cases of HTI and orthorhombic anisotropy for comparison. For the two cases, the azimuthal features represent differences mainly in amplitudes, while slightly in the phases of the reflected waveforms. Azimuth variations in the PP reflections from the reference layers show distinct behaviors for the HTI and orthorhombic cases, while the mode-converted PS reflections in terms of the R- and T-components show little differences in azimuthal features. It may suggest that the behaviors of the PS waves are dominated by vertically aligned fractures. This work provides further insight into the azimuthal seismic response of orthorhombic shales. The proposed method may help to improve the seismic-well tie, seismic interpretation, and inversion results using an azimuth anisotropy dataset.
NASA Astrophysics Data System (ADS)
Gomez, C. D.; Escobar, L., Sr.; Rathnayaka, S.; Weeraratne, D. S.; Kohler, M. D.
2016-12-01
The California continental margin, a major transform plate boundary in continental North America, is the locus of complex tectonic stress fields that are important in interpreting both remnant and ongoing deformational strain. Ancient subduction of the East Pacific Rise spreading center, the rotation and translation of tectonic blocks and inception of the San Andreas fault all contribute to the dynamic stress fields located both onshore and offshore southern California. Data obtained by the ALBACORE (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) and the CISN (California Integrated Seismic Network) seismic array are analyzed for azimuthal anisotropy of Rayleigh waves from 80 teleseismic events at periods 16 - 78 s. Here we invert Rayleigh wave data for shear wave velocity structure and three-dimensional seismic anisotropy in the thee regions designated within the continental margin including the continent, seafloor and California Borderlands. Preliminary results show that seismic anisotropy is resolved in multiple layers and can be used to determine the lithosphere-asthenosphere boundary (LAB) in offshore and continental regions. The oldest seafloor in our study at age 25-35 Ma indicates that the anisotropic transition across the LAB occurs at 73 km +/- 25 km with the lithospheric fast direction oriented WNW-ESE, consistent with current Pacific plate motion direction. The continent region west of the San Andreas indicates similar WNW-ESE anisotropy and LAB depth. Regions east of the San Andreas fault indicate NW-SE anisotropy transitioning to a N-S alignment at 80 km depth north of the Garlock fault. The youngest seafloor (15 - 25 Ma) and outer Borderlands indicate a more complex three layer fabric where shallow lithospheric NE-SW fast directions are perpendicular with ancient Farallon subduction arc, a mid-layer with E-W fast directions are perpendicular to remnant fossil fabric, and the deepest layer indicates NW-SE fast directions below the LAB likely controlled by current Pacific plate motion. The inner Borderland indicates two layer anisotropic structure with a shallow NW-SE lithospheric fast direction that changes to NE-SW fast directions below the LAB, possibly consistent with the ancient subduction direction.
Dirac directional emission in anisotropic zero refractive index photonic crystals.
He, Xin-Tao; Zhong, Yao-Nan; Zhou, You; Zhong, Zhi-Chao; Dong, Jian-Wen
2015-08-14
A certain class of photonic crystals with conical dispersion is known to behave as isotropic zero-refractive-index medium. However, the discrete building blocks in such photonic crystals are limited to construct multidirectional devices, even for high-symmetric photonic crystals. Here, we show multidirectional emission from low-symmetric photonic crystals with semi-Dirac dispersion at the zone center. We demonstrate that such low-symmetric photonic crystal can be considered as an effective anisotropic zero-refractive-index medium, as long as there is only one propagation mode near Dirac frequency. Four kinds of Dirac multidirectional emitters are achieved with the channel numbers of five, seven, eleven, and thirteen, respectively. Spatial power combination for such kind of Dirac directional emitter is also verified even when multiple sources are randomly placed in the anisotropic zero-refractive-index photonic crystal.
Dirac directional emission in anisotropic zero refractive index photonic crystals
He, Xin-Tao; Zhong, Yao-Nan; Zhou, You; Zhong, Zhi-Chao; Dong, Jian-Wen
2015-01-01
A certain class of photonic crystals with conical dispersion is known to behave as isotropic zero-refractive-index medium. However, the discrete building blocks in such photonic crystals are limited to construct multidirectional devices, even for high-symmetric photonic crystals. Here, we show multidirectional emission from low-symmetric photonic crystals with semi-Dirac dispersion at the zone center. We demonstrate that such low-symmetric photonic crystal can be considered as an effective anisotropic zero-refractive-index medium, as long as there is only one propagation mode near Dirac frequency. Four kinds of Dirac multidirectional emitters are achieved with the channel numbers of five, seven, eleven, and thirteen, respectively. Spatial power combination for such kind of Dirac directional emitter is also verified even when multiple sources are randomly placed in the anisotropic zero-refractive-index photonic crystal. PMID:26271208
NASA Astrophysics Data System (ADS)
Margheriti, L.; Ferulano, M. F.; Di Bona, M.
2006-11-01
Shear wave splitting is measured at 14 seismic stations in the Reggio Emilia region above local background seismicity and two sequences of seismic events. The good quality of the waveforms together with the favourable distribution of earthquake foci allows us to place strong constraints on the geometry and the depth of the anisotropic volume. It is about 60 km2 wide and located between 6 and 11 km depth, inside Mesozoic age carbonate rocks. The splitting results suggest also the presence of a shallower anisotropic layer about 1 km thick and few km wide in the Pliocene-Quaternary alluvium above the Mesozoic layer. The fast polarization directions (N30°E) are approximately parallel to the maximum horizontal stress (σ1 is SSW-NNE) in the region and also parallel to the strike of the main structural features in the Reggio Emilia area. The size of the delay times suggests about 4.5 per cent shear wave velocity anisotropy. These parameters agree with an interpretation of seismic anisotropy in terms of the extensive-dilatancy anisotropy model which considers the rock volume to be pervaded by fluid-saturated microcracks aligned by the active stress field. We cannot completely rule out the contribution of aligned macroscopic fractures as the cause of the shear wave anisotropy even if the parallel shear wave polarizations we found are diagnostic of transverse isotropy with a horizontal axis of symmetry. This symmetry is commonly explained by parallel stress-aligned microcracks.
NASA Astrophysics Data System (ADS)
Červený, Vlastislav; Pšenčík, Ivan
2017-08-01
Integral superposition of Gaussian beams is a useful generalization of the standard ray theory. It removes some of the deficiencies of the ray theory like its failure to describe properly behaviour of waves in caustic regions. It also leads to a more efficient computation of seismic wavefields since it does not require the time-consuming two-point ray tracing. We present the formula for a high-frequency elementary Green function expressed in terms of the integral superposition of Gaussian beams for inhomogeneous, isotropic or anisotropic, layered structures, based on the dynamic ray tracing (DRT) in Cartesian coordinates. For the evaluation of the superposition formula, it is sufficient to solve the DRT in Cartesian coordinates just for the point-source initial conditions. Moreover, instead of seeking 3 × 3 paraxial matrices in Cartesian coordinates, it is sufficient to seek just 3 × 2 parts of these matrices. The presented formulae can be used for the computation of the elementary Green function corresponding to an arbitrary direct, multiply reflected/transmitted, unconverted or converted, independently propagating elementary wave of any of the three modes, P, S1 and S2. Receivers distributed along or in a vicinity of a target surface may be situated at an arbitrary part of the medium, including ray-theory shadow regions. The elementary Green function formula can be used as a basis for the computation of wavefields generated by various types of point sources (explosive, moment tensor).
Dynamic behavior of the interface of striplike structures in driven lattice gases
NASA Astrophysics Data System (ADS)
Saracco, Gustavo P.; Albano, Ezequiel V.
2008-09-01
In this work, the dynamic behavior of the interfaces in both the standard and random driven lattice gas models (DLG and RDLG, respectively) is investigated via numerical Monte Carlo simulations in two dimensions. These models consider a lattice gas of density ρ=1/2 with nearest-neighbor attractive interactions between particles under the influence of an external driven field applied along one fixed direction in the case of the DLG model, and a randomly varying direction in the case of the RDLG model. The systems are also in contact with a reservoir at temperature T . Those systems undergo a second-order nonequilibrium phase transition between an ordered state characterized by high-density strips crossing the sample along the driving field, and a quasilattice gas disordered state. For T≲Tc , the average interface width of the strips (W) was measured as a function of the lattice size and the anisotropic shape factor. It was found that the saturation value Wsat2 only depends on the lattice size parallel to the external field axis Ly and exhibits two distinct regimes: Wsat2∝lnLy for low temperatures, that crosses over to Wsat2∝Ly2αI near the critical zone, αI=1/2 being the roughness exponent of the interface. By using the relationship αI=1/(1+ΔI) , the anisotropic exponent for the interface of the DLG model was estimated, giving ΔI≃1 , in agreement with the computed value for anisotropic bulk exponent ΔB in a recently proposed theoretical approach. At the crossover region between both regimes, we observed indications of bulk criticality. The time evolution of W at Tc was also monitored and shows two growing stages: first one observes that W∝lnt for several decades, and in the following times one has W∝tβI , where βI is the dynamic exponent of the interface width. By using this value we estimated the dynamic critical exponent of the correlation length in the perpendicular direction to the external field, giving z⊥I≈4 , which is consistent with the dynamic exponent of the bulk critical transition z⊥B in both theoretical approaches developed for the standard model. A similar scenario was also observed in the RDLG model, suggesting that both models may belong to the same universality class.
NASA Astrophysics Data System (ADS)
Xuan, Yue
Background. Soft materials such as polymers and soft tissues have diverse applications in bioengineering, medical care, and industry. Quantitative mechanical characterization of soft materials at multiscales is required to assure that appropriate mechanical properties are presented to support the normal material function. Indentation test has been widely used to characterize soft material. However, the measurement of in situ contact area is always difficult. Method of Approach. A transparent indenter method was introduced to characterize the nonlinear behaviors of soft materials under large deformation. This approach made the direct measurement of contact area and local deformation possible. A microscope was used to capture the contact area evolution as well as the surface deformation. Based on this transparent indenter method, a novel transparent indentation measurement systems has been built and multiple soft materials including polymers and pericardial tissue have been characterized. Seven different indenters have been used to study the strain distribution on the contact surface, inner layer and vertical layer. Finite element models have been built to simulate the hyperelastic and anisotropic material behaviors. Proper material constants were obtained by fitting the experimental results. Results.Homogeneous and anisotropic silicone rubber and porcine pericardial tissue have been examined. Contact area and local deformation were measured by real time imaging the contact interface. The experimental results were compared with the predictions from the Hertzian equations. The accurate measurement of contact area results in more reliable Young's modulus, which is critical for soft materials. For the fiber reinforced anisotropic silicone rubber, the projected contact area under a hemispherical indenter exhibited elliptical shape. The local surface deformation under indenter was mapped using digital image correlation program. Punch test has been applied to thin films of silicone rubber and porcine pericardial tissue and results were analyzed using the same method. Conclusions. The transparent indenter testing system can effectively reduce the material properties measurement error by directly measuring the contact radii. The contact shape can provide valuable information for the anisotropic property of the material. Local surface deformation including contact surface, inner layer and vertical plane can be accurately tracked and mapped to study the strain distribution. The potential usage of the transparent indenter measurement system to investigate biological and biomaterials was verified. The experimental data including the real-time contact area combined with the finite element simulation would be powerful tool to study mechanical properties of soft materials and their relation to microstructure, which has potential in pathologies study such as tissue repair and surgery plan. Key words: transparent indenter, large deformation, soft material, anisotropic.
NASA Astrophysics Data System (ADS)
Bing, Xue; Yicai, Ji
2018-06-01
In order to understand directly and analyze accurately the detected magnetotelluric (MT) data on anisotropic infinite faults, two-dimensional partial differential equations of MT fields are used to establish a model of anisotropic infinite faults using the Fourier transform method. A multi-fault model is developed to expand the one-fault model. The transverse electric mode and transverse magnetic mode analytic solutions are derived using two-infinite-fault models. The infinite integral terms of the quasi-analytic solutions are discussed. The dual-fault model is computed using the finite element method to verify the correctness of the solutions. The MT responses of isotropic and anisotropic media are calculated to analyze the response functions by different anisotropic conductivity structures. The thickness and conductivity of the media, influencing MT responses, are discussed. The analytic principles are also given. The analysis results are significant to how MT responses are perceived and to the data interpretation of the complex anisotropic infinite faults.
Menezes de Oliveira, Marilia; Wen, Peng; Ahfock, Tony
2016-09-01
This paper focuses on electroconvulsive therapy (ECT) and head models to investigate temperature profiles arising when anisotropic thermal and electrical conductivities are considered in the skull layer. The aim was to numerically investigate the threshold for which this therapy operates safely to the brain, from the thermal point of view. A six-layer spherical head model consisting of scalp, fat, skull, cerebro-spinal fluid, grey matter and white matter was developed. Later on, a realistic human head model was also implemented. These models were built up using the packages from COMSOL Inc. and Simpleware Ltd. In these models, three of the most common electrode montages used in ECT were applied. Anisotropic conductivities were derived using volume constraint and included in both spherical and realistic head models. The bio-heat transferring problem governed by Laplace equation was solved numerically. The results show that both the tensor eigenvalues of electrical conductivity and the electrode montage affect the maximum temperature, but thermal anisotropy does not have a significant influence. Temperature increases occur mainly in the scalp and fat, and no harm is caused to the brain by the current applied during ECT. The work assures the thermal safety of ECT and also provides a numerical method to investigate other non-invasive therapies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yahagi, Y.; Miura, D.; Sakuma, A.
2018-05-01
We investigated the anisotropic magnetoresistance (AMR) effects in ferromagnetic-metal multi-layers stacked on non-magnetic insulators in the context of microscopic theory. We represented this situation with tight-binding models that included the exchange and Rashba fields, where the Rashba field was assumed to originate from spin-orbit interactions as junction effects with the insulator. To describe the AMR ratios, the DC conductivity was calculated based on the Kubo formula. As a result, we showed that the Rashba field induced both perpendicular and in-plane AMR effects and that the perpendicular AMR effect rapidly decayed with increasing film thickness.
Tunnelling anisotropic magnetoresistance at La{sub 0.67}Sr{sub 0.33}MnO{sub 3}-graphene interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, L. C., E-mail: lee.phillips@cantab.net; Yan, W.; Kar-Narayan, S.
2016-03-14
Using ferromagnetic La{sub 0.67}Sr{sub 0.33}MnO{sub 3} electrodes bridged by single-layer graphene, we observe magnetoresistive changes of ∼32–35 MΩ at 5 K. Magneto-optical Kerr effect microscopy at the same temperature reveals that the magnetoresistance arises from in-plane reorientations of electrode magnetization, evidencing tunnelling anisotropic magnetoresistance at the La{sub 0.67}Sr{sub 0.33}MnO{sub 3}-graphene interfaces. Large resistance switching without spin transport through the non-magnetic channel could be attractive for graphene-based magnetic-sensing applications.
NASA Astrophysics Data System (ADS)
Chen, X. W.; Zhao, C. Y.; Wang, B. X.
2018-05-01
Thermal barrier coatings are common porous materials coated on the surface of devices operating under high temperatures and designed for heat insulation. This study presents a comprehensive investigation on the microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings. Based on the quartet structure generation set algorithm, the finite-difference-time-domain method is applied to calculate angular scattering intensity distribution of complicated random microstructure, which takes wave nature into account. Combining Monte Carlo method with Particle Swarm Optimization, asymmetry factor, scattering coefficient and absorption coefficient are retrieved simultaneously. The retrieved radiative properties are identified with the angular scattering intensity distribution under different pore shapes, which takes dependent scattering and anisotropic pore shape into account implicitly. It has been found that microstructure significantly affects the radiative properties in thermal barrier coatings. Compared with spherical shape, irregular anisotropic pore shape reduces the forward scattering peak. The method used in this paper can also be applied to other porous media, which designs a frame work for further quantitative study on porous media.
NASA Technical Reports Server (NTRS)
Nemeth, Noel
2013-01-01
Models that predict the failure probability of monolithic glass and ceramic components under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" failure models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This report develops a formulation to describe the probability density distribution of the orientation of critical strength-controlling flaws that results from an applied load. This distribution is a function of the multiaxial stress state, the shear sensitivity of the flaws, the Weibull modulus, and the strength anisotropy. Examples are provided showing the predicted response on the unit sphere for various stress states for isotropic and transversely isotropic (anisotropic) materials--including the most probable orientation of critical flaws for offset uniaxial loads with strength anisotropy. The author anticipates that this information could be used to determine anisotropic stiffness degradation or anisotropic damage evolution for individual brittle (or quasi-brittle) composite material constituents within finite element or micromechanics-based software
Li, Diao; Jussila, Henri; Karvonen, Lasse; Ye, Guojun; Lipsanen, Harri; Chen, Xianhui; Sun, Zhipei
2015-01-01
Black phosphorus (BP) has recently been rediscovered as a new and interesting two-dimensional material due to its unique electronic and optical properties. Here, we study the linear and nonlinear optical properties of BP flakes. We observe that both the linear and nonlinear optical properties are anisotropic and can be tuned by the film thickness in BP, completely different from other typical two-dimensional layered materials (e.g., graphene and the most studied transition metal dichalcogenides). We then use the nonlinear optical properties of BP for ultrafast (pulse duration down to ~786 fs in mode-locking) and large-energy (pulse energy up to >18 nJ in Q-switching) pulse generation in fiber lasers at the near-infrared telecommunication band ~1.5 μm. We observe that the output of our BP based pulsed lasers is linearly polarized (with a degree-of-polarization ~98% in mode-locking, >99% in Q-switching, respectively) due to the anisotropic optical property of BP. Our results underscore the relatively large optical nonlinearity of BP with unique polarization and thickness dependence, and its potential for polarized optical pulse generation, paving the way to BP based nonlinear and ultrafast photonic applications (e.g., ultrafast all-optical polarization switches/modulators, frequency converters etc.). PMID:26514090
NASA Astrophysics Data System (ADS)
Zhang, C. Y.; Yu, M.
2018-03-01
Atomic layers of GaP and InP binary compounds with unique anisotropic structural, electronic and mechanical properties have been predicted from first-principle molecular dynamics simulations. These new members of the phosphide binary compound family stabilize to a sandwiched two-dimensional (2D) crystalline structure with orthorhombic lattice symmetry and high buckling of 2.14 Å-2.46 Å. Their vibration modes are similar to those of phosphorene with six Raman active modes ranging from ˜80 cm-1 to 400 cm-1. The speeds of sound in their phonon dispersions reflect anisotropy in their elastic constants, which was further confirmed by their strong directional dependence of Young’s moduli and effective nonlinear elastic moduli. They show wide bandgap semiconductor behavior with fundamental bandgaps of 2.89 eV for GaP and 2.59 eV for InP, respectively, even wider than their bulk counterparts. Such bandgaps were found to be tunable under strain. In particular, a direct-indirect bandgap transition was found under certain strains along zigzag or biaxial orientations, reflecting their promising applications in strain-induced bandgap engineering in nanoelectronics and photovoltaics. Feasible pathways to realize these novel 2D phosphide compounds are also proposed.
Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes
NASA Astrophysics Data System (ADS)
O'Brien, S. A.; Harvey, A.; Griffin, A.; Donnelly, T.; Mulcahy, D.; Coleman, J. N.; Donegan, J. F.; McCloskey, D.
2017-11-01
Liquid phase exfoliation allows large scale production of 2D materials in solution. The particles are highly anisotropic and strongly scatter light. While spherical particles can be accurately and precisely described by a single parameter—the radius, 2D nanoflakes, however, cannot be so easily described. We investigate light scattering in aqueous solutions of 2D hexagonal boron nitride nanoflakes in the single and multiple scattering regimes. In the single scattering regime, the anisotropic 2D materials show a much stronger depolarization of light when compared to spherical particles of similar size. In the multiple scattering regime, the scattering as a function of optical path for hexagonal boron nitride nanoflakes of a given lateral length was found to be qualitatively equivalent to scattering from spheres with the same diameter. We also report the presence of random lasing in high concentration suspensions of aqueous h-BN mixed with Rhodamine B dye. The h-BN works as a scattering agent and Rhodamine B as a gain medium for the process. We observed random lasing at 587 nm with a threshold energy of 0.8 mJ.
Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes.
O'Brien, S A; Harvey, A; Griffin, A; Donnelly, T; Mulcahy, D; Coleman, J N; Donegan, J F; McCloskey, D
2017-11-24
Liquid phase exfoliation allows large scale production of 2D materials in solution. The particles are highly anisotropic and strongly scatter light. While spherical particles can be accurately and precisely described by a single parameter-the radius, 2D nanoflakes, however, cannot be so easily described. We investigate light scattering in aqueous solutions of 2D hexagonal boron nitride nanoflakes in the single and multiple scattering regimes. In the single scattering regime, the anisotropic 2D materials show a much stronger depolarization of light when compared to spherical particles of similar size. In the multiple scattering regime, the scattering as a function of optical path for hexagonal boron nitride nanoflakes of a given lateral length was found to be qualitatively equivalent to scattering from spheres with the same diameter. We also report the presence of random lasing in high concentration suspensions of aqueous h-BN mixed with Rhodamine B dye. The h-BN works as a scattering agent and Rhodamine B as a gain medium for the process. We observed random lasing at 587 nm with a threshold energy of 0.8 mJ.
Meng, Lili; Bian, Ruixin; Guo, Cheng; Xu, Bojie; Liu, Huan; Jiang, Lei
2018-06-01
Recent years have witnessed the booming development of transparent flexible electrodes (TFEs) for their applications in electronics and optoelectronic devices. Various strategies have thus been developed for preparing TFEs with higher flexibility and conductivity. However, little work has focused on TFEs with anisotropic conductivity. Here, a facile strategy of directional liquid transfer is proposed, guided by a conical fibers array (CFA), based on which silver nanowires (AgNWs) are aligned on a soft poly(ethylene terephthalate) substrate in large scale. After further coating a second thin layer of the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), a TFE with notable anisotropic conductivity and excellent optical transmittance of 95.2% is prepared. It is proposed that the CFA enables fine control over the receding of the three-phase contact line during the dewetting process, where AgNWs are guided and aligned by the as-generated directional stress. Moreover, anisotropic electrochemical deposition is enabled where the Cu nanoparticles deposit only on the oriented AgNWs, leading to a surface with anisotropic wetting behavior. Importantly, the approach enables alignment of AgNWs via multiple directions at one step. It is envisioned that the as-developed approach will provide an optional approach for simple and low-cost preparation of TFE with various functions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optical and structural properties of cobalt-permalloy slanted columnar heterostructure thin films
NASA Astrophysics Data System (ADS)
Sekora, Derek; Briley, Chad; Schubert, Mathias; Schubert, Eva
2017-11-01
Optical and structural properties of sequential Co-column-NiFe-column slanted columnar heterostructure thin films with an Al2O3 passivation coating are reported. Electron-beam evaporated glancing angle deposition is utilized to deposit the sequential multiple-material slanted columnar heterostructure thin films. Mueller matrix generalized spectroscopic ellipsometry data is analyzed with a best-match model approach employing the anisotropic Bruggeman effective medium approximation formalism to determine bulk-like and anisotropic optical and structural properties of the individual Co and NiFe slanted columnar material sub-layers. Scanning electron microscopy is applied to image the Co-NiFe sequential growth properties and to verify the results of the ellipsometric analysis. Comparisons to single-material slanted columnar thin films and optically bulk solid thin films are presented and discussed. We find that the optical and structural properties of each material sub-layer of the sequential slanted columnar heterostructure film are distinct from each other and resemble those of their respective single-material counterparts.
NASA Astrophysics Data System (ADS)
Arimoto, Keisuke; Nakazawa, Hiroki; Mitsui, Shohei; Utsuyama, Naoto; Yamanaka, Junji; Hara, Kosuke O.; Usami, Noritaka; Nakagawa, Kiyokazu
2017-11-01
A strained Si/relaxed SiGe heterostructure grown on Si(110) substrate is attractive as a platform for high-hole-mobility Si-based electronic devices. To improve the electrical property, a smoother surface is desirable. In this study, we investigated surface morphology and microstructural aspects of strained Si/relaxed SiGe/Si(110) heterostructures grown by solid-source (SS) molecular beam epitaxy (MBE). It was revealed that SSMBE provides a way to grow strained Si/relaxed SiGe heterostructures with smooth surfaces. In addition, it was found that the strain in the SiGe layer of the SSMBE-grown sample is highly anisotropic whereas that of the GSMBE-grown sample is almost biaxially relaxed. Along with the surface morphology, the symmetry in degree of strain relaxation has implications for the electrical property. Results of a calculation shows that anisotropic strain is preferable for device application since it confines holes solely in the strained Si layer where hole mobility is enhanced.
Kondo scattering in δ-doped LaTiO3/SrTiO3 interfaces: Renormalization by spin-orbit interactions
NASA Astrophysics Data System (ADS)
Das, Shubhankar; Rastogi, A.; Wu, Lijun; Zheng, Jin-Cheng; Hossain, Z.; Zhu, Yimei; Budhani, R. C.
2014-08-01
We present a study of δ doping at the LaTiO3/SrTiO3 interface with isostructural antiferromagnetic perovskite LaCrO3 that dramatically alters the properties of the two-dimensional electron gas at the interface. The effects include a reduction in sheet-carrier density, prominence of the low-temperature resistivity minimum, enhancement of weak antilocalization below 10 K, and observation of a strong anisotropic magnetoresistance (MR). The positive and negative MR for out-of-plane and in-plane fields, respectively, and the field and temperature dependencies of MR suggest Kondo scattering by localized Ti3+ moments renormalized by spin-orbit interaction at T < 10 K, with the increased δ-layer thickness. Electron-energy-loss spectroscopy and density functional calculations provide convincing evidence of blocking of electron transfer from LTO to STO by the δ layer.
Bottom-up assembly of metallic germanium
NASA Astrophysics Data System (ADS)
Scappucci, Giordano; Klesse, Wolfgang M.; Yeoh, Lareine A.; Carter, Damien J.; Warschkow, Oliver; Marks, Nigel A.; Jaeger, David L.; Capellini, Giovanni; Simmons, Michelle Y.; Hamilton, Alexander R.
2015-08-01
Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated lasers, and a plasmonic conductor for bio-sensing. Common to these diverse applications is the need for homogeneous, high electron densities in three-dimensions (3D). Here we use a bottom-up approach to demonstrate the 3D assembly of atomically sharp doping profiles in germanium by a repeated stacking of two-dimensional (2D) high-density phosphorus layers. This produces high-density (1019 to 1020 cm-3) low-resistivity (10-4Ω · cm) metallic germanium of precisely defined thickness, beyond the capabilities of diffusion-based doping technologies. We demonstrate that free electrons from distinct 2D dopant layers coalesce into a homogeneous 3D conductor using anisotropic quantum interference measurements, atom probe tomography, and density functional theory.
NASA Astrophysics Data System (ADS)
Liu, Pingwei; Jin, Zhong; Katsukis, Georgios; Drahushuk, Lee William; Shimizu, Steven; Shih, Chih-Jen; Wetzel, Eric D.; Taggart-Scarff, Joshua K.; Qing, Bo; Van Vliet, Krystyn J.; Li, Richard; Wardle, Brian L.; Strano, Michael S.
2016-07-01
Two-dimensional (2D) materials can uniquely span the physical dimensions of a surrounding composite matrix in the limit of maximum reinforcement. However, the alignment and assembly of continuous 2D components at high volume fraction remain challenging. We use a stacking and folding method to generate aligned graphene/polycarbonate composites with as many as 320 parallel layers spanning 0.032 to 0.11 millimeters in thickness that significantly increases the effective elastic modulus and strength at exceptionally low volume fractions of only 0.082%. An analogous transverse shear scrolling method generates Archimedean spiral fibers that demonstrate exotic, telescoping elongation at break of 110%, or 30 times greater than Kevlar. Both composites retain anisotropic electrical conduction along the graphene planar axis and transparency. These composites promise substantial mechanical reinforcement, electrical, and optical properties at highly reduced volume fraction.
Liu, Pingwei; Jin, Zhong; Katsukis, Georgios; Drahushuk, Lee William; Shimizu, Steven; Shih, Chih-Jen; Wetzel, Eric D; Taggart-Scarff, Joshua K; Qing, Bo; Van Vliet, Krystyn J; Li, Richard; Wardle, Brian L; Strano, Michael S
2016-07-22
Two-dimensional (2D) materials can uniquely span the physical dimensions of a surrounding composite matrix in the limit of maximum reinforcement. However, the alignment and assembly of continuous 2D components at high volume fraction remain challenging. We use a stacking and folding method to generate aligned graphene/polycarbonate composites with as many as 320 parallel layers spanning 0.032 to 0.11 millimeters in thickness that significantly increases the effective elastic modulus and strength at exceptionally low volume fractions of only 0.082%. An analogous transverse shear scrolling method generates Archimedean spiral fibers that demonstrate exotic, telescoping elongation at break of 110%, or 30 times greater than Kevlar. Both composites retain anisotropic electrical conduction along the graphene planar axis and transparency. These composites promise substantial mechanical reinforcement, electrical, and optical properties at highly reduced volume fraction. Copyright © 2016, American Association for the Advancement of Science.
Mandel, Karl; Granath, Tim; Wehner, Tobias; Rey, Marcel; Stracke, Werner; Vogel, Nicolas; Sextl, Gerhard; Müller-Buschbaum, Klaus
2017-01-24
A smart optical composite material with dynamic isotropic and anisotropic optical properties by combination of luminescence and high reflectivity was developed. This combination enables switching between luminescence and angle-dependent reflectivity by changing the applied wavelength of light. The composite is formed as anisotropic core/shell particles by coating superparamagnetic iron oxide-silica microrods with a layer of the luminescent metal-organic framework (MOF) 3 ∞ [Eu 2 (BDC) 3 ]·2DMF·2H 2 O (BDC 2- = 1,4-benzenedicarboxylate). The composite particles can be rotated by an external magnet. Their anisotropic shape causes changes in the reflectivity and diffraction of light depending on the orientation of the composite particle. These rotation-dependent optical properties are complemented by an isotropic luminescence resulting from the MOF shell. If illuminated by UV light, the particles exhibit isotropic luminescence while the same sample shows anisotropic optical properties when illuminated with visible light. In addition to direct switching, the optical properties can be tailored continuously between isotropic red emission and anisotropic reflection of light if the illuminating light is tuned through fractions of both UV and visible light. The integration and control of light emission modes within a homogeneous particle dispersion marks a smart optical material, addressing fundamental directions for research on switchable multifunctional materials. The material can function as an optic compass or could be used as an optic shutter that can be switched by a magnetic field, e.g., for an intensity control for waveguides in the visible range.
Inorganic Bi/In thermal resist as a high-etch-ratio patterning layer for CF4/CHF3/O2 plasma etch
NASA Astrophysics Data System (ADS)
Tu, Yuqiang; Chapman, Glenn H.; Peng, Jun
2004-05-01
Bimetallic thin films containing indium and with low eutectic points, such as Bi/In, have been found to form highly sensitive thermal resists. They can be exposed by lasers with a wide range of wavelengths and be developed by diluted RCA2 solutions. The exposed bimetallic resist Bi/In can work as an etch masking layer for alkaline-based (KOH, TMAH and EDP) "wet" Si anisotropic etching. Current research shows that it can also act as a patterning and masking layer for Si and SiO2 plasma "dry" etch using CF4/CHF3. The profile of etched structures can be tuned by adding CHF3 and other gases such as Ar, and by changing the CF4/CHF3 ratio. Depending on the fluorocarbon plasma etching recipe the etch rate of laser exposed Bi/In can be as low as 0.1nm/min, 500 times lower than organic photoresists. O2 plasma ashing has little etching effect on exposed Bi/In, indicating that laser exposure is an oxidation process. Experiment result shows that single metal Indium film and bilayer Sn/In exhibit thermal resist characteristics but at higher exposure levels. They can be developed in diluted RCA2 solution and used as etch mask layers for Si anisotropic etch and plasma etch.
Tanaka, Shigeru; Nagao, Soichi; Nishino, Tetsuro
2011-01-01
Information processing of the cerebellar granular layer composed of granule and Golgi cells is regarded as an important first step toward the cerebellar computation. Our previous theoretical studies have shown that granule cells can exhibit random alternation between burst and silent modes, which provides a basis of population representation of the passage-of-time (POT) from the onset of external input stimuli. On the other hand, another computational study has reported that granule cells can exhibit synchronized oscillation of activity, as consistent with observed oscillation in local field potential recorded from the granular layer while animals keep still. Here we have a question of whether an identical network model can explain these distinct dynamics. In the present study, we carried out computer simulations based on a spiking network model of the granular layer varying two parameters: the strength of a current injected to granule cells and the concentration of Mg2+ which controls the conductance of NMDA channels assumed on the Golgi cell dendrites. The simulations showed that cells in the granular layer can switch activity states between synchronized oscillation and random burst-silent alternation depending on the two parameters. For higher Mg2+ concentration and a weaker injected current, granule and Golgi cells elicited spikes synchronously (synchronized oscillation state). In contrast, for lower Mg2+ concentration and a stronger injected current, those cells showed the random burst-silent alternation (POT-representing state). It is suggested that NMDA channels on the Golgi cell dendrites play an important role for determining how the granular layer works in response to external input. PMID:21779155
NASA Astrophysics Data System (ADS)
Dutta-Gupta, Shourya; Dabidian, Nima; Kholmanov, Iskandar; Belkin, Mikhail A.; Shvets, Gennady
2017-03-01
Plasmonic metasurfaces have been employed for moulding the flow of transmitted and reflected light, thereby enabling numerous applications that benefit from their ultra-thin sub-wavelength format. Their appeal is further enhanced by the incorporation of active electro-optic elements, paving the way for dynamic control of light's properties. In this paper, we realize a dynamic polarization state generator using a graphene-integrated anisotropic metasurface (GIAM) that converts the linear polarization of the incident light into an elliptical one. This is accomplished by using an anisotropic metasurface with two principal polarization axes, one of which possesses a Fano-type resonance. A gate-controlled single-layer graphene integrated with the metasurface was employed as an electro-optic element controlling the phase and intensity of light polarized along the resonant axis of the GIAM. When the incident light is polarized at an angle to the resonant axis of the metasurface, the ellipticity of the reflected light can be dynamically controlled by the application of a gate voltage. Thus accomplished dynamic polarization control is experimentally demonstrated and characterized by measuring the Stokes polarization parameters. Large changes of the ellipticity and the tilt angle of the polarization ellipse are observed. Our measurements show that the tilt angle can be changed from positive values through zero to negative values while keeping the ellipticity constant, potentially paving the way to rapid ellipsometry and other characterization techniques requiring fast polarization shifting. This article is part of the themed issue 'New horizons for nanophotonics'.
Hotspots and superswell beneath Africa inferred from surface wave anisotropic tomography.
NASA Astrophysics Data System (ADS)
Sebai, A.; Stutzmann, E.; Montagner, J.-P.; Sicilia, D.; Beucler, E.
2003-04-01
In order to study the interaction at depth of hotspots with lithosphere and asthenosphere beneath Africa, we have determined an anisotropic tomographic model using Rayleigh and Love waves. We computed phase velocities along 1480 Rayleigh wave and 452 Love wave paths crossing Africa. For each path, fundamental mode and overtone phase velocities are computed in the period range 46-240sec by waveform inversion using the method derived by Beucler at al. (2003). These phase velocities are corrected for the effect of shallow layers and their lateral variations in velocity and anisotropy are then obtained using the method of Montagner (1986). Rayleigh and Love wave phase velocity maps are inverted together with the corresponding errors to obtain the anisotropic 3D S-wave velocity model. In this model, the Afar hotspot corresponds to the strongest negative velocity anomaly. The Tibesti and Darfur hotspots are located close to the Afar zone and the possible connection between the two areas is investigated. At shallow depth, the rift system of West and Central Africa is characterized by a negative velocity anomaly where it is difficult to separate the influence of the Mt Cameroun, Darfur and Tibesti hospots. In the superswell area, the positive anomaly at shallow depth is consistent with the existence of elevated plateaux and high bathymetry suggesting that the superplume is pushing the lithosphere upward. Anisotropy directions are in agreement with the convergence of Africa toward Eurasia with a roughly North-South fast direction.
NASA Astrophysics Data System (ADS)
Li, Xing-Wang; Bai, Chao-Ying; Yue, Xiao-Peng; Greenhalgh, Stewart
2018-02-01
To overcome a major problem in current ray tracing methods, which are only capable of tracing first arrivals, and occasionally primary reflections (or mode conversions) in regular cell models, we extend in this paper the multistage triangular shortest-path method (SPM) into 3D titled transversely isotropic (TTI) anisotropic media. The proposed method is capable of tracking multi-phase arrivals composed of any kind of combinations of transmissions, mode conversions and reflections. In model parameterization, five elastic parameters, plus two angles defining the titled axis of symmetry of TTI media are sampled at the primary nodes of the tetrahedral cell, and velocity value at secondary node positions are linked by a tri-linear velocity interpolation function to the primary node velocity value of that of a tetrahedral cell, from which the group velocities of the three wave modes (qP, qSV and qSH) are computed. The multistage triangular SPM is used to track multi-phase arrivals. The uniform anisotropic test indicates that the numerical solution agrees well with the analytic solution, thus verifying the accuracy of the methodology. Several simulations and comparison results for heterogeneous models show that the proposed algorithm is able to efficiently and accurately approximate undulating surface topography and irregular subsurface velocity discontinuities. It is suitable for any combination of multi-phase arrival tracking in arbitrary tilt angle TTI media and can accommodate any magnitude of anisotropy.
Enhanced control of light and sound trajectories with three-dimensional gradient index lenses
NASA Astrophysics Data System (ADS)
Chang, T. M.; Dupont, G.; Enoch, S.; Guenneau, S.
2012-03-01
We numerically study the focusing and bending effects of light and sound waves through heterogeneous isotropic cylindrical and spherical devices. We first point out that transformation optics and acoustics show that the control of light requires spatially varying anisotropic permittivity and permeability, while the control of sound is achieved via spatially anisotropic density and isotropic compressibility. Moreover, homogenization theory applied to electromagnetic and acoustic periodic structures leads to such artificial (although not spatially varying) anisotropic permittivity, permeability and density. We stress that homogenization is thus a natural mathematical tool for the design of structured metamaterials. To illustrate the two-step geometric transform-homogenization approach, we consider the design of cylindrical and spherical electromagnetic and acoustic lenses displaying some artificial anisotropy along their optical axis (direction of periodicity of the structural elements). Applications are sought in the design of Eaton and Luneburg lenses bending light at angles ranging from 90° to 360°, or mimicking a Schwartzchild metric, i.e. a black hole. All of these spherical metamaterials are characterized by a refractive index varying inversely with the radius which is approximated by concentric layers of homogeneous material. We finally propose some structured cylindrical metamaterials consisting of infinitely conducting or rigid toroidal channels in a homogeneous bulk material focusing light or sound waves. The functionality of these metamaterials is demonstrated via full-wave three-dimensional computations using nodal elements in the context of acoustics, and finite edge-elements in electromagnetics.
Inter-comparison of isotropic and anisotropic sea ice rheology in a fully coupled model
NASA Astrophysics Data System (ADS)
Roberts, A.; Cassano, J. J.; Maslowski, W.; Osinski, R.; Seefeldt, M. W.; Hughes, M.; Duvivier, A.; Nijssen, B.; Hamman, J.; Hutchings, J. K.; Hunke, E. C.
2015-12-01
We present the sea ice climate of the Regional Arctic System Model (RASM), using a suite of new physics available in the Los Alamos Sea Ice Model (CICE5). RASM is a high-resolution fully coupled pan-Arctic model that also includes the Parallel Ocean Program (POP), the Weather Research and Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) land model. The model domain extends from ~45˚N to the North Pole and is configured to run at ~9km resolution for the ice and ocean components, coupled to 50km resolution atmosphere and land models. The baseline sea ice model configuration includes mushy-layer sea ice thermodynamics and level-ice melt ponds. Using this configuration, we compare the use of isotropic and anisotropic sea ice mechanics, and evaluate model performance using these two variants against observations including Arctic buoy drift and deformation, satellite-derived drift and deformation, and sea ice volume estimates from ICESat. We find that the isotropic rheology better approximates spatial patterns of thickness observed across the Arctic, but that both rheologies closely approximate scaling laws observed in the pack using buoys and RGPS data. A fundamental component of both ice mechanics variants, the so called Elastic-Viscous-Plastic (EVP) and Anisotropic-Elastic-Plastic (EAP), is that they are highly sensitive to the timestep used for elastic sub-cycling in an inertial-resolving coupled framework, and this has a significant affect on surface fluxes in the fully coupled framework.
NASA Astrophysics Data System (ADS)
Teramoto, Tatsuya; Shikama, Taiichi; Ueda, Akira; Hasuo, Masahiro
2018-05-01
The anisotropy in the electron velocity distribution (EVD) was measured using the polarization of two helium atom emission lines, 21P-31D (668 nm) and 23P-33D (588 nm), in a helium electron cyclotron resonance (ECR) discharge plasma. A small polarization degree of less than 4% was measured by adopting a temporal modulation technique. It was found that the polarization originated locally from around the ECR layer and that the anisotropic component of the EVD produced by ECR heating had an average kinetic energy of approximately 40 eV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinotti, M.; Pal, A.; Ren, W. J.
Weyl fermions play a major role in quantum field theory but have been quite elusive as fundamental particles. These quasi-two-dimensional bismuth layers based materials were recently designed and provide an arena for studying the interplay between anisotropic Dirac fermions, magnetism, and structural changes, allowing the formation of Weyl fermions in condensed matter. We perform an optical investigation of YbMnBi 2 , a representative type-II Weyl semimetal, and contrast its excitation spectrum with the optical response of the more conventional semimetal EuMnBi 2 . This comparative study allows us to disentangle the optical fingerprints of type-II Weyl fermions, but also challengesmore » the present theoretical understanding of their electrodynamic response.« less
NASA Astrophysics Data System (ADS)
Yamamoto, R.; Yanagita, Y.; Namaizawa, T.; Komuro, S.; Furukawa, T.; Itou, T.; Kato, R.
2018-06-01
We measured the ac magnetic susceptibility for the layered organic superconductor EtMe3P [Pd(dmit)2] 2 under pressure with a dc magnetic field applied perpendicular to the ac field. We investigated the dc field dependence of the ac susceptibility in detail and concluded that the superconductivity in EtMe3P [Pd(dmit)2] 2 is an anisotropic three-dimensional superconductivity even at low temperatures, which contrasts with the large majority of other correlated electron layered superconductors such as high-Tc cuprate and κ -(ET) 2X systems.
Multi-phase-field modeling of anisotropic crack propagation for polycrystalline materials
NASA Astrophysics Data System (ADS)
Nguyen, Thanh-Tung; Réthoré, Julien; Yvonnet, Julien; Baietto, Marie-Christine
2017-08-01
A new multi-phase-field method is developed for modeling the fracture of polycrystals at the microstructural level. Inter and transgranular cracking, as well as anisotropic effects of both elasticity and preferential cleavage directions within each randomly oriented crystal are taken into account. For this purpose, the proposed phase field formulation includes: (a) a smeared description of grain boundaries as cohesive zones avoiding defining an additional phase for grains; (b) an anisotropic phase field model; (c) a multi-phase field formulation where each preferential cleavage direction is associated with a damage (phase field) variable. The obtained framework allows modeling interactions and competition between grains and grain boundary cracks, as well as their effects on the effective response of the material. The proposed model is illustrated through several numerical examples involving a full description of complex crack initiation and propagation within 2D and 3D models of polycrystals.
Phase Diagram in a Random Mixture of Two Antiferromagnets with Competing Spin Anisotropies. I
NASA Astrophysics Data System (ADS)
Someya, Yoshiko
1981-12-01
The phase diagram of a random mixture of two antiferromagnets with competing spin anisotropies (A1-xBx) has been analyzed by extending the theory of Matsubara and Inawashiro, and Oguchi and Ishikawa. In the model assumed, the anisotropy energies are expressed by the anisotropic exchange interactions. According to this formulation, it has been shown that the concentration dependence of TN becomes a function of \\includegraphics{dummy.eps}, where P, Q=A, B; SP is a magnitude of P-spin, and JPQη is a η component of exchange integral between P- and Q-spin). Further, the phase boundary between an AF phase and an OAF (oblique antiferromagnetic) phase at T{=}0 K has been shown to be determined by α({\\equiv}SB/SA), if \\includegraphics{dummy.eps} are given. The obtained phase diagrams for Fe1-xCoxCl2, K2Mn1-xFexF4 and Fe1-xCoxCl2\\cdot2H2O are compared with the experimental ones.
Boundary conditions for gas flow problems from anisotropic scattering kernels
NASA Astrophysics Data System (ADS)
To, Quy-Dong; Vu, Van-Huyen; Lauriat, Guy; Léonard, Céline
2015-10-01
The paper presents an interface model for gas flowing through a channel constituted of anisotropic wall surfaces. Using anisotropic scattering kernels and Chapman Enskog phase density, the boundary conditions (BCs) for velocity, temperature, and discontinuities including velocity slip and temperature jump at the wall are obtained. Two scattering kernels, Dadzie and Méolans (DM) kernel, and generalized anisotropic Cercignani-Lampis (ACL) are examined in the present paper, yielding simple BCs at the wall fluid interface. With these two kernels, we rigorously recover the analytical expression for orientation dependent slip shown in our previous works [Pham et al., Phys. Rev. E 86, 051201 (2012) and To et al., J. Heat Transfer 137, 091002 (2015)] which is in good agreement with molecular dynamics simulation results. More important, our models include both thermal transpiration effect and new equations for the temperature jump. While the same expression depending on the two tangential accommodation coefficients is obtained for slip velocity, the DM and ACL temperature equations are significantly different. The derived BC equations associated with these two kernels are of interest for the gas simulations since they are able to capture the direction dependent slip behavior of anisotropic interfaces.
NASA Technical Reports Server (NTRS)
Mei, Chuh; Moorthy, Jayashree
1995-01-01
A time-domain study of the random response of a laminated plate subjected to combined acoustic and thermal loads is carried out. The features of this problem also include given uniform static inplane forces. The formulation takes into consideration a possible initial imperfection in the flatness of the plate. High decibel sound pressure levels along with high thermal gradients across thickness drive the plate response into nonlinear regimes. This calls for the analysis to use von Karman large deflection strain-displacement relationships. A finite element model that combines the von Karman strains with the first-order shear deformation plate theory is developed. The development of the analytical model can accommodate an anisotropic composite laminate built up of uniformly thick layers of orthotropic, linearly elastic laminae. The global system of finite element equations is then reduced to a modal system of equations. Numerical simulation using a single-step algorithm in the time-domain is then carried out to solve for the modal coordinates. Nonlinear algebraic equations within each time-step are solved by the Newton-Raphson method. The random gaussian filtered white noise load is generated using Monte Carlo simulation. The acoustic pressure distribution over the plate is capable of accounting for a grazing incidence wavefront. Numerical results are presented to study a variety of cases.
Prediction of weak and strong topological insulators in layered semiconductors.
NASA Astrophysics Data System (ADS)
Felser, Claudia
2013-03-01
We investigate a new class of ternary materials such as LiAuSe and KHgSb with a honeycomb structure in Au-Se and Hg-Sb layers. We demonstrate the band inversion in these materials similar to HgTe, which is a strong precondition for existence of the topological surface states. In contrast with graphene, these materials exhibit strong spin-orbit coupling and a small direct band gap at the point. Since these materials are centrosymmetric, it is straightforward to determine the parity of their wave functions, and hence their topological character. Surprisingly, the compound with strong spin-orbit coupling (KHgSb) is trivial, whereas LiAuSe is found to be a topological insulator. However KHgSb is a weak topological insulators in case of an odd number of layers in the primitive unit cell. Here, the single-layered KHgSb shows a large bulk energy gap of 0.24 eV. Its side surface hosts metallic surface states, forming two anisotropic Dirac cones. Although the stacking of even-layered structures leads to trivial insulators, the structures can host a quantum spin Hall layer with a large bulk gap, if an additional single layer exists as a stacking fault in the crystal. The reported honeycomb compounds can serve as prototypes to aid in the finding of new weak topological insulators in layered small-gap semiconductors. In collaboration with Binghai Yan, Lukas Müchler, Hai-Jun Zhang, Shou-Cheng Zhang and Jürgen Kübler.
NASA Astrophysics Data System (ADS)
Fitton, G. F.; Tchiguirinskaia, I.; Schertzer, D. J.; Lovejoy, S.
2012-12-01
Under various physical conditions (mean temperature and velocity gradients, stratification and rotation) atmospheric turbulent flows remain intrinsically anisotropic. The immediate vicinity of physical boundaries rises to a greater complexity of the anisotropy effects. In this paper we address the issue of the scaling anisotropy of the wind velocity fields within the atmospheric boundary layer (ABL). Under the universal multifractal (UM) framework we compare the small time-scale (0.1 to 1,000 seconds) boundary-layer characteristics of the wind for two different case studies. The first case study consisted of a single mast located within a wind farm in Corsica, France. Three sonic anemometers were installed on the mast at 22, 23 and 43m, measuring three-dimensional wind velocity data at 10Hz. Wakes, complex terrain and buoyancy forces influenced the measurements. The second case study (GROWIAN experiment in Germany) consisted of an array of propeller anemometers measuring wind speed inflow data at 2.5Hz over flat terrain. The propeller anemometers were positioned vertically at 10, 50, 75, 100, 125 and 150m with four horizontal measurements taken at 75, 100 and 125m. The spatial distribution allowed us to calculate the horizontal and vertical shear structure functions of the horizontal wind. Both case studies are within a kilometre from the sea. For the first case study (10Hz measurements in a wind farm test site) the high temporal resolution of the data meant we observed Kolmogorov scaling from 0.2 seconds (with intermittency correction) right up to 1,000 seconds at which point a scaling break occurred. After the break we observed a scaling power law of approximately 2, which is in agreement with Bolgiano-Obukhov scaling theory with intermittency correction. However, for the second case study (2.5Hz on flat terrain) we only observed Kolmogorov scaling from 6.4 seconds (also with intermittency correction). The spectra of horizontal velocity components remain anisotropic over high frequencies, where u1 most scales as Bolgiano-Obukhov and u2 scales as Kolmogorov. The scaling law of the vertical shears of the horizontal wind in the array varied from Kolmogorov to Bolgiano-Obukhov with height depending on the condition of stability. We interpret the results with the UM anisotropic model that greatly enhances our understanding of the ABL structure. Comparing the two case studies we found in both cases the multifractality parameter of about 1.6, which remains close to the estimates obtained for the free atmosphere. From the UM parameters, the exponent of the power law of the distribution of the extremes can be predicted. Over small scales, this exponent is of about 7.5 for the wind velocity, which is a crucial result for applications within the field of wind energy.
NASA Astrophysics Data System (ADS)
Benetis, N. P.; Sjöqvist, L.; Lund, A.; Maruani, J.
The nuclear Zeeman and the electronic nonsecular parts of the spin Hamiltonian complicate the ESR lineshape of exchanging anisotropic spin systems by introducing, at high field, "forbidden" transitions and, at low field, additional shift and splitting. We compare the nonperturbative with the secular approach for such systems. The exchange is treated within the Kaplan-Alexander limit and both A and g tensors are included, resulting in spectrum asymmetry, in contrast to previous separate treatments. The two approaches are then used to simulate the powder spectrum of OCH 2COO - and compare the results to experimental spectra of an irradiated powder of ZnAc. The powder X-band spectra simulations using the secular approach appear to be accurate. For both the low-field (20 to 200 G) and the high-field (Q-band) regions, however, the nonsecular part of the electronic term and the nuclear Zeeman term, respectively, cannot be neglected. On the other hand, the approximate approach is much faster and consequently more appropriate for treating large, multisite exchanging systems.
Two fluid anisotropic dark energy models in a scale invariant theory
NASA Astrophysics Data System (ADS)
Tripathy, S. K.; Mishra, B.; Sahoo, P. K.
2017-09-01
Some anisotropic Bianchi V dark energy models are investigated in a scale invariant theory of gravity. We consider two non-interacting fluids such as dark energy and a bulk viscous fluid. Dark energy pressure is considered to be anisotropic in different spatial directions. A dynamically evolving pressure anisotropy is obtained from the models. The models favour phantom behaviour. It is observed that, in presence of dark energy, bulk viscosity has no appreciable effect on the cosmic dynamics.
Two-relaxation-time lattice Boltzmann method for the anisotropic dispersive Henry problem
NASA Astrophysics Data System (ADS)
Servan-Camas, Borja; Tsai, Frank T.-C.
2010-02-01
This study develops a lattice Boltzmann method (LBM) with a two-relaxation-time collision operator (TRT) to cope with anisotropic heterogeneous hydraulic conductivity and anisotropic velocity-dependent hydrodynamic dispersion in the saltwater intrusion problem. The directional-speed-of-sound technique is further developed to address anisotropic hydraulic conductivity and dispersion tensors. Forcing terms are introduced in the LBM to correct numerical errors that arise during the recovery procedure and to describe the sink/source terms in the flow and transport equations. In order to facilitate the LBM implementation, the forcing terms are combined with the equilibrium distribution functions (EDFs) to create pseudo-EDFs. This study performs linear stability analysis and derives LBM stability domains to solve the anisotropic advection-dispersion equation. The stability domains are used to select the time step at which the lattice Boltzmann method provides stable solutions to the numerical examples. The LBM was implemented for the anisotropic dispersive Henry problem with high ratios of longitudinal to transverse dispersivities, and the results compared well to the solutions in the work of Abarca et al. (2007).
Terahertz emission from thermally-managed square intrinsic Josephson junction microstrip antennas
NASA Astrophysics Data System (ADS)
Klemm, Richard; Davis, Andrew; Wang, Qing
We show for thin square microstrip antennas that the transverse magnetic electromagnetic cavity modes are greatly restricted in number due to the point group symmetry of a square. For the ten lowest frequency emissions, we present plots of the orthonormal wave functions and of the angular distributions of the emission power obtained from the uniform Josephson current source and from the excitation of an electromagnetic cavity mode excited in the intrinsic Josephson junctions between the layers of a highly anisotropic layered superconductor.
Anisotropic Turbulence Models for Acoustic Propagation Through the Neutral Atmospheric Surface Layer
1998-02-01
and Brost (1984). †Specific means per unit mass. 2 Observations Top-Down Approach Bottom-Up Approach Equations for the energy spectra Equations for...R. A. Brost (1984): Top-down and bottom-up diffusion of a scalar in the convective boundary layer. J. Atmos. Sci., 41, 102–112. 62 Distribution 63...Agency Attn W21 Longbothum 9800 Savage Rd FT George G Meade MD 20755-6000 TACOM Attn AMSTA-TR-R E Shalis Mail Stop 263 Warren MI 48090 US Army
NASA Astrophysics Data System (ADS)
Ferdous, F.; Haque, A.
2007-05-01
The effect of redistribution of elastic strain relaxation on the energy band structures of GaInAsP/InP compressively strained membrane quantum wires fabricated by electron-beam lithography, reactive-ion etching and two-step epitaxial growth is theoretically studied using an 8-band k ṡp method. Anisotropic strain analysis by the finite element method shows that due to etching away the top and the bottom InP clad layers in membrane structures, redistribution of strain occurs. It is found that strain redistribution increases the effective bandgap of membrane quantum wire structures causing a blueshift of the emission frequency. Comparison with effective bandgap calculations neglecting confinement and band mixing demonstrates that neglect of these effects leads to an overestimation of the change in the bandgap. We have also investigated the effect of variation of wire width, barrier strain compensation, number of stacked quantum wire layers, and thickness of the top and the bottom residual InP layers in membrane structures on the change in the effective bandgap of membrane structures.
NASA Astrophysics Data System (ADS)
Zhang, H.; Voss, K. J.
2011-03-01
We demonstrate that the diffraction removal procedure outlined by Hapke et al. [Icarus, 199, 210 (2009)] contains an error. By following their intended scheme we found that the Hapke model is not anisotropic enough to describe the reflectance patterns.
NASA Astrophysics Data System (ADS)
Greess, S.; Egedal, J.; Olson, J.; Millet-Ayala, A.; Myers, R.; Wallace, J.; Clark, M.; Forest, C.
2017-12-01
Kinetic effects are expected to dominate the collisionless reconnection regime, where the mean free path is large enough that the anisotropic electron pressure can develop without being damped away by collisional pitch angle scattering. In simulations, the anisotropic pressure drives the formation of outflow jets [1]. These jets are expected to play a role in the reconnection layer at the Earth's magnetopause, which is currently being explored by Magnetospheric Multiscale Mission (MMS) [2]. Until recently, this regime of anisotropic pressure was inaccessible by laboratory experiments, but new data from the Terrestrial Reconnection Experiment (TREX) shows that fully collisionless reconnection can now be achieved in the laboratory. Future runs at TREX will delve deeper into this collisionless regime in both the antiparallel and guide-field cases. [1] Le, A. et al. JPP, 81(1). doi: 10.1017/S0022377814000907. [2] Burch, J. L. et al. Space Sci. Rev. 199,5. doi: 10.1007/s11214-015-0164-9 Supported in part by NSF/DOE award DE-SC0013032.
Anisotropic surface acoustic waves in tungsten/lithium niobate phononic crystals
NASA Astrophysics Data System (ADS)
Sun, Jia-Hong; Yu, Yuan-Hai
2018-02-01
Phononic crystals (PnC) were known for acoustic band gaps for different acoustic waves. PnCs were already applied in surface acoustic wave (SAW) devices as reflective gratings based on the band gaps. In this paper, another important property of PnCs, the anisotropic propagation, was studied. PnCs made of circular tungsten films on a lithium niobate substrate were analyzed by finite element method. Dispersion curves and equal frequency contours of surface acoustic waves in PnCs of various dimensions were calculated to study the anisotropy. The non-circular equal frequency contours and negative refraction of group velocity were observed. Then PnC was applied as an acoustic lens based on the anisotropic propagation. Trajectory of SAW passing PnC lens was calculated and transmission of SAW was optimized by selecting proper layers of lens and applying tapered PnC. The result showed that PnC lens can suppress diffraction of surface waves effectively and improve the performance of SAW devices.
Limit theorems for Lévy walks in d dimensions: rare and bulk fluctuations
NASA Astrophysics Data System (ADS)
Fouxon, Itzhak; Denisov, Sergey; Zaburdaev, Vasily; Barkai, Eli
2017-04-01
We consider super-diffusive Lévy walks in d≥slant 2 dimensions when the duration of a single step, i.e. a ballistic motion performed by a walker, is governed by a power-law tailed distribution of infinite variance and finite mean. We demonstrate that the probability density function (PDF) of the coordinate of the random walker has two different scaling limits at large times. One limit describes the bulk of the PDF. It is the d-dimensional generalization of the one-dimensional Lévy distribution and is the counterpart of the central limit theorem (CLT) for random walks with finite dispersion. In contrast with the one-dimensional Lévy distribution and the CLT this distribution does not have a universal shape. The PDF reflects anisotropy of the single-step statistics however large the time is. The other scaling limit, the so-called ‘infinite density’, describes the tail of the PDF which determines second (dispersion) and higher moments of the PDF. This limit repeats the angular structure of the PDF of velocity in one step. A typical realization of the walk consists of anomalous diffusive motion (described by anisotropic d-dimensional Lévy distribution) interspersed with long ballistic flights (described by infinite density). The long flights are rare but due to them the coordinate increases so much that their contribution determines the dispersion. We illustrate the concept by considering two types of Lévy walks, with isotropic and anisotropic distributions of velocities. Furthermore, we show that for isotropic but otherwise arbitrary velocity distributions the d-dimensional process can be reduced to a one-dimensional Lévy walk. We briefly discuss the consequences of non-universality for the d > 1 dimensional fractional diffusion equation, in particular the non-uniqueness of the fractional Laplacian.
Intermittency and universality of small scales of passive scalar in turbulence
NASA Astrophysics Data System (ADS)
Gotoh, Toshiyuki; Watanabe, Takeshi
2014-11-01
Recent experiments and Direct Numerical Simulations (DNSs) suggest that the small scale statistics of passive scalar may not be as ``universal'' as in the velocity case. To address this problem, we study the moments of scalar increment in steady turbulence at Rλ > 800 by using DNS up to the grid points of 40963. In order for the scalar and turbulent flow to be as faithful as possible to the assumptions that would be made in theories, Scalar 1 and Scalar 2 are simultaneously convected by the identical isotropic turbulent flow but excited by two different methods. Scalar 1 is excited by the random scalar injection which is isotropic, Gaussian and white in time at low wavenumber band, while Scalar 2 is excited by the uniform mean scalar gradient. The moments of two scalars as functions of the separation vector are expanded in terms of the Legendre polynomials to extract the scaling exponents of the moments up to the 4th anisotropic sector for Scalar 2. It is found that the exponents of the isotropic sectors seem to have the same values at separation distances in the narrow range over which the 4/3 law holds simultaneously for two scalars. The exponents of the anisotropic sectors and the cumulants of the moments will also be reported. HPCI, JHPCN, Grant-in-Aid for Sci. Res. No.24360068, Ministry of Edu. Sci., Japan.
Nano-sized Adsorbate Structure Formation in Anisotropic Multilayer System
NASA Astrophysics Data System (ADS)
Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Yanovsky, Vladimir V.
2017-05-01
In this article, we study dynamics of adsorbate island formation in a model plasma-condensate system numerically. We derive the generalized reaction-diffusion model for adsorptive multilayer system by taking into account anisotropy in transfer of adatoms between neighbor layers induced by electric field. It will be found that with an increase in the electric field strength, a structural transformation from nano-holes inside adsorbate matrix toward separated nano-sized adsorbate islands on a substrate is realized. Dynamics of adsorbate island sizes and corresponding distributions are analyzed in detail. This study provides an insight into details of self-organization of adatoms into nano-sized adsorbate islands in anisotropic multilayer plasma-condensate systems.
NASA Astrophysics Data System (ADS)
Pan, Xinpeng; Zhang, Guangzhi; Yin, Xingyao
2018-01-01
Seismic amplitude variation with offset and azimuth (AVOaz) inversion is well known as a popular and pragmatic tool utilized to estimate fracture parameters. A single set of vertical fractures aligned along a preferred horizontal direction embedded in a horizontally layered medium can be considered as an effective long-wavelength orthorhombic medium. Estimation of Thomsen's weak-anisotropy (WA) parameters and fracture weaknesses plays an important role in characterizing the orthorhombic anisotropy in a weakly anisotropic medium. Our goal is to demonstrate an orthorhombic anisotropic AVOaz inversion approach to describe the orthorhombic anisotropy utilizing the observable wide-azimuth seismic reflection data in a fractured reservoir with the assumption of orthorhombic symmetry. Combining Thomsen's WA theory and linear-slip model, we first derive a perturbation in stiffness matrix of a weakly anisotropic medium with orthorhombic symmetry under the assumption of small WA parameters and fracture weaknesses. Using the perturbation matrix and scattering function, we then derive an expression for linearized PP-wave reflection coefficient in terms of P- and S-wave moduli, density, Thomsen's WA parameters, and fracture weaknesses in such an orthorhombic medium, which avoids the complicated nonlinear relationship between the orthorhombic anisotropy and azimuthal seismic reflection data. Incorporating azimuthal seismic data and Bayesian inversion theory, the maximum a posteriori solutions of Thomsen's WA parameters and fracture weaknesses in a weakly anisotropic medium with orthorhombic symmetry are reasonably estimated with the constraints of Cauchy a priori probability distribution and smooth initial models of model parameters to enhance the inversion resolution and the nonlinear iteratively reweighted least squares strategy. The synthetic examples containing a moderate noise demonstrate the feasibility of the derived orthorhombic anisotropic AVOaz inversion method, and the real data illustrate the inversion stabilities of orthorhombic anisotropy in a fractured reservoir.
Nanoimprinted ultrafine line and space nanogratings for liquid crystal alignment.
Liu, Yan Jun; Loh, Wei Wei; Leong, Eunice Sok Ping; Kustandi, Tanu Suryadi; Sun, Xiao Wei; Teng, Jing Hua
2012-11-23
Ultrafine 50 nm line and space nanogratings were fabricated using nanoimprint lithography, and were further used as an alignment layer for liquid crystals. The surface morphologies of the nanogratings were characterized and their surface energies were estimated through the measurement of the contact angles for two different liquids. Experimental results show that the surface energies of the nanogratings are anisotropic: the surface free energy towards the direction parallel to the grating lines is higher than that in the direction perpendicular to the grating lines. Electro-optical characteristics were tested from a twisted nematic liquid crystal cell, which was assembled using two identical nanogratings. Experimental results show that such a kind of nanograting is promising as an alternative to the conventional rubbing process for liquid crystal alignment.
Elasticity and hydrodynamic properties of ``doped solvent dilute'' lamellar phases
NASA Astrophysics Data System (ADS)
Nallet, Frédéric; Roux, Didier; Quilliet, Catherine; Fabre, Pascale; Milner, Scott T.
1994-09-01
The equilibrium fluctuations and weakly out-of-equilibrium relaxation properties of “doped solvent" dilute lamellar phases are investigated, both theoretically and experimentally, in the low-frequency, long-wavelength limit. The physical system of interest is a three-component smectic A lyotropic liquid crystal where surfactant bilayers infinite in extent are periodically stacked along one direction in space and separated by a colloidal solution. Two experimentally relevant modes are found in the lowest frequency part of the fluctuation spectrum of such multicomponent systems. Both are associated to the relaxation of coupled layer displacement and colloid concentration waves. In the limit of small coupling, one mode is close to the well-known undulation/baroclinic mode of two-component lamellar phases, while the other corresponds to the Brownian diffusive motion of the colloid in an anisotropic medium. Elastic constants of the smectic liquid crystal and diffusion parameters of the colloidal solution may be deduced from a measurement of the anisotropic dispersion relation of these two modes, as illustrated by dynamic light scattering experiments on the ferrosmectic system. Les fluctuations à l'équilibre ainsi que la relaxation des états légèrement en dehors de l'équilibre des phases lamellaires à “solvant dopé” sont étudiées, aussi bien d'un point de vue théorique qu'expérimental, dans la limite de basses fréquences et de grandes longueurs d'onde. Les systèmes décrits sont des cristaux-liquides smectiques A lyotropes formés de trois constituants : un tensioactif en solution dans une suspension colloïdale forme des bicouches de grande extension latérale qui s'empilent de façon périodique le long d'une direction dans l'espace. Avec de tels systèmes anisotropes et à plusieurs constituants deux modes présents dans la partie à basse fréquence du spectre des fluctuations (associés à la relaxation d'ondes, couplées, de concentration colloïdale et de déplacement des couches smectiques) ont une certaine importance expérimentale. Dans la limite d'un couplage faible, l'un des deux modes est similaire au mode barocline des phases lamellaires à deux constituants ; le second s'identifie au mouvement brownien de diffusion d'un colloïde dans un substrat anisotrope. Les constantes élastiques du cristal liquide smectique de même que le coefficient de diffusion du colloïde peuvent en principe être déduits de la mesure des relations anisotropes de dispersion de ces deux modes ; cela est illustré par des expériences de diffusion quasi-élastique de la lumière sur des ferrosmectiques.
Liu, Dongmei; Li, Xinzhong; Borlido, Pedro Miguel de Castro; Botti, Silvana; Schmechel, Roland; Rettenmayr, Markus
2017-01-01
Layered (Bi1−xInx)2Te3-In2Te3 (x = 0.075) composites of pronounced anisotropy in structure and thermoelectric properties were produced by zone melting and subsequent coherent precipitation of In2Te3 from a (Bi1−xInx)2Te3 (x > 0.075) matrix. Employing solid state phase transformation, the Bi2Te3/In2Te3 interface density was tuned by modifying the driving force for In2Te3 precipitation. The structure-property relationship in this strongly anisotropic material is characterized thoroughly and systematically for the first time. Unexpectedly, with increasing Bi2Te3/In2Te3 interface density, an increase in electrical conductivity and a decrease in the absolute Seebeck coefficient were found. This is likely to be due to electron accumulation layers at the Bi2Te3/In2Te3 interfaces and the interplay of bipolar transport in Bi2Te3. Significantly improved thermoelectric properties of Bi2Te3-In2Te3 composites as compared to the single phase (Bi1−xInx)2Te3 solid solution are obtained. PMID:28272541
Effect of ball-milling surfactants on the interface chemistry in hot-compacted SmCo5 magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, WF; Sepehri-Amin, H; Zheng, LY
2012-11-01
Anisotropic SmCo5 nanoflakes prepared by high-energy ball-milling with surfactants have great potential in applications for high-performance nanocomposite magnets. For such "nanocomposite" applications, the surface structure and chemistry of nanoflakes are crucial for achieving high coercivity. In this study, hot-pressed samples from anisotropic SmCo5 nanoflakes, ball-milled with different surfactants, oleic acid (OA) and oleylamine (OY), were investigated. Interface layers between the SmCo5 nanoflakes were found to consist of samarium oxides and a soft magnetic Co phase. These surface layers contribute to the degradation of hard magnetic performance, which is confirmed by scanning transmission electron microscopy-energy dispersive X-ray spectroscopy analysis of themore » cross-section of a single flake ball-milled with OA. Samples milled with OY show a much thinner interface layer in compacted samples, which means that the surface degradation during ball-milling with OY is much less than that with OA. The results show clearly that the choice of proper surfactant and the control of processing parameters are the key factors for improving the surface condition of the nanoflakes and the resulting hard magnetic properties. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less
Mao, Shi-Chun; Wu, Zhen-Sen
2008-12-01
An exact solution to the two-dimensional scattering properties of an anisotropic elliptic cylinder for transverse electric polarization is presented. The internal field in an anisotropic elliptic cylinder is expressed as integral representations of Mathieu functions and Fourier series. The coefficients of the series expansion are obtained by imposing boundary conditions on the anisotropic-free-space interface. A matrix is developed to solve the nonorthogonality properties of Mathieu functions at the interface between two different media. Numerical results are given for the bistatic radar cross section and the amplitude of the total magnetic field along the x and y axes. The result is in agreement with that available as expected when an elliptic cylinder degenerates to a circular one.
Kelly, Priscilla; Liu, Mingzhao; Kuznetsova, Lyuba
2016-04-07
In this study, nano-layered Al:ZnO/ZnO hyperbolic dispersion metamaterial with a large number of layers was fabricated using the atomic layer deposition (ALD) technique. Experimental dielectric functions for Al:ZnO/ZnO structures are obtained by an ellipsometry technique in the visible and near-infrared spectral ranges. The theoretical modeling of the Al:ZnO/ZnO dielectric permittivity is done using effective medium approximation. A method for analysis of spectroscopic ellipsometry data is demonstrated to extract the optical permittivity for this highly anisotropic nano-layered metamaterial. The results of the ellipsometry analysis show that Al:ZnO/ZnO structures with a 1:9 ALD cycle ratio exhibit hyperbolic dispersion transition change near 1.8more » μm wavelength.« less
Digital polarization holography advancing geometrical phase optics.
De Sio, Luciano; Roberts, David E; Liao, Zhi; Nersisyan, Sarik; Uskova, Olena; Wickboldt, Lloyd; Tabiryan, Nelson; Steeves, Diane M; Kimball, Brian R
2016-08-08
Geometrical phase or the fourth generation (4G) optics enables realization of optical components (lenses, prisms, gratings, spiral phase plates, etc.) by patterning the optical axis orientation in the plane of thin anisotropic films. Such components exhibit near 100% diffraction efficiency over a broadband of wavelengths. The films are obtained by coating liquid crystalline (LC) materials over substrates with patterned alignment conditions. Photo-anisotropic materials are used for producing desired alignment conditions at the substrate surface. We present and discuss here an opportunity of producing the widest variety of "free-form" 4G optical components with arbitrary spatial patterns of the optical anisotropy axis orientation with the aid of a digital spatial light polarization converter (DSLPC). The DSLPC is based on a reflective, high resolution spatial light modulator (SLM) combined with an "ad hoc" optical setup. The most attractive feature of the use of a DSLPC for photoalignment of nanometer thin photo-anisotropic coatings is that the orientation of the alignment layer, and therefore of the fabricated LC or LC polymer (LCP) components can be specified on a pixel-by-pixel basis with high spatial resolution. By varying the optical magnification or de-magnification the spatial resolution of the photoaligned layer can be adjusted to an optimum for each application. With a simple "click" it is possible to record different optical components as well as arbitrary patterns ranging from lenses to invisible labels and other transparent labels that reveal different images depending on the side from which they are viewed.
Mixed-mode fracture mechanics parameters of elliptical interface cracks in anisotropic bimaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Y.; Qu, J.
1999-07-01
Two-dimensional interface cracks in anisotropic bimaterials have been studied extensively in the literature. However, solutions to three-dimensional interface cracks in anisotropic bimaterials are not available, except for circular (penny-shaped) cracks. In this paper, an elliptical crack on the interface between two anisotropic elastic half-spaces is considered. A formal solution is obtained by using the Stroh method in two dimensional elasticity in conjunction with the Fourier transform method. To illustrate the solution procedure, an elliptical delamination in a cross-ply composite is solved. Numerical results of the stress intensity factors and energy release rate along the crack front are obtained terms ofmore » the interfacial matrix M. It is found that the fields near the crack front are often in mixed mode, due to material anisotropy and the three dimensional nature of the crack front.« less
New Fe-based superconductors: properties relevant for applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putti, M; Pallecchi, I; Bellingeri, E
2009-01-01
Less than two years after the discovery of high temperature superconductivity in oxypnictide LaFeAs(O, F) several families of superconductors based on Fe layers (1111, 122, 11, 111) are available. They share several characteristics with cuprate superconductors that compromise easy applications, such as the layered structure, the small coherence length and unconventional pairing. On the other hand, the Fe-based superconductors have metallic parent compounds and their electronic anisotropy is generally smaller and does not strongly depend on the level of doping, and the supposed order parameter symmetry is s-wave, thus in principle not so detrimental to current transmission across grain boundaries.more » From the application point of view, the main efforts are still devoted to investigate the superconducting properties, to distinguish intrinsic from extrinsic behaviors and to compare the different families in order to identify which one is the fittest for the quest for better and more practical superconductors. The 1111 family shows the highest T{sub c}, huge but also the most anisotropic upper critical field and in-field, fan-shaped resistive transitions reminiscent of those of cuprates. On the other hand, the 122 family is much less anisotropic with sharper resistive transitions as in low temperature superconductors, but with about half the T{sub c} of the 1111 compounds. An overview of the main superconducting properties relevant to applications will be presented. Upper critical field, electronic anisotropy parameter, and intragranular and intergranular critical current density will be discussed and compared, where possible, across the Fe-based superconductor families.« less
Inter-layer potential for hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Leven, Itai; Azuri, Ido; Kronik, Leeor; Hod, Oded
2014-03-01
A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.
Transfer Printing Method to Obtain Polarized Light Emission in Organic Light-Emitting Device
NASA Astrophysics Data System (ADS)
Noh, Hee Yeon; Park, Chang-sub; Park, Ji-Sub; Kang, Shin-Won; Kim, Hak-Rin
2012-06-01
We demonstrate a transfer printing method to obtain polarized light emission in organic light-emitting devices (OLEDs). On a rubbed self-assembled monolayer (SAM), a spin-coated liquid crystalline light-emissive polymer is aligned along the rubbing direction because of the anisotropic interfacial intermolecular interaction. Owing to the low surface energy of the SAM surface, the light-emissive layer was easily transferred to a patterned poly(dimethylsiloxane) (PDMS) stamp surface without degrading the ordering. Finally, a polarized light-emissive OLED device was prepared by transferring the patterned light-emissive layer to the charge transport layer of the OLED structure.
NASA Astrophysics Data System (ADS)
Boichuk, T. M.; Bachinskiy, V. T.; Vanchuliak, O. Ya.; Minzer, O. P.; Garazdiuk, M.; Motrich, A. V.
2014-08-01
This research presents the results of investigation of laser polarization fluorescence of biological layers (histological sections of the myocardium). The polarized structure of autofluorescence imaging layers of biological tissues was detected and investigated. Proposed the model of describing the formation of polarization inhomogeneous of autofluorescence imaging biological optically anisotropic layers. On this basis, analytically and experimentally tested to justify the method of laser polarimetry autofluorescent. Analyzed the effectiveness of this method in the postmortem diagnosis of infarction. The objective criteria (statistical moments) of differentiation of autofluorescent images of histological sections myocardium were defined. The operational characteristics (sensitivity, specificity, accuracy) of these technique were determined.
Template-Free Mesoporous Electrochromic Films on Flexible Substrates from Tungsten Oxide Nanorods
Heo, Sungyeon; Kim, Jongwook; Ong, Gary K.; ...
2017-08-08
Low-temperature processed mesoporous nanocrystal thin films are platforms for fabricating functional composite thin films on flexible substrates. Using a random arrangement of anisotropic nanocrystals can be a facile solution to generate pores without templates. However, the tendency for anisotropic particles to spontaneously assemble into a compact structure must be overcome. Here in this paper, we present a method to achieve random networking of nanorods during solution phase deposition by switching their ligand-stabilized colloidal nature into a charge-stabilized nature by a ligand-stripping chemistry. Ligand-stripped tungsten suboxide (WO 2.72) nanorods result in uniform mesoporous thin films owing to repulsive electrostatic forces preventingmore » nanorods from densely packing. Porosity and pore size distribution of thin films are controlled by changing the aspect ratio of the nanorods. This template-free mesoporous structure, achieved without annealing, provides a framework for introducing guest components, therefore enabling our fabrication of inorganic nanocomposite electrochromic films on flexible substrates. Following infilling of niobium polyoxometalate clusters into pores and successive chemical condensation, a WO x–NbO x composite film is produced that selectively controls visible and near-infrared light transmittance without any annealing required. The composite shows rapid switching kinetics and can be stably cycled between optical states over 2000 times. This simple strategy of using anisotropic nanocrystals gives insight into mesoporous thin film fabrication with broader applications for flexible devices.« less
Template-Free Mesoporous Electrochromic Films on Flexible Substrates from Tungsten Oxide Nanorods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heo, Sungyeon; Kim, Jongwook; Ong, Gary K.
Low-temperature processed mesoporous nanocrystal thin films are platforms for fabricating functional composite thin films on flexible substrates. Using a random arrangement of anisotropic nanocrystals can be a facile solution to generate pores without templates. However, the tendency for anisotropic particles to spontaneously assemble into a compact structure must be overcome. Here in this paper, we present a method to achieve random networking of nanorods during solution phase deposition by switching their ligand-stabilized colloidal nature into a charge-stabilized nature by a ligand-stripping chemistry. Ligand-stripped tungsten suboxide (WO 2.72) nanorods result in uniform mesoporous thin films owing to repulsive electrostatic forces preventingmore » nanorods from densely packing. Porosity and pore size distribution of thin films are controlled by changing the aspect ratio of the nanorods. This template-free mesoporous structure, achieved without annealing, provides a framework for introducing guest components, therefore enabling our fabrication of inorganic nanocomposite electrochromic films on flexible substrates. Following infilling of niobium polyoxometalate clusters into pores and successive chemical condensation, a WO x–NbO x composite film is produced that selectively controls visible and near-infrared light transmittance without any annealing required. The composite shows rapid switching kinetics and can be stably cycled between optical states over 2000 times. This simple strategy of using anisotropic nanocrystals gives insight into mesoporous thin film fabrication with broader applications for flexible devices.« less
The Formation of Laurentia: Evidence from Shear Wave Splitting and Seismic Tomography
NASA Astrophysics Data System (ADS)
Liddell, M. V.; Bastow, I. D.; Rawlinson, N.; Darbyshire, F. A.; Gilligan, A.
2017-12-01
The northern Hudson Bay region of Canada comprises several Archean cratonic nuclei, assembled by Paleoproterozoic orogenies including the 1.8 Ga Trans-Hudson Orogen (THO) and Rinkian-Nagssugtoqidian Orogen (NO). Questions remain about how similar in scale and nature these orogens were compared to modern orogens like the Himalayas. Also in question is whether the thick Laurentian cratonic root below Hudson Bay is stratified, with a seismically-fast Archean core underlain by a lower, younger, thermal layer. We investigate these problems via shear-wave splitting and teleseismic tomography using up to 25 years of data from 65 broadband seismic stations across northern Hudson Bay. The results of the complementary studies comprise the most comprehensive study to date of mantle seismic velocity and anisotropy in northern Laurentia. Splitting parameter patterns are used to interpret multiple layers, lithospheric boundaries, dipping anisotropy, and deformation zone limits for the THO and NO. Source-side waveguide effects from Japan and the Aleutian trench are observed despite the tomographic data being exclusively relative arrival time. Mitigating steps to ensure data quality are explained and enforced. In the Hudson Strait, anisotropic fast directions (φ) generally parallel the THO, which appears in tomographic images as a strong low velocity feature relative to the neighbouring Archean cratons. Several islands in northern Hudson Bay show short length-scale changes in φ coincident with strong velocity contrasts. These are interpreted as distinct lithospheric blocks with unique deformational histories, and point to a complex, rather than simple 2-plate, collisional history for the THO. Strong evidence is presented for multiple anisotropic layers beneath Archean zones, consistent with the episodic development model of cratonic keels (e.g., Yuan & Romanowicz 2010). We show via both tomographic inversion models and SKS splitting patterns that southern Baffin Island was underthrust by the Superior plate; slow wavespeed material underlies this region, and modelling of SKS splitting patterns indicates a dipping anisotropic layer. This aligns our most up-to-date geophysical results with recent geological evidence (Weller et al., 2017) that the THO developed with modern plate-tectonic style interactions.
NASA Astrophysics Data System (ADS)
Ma, Guowei; Zhang, Junfei; Wang, Li; Li, Zhijian; Sun, Junbo
2018-07-01
3D concrete printing is an innovative and promising construction method that is rapidly gaining ground in recent years. This technique extrudes premixed concrete materials through a nozzle to build structural components layer upon layer without formworks. The build-up process of depositing filaments or layers intrinsically produce laminated structures and create weak joints between adjacent layers. It is of great significance to clearly elaborate the mechanical characteristics of 3D printed components response to various applied loads and the different performance from the mould-cast ones. In this study, a self-developed 3D printing system was invented and applied to fabricate concrete samples. Three points bending test and direct double shear test were carried out to investigate the mechanical properties of 3D printed prisms. The anisotropic behaviors were probed by loading in different directions. Meanwhile, piezoelectric lead zirconate titanate (PZT) transducers were implemented to monitor the damage evolution of the printed samples in the loading process based on the electromechanical impedance method. Test results demonstrate that the tensile stresses perpendicular to the weaken interfaces formed between filaments were prone to induce cracks than those parallel to the interfaces. The damages of concrete materials resulted in the decrease in the frequency and a change in the amplitude in the conductance spectrum acquired by mounted PZT patches. The admittance signatures showed a clear gradation of the examined damage levels of printed prisms exposed to applied loadings.
First-principles study of lattice thermal conductivity in ZrTe5 and HfTe5
NASA Astrophysics Data System (ADS)
Wang, Cong; Wang, Haifeng; Chen, Y. B.; Yao, Shu-Hua; Zhou, Jian
2018-05-01
Recently, the layered transition-metal pentatellurides ZrTe5 and HfTe5 have attracted increasing attention because of their interesting topological electronic properties. Nevertheless, some of their other good physical properties seem to be ignored now. Actually, both ZrTe5 and HfTe5 have high electric conductivities (>105 Ω-1 m-1) and Seebeck coefficients (> 100 μV/K) at room temperature, thus making them promising thermoelectric materials. However, the disadvantage is that the thermal conductivities of the two materials are relatively high according to the few available experiments; meanwhile, the detailed mechanism of the intrinsic thermal conductivity has not been studied yet. Based on the density functional theory and the Boltzmann transport theory, we present here the theoretical study of the intrinsic lattice thermal conductivities of ZrTe5 and HfTe5, which are found to be in the range of 5-8 W/mṡK at room temperature and well consistent with the experimental results. We also find that the thermal conductivities of the two materials are anisotropic, which are mainly caused by their anisotropic crystal structures. Based on the detailed analysis, we proposed that the thermal conductivities of the two materials could possibly be reduced by different kinds of structural engineering at the atomic and mesoscopic scales, such as alloying, doping, nano-structuring, and polycrystalline structuring, which could make ZrTe5 and HfTe5 good thermoelectric materials for room temperature thermoelectric applications.
NASA Astrophysics Data System (ADS)
Rincon, F.; Roudier, T.; Schekochihin, A. A.; Rieutord, M.
2017-03-01
The Sun provides us with the only spatially well-resolved astrophysical example of turbulent thermal convection. While various aspects of solar photospheric turbulence, such as granulation (one-Megameter horizontal scale), are well understood, the questions of the physical origin and dynamical organization of larger-scale flows, such as the 30-Megameters supergranulation and flows deep in the solar convection zone, remain largely open in spite of their importance for solar dynamics and magnetism. Here, we present a new critical global observational characterization of multiscale photospheric flows and subsequently formulate an anisotropic extension of the Bolgiano-Obukhov theory of hydrodynamic stratified turbulence that may explain several of their distinctive dynamical properties. Our combined analysis suggests that photospheric flows in the horizontal range of scales between supergranulation and granulation have a typical vertical correlation scale of 2.5 to 4 Megameters and operate in a strongly anisotropic, self-similar, nonlinear, buoyant dynamical regime. While the theory remains speculative at this stage, it lends itself to quantitative comparisons with future high-resolution acoustic tomography of subsurface layers and advanced numerical models. Such a validation exercise may also lead to new insights into the asymptotic dynamical regimes in which other, unresolved turbulent anisotropic astrophysical fluid systems supporting waves or instabilities operate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinfeng, E-mail: jfzhang@xidian.edu.cn; Li, Yao; Yan, Ran
In a semiconductor hetero-junction, the stripe/line-shaped scatters located at the hetero-interface lead to the anisotropic transport of two-dimensional electron gas (2DEG). The elastic scattering of infinitely long and uniform stripe/line-shaped scatters to 2DEG is theoretically investigated based on a general theory of anisotropic 2DEG transport [J. Schliemann and D. Loss, Phys. Rev. B 68(16), 165311 (2003)], and the resulting 2DEG mobility along the applied electrical field is modeled to be a function of the angle between the field and the scatters. The anisotropy of the scattering and the mobility originate in essence from that the stripe/line-shaped scatters act upon themore » injecting two-dimensional wave vector by changing only its component perpendicular to the scatters. Three related scattering mechanisms in a nonpolar AlGaN/GaN hetero-junction are discussed as illustrations, including the striated morphology caused interface roughness scattering, and the polarization induced line charge dipole scattering and the misfit dislocation scattering at the AlGaN/GaN interface. Different anisotropic behaviors of the mobility limited by these scattering mechanisms are demonstrated, but analysis shows that all of them are determined by the combined effects of the anisotropic bare scattering potential and the anisotropic dielectric response of the 2DEG.« less
An analytical solution of groundwater level fluctuation in a U-shaped leaky coastal aquifer
NASA Astrophysics Data System (ADS)
Huang, Fu-Kuo; Chuang, Mo-Hsiung; Wang, Shu-chuan
2017-04-01
Tide-induced groundwater level fluctuations in coastal aquifers have attracted much attention in past years, especially for the issues associated with the impact of the coastline shape, multi-layered leaky aquifer system, and anisotropy of aquifers. In this study, a homogeneous but anisotropic multi-layered leaky aquifer system with U-shaped coastline is considered, where the subsurface system consisting of an unconfined aquifer, a leaky confined aquifer, and a semi-permeable layer between them. The analytical solution of the model obtained herein may be considered as an extended work of two solutions; one was developed by Huang et al. (Huang et al. Tide-induced groundwater level fluctuation in a U-shaped coastal aquifer, J. Hydrol. 2015; 530: 291-305) for two-dimensional interacting tidal waves bounded by three water-land boundaries while the other was by Li and Jiao (Li and Jiao. Tidal groundwater level fluctuations in L-shaped leaky coastal aquifer system, J. Hydrol. 2002; 268: 234-243) for two-dimensional interacting tidal waves of leaky coastal aquifer system adjacent to a cross-shore estuary. In this research, the effects of leakage and storativity of the semi-permeable layer on the amplitude and phase shift of the tidal head fluctuation, and the influence of anisotropy of the aquifer are all examined for the U-shaped leaky coastal aquifer. Some existing solutions in literatures can be regarded as the special cases of the present solution if the aquifer system is isotropic and non-leaky. The results obtained will be beneficial to coastal development and management for water resources.
NASA Astrophysics Data System (ADS)
Al Shehri, Azizah; Gudmundsson, Agust
2018-05-01
Correct interpretation of surface stresses and deformation or displacement during volcanotectonic episodes is of fundamental importance for hazard assessment and dyke-path forecasting. Here we present new general numerical models on the local stresses induced by arrested dykes. In the models, the crustal segments hosting the dyke vary greatly in mechanical properties, from uniform or non-layered (elastic half-spaces) to highly anisotropic (layers with strong contrast in Young's modulus). The shallow parts of active volcanoes and volcanic zones are normally highly anisotropic and some with open contacts. The numerical results show that, for a given surface deformation, non-layered (half-space) models underestimate the dyke overpressure/thickness needed and overestimate the likely depth to the tip of the dyke. Also, as the mechanical contrast between the layers increases, so does the stress dissipation and associated reduction in surface stresses (and associated fracturing). In the absence of open contacts, the distance between the two dyke-induced tensile and shear stress peaks (and fractures, if any) at the surface is roughly twice the depth to the tip of the dyke. The width of a graben, if it forms, should therefore be roughly twice the depth to the tip of the associated arrested dyke. When applied to the 2009 episode at Harrat Lunayyir, the main results are as follows. The entire 3-7 km wide fracture zone/graben formed during the episode is far too wide to have been generated by induced stresses of a single, arrested dyke. The eastern part of the zone/graben may have been generated by the inferred, arrested dyke, but the western zone primarily by regional extensional loading. The dyke tip was arrested at only a few hundred metres below the surface, the estimated thickness of the uppermost part of the dyke being between about 6 and 12 m. For the inferred dyke length (strike dimension) of about 14 km, this yields a dyke length/thickness ratio between 2400 and 1200, similar to commonly measured ratios of regional dykes in the field.
Bioactive Nano-Fibrous Scaffolds for Bone and Cartilage Tissue Engineering
NASA Astrophysics Data System (ADS)
Feng, Kai
Scaffolds that can mimic the structural features of natural extracellular matrix and can deliver biomolecules in a controlled fashion may provide cells with a favorable microenvironment to facilitate tissue regeneration. Biodegradable nanofibrous scaffolds with interconnected pore network have previously been developed in our laboratory to mimic collagen matrix and advantageously support both bone and cartilage regeneration. This dissertation project aims to expand both the structural complexity and the biomolecule delivery capacity of such biomimetic scaffolds for tissue engineering. We first developed a nanofibrous scaffold that can release an antibiotic (doxycycline) with a tunable release rate and a tunable dosage, which was demonstrated to be able to inhibit bacterial growth over a prolonged time period. We then developed a nanofibrous tissue-engineciing scaffold that can release basic fibroblast growth factor (bFGF) in a spatially and temporally controlled fashion. In a mouse subcutaneous implantation model, the bFGF-releasing scaffold was shown to enhance cell penetration, tissue ingrowth and angiogenesis. It was also found that both the dose and the release rate of bFGF play roles in the biologic function of the scaffold. After that, we developed a nanofibrous PLLA scaffold that can release both bone morphogenetic protein 7 (BMP-7) and platelet-derived growth factor (PDGF) with distinct dosages and release kinetics. It was demonstrated that BMP-7 and PDGF could synergistically enhance bone regeneration using a mouse ectopic bone formation model and a rat periodontal fenestration defect regeneration model. The regeneration outcome was dependent on the dosage, the ratio and the release kinetics of the two growth factors. Last, we developed an anisotropic composite scaffold with an upper layer mimicking the superficial zone of cartilage and a lower layer mimicking the middle zone of cartilage. The thin superficial layer was fabricated using an electrospinning technique to support a more parallel ECM orientation to the cartilage surface. The lower layer was fabricated using a phase-separation technique to support a more isotropic ECM distribution. Human bone marrow-derived mesenchymal stem cells (hMSCs) were seeded on this complex scaffold and cultured under chondrogenic conditions. The results showed that the composite scaffold was indeed able to support anisotropic cartilage tissue structure formation.
Bairi, Partha; Minami, Kosuke; Hill, Jonathan P; Nakanishi, Waka; Shrestha, Lok Kumar; Liu, Chao; Harano, Koji; Nakamura, Eiichi; Ariga, Katsuhiko
2016-09-27
Supramolecular assembly can be used to construct a wide variety of ordered structures by exploiting the cumulative effects of multiple noncovalent interactions. However, the construction of anisotropic nanostructures remains subject to some limitations. Here, we demonstrate the preparation of anisotropic fullerene-based nanostructures by supramolecular differentiation, which is the programmed control of multiple assembly strategies. We have carefully combined interfacial assembly and local phase separation phenomena. Two fullerene derivatives, PhH and C12H, were together formed into self-assembled anisotropic nanostructures by using this approach. This technique is applicable for the construction of anisotropic nanostructures without requiring complex molecular design or complicated methodology.
Effect of long-range correlation on the metal-insulator transition in a disordered molecular crystal
NASA Astrophysics Data System (ADS)
Unge, Mikael; Stafström, Sven
2006-12-01
Localization lengths of the electronic states in a disordered two-dimensional system, resembling highly anisotropic molecular crystals such as pentacene, have been calculated numerically using the transfer matrix method. The disorder is based on a model with small random fluctuations of induced molecular dipole moments which give rise to long-range correlated disorder in the on-site energies as well as a coupling between the on-site energies and the intermolecular interactions. Our calculations show that molecular crystals such as pentacene can exhibit states with very long localization lengths with a possibility to reach a truly metallic state.
Mueller matrix characterization of flexible plastic substrates
NASA Astrophysics Data System (ADS)
Hong, Nina; Synowicki, Ron A.; Hilfiker, James N.
2017-11-01
This work reports on Mueller matrix spectroscopic ellipsometry characterization of various flexible plastic substrates that are optically anisotropic with varying degrees of birefringence. The samples are divided into three groups according to the suggested characterization strategy: low birefringence, high birefringence, and twisted birefringence. The first group includes poly(methyl methacrylate) and cyclic olefin copolymer substrates. These are modeled with biaxial anisotropy for the real part of the refractive index while the imaginary part is approximated as isotropic due to small light absorption. The second group includes polyethylene terephthalate and polyethylene naphthalate substrates, which are modeled with biaxial anisotropy for both real and imaginary refractive indices. Lastly, a polyimide substrate is described as two birefringent layers with twisted in-plane orientation.
Spike phase synchronization in multiplex cortical neural networks
NASA Astrophysics Data System (ADS)
Jalili, Mahdi
2017-01-01
In this paper we study synchronizability of two multiplex cortical networks: whole-cortex of hermaphrodite C. elegans and posterior cortex in male C. elegans. These networks are composed of two connection layers: network of chemical synapses and the one formed by gap junctions. This work studies the contribution of each layer on the phase synchronization of non-identical spiking Hindmarsh-Rose neurons. The network of male C. elegans shows higher phase synchronization than its randomized version, while it is not the case for hermaphrodite type. The random networks in each layer are constructed such that the nodes have the same degree as the original network, thus providing an unbiased comparison. In male C. elegans, although the gap junction network is sparser than the chemical network, it shows higher contribution in the synchronization phenomenon. This is not the case in hermaphrodite type, which is mainly due to significant less density of gap junction layer (0.013) as compared to chemical layer (0.028). Also, the gap junction network in this type has stronger community structure than the chemical network, and this is another driving factor for its weaker synchronizability.
Liu, Yanmei; Bauer, Stefan
2016-01-01
Here we report that phosphorylation status of S211 and T212 of the CESA3 component of Arabidopsis (Arabidopsis thaliana) cellulose synthase impacts the regulation of anisotropic cell expansion as well as cellulose synthesis and deposition and microtubule-dependent bidirectional mobility of CESA complexes. Mutation of S211 to Ala caused a significant decrease in the length of etiolated hypocotyls and primary roots, while root hairs were not significantly affected. By contrast, the S211E mutation stunted the growth of root hairs, but primary roots were not significantly affected. Similarly, T212E caused a decrease in the length of root hairs but not root length. However, T212E stunted the growth of etiolated hypocotyls. Live-cell imaging of fluorescently labeled CESA showed that the rate of movement of CESA particles was directionally asymmetric in etiolated hypocotyls of S211A and T212E mutants, while similar bidirectional velocities were observed with the wild-type control and S211E and T212A mutant lines. Analysis of cell wall composition and the innermost layer of cell wall suggests a role for phosphorylation of CESA3 S211 and T212 in cellulose aggregation into fibrillar bundles. These results suggest that microtubule-guided bidirectional mobility of CESA complexes is fine-tuned by phosphorylation of CESA3 S211 and T212, which may, in turn, modulate cellulose synthesis and organization, resulting in or contributing to the observed defects of anisotropic cell expansion. PMID:26969722
Effects of Aeroelastic Tailoring on Anisotropic Composite Material Beam Models of Helicopter Blades
1989-05-01
34 means that a layer of material at some distance above a structural midsurface reference location has the identical ply thickness, angular orientation...and material properties as that of a lamina at an identical distance below the midsurface [1]. If the fibers are placed off-axis in the upper and
NASA Astrophysics Data System (ADS)
Malkin, B. Z.; Abishev, N. M.; Baibekov, E. I.; Pytalev, D. S.; Boldyrev, K. N.; Popova, M. N.; Bettinelli, M.
2017-07-01
We construct a distribution function of the strain-tensor components induced by point defects in an elastically anisotropic continuum, which can be used to account quantitatively for many effects observed in different branches of condensed matter physics. Parameters of the derived six-dimensional generalized Lorentz distribution are expressed through the integrals computed over the array of strains. The distribution functions for the cubic diamond and elpasolite crystals and tetragonal crystals with the zircon and scheelite structures are presented. Our theoretical approach is supported by a successful modeling of specific line shapes of singlet-doublet transitions of the T m3 + ions doped into AB O4 (A =Y , Lu; B =P , V) crystals with zircon structure, observed in high-resolution optical spectra. The values of the defect strengths of impurity T m3 + ions in the oxygen surroundings, obtained as a result of this modeling, can be used in future studies of random strains in different rare-earth oxides.
Automated segmentation of intraretinal layers from macular optical coherence tomography images
NASA Astrophysics Data System (ADS)
Haeker, Mona; Sonka, Milan; Kardon, Randy; Shah, Vinay A.; Wu, Xiaodong; Abràmoff, Michael D.
2007-03-01
Commercially-available optical coherence tomography (OCT) systems (e.g., Stratus OCT-3) only segment and provide thickness measurements for the total retina on scans of the macula. Since each intraretinal layer may be affected differently by disease, it is desirable to quantify the properties of each layer separately. Thus, we have developed an automated segmentation approach for the separation of the retina on (anisotropic) 3-D macular OCT scans into five layers. Each macular series consisted of six linear radial scans centered at the fovea. Repeated series (up to six, when available) were acquired for each eye and were first registered and averaged together, resulting in a composite image for each angular location. The six surfaces defining the five layers were then found on each 3-D composite image series by transforming the segmentation task into that of finding a minimum-cost closed set in a geometric graph constructed from edge/regional information and a priori-determined surface smoothness and interaction constraints. The method was applied to the macular OCT scans of 12 patients with unilateral anterior ischemic optic neuropathy (corresponding to 24 3-D composite image series). The boundaries were independently defined by two human experts on one raw scan of each eye. Using the average of the experts' tracings as a reference standard resulted in an overall mean unsigned border positioning error of 6.7 +/- 4.0 μm, with five of the six surfaces showing significantly lower mean errors than those computed between the two observers (p < 0.05, pixel size of 50 × 2 μm).
Arrhenius analysis of anisotropic surface self-diffusion on the prismatic facet of ice.
Gladich, Ivan; Pfalzgraff, William; Maršálek, Ondřej; Jungwirth, Pavel; Roeselová, Martina; Neshyba, Steven
2011-11-28
We present an Arrhenius analysis of self-diffusion on the prismatic surface of ice calculated from molecular dynamics simulations. The six-site water model of Nada and van der Eerden was used in combination with a structure-based criterion for determining the number of liquid-like molecules in the quasi-liquid layer. Simulated temperatures range from 230 K-287 K, the latter being just below the melting temperature of the model, 289 K. Calculated surface diffusion coefficients agree with available experimental data to within quoted precision. Our results indicate a positive Arrhenius curvature, implying a change in the mechanism of self-diffusion from low to high temperature, with a concomitant increase in energy of activation from 29.1 kJ mol(-1) at low temperature to 53.8 kJ mol(-1) close to the melting point. In addition, we find that the surface self-diffusion is anisotropic at lower temperatures, transitioning to isotropic in the temperature range of 240-250 K. We also present a framework for self-diffusion in the quasi-liquid layer on ice that aims to explain these observations.
Boundary-layer mantle flow under the Dead Sea transform fault inferred from seismic anisotropy.
Rümpker, Georg; Ryberg, Trond; Bock, Günter
2003-10-02
Lithospheric-scale transform faults play an important role in the dynamics of global plate motion. Near-surface deformation fields for such faults are relatively well documented by satellite geodesy, strain measurements and earthquake source studies, and deeper crustal structure has been imaged by seismic profiling. Relatively little is known, however, about deformation taking place in the subcrustal lithosphere--that is, the width and depth of the region associated with the deformation, the transition between deformed and undeformed lithosphere and the interaction between lithospheric and asthenospheric mantle flow at the plate boundary. Here we present evidence for a narrow, approximately 20-km-wide, subcrustal anisotropic zone of fault-parallel mineral alignment beneath the Dead Sea transform, obtained from an inversion of shear-wave splitting observations along a dense receiver profile. The geometry of this zone and the contrast between distinct anisotropic domains suggest subhorizontal mantle flow within a vertical boundary layer that extends through the entire lithosphere and accommodates the transform motion between the African and Arabian plates within this relatively narrow zone.
Xu, Ming; Fei, Linfeng; Zhang, Weibing; Li, Tao; Lu, Wei; Zhang, Nian; Lai, Yanqing; Zhang, Zhian; Fang, Jing; Zhang, Kai; Li, Jie; Huang, Haitao
2017-03-08
High-performance Li-rich layered oxide (LRLO) cathode material is appealing for next-generation Li-ion batteries owing to its high specific capacity (>300 mAh g -1 ). Despite intense studies in the past decade, the low initial Coulombic efficiency and unsatisfactory cycling stability of LRLO still remain as great challenges for its practical applications. Here, we report a rational design of the orthogonally arranged {010}-oriented LRLO nanoplates with built-in anisotropic Li + ion transport tunnels. Such a novel structure enables fast Li + ion intercalation and deintercalation kinetics and enhances structural stability of LRLO. Theoretical calculations and experimental characterizations demonstrate the successful synthesis of target cathode material that delivers an initial discharge capacity as high as 303 mAh g -1 with an initial Coulombic efficiency of 93%. After 200 cycles at 1.0 C rate, an excellent capacity retention of 92% can be attained. Our method reported here opens a door to the development of high-performance Ni-Co-Mn-based cathode materials for high-energy density Li-ion batteries.
Minimum-dissipation scalar transport model for large-eddy simulation of turbulent flows
NASA Astrophysics Data System (ADS)
Abkar, Mahdi; Bae, Hyun J.; Moin, Parviz
2016-08-01
Minimum-dissipation models are a simple alternative to the Smagorinsky-type approaches to parametrize the subfilter turbulent fluxes in large-eddy simulation. A recently derived model of this type for subfilter stress tensor is the anisotropic minimum-dissipation (AMD) model [Rozema et al., Phys. Fluids 27, 085107 (2015), 10.1063/1.4928700], which has many desirable properties. It is more cost effective than the dynamic Smagorinsky model, it appropriately switches off in laminar and transitional flows, and it is consistent with the exact subfilter stress tensor on both isotropic and anisotropic grids. In this study, an extension of this approach to modeling the subfilter scalar flux is proposed. The performance of the AMD model is tested in the simulation of a high-Reynolds-number rough-wall boundary-layer flow with a constant and uniform surface scalar flux. The simulation results obtained from the AMD model show good agreement with well-established empirical correlations and theoretical predictions of the resolved flow statistics. In particular, the AMD model is capable of accurately predicting the expected surface-layer similarity profiles and power spectra for both velocity and scalar concentration.
NASA Astrophysics Data System (ADS)
Kim, J.; Jung, H.
2016-12-01
Seismic anisotropy in the crust which is observed throughout the world can be attributed to lattice preferred orientation(LPO) of elastically anisotropic minerals. Although amphibole has smaller elastic anisotropy than that of mica, it takes a large proportion of deep crust and sufficiently anisotropic. Therefore, to understand the seismic anisotropy of lower crust, we studied amphibolites from Jenner Headland and Ring Mt. in California. All samples are well-foliated amphibolites constituting dominantly amphibole, plagioclase and other minor minerals such as garnet, epidote, biotite, and titanite. Chemical compositions of these minerals were analyzed by EPMA, and LPO of minerals was determined by using SEM/EBSD technique at the Tectonophysics Labratory in Seoul National University. Almost all samples showed that [100] axes of amphibole are aligned normal to the foliation and [001] axes are subparallel to the lineation, which is called Type-I LPO of amphibole (Ko & Jung, 2015). All axes of plagioclase showed almost random distributions. Seismic anisotropy was calculated from the LPOs of minerals. For amphibole, P-wave velocity anisotropy was in the range of 15.9 - 20.9% and maximum S-wave anisotropy was in the range of 13.1 - 19.7%. For horizontal flow, seismic velocity of P-wave is slowest in the direction subnormal to foliation and fastest subparallel to lineation. Polarization direction of vertically propagating fast S-wave is subnormal to lineation. Shear wave anisotropy(AVs) is also lowest subnormal to lineation. When we consider dipping angle of flow at 45° assuming 2-D corner flow model, polarization direction of fast S-wave is normal to lineation. Seismic anisotropies of whole rock were weaker than those of amphibole. Our results suggest that LPO of amphibole can strongly induce low-velocity and anisotropic layers in the deep crust causing a large seismic anisotropy depending on the direction of seismic wave propagation. Ko, B. and Jung, H., 2015, Crystal preferred orientation of an amphibole experimentally deformed by simple shear. Nature Communications. 6:6586.
NASA Astrophysics Data System (ADS)
Kim, Junha; Jung, Haemyeong
2017-04-01
Seismic anisotropy in the crust which is observed throughout the world can be attributed to lattice preferred orientation (LPO) of elastically anisotropic minerals. Although amphibole has smaller elastic anisotropy than that of mica, it takes a large proportion of deep crust and sufficiently anisotropic. Therefore, to understand the seismic anisotropy of lower crust, we studied amphibolites from Jenner Headland and Ring Mt. in California. All samples are well-foliated amphibolites constituting dominantly amphibole, plagioclase and other minor minerals such as garnet, epidote, biotite, and titanite. Chemical compositions of these minerals were analyzed by EPMA, and LPO of minerals was determined by using SEM/EBSD technique at the Tectonophysics Laboratory in Seoul National University. Almost all samples showed that [100] axes of amphibole are aligned normal to the foliation and [001] axes are subparallel to the lineation, which is called Type-I LPO of amphibole (Ko & Jung, 2015). All axes of plagioclase showed almost random distributions. Seismic anisotropy was calculated from the LPOs of minerals. P-wave velocity anisotropy of amphibole was in the range of 15.9‒20.9% and maximum S-wave anisotropy was in the range of 13.1‒19.7%. For horizontal flow, seismic velocity of P-wave is slowest in the direction subnormal to foliation and fastest subparallel to lineation. Polarization direction of vertically propagating fast S-wave is subnormal to lineation. Shear wave anisotropy (AVs) is also lowest subnormal to lineation. When we consider dipping angle of flow at 45° assuming 2D corner flow model, polarization direction of fast S-wave is normal to lineation. Seismic anisotropies of whole rock were weaker than those of amphibole. Our results suggest that LPO of amphibole can strongly induce low-velocity and anisotropic layers in the deep crust causing a large seismic anisotropy depending on the direction of seismic wave propagation. Ko, B. and Jung, H., 2015, Crystal preferred orientation of an amphibole experimentally deformed by simple shear, Nature Communications, 6:6586.
Multiple charge density wave states at the surface of TbT e 3
Fu, Ling; Kraft, Aaron M.; Sharma, Bishnu; ...
2016-11-01
We studied TbTe 3 using scanning tunneling microscopy (STM) in the temperature range of 298–355 K. Our measurements detect a unidirectional charge density wave (CDW) state in the surface Te layer with a wave vector consistent with that of the bulk q CDW = 0.30 ± 0.01c*. However, unlike previous STM measurements, and differing from measurements probing the bulk, we detect two perpendicular orientations for the unidirectional CDW with no directional preference for the in-plane crystal axes (a or c axis) and no noticeable difference in wave vector magnitude. In addition, we find regions in which the bidirectional CDW statesmore » coexist. We propose that observation of two unidirectional CDW states indicates a decoupling of the surface Te layer from the rare-earth block layer below, and that strain variations in the Te surface layer drive the local CDW direction to the specific unidirectional or, in rare occurrences, bidirectional CDW orders observed. This indicates that similar driving mechanisms for CDW formation in the bulk, where anisotropic lattice strain energy is important, are at play at the surface. Furthermore, the wave vectors for the bidirectional order we observe differ from those theoretically predicted for checkerboard order competing with stripe order in a Fermi-surface nesting scenario, suggesting that factors beyond Fermi-surface nesting drive CDW order in TbTe 3. As a result, our temperature-dependent measurements provide evidence for localized CDW formation above the bulk transition temperature T CDW.« less
Swiler, Thomas P.; Garcia, Ernest J.; Francis, Kathryn M.
2013-06-11
A method is disclosed for singulating die from a semiconductor substrate (e.g. a semiconductor-on-insulator substrate or a bulk silicon substrate) containing an oxide layer (e.g. silicon dioxide or a silicate glass) and one or more semiconductor layers (e.g. monocrystalline or polycrystalline silicon) located above the oxide layer. The method etches trenches through the substrate and through each semiconductor layer about the die being singulated, with the trenches being offset from each other around at least a part of the die so that the oxide layer between the trenches holds the substrate and die together. The trenches can be anisotropically etched using a Deep Reactive Ion Etching (DRIE) process. After the trenches are etched, the oxide layer between the trenches can be etched away with an HF etchant to singulate the die. A release fixture can be located near one side of the substrate to receive the singulated die.
Swiler, Thomas P [Albuquerque, NM; Garcia, Ernest J [Albuquerque, NM; Francis, Kathryn M [Rio Rancho, NM
2014-01-07
A method is disclosed for singulating die from a semiconductor substrate (e.g. a semiconductor-on-insulator substrate or a bulk silicon substrate) containing an oxide layer (e.g. silicon dioxide or a silicate glass) and one or more semiconductor layers (e.g. monocrystalline or polycrystalline silicon) located above the oxide layer. The method etches trenches through the substrate and through each semiconductor layer about the die being singulated, with the trenches being offset from each other around at least a part of the die so that the oxide layer between the trenches holds the substrate and die together. The trenches can be anisotropically etched using a Deep Reactive Ion Etching (DRIE) process. After the trenches are etched, the oxide layer between the trenches can be etched away with a HF etchant to singulate the die. A release fixture can be located near one side of the substrate to receive the singulated die.
Infrared hyperbolic metasurface based on nanostructured van der Waals materials
NASA Astrophysics Data System (ADS)
Li, Peining; Dolado, Irene; Alfaro-Mozaz, Francisco Javier; Casanova, Fèlix; Hueso, Luis E.; Liu, Song; Edgar, James H.; Nikitin, Alexey Y.; Vélez, Saül; Hillenbrand, Rainer
2018-02-01
Metasurfaces with strongly anisotropic optical properties can support deep subwavelength-scale confined electromagnetic waves (polaritons), which promise opportunities for controlling light in photonic and optoelectronic applications. We developed a mid-infrared hyperbolic metasurface by nanostructuring a thin layer of hexagonal boron nitride that supports deep subwavelength-scale phonon polaritons that propagate with in-plane hyperbolic dispersion. By applying an infrared nanoimaging technique, we visualize the concave (anomalous) wavefronts of a diverging polariton beam, which represent a landmark feature of hyperbolic polaritons. The results illustrate how near-field microscopy can be applied to reveal the exotic wavefronts of polaritons in anisotropic materials and demonstrate that nanostructured van der Waals materials can form a highly variable and compact platform for hyperbolic infrared metasurface devices and circuits.
Ab Initio Calculations of Transport Properties of Vanadium Oxides
NASA Astrophysics Data System (ADS)
Lamsal, Chiranjivi; Ravindra, N. M.
2018-04-01
The temperature-dependent transport properties of vanadium oxides have been studied near the Fermi energy using the Kohn-Sham band structure approach combined with Boltzmann transport equations. V2O5 exhibits significant thermoelectric properties, which can be attributed to its layered structure and stability. Highly anisotropic electrical conduction in V2O5 is clearly manifested in the calculations. Due to specific details of the band structure and anisotropic electron-phonon interactions, maxima and crossovers are also seen in the temperature-dependent Seebeck coefficient of V2O5. During the phase transition of VO2, the Seebeck coefficient changes by 18.9 µV/K, which is close to (within 10% of) the observed discontinuity of 17.3 µV/K.
Dry etching method for compound semiconductors
Shul, Randy J.; Constantine, Christopher
1997-01-01
A dry etching method. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators.