Representation of Clear and Cloudy Boundary Layers in Climate Models. Chapter 14
NASA Technical Reports Server (NTRS)
Randall, D. A.; Shao, Q.; Branson, M.
1997-01-01
The atmospheric general circulation models which are being used as components of climate models rely on their boundary layer parameterizations to produce realistic simulations of the surface turbulent fluxes of sensible heat. moisture. and momentum: of the boundary-layer depth over which these fluxes converge: of boundary layer cloudiness: and of the interactions of the boundary layer with the deep convective clouds that grow upwards from it. Two current atmospheric general circulation models are used as examples to show how these requirements are being addressed: these are version 3 of the Community Climate Model. which has been developed at the U.S. National Center for Atmospheric Research. and the Colorado State University atmospheric general circulation model. The formulations and results of both models are discussed. Finally, areas for future research are suggested.
Does spectroscopic evidence require two scattering layers in the Venus atmosphere.
NASA Technical Reports Server (NTRS)
Regas, J. L.; Boese, R. W.; Giver, L. P.; Miller, J. H.
1973-01-01
Comments on Hunt's (1972) conclusion that the phase variation of lines in the 7820- and 7883-A CO2 bands is due to the presence of two scattering layers in the Venusian atmosphere. It is shown that the increase of equivalent width with phase between 0 and 90 deg noted by Hunt in the data by Gray Young et al. (1971) does not necessarily require a two-layer model of scattering in the Venusian atmosphere and that this increase may be due to the strong backward lobe in the Venusian cloud phase function. Hunt, in a reply, notes that Regas et al. incorrectly use in their analysis Hansen's (1969) data which are for a homogeneous planetary atmosphere, while Hunt used an inhomogeneous model of the Venusian atmosphere. In addition, further evidence to support Hunt's claim for a multilayered structure of the upper Venusian clouds is presented.
NASA Technical Reports Server (NTRS)
Shie, Chung-Lin; Tao, Wei-Kuo; Johnson, Dan; Simpson, Joanne; Li, Xiaofan; Sui, Chung-Hsiung; Einaudi, Franco (Technical Monitor)
2001-01-01
Coupling a cloud resolving model (CRM) with an ocean mixed layer (OML) model can provide a powerful tool for better understanding impacts of atmospheric precipitation on sea surface temperature (SST) and salinity. The objective of this study is twofold. First, by using the three dimensional (3-D) CRM-simulated (the Goddard Cumulus Ensemble model, GCE) diabatic source terms, radiation (longwave and shortwave), surface fluxes (sensible and latent heat, and wind stress), and precipitation as input for the OML model, the respective impact of individual component on upper ocean heat and salt budgets are investigated. Secondly, a two-way air-sea interaction between tropical atmospheric climates (involving atmospheric radiative-convective processes) and upper ocean boundary layer is also examined using a coupled two dimensional (2-D) GCE and OML model. Results presented here, however, only involve the first aspect. Complete results will be presented at the conference.
Dependence of tropical cyclone development on coriolis parameter: A theoretical model
NASA Astrophysics Data System (ADS)
Deng, Liyuan; Li, Tim; Bi, Mingyu; Liu, Jia; Peng, Melinda
2018-03-01
A simple theoretical model was formulated to investigate how tropical cyclone (TC) intensification depends on the Coriolis parameter. The theoretical framework includes a two-layer free atmosphere and an Ekman boundary layer at the bottom. The linkage between the free atmosphere and the boundary layer is through the Ekman pumping vertical velocity in proportion to the vorticity at the top of the boundary layer. The closure of this linear system assumes a simple relationship between the free atmosphere diabatic heating and the boundary layer moisture convergence. Under a set of realistic atmospheric parameter values, the model suggests that the most preferred latitude for TC development is around 5° without considering other factors. The theoretical result is confirmed by high-resolution WRF model simulations in a zero-mean flow and a constant SST environment on an f -plane with different Coriolis parameters. Given an initially balanced weak vortex, the TC-like vortex intensifies most rapidly at the reference latitude of 5°. Thus, the WRF model simulations confirm the f-dependent characteristics of TC intensification rate as suggested by the theoretical model.
An interpretation of radiosonde errors in the atmospheric boundary layer
Bernadette H. Connell; David R. Miller
1995-01-01
The authors review sources of error in radiosonde measurements in the atmospheric boundary layer and analyze errors of two radiosonde models manufactured by Atmospheric Instrumentation Research, Inc. The authors focus on temperature and humidity lag errors and wind errors. Errors in measurement of azimuth and elevation angles and pressure over short time intervals and...
NASA Technical Reports Server (NTRS)
Logan, E., Jr.; Fichtl, G. H.
1975-01-01
A model is proposed for low-level atmospheric flows over terrains of changing roughness length, such as those found at the windward end of landing strips adjoining rough terrain. The proposed model is used to develop a prediction technique for calculating transition wind and shear-stress profiles in the region following surface roughness discontinuity. The model for the transition region comprises two layers: a logarithmic layer and a buffer layer. The flow is assumed to be steady, two-dimensional, and incompressible, with neutral hydrostatic stability. A diagram is presented for a typical wind profile in the transition region, obtained from the logarithmic and velocity defect profiles using shear stress calculated by relevant equations.
Sensitivity of boundary layer variables to PBL schemes over the central Tibetan Plateau
NASA Astrophysics Data System (ADS)
Xu, L.; Liu, H.; Wang, L.; Du, Q.; Liu, Y.
2017-12-01
Planetary Boundary Layer (PBL) parameterization schemes play critical role in numerical weather prediction and research. They describe physical processes associated with the momentum, heat and humidity exchange between land surface and atmosphere. In this study, two non-local (YSU and ACM2) and two local (MYJ and BouLac) planetary boundary layer parameterization schemes in the Weather Research and Forecasting (WRF) model have been tested over the central Tibetan Plateau regarding of their capability to model boundary layer parameters relevant for surface energy exchange. The model performance has been evaluated against measurements from the Third Tibetan Plateau atmospheric scientific experiment (TIPEX-III). Simulated meteorological parameters and turbulence fluxes have been compared with observations through standard statistical measures. Model results show acceptable behavior, but no particular scheme produces best performance for all locations and parameters. All PBL schemes underestimate near surface air temperatures over the Tibetan Plateau. By investigating the surface energy budget components, the results suggest that downward longwave radiation and sensible heat flux are the main factors causing the lower near surface temperature. Because the downward longwave radiation and sensible heat flux are respectively affected by atmosphere moisture and land-atmosphere coupling, improvements in water vapor distribution and land-atmosphere energy exchange is meaningful for better presentation of PBL physical processes over the central Tibetan Plateau.
NASA Astrophysics Data System (ADS)
Sanchez-Mejia, Z. M.; Papuga, S. A.
2013-12-01
In semiarid regions, where water resources are limited and precipitation dynamics are changing, understanding land surface-atmosphere interactions that regulate the coupled soil moisture-precipitation system is key for resource management and planning. We present a modeling approach to study soil moisture and albedo controls on planetary boundary layer height (PBLh). We used data from the Santa Rita Creosote Ameriflux site and Tucson Airport atmospheric sounding to generate empirical relationships between soil moisture, albedo and PBLh. We developed empirical relationships and show that at least 50% of the variation in PBLh can be explained by soil moisture and albedo. Then, we used a stochastically driven two-layer bucket model of soil moisture dynamics and our empirical relationships to model PBLh. We explored soil moisture dynamics under three different mean annual precipitation regimes: current, increase, and decrease, to evaluate at the influence on soil moisture on land surface-atmospheric processes. While our precipitation regimes are simple, they represent future precipitation regimes that can influence the two soil layers in our conceptual framework. For instance, an increase in annual precipitation, could impact on deep soil moisture and atmospheric processes if precipitation events remain intense. We observed that the response of soil moisture, albedo, and the PBLh will depend not only on changes in annual precipitation, but also on the frequency and intensity of this change. We argue that because albedo and soil moisture data are readily available at multiple temporal and spatial scales, developing empirical relationships that can be used in land surface - atmosphere applications are of great value.
NASA Technical Reports Server (NTRS)
Li, Xiaofan; Sui, C.-H.; Lau, K-M.; Adamec, D.
1999-01-01
A two-dimensional coupled ocean-cloud resolving atmosphere model is used to investigate possible roles of convective scale ocean disturbances induced by atmospheric precipitation on ocean mixed-layer heat and salt budgets. The model couples a cloud resolving model with an embedded mixed layer-ocean circulation model. Five experiment are performed under imposed large-scale atmospheric forcing in terms of vertical velocity derived from the TOGA COARE observations during a selected seven-day period. The dominant variability of mixed-layer temperature and salinity are simulated by the coupled model with imposed large-scale forcing. The mixed-layer temperatures in the coupled experiments with 1-D and 2-D ocean models show similar variations when salinity effects are not included. When salinity effects are included, however, differences in the domain-mean mixed-layer salinity and temperature between coupled experiments with 1-D and 2-D ocean models could be as large as 0.3 PSU and 0.4 C respectively. Without fresh water effects, the nocturnal heat loss over ocean surface causes deep mixed layers and weak cooling rates so that the nocturnal mixed-layer temperatures tend to be horizontally-uniform. The fresh water flux, however, causes shallow mixed layers over convective areas while the nocturnal heat loss causes deep mixed layer over convection-free areas so that the mixed-layer temperatures have large horizontal fluctuations. Furthermore, fresh water flux exhibits larger spatial fluctuations than surface heat flux because heavy rainfall occurs over convective areas embedded in broad non-convective or clear areas, whereas diurnal signals over whole model areas yield high spatial correlation of surface heat flux. As a result, mixed-layer salinities contribute more to the density differences than do mixed-layer temperatures.
A Fast Infrared Radiative Transfer Model for Overlapping Clouds
NASA Technical Reports Server (NTRS)
Niu, Jianguo; Yang, Ping; Huang, Huang-Lung; Davies, James E.; Li, Jun; Baum, Bryan A.; Hu, Yong X.
2006-01-01
A fast infrared radiative transfer model (FIRTM2) appropriate for application to both single-layered and overlapping cloud situations is developed for simulating the outgoing infrared spectral radiance at the top of the atmosphere (TOA). In FIRTM2 a pre-computed library of cloud reflectance and transmittance values is employed to account for one or two cloud layers, whereas the background atmospheric optical thickness due to gaseous absorption can be computed from a clear-sky radiative transfer model. FIRTM2 is applicable to three atmospheric conditions: 1) clear-sky, 2) single-layered ice or water cloud, and 3) two simultaneous cloud layers in a column (e.g., ice cloud overlying water cloud). Moreover, FIRTM2 outputs the derivatives (i.e., Jacobians) of the TOA brightness temperature with respect to cloud optical thickness and effective particle size. Sensitivity analyses have been carried out to assess the performance of FIRTM2 for two spectral regions, namely the longwave (LW) band (587.3 - 1179.5/cm) and the short-to-medium wave (SMW) band (1180.1 - 2228.9/cm). The assessment is carried out in terms of brightness temperature differences (BTD) between FIRTM2 and the well-known discrete ordinates radiative transfer model (DISORT), henceforth referred to as BTD (F-D). The BTD (F-D) values for single-layered clouds are generally less than 0.8 K. For the case of two cloud layers (specifically ice cloud over water cloud), the BTD(F-D) values are also generally less than 0.8 K except for the SMW band for the case of a very high altitude (>15 km) cloud comprised of small ice particles. Note that for clear-sky atmospheres, FIRTM2 reduces to the clear-sky radiative transfer model that is incorporated into FIRTM2, and the errors in this case are essentially those of the clear-sky radiative transfer model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fast, Jerome D.; Berg, Larry K.; Zhang, Kai
2016-08-22
The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surfacemore » measurements during July, and two days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. While a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.« less
Model of the vertical structure of the optical parameters of the Neptune atmosphere.
NASA Astrophysics Data System (ADS)
Morozhenko, A. V.
Analyzes the wavelength dependence of the geometric albedo of Neptune's disk and estimates some parameters of the planet's atmosphere by the method based on the determination of deviations of the vertical structure of the cloud layer from the homogeneity condition. The ratio between the methane and gas scale heights is found to be about 0.4. For the upper atmosphere, components of methane, aerosol, the mean geometric radius of particles, the turbulent mixing coefficient are determined. Two solutions were found for deeper atmospheric layers. The first one suggests a rather dense cloud; in the second solution the lower cloud layer is an extension of the upper aerosol layer.
NASA Astrophysics Data System (ADS)
Fast, Jerome D.; Berg, Larry K.; Zhang, Kai; Easter, Richard C.; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Liu, Ying; Ortega, Ivan; Sedlacek, Arthur; Shilling, John E.; Shrivastava, Manish; Springston, Stephen R.; Tomlinson, Jason M.; Volkamer, Rainer; Wilson, Jacqueline; Zaveri, Rahul A.; Zelenyuk, Alla
2016-08-01
The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two-Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy's Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts, and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surface measurements during July, and 2 days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher-resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser-resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. While a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.
NASA Technical Reports Server (NTRS)
Senocak, I.; Ackerman, A. S.; Kirkpatrick, M. P.; Stevens, D. E.; Mansour, N. N.
2004-01-01
Large-eddy simulation (LES) is a widely used technique in armospheric modeling research. In LES, large, unsteady, three dimensional structures are resolved and small structures that are not resolved on the computational grid are modeled. A filtering operation is applied to distinguish between resolved and unresolved scales. We present two near-surface models that have found use in atmospheric modeling. We also suggest a simpler eddy viscosity model that adopts Prandtl's mixing length model (Prandtl 1925) in the vicinity of the surface and blends with the dynamic Smagotinsky model (Germano et al, 1991) away from the surface. We evaluate the performance of these surface models by simulating a neutraly stratified atmospheric boundary layer.
Vehicle license plate recognition in dense fog based on improved atmospheric scattering model
NASA Astrophysics Data System (ADS)
Tang, Chunming; Lin, Jun; Chen, Chunkai; Dong, Yancheng
2018-04-01
An effective method based on improved atmospheric scattering model is proposed in this paper to handle the problem of the vehicle license plate location and recognition in dense fog. Dense fog detection is performed firstly by the top-hat transformation and the vertical edge detection, and the moving vehicle image is separated from the traffic video image. After the vehicle image is decomposed into two layers: structure and texture layers, the glow layer is separated from the structure layer to get the background layer. Followed by performing the mean-pooling and the bicubic interpolation algorithm, the atmospheric light map of the background layer can be predicted, meanwhile the transmission of the background layer is estimated through the grayed glow layer, whose gray value is altered by linear mapping. Then, according to the improved atmospheric scattering model, the final restored image can be obtained by fusing the restored background layer and the optimized texture layer. License plate location is performed secondly by a series of morphological operations, connected domain analysis and various validations. Characters extraction is achieved according to the projection. Finally, an offline trained pattern classifier of hybrid discriminative restricted boltzmann machines (HDRBM) is applied to recognize the characters. Experimental results on thorough data sets are reported to demonstrate that the proposed method can achieve high recognition accuracy and works robustly in the dense fog traffic environment during 24h or one day.
Marine Atmospheric Surface Layer and Its Application to Electromagnetic Wave Propagation
NASA Astrophysics Data System (ADS)
Wang, Q.
2015-12-01
An important application of the atmospheric surface layer research is to characterize the near surface vertical gradients in temperature and humidity in order to predict radar and radio communication conditions in the environment. In this presentation, we will give an overview of a new research initiative funded under the Office of Naval Research (ONR) Multi-University Research Initiative (MURI): the Coupled Air-Sea Processes and EM Ducting Research (CASPER). The objective is to fully characterize the marine atmospheric boundary layer (MABL) as an electromagnetic (EM) propagation environment with the emphasis of spatial and temporal heterogeneities and surface wave/swell effects, both of which contravene the underlying assumptions of Monin-Obukhov Similarity Theory (MOST) used in coupled environmental forecast models. Furthermore, coastal variability in the inversion atop the MABL presents a challenge to forecast models and also causes practical issues in EM prediction models. These issues are the target of investigation of CASPER. CASPER measurement component includes two major field campaigns: CASPER-East (2015 Duck, NC) and CASPER-West (2018 southern California). This presentation will show the extensive measurements to be made during the CASPER -East field campaign with the focus on the marine atmospheric surface layer measurements with two research vessels, two research aircraft, surface flux buoy, wave gliders, ocean gliders, tethered balloons, and rawinsondes. Unlike previous research on the marine surface layer with the focus on surface fluxes and surface flux parameterization, CASPER field campaigns also emphasize of the surface layer profiles and the validation of the surface layer flux-profile relationship originally derived over land surfaces. Results from CASPER pilot experiment and preliminary results from CASPER-East field campaign will be discussed.
Improved compensation of atmospheric turbulence effects by multiple adaptive mirror systems.
Shamir, J; Crowe, D G; Beletic, J W
1993-08-20
Optical wave-front propagation in a layered model for the atmosphere is analyzed by the use of diffraction theory, leading to a novel approach for utilizing artificial guide stars. Considering recent observations of layering in the atmospheric turbulence, the results of this paper indicate that, even for very large telescopes, a substantial enlargement of the compensated angular field of view is possible when two adaptive mirrors and four or five artificial guide stars are employed. The required number of guide stars increases as the thickness of the turbulent layers increases, converging to the conventional results at the limit of continuously turbulent atmosphere.
[A review on research of land surface water and heat fluxes].
Sun, Rui; Liu, Changming
2003-03-01
Many field experiments were done, and soil-vegetation-atmosphere transfer(SVAT) models were stablished to estimate land surface heat fluxes. In this paper, the processes of experimental research on land surface water and heat fluxes are reviewed, and three kinds of SVAT model(single layer model, two layer model and multi-layer model) are analyzed. Remote sensing data are widely used to estimate land surface heat fluxes. Based on remote sensing and energy balance equation, different models such as simplified model, single layer model, extra resistance model, crop water stress index model and two source resistance model are developed to estimate land surface heat fluxes and evapotranspiration. These models are also analyzed in this paper.
A brief description of the simple biosphere model (SiB)
NASA Technical Reports Server (NTRS)
Sellers, P. J.; Mintz, Y.; Sud, Y. C.
1986-01-01
A biosphere model for calculating the transfer of energy, mass, and momentum between the atmosphere and the vegetated surface of the Earth was designed for atmospheric general circulation models. An upper vegetation layer represents the perennial canopy of trees or shrubs, a lower layer represents the annual ground cover of grasses and other herbacious species. The local coverage of each vegetation layer may be fractional or complete but as the individual vegetation elements are considered to be evenly spaced, their root systems are assumed to extend uniformly throughout the entire grid-area. The biosphere has seven prognostic physical-state variables: two temperatures (one for the canopy and one for the ground cover and soil surface); two interception water stores (one for the canopy and one for the ground cover); and three soil moisture stores (two of which can be reached by the vegetation root systems and one underlying recharge layer into and out of which moisture is transferred only by hydraulic diffusion).
Fast, Jerome D.; Berg, Larry K.; Zhang, Kai; ...
2016-08-22
The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two-Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy's Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts, and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surface measurementsmore » during July, and 2 days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher-resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser-resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. In conclusion, while a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.« less
Meridionally propagating interannual-to-interdecadal variability in a linear ocean-atmosphere model
NASA Technical Reports Server (NTRS)
Mehta, Vikram M.
1992-01-01
Meridional oscillation modes in a global, primitive-equation coupled ocean-atmosphere model have been analyzed in order to determine whether they contain such meridionally propagating modes as surface-pressure perturbations with years-to-decades oscillation periods. A two-layer global ocean model and a two-level global atmosphere model were then formulated. For realistic parameter values and basic states, meridional modes oscillating at periods of several years to several decades are noted to be present in the coupled ocean-atmosphere model; the oscillation periods, travel times, and meridional structures of surface pressure perturbations in one of the modes are found to be comparable to the corresponding characteristics of observed sea-level pressure perturbations.
White dwarf stars with chemically stratified atmospheres
NASA Technical Reports Server (NTRS)
Muchmore, D.
1982-01-01
Recent observations and theory suggest that some white dwarfs may have chemically stratified atmospheres - thin layers of hydrogen lying above helium-rich envelopes. Models of such atmospheres show that a discontinuous temperature inversion can occur at the boundary between the layers. Model spectra for layered atmospheres at 30,000 K and 50,000 K tend to have smaller decrements at 912 A, 504 A, and 228 A than uniform atmospheres would have. On the basis of their continuous extreme ultraviolet spectra, it is possible to distinguish observationally between uniform and layered atmospheres for hot white dwarfs.
Exploring uncertainty in the radiative budget of the Antarctic atmospheric boundary layer at Dome C
NASA Astrophysics Data System (ADS)
Veron, D. E.; Schroth, A.; Genthon, C.; Vignon, E.
2017-12-01
In the past two decades, significant advances have been made in observing and modeling the atmospheric boundary layer processes over the Eastern Antarctic plateau. However, there are gaps in understanding related to the radiative and moisture budgets in the very bottom of the ABL. Since 2009, continuous meteorological observations have been made at 6 heights in the bottom 40-m of the atmosphere as part of the CALibration and VAlidation of meteorological and climate models and satellite retrievals (C ALVA) campaign to improve understanding of the atmospheric state over Dome C. A recent case study that is part of the GEWEX Atmospheric Boundary Layer Study, GABLS4, has also focused on the ability of models to simulate stable summertime boundary layers at the same location. As part of the intercomparison, a model derived summertime climatology based on 10-years of PolarWRF simulations over the Eastern Antarctic plateau was developed. Comparisons between these simulations and data from the CALVA campaign suggest that PolarWRF is not capturing the small-scale variations in the longwave heating rate profile near the surface, and so predicts biased surface temperatures relative to observations. Additional work suggests that modifications of the surface snow representations may also be needed. Studies of the sensitivity of these results to changes in the moisture budget are ongoing.
NASA Technical Reports Server (NTRS)
Helfand, H. M.
1985-01-01
Methods being used to increase the horizontal and vertical resolution and to implement more sophisticated parameterization schemes for general circulation models (GCM) run on newer, more powerful computers are described. Attention is focused on the NASA-Goddard Laboratory for Atmospherics fourth order GCM. A new planetary boundary layer (PBL) model has been developed which features explicit resolution of two or more layers. Numerical models are presented for parameterizing the turbulent vertical heat, momentum and moisture fluxes at the earth's surface and between the layers in the PBL model. An extended Monin-Obhukov similarity scheme is applied to express the relationships between the lowest levels of the GCM and the surface fluxes. On-line weather prediction experiments are to be run to test the effects of the higher resolution thereby obtained for dynamic atmospheric processes.
NASA Technical Reports Server (NTRS)
Lenoble, J.; Tanre, D.; Deschamps, P. Y.; Herman, M.
1982-01-01
A computer code was developed in terms of a three-layer model for the earth-atmosphere system, using a two-stream approximation for the troposphere and stratosphere. The analysis was limited to variable atmosphere loading by solar radiation over an unperturbed section of the atmosphere. The scattering atmosphere above a Lambertian ground layer was considered in order to derive the planar albedo and the spherical albedo. Attention was given to the influence of the aerosol optical thickness in the stratosphere, the single scattering albedo and asymmetry factor, and the sublayer albedo. Calculations were performed of the zonal albedo and the planetary radiation balance, taking into account a stratospheric aerosol layer containing H2SO4 droplets and volcanic ash. The resulting ground temperature disturbance was computed using a Budyko (1969) climate model. Local decreases in the albedo in the summer were observed in high latitudes, implying a heating effect of the aerosol. An accompanying energy loss of 23-27 W/sq m was projected, which translates to surface temperature decreases of either 1.1 and 0.45 C, respectively, for background and volcanic aerosols.
NASA Astrophysics Data System (ADS)
Duynkerke, P. G.
1988-03-01
In the E - turbulence model an eddy-exchange coefficient is evaluated from the turbulent kinetic energy E and viscous dissipation . In this study we will apply the E - model to the stable and neutral atmospheric boundary layer. A discussion is given on the equation for , which terms should be included and how we have evaluated the constants. Constant cooling rate results for the stable atmospheric boundary layer are compared with a second-order closure study. For the neutral atmospheric boundary layer a comparison is made with observations, large-eddy simulations and a second-order closure study. It is shown that a small stability effect can change the neutral atmospheric boundary layer quite drastically, and therefore, it will be difficult to observe a neutral boundary layer in the atmosphere.
Wind-tunnel measurements in the wakes of structures
NASA Technical Reports Server (NTRS)
Woo, H. G. C.; Peterka, J. A.; Cermak, J. E.
1977-01-01
Detailed measurements of longitudinal mean velocity, turbulence intensity, space correlations, and spectra made in the wake of two rectangular scaled models in simulated atmospheric boundary-layer winds are presented. The model buildings were 1:50 scale models of two trailers. Results of a flow visualization study of the wake geometry are analyzed with some singular point theorems. Two hypothetical flow patterns of the detailed wake geometry are proposed. Some preliminary studies of the vortex wake, effects of the model size, model aspect ratios, and boundary layer characteristics on the decay rate and extent of the wake are also presented and discussed.
NASA Astrophysics Data System (ADS)
Pitari, Giovanni; Coppari, Eleonora; De Luca, Natalia; Di Carlo, Piero; Pace, Loretta
2014-09-01
Two year measurements of aerosol concentration and size distribution (0.25 μm < d < 30 μm) in the atmospheric surface layer, collected in L'Aquila (Italy) with an optical particle counter, are reported and analysed for the different modes of the particle size distribution. A different seasonal behaviour is shown for fine mode aerosols (largely produced by anthropogenic combustion), coarse mode and large-sized aerosols, whose abundance is regulated not only by anthropogenic local production, but also by remote natural sources (via large scale atmospheric transport) and by local sources of primary biogenic aerosols. The observed total abundance of large particles with diameter larger than 10 μm is compared with a statistical counting of primary biogenic particles, made with an independent technique. Results of these two observational approaches are analysed and compared to each other, with the help of a box model driven by observed meteorological parameters and validated with measurements of fine and coarse mode aerosols and of an atmospheric primary pollutant of anthropogenic origin (NOx). Except in winter months, primary biogenic particles in the L'Aquila measurement site are shown to dominate the atmospheric boundary layer population of large aerosol particles with diameter larger than 10 μm (about 80 % of the total during summer months), with a pronounced seasonal cycle, contrary to fine mode aerosols of anthropogenic origin. In order to explain these findings, the main mechanisms controlling the abundance and variability of particulate matter tracers in the atmospheric surface layer are analysed with the numerical box-model.
NASA Astrophysics Data System (ADS)
Sanchez-Mejia, Zulia M.
Uncertainty of predicted change in precipitation frequency and intensity motivates the scientific community to better understand, quantify, and model the possible outcome of dryland ecosystems. In pulse dependent ecosystems (i.e. monsoon driven) soil moisture is tightly linked to atmospheric processes. Here, I analyze three overarching questions; Q1) How does soil moisture presence or absence in a shallow or deep layer influence the surface energy budget and planetary boundary layer characteristics?, Q2) What is the role of vegetation on ecosystem albedo in the presence or absence of deep soil moisture?, Q3) Can we develop empirical relationships between soil moisture and the planetary boundary layer height to help evaluate the role of future precipitation changes in land surface atmosphere interactions? . To address these questions I use a conceptual framework based on the presence or absence of soil moisture in a shallow or deep layer. I define these layers by using root profiles and establish soil moisture thresholds for each layer using four years of observations from the Santa Rita Creosote Ameriflux site. Soil moisture drydown curves were used to establish the shallow layer threshold in the shallow layer, while NEE (Net Ecosystem Exchange of carbon dioxide) was used to define the deep soil moisture threshold. Four cases were generated using these thresholds: Case 1, dry shallow layer and dry deep layer; Case 2, wet shallow layer and dry deep layer; Case 3, wet shallow layer and wet deep layer, and Case 4 dry shallow and wet deep layer. Using this framework, I related data from the Ameriflux site SRC (Santa Rita Creosote) from 2008 to 2012 and from atmospheric soundings from the nearby Tucson Airport; conducted field campaigns during 2011 and 2012 to measure albedo from individual bare and canopy patches that were then evaluated in a grid to estimate the influence of deep moisture on albedo via vegetation cover change; and evaluated the potential of using a two-layer bucket model and empirical relationships to evaluate the link between deep soil moisture and the planetary boundary layer height under changing precipitation regime. My results indicate that (1) the presence or absence of water in two layers plays a role in surface energy dynamics, (2) soil moisture presence in the deep layer is linked with decreased ecosystem albedo and planetary boundary layer height, (3) deep moisture sustains vegetation greenness and decreases albedo, and (4) empirical relationships are useful in modeling planetary boundary layer height from dryland ecosystems. Based on these results we argue that deep soil moisture plays an important role in land surface-atmosphere interactions.
Retrieving the polarization information for satellite-to-ground light communication
NASA Astrophysics Data System (ADS)
Tao, Qiangqiang; Guo, Zhongyi; Xu, Qiang; Jiao, Weiyan; Wang, Xinshun; Qu, Shiliang; Gao, Jun
2015-08-01
In this paper, we have investigated the reconstruction of the polarization states (degree of polarization (DoP) and angle of polarization (AoP)) of the incident light which passed through a 10 km atmospheric medium between the satellite and the Earth. Here, we proposed a more practical atmospheric model in which the 10 km atmospheric medium is divided into ten layers to be appropriate for the Monte Carlo simulation algorithm. Based on this model, the polarization retrieve (PR) method can be used for reconstructing the initial polarization information effectively, and the simulated results demonstrate that the mean errors of the retrieved DoP and AoP are very close to zero. Moreover, the results also show that although the atmospheric medium system is fixed, the Mueller matrices for the downlink and uplink are completely different, which shows that the light transmissions in the two links are irreversible in the layered atmospheric medium system.
NASA Astrophysics Data System (ADS)
Fisher, Andrew M.
The late spring and summer low-level wind field along the California coast is primarily controlled by the pressure gradient between the Pacific high and the thermal low over the desert southwest. Strong northwesterly winds within the marine boundary layer (MBL) are common and the flow is often described as a two-layer shallow water hydraulic system, capped above by subsidence and bounded laterally by high coastal topography. Hydraulic features such as an expansion fan can occur near major coastal headlands. Numerical simulations using the Weather Research and Forecasting (WRF) modeling system were conducted over a two-month period and compared to observations from several buoy stations and aircraft measurements from the Precision Atmospheric Marine Boundary Layer Experiment (PreAMBLE). Model performance of the atmospheric adjustment near the Point Arguello and Point Conception (PAPC) headlands and into the Santa Barbara Channel (SBC) is assessed. Substantial inconsistencies are revealed, especially in the SBC. The strength of the synoptic forcing impacts model performance upstream of PAPC. The model maintains stronger winds than observed under weak forcing regimes, inadequately representing periods of wind relaxation. The large-scale forcing has minimal impact on the flow in the SBC, where poor modeling of the MBL characteristics exists throughout the entire period. Similar results are found in the coarser North American Mesoscale (NAM) model. In general, WRF overestimates the wind speed around PAPC and the expansion fan extends too far into the SBC. Previous conceptual models were based on similar flawed model results and limited observations. PreAMBLE measurements reveal a more complex lower atmosphere in the SBC than the simulations can represent. Mischaracterization of surface wind stress in the SBC has implications for forcing ocean models with WRF. Understanding model biases of the vertical profile of temperature and humidity are also critical to several national defense agencies with interests in atmospheric refractivity conditions and its impact on their operations.
NASA Astrophysics Data System (ADS)
Sanchez-Mejia, Zulia Mayari; Papuga, Shirley A.
2017-11-01
In semiarid regions, where water resources are limited and precipitation dynamics are changing, understanding land surface-atmosphere interactions that regulate the coupled soil moisture-precipitation system is key for resource management and planning. We present a modeling approach to study soil moisture and albedo controls on planetary boundary layer height (PBLh). We used Santa Rita Creosote Ameriflux and Tucson Airport atmospheric sounding data to generate empirical relationships between soil moisture, albedo, and PBLh. Empirical relationships showed that ˜50% of the variation in PBLh can be explained by soil moisture and albedo with additional knowledge gained by dividing the soil profile into two layers. Therefore, we coupled these empirical relationships with soil moisture estimated using a two-layer bucket approach to model PBLh under six precipitation scenarios. Overall we observed that decreases in precipitation tend to limit the recovery of the PBL at the end of the wet season. However, increases in winter precipitation despite decreases in summer precipitation may provide opportunities for positive feedbacks that may further generate more winter precipitation. Our results highlight that the response of soil moisture, albedo, and the PBLh will depend not only on changes in annual precipitation, but also on the frequency and intensity of this change. We argue that because albedo and soil moisture data are readily available at multiple temporal and spatial scales, developing empirical relationships that can be used in land surface-atmosphere applications have great potential for exploring the consequences of climate change.
The influence of the solar atmospheric stratification on the form of p-mode ridges
NASA Astrophysics Data System (ADS)
Steffens, S.; Schmitz, F.
2000-02-01
We investigate properties of non-radial solar p-modes of high angular degree. We consider linear adiabatic oscillations with the transition layer as an ideal reflector. Ionization of hydrogen and helium and dissociation of hydrogen are included in the equation of state and consequently in the adiabatic sound speed. Because of the restriction to high-degree modes we use the plane layer approximation with constant gravity. Our standard atmospheric model is the VAL-C atmosphere. This atmosphere is joined to the upper part of a convection zone. A model corona is matched to the transition region. Boundary conditions are applied at the temperature maximum of the corona and at a depth in the convection zone far below the lower turning point of the non-radial p-modes determined by the Lamb-frequency. We vary the temperature stratification of the atmosphere and shift the position of the transition region to obtain a family of eight different equilibrium models. By this strategy we can study the formation of structures in the diagnostic diagram and we can take into account uncertainties of the VAL-chromosphere. It is shown how the classical p-modes of a convection zone with zero pressure boundary condition are deformed when the thickness of the overlying atmosphere is enlarged. In no case, the atmosphere generates additional modes. By strong bending, horizontally passing parts of the ridges are formed. These parts produce more or less pronounced chromospheric ridges or features. These chromospheric ridges appear at frequencies where observations show enhanced power in the diagnostic diagram. Their locations sensitively depend on the atmospheric model. A simple two layer model shows that the occurence of bending of the ridges in the diagnostic diagram is quite natural and independent of atmospheric details.
Regular network model for the sea ice-albedo feedback in the Arctic.
Müller-Stoffels, Marc; Wackerbauer, Renate
2011-03-01
The Arctic Ocean and sea ice form a feedback system that plays an important role in the global climate. The complexity of highly parameterized global circulation (climate) models makes it very difficult to assess feedback processes in climate without the concurrent use of simple models where the physics is understood. We introduce a two-dimensional energy-based regular network model to investigate feedback processes in an Arctic ice-ocean layer. The model includes the nonlinear aspect of the ice-water phase transition, a nonlinear diffusive energy transport within a heterogeneous ice-ocean lattice, and spatiotemporal atmospheric and oceanic forcing at the surfaces. First results for a horizontally homogeneous ice-ocean layer show bistability and related hysteresis between perennial ice and perennial open water for varying atmospheric heat influx. Seasonal ice cover exists as a transient phenomenon. We also find that ocean heat fluxes are more efficient than atmospheric heat fluxes to melt Arctic sea ice.
Using weather prediction data for simulation of mesoscale atmospheric processes
NASA Astrophysics Data System (ADS)
Bart, Andrey A.; Starchenko, Alexander V.
2015-11-01
The paper presents an approach to specify initial and boundary conditions from the output data of global model SLAV for mesoscale modelling of atmospheric processes in areas not covered by meteorological observations. From the data and the model equations for a homogeneous atmospheric boundary layer the meteorological and turbulent characteristics of the atmospheric boundary layer are calculated.
Development and validation of a regional coupled forecasting system for S2S forecasts
NASA Astrophysics Data System (ADS)
Sun, R.; Subramanian, A. C.; Hoteit, I.; Miller, A. J.; Ralph, M.; Cornuelle, B. D.
2017-12-01
Accurate and efficient forecasting of oceanic and atmospheric circulation is essential for a wide variety of high-impact societal needs, including: weather extremes; environmental protection and coastal management; management of fisheries, marine conservation; water resources; and renewable energy. Effective forecasting relies on high model fidelity and accurate initialization of the models with observed state of the ocean-atmosphere-land coupled system. A regional coupled ocean-atmosphere model with the Weather Research and Forecasting (WRF) model and the MITGCM ocean model coupled using the ESMF (Earth System Modeling Framework) coupling framework is developed to resolve mesoscale air-sea feedbacks. The regional coupled model allows oceanic mixed layer heat and momentum to interact with the atmospheric boundary layer dynamics at the mesoscale and submesoscale spatiotemporal regimes, thus leading to feedbacks which are otherwise not resolved in coarse resolution global coupled forecasting systems or regional uncoupled forecasting systems. The model is tested in two scenarios in the mesoscale eddy rich Red Sea and Western Indian Ocean region as well as mesoscale eddies and fronts of the California Current System. Recent studies show evidence for air-sea interactions involving the oceanic mesoscale in these two regions which can enhance predictability on sub seasonal timescale. We will present results from this newly developed regional coupled ocean-atmosphere model for forecasts over the Red Sea region as well as the California Current region. The forecasts will be validated against insitu observations in the region as well as reanalysis fields.
NASA Astrophysics Data System (ADS)
Song, J.; Wang, Z.
2013-12-01
Studying urban land-atmospheric interactions by coupling an urban canopy model with a single column atmospheric models Jiyun Song and Zhi-Hua Wang School of Sustainable Engineering and the Built Environment, Arizona State University, PO Box 875306, Tempe, AZ 85287-5306 Landuse landcover changes in urban area will modify surface energy budgets, turbulent fluxes as well as dynamic and thermodynamic structures of the overlying atmospheric boundary layer (ABL). In order to study urban land-atmospheric interactions, we coupled a single column atmospheric model (SCM) to a cutting-edge single layer urban canopy model (SLUCM). Modification of surface parameters such as the fraction of vegetation and engineered pavements, thermal properties of building and pavement materials, and geometrical features of street canyon, etc. in SLUCM dictates the evolution of surface balance of energy, water and momentum. The land surface states then provide lower boundary conditions to the overlying atmosphere, which in turn modulates the modification of ABL structure as well as vertical profiles of temperature, humidity, wind speed and tracer gases. The coupled SLUCM-SCM model is tested against field measurements of surface layer fluxes as well as profiles of temperature and humidity in the mixed layer under convective conditions. After model test, SLUCM-SCM is used to simulate the effect of changing urban land surface conditions on the evolution of ABL structure and dynamics. Simulation results show that despite the prescribed atmospheric forcing, land surface states impose significant impact on the physics of the overlying vertical atmospheric layer. Overall, this numerical framework provides a useful standalone modeling tool to assess the impacts of urban land surface conditions on the local hydrometeorology through land-atmospheric interactions. It also has potentially far-reaching implications to urban ecohydrological services for cities under future expansion and climate challenges.
NASA Technical Reports Server (NTRS)
Natarajan, Murali; Fairlie, T. Duncan; Dwyer Cianciolo, Alicia; Smith, Michael D.
2015-01-01
We use the mesoscale modeling capability of Mars Weather Research and Forecasting (MarsWRF) model to study the sensitivity of the simulated Martian lower atmosphere to differences in the parameterization of the planetary boundary layer (PBL). Characterization of the Martian atmosphere and realistic representation of processes such as mixing of tracers like dust depend on how well the model reproduces the evolution of the PBL structure. MarsWRF is based on the NCAR WRF model and it retains some of the PBL schemes available in the earth version. Published studies have examined the performance of different PBL schemes in NCAR WRF with the help of observations. Currently such assessments are not feasible for Martian atmospheric models due to lack of observations. It is of interest though to study the sensitivity of the model to PBL parameterization. Typically, for standard Martian atmospheric simulations, we have used the Medium Range Forecast (MRF) PBL scheme, which considers a correction term to the vertical gradients to incorporate nonlocal effects. For this study, we have also used two other parameterizations, a non-local closure scheme called Yonsei University (YSU) PBL scheme and a turbulent kinetic energy closure scheme called Mellor- Yamada-Janjic (MYJ) PBL scheme. We will present intercomparisons of the near surface temperature profiles, boundary layer heights, and wind obtained from the different simulations. We plan to use available temperature observations from Mini TES instrument onboard the rovers Spirit and Opportunity in evaluating the model results.
Particle motion in atmospheric boundary layers of Mars and Earth
NASA Technical Reports Server (NTRS)
White, B. R.; Iversen, J. D.; Greeley, R.; Pollack, J. B.
1975-01-01
To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow.
NASA Astrophysics Data System (ADS)
Zadorozhny, Alexander; Dyominov, Igor
It is well known that anthropogenic emissions of greenhouse gases into the atmosphere produce a global warming of the troposphere and a global cooling of the stratosphere. The expected stratospheric cooling essentially influences the ozone layer via increased polar stratospheric cloud formation and via temperature dependences of the gas phase reaction rates. One more mechanism of how greenhouse gases influences the ozone layer is enhanced water evaporation from the oceans into the atmosphere because of increasing temperatures of the ocean surface due to greenhouse effect. The subject of this paper is a study of the influence of anthropogenic pollution of the atmosphere by the greenhouse gases CO2, CH4, N2O and ozone-depleting chlorine and bromine compounds on the expected long-term changes of the ozone layer with taking into account an increase of water vapour content in the atmosphere due to greenhouse effect. The study based on 2-D zonally averaged interactive dynamical radiative-photochemical model of the troposphere and stratosphere. The model allows to self-consistently calculating diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the South to North Poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds of two types. It was supposed in the model that an increase of the ocean surface temperature caused by greenhouse effect is similar to calculated increase of atmospheric surface temperature. Evaporation rate from the ocean surface was computed in dependence of latitude. The model time-dependent runs were made for the period from 1975 to 2100 using two IPCC scenarios depicting maximum and average expected increases of greenhouse gases in the atmosphere. The model calculations show that anthropogenic increasing of water vapour abundance in the atmosphere due to heating of the ocean surface caused by greenhouse effect gives a sensible contribution to the expected ozone changes. The enhanced evaporation from the ocean increases noticeably a water vapour abundance in the stratosphere that decreases global total ozone and retards the expected recovery of the ozone layer. In polar latitudes, additional stratospheric water vapour increase due to greenhouse effect noticeably strengthens the impact of anthropogenic greenhouse gases on ozone through modification of polar stratospheric clouds and retards the expected recovery of the ozone, too. In the Northern hemisphere, the delay of the ozone recovery is about 5 years, in the Southern hemisphere the delay is about 2 years.
Atmosphere-ocean feedbacks in a coastal upwelling system
NASA Astrophysics Data System (ADS)
Alves, J. M. R.; Peliz, A.; Caldeira, R. M. A.; Miranda, P. M. A.
2018-03-01
The COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modelling system is used in different configurations to simulate the Iberian upwelling during the 2012 summer, aiming to assess the atmosphere-ocean feedbacks in the upwelling dynamics. When model results are compared with satellite measurements and in-situ data, two-way coupling is found to have a moderate impact in data-model statistics. A significant reinforcement of atmosphere-ocean coupling coefficients is, however, observed in the two-way coupled run, and in the WRF and ROMS runs forced by previously simulated SST and wind fields, respectively. The increasing in the coupling coefficient is associated with slight, but potentially important changes in the low-level coastal jet in the atmospheric marine boundary layer. While these results do not imply the need for fully coupled simulations in many applications, they show that in seasonal numerical studies such simulations do not degrade the overall model performance, and contribute to produce better dynamical fields.
VLTI/AMBER spectro-interferometric imaging of VX Sagittarii's inhomogenous outer atmosphere
NASA Astrophysics Data System (ADS)
Chiavassa, A.; Lacour, S.; Millour, F.; Driebe, T.; Wittkowski, M.; Plez, B.; Thiébaut, E.; Josselin, E.; Freytag, B.; Scholz, M.; Haubois, X.
2010-02-01
Aims: We aim to explore the photosphere of the very cool late-type star VX Sgr and in particular the characterization of molecular layers above the continuum forming photosphere. Methods: We obtained interferometric observations with the VLTI/AMBER interferometer using the fringe tracker FINITO in the spectral domain 1.45-2.50 μm with a spectral resolution of ≈35 and baselines ranging from 15 to 88 m. We performed independent image reconstruction for different wavelength bins and fit the interferometric data with a geometrical toy model. We also compared the data to 1D dynamical models of Miras atmosphere and to 3D hydrodynamical simulations of red supergiant (RSG) and asymptotic giant branch (AGB) stars. Results: Reconstructed images and visibilities show a strong wavelength dependence. The H-band images display two bright spots whose positions are confirmed by the geometrical toy model. The inhomogeneities are qualitatively predicted by 3D simulations. At ≈2.00 μm and in the region 2.35-2.50 μm, the photosphere appears extended and the radius is larger than in the H band. In this spectral region, the geometrical toy model locates a third bright spot outside the photosphere that can be a feature of the molecular layers. The wavelength dependence of the visibility can be qualitatively explained by 1D dynamical models of Mira atmospheres. The best-fitting photospheric models show a good match with the observed visibilities and give a photospheric diameter of Theta=8.82 ± 0.50 mas. The H2O molecule seems to be the dominant absorber in the molecular layers. Conclusions: We show that the atmosphere of VX Sgr seems to resemble Mira/AGB star model atmospheres more closely than do RSG model atmospheres. In particular, we see molecular (water) layers that are typical of Mira stars. Based on the observations made with VLTI-ESO Paranal, Chile under the programs IDs 081.D-0005(A, B, C, D, E, F, G, H).
NASA Astrophysics Data System (ADS)
Miller, C.; Chanover, N.; Murphy, J. R.; Zalucha, A. M.
2011-12-01
Triton and Pluto are two members of a possible class of bodies with an N2 frost covered surface in vapor-pressure equilibrium with a predominately N2 atmosphere. Modeling the dynamics of such an atmosphere is useful for several reasons. First, winds on Triton were inferred from images of surface streaks and active plumes visible at the time of the Voyager 2 flyby in August 1989. Dynamic atmospheric simulations can reveal the seasonal conditions under which such winds would arise and therefore how long before the Voyager 2 encounter the ground streaks may have been deposited. Second, atmospheric conditions on Pluto at the time of the New Horizons flyby are expected to be similar to those on Triton. Therefore, a dynamical model of a cold, thin N2 atmosphere can be used to predict wind speed and direction on Pluto during the New Horizons encounter with the Pluto/Charon system in July 2015. We used a modified version of the NASA Ames Mars General Circulation Model, version 2.0, to model an N2 atmosphere in contact with N2 surface frosts. We altered the Ames GCM to simulate conditions found on Triton. These alterations included changing the size, rotation rate, orbital inclination, surface gravity, and distance to the Sun of the parent body to model the proper time-varying insolation. We defined the gas properties for an N2 atmosphere, including values for latent heat, specific heat, and the vapor pressure-temperature relationship for N2 frosts. Our simulations assumed an N2 atmosphere with an initial average surface pressure of 18 microbars and we chose N2 frost albedo and emissivity values that resulted in a stable surface pressure over time. We incorporated a 190-meter deep ten-layer water-ice subsurface layer covered with a 20-centimeter global layer of N2 frost. Our simulations did not include atmospheric radiative heat transfer, but did include conduction, convection, and surface-boundary layer heating. We ran simulations of 100 Triton days at 10 points along Triton's orbit between the 1952 equinox and the 2000 southern summer solstice to examine seasonal changes in the condensation flow. We will present results from these simulations and discuss the interplay between sub-surface heat conduction, N2 frost phase changes, and atmospheric dynamics. We will also compare these results to those obtained under two other initial surface conditions - no N2 frost layer, and a global N2 frost layer with sublimation and condensation inhibited. These simulations provide a baseline for disentangling the respective roles of subsurface heating, local atmospheric mass change through surface frost sublimation and condensation, and the vapor pressure-temperature relationship for N2 frost. We will also present results of simulations incorporating a Newtonian thermal relaxation scheme with temperature-pressure profiles derived from a 2-D radiative-conductive model. Finally, we will compare our simulation results under conditions equivalent to those at the time of the Voyager 2 flyby to the wind field inferred by the pattern of ground streaks seen on Triton. This study was funded by a NASA Earth and Space Science Fellowship through grant number NNX09AQ96H.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klevtsova, Yu Yu
2013-09-30
The paper is concerned with a nonlinear system of partial differential equations with parameters. This system describes the two-layer quasi-solenoidal Lorenz model for a baroclinic atmosphere on a rotating two-dimensional sphere. The right-hand side of the system is perturbed by white noise. Sufficient conditions on the parameters and the right-hand side are obtained for the existence of a stationary measure. Bibliography: 25 titles.
Atmospheric Boundary Layer Dynamics Near Ross Island and Over West Antarctica.
NASA Astrophysics Data System (ADS)
Liu, Zhong
The atmospheric boundary layer dynamics near Ross Island and over West Antarctica has been investigated. The study consists of two parts. The first part involved the use of data from ground-based remote sensing equipment (sodar and RASS), radiosondes, pilot balloons, automatic weather stations, and NOAA AVHRR satellite imagery. The second part involved the use of a high resolution boundary layer model coupled with a three-dimensional primitive equation mesoscale model to simulate the observed atmospheric boundary layer winds and temperatures. Turbulence parameters were simulated with an E-epsilon turbulence model driven by observed winds and temperatures. The observational analysis, for the first time, revealed that the airflow passing through the Ross Island area is supplied mainly by enhanced katabatic drainage from Byrd Glacier and secondarily drainage from Mulock and Skelton glaciers. The observed diurnal variation of the blocking effect near Ross Island is dominated by the changes in the upstream katabatic airflow. The synthesized analysis over West Antarctica found that the Siple Coast katabatic wind confluence zone consists of two superimposed katabatic airflows: a relatively warm and more buoyant katabatic flow from West Antarctica overlies a colder and less buoyant katabatic airflow from East Antarctica. The force balance analysis revealed that, inside the West Antarctic katabatic wind zone, the pressure gradient force associated with the blocked airflow against the Transantarctic Mountains dominates; inside the East Antarctic katabatic wind zone, the downslope buoyancy force due to the cold air overlying the sloping terrain is dominant. The analysis also shows that these forces are in geostrophic balance with the Coriolis force. An E-epsilon turbulence closure model is used to simulate the diurnal variation of sodar backscatter. The results show that the model is capable of qualitatively capturing the main features of the observed sodar backscatter. To improve the representation of the atmospheric boundary layer, a second-order turbulence closure model coupled with the input from a mesoscale model was applied to the springtime Siple Coast katabatic wind confluence zone. The simulation was able to capture the main features of the confluence zone, which were not well resolved by the mesoscale model.
2011-03-01
atmosphere. The atmosphere is divided into separate layers: troposphere , stratosphere, mesosphere, and thermosphere. The lowest two kilometers of...of the other trace gases vary significantly with altitude. (Perram, et. al., 2010) The concentrations of water vapor and ozone can vary throughout...single most important absorber across this portion of the spectrum. Carbon dioxide, ozone and oxygen are also important. Scattering Scattering
Atmospheric Boundary Layer Modeling for Combined Meteorology and Air Quality Systems
Atmospheric Eulerian grid models for mesoscale and larger applications require sub-grid models for turbulent vertical exchange processes, particularly within the Planetary Boundary Layer (PSL). In combined meteorology and air quality modeling systems consistent PSL modeling of wi...
NASA Technical Reports Server (NTRS)
Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.; Shen, Shaohua
1998-01-01
In support of the wake vortex effect of the Terminal Area Productivity program, we have put forward four tasks to be accomplished in our proposal. The first task is validation of two-dimensional wake vortex-turbulence interaction. The second task is investigation of three-dimensional interaction between wake vortices and atmospheric boundary layer (ABL) turbulence. The third task is ABL studies. The, fourth task is addition of a Klemp-Durran condition at the top boundary for TASS model. The accomplishment of these tasks will increase our understanding of the dynamics of wake vortex and improve forecasting systems responsible for air safety and efficiency. The first two tasks include following three parts: (a) Determine significant length scale for vortex decay and transport, especially the length scales associated with the onset of Crow instability (Crow, 1970); (b) Study the effects of atmospheric turbulence on the decay of the wake vortices; and (c) Determine the relationships between decay rate, transport properties and atmospheric parameters based on large eddy simulation (LES) results and the observational data. These parameters may include turbulence kinetic energy, dissipation rate, wind shear and atmospheric stratification. The ABL studies cover LES modeling of turbulence structure within planetary boundary layer under transition and stable stratification conditions. Evidences have shown that the turbulence in the stable boundary layer can be highly intermittent and the length scales of eddies are very small compared to those in convective case. We proposed to develop a nesting grid mesh scheme and a modified Klemp-Durran conditions (Klemp and Wilhelmson, 1978) at the top boundary for TASS model to simulate planetary boundary layer under stable stratification conditions. During the past year, our group has made great efforts to carry out the above mentioned four tasks simultaneously. The work accomplished in the last year will be described in the next section.
NASA Astrophysics Data System (ADS)
Song, Z.; Lee, S. K.; Wang, C.; Kirtman, B. P.; Qiao, F.
2016-02-01
In order to identify and quantify intrinsic errors in the atmosphere-land and ocean-sea ice model components of the Community Earth System Model version 1 (CESM1) and their contributions to the tropical Atlantic sea surface temperature (SST) bias in CESM1, we propose a new method of diagnosis and apply it to a set of CESM1 simulations. Our analyses of the model simulations indicate that both the atmosphere-land and ocean-sea ice model components of CESM1 contain large errors in the tropical Atlantic. When the two model components are fully coupled, the intrinsic errors in the two components emerge quickly within a year with strong seasonality in their growth rates. In particular, the ocean-sea ice model contributes significantly in forcing the eastern equatorial Atlantic warm SST bias in early boreal summer. Further analysis shows that the upper thermocline water underneath the eastern equatorial Atlantic surface mixed layer is too warm in a stand-alone ocean-sea ice simulation of CESM1 forced with observed surface flux fields, suggesting that the mixed layer cooling associated with the entrainment of upper thermocline water is too weak in early boreal summer. Therefore, although we acknowledge the potential importance of the westerly wind bias in the western equatorial Atlantic and the low-level stratus cloud bias in the southeastern tropical Atlantic, both of which originate from the atmosphere-land model, we emphasize here that solving those problems in the atmosphere-land model alone does not resolve the equatorial Atlantic warm bias in CESM1.
Framework of distributed coupled atmosphere-ocean-wave modeling system
NASA Astrophysics Data System (ADS)
Wen, Yuanqiao; Huang, Liwen; Deng, Jian; Zhang, Jinfeng; Wang, Sisi; Wang, Lijun
2006-05-01
In order to research the interactions between the atmosphere and ocean as well as their important role in the intensive weather systems of coastal areas, and to improve the forecasting ability of the hazardous weather processes of coastal areas, a coupled atmosphere-ocean-wave modeling system has been developed. The agent-based environment framework for linking models allows flexible and dynamic information exchange between models. For the purpose of flexibility, portability and scalability, the framework of the whole system takes a multi-layer architecture that includes a user interface layer, computational layer and service-enabling layer. The numerical experiment presented in this paper demonstrates the performance of the distributed coupled modeling system.
NASA Astrophysics Data System (ADS)
Omrani, H.; Drobinski, P.; Dubos, T.
2009-09-01
In this work, we consider the effect of indiscriminate nudging time on the large and small scales of an idealized limited area model simulation. The limited area model is a two layer quasi-geostrophic model on the beta-plane driven at its boundaries by its « global » version with periodic boundary condition. This setup mimics the configuration used for regional climate modelling. Compared to a previous study by Salameh et al. (2009) who investigated the existence of an optimal nudging time minimizing the error on both large and small scale in a linear model, we here use a fully non-linear model which allows us to represent the chaotic nature of the atmosphere: given the perfect quasi-geostrophic model, errors in the initial conditions, concentrated mainly in the smaller scales of motion, amplify and cascade into the larger scales, eventually resulting in a prediction with low skill. To quantify the predictability of our quasi-geostrophic model, we measure the rate of divergence of the system trajectories in phase space (Lyapunov exponent) from a set of simulations initiated with a perturbation of a reference initial state. Predictability of the "global", periodic model is mostly controlled by the beta effect. In the LAM, predictability decreases as the domain size increases. Then, the effect of large-scale nudging is studied by using the "perfect model” approach. Two sets of experiments were performed: (1) the effect of nudging is investigated with a « global » high resolution two layer quasi-geostrophic model driven by a low resolution two layer quasi-geostrophic model. (2) similar simulations are conducted with the two layer quasi-geostrophic LAM where the size of the LAM domain comes into play in addition to the first set of simulations. In the two sets of experiments, the best spatial correlation between the nudge simulation and the reference is observed with a nudging time close to the predictability time.
Parameterized code SHARM-3D for radiative transfer over inhomogeneous surfaces.
Lyapustin, Alexei; Wang, Yujie
2005-12-10
The code SHARM-3D, developed for fast and accurate simulations of the monochromatic radiance at the top of the atmosphere over spatially variable surfaces with Lambertian or anisotropic reflectance, is described. The atmosphere is assumed to be laterally uniform across the image and to consist of two layers with aerosols contained in the bottom layer. The SHARM-3D code performs simultaneous calculations for all specified incidence-view geometries and multiple wavelengths in one run. The numerical efficiency of the current version of code is close to its potential limit and is achieved by means of two innovations. The first is the development of a comprehensive precomputed lookup table of the three-dimensional atmospheric optical transfer function for various atmospheric conditions. The second is the use of a linear kernel model of the land surface bidirectional reflectance factor (BRF) in our algorithm that has led to a fully parameterized solution in terms of the surface BRF parameters. The code is also able to model inland lakes and rivers. The water pixels are described with the Nakajima-Tanaka BRF model of wind-roughened water surface with a Lambertian offset, which is designed to model approximately the reflectance of suspended matter and of a shallow lake or river bottom.
Parameterized code SHARM-3D for radiative transfer over inhomogeneous surfaces
NASA Astrophysics Data System (ADS)
Lyapustin, Alexei; Wang, Yujie
2005-12-01
The code SHARM-3D, developed for fast and accurate simulations of the monochromatic radiance at the top of the atmosphere over spatially variable surfaces with Lambertian or anisotropic reflectance, is described. The atmosphere is assumed to be laterally uniform across the image and to consist of two layers with aerosols contained in the bottom layer. The SHARM-3D code performs simultaneous calculations for all specified incidence-view geometries and multiple wavelengths in one run. The numerical efficiency of the current version of code is close to its potential limit and is achieved by means of two innovations. The first is the development of a comprehensive precomputed lookup table of the three-dimensional atmospheric optical transfer function for various atmospheric conditions. The second is the use of a linear kernel model of the land surface bidirectional reflectance factor (BRF) in our algorithm that has led to a fully parameterized solution in terms of the surface BRF parameters. The code is also able to model inland lakes and rivers. The water pixels are described with the Nakajima-Tanaka BRF model of wind-roughened water surface with a Lambertian offset, which is designed to model approximately the reflectance of suspended matter and of a shallow lake or river bottom.
Atmospheric Radiation Measurement Program Facilities Newsletter - September 1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holdridge, D. J., ed
The Atmospheric Radiation Measurement Program September 1999 Facilities Newsletter discusses the several Intensive Observation Periods (IOPs) that the ARM SGP CART site will host in the near future. Two projects of note are the International Pyrgeometer Intercomparison and the Fall Single Column Model (SCM)/Nocturnal Boundary Layer (NBL) IOP. Both projects will bring many US and international scientists to the SGP CART site to participate in atmospheric research.
Evaluation of standard radiation atmosphere aerosol models for a coastal environment
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Suttles, J. T.; Sebacher, D. I.; Fuller, W. H.; Lecroy, S. R.
1986-01-01
Calculations are compared with data from an experiment to evaluate the utility of standard radiation atmosphere (SRA) models for defining aerosol properties in atmospheric radiation computations. Initial calculations with only SRA aerosols in a four-layer atmospheric column simulation allowed a sensitivity study and the detection of spectral trends in optical depth, which differed from measurements. Subsequently, a more detailed analysis provided a revision in the stratospheric layer, which brought calculations in line with both optical depth and skylight radiance data. The simulation procedure allows determination of which atmospheric layers influence both downwelling and upwelling radiation spectra.
Scale effects in wind tunnel modeling of an urban atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Kozmar, Hrvoje
2010-03-01
Precise urban atmospheric boundary layer (ABL) wind tunnel simulations are essential for a wide variety of atmospheric studies in built-up environments including wind loading of structures and air pollutant dispersion. One of key issues in addressing these problems is a proper choice of simulation length scale. In this study, an urban ABL was reproduced in a boundary layer wind tunnel at different scales to study possible scale effects. Two full-depth simulations and one part-depth simulation were carried out using castellated barrier wall, vortex generators, and a fetch of roughness elements. Redesigned “Counihan” vortex generators were employed in the part-depth ABL simulation. A hot-wire anemometry system was used to measure mean velocity and velocity fluctuations. Experimental results are presented as mean velocity, turbulence intensity, Reynolds stress, integral length scale of turbulence, and power spectral density of velocity fluctuations. Results suggest that variations in length-scale factor do not influence the generated ABL models when using similarity criteria applied in this study. Part-depth ABL simulation compares well with two full-depth ABL simulations indicating the truncated vortex generators developed for this study can be successfully employed in urban ABL part-depth simulations.
Atmospheric boundary layer modification in the marginal ice zone
NASA Technical Reports Server (NTRS)
Bennett, Theodore J., Jr.; Hunkins, Kenneth
1986-01-01
A case study of the Andreas et al. (1984) data on atmospheric boundary layer modification in the marginal ice zone is made. The model is a two-dimensional, multilevel, linear model with turbulence, lateral and vertical advection, and radiation. Good agreement between observed and modeled temperature cross sections is obtained. In contrast to the hypothesis of Andreas et al., the air flow is found to be stable to secondary circulations. Adiabatic lifting and, at long fetches, cloud top longwave cooling, not an air-to-surface heat flux, dominate the cooling of the boundary layer. The accumulation with fetch over the ice of changes in the surface wind field is shown to have a large effect on estimates of the surface wind stress. It is speculated that the Andreas et al. estimates of the drag coefficient over the compact sea ice are too high.
NASA Astrophysics Data System (ADS)
Parsakhoo, Zahra; Shao, Yaping
2017-04-01
Near-surface turbulent mixing has considerable effect on surface fluxes, cloud formation and convection in the atmospheric boundary layer (ABL). Its quantifications is however a modeling and computational challenge since the small eddies are not fully resolved in Eulerian models directly. We have developed a Lagrangian stochastic model to demonstrate multi-scale interactions between convection and land surface heterogeneity in the atmospheric boundary layer based on the Ito Stochastic Differential Equation (SDE) for air parcels (particles). Due to the complexity of the mixing in the ABL, we find that linear Ito SDE cannot represent convections properly. Three strategies have been tested to solve the problem: 1) to make the deterministic term in the Ito equation non-linear; 2) to change the random term in the Ito equation fractional, and 3) to modify the Ito equation by including Levy flights. We focus on the third strategy and interpret mixing as interaction between at least two stochastic processes with different Lagrangian time scales. The model is in progress to include the collisions among the particles with different characteristic and to apply the 3D model for real cases. One application of the model is emphasized: some land surface patterns are generated and then coupled with the Large Eddy Simulation (LES).
The Martian atmospheric planetary boundary layer stability, fluxes, spectra, and similarity
NASA Technical Reports Server (NTRS)
Tillman, James E.
1994-01-01
This is the first analysis of the high frequency data from the Viking lander and spectra of wind, in the Martian atmospheric surface layer, along with the diurnal variation of the height of the mixed surface layer, are calculated for the first time for Mars. Heat and momentum fluxes, stability, and z(sub O) are estimated for early spring, from a surface temperature model and from Viking Lander 2 temperatures and winds at 44 deg N, using Monin-Obukhov similarity theory. The afternoon maximum height of the mixed layer for these seasons and conditions is estimated to lie between 3.6 and 9.2 km. Estimations of this height is of primary importance to all models of the boundary layer and Martian General Circulation Models (GCM's). Model spectra for two measuring heights and three surface roughnesses are calculated using the depth of the mixed layer, and the surface layer parameters and flow distortion by the lander is also taken into account. These experiments indicate that z(sub O), probably lies between 1.0 and 3.0 cm, and most likely is closer to 1.0 cm. The spectra are adjusted to simulate aliasing and high frequency rolloff, the latter caused both by the sensor response and the large Kolmogorov length on Mars. Since the spectral models depend on the surface parameters, including the estimated surface temperature, their agreement with the calculated spectra indicates that the surface layer estimates are self consistent. This agreement is especially noteworthy in that the inertial subrange is virtually absent in the Martian atmosphere at this height, due to the large Kolmogorov length scale. These analyses extend the range of applicability of terrestrial results and demonstrate that it is possible to estimate the effects of severe aliasing of wind measurements, to produce a models which agree well with the measured spectra. The results show that similarity theory developed for Earth applies to Mars, and that the spectral models are universal.
Modeling the air-sea feedback system of Madeira Island
NASA Astrophysics Data System (ADS)
Pullen, Julie; Caldeira, Rui; Doyle, James D.; May, Paul; Tomé, Ricardo
2017-07-01
A realistic nested data-assimilating two-way coupled ocean/atmosphere modeling study (highest resolution 2 km) of Madeira Island was conducted for June 2011, when conditions were favorable for atmospheric vortex shedding. The simulation's island lee region exhibited relatively cloud-free conditions, promoting warmer ocean temperatures (˜2°C higher than adjacent waters). The model reasonably reproduced measured fields at 14 meteorological stations, and matched the dimensions and magnitude of the warm sea surface temperature (SST) wake imaged by satellite. The warm SSTs in the wake are shown to imprint onto the atmospheric boundary layer (ABL) over several diurnal cycles by modulating the ABL depth up to ˜200-500 m. The erosion and dissipation of the warm ocean wake overnight was aided by atmospheric drainage flow and offshore advection of cold air (ΔT = 2°C) that produced strong upward heat fluxes (˜50 W/m2 sensible and ˜250 W/m2 latent) on an episodic basis. Nevertheless, the warm wake was never entirely eroded at night due to the cumulative effect of the diurnal cycle. The spatial pattern of the diurnal warming varied day-to-day in location and extent. Significant mutual interaction of the oceanic and atmospheric boundary layers was diagnosed via fluxes and temperature cross sections and reinforced by sensitivity runs. The simulation produces for the first time the interactive nature of the ocean and atmosphere boundary layers in the warm wake region of an island with complex terrain.
NASA Technical Reports Server (NTRS)
Shelton, J. D.; Gardner, C. S.
1981-01-01
The density response of atmospheric layers to gravity waves is developed in two forms, an exact solution and a perturbation series solution. The degree of nonlinearity in the layer density response is described by the series solution whereas the exact solution gives insight into the nature of the responses. Density perturbation in an atmospheric layer are shown to be substantially greater than the atmospheric density perturbation associated with the propagation of a gravity wave. Because of the density gradients present in atmospheric layers, interesting effects were observed such as a phase reversal in the linear layer response which occurs near the layer peak. Once the layer response is understood, the sodium layer can be used as a tracer of atmospheric wave motions. A two dimensional digital signal processing technique was developed. Both spatial and temporal filtering are utilized to enhance the resolution by decreasing shot noise by more han 10 dB. Many of the features associated with a layer density response to gravity waves were observed in high resolution density profiles of the mesospheric sodium layer. These include nonlinearities as well as the phase reversal in the linear layer response.
Dust transportation in bounday layers on complex areas
NASA Astrophysics Data System (ADS)
Karelsky, Kirill; Petrosyan, Arakel
2017-04-01
This presentation is aimed at creating and realization of new physical model of impurity transfer (solid particles and heavy gases) in areas with non-flat and/or nonstationary boundaries. The main idea of suggested method is to use non-viscous equations for solid particles transport modeling in the vicinity of complex boundary. In viscous atmosphere with as small as one likes coefficient of molecular viscosity, the non-slip boundary condition on solid surface must be observed. This postulates the reduction of velocity to zero at a solid surface. It is unconditionally in this case Prandtle hypothesis must be observed: for rather wide range of conditions in the surface neighboring layers energy dissipation of atmosphere flows is comparable by magnitude with manifestation of inertia forces. That is why according to Prandtle hypothesis in atmosphere movement characterizing by a high Reynolds number the boundary layer is forming near a planet surface, within which the required transition from zero velocities at the surface to magnitudes at the external boundary of the layer that are quite close to ones in ideal atmosphere flow. In that layer fast velocity gradients cause viscous effects to be comparable in magnitude with inertia forces influence. For conditions considered essential changes of hydrodynamic fields near solid boundary caused not only by nonslip condition but also by a various relief of surface: mountains, street canyons, individual buildings. Transport of solid particles, their ascent and precipitation also result in dramatic changes of meteorological fields. As dynamic processes of solid particles transfer accompanying the flow past of complex relief surface by wind flows is of our main interest we are to use equations of non-viscous hydrodynamic. We should put up with on the one hand idea of high wind gradients in the boundary layer and on the other hand disregard of molecular viscosity in two-phase atmosphere equations. We deal with describing high field gradients with the aid of scheme viscosity of numerical algorithm used to model near-surface phenomena. This idea is implemented in the model of ideal gas equations with variable equation of state describing particulates transportation within boundary layer with obstacles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kai; Fu, Rong; Shaikh, Muhammad J.
We evaluate the Community Atmosphere Model Version 5 (CAM5) with a higher-order turbulence closure scheme, named Cloud Layers Unified By Binomials (CLUBB), and a Multiscale Modeling Framework (MMF) with two different microphysics configurations to investigate their influences on rainfall simulations over Southern Amazonia. The two different microphysics configurations in MMF are the one-moment cloud microphysics without aerosol treatment (SAM1MOM) and two-moment cloud microphysics coupled with aerosol treatment (SAM2MOM). Results show that both MMF-SAM2MOM and CLUBB effectively reduce the low biases of rainfall, mainly during the wet season. The CLUBB reduces low biases of humidity in the lower troposphere with furthermore » reduced shallow clouds. The latter enables more surface solar flux, leading to stronger convection and more rainfall. MMF, especially MMF-SAM2MOM, unstablizes the atmosphere with more moisture and higher atmospheric temperatures in the atmospheric boundary layer, allowing the growth of more extreme convection and further generating more deep convection. MMF-SAM2MOM significantly increases rainfall in the afternoon, but it does not reduce the early bias of the diurnal rainfall peak; LUBB, on the other hand, delays the afternoon peak time and produces more precipitation in the early morning, due to more realistic gradual transition between shallow and deep convection. MMF appears to be able to realistically capture the observed increase of relative humidity prior to deep convection, especially with its two-moment configuration. In contrast, in CAM5 and CAM5 with CLUBB, occurrence of deep convection in these models appears to be a result of stronger heating rather than higher relative humidity.« less
Atmospheric flow over two-dimensional bluff surface obstructions
NASA Technical Reports Server (NTRS)
Bitte, J.; Frost, W.
1976-01-01
The phenomenon of atmospheric flow over a two-dimensional surface obstruction, such as a building (modeled as a rectangular block, a fence or a forward-facing step), is analyzed by three methods: (1) an inviscid free streamline approach, (2) a turbulent boundary layer approach using an eddy viscosity turbulence model and a horizontal pressure gradient determined by the inviscid model, and (3) an approach using the full Navier-Stokes equations with three turbulence models; i.e., an eddy viscosity model, a turbulence kinetic-energy model and a two-equation model with an additional transport equation for the turbulence length scale. A comparison of the performance of the different turbulence models is given, indicating that only the two-equation model adequately accounts for the convective character of turbulence. Turbulence flow property predictions obtained from the turbulence kinetic-energy model with prescribed length scale are only insignificantly better than those obtained from the eddy viscosity model. A parametric study includes the effects of the variation of the characteristics parameters of the assumed logarithmic approach velocity profile. For the case of the forward-facing step, it is shown that in the downstream flow region an increase of the surface roughness gives rise to higher turbulence levels in the shear layer originating from the step corner.
NASA Technical Reports Server (NTRS)
Iversen, J. D.
1991-01-01
The aeolian wind tunnel is a special case of a larger subset of the wind tunnel family which is designed to simulate the atmospheric surface layer winds to small scale (a member of this larger subset is usually called an atmospheric boundary layer wind tunnel or environmental wind tunnel). The atmospheric boundary layer wind tunnel is designed to simulate, as closely as possible, the mean velocity and turbulence that occur naturally in the atmospheric boundary layer (defined as the lowest portion of the atmosphere, of the order of 500 m, in which the winds are most greatly affected by surface roughness and topography). The aeolian wind tunnel is used for two purposes: to simulate the physics of the saltation process and to model at small scale the erosional and depositional processes associated with topographic surface features. For purposes of studying aeolian effects on the surface of Mars and Venus as well as on Earth, the aeolian wind tunnel continues to prove to be a useful tool for estimating wind speeds necessary to move small particles on the three planets as well as to determine the effects of topography on the evolution of aeolian features such as wind streaks and dune patterns.
NASA Astrophysics Data System (ADS)
Putri, R. J. A.; Setyawan, T.
2017-01-01
In the synoptic scale, one of the important meteorological parameter is the atmospheric boundary layer. Aside from being a supporter of the parameters in weather and climate models, knowing the thickness of the layer of the atmosphere can help identify aerosols and the strength of the vertical mixing of pollutants in it. The vertical wind profile data from C-band Doppler radar Mopah-Merauke which is operated by BMKG through Mopah-Merauke Meteorological Station can be used to identify the peak of Atmospheric Boundaryu Layer (ABL). ABL peak marked by increasing wind shear over the layer blending. Samples in January 2015 as a representative in the wet and in July 2015 as the representation of a dry month, shows that ABL heights using WRF models show that in July (sunny weather) ABL height values higher than in January (cloudy)
NASA Astrophysics Data System (ADS)
Kulkarni, M. N.; Kamra, A. K.
2012-11-01
A theoretical model is developed for calculating the vertical distribution of atmospheric electric potential in exchange layer of maritime clean atmosphere. The transport of space charge in electrode layer acts as a convective generator in this model and plays a major role in determining potential distribution in vertical. Eddy diffusion is the main mechanism responsible for the distribution of space charge in vertical. Our results show that potential at a particular level increases with increase in the strength of eddy diffusion under similar conditions. A method is suggested to estimate columnar resistance, the ionospheric potential and the vertical atmospheric electric potential distribution in exchange layer from measurements of total air-earth current density and surface electric field made over oceans. The results are validated and found to be in very good agreement with the previous aircraft measurements. Different parameters involved in the proposed methodology can be determined either theoretically, as in the present work, or experimentally using the near surface atmospheric electrical measurements or using some other surface-based measurement technique such as LIDAR. A graphical relationship between the atmospheric eddy diffusion coefficient and height of exchange layer obtained from atmospheric electrical approach, is reported.
Mira variables: An informal review
NASA Technical Reports Server (NTRS)
Wing, R. F.
1980-01-01
The structure of the Mira variables is discussed with particular emphasis on the extent of their observable atmospheres, the various methods for measuring the sizes of these atmospheres, and the manner in which the size changes through the cycle. The results obtained by direct, photometric and spectroscopic methods are compared, and the problems of interpretation are addressed. Also, a simple model for the atmospheric structure and motions of Miras based on recent observations of the doubling of infrared molecualr times is described. This model, consisting of two atmospheric layers plus a circumstellar shell, provides a physically plausible picture of the atmosphere which is consistent with the photometrically measured magnitude and temperature variations as well as the spectroscopic data.
A Fast Hyperspectral Vector Radiative Transfer Model in UV to IR spectral bands
NASA Astrophysics Data System (ADS)
Ding, J.; Yang, P.; Sun, B.; Kattawar, G. W.; Platnick, S. E.; Meyer, K.; Wang, C.
2016-12-01
We develop a fast hyperspectral vector radiative transfer model with a spectral range from UV to IR with 5 nm resolutions. This model can simulate top of the atmosphere (TOA) diffuse radiance and polarized reflectance by considering gas absorption, Rayleigh scattering, and aerosol and cloud scattering. The absorption component considers several major atmospheric absorbers such as water vapor, CO2, O3, and O2 including both line and continuum absorptions. A regression-based method is used to parameterize the layer effective optical thickness for each gas, which substantially increases the computation efficiency for absorption while maintaining high accuracy. This method is over 500 times faster than the existing line-by-line method. The scattering component uses the successive order of scattering (SOS) method. For Rayleigh scattering, convergence is fast due to the small optical thickness of atmospheric gases. For cloud and aerosol layers, a small-angle approximation method is used in SOS calculations. The scattering process is divided into two parts, a forward part and a diffuse part. The scattering in the small-angle range in the forward direction is approximated as forward scattering. A cloud or aerosol layer is divided into thin layers. As the ray propagates through each thin layer, a portion diverges as diffuse radiation, while the remainder continues propagating in forward direction. The computed diffuse radiance is the sum of all of the diffuse parts. The small-angle approximation makes the SOS calculation converge rapidly even in a thick cloud layer.
A model of the planetary boundary layer over a snow surface
NASA Technical Reports Server (NTRS)
Halberstam, I.; Melendez, R.
1979-01-01
A model of the planetary boundary layer over a snow surface has been developed. It contains the vertical heat exchange processes due to radiation, conduction, and atmospheric turbulence. Parametrization of the boundary layer is based on similarity functions developed by Hoffert and Sud (1976), which involve a dimensionless variable, dependent on boundary-layer height and a localized Monin-Obukhov length. The model also contains the atmospheric surface layer and the snowpack itself, where snowmelt and snow evaporation are calculated. The results indicate a strong dependence of surface temperatures, especially at night, on the bursts of turbulence which result from the frictional damping of surface-layer winds during periods of high stability, as described by Businger (1973). The model also shows the cooling and drying effect of the snow on the atmosphere, which may be the mechanism for air mass transformation in sub-Arctic regions.
NASA Astrophysics Data System (ADS)
Gayler, Sebastian; Wöhling, Thomas; Ingwersen, Joachim; Wizemann, Hans-Dieter; Warrach-Sagi, Kirsten; Attinger, Sabine; Streck, Thilo; Wulmeyer, Volker
2014-05-01
Interactions between the soil, the vegetation, and the atmospheric boundary layer require close attention when predicting water fluxes in the hydrogeosystem, agricultural systems, weather and climate. However, land-surface schemes used in large scale models continue to show deficits in consistently simulating fluxes of water and energy from the subsurface through vegetation layers to the atmosphere. In this study, the multi-physics version of the Noah land-surface model (Noah-MP) was used to identify the processes, which are most crucial for a simultaneous simulation of water and heat fluxes between land-surface and the lower atmosphere. Comprehensive field data sets of latent and sensible heat fluxes, ground heat flux, soil moisture, and leaf area index from two contrasting field sites in South-West Germany are used to assess the accuracy of simulations. It is shown that an adequate representation of vegetation-related processes is the most important control for a consistent simulation of energy and water fluxes in the soil-plant-atmosphere system. In particular, using a newly implemented sub-module to simulate root growth dynamics has enhanced the performance of Noah-MP at both field sites. We conclude that further advances in the representation of leaf area dynamics and root/soil moisture interactions are the most promising starting points for improving the simulation of feedbacks between the sub-soil, land-surface and atmosphere in fully-coupled hydrological and atmospheric models.
Effect of an isolated semi-arid pine forest on the boundary layer height
NASA Astrophysics Data System (ADS)
Brugger, Peter; Banerjee, Tirtha; Kröniger, Konstantin; Preisler, Yakir; Rotenberg, Eyal; Tatarinov, Fedor; Yakir, Dan; Mauder, Matthias
2017-04-01
Forests play an important role for earth's climate by influencing the surface energy balance and CO2 concentrations in the atmosphere. Semi-arid forests and their effects on the local and regional climate are studied within the CliFF project (Climate Feedbacks and benefits of semi-arid Forests). This requires understanding of the atmospheric boundary layer over semi-arid forests, because it links the surface and the free atmosphere and determines the exchange of momentum, heat and trace gases. Our study site, Yatir, is a semi-arid isolated pine forest in the Negev desert in Israel. Higher roughness and lower albedo compared to the surrounding shrubland make it interesting to study the influences of the semi-arid Yatir forest on the boundary layer. Previous studies of the forest focused on the energy balance and secondary circulations. This study focuses on the boundary layer structure above the forest, in particular the boundary layer height. The boundary layer height is an essential parameter for many applications (e.g. construction of convective scaling parameters or air pollution modeling). We measured the boundary layer height upwind, over and downwind of the forest. In addition we measured at two sites wind profiles within the boundary layer and turbulent fluxes at the surface. This allows us to quantify the effects of the forest on boundary layer compared to the surrounding shrubland. Results show that the forest increases the boundary layer height in absence of a strong boundary layer top inversion. A model of the boundary layer height based on eddy-covariance data shows some agreement to the measurements, but fails during anticyclonic conditions and the transition to the nocturnal boundary layer. More complex models accounting for large scale influences are investigated. Further influences of the forest and surrounding shrubland on the turbulent transport of energy are discussed in a companion presentation (EGU2017-2219).
Convenient models of the atmosphere: optics and solar radiation
NASA Astrophysics Data System (ADS)
Alexander, Ginsburg; Victor, Frolkis; Irina, Melnikova; Sergey, Novikov; Dmitriy, Samulenkov; Maxim, Sapunov
2017-11-01
Simple optical models of clear and cloudy atmosphere are proposed. Four versions of atmospheric aerosols content are considered: a complete lack of aerosols in the atmosphere, low background concentration (500 cm-3), high concentrations (2000 cm-3) and very high content of particles (5000 cm-3). In a cloud scenario, the model of external mixture is assumed. The values of optical thickness and single scattering albedo for 13 wavelengths are calculated in the short wavelength range of 0.28-0.90 µm, with regard to the molecular absorption bands, that is simulated with triangle function. A comparison of the proposed optical parameters with results of various measurements and retrieval (lidar measurement, sampling, processing radiation measurements) is presented. For a cloudy atmosphere models of single-layer and two-layer atmosphere are proposed. It is found that cloud optical parameters with assuming the "external mixture" agrees with retrieved values from airborne observations. The results of calculating hemispherical fluxes of the reflected and transmitted solar radiation and the radiative divergence are obtained with the Delta-Eddington approach. The calculation is done for surface albedo values of 0, 0.5, 0.9 and for spectral values of the sandy surface. Four values of solar zenith angle: 0°, 30°, 40° and 60° are taken. The obtained values are compared with data of radiative airborne observations. Estimating the local instantaneous radiative forcing of atmospheric aerosols and clouds for considered models is presented together with the heating rate.
The Vertical Dust Profile over Gale Crater
NASA Astrophysics Data System (ADS)
Guzewich, S.; Newman, C. E.; Smith, M. D.; Moores, J.; Smith, C. L.; Moore, C.; Richardson, M. I.; Kass, D. M.; Kleinboehl, A.; Martin-Torres, F. J.; Zorzano, M. P.; Battalio, J. M.
2017-12-01
Regular joint observations of the atmosphere over Gale Crater from the orbiting Mars Reconnaissance Orbiter/Mars Climate Sounder (MCS) and Mars Science Laboratory (MSL) Curiosity rover allow us to create a coarse, but complete, vertical profile of dust mixing ratio from the surface to the upper atmosphere. We split the atmospheric column into three regions: the planetary boundary layer (PBL) within Gale Crater that is directly sampled by MSL (typically extending from the surface to 2-6 km in height), the region of atmosphere sampled by MCS profiles (typically 25-80 km above the surface), and the region of atmosphere between these two layers. Using atmospheric optical depth measurements from the Rover Environmental Monitoring System (REMS) ultraviolet photodiodes (in conjunction with MSL Mast Camera solar imaging), line-of-sight opacity measurements with the MSL Navigation Cameras (NavCam), and an estimate of the PBL depth from the MarsWRF general circulation model, we can directly calculate the dust mixing ratio within the Gale Crater PBL and then solve for the dust mixing ratio in the middle layer above Gale Crater but below the atmosphere sampled by MCS. Each atmospheric layer has a unique seasonal cycle of dust opacity, with Gale Crater's PBL reaching a maximum in dust mixing ratio near Ls = 270° and a minimum near Ls = 90°. The layer above Gale Crater, however, has a seasonal cycle that closely follows the global opacity cycle and reaches a maximum near Ls = 240° and exhibits a local minimum (associated with the "solsticial pauses") near Ls = 270°. Knowing the complete vertical profile also allows us to determine the frequency of high-altitude dust layers above Gale, and whether such layers truly exhibit the maximum dust mixing ratio within the entire vertical column. We find that 20% of MCS profiles contain an "absolute" high-altitude dust layer, i.e., one in which the dust mixing ratio within the high-altitude dust layer is the maximum dust mixing ratio in the vertical column of atmosphere over Gale Crater.
The atmospheric boundary layer — advances in knowledge and application
NASA Astrophysics Data System (ADS)
Garratt, J. R.; Hess, G. D.; Physick, W. L.; Bougeault, P.
1996-02-01
We summarise major activities and advances in boundary-layer knowledge in the 25 years since 1970, with emphasis on the application of this knowledge to surface and boundary-layer parametrisation schemes in numerical models of the atmosphere. Progress in three areas is discussed: (i) the mesoscale modelling of selected phenomena; (ii) numerical weather prediction; and (iii) climate simulations. Future trends are identified, including the incorporation into models of advanced cloud schemes and interactive canopy schemes, and the nesting of high resolution boundary-layer schemes in global climate models.
NASA Astrophysics Data System (ADS)
Robinson, Tyler D.; Crisp, David
2018-05-01
Solar and thermal radiation are critical aspects of planetary climate, with gradients in radiative energy fluxes driving heating and cooling. Climate models require that radiative transfer tools be versatile, computationally efficient, and accurate. Here, we describe a technique that uses an accurate full-physics radiative transfer model to generate a set of atmospheric radiative quantities which can be used to linearly adapt radiative flux profiles to changes in the atmospheric and surface state-the Linearized Flux Evolution (LiFE) approach. These radiative quantities describe how each model layer in a plane-parallel atmosphere reflects and transmits light, as well as how the layer generates diffuse radiation by thermal emission and by scattering light from the direct solar beam. By computing derivatives of these layer radiative properties with respect to dynamic elements of the atmospheric state, we can then efficiently adapt the flux profiles computed by the full-physics model to new atmospheric states. We validate the LiFE approach, and then apply this approach to Mars, Earth, and Venus, demonstrating the information contained in the layer radiative properties and their derivatives, as well as how the LiFE approach can be used to determine the thermal structure of radiative and radiative-convective equilibrium states in one-dimensional atmospheric models.
NASA Astrophysics Data System (ADS)
Engelstaedter, S.; Washington, R.; Allen, C.; Flamant, C.; Chaboureau, J.-P.; Kocha, C.; Lavaysse, C.
2012-04-01
The near-surface low pressure system that develops over western Africa in Boreal summer (know as the Saharan Heat Low) is thought to have a significant influence on regional and global climate due to its links with the Monsoon, the Northern Atlantic and the Mediterranean climate system. The SHL is associated with the deepest atmospheric boundary layer on the planet and is co-located with the highest dust loadings in the world. The processes that link the heat low and dust distribution are only poorly understood. Improving the representation of the heat low and the processes that control the emission and atmospheric distribution of dust in climate and NWP models is crucial if we are to reduce known systematic errors in climate predictions and weather forecasts. In collaboration with European partners, the UK-based consortium project "Fennec - The Saharan Climate System" aims at improving our understanding of this complex climate system by integrating for the first time coordinated ground and aircraft observations from the central Sahara, newly developed satellite products, and the application of regional and global models. On 22 June 2011, two research aircraft operating out of Fuerteventura (Spain) surveyed the Saharan Heat Low centred over Mauritania-Mali border. The aircraft flew simultaneously in the morning and in the afternoon on two different tracks thereby sampling each track four times on that day. Both aircraft were equipped with a downward looking LIDAR for aerosol detection. In total, 51 sondes were dropped during the flights making this the most comprehensive dataset to study the spatio-temporal diurnal evolution of the heat low including the interactions between the atmospheric boundary layer and dust distributions. Combining LIDAR observations, satellite imagery and back-trajectory modelling we show that an aged dust layer was present in the heat low region resulting from previous day's dust activity associated with a south-moving density current from the Atlas mountains and westward-moving Haboob fronts originating along the Algeria-Mali border. We show how the dust is distributed within the atmosphere and how it is modified during the course of the day by various processes including the development of the atmospheric boundary layer and associated dry convection as well as the inflow of moisture-rich monsoon air from the south.
NASA Technical Reports Server (NTRS)
Zhang, D.; Anthes, R. A.
1982-01-01
A one-dimensional, planetary boundary layer (PBL) model is presented and verified using April 10, 1979 SESAME data. The model contains two modules to account for two different regimes of turbulent mixing. Separate parameterizations are made for stable and unstable conditions, with a predictive slab model for surface temperature. Atmospheric variables in the surface layer are calculated with a prognostic model, with moisture included in the coupled surface/PBL modeling. Sensitivity tests are performed for factors such as moisture availability, albedo, surface roughness, and thermal capacity, and a 24 hr simulation is summarized for day and night conditions. The comparison with the SESAME data comprises three hour intervals, using a time-dependent geostrophic wind. Close correlations were found with daytime conditions, but not in nighttime thermal structure, while the turbulence was faithfully predicted. Both geostrophic flow and surface characteristics were shown to have significant effects on the model predictions
Two-dimensional modeling of thermal inversion layers in the middle atmosphere of Mars
NASA Technical Reports Server (NTRS)
Theodore, B.; Chassefiere, E.
1993-01-01
There is some evidence that the thermal structure of the martian middle atmosphere may be altered in a significant way by the general circulation motions. Indeed, while it is well known that the circulation in the meridional plane is responsible for the reversal of the latitudinal thermal gradient at the solstice through the adiabatic heating due to sinking motions above the winter pole, here we want to emphasize that a likely by-product effect could be the formation of warm layers, mainly located in the winter hemisphere, and exhibiting an inversion of the vertical thermal gradient.
A unified account of perceptual layering and surface appearance in terms of gamut relativity.
Vladusich, Tony; McDonnell, Mark D
2014-01-01
When we look at the world--or a graphical depiction of the world--we perceive surface materials (e.g. a ceramic black and white checkerboard) independently of variations in illumination (e.g. shading or shadow) and atmospheric media (e.g. clouds or smoke). Such percepts are partly based on the way physical surfaces and media reflect and transmit light and partly on the way the human visual system processes the complex patterns of light reaching the eye. One way to understand how these percepts arise is to assume that the visual system parses patterns of light into layered perceptual representations of surfaces, illumination and atmospheric media, one seen through another. Despite a great deal of previous experimental and modelling work on layered representation, however, a unified computational model of key perceptual demonstrations is still lacking. Here we present the first general computational model of perceptual layering and surface appearance--based on a boarder theoretical framework called gamut relativity--that is consistent with these demonstrations. The model (a) qualitatively explains striking effects of perceptual transparency, figure-ground separation and lightness, (b) quantitatively accounts for the role of stimulus- and task-driven constraints on perceptual matching performance, and (c) unifies two prominent theoretical frameworks for understanding surface appearance. The model thereby provides novel insights into the remarkable capacity of the human visual system to represent and identify surface materials, illumination and atmospheric media, which can be exploited in computer graphics applications.
A Unified Account of Perceptual Layering and Surface Appearance in Terms of Gamut Relativity
Vladusich, Tony; McDonnell, Mark D.
2014-01-01
When we look at the world—or a graphical depiction of the world—we perceive surface materials (e.g. a ceramic black and white checkerboard) independently of variations in illumination (e.g. shading or shadow) and atmospheric media (e.g. clouds or smoke). Such percepts are partly based on the way physical surfaces and media reflect and transmit light and partly on the way the human visual system processes the complex patterns of light reaching the eye. One way to understand how these percepts arise is to assume that the visual system parses patterns of light into layered perceptual representations of surfaces, illumination and atmospheric media, one seen through another. Despite a great deal of previous experimental and modelling work on layered representation, however, a unified computational model of key perceptual demonstrations is still lacking. Here we present the first general computational model of perceptual layering and surface appearance—based on a boarder theoretical framework called gamut relativity—that is consistent with these demonstrations. The model (a) qualitatively explains striking effects of perceptual transparency, figure-ground separation and lightness, (b) quantitatively accounts for the role of stimulus- and task-driven constraints on perceptual matching performance, and (c) unifies two prominent theoretical frameworks for understanding surface appearance. The model thereby provides novel insights into the remarkable capacity of the human visual system to represent and identify surface materials, illumination and atmospheric media, which can be exploited in computer graphics applications. PMID:25402466
Comparison of orchid and OCD modeling SO{sub x} release in the Gulf of Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferris, D.C.; Burns, D.S.; Steorts, W.L.
1996-10-01
Two atmospheric chemistry and transport models are used to investigate the atmospheric behavior of SO{sub x} in the Gulf of Mexico. SO{sub x} emissions from a location about 30 miles offshore in the Gulf of Mexico will be modeled with ENSCO`s Short-range Layered Atmospheric Model (SLAM) and the EPA and Material Management Service (MMS) sanctioned Offshore and Coastal Dispersion Model (OCD). The atmospheric chemistry associated with SLAM is modeled using ENSCO`s ORganic CHemistry Integrated Dispersion Model (ORCHID) and has been developed from the Carbon Bond Mechanism (CBM-IV) to characterize the behavior of SO{sub x} compounds in the environment. Model runsmore » from both ORCHID and OCD will be presented and compared. Predicted SO{sub x} concentrations will be compared with actual data gathered from the MMS`s SO{sub x} air quality study in 1993.« less
Pathways of soil moisture controls on boundary layer dynamics
NASA Astrophysics Data System (ADS)
Siqueira, M.; Katul, G.; Porporato, A.
2007-12-01
Soil moisture controls on precipitation are now receiving significant attention in climate systems because the memory of their variability is much slower than the memory of the fast atmospheric processes. We propose a new model that integrates soil water dynamics, plant hydraulics and stomatal responses to water availability to estimate root water uptake and available energy partitioning, as well as feedbacks to boundary layer dynamics (in terms of water vapor and heat input to the atmospheric system). Using a simplified homogenization technique, the model solves the intrinsically 3-D soil water movement equations by two 1-D coupled Richards' equations. The first resolves the radial water flow from bulk soil to soil-root interface to estimate root uptake (assuming the vertical gradients in moisture persist during the rapid lateral flow), and then it solves vertical water movement through the soil following the radial moisture adjustments. The coupling between these two equations is obtained by area averaging the soil moisture in the radial domain (i.e. homogenization) to calculate the vertical fluxes. For each vertical layer, the domain is discretized in axi-symmetrical grid with constant soil properties. This is deemed to be appropriate given the fact that the root uptake occurs on much shorter time scales closely following diurnal cycles, while the vertical water movement is more relevant to the inter-storm time scale. We show that this approach was able to explicitly simulate known features of root uptake such as diurnal hysteresis of canopy conductance, water redistribution by roots (hydraulic lift) and downward shift of root uptake during drying cycles. The model is then coupled with an atmospheric boundary layer (ABL) growth model thereby permitting us to explore low-dimensional elements of the interaction between soil moisture and ABL states commensurate with the lifting condensation level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayakumar, Ganesh; Brasseur, James; Lavely, Adam
We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.
A four-layer model for the heat budget of homogeneous land surfaces
NASA Technical Reports Server (NTRS)
Choudhury, B. J.; Monteith, J. L.
1988-01-01
The present model envisions the heat balance of a homogeneous land surface in terms of available energy, a set of driving potentials, and parameters for the physical state of the soil and vegetation. Two unique features of the model are: (1) the expression of the interaction of evaporation from the soil and from foliage by changes in the value of the saturation vapor pressure deficit of air in the canopy (the conclusions of this interaction being consistent with field observations); and (2) the treatment of sensible and latent heat exchange between the atmosphere and a soil consisting of two discrete layers.
A large meteorological wind tunnel was used to simulate a suburban atmospheric boundary layer. The model-prototype scale was 1:300 and the roughness length was approximately 1.0 m full scale. The model boundary layer simulated full scale dispersion from ground-level and elevated ...
One-dimensional simulation of temperature and moisture in atmospheric and soil boundary layers
NASA Technical Reports Server (NTRS)
Bornstein, R. D.; Santhanam, K.
1981-01-01
Meteorologists are interested in modeling the vertical flow of heat and moisture through the soil in order to better simulate the vertical and temporal variations of the atmospheric boundary layer. The one dimensional planetary boundary layer model of is modified by the addition of transport equations to be solved by a finite difference technique to predict soil moisture.
NASA Astrophysics Data System (ADS)
Hamdi, R.; Schayes, G.
2005-07-01
The Martilli's urban parameterization scheme is improved and implemented in a mesoscale model in order to take into account the typical effects of a real city on the air temperature near the ground and on the surface exchange fluxes. The mesoscale model is run on a single column using atmospheric data and radiation recorded above roof level as forcing. Here, the authors validate the Martilli's urban boundary layer scheme using measurements from two mid-latitude European cities: Basel, Switzerland and Marseilles, France. For Basel, the model performance is evaluated with observations of canyon temperature, surface radiation, and energy balance fluxes obtained during the Basel urban boundary layer experiment (BUBBLE). The results show that the urban parameterization scheme is able to reproduce the generation of the Urban Heat Island (UHI) effect over urban area and represents correctly most of the behavior of the fluxes typical of the city center of Basel, including the large heat uptake by the urban fabric and the positive sensible heat flux at night. For Marseilles, the model performance is evaluated with observations of surface temperature, canyon temperature, surface radiation, and energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE) and its urban boundary layer (UBL) campaign. At both urban sites, vegetation cover is less than 20%, therefore, particular attention was directed to the ability of the Martilli's urban boundary layer scheme to reproduce the observations for the Marseilles city center, where the urban parameters and the synoptic forcing are totally different from Basel. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model correctly simulates the net radiation, canyon temperature, and the partitioning between the turbulent and storage heat fluxes.
NASA Astrophysics Data System (ADS)
Hamdi, R.; Schayes, G.
2007-08-01
Martilli's urban parameterization scheme is improved and implemented in a mesoscale model in order to take into account the typical effects of a real city on the air temperature near the ground and on the surface exchange fluxes. The mesoscale model is run on a single column using atmospheric data and radiation recorded above roof level as forcing. Here, the authors validate Martilli's urban boundary layer scheme using measurements from two mid-latitude European cities: Basel, Switzerland and Marseilles, France. For Basel, the model performance is evaluated with observations of canyon temperature, surface radiation, and energy balance fluxes obtained during the Basel urban boundary layer experiment (BUBBLE). The results show that the urban parameterization scheme represents correctly most of the behavior of the fluxes typical of the city center of Basel, including the large heat uptake by the urban fabric and the positive sensible heat flux at night. For Marseilles, the model performance is evaluated with observations of surface temperature, canyon temperature, surface radiation, and energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE) and its urban boundary layer (UBL) campaign. At both urban sites, vegetation cover is less than 20%, therefore, particular attention was directed to the ability of Martilli's urban boundary layer scheme to reproduce the observations for the Marseilles city center, where the urban parameters and the synoptic forcing are totally different from Basel. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model correctly simulates the net radiation, canyon temperature, and the partitioning between the turbulent and storage heat fluxes.
Schellart, P; Trinh, T N G; Buitink, S; Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Nelles, A; Rachen, J P; Rossetto, L; Scholten, O; Ter Veen, S; Thoudam, S; Ebert, U; Koehn, C; Rutjes, C; Alexov, A; Anderson, J M; Avruch, I M; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brüggen, M; Butcher, H R; Ciardi, B; de Geus, E; de Vos, M; Duscha, S; Eislöffel, J; Fallows, R A; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Heald, G; Hessels, J W T; Hoeft, M; Holties, H A; Juette, E; Kondratiev, V I; Kuniyoshi, M; Kuper, G; Mann, G; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Moldon, J; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Scaife, A M M; Schwarz, D J; Serylak, M; Smirnov, O; Steinmetz, M; Swinbank, J; Tagger, M; Tasse, C; Toribio, M C; van Weeren, R J; Vermeulen, R; Vocks, C; Wise, M W; Wucknitz, O; Zarka, P
2015-04-24
We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields.
The Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Garratt, J. R.
1994-05-01
A comprehensive and lucid account of the physics and dynamics of the lowest one to two kilometers of the Earth's atmosphere in direct contact with the Earth's surface, known as the atmospheric boundary layer (ABL). Dr. Garratt emphasizes the application of the ABL problems to numerical modeling of the climate, which makes this book unique among recent texts on the subject. He begins with a brief introduction to the ABL before leading to the development of mean and turbulence equations and the many scaling laws and theories that are the cornerstone of any serious ABL treatment. Modeling of the ABL is crucially dependent for its realism on the surface boundary conditions, so chapters four and five deal with aerodynamic and energy considerations, with attention given to both dry and wet land surfaces and the sea. The author next treats the structure of the clear-sky, thermally stratified ABL, including the convective and stable cases over homogeneous land, the marine ABL, and the internal boundary layer at the coastline. Chapter seven then extends this discussion to the cloudy ABL. This is particularly relevant to current research because the extensive stratocumulus regions over the subtropical oceans and stratus regions over the Arctic have been identified as key players in the climate system. In the final chapters, Dr. Garratt summarizes the book's material by discussing appropriate ABL and surface parameterization schemes in general circulation models of the atmosphere that are being used for climate stimulation.
Stratified flows in complex terrain
NASA Astrophysics Data System (ADS)
Retallack, Charles
The focus of this dissertation is the study of stratified atmospheric flows in the presence of complex terrain. Two large-scale field study campaigns were carried out, each with a focus on a specific archetypal terrain. Each field study involved the utilization of remote and in-situ atmospheric monitoring devices to collect experimental data. The first of the two field studies focused on pollution transport mechanisms near an escarpment. The analysis aimed to determine the combined effect of the escarpment and ambient density stratification on the flow and aerosol pollution transport. It was found that under specific atmospheric conditions, the escarpment prompted the channeling, down-mixing, and trapping of aerosol pollutant plumes. The objective of the second field campaign was the study of stratified flows in a mountain valley. Analysis revealed that buoyancy driven katabatic currents originating on the surrounding valley slopes created a scenario in which a down-slope gravity current transitioned into an intrusive gravity current. The intrusive gravity current propagated near the interface of a density stratified lower ambient layer and a non-stratified upper ambient layer. A combination of shallow water theory and energy arguments is used to produce a model for the propagation of a gravity current moving along the interface of a homogeneous ambient layer and a linearly stratified layer. It is found that the gravity current propagating entirely within the homogeneous layer travels at the greatest speed. As the relative density of the gravity current is increased, the gravity current begins to slump below the interface of the two layers and the propagation speed decreases.
NASA Astrophysics Data System (ADS)
Mahesh, A.; Mudigonda, M.; Kim, S. K.; Kashinath, K.; Kahou, S.; Michalski, V.; Williams, D. N.; Liu, Y.; Prabhat, M.; Loring, B.; O'Brien, T. A.; Collins, W. D.
2017-12-01
Atmospheric rivers (ARs) can be the difference between CA facing drought or hurricane-level storms. ARs are a form of extreme weather defined as long, narrow columns of moisture which transport water vapor outside the tropics. When they make landfall, they release the vapor as rain or snow. Convolutional neural networks (CNNs), a machine learning technique that uses filters to recognize features, are the leading computer vision mechanism for classifying multichannel images. CNNs have been proven to be effective in identifying extreme weather events in climate simulation output (Liu et. al. 2016, ABDA'16, http://bit.ly/2hlrFNV). Here, we compare three different CNN architectures, tuned with different hyperparameters and training schemes. We compare two-layer, three-layer, four-layer, and sixteen-layer CNNs' ability to recognize ARs in Community Atmospheric Model version 5 output, and we explore the ability of data augmentation and pre-trained models to increase the accuracy of the classifier. Because pre-training the model with regular images (i.e. benches, stoves, and dogs) yielded the highest accuracy rate, this strategy, also known as transfer learning, may be vital in future scientific CNNs, which likely will not have access to a large labelled training dataset. By choosing the most effective CNN architecture, climate scientists can build an accurate historical database of ARs, which can be used to develop a predictive understanding of these phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heng, Kevin; Kitzmann, Daniel, E-mail: kevin.heng@csh.unibe.ch, E-mail: daniel.kitzmann@csh.unibe.ch
We present a novel generalization of the two-stream method of radiative transfer, which allows for the accurate treatment of radiative transfer in the presence of strong infrared scattering by aerosols. We prove that this generalization involves only a simple modification of the coupling coefficients and transmission functions in the hemispheric two-stream method. This modification originates from allowing the ratio of the first Eddington coefficients to depart from unity. At the heart of the method is the fact that this ratio may be computed once and for all over the entire range of values of the single-scattering albedo and scattering asymmetrymore » factor. We benchmark our improved two-stream method by calculating the fraction of flux reflected by a single atmospheric layer (the reflectivity) and comparing these calculations to those performed using a 32-stream discrete-ordinates method. We further compare our improved two-stream method to the two-stream source function (16 streams) and delta-Eddington methods, demonstrating that it is often more accurate at the order-of-magnitude level. Finally, we illustrate its accuracy using a toy model of the early Martian atmosphere hosting a cloud layer composed of carbon dioxide ice particles. The simplicity of implementation and accuracy of our improved two-stream method renders it suitable for implementation in three-dimensional general circulation models. In other words, our improved two-stream method has the ease of implementation of a standard two-stream method, but the accuracy of a 32-stream method.« less
NASA Astrophysics Data System (ADS)
Morozov, V. N.
2018-01-01
The problem of the penetration of nonstationary ionospheric electric fields into the lower atmospheric layers is considered based on the model of the global electric circuit in the Earth's atmosphere. For the equation of the electric field potential, a solution that takes into account exponential variation in the electrical conductivity with height has been obtained. Analysis of the solution made it possible to reveal three cases of the dependence of the solution on height. The first case (the case of high frequencies) corresponds to the Coulomb approximation, when the electrical conductivity of the atmosphere can be neglected. In the case of low frequencies (when the frequency of changes in the ionosphere potential is less than the quantity reciprocal to the time of electric relaxation of the atmosphere), a quasi-stationary regime, in which the variation in the electric potential of the atmosphere is determined by the electric conduction currents, occurs. In the third case, due to the increase in the electrical conductivity of the atmosphere, two spherical regions appear: with the Coulomb approximation in the lower region and conduction currents in the upper one. For these three cases, formulas for estimating the electric field strength near the Earth's surface have been obtained.
Session on coupled atmospheric/chemistry coupled models
NASA Technical Reports Server (NTRS)
Thompson, Anne
1993-01-01
The session on coupled atmospheric/chemistry coupled models is reviewed. Current model limitations, current issues and critical unknowns, and modeling activity are addressed. Specific recommendations and experimental strategies on the following are given: multiscale surface layer - planetary boundary layer - chemical flux measurements; Eulerian budget study; and Langrangian experiment. Nonprecipitating cloud studies, organized convective systems, and aerosols - heterogenous chemistry are also discussed.
Investigating TIME-GCM Atmospheric Tides for Different Lower Boundary Conditions
NASA Astrophysics Data System (ADS)
Haeusler, K.; Hagan, M. E.; Lu, G.; Forbes, J. M.; Zhang, X.; Doornbos, E.
2013-12-01
It has been recently established that atmospheric tides generated in the lower atmosphere significantly influence the geospace environment. In order to extend our knowledge of the various coupling mechanisms between the different atmospheric layers, we rely on model simulations. Currently there exist two versions of the Global Scale Wave Model (GSWM), i.e. GSWM02 and GSWM09, which are used as a lower boundary (ca. 30 km) condition for the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) and account for the upward propagating atmospheric tides that are generated in the troposphere and lower stratosphere. In this paper we explore the various TIME-GCM upper atmospheric tidal responses for different lower boundary conditions and compare the model diagnostics with tidal results from satellite missions such as TIMED, CHAMP, and GOCE. We also quantify the differences between results associated with GSWM02 and GSWM09 forcing and results of TIMEGCM simulations using Modern-Era Retrospective Analysis for Research and Application (MERRA) data as a lower boundary condition.
NASA Astrophysics Data System (ADS)
Winckler, J.; Reick, C. H.; Lejeune, Q.; Pongratz, J.
2017-12-01
Deforestation influences temperature locally by changing the water, energy and momentum balance. While most observation-based studies and some modeling studies focused on the effects on surface temperature, other studies focused on the effects on near-surface air temperature. However, these two variables may respond differently to deforestation because changes in albedo and surface roughness may alter the land-atmosphere coupling and thus the vertical temperature distribution. Thus it is unclear whether it is possible to compare studies that assess the impacts of deforestation on these two different variables. Here, we analyze the biogeophysical effects of global-scale deforestation in the climate model MPI-ESM separately for surface temperature, 2m-air temperature and temperature the lowest atmospheric model layer. We investigate why the response of these variables differs by isolating the effects of only changing surface albedo and only changing surface roughness and by separating effects that are induced at the location of deforestation (local effects) from effects that are induced by advection and changes in circulation (nonlocal effects). Concerning surface temperature, we find that the local effects of deforestation lead to a global mean warming which is overcompensated by the nonlocal effects (up to 0.1K local warming versus -0.3K nonlocal cooling). The surface warming in the local effects is largely driven by the change in surface roughness while the cooling in the nonlocal effects is largely driven by the change in surface albedo. The nonlocal effects are largely consistent across surface temperature, 2m-air temperature, and the temperature of the lowest atmospheric layer. However, the local effects strongly differ across the three considered variables. The local effects are strong for surface temperature, but substantially weaker in the 2m-air temperature and largely absent in the lowest atmospheric layer. We conclude that studies focusing on the deforestation effects on surface temperature should not be compared to studies focusing on the effects on air temperature. While the local effects on surface temperature are useful for model evaluation, they might be less relevant for local adaptation and mitigation than previously thought because they might largely be absent in the atmosphere.
Haze Production in Pluto's Atmosphere
NASA Astrophysics Data System (ADS)
Summers, M. E.; Gladstone, R.; Stern, A.; Ennico Smith, K.; Greathouse, T.; Hinson, D. P.; Kammer, J.; Linscott, I.; Olkin, C.; Parker, A. H.; Parker, J. W.; Retherford, K. D.; Schindhelm, E.; Singer, K. N.; Steffl, A.; Strobel, D. F.; Tsang, C.; Tyler, G. L.; Versteeg, M. H.; Weaver, H. A., Jr.; Wong, M. L.; Woods, W. W.; Yung, Y. L.; Young, L. A.; Lisse, C. M.; Lavvas, P.; Renaud, J.; Ewell, M.; Jacobs, A. D.
2015-12-01
One of the most visible manifestations of Pluto's atmosphere observed from the New Horizons spacecraft during the flyby in July 2015 was a global haze layer extending to an altitude ~150 km above Pluto's surface. The haze layer exhibits a significant hemispheric asymmetry and what appears to be layered and/or wave like features. Stellar observations since 1989 have suggested the existence of a haze layer in Pluto's lower atmosphere to explain features in occultation light curves. A haze layer is also expected from photochemical models of Pluto's methane atmosphere wherein hydrocarbons and are produced at altitudes above 100 km altitude, mix downwards, and condense at the low atmospheric temperatures near the surface. However, the observed haze layer(s) extends much higher where the atmospheric temperature is too high for condensation. In this paper we will discuss the production and condensation of photochemical products, and evaluate the possibility that nucleation begins in the ionosphere by a mechanism similar to that proposed for the atmosphere of Titan, where electron attachments initiates a sequence of ion-molecular reactions that ultimately produce aerosol "tholins" that settle downward and coat the surface.
A modeling study of marine boundary layer clouds
NASA Technical Reports Server (NTRS)
Wang, Shouping; Fitzjarrald, Daniel E.
1993-01-01
Marine boundary layer (MBL) clouds are important components of the earth's climate system. These clouds drastically reduce the amount of solar radiation absorbed by the earth, but have little effect on the emitted infrared radiation on top of the atmosphere. In addition, these clouds are intimately involved in regulating boundary layer turbulent fluxes. For these reasons, it is important that general circulation models used for climate studies must realistically simulate the global distribution of the MBL. While the importance of these cloud systems is well recognized, many physical processes involved in these clouds are poorly understood and their representation in large-scale models remains an unresolved problem. The present research aims at the development and improvement of the parameterization of these cloud systems and an understanding of physical processes involved. This goal is addressed in two ways. One is to use regional modeling approach to validate and evaluate two-layer marine boundary layer models using satellite and ground-truth observations; the other is to combine this simple model with a high-order turbulence closure model to study the transition processes from stratocumulus to shallow cumulus clouds. Progress made in this effort is presented.
NASA Technical Reports Server (NTRS)
Wellck, R. E.; Pearce, M. L.
1976-01-01
As part of the SEASAT program of NASA, a set of four hemispheric, atmospheric prediction models were developed. The models, which use a polar stereographic grid in the horizontal and a sigma coordinate in the vertical, are: (1) PECHCV - five sigma layers and a 63 x 63 horizontal grid, (2) PECHFV - ten sigma layers and a 63 x 63 horizontal grid, (3) PEFHCV - five sigma layers and a 187 x 187 horizontal grid, and (4) PEFHFV - ten sigma layers and a 187 x 187 horizontal grid. The models and associated computer programs are described.
NASA Astrophysics Data System (ADS)
Allaerts, Dries; Meyers, Johan
2017-11-01
Wind farm design and control often relies on fast analytical wake models to predict turbine wake interactions and associated power losses. Essential input to these models are the inflow velocity and turbulent intensity at hub height, which come from prior measurement campaigns or wind-atlas data. Recent LES studies showed that in some situations large wind farms excite atmospheric gravity waves, which in turn affect the upstream wind conditions. In the current study, we develop a fast boundary-layer model that computes the excitation of gravity waves and the perturbation of the boundary-layer flow in response to an applied force. The core of the model is constituted by height-averaged, linearised Navier-Stokes equations for the inner and outer layer, and the effect of atmospheric gravity waves (excited by the boundary-layer displacement) is included via the pressure gradient. Coupling with analytical wake models allows us to study wind-farm wakes and upstream flow deceleration in various atmospheric conditions. Comparison with wind-farm LES results shows excellent agreement in terms of pressure and boundary-layer displacement levels. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).
NASA Astrophysics Data System (ADS)
Gross, N. A.; Withers, P.; Sojka, J. J.
2014-12-01
The Chapman Layer Model is a "textbook" model of the ionosphere (for example, "Theory of Planetary Atmospheres" by Chamberlain and Hunten, Academic Press (1978)). The model use fundamental assumptions about the neutral atmosphere, the flux of ionizing radiation, and the recombination rate to calculation the ionization rate, and ion/electron density for a single species atmosphere. We have developed a "Chapman Layer Calculator" application that is deployed on the web using Java. It allows the user to see how various parameters control ion density, peak height, and profile of the ionospheric layer. Users can adjust parameters relevant to thermosphere scale height (temperature, gravitational acceleration, molecular weight, neutral atmosphere density) and to Extreme Ultraviolet solar flux (reference EUV, distance from the Sun, and solar Zenith Angle) and then see how the layer changes. This allows the user to simulate the ionosphere on other planets, by adjusting to the appropriate parameters. This simulation has been used as an exploratory activity for the NASA/LWS - Heliophysics Summer School 2014 and has an accompanying activity guide.
NASA Astrophysics Data System (ADS)
Jiang, Guo-Qing; Xu, Jing; Wei, Jun
2018-04-01
Two algorithms based on machine learning neural networks are proposed—the shallow learning (S-L) and deep learning (D-L) algorithms—that can potentially be used in atmosphere-only typhoon forecast models to provide flow-dependent typhoon-induced sea surface temperature cooling (SSTC) for improving typhoon predictions. The major challenge of existing SSTC algorithms in forecast models is how to accurately predict SSTC induced by an upcoming typhoon, which requires information not only from historical data but more importantly also from the target typhoon itself. The S-L algorithm composes of a single layer of neurons with mixed atmospheric and oceanic factors. Such a structure is found to be unable to represent correctly the physical typhoon-ocean interaction. It tends to produce an unstable SSTC distribution, for which any perturbations may lead to changes in both SSTC pattern and strength. The D-L algorithm extends the neural network to a 4 × 5 neuron matrix with atmospheric and oceanic factors being separated in different layers of neurons, so that the machine learning can determine the roles of atmospheric and oceanic factors in shaping the SSTC. Therefore, it produces a stable crescent-shaped SSTC distribution, with its large-scale pattern determined mainly by atmospheric factors (e.g., winds) and small-scale features by oceanic factors (e.g., eddies). Sensitivity experiments reveal that the D-L algorithms improve maximum wind intensity errors by 60-70% for four case study simulations, compared to their atmosphere-only model runs.
NASA Astrophysics Data System (ADS)
Lin, Zhao; Bo, Han; Shihua, Lv; Lijuan, Wen; Xianhong, Meng; Zhaoguo, Li
2018-02-01
The development of the atmospheric boundary layer is closely connected with the exchange of momentum, heat, and mass near the Earth's surface, especially for a convective boundary layer (CBL). Besides being modulated by the buoyancy flux near the Earth's surface, some studies point out that a neutrally stratified residual layer is also crucial for the appearance of a deep CBL. To verify the importance of the residual layer, the CBLs over two deserts in northwest China (Badan Jaran and Taklimakan) were investigated. The summer CBL mean depth over the Taklimakan Desert is shallower than that over the Badan Jaran Desert, even when the sensible heat flux of the former is stronger. Meanwhile, the climatological mean residual layer in the Badan Jaran Desert is much deeper and neutrally stratified in summer. Moreover, we found a significant and negative correlation between the lapse rate of the residual layer and the CBL depth over the Badan Jaran Desert. The different lapse rates of the residual layer in the two regions are partly connected with the advection heating from large-scale atmospheric circulation. The advection heating tends to reduce the temperature difference in the 700 to 500-hPa layer over the Badan Jaran Desert, and it increases the stability in the same atmospheric layer over the Taklimakan Desert. The advection due to climatological mean atmospheric circulation is more effective at modulating the lapse rate of the residual layer than from varied circulation. Also, the interannual variation of planetary boundary layer (PBL) height over two deserts was found to covary with the wave train.
NASA Astrophysics Data System (ADS)
Thomas, F.; Minster, J. F.; Gaspar, P.; Gregoris, Y.
1993-02-01
We compare the simulation of the O 2 concentration in the mixed layer at Sta. P using two different mixed layer models with the same biological production-consumption function. One is the integral mixed layer model already used by THOMASet al. (Deep-Sea Research, 37, 463-491, 1990). The other is the eddy kinetic energy (EKE) model of GASPARet al. (Journal of Geophysical Research, 95, 16179-16194, 1990). The latter simulates better both the seasonal and the short time evolution of the oxygen concentration. The submixed layer summer supersaturation is also closer to observations, by about 25%, though a factor of 2 too high: this could be improved by adjustment of the production function. The net annual gas exchange flux with the atmosphere is always a degassing of the order of 10% of the total biological production. In general, the model values are smaller (within a factor of 3 for the EKE model) than the data. However, the latter may not be robust as 96 measurements per year are necessary to estimate this flux within a factor of 10.
The enhancement of neutral metal Na layer above thunderstorms
NASA Astrophysics Data System (ADS)
Yu, Bingkun; Xue, Xianghui; Lu, Gaopeng; Kuo, Chengling; Dou, Xiankang; Gao, Qi; Qie, Xiushu; Wu, Jianfei; Tang, Yihuan
2017-04-01
Na (sodium) exists as layers of atoms in the mesosphere/lower thermosphere (MLT) at altitudes between 80 and 105 km. It has lower ionization potential of 5.139 eV than atmospheric species, such as O2 (12.06 eV). Tropospheric thunderstorms affect the lower ionosphere and the ionospheric sporadic E (Es) at 100 km can also be influenced by lightning. The mechanism is expected to be associated with transient luminous events (TLE) as red sprites and gigantic jets at upper atmosphere. However, measurements of ionospheric electric fields of 20mV·m-1 above thunderstorms are less than estimated value (>48 0mV·m-1) to excite ionization in the lower ionosphere. We found an enhancement of Na layer above thunderstorms. The increase of Na density in the statistical result can be as much as 500 cm-3 and it will have an impact on ionospheric chemistry and modify the conductivity properties of the MLT region. The ionospheric observations made with two digisondes near the Na lidar, the thunderstorm model, ionosphere model, and Na chemistry model are all used to discuss the possible mechanisms responsible for the enhancement of Na layer after thunderstorms.
The atmospheric boundary layer in the CSIRO global climate model: simulations versus observations
NASA Astrophysics Data System (ADS)
Garratt, J. R.; Rotstayn, L. D.; Krummel, P. B.
2002-07-01
A 5-year simulation of the atmospheric boundary layer in the CSIRO global climate model (GCM) is compared with detailed boundary-layer observations at six locations, two over the ocean and four over land. Field observations, in the form of surface fluxes and vertical profiles of wind, temperature and humidity, are generally available for each hour over periods of one month or more in a single year. GCM simulations are for specific months corresponding to the field observations, for each of five years. At three of the four land sites (two in Australia, one in south-eastern France), modelled rainfall was close to the observed climatological values, but was significantly in deficit at the fourth (Kansas, USA). Observed rainfall during the field expeditions was close to climatology at all four sites. At the Kansas site, modelled screen temperatures (Tsc), diurnal temperature amplitude and sensible heat flux (H) were significantly higher than observed, with modelled evaporation (E) much lower. At the other three land sites, there is excellent correspondence between the diurnal amplitude and phase and absolute values of each variable (Tsc, H, E). Mean monthly vertical profiles for specific times of the day show strong similarities: over land and ocean in vertical shape and absolute values of variables, and in the mixed-layer and nocturnal-inversion depths (over land) and the height of the elevated inversion or height of the cloud layer (over the sea). Of special interest is the presence climatologically of early morning humidity inversions related to dewfall and of nocturnal low-level jets; such features are found in the GCM simulations. The observed day-to-day variability in vertical structure is captured well in the model for most sites, including, over a whole month, the temperature range at all levels in the boundary layer, and the mix of shallow and deep mixed layers. Weaknesses or unrealistic structure include the following, (a) unrealistic model mixed-layer temperature profiles over land in clear skies, related to use of a simple local first-order turbulence closure, (b) a tendency to overpredict cloud liquid water near the surface.
Modeling the Atmospheric Dynamics within and Above Vegetation Layers
Warren E. Heilman; John Zasada
2000-01-01
A critical component of any silvicultural treatment is the creation of suitable microclimatic conditions for desired plant and animal species. One of the most useful tools for examining the microclimatic implications of different vegetation treatments is the use of atmospheric boundary-layer models that can simulate resulting micrometeorological conditions within and...
Multiple climate regimes in an idealized lake-ice-atmosphere model
NASA Astrophysics Data System (ADS)
Sugiyama, Noriyuki; Kravtsov, Sergey; Roebber, Paul
2018-01-01
In recent decades, the Laurentian Great Lakes have undergone rapid surface warming with the summertime trends substantially exceeding the warming rates of surrounding land. Warming of the deepest (Lake Superior) was the strongest, and that of the shallowest (Lake Erie)—the weakest of all lakes. To investigate the dynamics of accelerated lake warming, we considered single-column and multi-column thermodynamic lake-ice models coupled to an idealized two-layer atmosphere. The variable temperature of the upper atmospheric layer—a proxy for the large-scale atmospheric forcing—consisted, in the most general case, of a linear trend mimicking the global warming and atmospheric interannual variability, both on top of the prescribed seasonal cycle of the upper-air temperature. The atmospheric boundary layer of the coupled model exchanged heat with the lake and exhibited lateral diffusive heat transports between the adjacent atmospheric columns. In simpler single-column models, we find that, for a certain range of periodic atmospheric forcing, each lake possesses two stable equilibrium seasonal cycles, which we call "regimes"—with and without lake-ice occurrence in winter and with corresponding cold and warm temperatures in the following summer, respectively, all under an identical seasonally varying external forcing. Deeper lakes exhibit larger differences in their summertime surface water temperature between the warm and cold regimes, due to their larger thermal and dynamical inertia. The regime behavior of multi-column coupled models is similar but more complex, and in some cases, they admit more than two stable equilibrium seasonal cycles, with varying degrees of wintertime ice-cover. The simulated lake response to climate change in the presence of the atmospheric noise rationalizes the observed accelerated warming of the lakes, the correlation between wintertime ice cover and next summer's lake-surface temperature, as well as higher warming trends of the (occasionally wintertime ice-covered) deep-lake vs. shallow-lake regions, in terms of the corresponding characteristics of the forced transitions between colder and warmer lake regimes. Since the regime behavior in our models arises due to nonlinear dynamics rooted in the ice-albedo feedback, this feedback is also the root cause of the accelerated lake warming simulated by these models. In addition, our results imply that if Lake Superior eventually becomes largely ice-free (<10% maximum ice cover every winter) under continuing global warming, the surface warming trends of the deeper regions of the lake will become modest, similar to those of the shallower regions of the lake.
NASA Astrophysics Data System (ADS)
Boone, Aaron; Samuelsson, Patrick; Gollvik, Stefan; Napoly, Adrien; Jarlan, Lionel; Brun, Eric; Decharme, Bertrand
2017-02-01
Land surface models (LSMs) are pushing towards improved realism owing to an increasing number of observations at the local scale, constantly improving satellite data sets and the associated methodologies to best exploit such data, improved computing resources, and in response to the user community. As a part of the trend in LSM development, there have been ongoing efforts to improve the representation of the land surface processes in the interactions between the soil-biosphere-atmosphere (ISBA) LSM within the EXternalized SURFace (SURFEX) model platform. The force-restore approach in ISBA has been replaced in recent years by multi-layer explicit physically based options for sub-surface heat transfer, soil hydrological processes, and the composite snowpack. The representation of vegetation processes in SURFEX has also become much more sophisticated in recent years, including photosynthesis and respiration and biochemical processes. It became clear that the conceptual limits of the composite soil-vegetation scheme within ISBA had been reached and there was a need to explicitly separate the canopy vegetation from the soil surface. In response to this issue, a collaboration began in 2008 between the high-resolution limited area model (HIRLAM) consortium and Météo-France with the intention to develop an explicit representation of the vegetation in ISBA under the SURFEX platform. A new parameterization has been developed called the ISBA multi-energy balance (MEB) in order to address these issues. ISBA-MEB consists in a fully implicit numerical coupling between a multi-layer physically based snowpack model, a variable-layer soil scheme, an explicit litter layer, a bulk vegetation scheme, and the atmosphere. It also includes a feature that permits a coupling transition of the snowpack from the canopy air to the free atmosphere. It shares many of the routines and physics parameterizations with the standard version of ISBA. This paper is the first of two parts; in part one, the ISBA-MEB model equations, numerical schemes, and theoretical background are presented. In part two (Napoly et al., 2016), which is a separate companion paper, a local scale evaluation of the new scheme is presented along with a detailed description of the new forest litter scheme.
Wind-Tunnel Modeling of Flow Diffusion over an Urban Complex.
URBAN AREAS, *ATMOSPHERIC MOTION, *AIR POLLUTION, ATMOSPHERIC MOTION, WIND TUNNEL MODELS, HEAT, DIFFUSION , TURBULENT BOUNDARY LAYER, WIND, SKIN FRICTION, MATHEMATICAL MODELS, URBAN PLANNING, INDIANA.
NASA Astrophysics Data System (ADS)
Hu, Xiao-Ming; Zhang, Fuqing; Nielsen-Gammon, John W.
2010-04-01
This study explores the treatment of model error and uncertainties through simultaneous state and parameter estimation (SSPE) with an ensemble Kalman filter (EnKF) in the simulation of a 2006 air pollution event over the greater Houston area during the Second Texas Air Quality Study (TexAQS-II). Two parameters in the atmospheric boundary layer parameterization associated with large model sensitivities are combined with standard prognostic variables in an augmented state vector to be continuously updated through assimilation of wind profiler observations. It is found that forecasts of the atmosphere with EnKF/SSPE are markedly improved over experiments with no state and/or parameter estimation. More specifically, the EnKF/SSPE is shown to help alleviate a near-surface cold bias and to alter the momentum mixing in the boundary layer to produce more realistic wind profiles.
Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity
NASA Technical Reports Server (NTRS)
Blakenship, Clay; Zavodsky, Bradley; Blackwell, William
2014-01-01
The Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. Forecasts are against ERA reanalyses.
NASA Astrophysics Data System (ADS)
Carrillo-Sánchez, J. D.; Plane, J. M. C.; Withers, P.; Fallows, K.; Nesvorny, D.; Pokorný, P.
2016-12-01
Sporadic metal layers have been detected in the Martian atmosphere by radio occultation measurements using the Mars Express Orbiter and Mars Global Surveyor spacecraft. More recently, metallic ion layers produced by the meteor storm event following the close encounter between Comet Siding Spring (C/2013 A1) and Mars were identified by the Imaging UltraViolet Spectrograph (IUVS) and the Neutral Gas and Ion Mass Spectrometer (NGIMS) on the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. Work is now in progress to detect the background metal layers produced by the influx of sporadic meteors. In this study we predict the likely appearance of these layers. The Zodiacal Dust Cloud (ZDC) model for particle populations released by asteroids (AST), and dust grains from Jupiter Family Comets (JFCs) and Halley-Type Comets (HTCs) has been combined with a Monte Carlo sampling method and the Chemical ABlation MODel (CABMOD) to predict the ablation rates of Na, K, Fe, Si, Mg, Ca and Al above 40 km altitude in the Martian atmosphere. CABMOD considers the standard treatment of meteor physics, including the balance of frictional heating by radiative losses and the absorption of heat energy through temperature increases, melting phase transitions and vaporization, as well as sputtering by inelastic collisions with the air molecules. The vertical injection profiles are input into the Leeds 1-D Mars atmospheric model which includes photo-ionization, and gas-phase ion-molecule and neutral chemistry, in order to explore the evolution of the resulting metallic ions and atoms. We conclude that the dominant contributor in the Martian's atmosphere is the JFCs over other sources. Finally, we explore the changes of the neutral and ionized Na, Mg and Fe layers over a diurnal cycle.
The Vertical Dust Profile Over Gale Crater, Mars
NASA Astrophysics Data System (ADS)
Guzewich, Scott D.; Newman, C. E.; Smith, M. D.; Moores, J. E.; Smith, C. L.; Moore, C.; Richardson, M. I.; Kass, D.; Kleinböhl, A.; Mischna, M.; Martín-Torres, F. J.; Zorzano-Mier, M.-P.; Battalio, M.
2017-12-01
We create a vertically coarse, but complete, profile of dust mixing ratio from the surface to the upper atmosphere over Gale Crater, Mars, using the frequent joint atmospheric observations of the orbiting Mars Climate Sounder (MCS) and the Mars Science Laboratory Curiosity rover. Using these data and an estimate of planetary boundary layer (PBL) depth from the MarsWRF general circulation model, we divide the vertical column into three regions. The first region is the Gale Crater PBL, the second is the MCS-sampled region, and the third is between these first two. We solve for a well-mixed dust mixing ratio within this third (middle) layer of atmosphere to complete the profile. We identify a unique seasonal cycle of dust within each atmospheric layer. Within the Gale PBL, dust mixing ratio maximizes near southern hemisphere summer solstice (Ls = 270°) and minimizes near winter solstice (Ls = 90-100°) with a smooth sinusoidal transition between them. However, the layer above Gale Crater and below the MCS-sampled region more closely follows the global opacity cycle and has a maximum in opacity near Ls = 240° and exhibits a local minimum (associated with the "solsticial pause" in dust storm activity) near Ls = 270°. With knowledge of the complete vertical dust profile, we can also assess the frequency of high-altitude dust layers over Gale. We determine that 36% of MCS profiles near Gale Crater contain an "absolute" high-altitude dust layer wherein the dust mixing ratio is the maximum in the entire vertical column.
Bones, D L; Gerding, M; Höffner, J; Martín, Juan Carlos Gómez; Plane, J M C
2016-12-28
The dissociative recombination of CaO + ions with electrons has been studied in a flowing afterglow reactor. CaO + was generated by the pulsed laser ablation of a Ca target, followed by entrainment in an Ar + ion/electron plasma. A kinetic model describing the gas-phase chemistry and diffusion to the reactor walls was fitted to the experimental data, yielding a rate coefficient of (3.0 ± 1.0) × 10 -7 cm 3 molecule -1 s -1 at 295 K. This result has two atmospheric implications. First, the surprising observation that the Ca + /Fe + ratio is ~8 times larger than Ca/Fe between 90 and 100 km in the atmosphere can now be explained quantitatively by the known ion-molecule chemistry of these two metals. Second, the rate of neutralization of Ca + ions in a descending sporadic E layer is fast enough to explain the often explosive growth of sporadic neutral Ca layers.
NASA Astrophysics Data System (ADS)
Qian, Y.; Wang, C.; Huang, M.; Berg, L. K.; Duan, Q.; Feng, Z.; Shrivastava, M. B.; Shin, H. H.; Hong, S. Y.
2016-12-01
This study aims to quantify the relative importance and uncertainties of different physical processes and parameters in affecting simulated surface fluxes and land-atmosphere coupling strength over the Amazon region. We used two-legged coupling metrics, which include both terrestrial (soil moisture to surface fluxes) and atmospheric (surface fluxes to atmospheric state or precipitation) legs, to diagnose the land-atmosphere interaction and coupling strength. Observations made using the Department of Energy's Atmospheric Radiation Measurement (ARM) Mobile Facility during the GoAmazon field campaign together with satellite and reanalysis data are used to evaluate model performance. To quantify the uncertainty in physical parameterizations, we performed a 120 member ensemble of simulations with the WRF model using a stratified experimental design including 6 cloud microphysics, 3 convection, 6 PBL and surface layer, and 3 land surface schemes. A multiple-way analysis of variance approach is used to quantitatively analyze the inter- and intra-group (scheme) means and variances. To quantify parameter sensitivity, we conducted an additional 256 WRF simulations in which an efficient sampling algorithm is used to explore the multiple-dimensional parameter space. Three uncertainty quantification approaches are applied for sensitivity analysis (SA) of multiple variables of interest to 20 selected parameters in YSU PBL and MM5 surface layer schemes. Results show consistent parameter sensitivity across different SA methods. We found that 5 out of 20 parameters contribute more than 90% total variance, and first-order effects dominate comparing to the interaction effects. Results of this uncertainty quantification study serve as guidance for better understanding the roles of different physical processes in land-atmosphere interactions, quantifying model uncertainties from various sources such as physical processes, parameters and structural errors, and providing insights for improving the model physics parameterizations.
Meteoric ion layers in the Martian atmosphere.
Whalley, Charlotte L; Plane, John M C
2010-01-01
Low-lying plasma layers have been observed sporadically in the Martian atmosphere by radio occultation measurements from spacecraft such as the Mars Express Orbiter and the Mars Global Surveyor. These layers are just a few km wide, and tend to occur around 90 km. It has been proposed that the layers consist of metallic ions, for two reasons: they occur in the aerobraking region of the planet where meteoroids ablate; and they resemble sporadic E layers in the terrestrial atmosphere which are known to be composed principally of Fe+ and Mg+ ions. This paper addresses the problem of how metallic ions can persist in a CO2-rich atmosphere, where the ions should be neutralized rapidly by formation of metal-CO2 cluster ions followed by dissociative electron recombination. Laboratory studies using the pulsed laser photolysis/laser induced fluorescence and flow tube/mass spectrometer techniques were used to measure the following rate coefficients: k (Mg+ + CO2 (+ CO2) --> Mg+ x CO2, 190-403 K) = (5.3 +/- 0.7) x 10(-29) (T/300 K)(-1.86 +/- 0.03) cm6 molecule --> 2 s(-1); k(Mg+ x CO2 + O2 --> MgO2(+) + CO2, 297 K) = (2.2 +/- 0.8) x 10(-11) cm3 molecule(-1) s(-1); k(MgO2(+) + O --> MgO(+) + O2, 297 K) = (6.5 +/- 1.8) x 10(-10) cm3 molecule(-1) s(-1); and k(MgO(+) + O --> Mg(+) + O2, 297 K) = (5.9 +/- 2.4) x 10(-10) cm3 molecule(-1) s(-1). A model of magnesium and iron chemistry in the Martian atmosphere was then constructed, which includes meteoric differential ablation rates calculated with the Leeds CABMOD model, photo-ionization, and gas-phase ion-molecule and neutral chemistry. The model shows that nearly all the metallic ions between 70 and 110 km should be Mg+, because the reactions of MgO2+ and MgO+ with atomic O are fast enough to prevent these molecular ions undergoing dissociative electron recombination (unlike the analogous Fe species). There are enough Mg+ ions to form sporadic layers of the observed plasma density, and the layers can have a lifetime against neutralization in excess of 20 h.
NASA Astrophysics Data System (ADS)
Kanzawa, H.; Emori, S.; Nishimura, T.; Suzuki, T.; Inoue, T.; Hasumi, H.; Saito, F.; Abe-Ouchi, A.; Kimoto, M.; Sumi, A.
2002-12-01
The fastest supercomputer of the world, the Earth Simulator (total peak performance 40TFLOPS) has recently been available for climate researches in Yokohama, Japan. We are planning to conduct a series of future climate change projection experiments on the Earth Simulator with a high-resolution coupled ocean-atmosphere climate model. The main scientific aims for the experiments are to investigate 1) the change in global ocean circulation with an eddy-permitting ocean model, 2) the regional details of the climate change including Asian monsoon rainfall pattern, tropical cyclones and so on, and 3) the change in natural climate variability with a high-resolution model of the coupled ocean-atmosphere system. To meet these aims, an atmospheric GCM, CCSR/NIES AGCM, with T106(~1.1o) horizontal resolution and 56 vertical layers is to be coupled with an oceanic GCM, COCO, with ~ 0.28ox 0.19o horizontal resolution and 48 vertical layers. This coupled ocean-atmosphere climate model, named MIROC, also includes a land-surface model, a dynamic-thermodynamic seaice model, and a river routing model. The poles of the oceanic model grid system are rotated from the geographic poles so that they are placed in Greenland and Antarctic land masses to avoild the singularity of the grid system. Each of the atmospheric and the oceanic parts of the model is parallelized with the Message Passing Interface (MPI) technique. The coupling of the two is to be done with a Multi Program Multi Data (MPMD) fashion. A 100-model-year integration will be possible in one actual month with 720 vector processors (which is only 14% of the full resources of the Earth Simulator).
NASA Astrophysics Data System (ADS)
Vinod Kumar, A.; Sitaraman, V.; Oza, R. B.; Krishnamoorthy, T. M.
A one-dimensional numerical planetary boundary layer (PBL) model is developed and applied to study the vertical distribution of radon and its daughter products in the atmosphere. The meteorological model contains parameterization for the vertical diffusion coefficient based on turbulent kinetic energy and energy dissipation ( E- ɛ model). The increased vertical resolution and the realistic concentration of radon and its daughter products based on the time-dependent PBL model is compared with the steady-state model results and field observations. The ratio of radon concentration at higher levels to that at the surface has been studied to see the effects of atmospheric stability. The significant change in the vertical profile of concentration due to decoupling of the upper portion of the boundary layer from the shallow lower stable layer is explained by the PBL model. The disequilibrium ratio of 214Bi/ 214Pb broadly agrees with the observed field values. The sharp decrease in the ratio during transition from unstable to stable atmospheric condition is also reproduced by the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiao; Wang, Yanhui, E-mail: wangyh@dlut.edu.cn; Wang, Dezhen, E-mail: wangdez@dlut.edu.cn
A two-dimensional fluid model is developed to study the filaments (or discharge channels) in atmospheric-pressure discharge with one plate electrode covered by a dielectric layer. Under certain discharge parameters, one or more stable filaments with wide radii could be regularly arranged in the discharge space. Different from the short-lived randomly distributed microdischarges, this stable and thick filament can carry more current and have longer lifetime. Because only one electrode is covered by a dielectric layer in the simulation, the formed discharge channel extends outwards near the dielectric layer and shrinks inwards near the naked electrode, agreeing with the experimental results.more » In this paper, the evolution of channel is studied, and its behavior is like a streamer or an ionization wave, but the propagation distance is short. The discharge parameters such as voltage amplitude, electrode width, and N{sub 2} impurities content could significantly influence the number of discharge channel, which is discussed in the paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanz Rodrigo, Javier; Chávez Arroyo, Roberto Aurelio; Moriarty, Patrick
The increasing size of wind turbines, with rotors already spanning more than 150 m diameter and hub heights above 100 m, requires proper modeling of the atmospheric boundary layer (ABL) from the surface to the free atmosphere. Furthermore, large wind farm arrays create their own boundary layer structure with unique physics. This poses significant challenges to traditional wind engineering models that rely on surface-layer theories and engineering wind farm models to simulate the flow in and around wind farms. However, adopting an ABL approach offers the opportunity to better integrate wind farm design tools and meteorological models. The challenge ismore » how to build the bridge between atmospheric and wind engineering model communities and how to establish a comprehensive evaluation process that identifies relevant physical phenomena for wind energy applications with modeling and experimental requirements. A framework for model verification, validation, and uncertainty quantification is established to guide this process by a systematic evaluation of the modeling system at increasing levels of complexity. In terms of atmospheric physics, 'building the bridge' means developing models for the so-called 'terra incognita,' a term used to designate the turbulent scales that transition from mesoscale to microscale. This range of scales within atmospheric research deals with the transition from parameterized to resolved turbulence and the improvement of surface boundary-layer parameterizations. The coupling of meteorological and wind engineering flow models and the definition of a formal model evaluation methodology, is a strong area of research for the next generation of wind conditions assessment and wind farm and wind turbine design tools. Some fundamental challenges are identified in order to guide future research in this area.« less
An experimental and numerical study of wave motion and upstream influence in a stratified fluid
NASA Technical Reports Server (NTRS)
Hurdis, D. A.
1974-01-01
A system consisting of two superimposed layers of liquid of different densities, with a thin transition layer at the interface, provides a good laboratory model of an ocean thermocline or of an atmospheric inversion layer. This research was to gain knowledge about the propagation of disturbances within these two geophysical systems. The technique used was to observe the propagation of internal waves and of upstream influence within the density-gradient region between the two layers of liquid. The disturbances created by the motion of a vertical flat plate, which was moved longitudinally through this region, were examined both experimentally and numerically. An upstream influence, which resulted from a balance of inertial and gravitational forces, was observed, and it was possible to predict the behavior of this influence with the numerical model. The prediction included a description of the propagation of the upstream influence to steadily increasing distances from the flat plate and the shapes and magnitudes of the velocity profiles.
Rough-to-smooth transition of an equilibrium neutral constant stress layer
NASA Technical Reports Server (NTRS)
Logan, E., Jr.; Fichtl, G. H.
1975-01-01
Purpose of research on rough-to-smooth transition of an equilibrium neutral constant stress layer is to develop a model for low-level atmospheric flow over terrains of abruptly changing roughness, such as those occurring near the windward end of a landing strip, and to use the model to derive functions which define the extent of the region affected by the roughness change and allow adequate prediction of wind and shear stress profiles at all points within the region. A model consisting of two bounding logarithmic layers and an intermediate velocity defect layer is assumed, and dimensionless velocity and stress distribution functions which meet all boundary and matching conditions are hypothesized. The functions are used in an asymptotic form of the equation of motion to derive a relation which governs the growth of the internal boundary layer. The growth relation is used to predict variation of surface shear stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Jinmei; Arritt, R.W.
The importance of land-atmosphere interactions and biosphere in climate change studies has long been recognized, and several land-atmosphere interaction schemes have been developed. Among these, the Simple Biosphere scheme (SiB) of Sellers et al. and the Biosphere Atmosphere Transfer Scheme (BATS) of Dickinson et al. are two of the most widely known. The effects of GCM subgrid-scale inhomogeneities of surface properties in general circulation models also has received increasing attention in recent years. However, due to the complexity of land surface processes and the difficulty to prescribe the large number of parameters that determine atmospheric and soil interactions with vegetation,more » many previous studies and results seem to be contradictory. A GCM grid element typically represents an area of 10{sup 4}-10{sup 6} km{sup 2}. Within such an area, there exist variations of soil type, soil wetness, vegetation type, vegetation density and topography, as well as urban areas and water bodies. In this paper, we incorporate both BATS and SiB2 land surface process schemes into a nonhydrostatic, compressible version of AMBLE model (Atmospheric Model -- Boundary-Layer Emphasis), and compare the surface heat fluxes and mesoscale circulations calculated using the two schemes. 8 refs., 5 figs.« less
Finite-element numerical modeling of atmospheric turbulent boundary layer
NASA Technical Reports Server (NTRS)
Lee, H. N.; Kao, S. K.
1979-01-01
A dynamic turbulent boundary-layer model in the neutral atmosphere is constructed, using a dynamic turbulent equation of the eddy viscosity coefficient for momentum derived from the relationship among the turbulent dissipation rate, the turbulent kinetic energy and the eddy viscosity coefficient, with aid of the turbulent second-order closure scheme. A finite-element technique was used for the numerical integration. In preliminary results, the behavior of the neutral planetary boundary layer agrees well with the available data and with the existing elaborate turbulent models, using a finite-difference scheme. The proposed dynamic formulation of the eddy viscosity coefficient for momentum is particularly attractive and can provide a viable alternative approach to study atmospheric turbulence, diffusion and air pollution.
Atmospheric stability and complex terrain: comparing measurements and CFD
NASA Astrophysics Data System (ADS)
Koblitz, T.; Bechmann, A.; Berg, J.; Sogachev, A.; Sørensen, N.; Réthoré, P.-E.
2014-12-01
For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics models that focus on modeling the airflow in a neutrally stratified surface layer. So far, physical processes that are specific to the atmospheric boundary layer, for example the Coriolis force, buoyancy forces and heat transport, are mostly ignored in state-of-the-art flow solvers. In order to decrease the uncertainty of wind resource assessment, the effect of thermal stratification on the atmospheric boundary layer should be included in such models. The present work focuses on non-neutral atmospheric flow over complex terrain including physical processes like stability and Coriolis force. We examine the influence of these effects on the whole atmospheric boundary layer using the DTU Wind Energy flow solver EllipSys3D. To validate the flow solver, measurements from Benakanahalli hill, a field experiment that took place in India in early 2010, are used. The experiment was specifically designed to address the combined effects of stability and Coriolis force over complex terrain, and provides a dataset to validate flow solvers. Including those effects into EllipSys3D significantly improves the predicted flow field when compared against the measurements.
The problem of the second wind turbine - a note on a common but flawed wind power estimation method
NASA Astrophysics Data System (ADS)
Gans, F.; Miller, L. M.; Kleidon, A.
2012-06-01
Several recent wind power estimates suggest that this renewable energy resource can meet all of the current and future global energy demand with little impact on the atmosphere. These estimates are calculated using observed wind speeds in combination with specifications of wind turbine size and density to quantify the extractable wind power. However, this approach neglects the effects of momentum extraction by the turbines on the atmospheric flow that would have effects outside the turbine wake. Here we show with a simple momentum balance model of the atmospheric boundary layer that this common methodology to derive wind power potentials requires unrealistically high increases in the generation of kinetic energy by the atmosphere. This increase by an order of magnitude is needed to ensure momentum conservation in the atmospheric boundary layer. In the context of this simple model, we then compare the effect of three different assumptions regarding the boundary conditions at the top of the boundary layer, with prescribed hub height velocity, momentum transport, or kinetic energy transfer into the boundary layer. We then use simulations with an atmospheric general circulation model that explicitly simulate generation of kinetic energy with momentum conservation. These simulations show that the assumption of prescribed momentum import into the atmospheric boundary layer yields the most realistic behavior of the simple model, while the assumption of prescribed hub height velocity can clearly be disregarded. We also show that the assumptions yield similar estimates for extracted wind power when less than 10% of the kinetic energy flux in the boundary layer is extracted by the turbines. We conclude that the common method significantly overestimates wind power potentials by an order of magnitude in the limit of high wind power extraction. Ultimately, environmental constraints set the upper limit on wind power potential at larger scales rather than detailed engineering specifications of wind turbine design and placement.
NASA Astrophysics Data System (ADS)
Dickson, N. C.; Gierens, K. M.; Rogers, H. L.; Jones, R. L.
2010-07-01
The global observation, assimilation and prediction in numerical models of ice super-saturated (ISS) regions (ISSR) are crucial if the climate impact of aircraft condensation trails (contrails) is to be fully understood, and if, for example, contrail formation is to be avoided through aircraft operational measures. Given their small scales compared to typical atmospheric model grid sizes, statistical representations of the spatial scales of ISSR are required, in both horizontal and vertical dimensions, if global occurrence of ISSR is to be adequately represented in climate models. This paper uses radiosonde launches made by the UK Meteorological Office, from the British Isles, Gibraltar, St. Helena and the Falkland Islands between January 2002 and December 2006, to investigate the probabilistic occurrence of ISSR. Each radiosonde profile is divided into 50- and 100-hPa pressure layers, to emulate the coarse vertical resolution of some atmospheric models. Then the high resolution observations contained within each thick pressure layer are used to calculate an average relative humidity and an ISS fraction for each individual thick pressure layer. These relative humidity pressure layer descriptions are then linked through a probability function to produce an s-shaped curve which empirically describes the ISS fraction in any average relative humidity pressure layer. Using this empirical understanding of the s-shaped relationship a mathematical model was developed to represent the ISS fraction within any arbitrary thick pressure layer. Two models were developed to represent both 50- and 100-hPa pressure layers with each reconstructing their respective s-shapes within 8-10% of the empirical curves. These new models can be used, to represent the small scale structures of ISS events, in modelled data where only low vertical resolution is available. This will be useful in understanding, and improving the global distribution, both observed and forecasted, of ice super-saturation.
Meteoric metal layers in the atmosphere of Mars
NASA Astrophysics Data System (ADS)
Plane, John; Whalley, Charlotte
Radio occultation measurements from several spacecraft (e.g., Mars Express, Mars Global Sur-veyor) have revealed the presence of a "third" ion layer in the Martian atmosphere, which occurs sporadically around 90 km. Because this is the aerobraking region of the atmosphere, and the layers resemble sporadic E layers observed in the terrestrial atmosphere, it has been proposed that these layers consist of metallic ions (principally Fe+ and Mg+ ). A major problem with this hypothesis is that we have shown recently that metallic ions re-combine rapidly in a CO2 -rich atmosphere, both because of the efficiency of CO2 as the "third body" and because of the very low temperatures (about 140 K). In fact, both Fe+ and Mg+ form CO2 cluster ions about 200 times faster than current Mars models predict. These cluster ions should rapidly be destroyed by dissociative recombination with electrons, so that sporadic layers containing metallic ions would have lifetimes of only minutes. We will present a new laboratory study of all the reactions that appear to be required to solve this problem. Most importantly, we will show that the reactions of molecular magnesium ions (Mg+ .CO2 , MgO2 + and MgO+ ) with atomic O are about 20 times faster than expected. The laboratory will then be used to construct a new model of the Martian upper atmosphere, which demonstrates that the sporadic third layers must largely be composed of Mg+ and not Fe+ . These layers should then have lifetimes of more than 10 hours, in accord with observations from Mars Express made on successive orbits.
NASA Astrophysics Data System (ADS)
Hess, G. D.; Garratt, J. R.
The steady-state, horizontally homogeneous, neutral, barotropiccase forms the foundation of our theoretical understanding of the planetary boundary layer (PBL).While simple analytical models and first-order closure models simulate atmospheric observationsof this case well, more sophisticated models, in general, do not. In this paperwe examine how well three higher-order closure models, E - - l, E - l, and LRR - l,which have been especially modified for PBL applications, perform in predicting the behaviour of thecross-isobaric angle 0, the geostrophic drag coefficient Cg, and the integral of the dissipationrate over the boundary layer, as a function of the surface Rossby number Ro. For comparison we alsoexamine the performance of three first-order closure mixing-length models, two proposed byA. K. Blackadar and one by H. H. Lettau, and the performance of the standard model forsecond-order closure and a modification of it designed to reduce the overprediction of turbulence inthe upper part of the boundary layer.
Two-layer-atmospheric blocking in a medium with high nonlinearity and lateral dispersion
NASA Astrophysics Data System (ADS)
Osman, M. S.; Abdel-Gawad, H. I.; El Mahdy, M. A.
2018-03-01
Herein, the extended coupled Kadomtsev-Petviashvili equation (CKPE) with lateral dispersion is investigated for studying the atmospheric blocking in two layers. A variety of new types of polynomial solutions for the CKPE is obtained using the unified method. Furthermore, we use the Hamiltonian systems with two degrees of freedom to discuss the stability of the obtained solutions through the bifurcation diagrams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gascoyne, A.; Jain, R.; Hindman, B. W., E-mail: a.d.gascoyne@sheffield.ac.uk, E-mail: r.jain@sheffield.ac.uk
2014-07-10
We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation ofmore » Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = –z{sub 0}).« less
NASA Astrophysics Data System (ADS)
Gascoyne, A.; Jain, R.; Hindman, B. W.
2014-07-01
We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = -z 0).
A simple two-system-parameter model for surface-effected warming of the planetary boundary layer
NASA Technical Reports Server (NTRS)
Otterman, J.
1990-01-01
The transabsorptivity concept which specifies the heat input into the PBL resulting from surface-atmosphere interactions is discussed. This concept is examined in terms of governing equations, and transabsorptivity is defined as the product of the surface absorptivity and the transfer efficiency. It is proposed that the climatic effects of surface changes be formulated in terms of changes in the transabsorptivity. A diagram of the surface-atmosphere interactions is provided.
An equilibrium model for the coupled ocean-atmosphere boundary layer in the tropics
NASA Technical Reports Server (NTRS)
Sui, C.-H.; Lau, K.-M.; Betts, Alan K.
1991-01-01
An atmospheric convective boundary layer (CBL) model is coupled to an ocean mixed-layer (OML) model in order to study the equilibrium state of the coupled system in the tropics, particularly in the Pacific region. The equilibrium state of the coupled system is solved as a function of sea-surface temperature (SST) for a given surface wind and as a function of surface wind for a given SST. It is noted that in both cases, the depth of the CBL and OML increases and the upwelling below the OML decreases, corresponding to either increasing SST or increasing surface wind. The coupled ocean-atmosphere model is solved iteratively as a function of surface wind for a fixed upwelling and a fixed OML depth, and it is observed that SST falls with increasing wind in both cases. Realistic gradients of mixed-layer depth and upwelling are observed in experiments with surface wind and SST prescribed as a function of longitude.
Atmospheric tomography using a fringe pattern in the sodium layer.
Baharav, Y; Ribak, E N; Shamir, J
1994-02-15
We wish to measure and separate the contribution of atmospheric turbulent layers for multiconjugate adaptive optics. To this end, we propose to create a periodic fringe pattern in the sodium layer and image it with a modified Hartmann sensor. Overlapping sections of the fringes are imaged by a lenslet array onto contiguous areas in a large-format camera. Low-layer turbulence causes an overall shift of the fringe pattern in each lenslet, and high-attitude turbulence results in internal deformations in the pattern. Parallel Fourier analysis permits separation of the atmospheric layers. Two mirrors, one conjugate to a ground layer and the other conjugate to a single high-altitude layer, are shown to widen the field of view significantly compared with existing methods.
Mars boundary layer simulations - Comparison with Viking lander and entry observations
NASA Technical Reports Server (NTRS)
Haberle, R. M.; Houben, H. C.
1991-01-01
Diurnal variations of wind and temperature in the lower Martian atmosphere are simulated with a boundary layer model that includes radiative heating in a dusty CO2 atmosphere, turbulence generated by convection and/or shear stresses, a surface heat budget, and time varying pressure forces due to sloping terrain. Model results for early northern summer are compared with Viking lander observations to determine the model's strengths and weaknesses, and suitability as an engineering model.
Radiative Impact of Observed and Simulated Aerosol Layers Over the East Coast of North America
NASA Astrophysics Data System (ADS)
Berg, L. K.; Fast, J. D.; Burton, S. P.; Chand, D.; Comstock, J. M.; Ferrare, R. A.; Hair, J. W.; Hostetler, C. A.; Hubbe, J. M.; Kassianov, E.; Rogers, R. R.; Sedlacek, A. J., III; Shilling, J. E.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk, A.
2014-12-01
The vertical distribution of particles in the atmospheric column can have a large impact on the radiative forcing and cloud microphysics. A recent climatology constructed using data collected by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) suggests elevated layers of aerosol are quite common near the North American east coast during both winter and summer. The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study utilizing both in situ and remotely sensed measurements designed to provide a comprehensive data set that can be used to investigate science questions related to aerosol radiative forcing and the vertical distribution of aerosol. The study sampled the atmosphere at a number of altitudes within two atmospheric columns; one located near the coast of North America (over Cape Cod, MA) and a second over the Atlantic Ocean several hundred kilometers from the coast. TCAP included the yearlong deployment of the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) located at the base of the Cape Cod column, as well as summer and winter aircraft intensive observation periods (IOPs) using the ARM Aerial Facility. One important finding from the TCAP summer IOP is the relatively common occurrence (during four of the six nearly cloud-free flights) of elevated aerosol layers in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA Langley Research Center High-Spectral Resolution Lidar (HSRL-2). These elevated layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. Both the in situ and remote sensing observations have been compared to simulations from the regional Weather Research and Forecasting model coupled with chemistry (WRF-Chem). The model simulated the observed layers well in some cases, but in other instances there were differences in the altitude, mass loading, and aerosol water associated with regional scale transport and the representation of the aerosol lifecycle.
A method for coupling a parameterization of the planetary boundary layer with a hydrologic model
NASA Technical Reports Server (NTRS)
Lin, J. D.; Sun, Shu Fen
1986-01-01
Deardorff's parameterization of the planetary boundary layer is adapted to drive a hydrologic model. The method converts the atmospheric conditions measured at the anemometer height at one site to the mean values in the planetary boundary layer; it then uses the planetary boundary layer parameterization and the hydrologic variables to calculate the fluxes of momentum, heat and moisture at the atmosphere-land interface for a different site. A simplified hydrologic model is used for a simulation study of soil moisture and ground temperature on three different land surface covers. The results indicate that this method can be used to drive a spatially distributed hydrologic model by using observed data available at a meteorological station located on or nearby the site.
Numerical Modelling of Fire-Atmosphere Interactions and the 2003 Canberra Bushfires
NASA Astrophysics Data System (ADS)
Simpson, C.; Sturman, A.; Zawar-Reza, P.
2010-12-01
It is well known that the behaviour of a wildland fire is strongly associated with the conditions of its surrounding atmosphere. However, the two-way interactions between fire behaviour and the atmospheric conditions are not well understood. A numerical model is used to simulate wildland fires so that the nature of these fire-atmosphere interactions, and how they might affect fire behaviour, can be further investigated. The 2003 Canberra bushfires are used as a case study due to their highly destructive and unusual behaviour. On the 18th January 2003, these fires spread to the urban suburbs of Canberra, resulting in the loss of four lives and the destruction of over 500 homes. Fire-atmosphere interactions are believed to have played an important role in making these fires so destructive. WRF-Fire is used to perform real data simulations of the 2003 Canberra bushfires. WRF-Fire is a coupled fire-atmosphere model, which combines a semi-empirical fire spread model with an atmospheric model, allowing it to directly simulate the two-way interactions between a fire and its surrounding atmosphere. These simulations show the impact of the presence of a fire on conditions within the atmospheric boundary layer. This modification of the atmosphere, resulting from the injection of heat and moisture released by the fire, appears to have a direct feedback onto the overall fire behaviour. The bushfire simulations presented in this paper provide important scientific insights into the nature of fire-atmosphere interactions for a real situation. It is expected that they will also help fire managers in Australia to better understand why the 2003 Canberra bushfires were so destructive, as well as to gain improved insight into bushfire behaviour in general.
Rodrigo, J. Sanz; Churchfield, M.; Kosović, B.
2016-10-03
The third GEWEX Atmospheric Boundary Layer Studies (GABLS3) model intercomparison study, around the Cabauw met tower in the Netherlands, is revisited as a benchmark for wind energy atmospheric boundary layer (ABL) models. The case was originally developed by the boundary layer meteorology community, interested in analysing the performance of single-column and large-eddy simulation atmospheric models dealing with a diurnal cycle leading to the development of a nocturnal low-level jet. The case addresses fundamental questions related to the definition of the large-scale forcing, the interaction of the ABL with the surface and the evaluation of model results with observations. The characterizationmore » of mesoscale forcing for asynchronous microscale modelling of the ABL is discussed based on momentum budget analysis of WRF simulations. Then a single-column model is used to demonstrate the added value of incorporating different forcing mechanisms in microscale models. The simulations are evaluated in terms of wind energy quantities of interest.« less
An Analytic Approach to Modeling Land-Atmosphere Interaction: 1. Construct and Equilibrium Behavior
NASA Astrophysics Data System (ADS)
Brubaker, Kaye L.; Entekhabi, Dara
1995-03-01
A four-variable land-atmosphere model is developed to investigate the coupled exchanges of water and energy between the land surface and atmosphere and the role of these exchanges in the statistical behavior of continental climates. The land-atmosphere system is substantially simplified and formulated as a set of ordinary differential equations that, with the addition of random noise, are suitable for analysis in the form of the multivariate Îto equation. The model treats the soil layer and the near-surface atmosphere as reservoirs with storage capacities for heat and water. The transfers between these reservoirs are regulated by four states: soil saturation, soil temperature, air specific humidity, and air potential temperature. The atmospheric reservoir is treated as a turbulently mixed boundary layer of fixed depth. Heat and moisture advection, precipitation, and layer-top air entrainment are parameterized. The system is forced externally by solar radiation and the lateral advection of air and water mass. The remaining energy and water mass exchanges are expressed in terms of the state variables. The model development and equilibrium solutions are presented. Although comparisons between observed data and steady state model results re inexact, the model appears to do a reasonable job of partitioning net radiation into sensible and latent heat flux in appropriate proportions for bare-soil midlatitude summer conditions. Subsequent work will introduce randomness into the forcing terms to investigate the effect of water-energy coupling and land-atmosphere interaction on variability and persistence in the climatic system.
Bao, Zhongwen; Haberer, Christina M; Maier, Uli; Beckingham, Barbara; Amos, Richard T; Grathwohl, Peter
2016-11-01
Temperature changes can drive cycling of semi-volatile pollutants between different environmental compartments (e.g. atmosphere, soil, plants). To evaluate the impact of daily temperature changes on atmospheric concentration fluctuations we employed a physically based model coupling soil, plants and the atmosphere, which accounts for heat transport, effective gas diffusion, sorption and biodegradation in the soil as well as eddy diffusion and photochemical oxidation in the atmospheric boundary layer of varying heights. The model results suggest that temperature-driven re-volatilization and uptake in soils cannot fully explain significant diurnal concentration fluctuations of atmospheric pollutants as for example observed for polychlorinated biphenyls (PCBs). This holds even for relatively low water contents (high gas diffusivity) and high sorption capacity of the topsoil (high organic carbon content and high pollutant concentration in the topsoil). Observed concentration fluctuations, however, can be easily matched if a rapidly-exchanging environmental compartment, such as a plant layer, is introduced. At elevated temperatures, plants release organic pollutants, which are rapidly distributed in the atmosphere by eddy diffusion. For photosensitive compounds, e.g. some polycyclic aromatic hydrocarbons (PAHs), decreasing atmospheric concentrations would be expected during daytime for the bare soil scenario. This decline is buffered by a plant layer, which acts as a ground-level reservoir. The modeling results emphasize the importance of a rapidly-exchanging compartment above ground to explain short-term atmospheric concentration fluctuations. Copyright © 2016 Elsevier B.V. All rights reserved.
Reflective properties of melt ponds on sea ice
NASA Astrophysics Data System (ADS)
Malinka, Aleksey; Zege, Eleonora; Istomina, Larysa; Heygster, Georg; Spreen, Gunnar; Perovich, Donald; Polashenski, Chris
2018-06-01
Melt ponds occupy a large part of the Arctic sea ice in summer and strongly affect the radiative budget of the atmosphere-ice-ocean system. In this study, the melt pond reflectance is considered in the framework of radiative transfer theory. The melt pond is modeled as a plane-parallel layer of pure water upon a layer of sea ice (the pond bottom). We consider pond reflection as comprising Fresnel reflection by the water surface and multiple reflections between the pond surface and its bottom, which is assumed to be Lambertian. In order to give a description of how to find the pond bottom albedo, we investigate the inherent optical properties of sea ice. Using the Wentzel-Kramers-Brillouin approximation approach to light scattering by non-spherical particles (brine inclusions) and Mie solution for spherical particles (air bubbles), we conclude that the transport scattering coefficient in sea ice is a spectrally independent value. Then, within the two-stream approximation of the radiative transfer theory, we show that the under-pond ice spectral albedo is determined by two independent scalar values: the transport scattering coefficient and ice layer thickness. Given the pond depth and bottom albedo values, the bidirectional reflectance factor (BRF) and albedo of a pond can be calculated with analytical formulas. Thus, the main reflective properties of the melt pond, including their spectral dependence, are determined by only three independent parameters: pond depth z, ice layer thickness H, and transport scattering coefficient of ice σt.The effects of the incident conditions and the atmosphere state are examined. It is clearly shown that atmospheric correction is necessary even for in situ measurements. The atmospheric correction procedure has been used in the model verification. The optical model developed is verified with data from in situ measurements made during three field campaigns performed on landfast and pack ice in the Arctic. The measured pond albedo spectra were fitted with the modeled spectra by varying the pond parameters (z, H, and σt). The coincidence of the measured and fitted spectra demonstrates good performance of the model: it is able to reproduce the albedo spectrum in the visible range with RMSD that does not exceed 1.5 % for a wide variety of melt pond types observed in the Arctic.
NASA Astrophysics Data System (ADS)
Vignon, Etienne; Hourdin, Frédéric; Genthon, Christophe; Madeleine, Jean-Baptiste; Cheruy, Frédérique; Gallée, Hubert; Bazile, Eric; Lefebvre, Marie-Pierre; Van de Wiel, Bas J. H.
2017-04-01
In a General Circulation Model (GCM), the turbulent mixing parametrization of the atmospheric boundary layer (ABL) over the Antarctic Plateau is critical since it affects the continental scale temperature inversion, the katabatic winds and finally the Southern Hemisphere circulation. The aim of this study is to evaluate the representation of the Antarctic Plateau ABL in the Laboratoire de Météorologie Dynamique-Zoom (LMDZ) GCM, the atmospheric component of the IPSL Earth System Model in preparation for the sixth Coupled Models Intercomparison Project. We carry out 1D simulations on the fourth Gewex Atmospheric Boundary Layers Study (GABLS4) case, and 3D simulations with the 'zooming capability' of the horizontal grid and with nudging. Simulations are evaluated and validated using in-situ measurements obtained at Dome C, East Antarctic Plateau, and satellite data. Sensitivity tests to surface parameters, vertical grid and turbulent mixing parametrizations led to significant improvements of the model and to a new configuration better adapted for Antarctic conditions. In particular, we point out the need to remove minimum turbulence thresholds to correctly reproduce very steep temperature and wind speed gradients in the stable ABL. We then assess the ability of the GCM to represent the two distinct stable ABL regimes and very strong near-surface temperature inversions, which are fascinating and critical features of the Dome C climate. This leads us to investigate the competition between radiative and turbulent coupling between the ABL and the snow surface in the model. Our results show that the new configuration of LMDZ reproduces reasonnably well the Dome C climatology and it is able to model strong temperature inversions and radiatively-dominated ABL. However, they also reveal a strong sensitivity of the modeling of the different regimes to the radiative scheme and vertical resolution. The present work finally hints at future developments to better and more physically represent the polar ABL in a GCM.
Rapid cycling of reactive nitrogen in the marine boundary layer.
Ye, Chunxiang; Zhou, Xianliang; Pu, Dennis; Stutz, Jochen; Festa, James; Spolaor, Max; Tsai, Catalina; Cantrell, Christopher; Mauldin, Roy L; Campos, Teresa; Weinheimer, Andrew; Hornbrook, Rebecca S; Apel, Eric C; Guenther, Alex; Kaser, Lisa; Yuan, Bin; Karl, Thomas; Haggerty, Julie; Hall, Samuel; Ullmann, Kirk; Smith, James N; Ortega, John; Knote, Christoph
2016-04-28
Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed. A 'renoxification' process that recycles nitric acid into nitrogen oxides has been proposed to reconcile observations with model studies, but the mechanisms responsible for this process remain uncertain. Here we present data from an aircraft measurement campaign over the North Atlantic Ocean and find evidence for rapid recycling of nitric acid to nitrous acid and nitrogen oxides in the clean marine boundary layer via particulate nitrate photolysis. Laboratory experiments further demonstrate the photolysis of particulate nitrate collected on filters at a rate more than two orders of magnitude greater than that of gaseous nitric acid, with nitrous acid as the main product. Box model calculations based on the Master Chemical Mechanism suggest that particulate nitrate photolysis mainly sustains the observed levels of nitrous acid and nitrogen oxides at midday under typical marine boundary layer conditions. Given that oceans account for more than 70 per cent of Earth's surface, we propose that particulate nitrate photolysis could be a substantial tropospheric nitrogen oxide source. Recycling of nitrogen oxides in remote oceanic regions with minimal direct nitrogen oxide emissions could increase the formation of tropospheric oxidants and secondary atmospheric aerosols on a global scale.
NASA Astrophysics Data System (ADS)
Sastre, Mariano; Yagüe, Carlos; Román-Cascón, Carlos; Maqueda, Gregorio; Ander Arrillaga, Jon
2015-04-01
In this work we study the temporal evolution of the Atmospheric Boundary Layer (ABL) along the transition period from a diurnal typical convection to a nocturnal more frequently stable situation. This period is known as late afternoon or evening transition, depending on the specific definitions employed by different authors [1]. In order to obtain a proper characterization, we try to learn whether or not the behaviour of these transitional boundary layers is strongly dependent on local conditions. To do so, two sets of evening transitions are studied from data collected at two different experimental sites. These locations correspond to research facilities named CIBA (Spain) and CRA (France), which are the places where atmospheric field campaigns have been conducted during the last years, such as CIBA2008 and BLLAST 2011, respectively. In order to get comparable situations, we focus especially on transitions with weak synoptic forcing, and consider daily astronomical sunset as a reference time. A statistical analysis on main parameters related to the transition is carried out for both locations, and the average behaviour is shown as well as extreme values according to the timing. A similar pattern in the qualitative evolution of many variables is found. Nevertheless, several relevant differences in the progress of key variables are obtained too. Moisture, both from the soil and the air, is thought to have great relevance in explaining many of the differences found between the two sites. Some case studies are explored, focusing on the role played by the atmospheric turbulence. Complementary, numerical experiments are also performed using the Weather Research and Forecast (WRF) mesoscale model, in order to test the role of humidity, by artificially varying it in some of the simulations. [1] Lothon, M. and coauthors (2014): The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence. Atmos. Chem. Phys., 14, 10931-10960.
NASA Astrophysics Data System (ADS)
Delbarre, H.; Augustin, P.; Saïd, F.; Campistron, B.; Bénech, B.; Lohou, F.; Puygrenier, V.; Moppert, C.; Cousin, F.; Fréville, P.; Fréjafon, E.
2005-03-01
Ground-based remote sensing systems have been used during the ESCOMPTE campaign, to continuously characterize the boundary-layer behaviour through many atmospheric parameters (wind, extinction and ozone concentration distribution, reflectivity, turbulence). This analysis is focused on the comparison of the atmospheric stratification retrieved from a UV angular ozone lidar, an Ultra High Frequency wind profiler and a sodar, above the area of Marseille, on June 26th 2001 (Intensive Observation Period 2b). The atmospheric stratification is shown to be very complex including two superimposed sea breezes, with an important contribution of advection. The temporal and spatial evolution of the stratification observed by the UV lidar and by the UHF radar are in good agreement although the origin of the echoes of these systems is quite different. The complexity of the dynamic situation has only partially been retrieved by a non-hydrostatic mesoscale model used with a 3 km resolution.
NASA Technical Reports Server (NTRS)
Strelkov, S. A.; Sushkevich, T. A.
1983-01-01
Spatial frequency characteristics (SFC) and the scattering functions were studied in the two cases of a uniform horizontal layer with absolutely black bottom, and an isolated layer. The mathematical model for these examples describes the horizontal heterogeneities in a light field with regard to radiation polarization in a three dimensional planar atmosphere, delimited by a heterogeneous surface with diffuse reflection. The perturbation method was used to obtain vector transfer equations which correspond to the linear and nonlinear systems of polarization radiation transfer. The boundary value tasks for the vector transfer equation that is a parametric set and one dimensional are satisfied by the SFC of the nonlinear system, and are expressed through the SFC of linear approximation. As a consequence of the developed theory, formulas were obtained for analytical calculation of albedo in solving the task of dissemination of polarization radiation in the planetary atmosphere with uniform Lambert bottom.
The effects of forest canopy shading and turbulence on boundary layer ozone.
Makar, P A; Staebler, R M; Akingunola, A; Zhang, J; McLinden, C; Kharol, S K; Pabla, B; Cheung, P; Zheng, Q
2017-05-18
The chemistry of the Earth's atmosphere close to the surface is known to be strongly influenced by vegetation. However, two critical aspects of the forest environment have been neglected in the description of the large-scale influence of forests on air pollution: the reduction of photolysis reaction rates and the modification of vertical transport due to the presence of foliage. Here we show that foliage shading and foliage-modified vertical diffusion have a profound influence on atmospheric chemistry, both at the Earth's surface and extending throughout the atmospheric boundary layer. The absence of these processes in three-dimensional models may account for 59-72% of the positive bias in North American surface ozone forecasts, and up to 97% of the bias in forested regions within the continent. These processes are shown to have similar or greater influence on surface ozone levels as climate change and current emissions policy scenario simulations.
The effects of forest canopy shading and turbulence on boundary layer ozone
Makar, P. A.; Staebler, R. M.; Akingunola, A.; Zhang, J.; McLinden, C.; Kharol, S. K.; Pabla, B.; Cheung, P.; Zheng, Q.
2017-01-01
The chemistry of the Earth's atmosphere close to the surface is known to be strongly influenced by vegetation. However, two critical aspects of the forest environment have been neglected in the description of the large-scale influence of forests on air pollution: the reduction of photolysis reaction rates and the modification of vertical transport due to the presence of foliage. Here we show that foliage shading and foliage-modified vertical diffusion have a profound influence on atmospheric chemistry, both at the Earth's surface and extending throughout the atmospheric boundary layer. The absence of these processes in three-dimensional models may account for 59–72% of the positive bias in North American surface ozone forecasts, and up to 97% of the bias in forested regions within the continent. These processes are shown to have similar or greater influence on surface ozone levels as climate change and current emissions policy scenario simulations. PMID:28516905
Resolving the Strange Behavior of Extraterrestrial Potassium in the Upper Atmosphere
NASA Technical Reports Server (NTRS)
Plane, J. M. C.; Feng, W.; Dawkins, E.; Chipperfield, M. P.; Hoeffner, J.; Janches, D.; Marsh, D. R.
2014-01-01
It has been known since the 1960s that the layers of Na and K atoms, which occur between 80 and 105km in the Earth's atmosphere as a result of meteoric ablation, exhibit completely different seasonal behavior. In the extratropics Na varies annually, with a pronounced wintertime maximum and summertime minimum. However, K varies semiannually with a small summertime maximum and minima at the equinoxes. This contrasting behavior has never been satisfactorily explained. Here we use a combination of electronic structure and chemical kinetic rate theory to determine two key differences in the chemistries of K and Na. First, the neutralization of K+ ions is only favored at low temperatures during summer. Second, cycling between K and its major neutral reservoir KHCO3 is essentially temperature independent. A whole atmosphere model incorporating this new chemistry, together with a meteor input function, now correctly predicts the seasonal behavior of the K layer.
Density response of the mesospheric sodium layer to gravity wave perturbations
NASA Technical Reports Server (NTRS)
Shelton, J. D.; Gardner, C. S.; Sechrist, C. F., Jr.
1980-01-01
Lidar observations of the mesospheric sodium layer often reveal wavelike features moving through the layer. It is often assumed that these features are a layer density response to gravity waves. Chiu and Ching (1978) described the approximate form of the linear response of atmospheric layers to gravity waves. In this paper, their results are used to predict the response of the sodium layer to gravity waves. These simulations are compared with experimental observations and a good correlation is found between the two. Because of the thickness of the sodium layer and the density gradients found in it, a linear model of the layer response is not always adequate to describe gravity wave-sodium layer interactions. Inclusion of nonlinearities in the layer response is briefly discussed. Experimental data is seen to contain features consistent with the predicted nonlinearities.
Controlled meteorological (CMET) balloon profiling of the Arctic atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Roberts, Tjarda; Hole, Lars; Voss, Paul
2017-04-01
We demonstrate profiling of the atmospheric boundary layer over Arctic ice-free and sea-ice covered regions by free-floating controllable CMET balloons. The CMET observations (temperature, humidity, wind-speed, pressure) provide in-situ meteorological datasets in very remote regions for comparison to atmospheric models. Controlled Meteorological (CMET) balloons are small airborne platforms that use reversible lift-gas compression to regulate altitude. These balloons have approximately the same payload mass as standard weather balloons but can float for many days, change altitude on command, and transmit meteorological and system data in near-real time via satellite. Five Controlled Meteorological (CMET) balloons were launched from Ny-Ålesund in Svalbard (Spitsbergen) over 5-12 May 2011 and measured vertical atmospheric profiles (temperature, humidity, wind) over coastal and remote areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic atmospheric boundary layer (ABL) over a period of more than 10 h. Profiles from two CMET flights are compared to model output from ECMWF Era-Interim reanalysis (ERA-I) and to a high-resolution (15 km) Arctic System Reanalysis (ASR) product. To the east of Svalbard over sea-ice, the CMET observed a stable ABL profile with a temperature inversion that was reproduced by ASR but not captured by ERA-I. In a coastal ice-free region to the west of Svalbard, the CMET observed a stable ABL with strong wind-shear. The CMET profiles document increases in ABL temperature and humidity that are broadly reproduced by both ASR and ERA-I. The ASR finds a more stably stratified ABL than observed but captured the wind shear in contrast to ERA-I. Detailed analysis of the coastal CMET-automated soundings identifies small-scale temperature and humidity variations with a low-level flow and provides an estimate of local wind fields. We show that CMET balloons are a valuable approach for profiling the free atmosphere and atmospheric boundary layer in remote regions such as the Arctic, where few other in-situ observations are available to trace processes and for model evaluation. References: Roberts, T. J., Dütsch, M., Hole, L. R., and Voss, P. B.: Controlled meteorological (CMET) free balloon profiling of the Arctic atmospheric boundary layer around Spitsbergen compared to ERA-Interim and Arctic System Reanalyses. Atmos. Chem. Phys., 16, 12383-12396, doi:10.5194/acp-16-12383-2016, 2016. Hole L. R., Bello A. P., Roberts T. J., Voss P. B., Vihma T.: Measurements by controlled meteorological balloons in coastal areas of Antarctica. Antarctic Science, 1-8, doi:10.1017/S0954102016000213, 2016. Voss P. B., Hole L. R., Helbling E. F., Roberts T. J.: Continuous in-situ soundings in the arctic boundary layer: a new atmospheric measurement technique using controlled meteorological balloons. Journal of Intelligent Robot Systems, 70, 609-617, doi 10.1007/s10846-012-9758-6, 2013.
NASA Astrophysics Data System (ADS)
Larsen, G. C.; Larsen, T. J.; Chougule, A.
2017-05-01
The aim of the present paper is to demonstrate the capability of medium fidelity modelling of wind turbine component fatigue loading, when the wind turbines are subjected to wake affected non-stationary flow fields under non-neutral atmospheric stability conditions. To accomplish this we combine the classical Dynamic Wake Meandering model with a fundamental conjecture stating: Atmospheric boundary layer stability affects primary wake meandering dynamics driven by large turbulent scales, whereas wake expansion in the meandering frame of reference is hardly affected. Inclusion of stability (i.e. buoyancy) in description of both large- and small scale atmospheric boundary layer turbulence is facilitated by a generalization of the classical Mann spectral tensor, which consistently includes buoyancy effects. With non-stationary wind turbine inflow fields modelled as described above, fatigue loads are obtained using the state-of-the art aeroelastic model HAWC2. The Lillgrund offshore wind farm (WF) constitute an interesting case study for wind farm model validation, because the WT interspacing is small, which in turn means that wake effects are significant. A huge data set, comprising 5 years of blade and tower load recordings, is available for model validation. For a multitude of wake situations this data set displays a considerable scatter, which to a large degree seems to be caused by atmospheric boundary layer stability effects. Notable is also that rotating wind turbine components predominantly experience high fatigue loading for stable stratification with significant shear, whereas high fatigue loading of non-rotating wind turbine components are associated with unstable atmospheric boundary layer stratification.
Incorporation of the planetary boundary layer in atmospheric models
NASA Technical Reports Server (NTRS)
Moeng, Chin-Hoh; Wyngaard, John; Pielke, Roger; Krueger, Steve
1993-01-01
The topics discussed include the following: perspectives on planetary boundary layer (PBL) measurements; current problems of PBL parameterization in mesoscale models; and convective cloud-PBL interactions.
Stably Stratified Atmospheric Boundary Layers
NASA Astrophysics Data System (ADS)
Mahrt, L.
2014-01-01
Atmospheric boundary layers with weak stratification are relatively well described by similarity theory and numerical models for stationary horizontally homogeneous conditions. With common strong stratification, similarity theory becomes unreliable. The turbulence structure and interactions with the mean flow and small-scale nonturbulent motions assume a variety of scenarios. The turbulence is intermittent and may no longer fully satisfy the usual conditions for the definition of turbulence. Nonturbulent motions include wave-like motions and solitary modes, two-dimensional vortical modes, microfronts, intermittent drainage flows, and a host of more complex structures. The main source of turbulence may not be at the surface, but rather may result from shear above the surface inversion. The turbulence is typically not in equilibrium with the nonturbulent motions, sometimes preventing the formation of an inertial subrange. New observational and analysis techniques are expected to advance our understanding of the very stable boundary layer.
Assessing sea wave and spray effects on Marine Boundary Layer structure
NASA Astrophysics Data System (ADS)
Stathopoulos, Christos; Galanis, George; Patlakas, Platon; Kallos, George
2017-04-01
Air sea interface is characterized by several mechanical and thermodynamical processes. Heat, moisture and momentum exchanges increase the complexity in modeling the atmospheric-ocean system. Near surface atmospheric levels are subject to sea surface roughness and sea spray. Sea spray fluxes can affect atmospheric stability and induce microphysical processes such as sea salt particle formation and condensation/evaporation of water in the boundary layer. Moreover, presence of sea spray can alter stratification over the ocean surface with further insertion of water vapor. This can lead to modified stability conditions and to wind profiles that deviate significantly from the logarithmic approximation. To model these effects, we introduce a fully coupled system consisting of the mesoscale atmospheric model RAMS/ICLAMS and the wave model WAM. The system encompasses schemes for ocean surface roughness, sea salt aerosols and droplet thermodynamic processes and handles sea salt as predictive quantity. Numerical experiments using the developed atmospheric-ocean system are performed over the Atlantic and Mediterranean shoreline. Emphasis is given to the quantification of the improvement obtained in the description of the marine boundary layer, particularly in its lower part as well as in wave characteristics.
Review: the atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Garratt, J. R.
1994-10-01
An overview is given of the atmospheric boundary layer (ABL) over both continental and ocean surfaces, mainly from observational and modelling perspectives. Much is known about ABL structure over homogeneous land surfaces, but relatively little so far as the following are concerned, (i) the cloud-topped ABL (over the sea predominantly); (ii) the strongly nonhomogeneous and nonstationary ABL; (iii) the ABL over complex terrain. These three categories present exciting challenges so far as improved understanding of ABL behaviour and improved representation of the ABL in numerical models of the atmosphere are concerned.
A New, Two-layer Canopy Module For The Detailed Snow Model SNOWPACK
NASA Astrophysics Data System (ADS)
Gouttevin, I.; Lehning, M.; Jonas, T.; Gustafsson, D.; Mölder, M.
2014-12-01
A new, two-layer canopy module with thermal inertia for the detailed snow model SNOWPACK is presented. Compared to the old, one-layered canopy formulation with no heat mass, this module now offers a level of physical detail consistent with the detailed snow and soil representation in SNOWPACK. The new canopy model is designed to reproduce the difference in thermal regimes between leafy and woody canopy elements and their impact on the underlying snowpack energy balance. The new model is validated against data from an Alpine and a boreal site. Comparisons of modelled sub-canopy thermal radiations to stand-scale observations at Alptal, Switzerland, demonstrate the improvements induced by our new parameterizations. The main effect is a more realistic simulation of the canopy night-time drop in temperatures. The lower drop is induced by both thermal inertia and the two-layer representation. A specific result is that such a performance cannot be achieved by a single-layered canopy model. The impact of the new parameterizations on the modelled dynamics of the sub-canopy snowpack is analysed and yields consistent results, but the frequent occurrence of mixed-precipitation events at Alptal prevents a conclusive assessment of model performances against snow data.Without specific tuning, the model is also able to reproduce the measured summertime tree trunk temperatures and biomass heat storage at the boreal site of Norunda, Sweden, with an increased accuracy in amplitude and phase. Overall, the SNOWPACK model with its enhanced canopy module constitutes a unique (in its physical process representation) atmosphere-to-soil-through-canopy-and-snow modelling chain.
Investigation of the atmospheric boundary layer dynamics during the ESCOMPTE campaign
NASA Astrophysics Data System (ADS)
Saïd, F.; Brut, A.; Campistron, B.; Cousin, F.
2007-03-01
This paper presents some results about the behavior of the atmospheric boundary layer observed during the ESCOMPTE experiment. This campaign, which took place in south-eastern France during summer 2001, was aimed at improving our understanding of pollution episodes in relation to the dynamics of the lower troposphere. Using a large data set, as well as a simulation from the mesoscale non-hydrostatic model Meso-NH, we describe and analyze the atmospheric boundary layer (ABL) development during two specific meteorological conditions of the second Intensive Observation Period (IOP). The first situation (IOP2a, from 22 June to 23 June) corresponds to moderate, dry and cold northerly winds (end of Mistral event), coupled with a sea-breeze in the lower layer, whereas sea-breeze events with weak southerly winds occurred during the second part of the period (IOP2b, from 24 June to 26 June). In this study, we first focus on the validation of the model outputs with a thorough comparison of the Meso-NH simulations with fields measurements on three days of the IOP: 22 June, 23 June and 25 June. We also investigate the structure of the boundary layer on IOP2a when the Mistral is superimposed on a sea breeze. Then, we describe the spatial and diurnal variability of the ABL depths over the ESCOMPTE domain during the whole IOP. This step is essential if one wants to know the depth of the layer where the pollutants can be diluted or accumulated. Eventually, this study intends to describe the ABL variability in relation to local or mesoscale dynamics and/or induced topographic effects, in order to explain pollution transport processes in the low troposphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newsom, R. K.; Sivaraman, C.; Shippert, T. R.
Wind speed and direction, together with pressure, temperature, and relative humidity, are the most fundamental atmospheric state parameters. Accurate measurement of these parameters is crucial for numerical weather prediction. Vertically resolved wind measurements in the atmospheric boundary layer are particularly important for modeling pollutant and aerosol transport. Raw data from a scanning coherent Doppler lidar system can be processed to generate accurate height-resolved measurements of wind speed and direction in the atmospheric boundary layer.
NASA Technical Reports Server (NTRS)
Appleby, J. F.; Van Blerkom, D. J.
1975-01-01
The article details an inhomogeneous reflecting layer (IRFL) model designed to survey absorption line behavior from a Squires-like cloud cover (which is characterized by convection cell structure). Computational problems and procedures are discussed in detail. The results show trends usually opposite to those predicted by a simple reflecting layer model. Per cent equivalent width variations for the tower model are usually somewhat greater for weak than for relatively strong absorption lines, with differences of a factor of about two or three. IRFL equivalent width variations do not differ drastically as a function of geometry when the total volume of absorbing gas is held constant. The IRFL results are in many instances consistent with observed equivalent width variations of Jupiter, Saturn, and Venus.
NASA Astrophysics Data System (ADS)
Pintér, Balázs; Erdélyi, R.
2018-01-01
Solar fundamental (f) acoustic mode oscillations are investigated analytically in a magnetohydrodynamic (MHD) model. The model consists of three layers in planar geometry, representing the solar interior, the magnetic atmosphere, and a transitional layer sandwiched between them. Since we focus on the fundamental mode here, we assume the plasma is incompressible. A horizontal, canopy-like, magnetic field is introduced to the atmosphere, in which degenerated slow MHD waves can exist. The global (f-mode) oscillations can couple to local atmospheric Alfvén waves, resulting, e.g., in a frequency shift of the oscillations. The dispersion relation of the global oscillation mode is derived, and is solved analytically for the thin-transitional layer approximation and for the weak-field approximation. Analytical formulae are also provided for the frequency shifts due to the presence of a thin transitional layer and a weak atmospheric magnetic field. The analytical results generally indicate that, compared to the fundamental value (ω =√{ gk }), the mode frequency is reduced by the presence of an atmosphere by a few per cent. A thin transitional layer reduces the eigen-frequencies further by about an additional hundred microhertz. Finally, a weak atmospheric magnetic field can slightly, by a few percent, increase the frequency of the eigen-mode. Stronger magnetic fields, however, can increase the f-mode frequency by even up to ten per cent, which cannot be seen in observed data. The presence of a magnetic atmosphere in the three-layer model also introduces non-permitted propagation windows in the frequency spectrum; here, f-mode oscillations cannot exist with certain values of the harmonic degree. The eigen-frequencies can be sensitive to the background physical parameters, such as an atmospheric density scale-height or the rate of the plasma density drop at the photosphere. Such information, if ever observed with high-resolution instrumentation and inverted, could help to gain further insight into solar magnetic structures by means of solar magneto-seismology, and could provide further insight into the role of magnetism in solar oscillations.
NASA Astrophysics Data System (ADS)
Li, X.
2014-12-01
Thermal stratification of the atmospheric surface layer has strong impact on the land-atmosphere exchange of turbulent, heat, and pollutant fluxes. Few studies have been carried out for the interaction of the weakly to moderately stable stratified atmosphere and the urban canopy. This study performs a large-eddy simulation of a modeled street canyon within a weakly to moderately stable atmosphere boundary layer. To better resolve the smaller eddy size resulted from the stable stratification, a higher spatial and temporal resolution is used. The detailed flow structure and turbulence inside the street canyon are analyzed. The relationship of pollutant dispersion and Richardson number of the atmosphere is investigated. Differences between these characteristics and those under neutral and unstable atmosphere boundary layer are emphasized.
NASA Technical Reports Server (NTRS)
Kirkpatrick, M. P.; Mansour, N. N.; Ackerman, A. S.; Stevens, D. E.
2003-01-01
The use of large eddy simulation, or LES, to study the atmospheric boundary layer dates back to the early 1970s when Deardor (1972) used a three-dimensional simulation to determine velocity and temperature scales in the convective boundary layer. In 1974 he applied LES to the problem of mixing layer entrainment (Deardor 1974) and in 1980 to the cloud-topped boundary layer (Deardor 1980b). Since that time the LES approach has been applied to atmospheric boundary layer problems by numerous authors. While LES has been shown to be relatively robust for simple cases such as a clear, convective boundary layer (Mason 1989), simulation of the cloud-topped boundary layer has proved more of a challenge. The combination of small length scales and anisotropic turbulence coupled with cloud microphysics and radiation effects places a heavy burden on the turbulence model, especially in the cloud-top region. Consequently, over the past few decades considerable effort has been devoted to developing turbulence models that are better able to parameterize these processes. Much of this work has involved taking parameterizations developed for neutral boundary layers and deriving corrections to account for buoyancy effects associated with the background stratification and local buoyancy sources due to radiative and latent heat transfer within the cloud (see Lilly 1962; Deardor 1980a; Mason 1989; MacVean & Mason 1990, for example). In this paper we hope to contribute to this effort by presenting a number of turbulence models in which the model coefficients are calculated dynamically during the simulation rather than being prescribed a priori.
NASA Astrophysics Data System (ADS)
Magic, Z.; Collet, R.; Hayek, W.; Asplund, M.
2013-12-01
Aims: We study the implications of averaging methods with different reference depth scales for 3D hydrodynamical model atmospheres computed with the Stagger-code. The temporally and spatially averaged (hereafter denoted as ⟨3D⟩) models are explored in the light of local thermodynamic equilibrium (LTE) spectral line formation by comparing spectrum calculations using full 3D atmosphere structures with those from ⟨3D⟩ averages. Methods: We explored methods for computing mean ⟨3D⟩ stratifications from the Stagger-grid time-dependent 3D radiative hydrodynamical atmosphere models by considering four different reference depth scales (geometrical depth, column-mass density, and two optical depth scales). Furthermore, we investigated the influence of alternative averages (logarithmic, enforced hydrostatic equilibrium, flux-weighted temperatures). For the line formation we computed curves of growth for Fe i and Fe ii lines in LTE. Results: The resulting ⟨3D⟩ stratifications for the four reference depth scales can be very different. We typically find that in the upper atmosphere and in the superadiabatic region just below the optical surface, where the temperature and density fluctuations are highest, the differences become considerable and increase for higher Teff, lower log g, and lower [Fe / H]. The differential comparison of spectral line formation shows distinctive differences depending on which ⟨3D⟩ model is applied. The averages over layers of constant column-mass density yield the best mean ⟨3D⟩ representation of the full 3D models for LTE line formation, while the averages on layers at constant geometrical height are the least appropriate. Unexpectedly, the usually preferred averages over layers of constant optical depth are prone to increasing interference by reversed granulation towards higher effective temperature, in particular at low metallicity. Appendix A is available in electronic form at http://www.aanda.orgMean ⟨3D⟩ models are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/560/A8 as well as at http://www.stagger-stars.net
Lee, Jared A.; Hacker, Joshua P.; Monache, Luca Delle; ...
2016-08-03
A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly due to a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL. In this paper we usemore » the WRF single column model (SCM), coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART), to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts. Combining two datasets that provide lateral forcing for the SCM and two methods for determining z 0, the time-varying sea-surface roughness length, we conduct four WRF-SCM/DART experiments over the October-December 2006 period. The two methods for determining z 0 are the default Fairall-adjusted Charnock formulation in WRF, and using parameter estimation techniques to estimate z 0 in DART. Using DART to estimate z 0 is found to reduce 1-h forecast errors of wind speed over the Charnock-Fairall z 0 ensembles by 4%–22%. Finally, however, parameter estimation of z 0 does not simultaneously reduce turbulent flux forecast errors, indicating limitations of this approach and the need for new marine ABL parameterizations.« less
Highly buoyant bent-over plumes in a boundary layer
NASA Astrophysics Data System (ADS)
Tohidi, Ali; Kaye, Nigel B.
2016-04-01
Highly buoyant plumes, such as wildfire plumes, in low to moderate wind speeds have initial trajectories that are steeper than many industrial waste plumes. They will rise further into the atmosphere before bending significantly. In such cases the plume's trajectory will be influenced by the vertical variation in horizontal velocity of the atmospheric boundary layer. This paper examined the behavior of a plume in an unstratified environment with a power-law ambient velocity profile. Examination of previously published experimental measurements of plume trajectory show that inclusion of the boundary layer velocity profile in the plume model often provides better predictions of the plume trajectory compared to algebraic expressions developed for uniform flow plumes. However, there are many cases in which uniform velocity profile algebraic expressions are as good as boundary layer models. It is shown that it is only important to model the role of the atmospheric boundary layer velocity profile in cases where either the momentum length (square root of source momentum flux divided by the reference wind speed) or buoyancy length (buoyancy flux divided by the reference wind speed cubed) is significantly greater than the plume release height within the boundary layer. This criteria is rarely met with industrial waste plumes, but it is important in modeling wildfire plumes.
NASA Astrophysics Data System (ADS)
Chu, Xinzhao; Yu, Zhibin
2017-06-01
With a thermosphere-ionosphere Fe/Fe+ (TIFe) model developed from first principles at the University of Colorado, we present the first quantitative investigation of formation mechanisms of thermospheric Fe layers observed by lidar in Antarctica. These recently discovered neutral metal layers in the thermosphere between 100 and 200 km provide unique tracers for studies of fundamental processes in the space-atmosphere interaction region. The TIFe model formulates and expands the TIFe theory originally proposed by Chu et al. that the thermospheric Fe layers are produced through the neutralization of converged Fe+ layers. Through testing mechanisms and reproducing the 28 May 2011 event at McMurdo, we conceive the lifecycle of meteoric metals via deposition, transport, chemistry, and wave dynamics for thermospheric Fe layers with gravity wave signatures. While the meteor injection of iron species is negligible above 120 km, the polar electric field transports metallic ions Fe+ upward from their main deposition region into the E-F regions, providing the major source of Fe+ (and accordingly Fe) in the thermosphere. Atmospheric wave-induced vertical shears of vertical and horizontal winds converge Fe+ to form dense Fe+ layers. Direct electron-Fe+ recombination is the major channel to neutralize Fe+ layers to form Fe above 120 km. Fe layer shapes are determined by multiple factors of neutral winds, electric field, and aurora activity. Gravity-wave-induced vertical wind plays a key role in forming gravity-wave-shaped Fe layers. Aurora particle precipitation enhances Fe+ neutralization by increasing electron density while accelerating Fe loss via charge transfer with enhanced NO+ and O2+ densities.
A New Similarity theory for Strongly Unstable Atmospheric Surface Layer
NASA Astrophysics Data System (ADS)
Ji, Yong; She, Zhen-Su
2017-11-01
We apply the structural ensemble dynamics (SED) theory to analyze mean velocity and streamwise turbulence intensity distribution in unstable atmospheric surface layer (ASL). The turbulent kinetic energy balance equation in ASL asserts that above a critical height zL, the buoyancy production cannot be neglected. The SED theory predicts that a stress length function displays a generalized scaling law from z to z 4 / 3. The zL derived from observational data show a two-regime form with Obukhov length L , including a linear dependence for moderate heat flux and a constant regime for large heat flux, extending the Monin-Obukhov similarity theory which is only valid for large | L | . This two-regime description is further extended to model turbulent intensity, with a new similarity coordinate Lz such that the observational data collapse for all L. Finally, we propose a phase diagram for characterizing different ASL flow regimes, and the corresponding flow structures are discussed. In summary, a new similarity theory for unstable atmosphere is constructed, and validated by observational data of the mean velocity and streamwise turbulence intensity distribution for all heat flux regimes.
A solar escalator on Mars: Self-lifting of dust layers by radiative heating
NASA Astrophysics Data System (ADS)
Daerden, F.; Whiteway, J. A.; Neary, L.; Komguem, L.; Lemmon, M. T.; Heavens, N. G.; Cantor, B. A.; Hébrard, E.; Smith, M. D.
2015-09-01
Dust layers detected in the atmosphere of Mars by the light detection and ranging (LIDAR) instrument on the Phoenix Mars mission are explained using an atmospheric general circulation model. The layers were traced back to observed dust storm activity near the edge of the north polar ice cap where simulated surface winds exceeded the threshold for dust lifting by saltation. Heating of the atmospheric dust by solar radiation caused buoyant instability and mixing across the top of the planetary boundary layer (PBL). Differential advection by wind shear created detached dust layers above the PBL that ascended due to radiative heating and arrived at the Phoenix site at heights corresponding to the LIDAR observations. The self-lifting of the dust layers is similar to the "solar escalator" mechanism for aerosol layers in the Earth's stratosphere.
NASA Technical Reports Server (NTRS)
Sun, S. F.
1985-01-01
The Ground Hydrologic Model (GHM) developed for use in an atmospheric general circulation model (GCM) has been refined. A series of sensitivity studies of the new version of the GHM were conducted for the purpose of understanding the role played by various physical parameters in the GHM. The following refinements have been made: (1) the GHM is coupled directly with the planetary boundary layer (PBL); (2) a bulk vegetation layer is added with a more realistic large-scale parameterization; and (3) the infiltration rate is modified. This version GHM has been tested using input data derived from a GCM simulation run for eight North America regions for 45 days. The results are compared with those of the resident GHM in the GCM. The daily average of grid surface temperatures from both models agree reasonably well in phase and magnitude. However, large difference exists in one or two regions on some days. The daily average evapotranspiration is in general 10 to 30% less than the corresponding value given by the resident GHM.
Meteoric Material: An Important Component of Planetary Atmospheres
NASA Technical Reports Server (NTRS)
Grebowsky, Joseph M.; Moses, Julianne I.; Pesnell, W. Dean; Vondrak, Richard R. (Technical Monitor)
2001-01-01
Interplanetary dust particles (IDPs) interact with all planetary atmospheres and leave their imprint as perturbations of the background atmospheric chemistry and structure. They lead to layers of metal ions that can become the dominant positively charged species in lower ionospheric regions. Theoretical models and radio occultation measurements provide compelling evidence that such layers exist in all planetary atmospheres. In addition IDP ablation products can affect neutral atmospheric chemistry, particularly at the outer planets where the IDPs supply oxygen compounds like water and carbon dioxide to the upper atmospheres. Aerosol or smoke particles from incomplete ablation or recondensation of ablated IDP vapors may also have a significant impact on atmospheric properties.
Nature, theory and modelling of geophysical convective planetary boundary layers
NASA Astrophysics Data System (ADS)
Zilitinkevich, Sergej
2015-04-01
Geophysical convective planetary boundary layers (CPBLs) are still poorly reproduced in oceanographic, hydrological and meteorological models. Besides the mean flow and usual shear-generated turbulence, CPBLs involve two types of motion disregarded in conventional theories: 'anarchy turbulence' comprised of the buoyancy-driven plumes, merging to form larger plumes instead of breaking down, as postulated in conventional theory (Zilitinkevich, 1973), large-scale organised structures fed by the potential energy of unstable stratification through inverse energy transfer in convective turbulence (and performing non-local transports irrespective of mean gradients of transporting properties). C-PBLs are strongly mixed and go on growing as long as the boundary layer remains unstable. Penetration of the mixed layer into the weakly turbulent, stably stratified free flow causes turbulent transports through the CPBL outer boundary. The proposed theory, taking into account the above listed features of CPBL, is based on the following recent developments: prognostic CPBL-depth equation in combination with diagnostic algorithm for turbulence fluxes at the CPBL inner and outer boundaries (Zilitinkevich, 1991, 2012, 2013; Zilitinkevich et al., 2006, 2012), deterministic model of self-organised convective structures combined with statistical turbulence-closure model of turbulence in the CPBL core (Zilitinkevich, 2013). It is demonstrated that the overall vertical transports are performed mostly by turbulence in the surface layer and entrainment layer (at the CPBL inner and outer boundaries) and mostly by organised structures in the CPBL core (Hellsten and Zilitinkevich, 2013). Principal difference between structural and turbulent mixing plays an important role in a number of practical problems: transport and dispersion of admixtures, microphysics of fogs and clouds, etc. The surface-layer turbulence in atmospheric and marine CPBLs is strongly enhanced by the velocity shears in horizontal branches of organised structures. This mechanism (Zilitinkevich et al., 2006), was overlooked in conventional local theories, such as the Monin-Obukhov similarity theory, and convective heat/mass transfer law: Nu~Ra1/3, where Nu and Ra are the Nusselt number and Raleigh numbers. References Hellsten A., Zilitinkevich S., 2013: Role of convective structures and background turbulence in the dry convective boundary layer. Boundary-Layer Meteorol. 149, 323-353. Zilitinkevich, S.S., 1973: Shear convection. Boundary-Layer Meteorol. 3, 416-423. Zilitinkevich, S.S., 1991: Turbulent Penetrative Convection, Avebury Technical, Aldershot, 180 pp. Zilitinkevich S.S., 2012: The Height of the Atmospheric Planetary Boundary layer: State of the Art and New Development - Chapter 13 in 'National Security and Human Health Implications of Climate Change', edited by H.J.S. Fernando, Z. Klaić, J.L. McKulley, NATO Science for Peace and Security Series - C: Environmental Security (ISBN 978-94-007-2429-7), Springer, 147-161. Zilitinkevich S.S., 2013: Atmospheric Turbulence and Planetary Boundary Layers. Fizmatlit, Moscow, 248 pp. Zilitinkevich, S.S., Hunt, J.C.R., Grachev, A.A., Esau, I.N., Lalas, D.P., Akylas, E., Tombrou, M., Fairall, C.W., Fernando, H.J.S., Baklanov, and A., Joffre, S.M., 2006: The influence of large convective eddies on the surface layer turbulence. Quart. J. Roy. Met. Soc. 132, 1423-1456. Zilitinkevich S.S., Tyuryakov S.A., Troitskaya Yu. I., Mareev E., 2012: Theoretical models of the height of the atmospheric planetary boundary layer and turbulent entrainment at its upper boundary. Izvestija RAN, FAO, 48, No.1, 150-160 Zilitinkevich, S.S., Elperin, T., Kleeorin, N., Rogachevskii, I., Esau, I.N., 2013: A hierarchy of energy- and flux-budget (EFB) turbulence closure models for stably stratified geophysical flows. Boundary-Layer Meteorol. 146, 341-373.
NASA Astrophysics Data System (ADS)
Nigro, M. A.; Cassano, J. J.; Wille, J.; Bromwich, D. H.; Lazzara, M. A.
2015-12-01
An accurate representation of the atmospheric boundary layer in numerical weather prediction models is important for predicting turbulence and energy exchange in the atmosphere. This study uses two years of observations from a 30-m automatic weather station (AWS) installed on the Ross Ice Shelf, Antarctica to evaluate forecasts from the Antarctic Mesoscale Prediction System (AMPS), a numerical weather prediction system based on the polar version of the Weather Research and Forecasting (Polar WRF) model that uses the MYJ planetary boundary layer scheme and that primarily supports the extensive aircraft operations of the U.S. Antarctic Program. The 30-m AWS has six levels of instrumentation, providing vertical profiles of temperature, wind speed, and wind direction. The observations show the atmospheric boundary layer over the Ross Ice Shelf is stable approximately 80% of the time, indicating the influence of the permanent ice surface in this region. The observations from the AWS are further analyzed using the method of self-organizing maps (SOM) to identify the range of potential temperature profiles that occur over the Ross Ice Shelf. The SOM analysis identified 30 patterns, which range from strong inversions to slightly unstable profiles. The corresponding AMPS forecasts were evaluated for each of the 30 patterns to understand the accuracy of the AMPS near surface layer under different atmospheric conditions. The results indicate that under stable conditions AMPS with MYJ under predicts the inversion strength by as much as 7.4 K over the 30-m depth of the tower and over predicts the near surface wind speed by as much as 3.8 m s-1. Conversely, under slightly unstable conditions, AMPS predicts both the inversion strength and near surface wind speeds with reasonable accuracy.
NASA Astrophysics Data System (ADS)
Ghobakhloo, Marzieh; Zomorrodian, Mohammad Ebrahim; Javidan, Kurosh
2018-05-01
Propagation of dustion acoustic solitary waves (DIASWs) and double layers is discussed in earth atmosphere, using the Sagdeev potential method. The best model for distribution function of electrons in earth atmosphere is found by fitting available data on different distribution functions. The nonextensive function with parameter q = 0.58 provides the best fit on observations. Thus we analyze the propagation of localized waves in an unmagnetized plasma containing nonextensive electrons, inertial ions, and negatively/positively charged stationary dust. It is found that both compressive and rarefactive solitons as well as double layers exist depending on the sign (and the value) of dust polarity. Characters of propagated waves are described using the presented model.
Inference of the boundary layer structure over the oceans from satellite infrared measurements
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Dalu, G.; Lo, R.; Nath, N. R.
1980-01-01
Remote infrared spectral measurements in the 8-13 micron m window region, at a resolution about 3 cm/1, contain useful information about the water vapor and temperature stratification of the atmosphere within the first few kilometers above the water surface. Two pieces of information are retrieved from the spectral measurements: precipitable water vapor in the atmosphere, from the depth of the line structure between 8 and 9 micron m due to water vapor lines; and sea surface temperature, from the variation of brightness temperature between 11 and 13 micron m. Together, these two pieces of information can signify either the presence of a deep moist convective layer or the prevalence of stable conditions, such as caused by temperature inversions, which inhibit moist convection. A simple infrared radiative transfer model of the 9 micron m water vapor lines was developed to validate the method. With the help of this model and the Nimbus 4 infrared interferometer spectrometer data, a gross picture of the planetary boundary layer for different seasons over the global oceans is deduced. The important regions of the trade wind inversion and the intertropical convergence zones over all the oceans are clearly identified with this method. The derived information is in reasonable agreement with some observed climatological patterns over the oceans.
USDA-ARS?s Scientific Manuscript database
The system of governing equations of a simplified slab model of the uniformly-mixed, purely convective, diurnal atmospheric boundary layer (ABL) is shown to allow immediate solutions for the potential temperature and specific humidity as functions of the ABL height and net radiation when expressed i...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Fujio; Kuwagata, Tuneo
1995-02-01
The thermally induced local circulation over a periodic valley is simulated by a two-dimensional numerical model that does-not include condensational processes. During the daytime of a clear, calm day, heat is transported from the mountainous region to the valley area by anabatic wind and its return flow. The specific humidity is, however, transported in an inverse manner. The horizontal exchange rate of sensible heat has a horizontal scale similarity, as long as the horizontal scale is less than a critical width of about 100 km. The sensible heat accumulated in an atmospheric column over an arbitrary point can be estimatedmore » by a simple model termed the uniform mixed-layer model (UML). The model assumes that the potential temperature is both vertically and horizontally uniform in the mixed layer, even over the complex terrain. The UML model is valid only when the horizontal scale of the topography is less than the critical width and the maximum difference in the elevation of the topography is less than about 1500 m. Latent heat is accumulated over the mountainous region while the atmosphere becomes dry over the valley area. When the horizontal scale is close to the critical width, the largest amount of humidity is accumulated during the late afternoon over the mountainous region. 18 refs., 15 figs., 1 tab.« less
The influence of layering and barometric pumping on firn air transport in a 2-D model
NASA Astrophysics Data System (ADS)
Birner, Benjamin; Buizert, Christo; Wagner, Till J. W.; Severinghaus, Jeffrey P.
2018-06-01
Ancient air trapped in ice core bubbles has been paramount to developing our understanding of past climate and atmospheric composition. Before air bubbles become isolated in ice, the atmospheric signal is altered in the firn column by transport processes such as advection and diffusion. However, the influence of low-permeability layers and barometric pumping (driven by surface pressure variability) on firn air transport is not well understood and is not readily captured in conventional one-dimensional (1-D) firn air models. Here we present a two-dimensional (2-D) trace gas advection-diffusion-dispersion model that accounts for discontinuous horizontal layers of reduced permeability. We find that layering or barometric pumping individually yields too small a reduction in gravitational settling to match observations. In contrast, when both effects are active, the model's gravitational fractionation is suppressed as observed. Layering focuses airflows in certain regions in the 2-D model, which acts to amplify the dispersive mixing resulting from barometric pumping. Hence, the representation of both factors is needed to obtain a realistic emergence of the lock-in zone. In contrast to expectations, we find that the addition of barometric pumping in the layered 2-D model does not substantially change the differential kinetic fractionation of fast- and slow-diffusing trace gases. Like 1-D models, the 2-D model substantially underestimates the amount of differential kinetic fractionation seen in actual observations, suggesting that further subgrid-scale processes may be missing in the current generation of firn air transport models. However, we find robust scaling relationships between kinetic isotope fractionation of different noble gas isotope and elemental ratios. These relationships may be used to correct for kinetic fractionation in future high-precision ice core studies and can amount to a bias of up to 0.45 °C in noble-gas-based mean ocean temperature reconstructions at WAIS Divide, Antarctica.
Wake Dynamics in the Atmospheric Boundary Layer Over Complex Terrain
NASA Astrophysics Data System (ADS)
Markfort, Corey D.
The goal of this research is to advance our understanding of atmospheric boundary layer processes over heterogeneous landscapes and complex terrain. The atmospheric boundary layer (ABL) is a relatively thin (˜ 1 km) turbulent layer of air near the earth's surface, in which most human activities and engineered systems are concentrated. Its dynamics are crucially important for biosphere-atmosphere couplings and for global atmospheric dynamics, with significant implications on our ability to predict and mitigate adverse impacts of land use and climate change. In models of the ABL, land surface heterogeneity is typically represented, in the context of Monin-Obukhov similarity theory, as changes in aerodynamic roughness length and surface heat and moisture fluxes. However, many real landscapes are more complex, often leading to massive boundary layer separation and wake turbulence, for which standard models fail. Trees, building clusters, and steep topography produce extensive wake regions currently not accounted for in models of the ABL. Wind turbines and wind farms also generate wakes that combine in complex ways to modify the ABL. Wind farms are covering an increasingly significant area of the globe and the effects of large wind farms must be included in regional and global scale models. Research presented in this thesis demonstrates that wakes caused by landscape heterogeneity must be included in flux parameterizations for momentum, heat, and mass (water vapor and trace gases, e.g. CO2 and CH4) in ABL simulation and prediction models in order to accurately represent land-atmosphere interactions. Accurate representation of these processes is crucial for the predictions of weather, air quality, lake processes, and ecosystems response to climate change. Objectives of the research reported in this thesis are: 1) to investigate turbulent boundary layer adjustment, turbulent transport and scalar flux in wind farms of varying configurations and develop an improved modeling framework for wind farm - atmosphere interaction, 2) to determine how heterogeneous patches of forest affect the structure of the ABL and its interactions with clearings and water bodies, 3) to investigate how landscape heterogeneity, including wakes, may be parameterized in regional-scale weather and climate models to improve the representation of surface fluxes, e.g. from lakes/wetlands and forest clearings. To achieve these objectives, this research employs an interdisciplinary strategy, utilizing concepts and methods from fluid mechanics, micrometeorology, ecosystem ecology and environmental sciences, and combines laboratory and field experiments. In particular, a) wind tunnel experiments of flow through and over model wind farms and model forest canopies were used to improve our fundamental understanding of how wakes affect land-atmosphere coupling, including surface fluxes, after wind farm installation and for heterogeneous landscapes of canopies and clearings or lakes, and b) extensive field studies over lakes and wetlands were undertaken to study the effects of wakes downwind of forest canopies and the effect of wind sheltering on lake stratification dynamics and gas fluxes. These experiments were also used to improve and validate numerical simulation techniques for the atmospheric boundary layer, specifically the large eddy simulation technique, which is used to simulate flow in wind farms and flow over heterogeneous terrain.
NASA Astrophysics Data System (ADS)
Drewry, D.; Kumar, P.; Sivapalan, M.; Long, S.; Liang, X.
2009-05-01
Recent local-scale observational studies have demonstrated significant modifications to the partitioning of incident energy by two key mid-west agricultural species, soy and corn, as ambient atmospheric CO2 concentrations are experimentally augmented to projected future levels. The uptake of CO2 by soy, which utilizes the C3 photosynthetic pathway, has likewise been observed to significantly increase under elevated growth CO2 concentrations. Changes to the sensible and latent heat exchanges between the land surface and the atmospheric boundary layer (ABL) across large portions of the mid-western US has the potential to affect ABL growth and composition, and consequently feed-back to the near-surface environment (air temperature and vapor content) experienced by the vegetation. Here we present a simulation analysis that examines the changes in land-atmosphere feedbacks associated with projected increases in ambient CO2 concentrations over extended soy/corn agricultural areas characteristic of the US mid-west. The model canopies are partitioned into several layers, allowing for resolution of the shortwave and longwave radiation regimes that drive photosynthesis, stomatal conductance and leaf energy balance in each layer, along with the canopy microclimate. The canopy component of the model is coupled to a multi-layer soil-root model that computes soil moisture and heat transport and root water uptake. Model skill in capturing the sub-diurnal variability in canopy-atmosphere exchange is evaluated through multi-year records of canopy-top eddy covariance CO2, water vapor and heat fluxes collected at the Bondville (Illinois) FluxNet site. An evaluation of the ability of the model to simulate observed changes in energy balance components (canopy temperature, net radiation and soil heat flux) under elevated CO2 concentrations projected for 2050 (550 ppm) is made using observations collected at the SoyFACE Free Air Carbon Enrichment (FACE) experimental facilities located in central Illinois, by incorporating observed acclimations in leaf biochemsitry and canopy structure. The simulation control volume is then extended by coupling the canopy models to a simple model of daytime mixed-layer (ML) growth and composition, ie. air temperature and vapor content. Through this coupled canopy-ABL model we quantify the impact of elevated CO2 and vegetation acclimation on ML growth, temperature and vapor content and the consequent feedbacks to the land surface by way of the near-surface environment experienced by the vegetation. Particular focus is placed on the role of short-term drought, and possible changes in land cover composition between soy, a C3 crop, and corn, a more water-use efficient C4 crop, on modulating the strength of these CO2-induced feedbacks.
NASA Astrophysics Data System (ADS)
Helling, Ch.; Woitke, P.; Thi, W.-F.
2008-07-01
Aims: Brown dwarfs are covered by dust cloud layers which cause inhomogeneous surface features and move below the observable τ = 1 level during the object's evolution. The cloud layers have a strong influence on the structure and spectral appearance of brown dwarfs and extra-solar planets, e.g. by providing high local opacities and by removing condensable elements from the atmosphere causing a sub-solar metalicity in the atmosphere. We aim at understanding the formation of cloud layers in quasi-static substellar atmospheres that consist of dirty grains composed of numerous small islands of different solid condensates. Methods: The time-dependent description is a kinetic model describing nucleation, growth and evaporation. It is extended to treat gravitational settling and is applied to the static-stationary case of substellar model atmospheres. From the solution of the dust moments, we determine the grain size distribution function approximately which, together with the calculated material volume fractions, provides the basis for applying effective medium theory and Mie theory to calculate the opacities of the composite dust grains. Results: The cloud particles in brown dwarfs and hot giant-gas planets are found to be small in the high atmospheric layers (a ≈ 0.01 μm), and are composed of a rich mixture of all considered condensates, in particular MgSiO3[s], Mg2SiO4[s] and SiO2[s]. As the particles settle downward, they increase in size and reach several 100 μm in the deepest layers. The more volatile parts of the grains evaporate and the particles stepwise purify to form composite particles of high-temperature condensates in the deeper layers, mainly made of Fe[s] and Al2O3[s]. The gas phase abundances of the elements involved in the dust formation process vary by orders of magnitudes throughout the atmosphere. The grain size distribution is found to be relatively broad in the upper atmospheric layers but strongly peaked in the deeper layers. This reflects the cessation of the nucleation process at intermediate heights. The spectral appearance of the cloud layers in the mid IR (7-20 μm) is close to a grey body with only weak broad features of a few percent, mainly caused by MgSiO3[s], and Mg2SiO4[s]. These features are, nevertheless, a fingerprint of the dust in the higher atmospheric layers that can be probed by observations. Conclusions: Our models predict that the gas phase depletion is much weaker than phase-equilibrium calculations in the high atmospheric layers. Because of the low densities, the dust formation process is incomplete there, which results in considerable amounts of left-over elements that might produce stronger and broader neutral metallic lines.
NASA Astrophysics Data System (ADS)
Luhar, Ashok K.; Woodhouse, Matthew T.; Galbally, Ian E.
2018-03-01
Dry deposition at the Earth's surface is an important sink of atmospheric ozone. Currently, dry deposition of ozone to the ocean surface in atmospheric chemistry models has the largest uncertainty compared to deposition to other surface types, with implications for global tropospheric ozone budget and associated radiative forcing. Most global models assume that the dominant term of surface resistance in the parameterisation of ozone dry deposition velocity at the oceanic surface is constant. There have been recent mechanistic parameterisations for air-sea exchange that account for the simultaneous waterside processes of ozone solubility, molecular diffusion, turbulent transfer, and first-order chemical reaction of ozone with dissolved iodide and other compounds, but there are questions about their performance and consistency. We present a new two-layer parameterisation scheme for the oceanic surface resistance by making the following realistic assumptions: (a) the thickness of the top water layer is of the order of a reaction-diffusion length scale (a few micrometres) within which ozone loss is dominated by chemical reaction and the influence of waterside turbulent transfer is negligible; (b) in the water layer below, both chemical reaction and waterside turbulent transfer act together and are accounted for; and (c) chemical reactivity is present through the depth of the oceanic mixing layer. The new parameterisation has been evaluated against dry deposition velocities from recent open-ocean measurements. It is found that the inclusion of only the aqueous iodide-ozone reaction satisfactorily describes the measurements. In order to better quantify the global dry deposition loss and its interannual variability, modelled 3-hourly ozone deposition velocities are combined with the 3-hourly MACC (Monitoring Atmospheric Composition and Climate) reanalysis ozone for the years 2003-2012. The resulting ozone dry deposition is found to be 98.4 ± 30.0 Tg O3 yr-1 for the ocean and 722.8 ± 87.3 Tg O3 yr-1 globally. The new estimate of the ocean component is approximately a third of the current model estimates. This reduction corresponds to an approximately 20 % decrease in the total global ozone dry deposition, which (with all other components being unchanged) is equivalent to an increase of approximately 5 % in the modelled tropospheric ozone burden and a similar increase in tropospheric ozone lifetime.
Electric potential distributions at the interface between plasmasheet clouds
NASA Technical Reports Server (NTRS)
Evans, D. S.; Roth, M.; Lemaire, J.
1987-01-01
At the interface between two plasma clouds with different densities, temperatures, and/or bulk velocities, there are large charge separation electric fields which can be modeled in the framework of a collisionless theory for tangential discontinuities. Two different classes of layers were identified: the first one corresponds to (stable) ion layers which are thicker than one ion Lamor radius; the second one corresponds to (unstable) electron layers which are only a few electron Larmor radii thick. It is suggested that these thin electron layers with large electric potential gradients (up to 400 mV/m) are the regions where large-amplitude electrostatic waves are spontaneously generated. These waves scatter the pitch angles of the ambient plasmasheet electron into the atmospheric loss cone. The unstable electron layers can therefore be considered as the seat of strong pitch angle scattering for the primary auroral electrons.
Transregional Collaborative Research Centre 32: Patterns in Soil-Vegetation-Atmosphere-Systems
NASA Astrophysics Data System (ADS)
Masbou, M.; Simmer, C.; Kollet, S.; Boessenkool, K.; Crewell, S.; Diekkrüger, B.; Huber, K.; Klitzsch, N.; Koyama, C.; Vereecken, H.
2012-04-01
The soil-vegetation-atmosphere system is characterized by non-linear exchanges of mass, momentum and energy with complex patterns, structures and processes that act at different temporal and spatial scales. Under the TR32 framework, the characterisation of these structures and patterns will lead to a deeper qualitative and quantitative understanding of the SVA system, and ultimately to better predictions of the SVA state. Research in TR32 is based on three methodological pillars: Monitoring, Modelling and Data Assimilation. Focusing our research on the Rur Catchment (Germany), patterns are monitored since 2006 continuously using existing and novel geophysical and remote sensing techniques from the local to the catchment scale based on ground penetrating radar methods, induced polarization, radiomagnetotellurics, electrical resistivity tomography, boundary layer scintillometry, lidar techniques, cosmic-ray, microwave radiometry, and precipitation radars with polarization diversity. Modelling approaches involve development of scaled consistent coupled model platform: high resolution numerical weather prediction (NWP; 400m) and hydrological models (few meters). In the second phase (2011-2014), the focus is on the integration of models from the groundwater to the atmosphere for both the m- and km-scale and the extension of the experimental monitoring in respect to vegetation. The coupled modelling platform is based on the atmospheric model COSMO, the land surface model CLM and the hydrological model ParFlow. A scale consistent two-way coupling is performed using the external OASIS coupler. Example work includes the transfer of laboratory methods to the field; the measurements of patterns of soil-carbon, evapotranspiration and respiration measured in the field; catchment-scale modeling of exchange processes and the setup of an atmospheric boundary layer monitoring network. These modern and predominantly non-invasive measurement techniques are exploited in combination with advanced modelling systems by data assimilation to yield improved numerical models for the prediction of water-, energy and CO2-transfer by accounting for the patterns occurring at various scales.
Galileo Probe forebody thermal protection
NASA Technical Reports Server (NTRS)
Green, M. J.; Davy, W. C.
1981-01-01
Material response solutions for the forebody heat shield on the candidate 310-kg Galileo Probe are presented. A charring material ablation analysis predicts thermochemical surface recession, insulation thickness, and total required heat shield mass. Benchmark shock layer solutions provide the imposed entry heating environments on the ablating surface. Heat shield sizing results are given for a nominal entry into modeled nominal and cool-heavy Jovian atmospheres, and for two heat-shield property models. The nominally designed heat shield requires a mass of at least 126 kg and would require an additional 13 kg to survive entry into the less probable cool-heavy atmosphere. The material-property model with a 30% surface reflectance reduces these mass requirements by as much as 16%.
Simulations of buoyancy-generated horizontal roll vortices over multiple heating lines
W.E. Heilman
1994-01-01
A two-dimensional nonhydrostatic atmospheric model is used to simulate the boundary-layer circulations that develop from multiple lines of extremely high surface temperatures. Numerical simulations are carried out to investigate the role of buoyancy and ambient crossflow effects in generating horizontal roll vortices in the vicinity of adjacent wildland fire perimeters...
NASA Astrophysics Data System (ADS)
Stauffer, David R.
1990-01-01
The application of dynamic relationships to the analysis problem for the atmosphere is extended to use a full-physics limited-area mesoscale model as the dynamic constraint. A four-dimensional data assimilation (FDDA) scheme based on Newtonian relaxation or "nudging" is developed and evaluated in the Penn State/National Center for Atmospheric Research (PSU/NCAR) mesoscale model, which is used here as a dynamic-analysis tool. The thesis is to determine what assimilation strategies and what meterological fields (mass, wind or both) have the greatest positive impact on the 72-h numerical simulations (dynamic analyses) of two mid-latitude, real-data cases. The basic FDDA methodology is tested in a 10-layer version of the model with a bulk-aerodynamic (single-layer) representation of the planetary boundary layer (PBL), and refined in a 15-layer version of the model by considering the effects of data assimilation within a multi-layer PBL scheme. As designed, the model solution can be relaxed toward either gridded analyses ("analysis nudging"), or toward the actual observations ("obs nudging"). The data used for assimilation include standard 12-hourly rawinsonde data, and also 3-hourly mesoalpha-scale surface data which are applied within the model's multi-layer PBL. Continuous assimilation of standard-resolution rawinsonde data into the 10-layer model successfully reduced large-scale amplitude and phase errors while the model realistically simulated mesoscale structures poorly defined or absent in the rawinsonde analyses and in the model simulations without FDDA. Nudging the model fields directly toward the rawinsonde observations generally produced results comparable to nudging toward gridded analyses. This obs -nudging technique is especially attractive for the assimilation of high-frequency, asynoptic data. Assimilation of 3-hourly surface wind and moisture data into the 15-layer FDDA system was most effective for improving the simulated precipitation fields because a significant portion of the vertically integrated moisture convergence often occurs in the PBL. Overall, the best dynamic analyses for the PBL, mass, wind and precipitation fields were obtained by nudging toward analyses of rawinsonde wind, temperature and moisture (the latter uses a weaker nudging coefficient) above the model PBL and toward analyses of surface-layer wind and moisture within the model PBL.
Borehole temperature variability at Hoher Sonnblick, Austria
NASA Astrophysics Data System (ADS)
Heinrich, Georg; Schöner, Wolfgang; Prinz, Rainer; Pfeiler, Stefan; Reisenhofer, Stefan; Riedl, Claudia
2016-04-01
The overarching aim of the project 'Atmosphere - permafrost relationship in the Austrian Alps - atmospheric extreme events and their relevance for the mean state of the active layer (ATMOperm)' is to improve the understanding of the impacts of atmospheric extreme events on the thermal state of the active layer using a combined measurement and modeling approach as the basis for a long-term monitoring strategy. For this purpose, the Sonnblick Observatory at the summit of Hoher Sonnblick (3106 m.a.s.l) is particularly well-suited due to its comprehensive long-term atmospheric and permafrost monitoring network (i.a. three 20 m deep boreholes since 2007). In ATMOperm, a robust and accurate permanent monitoring of active layer thickness at Hoher Sonnblick will be set up using innovative monitoring approaches by automated electrical resistivity tomography (ERT). The ERT monitoring is further supplemented by additional geophysical measurements such as ground penetrating radar, refraction seismic, electromagnetic induction and transient electromagnetics in order to optimally complement the gained ERT information. On the other hand, atmospheric energy fluxes over permafrost ground and their impact on the thermal state of permafrost and active layer thickness with a particular focus on atmospheric extreme events will be investigated based on physically-based permafrost modeling. For model evaluation, the borehole temperature records will play a key role and, therefore, an in-depth quality control of the borehole temperatures is an important prerequisite. In this study we will show preliminary results regarding the borehole temperature variability at Hoher Sonnblick with focus on the active layer. The borehole temperatures will be related to specific atmospheric conditions using the rich data set of atmospheric measurements of the site in order to detect potential errors in the borehole temperature measurements. Furthermore, we will evaluate the potential of filling gaps in the time series by cross checking all available information of the three boreholes. Furthermore, the already available ERT profiles will serve as additional information source improving the quality of the measured borehole temperatures.
NASA Astrophysics Data System (ADS)
Anurose, J. T.; Subrahamanyam, Bala D.
2012-07-01
As part of the ocean/land-atmosphere interaction, more than half of the total kinetic energy is lost within the lowest part of atmosphere, often referred to as the planetary boundary layer (PBL). A comprehensive understanding of the energetics of this layer and turbulent processes responsible for dissipation of kinetic energy within the PBL require accurate estimation of sensible and latent heat flux and momentum flux. In numerical weather prediction (NWP) models, these quantities are estimated through different surface-layer and PBL parameterization schemes. This research article investigates different factors influencing the accuracy of a surface-layer parameterization scheme used in a hydrostatic high-resolution regional model (HRM) in the estimation of surface-layer turbulent fluxes of heat, moisture and momentum over the coastal regions of the Indian sub-continent. Results obtained from this sensitivity study of a parameterization scheme in HRM revealed the role of surface roughness length (z_{0}) in conjunction with the temperature difference between the underlying ground surface and atmosphere above (ΔT = T_{G} - T_{A}) in the estimated values of fluxes. For grid points over the land surface where z_{0} is treated as a constant throughout the model integration time, ΔT showed relative dominance in the estimation of sensible heat flux. In contrast to this, estimation of sensible and latent heat flux over ocean were found to be equally sensitive on the method adopted for assigning the values of z_{0} and also on the magnitudes of ΔT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalski, Adam F.; Allred, Joel C.; Daw, Adrian
2017-02-10
The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lower atmosphere in solar flares. We analyze the continuum and emission line data from the Interface Region Imaging Spectrograph (IRIS) of the brightest flaring magnetic footpoints in this flare. We compare the NUV spectra of the brightest pixels to new radiative-hydrodynamic predictions calculated with the RADYN code using constraints on a nonthermal electron beam inferred from the collisional thick-target modeling of hard X-ray data from Reuven Ramatymore » High Energy Solar Spectroscopic Imager . We show that the atmospheric response to a high beam flux density satisfactorily achieves the observed continuum brightness in the NUV. The NUV continuum emission in this flare is consistent with hydrogen (Balmer) recombination radiation that originates from low optical depth in a dense chromospheric condensation and from the stationary beam-heated layers just below the condensation. A model producing two flaring regions (a condensation and stationary layers) in the lower atmosphere is also consistent with the asymmetric Fe ii chromospheric emission line profiles observed in the impulsive phase.« less
NASA Technical Reports Server (NTRS)
Kowalski, Adam F.; Allred, Joel C.; Daw, Adrian N.; Cauzzi, Gianna; Carlsson, Mats
2017-01-01
The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lower atmosphere in solar flares. We analyze the continuum and emission line data from the Interface Region Imaging Spectrograph (IRIS) of the brightest flaring magnetic footpoints in this flare. We compare the NUV spectra of the brightest pixels to new radiative-hydrodynamic predictions calculated with the RADYN code using constraints on a nonthermal electron beam inferred from the collisional thick-target modeling of hard X-ray data from Reuven Ramaty High Energy Solar Spectroscopic Imager. We show that the atmospheric response to a high beam flux density satisfactorily achieves the observed continuum brightness in the NUV. The NUV continuum emission in this flare is consistent with hydrogen (Balmer) recombination radiation that originates from low optical depth in a dense chromospheric condensation and from the stationary beam-heated layers just below the condensation. A model producing two flaring regions (a condensation and stationary layers) in the lower atmosphere is also consistent with the asymmetric Fe II chromospheric emission line profiles observed in the impulsive phase.
A Global Atmospheric Model of Meteoric Iron
NASA Technical Reports Server (NTRS)
Feng, Wuhu; Marsh, Daniel R.; Chipperfield, Martyn P.; Janches, Diego; Hoffner, Josef; Yi, Fan; Plane, John M. C.
2013-01-01
The first global model of meteoric iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of meteoric constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100 km. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+ concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport.
The effect of precipitation on measuring sea surface salinity from space
NASA Astrophysics Data System (ADS)
Jin, Xuchen; Pan, Delu; He, Xianqiang; Wang, Difeng; Zhu, Qiankun; Gong, Fang
2017-10-01
The sea surface salinity (SSS) can be measured from space by using L-band (1.4 GHz) microwave radiometers. The L-band has been chosen for its sensitivity of brightness temperature to the change of salinity. However, SSS remote sensing is still challenging due to the low sensitivity of brightness temperature to SSS variation: for the vertical polarization, the sensitivity is about 0.4 to 0.8 K/psu with different incident angles and sea surface temperature; for horizontal polarization, the sensitivity is about 0.2 to 0.6 K/psu. It means that we have to make radiometric measurements with accuracy better than 1K even for the best sensitivity of brightness temperature to SSS. Therefore, in order to retrieve SSS, the measured brightness temperature at the top of atmosphere (TOA) needs to be corrected for many sources of error. One main geophysical source of error comes from atmosphere. Currently, the atmospheric effect at L-band is usually corrected by absorption and emission model, which estimate the radiation absorbed and emitted by atmosphere. However, the radiation scattered by precipitation is neglected in absorption and emission models, which might be significant under heavy precipitation. In this paper, a vector radiative transfer model for coupled atmosphere and ocean systems with a rough surface is developed to simulate the brightness temperature at the TOA under different precipitations. The model is based on the adding-doubling method, which includes oceanic emission and reflection, atmospheric absorption and scattering. For the ocean system with a rough surface, an empirical emission model established by Gabarro and the isotropic Cox-Munk wave model considering shadowing effect are used to simulate the emission and reflection of sea surface. For the atmospheric attenuation, it is divided into two parts: For the rain layer, a Marshall-Palmer distribution is used and the scattering properties of the hydrometeors are calculated by Mie theory (the scattering hydrometeors are assumed to be spherical). For the other atmosphere layers, which are assumed to be clear sky, Liebe's millimeter wave propagation model (MPM93) is used to calculate the absorption coefficients of oxygen, water vapor, and cloud droplets. To simulate the change of brightness temperature caused by different rain rate (0-50 mm/h), we assume a 26-layer precipitation structure corresponding to NCEP FNL data. Our radiative transfer simulations showed that the brightness temperature at TOA can be influenced significantly by the heavy precipitation, the results indicate that the atmospheric attenuation of L-band at incidence angle of 42.5° should be a positive bias, and when rain rate rise up to 50 mm/h, the brightness temperature increases are close to 0.6 K and 0.8 K for horizontally and vertically polarized brightness temperature, respectively. Thus, in the case of heavy precipitation, the current absorption and emission model is not accurate enough to correct atmospheric effect, and a radiative transfer model which considers the effect of radiation scattering should be used.
Improved atmospheric 3D BSDF model in earthlike exoplanet using ray-tracing based method
NASA Astrophysics Data System (ADS)
Ryu, Dongok; Kim, Sug-Whan; Seong, Sehyun
2012-10-01
The studies on planetary radiative transfer computation have become important elements to disk-averaged spectral characterization of potential exoplanets. In this paper, we report an improved ray-tracing based atmospheric simulation model as a part of 3-D earth-like planet model with 3 principle sub-components i.e. land, sea and atmosphere. Any changes in ray paths and their characteristics such as radiative power and direction are computed as they experience reflection, refraction, transmission, absorption and scattering. Improved atmospheric BSDF algorithms uses Q.Liu's combined Rayleigh and aerosol Henrey-Greenstein scattering phase function. The input cloud-free atmosphere model consists of 48 layers with vertical absorption profiles and a scattering layer with their input characteristics using the GIOVANNI database. Total Solar Irradiance data are obtained from Solar Radiation and Climate Experiment (SORCE) mission. Using aerosol scattering computation, we first tested the atmospheric scattering effects with imaging simulation with HRIV, EPOXI. Then we examined the computational validity of atmospheric model with the measurements of global, direct and diffuse radiation taken from NREL(National Renewable Energy Laboratory)s pyranometers and pyrheliometers on a ground station for cases of single incident angle and for simultaneous multiple incident angles of the solar beam.
NASA Astrophysics Data System (ADS)
Wilson, R.; McMillan, W.; Shaw, J.
2006-12-01
Simultaneous measurements of atmospheric downwelling infrared radiances have been measured at UMBC's Atmospheric Remote sensing Facility (ARF). We present BBAERI and BNAERI spectral comparisons to demonstrate their consistent radiometric calibration and will show examples of retrieval products from each. The atmospheric emitted radiances were measured using two different Atmospheric Emitted Radiance Interferometers' (AERI): the Baltimore Bomem AERI (BBAERI) entirely built by ABB Bomem and the Baltimore NOAA AERI (BNAERI) assembled by research scientists at NOAA. BBAERI previously has been used for field experiments in support of satellite validation, but now will spend most of its time at UMBC. BNAERI was designed for autonomous field operations. Planned upcoming field campaigns for BNAERI include experiments in central Alaska or in the Baltimore-Washington area. AERI devices were originally designed by the University of Madison Wisconsin to retrieve temperature and water vapor profiles up to the boundary layer every eight to ten minutes. In addition to boundary layer temperature and water vapor profiling, we will report retrieved boundary layer abundances of trace gases.
NASA Astrophysics Data System (ADS)
Caniaux, Guy; Planton, Serge
1998-10-01
A primitive equation model is used to simulate the mesoscale circulation associated with a portion of the Azores Front investigated during the intensive observation period (IOP) of the Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment in fall 1993. The model is a mesoscale version of the ocean general circulation model (OGCM) developed at the Laboratoire d'Océanographie Dynamique et de Climatologie (LODYC) in Paris and includes open lateral boundaries, a 1.5-level-order turbulence closure scheme, and fine mesh resolution (0.11° for latitude and 0.09° for longitude). The atmospheric forcing is provided by satellite data for the solar and infrared fluxes and by analyzed (or reanalyzed for the wind) atmospheric data from the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast model. The extended data set collected during the IOP of SEMAPHORE enables a detailed initialization of the model, a coupling with the rest of the basin through time dependent open boundaries, and a model/data comparison for validation. The analysis of model outputs indicates that most features are in good agreement with independent available observations. The surface front evolution is subject to an intense deformation different from that of the deep front system, which evolves only weakly. An estimate of the upper layer heat budget is performed during the 22 days of the integration of the model. Each term of this budget is analyzed according to various atmospheric events that occurred during the experiment, such as the passage of a strong storm. This facilitates extended estimates of mixed layer or relevant surface processes beyond those which are obtainable directly from observations. Surface fluxes represent 54% of the heat loss in the mixed layer and 70% in the top 100-m layer, while vertical transport at the mixed layer bottom accounts for 31% and three-dimensional processes account for 14%.
Solar Cycle Response and Long-Term Trends in the Mesospheric Metal Layers
NASA Technical Reports Server (NTRS)
Dawkins, E. C. M.; Plane, J. M. C.; Chipperfield, M.; Feng, W.; Marsh, D. R.; Hoffner, J.; Janches, D.
2016-01-01
The meteoric metal layers (Na, Fe, and K) which form as a result of the ablation of incoming meteors act as unique tracers for chemical and dynamical processes that occur within the upper mesosphere lower thermosphere region. In this work, we examine whether these metal layers are sensitive Fe indicators of decadal long-term changes within the upper atmosphere. Output from a whole-atmosphere climate model is used to assess the response of the Na, K, and Fe layers across a 50 year period (1955-2005). At short timescales, the K layer has previously been shown to exhibit a very different seasonal behavior compared to the other metals. Here we show that this unusual behavior is also exhibited at longer time scales (both the 11 year solar cycle and 50 year periods), where K displays a much more pronounced response to atmospheric temperature changes than either Na or Fe. The contrasting solar cycle behavior of the K and Na layers predicted by the model is confirmed using satellite and lidar observations for the period 2004-2013.
NASA Astrophysics Data System (ADS)
Anderson, William; Meneveau, Charles
2010-05-01
A dynamic subgrid-scale (SGS) parameterization for hydrodynamic surface roughness is developed for large-eddy simulation (LES) of atmospheric boundary layer (ABL) flow over multiscale, fractal-like surfaces. The model consists of two parts. First, a baseline model represents surface roughness at horizontal length-scales that can be resolved in the LES. This model takes the form of a force using a prescribed drag coefficient. This approach is tested in LES of flow over cubes, wavy surfaces, and ellipsoidal roughness elements for which there are detailed experimental data available. Secondly, a dynamic roughness model is built, accounting for SGS surface details of finer resolution than the LES grid width. The SGS boundary condition is based on the logarithmic law of the wall, where the unresolved roughness of the surface is modeled as the product of local root-mean-square (RMS) of the unresolved surface height and an unknown dimensionless model coefficient. This coefficient is evaluated dynamically by comparing the plane-average hydrodynamic drag at two resolutions (grid- and test-filter scale, Germano et al., 1991). The new model is tested on surfaces generated through superposition of random-phase Fourier modes with prescribed, power-law surface-height spectra. The results show that the method yields convergent results and correct trends. Limitations and further challenges are highlighted. Supported by the US National Science Foundation (EAR-0609690).
State and Parameter Estimation for a Coupled Ocean--Atmosphere Model
NASA Astrophysics Data System (ADS)
Ghil, M.; Kondrashov, D.; Sun, C.
2006-12-01
The El-Nino/Southern-Oscillation (ENSO) dominates interannual climate variability and plays, therefore, a key role in seasonal-to-interannual prediction. Much is known by now about the main physical mechanisms that give rise to and modulate ENSO, but the values of several parameters that enter these mechanisms are an important unknown. We apply Extended Kalman Filtering (EKF) for both model state and parameter estimation in an intermediate, nonlinear, coupled ocean--atmosphere model of ENSO. The coupled model consists of an upper-ocean, reduced-gravity model of the Tropical Pacific and a steady-state atmospheric response to the sea surface temperature (SST). The model errors are assumed to be mainly in the atmospheric wind stress, and assimilated data are equatorial Pacific SSTs. Model behavior is very sensitive to two key parameters: (i) μ, the ocean-atmosphere coupling coefficient between SST and wind stress anomalies; and (ii) δs, the surface-layer coefficient. Previous work has shown that δs determines the period of the model's self-sustained oscillation, while μ measures the degree of nonlinearity. Depending on the values of these parameters, the spatio-temporal pattern of model solutions is either that of a delayed oscillator or of a westward propagating mode. Estimation of these parameters is tested first on synthetic data and allows us to recover the delayed-oscillator mode starting from model parameter values that correspond to the westward-propagating case. Assimilation of SST data from the NCEP-NCAR Reanalysis-2 shows that the parameters can vary on fairly short time scales and switch between values that approximate the two distinct modes of ENSO behavior. Rapid adjustments of these parameters occur, in particular, during strong ENSO events. Ways to apply EKF parameter estimation efficiently to state-of-the-art coupled ocean--atmosphere GCMs will be discussed.
NASA Astrophysics Data System (ADS)
Siqueira, Mario B.; Katul, Gabriel G.
2010-02-01
A one-dimensional model for the mean potential temperature within the nocturnal boundary layer (NBL) was used to assess the sensitivity of three NBL properties (height, thermal stratification strength, and near-surface cooling) to three widely used atmospheric emissivity formulations. The calculations revealed that the NBL height is robust to the choice of the emissivity function, though this is not the case for NBL Richardson number and near-surface cooling rate. Rather than endorse one formulation, our analysis highlights the importance of atmospheric emissivity in modelling the radiative properties of the NBL especially for clear-sky conditions.
Evaluation of the Atmospheric Boundary-Layer Electrical Variability
NASA Astrophysics Data System (ADS)
Anisimov, Sergey V.; Galichenko, Sergey V.; Aphinogenov, Konstantin V.; Prokhorchuk, Aleksandr A.
2017-12-01
Due to the chaotic motion of charged particles carried by turbulent eddies, electrical quantities in the atmospheric boundary layer (ABL) have short-term variability superimposed on long-term variability caused by sources from regional to global scales. In this study the influence of radon exhalation rate, aerosol distribution and turbulent transport efficiency on the variability of fair-weather atmospheric electricity is investigated via Lagrangian stochastic modelling. For the mid-latitude lower atmosphere undisturbed by precipitation, electrified clouds, or thunderstorms, the model is capable of reproducing the diurnal variation in atmospheric electrical parameters detected by ground-based measurements. Based on the analysis of field observations and numerical simulation it is found that the development of the convective boundary layer, accompanied by an increase in turbulent kinetic energy, forms the vertical distribution of radon and its decaying short-lived daughters to be approximately coincident with the barometric law for several eddy turnover times. In the daytime ABL the vertical distribution of atmospheric electrical conductivity tends to be uniform except within the surface layer, due to convective mixing of radon and its radioactive decay products. At the same time, a decrease in the conductivity near the ground is usually observed. This effect leads to an enhanced ground-level atmospheric electric field compared to that normally observed in the nocturnal stably-stratified boundary layer. The simulation showed that the variability of atmospheric electric field in the ABL associated with internal origins is significant in comparison to the variability related to changes in global parameters. It is suggested that vertical profiles of electrical quantities can serve as informative parameters on ABL turbulent dynamics and can even more broadly characterize the state of the environment.
NASA Astrophysics Data System (ADS)
Guala, M.; Hu, S. J.; Chamorro, L. P.
2011-12-01
Turbulent boundary layer measurements in both wind tunnel and in the near-neutral atmospheric surface layer revealed in the last decade the significant contribution of the large scales of motions to both turbulent kinetic energy and Reynolds stresses, for a wide range of Reynolds number. These scales are known to grow throughout the logarithmic layer and to extend several boundary layer heights in the streamwise direction. Potentially, they are a source of strong unsteadiness in the power output of wind turbines and in the aerodynamic loads of wind turbine blades. However, the large scales in realistic atmospheric conditions deserves further study, with well controlled boundary conditions. In the atmospheric wind tunnel of the St. Anthony Falls Laboratory, with a 16 m long test section and independently controlled incoming flow and floor temperatures, turbulent boundary layers in a range of stability conditions, from the stratified to the convective case, can be reproduced and monitored. Measurements of fluctuating temperature, streamwise and wall normal velocity components are simultaneously obtained by an ad hoc calibrated and customized triple-wire sensor. A wind turbine model with constant loading DC motor, constant tip speed ratio, and a rotor diameter of 0.128m is used to mimic a large full scale turbine in the atmospheric boundary layer. Measurements of the fluctuating voltage generated by the DC motor are compared with measurements of the blade's angular velocity by laser scanning, and eventually related to velocity measurements from the triple-wire sensor. This study preliminary explores the effect of weak stability and complex terrain (through a set of spanwise aligned topographic perturbations) on the large scales of the flow and on the fluctuations in the wind turbine(s) power output.
NASA Astrophysics Data System (ADS)
Arroyo-Torres, B.; Wittkowski, M.; Marcaide, J. M.; Hauschildt, P. H.
2013-06-01
Aims: We present the atmospheric structure and the fundamental properties of the red supergiants (RSGs) AH Sco, UY Sct, and KW Sgr based on VLTI/AMBER observations. Methods: We carried out spectro-interferometric observations of AH Sco, UY Sct, and KW Sgr in the near-infrared K band (1.92-2.47 μm) with the VLTI/AMBER instrument with spatial and spectral resolutions of 3 milliarcsec and 1500, respectively, and compared the data to a new grid of hydrostatic PHOENIX model atmospheres. Results: In our visibility data, we observe molecular layers of water and CO in extended atmospheres. For a uniform disk modeling, we observe size increases at the water band centered at 1.9 μm of 10% to 25% and at the CO bandheads at 2.3-2.5 μm of 20%-35% with respect to the near-continuum bandpass at around 2.20 μm. Our near-infrared spectra of AH Sco, UY Sct, and KW Sgr are well reproduced by the PHOENIX model atmospheres. The continuum visibility values are consistent with a limb-darkened disk as predicted by the PHOENIX models. However, the model visibilities do not predict the large observed extensions of the molecular layers. Comparing the continuum visibility values to PHOENIX models, we estimate the Rosseland-mean photospheric angular diameters of AH Sco, UY Sct, and KW Sgr to be 5.81 ± 0.15 mas, 5.48 ± 0.10 mas, and 3.91 ± 0.25 mas, respectively. Together with the distance and the spectro-photometry, we calculate radii of 1411 ± 124 R⊙ for AH Sco, 1708 ± 192 R⊙ for UY Sct, and 1009 ± 142 R⊙ for KW Sgr and effective temperatures of 3682 ± 190 K for AH Sco, 3365 ± 134 K for UY Sct, and 3720 ± 183 K for KW Sgr. Conclusions: AH Sco, UY Sct, and KW Sgr exhibit extended atmospheric layers of H2O and CO. The PHOENIX atmosphere models predict the spectra and the continuum visibility values, but cannot reproduce the large extensions of the molecular layers. This indicates that the opacities of the molecular bands are included, but that the model atmospheres are too compact compared to the observations. The observed extended layers may be levitated by processes such as pulsation or convection, which are not included in the hydrostatic atmospheric models. The location of the targets in the HR-diagram is confirmed to be close to, and possibly slightly to the right of, the Hayashi limit of recent evolutionary tracks corresponding to masses between about 20 M⊙ and 40 M⊙.
To study gaseous exchanges between the soil, biosphere and atmosphere, a biochemical model was coupled with the latest version of Meyers Multi-Layer Deposition Model. The biochemical model describes photosynthesis and respiration and their coupling with stomatal resistance for...
ATMOSPHERIC MOTION, TREES), (*AEROSOLS, DIFFUSION ), TROPICAL REGIONS, SIMULATION, ATMOSPHERIC TEMPERATURE, TURBULENT BOUNDARY LAYER, ROUGHNESS, FORESTRY, ATMOSPHERE MODELS, WIND TUNNELS, COLORADO, MILITARY FACILITIES
NASA Astrophysics Data System (ADS)
Khan, T.; Perlinger, J. A.; Urban, N. R.
2017-12-01
Certain toxic, persistent, bioaccumulative, and semivolatile compounds known as atmosphere-surface exchangeable pollutants or ASEPs are emitted into the environment by primary sources, are transported, deposited to water surfaces, and can be later re-emitted causing the water to act as a secondary source. Polychlorinated biphenyl (PCB) compounds, a class of ASEPs, are of major concern in the Laurentian Great Lakes because of their historical use primarily as additives to oils and industrial fluids, and discharge from industrial sources. Following the ban on production in the U.S. in 1979, atmospheric concentrations of PCBs in the Lake Superior region decreased rapidly. Subsequently, PCB concentrations in the lake surface water also reached near equilibrium as the atmospheric levels of PCBs declined. However, previous studies on long-term PCB levels and trends in lake trout and walleye suggested that the initial rate of decline of PCB concentrations in fish has leveled off in Lake Superior. In this study, a dynamic multimedia flux model was developed with the objective to investigate the observed levelling off of PCB concentrations in Lake Superior fish. The model structure consists of two water layers (the epilimnion and the hypolimnion), and the surface mixed sediment layer, while atmospheric deposition is the primary external pathway of PCB inputs to the lake. The model was applied for different PCB congeners having a range of hydrophobicity and volatility. Using this model, we compare the long-term trends in predicted PCB concentrations in different environmental media with relevant available measurements for Lake Superior. We examine the seasonal depositional and exchange patterns, the relative importance of different process terms, and provide the most probable source of the current observed PCB levels in Lake Superior fish. In addition, we evaluate the role of current atmospheric PCB levels in sustaining the observed fish concentrations and appraise the need for continuous atmospheric PCB monitoring by the Great Lakes Integrated Atmospheric Deposition Network. By combining the modeled lake and biota response times resulting from atmospheric PCB inputs, we predict the time scale for safe fish consumption in Lake Superior.
Odour and ammonia emissions from intensive poultry units in Ireland.
Hayes, E T; Curran, T P; Dodd, V A
2006-05-01
Odour and ammonia emissions were measured from three broiler, two layer and two turkey houses in Ireland. The broiler units gave a large range of odour and ammonia emission rates depending on the age of the birds and the season. A considerable variation between the odour and ammonia emission rates was evident for the two layer units which may have been due to the different manure handling systems utilised in the houses. There was relatively little difference in the odour and ammonia emissions from the two turkey houses. As a precautionary principle, odour emission rates utilised in atmospheric dispersion models should use the maximum values for broilers and turkeys (1.22 and 10.5 ou(E) s(-1) bird(-1) respectively) and the mean value for the layers depending on the manure handling system used (0.47 or 1.35 ou(E) s(-1) bird(-1)).
NASA Astrophysics Data System (ADS)
Lefèvre, Maxence; Spiga, Aymeric; Lebonnois, Sébastien
2017-01-01
The impact of the cloud convective layer of the atmosphere of Venus on the global circulation remains unclear. The recent observations of gravity waves at the top of the cloud by the Venus Express mission provided some answers. These waves are not resolved at the scale of global circulation models (GCM); therefore, we developed an unprecedented 3-D turbulence-resolving large-eddy simulations (LES) Venusian model using the Weather Research and Forecast terrestrial model. The forcing consists of three different heating rates: two radiative ones for solar and infrared and one associated with the adiabatic cooling/warming of the global circulation. The rates are extracted from the Laboratoire de Météorlogie Dynamique Venus GCM using two different cloud models. Thus, we are able to characterize the convection and associated gravity waves in function of latitude and local time. To assess the impact of the global circulation on the convective layer, we used rates from a 1-D radiative-convective model. The resolved layer, taking place between 1.0 × 105 and 3.8 × 104 Pa (48-53 km), is organized as polygonal closed cells of about 10 km wide with vertical wind of several meters per second. The convection emits gravity waves both above and below the convective layer leading to temperature perturbations of several tenths of kelvin with vertical wavelength between 1 and 3 km and horizontal wavelength from 1 to 10 km. The thickness of the convective layer and the amplitudes of waves are consistent with observations, though slightly underestimated. The global dynamics heating greatly modify the convective layer.
Estimating Top-of-Atmosphere Thermal Infrared Radiance Using MERRA-2 Atmospheric Data
NASA Astrophysics Data System (ADS)
Kleynhans, Tania
Space borne thermal infrared sensors have been extensively used for environmental research as well as cross-calibration of other thermal sensing systems. Thermal infrared data from satellites such as Landsat and Terra/MODIS have limited temporal resolution (with a repeat cycle of 1 to 2 days for Terra/MODIS, and 16 days for Landsat). Thermal instruments with finer temporal resolution on geostationary satellites have limited utility for cross-calibration due to their large view angles. Reanalysis atmospheric data is available on a global spatial grid at three hour intervals making it a potential alternative to existing satellite image data. This research explores using the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis data product to predict top-of-atmosphere (TOA) thermal infrared radiance globally at time scales finer than available satellite data. The MERRA-2 data product provides global atmospheric data every three hours from 1980 to the present. Due to the high temporal resolution of the MERRA-2 data product, opportunities for novel research and applications are presented. While MERRA-2 has been used in renewable energy and hydrological studies, this work seeks to leverage the model to predict TOA thermal radiance. Two approaches have been followed, namely physics-based approach and a supervised learning approach, using Terra/MODIS band 31 thermal infrared data as reference. The first physics-based model uses forward modeling to predict TOA thermal radiance. The second model infers the presence of clouds from the MERRA-2 atmospheric data, before applying an atmospheric radiative transfer model. The last physics-based model parameterized the previous model to minimize computation time. The second approach applied four different supervised learning algorithms to the atmospheric data. The algorithms included a linear least squares regression model, a non-linear support vector regression (SVR) model, a multi-layer perceptron (MLP), and a convolutional neural network (CNN). This research found that the multi-layer perceptron model produced the lowest error rates overall, with an RMSE of 1.22W / m2 sr mum when compared to actual Terra/MODIS band 31 image data. This research further aimed to characterize the errors associated with each method so that any potential user will have the best information available should they wish to apply these methods towards their own application.
Radio science investigations with Mars Observer
NASA Technical Reports Server (NTRS)
Tyler, G. L.; Balmino, Georges; Hinson, David P.; Sjogren, William L.; Smith, David E.; Woo, Richard; Asmar, Sami W.; Connally, Michael J.; Hamilton, Carole L.; Simpson, Richard A.
1992-01-01
Mars Observer radio science investigations focus on two major areas of study: the gravity field and the atmosphere of Mars. Measurement accuracies expressed as an equivalent spacecraft velocity are expected to be of the order of 100 microns/s (for both types of investigations) from use of an improved radio transponder for two-way spacecraft tracking and a highly stable on-board oscillator for atmospheric occultation measurements. Planned gravity investigations include a combination of classical and modern elements. A spherical harmonic (or equivalent) field model of degree and order in the range 30-50 will be obtained, while interpretation will be in terms of internal stress and density models for the planet, using the topography to be obtained from the Mars Observer laser altimeter. Atmospheric investigations will emphasize precision measurement of the thermal structure and dynamics in the polar regions, which are regularly accessible as a result of the highly inclined orbit. Studies based on the measurements will include polar processes, cycling of the atmosphere between the poles, traveling baroclinic disturbances, small-scale waves and turbulence, the planetary boundary layer, and (possibly) the variability and altitude of the ionosphere.
NASA Astrophysics Data System (ADS)
Virolainen, Y. A.; Timofeyev, Y. M.; Smyshlyaev, S. P.; Motsakov, M. A.; Kirner, O.
2017-12-01
A comparison between the numerical simulation results of ozone fields with different experimental data makes it possible to estimate the quality of models for their further use in reliable forecasts of ozone layer evolution. We analyze time series of satellite (SBUV) measurements of the total ozone column (TOC) and the ozone partial columns in two atmospheric layers (0-25 and 25-60 km) and compare them with the results of numerical simulation in the chemistry transport model (CTM) for the low and middle atmosphere and the chemistry climate model EMAC. The daily and monthly average ozone values, short-term periods of ozone depletion, and long-term trends of ozone columns are considered; all data sets relate to St. Petersburg and the period between 2000 and 2014. The statistical parameters (means, standard deviations, variations, medians, asymmetry parameter, etc.) of the ozone time series are quite similar for all datasets. However, the EMAC model systematically underestimates the ozone columns in all layers considered. The corresponding differences between satellite measurements and EMAC numerical simulations are (5 ± 5)% and (7 ± 7)% and (1 ± 4)% for the ozone column in the 0-25 and 25-60 km layers, respectively. The correspondent differences between SBUV measurements and CTM results amount to (0 ± 7)%, (1 ± 9)%, and (-2 ± 8)%. Both models describe the sudden episodes of the ozone minimum well, but the EMAC accuracy is much higher than that of the CTM, which often underestimates the ozone minima. Assessments of the long-term linear trends show that they are close to zero for all datasets for the period under study.
NASA Astrophysics Data System (ADS)
Anurose, T. J.; Bala Subrahamanyam, D.
2014-06-01
The performance of a surface-layer parameterization scheme in a high-resolution regional model (HRM) is carried out by comparing the model-simulated sensible heat flux (H) with the concurrent in situ measurements recorded at Thiruvananthapuram (8.5° N, 76.9° E), a coastal station in India. With a view to examining the role of atmospheric stability in conjunction with the roughness lengths in the determination of heat exchange coefficient (CH) and H for varying meteorological conditions, the model simulations are repeated by assigning different values to the ratio of momentum and thermal roughness lengths (i.e. z0m/z0h) in three distinct configurations of the surface-layer scheme designed for the present study. These three configurations resulted in differential behaviour for the varying meteorological conditions, which is attributed to the sensitivity of CH to the bulk Richardson number (RiB) under extremely unstable, near-neutral and stable stratification of the atmosphere.
NASA Astrophysics Data System (ADS)
Mohandas, Gopakumar; Pessah, Martin E.; Heng, Kevin
2018-05-01
We apply the picket fence treatment to model the effects brought about by spectral lines on the thermal structure of irradiated atmospheres. The lines may be due to pure absorption processes, pure coherent scattering processes, or some combination of absorption and scattering. If the lines arise as a pure absorption process, the surface layers of the atmosphere are cooler, whereas this surface cooling is completely absent if the lines are due to pure coherent isotropic scattering. The lines also lead to a warming of the deeper atmosphere. The warming of the deeper layers is, however, independent of the nature of line formation. Accounting for coherent isotropic scattering in the shortwave and longwave continuum results in anti-greenhouse cooling and greenhouse warming on an atmosphere-wide scale. The effects of coherent isotropic scattering in the line and continuum operate in tandem to determine the resulting thermal structure of the irradiated atmosphere.
EOS CHEM: A Mission to Study Ozone and Climate
NASA Technical Reports Server (NTRS)
Schoeberl, Mark
1998-01-01
The Earth's stratosphere contains the ozone layer, which shields us from the Sun@ harmful ultraviolet (UV) radiation. Ozone is destroyed through chemical reactions involving natural and man-made nitrogen, hydrogen, bromine, and chlorine compounds. The release of chlorofluoro-carbons CFCs) has caused a dramatic decrease in the protective stratospheric ozone layer during the last two decades. Detection of stratospheric ozone depletion led to regulation and phase-out of CFC production worldwide. As a result, man-made chlorine levels in the atmosphere are slowly beginning to decrease. CHEM will be able to determine whether the stratospheric ozone layer is now recovering, as predicted by scientific models.
A Numerical Study of Convection in a Condensing CO2 Atmosphere under Early Mars-Like Conditions
NASA Astrophysics Data System (ADS)
Nakajima, Kensuke; Yamashita, Tatsuya; Odaka, Masatsugu; Sugiyama, Ko-ichiro; Ishiwatari, Masaki; Nishizawa, Seiya; Takahashi, Yoshiyuki O.; Hayashi, Yoshi-Yuki
2017-10-01
Cloud convection of a CO2 atmosphere where the major constituent condenses is numerically investigated under a setup idealizing a possible warm atmosphere of early Mars, utilizing a two-dimensional cloud-resolving model forced by a fixed cooling profile as a substitute for a radiative process. The authors compare two cases with different critical saturation ratios as condensation criteria and also examine sensitivity to number mixing ratio of condensed particles given externally.When supersaturation is not necessary for condensation, the entire horizontal domain above the condensation level is continuously covered by clouds irrespective of number mixing ratio of condensed particles. Horizontal-mean cloud mass density decreases exponentially with height. The circulations below and above the condensation level are dominated by dry cellular convection and buoyancy waves, respectively.When 1.35 is adopted as the critical saturation ratio, clouds appear exclusively as intense, short-lived, quasi-periodic events. Clouds start just above the condensation level and develop upward, but intense updrafts exist only around the cloud top; they do not extend to the bottom of the condensation layer. The cloud layer is rapidly warmed by latent heat during the cloud events, and then the layer is slowly cooled by the specified thermal forcing, and supersaturation gradually develops leading to the next cloud event. The periodic appearance of cloud events does not occur when number mixing ratio of condensed particles is large.
NASA Astrophysics Data System (ADS)
Berg, Jacob; Patton, Edward G.; Sullivan, Peter S.
2017-11-01
The effect of mesh resolution and size on shear driven atmospheric boundary layers in a stable stratified environment is investigated with the NCAR pseudo-spectral LES model (J. Atmos. Sci. v68, p2395, 2011 and J. Atmos. Sci. v73, p1815, 2016). The model applies FFT in the two horizontal directions and finite differencing in the vertical direction. With vanishing heat flux at the surface and a capping inversion entraining potential temperature into the boundary layer the situation is often called the conditional neutral atmospheric boundary layer (ABL). Due to its relevance in high wind applications such as wind power meteorology, we emphasize on second order statistics important for wind turbines including spectral information. The simulations range from mesh sizes of 643 to 10243 grid points. Due to the non-stationarity of the problem, different simulations are compared at equal eddy-turnover times. Whereas grid convergence is mostly achieved in the middle portion of the ABL, statistics close to the surface of the ABL, where the presence of the ground limits the growth of the energy containing eddies, second order statistics are not converged on the studies meshes. Higher order structure functions also reveal non-Gaussian statistics highly dependent on the resolution.
Seasonal variability of atmospheric surface layer characteristics and weather pattern in Qatar
NASA Astrophysics Data System (ADS)
Samanta, Dhrubajyoti; Cheng, Way Lee; Sadr, Reza
2016-11-01
Qatar's economy is based on oil and gas industry, which are mostly located in coastal regions. Therefore, better understanding of coastal weather, characteristics of surface layer and turbulence exchange processes is much needed. However, the turbulent atmospheric layer study in this region is severely limited. To support the broader aim and study long term precise wind information, a micro-meteorological field campaign has been carried out in a coastal location of north Qatar. The site is based on a 9 m tower, installed at Al Ghariya in the northern coast of Qatar, equipped with three sonic anemometers, temperature-humidity sensor, radiometer and a weather station. This study shows results based on the period August 2015 to July 2016. Various surface layer characteristics and modellings coefficients based on Monin Obukhov similarity theory is studied for the year and seasonal change is noted. Along with the seasonal variabilities of different weather parameters also observed. We hope this long term field observational study will be very much helpful for research community especially for modelers. In addition, two beach and shoreline monitoring cameras installed at the site could give first time information on waves and shoreline changes, and wind-wave interaction in Qatar. An Preliminary Analysis of Wind-Wave Interaction in Qatar in the Context of Changing Climate.
The Aggregate Representation of Terrestrial Land Covers Within Global Climate Models (GCM)
NASA Technical Reports Server (NTRS)
Shuttleworth, W. James; Sorooshian, Soroosh
1996-01-01
This project had four initial objectives: (1) to create a realistic coupled surface-atmosphere model to investigate the aggregate description of heterogeneous surfaces; (2) to develop a simple heuristic model of surface-atmosphere interactions; (3) using the above models, to test aggregation rules for a variety of realistic cover and meteorological conditions; and (4) to reconcile biosphere-atmosphere transfer scheme (BATS) land covers with those that can be recognized from space; Our progress in meeting these objectives can be summarized as follows. Objective 1: The first objective was achieved in the first year of the project by coupling the Biosphere-Atmosphere Transfer Scheme (BATS) with a proven two-dimensional model of the atmospheric boundary layer. The resulting model, BATS-ABL, is described in detail in a Masters thesis and reported in a paper in the Journal of Hydrology Objective 2: The potential value of the heuristic model was re-evaluated early in the project and a decision was made to focus subsequent research around modeling studies with the BATS-ABL model. The value of using such coupled surface-atmosphere models in this research area was further confirmed by the success of the Tucson Aggregation Workshop. Objective 3: There was excellent progress in using the BATS-ABL model to test aggregation rules for a variety of realistic covers. The foci of attention have been the site of the First International Satellite Land Surface Climatology Project Field Experiment (FIFE) in Kansas and one of the study sites of the Anglo-Brazilian Amazonian Climate Observational Study (ABRACOS) near the city of Manaus, Amazonas, Brazil. These two sites were selected because of the ready availability of relevant field data to validate and initiate the BATS-ABL model. The results of these tests are given in a Masters thesis, and reported in two papers. Objective 4: Progress far exceeded original expectations not only in reconciling BATS land covers with those that can be recognized from space, but also in then applying remotely-sensed land cover data to map aggregate values of BATS parameters for heterogeneous covers and interpreting these parameters in terms of surface-atmosphere exchanges.
NASA Astrophysics Data System (ADS)
Lavely, Adam W.
Modern utility-scale wind turbines operate in the the lower atmospheric boundary layer (ABL), which is characterized by large gradients in mean velocity and temperature and the existence of strong coherent turbulence eddies that reflect the interaction between strong mean shear and vertical buoyancy driven by solar heating. The spatio-temporal velocity variations drive nonsteady loadings on wind turbines that contribute to premature wind turbine component fatigue failure, decreasing the levelized cost of (wind) energy (LCOE). The aims of the current comprehensive research program center on the quantification of the characteristics of the nonsteady loads resulting from the interactions between the coherent energy contain gin atmospheric turbulence eddies within the lower ABL as the eddies advect through the rotor plane and the rotating wind turbine blade encounter the internal turbulence structure of the atmospheric eddies. We focus on the daytime atmospheric boundary layer, where buoyancy due to surface heating interacts with shear to create coherent turbulence structures. Pseudo-spectral large eddy simulation (LES) is used to generate an equilibrium atmospheric boundary layer over at terrain with uniform surface roughness characteristic of the Midwest on a typical sunny windy afternoon when the ABL can be approximated as quasi-steady. The energy-containing eddies are found to create advective time-responses of order 30-90 seconds with lateral spatial scales of order the wind turbine rotor diameter. Different wind turbine simulation methods of a representative utility scale turbine were applied using the atmospheric turbulence as in flow. We apply three different fidelity wind turbine simulation methods to quantify the extent to which lower order models are able to accurately predict the nonsteady loading due to atmospheric turbulence eddies advecting through the rotor plane and interacting with the wind turbine. The methods vary both the coupling to the atmospheric boundary layer and the way in which the blade geometry is resolved and sectional blade forces are calculated. The highest fidelity simulation resolves the blade geometry to capture unsteady boundary layer response and separation dynamics within a simulation of the atmospheric boundary layer coupling the effect of the turbine to the atmospheric in flow. The lower order models both use empirical look-up tables to predict the time changes in blade sectional forces as a function of time changes in local velocity vector. The actuator line method (ALM) is two-way coupled and feeds these blade forces back into a simulation of the atmospheric boundary layer. The blade element momentum theory (BEMT) is one-way coupled and models the effect of the turbine on the incoming velocity field. The coupling method and method of blade resolution are both found to have an effect on the ability to accurately predict sectional blade load response to nonsteady atmospheric turbulence. The BEMT cannot accurately predict the timing of the response changes as these are modulated by the wind turbine within the ABL simulations. The lower order models have increased blade sectional load range and temporal gradients due to their inability to accurately capture the temporal response of the blade geometry to in flow changes. Taking advantage of horizontal homogeneity to collect statistics, we investigate the time period required to create well converged statistics in the equilibrium atmospheric boundary layer and find whereas the 10-minute industry standard for 'averages' retains variability of order 10%, the 10-minute average is an optimal choice. We compare the industry standard 10-minute averaging period. The residual variability within the 10-minute period to the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) field test database to find that whereas the 10-minute window still contains large variability, it is, in some sense, optimal because averaging times much longer would be required to significantly reduce variability. Turbulence fluctuations in streamwise velocity are found to be the primary driver of temporal variations in local angles of attack and sectional blade loads. Based on this new understanding, we develop analyses to show that whereas rotor torque and thrust correlate well with upstream horizontal velocity averaged over the rotor disk, out-of-plane bending moment magnitude correlates with the asymmetry in the horizontal fluctuating velocity over the rotor disk. Consequentially, off-design motions of the drivetrain and gearbox shown with the GRC field test data are well predicted using an asymmetry index designed to capture the response of a three-bladed turbine to asymmetry in the rotor plane. The predictors for torque, thrust and out-of-plane bending moment are shown to correlate well to upstream rotor planes indicating that they may be applied to advanced feed-forward control methods such as forward-facing LIDAR used to detect velocity changes in front of a wind turbine. This has the potential to increase wind turbine reliability by using controls to reduce potentially detrimental load responses to incoming atmospheric turbulence and decrease the LCOE.
USDA-ARS?s Scientific Manuscript database
Atmospheric processes, especially those that occur in the surface and boundary layer, are significantly impacted by soil moisture (SM). Due to the observational gaps in the ground-based monitoring of SM, methodologies have been developed to monitor SM from satellite platforms. While many have focuse...
The radiative effects of Saharan dust layer on the marine atmospheric layer
NASA Astrophysics Data System (ADS)
Abed, Mohammed
2017-04-01
The North African Saharan desert is one of the main sources of atmospheric dust. Since dust can be transported by winds for thousands of miles, reaching the Americas and extending across vast expanses of the tropical Atlantic Ocean, it is important to understand the influence that dust has on the radiative properties and the thermodynamic structure of the atmosphere. For climate models it is important that this is represented since the structure of the atmosphere can have important influences downwind on the development of convection, clouds, storms, precipitation and consequently radiative properties. In this study, we aim to understand the dynamic and thermodynamic properties of Saharan dust on the atmospheric structure of marine environment and to investigate the causes of the observed regions of well-mixed potential temperatures of the marine atmosphere in the presence of Saharan dust layers. We compare the influence of dust to other potentially important influences such as wind shear and air mass. To investigate this, we simulated the marine atmosphere in the presence and absence of dust using the UK Met Office Large Eddy Model (LEM) based the BOMEX case-study that is provided with the LEM and updated with observation taken during the FENNEC experiments of June 2011 and 2012. We performed LEM simulations with and without dust heating rates for an eight-hour time period. Data for meteorological profiles were used from the FENNEC aircraft measurements taken over the Atlantic Ocean near the Canary Islands. Our LEM results show that using a stratified (typical of non-dusty) atmosphere and then apply a dust heating rate the profile of potential temperature tends towards a well-mixed layer where the heating rates were applied and consistent with the observational cases. While LEM simulations for wind shear showed very little difference in the potential temperature profile and it was clear the well-mixed layer would not result. LEM simulations using dust heating rates were shown to create and maintain well-mixed layers if we initialised runs with either the dusty or non-dusty profiles; whereas, without the heating rates the layers progressed to a stratified layer consistent with non-dusty day observations. This illustrated independence of the well-mixed layers to the air mass type (other than the dust presence). We conclude from these tests that the well-mixed layers are explained by the presence of the dust. Until now it was not known if the well-mixed regions were a result of the different air masses, as air masses picking up dust over land then advecting out over the ocean are potentially very different to air masses that have been in more pristine oceanic environments, or other influences such as shear. Evaluation of CAPE and CIN with and without the influences of dust heating rates indicated that the atmospheric structure downwind was significantly altered by the presence of the dust layer. It is important as a follow-on from this work to investigate whether the climate models can capture these dust layer influences and potential impacts downwind.
NASA Astrophysics Data System (ADS)
Toporov, Maria; Löhnert, Ulrich; Potthast, Roland; Cimini, Domenico; De Angelis, Francesco
2017-04-01
Short-term forecasts of current high-resolution numerical weather prediction models still have large deficits in forecasting the exact temporal and spatial location of severe, locally influenced weather such as summer-time convective storms or cool season lifted stratus or ground fog. Often, the thermodynamic instability - especially in the boundary layer - plays an essential role in the evolution of weather events. While the thermodynamic state of the atmosphere is well measured close to the surface (i.e. 2 m) by in-situ sensors and in the upper troposphere by satellite sounders, the planetary boundary layer remains a largely under-sampled region of the atmosphere where only sporadic information from radiosondes or aircraft observations is available. The major objective of the presented DWD-funded project ARON (Extramural Research Programme) is to overcome this observational gap and to design an optimized network of ground based microwave radiometers (MWR) and compact Differential Absorption Lidars (DIAL) for a continuous, near-real-time monitoring of temperature and humidity in the atmospheric boundary layer in order to monitor thermodynamic (in)stability. Previous studies showed, that microwave profilers are well suited for continuously monitoring the temporal development of atmospheric stability (i.e. Cimini et al., 2015) before the initiation of deep convection, especially in the atmospheric boundary layer. However, the vertical resolution of microwave temperature profiles is best in the lowest kilometer above the surface, decreasing rapidly with increasing height. In addition, humidity profile retrievals typically cannot be resolved with more than two degrees of freedom for signal, resulting in a rather poor vertical resolution throughout the troposphere. Typical stability indices used to assess the potential of convection rely on temperature and humidity values not only in the region of the boundary layer but also in the layers above. Therefore, satellite remote sensing (i.e. SEVIRI, AMSU) is used to complement observations from a virtual ground-based microwave radiometer network based on the reanalysis of the COSMO model for Europe. In this contribution, we present a synergetic retrieval algorithm of stability indices from satellite observations and ground-based microwave measurements based on the COSMO-DE reanalysis as truth. In order to make the approach feasible for data assimilation applications at national weather services, we simulate satellite observations with the standard RTTOV model and use the newly developed RTTOV-gb (ground-based) for the ground-based radiometers (De Angelis et al., 2016). For the detection of significant instabilities, we show the synergy benefit in terms of uncertainty reduction, probability of detection and other forecast skill scores. The overall goal of ARON is to quantify the impact of ground-based vertical profilers within an integrated forecasting system, which combines short-term and now-casting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Y.; Kotamarthi, V. R.; Coulter, R.
Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profilesmore » averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48% more heating in the atmosphere and 21% more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7K day −1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond differently between Case I and Case II, underlining the importance of determining the exact portion of scattering or absorbing aerosols that lead to the underestimation of aerosol optical depth in the model. Additionally, the model results suggest that both the direct radiative effect and rapid thermodynamic responses need to be quantified for understanding aerosol radiative impacts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Y.; Kotamarthi, V. R.; Coulter, R.
Aerosol radiative effects and thermodynamic responses over South Asia are examined with a version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of Aerosol Optical Depth (AOD) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in the northern India. The WRF-Chem model is found to underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model low-bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AODmore » and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day −1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond differently between Case I and Case II underlying the importance of determining the exact portion of scattering or absorbing aerosols that lead to the underestimation of aerosol optical depth in the model. In addition, the model results suggest that both direct radiative effect and rapid thermodynamic responses need to be quantified for understanding aerosol radiative impacts.« less
Feng, Y.; Kotamarthi, V. R.; Coulter, R.; ...
2016-01-18
Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profilesmore » averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48% more heating in the atmosphere and 21% more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7K day −1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond differently between Case I and Case II, underlining the importance of determining the exact portion of scattering or absorbing aerosols that lead to the underestimation of aerosol optical depth in the model. Additionally, the model results suggest that both the direct radiative effect and rapid thermodynamic responses need to be quantified for understanding aerosol radiative impacts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Y.; Kotamarthi, V. R.; Coulter, R.
Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profilesmore » averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day −1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond differently between Case I and Case II, underlining the importance of determining the exact portion of scattering or absorbing aerosols that lead to the underestimation of aerosol optical depth in the model. In addition, the model results suggest that both the direct radiative effect and rapid thermodynamic responses need to be quantified for understanding aerosol radiative impacts.« less
Feng, Y.; Kotamarthi, V. R.; Coulter, R.; ...
2015-06-19
Aerosol radiative effects and thermodynamic responses over South Asia are examined with a version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of Aerosol Optical Depth (AOD) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in the northern India. The WRF-Chem model is found to underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model low-bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AODmore » and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day −1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond differently between Case I and Case II underlying the importance of determining the exact portion of scattering or absorbing aerosols that lead to the underestimation of aerosol optical depth in the model. In addition, the model results suggest that both direct radiative effect and rapid thermodynamic responses need to be quantified for understanding aerosol radiative impacts.« less
Miao, Yucong; Liu, Shuhua; Zheng, Yijia; Wang, Shu; Chen, Bicheng; Zheng, Hui; Zhao, Jingchuan
2015-04-01
Currently, the Chinese central government is considering plans to build a trilateral economic sphere in the Bohai Bay area, including Beijing, Tianjin and Hebei (BTH), where haze pollution frequently occurs. To achieve sustainable development, it is necessary to understand the physical mechanism of the haze pollution there. Therefore, the pollutant transport mechanisms of a haze event over the BTH region from 23 to 24 September 2011 were studied using the Weather Research and Forecasting model and the FLEXible-PARTicle dispersion model to understand the effects of the local atmospheric circulations and atmospheric boundary layer structure. Results suggested that the penetration by sea-breeze could strengthen the vertical dispersion by lifting up the planetary boundary layer height (PBLH) and carry the local pollutants to the downstream areas; in the early night, two elevated pollution layers (EPLs) may be generated over the mountain areas: the pollutants in the upper EPL at the altitude of 2-2.5 km were favored to disperse by long-range transport, while the lower EPL at the altitude of 1 km may serve as a reservoir, and the pollutants there could be transported downward and contribute to the surface air pollution. The intensity of the sea-land and mountain-valley breeze circulations played an important role in the vertical transport and distribution of pollutants. It was also found that the diurnal evolution of the PBLH is important for the vertical dispersion of the pollutants, which is strongly affected by the local atmospheric circulations and the distribution of urban areas. Copyright © 2015. Published by Elsevier B.V.
The Impact of Air-Sea Interactions on the Representation of Tropical Precipitation Extremes
NASA Astrophysics Data System (ADS)
Hirons, L. C.; Klingaman, N. P.; Woolnough, S. J.
2018-02-01
The impacts of air-sea interactions on the representation of tropical precipitation extremes are investigated using an atmosphere-ocean-mixed-layer coupled model. The coupled model is compared to two atmosphere-only simulations driven by the coupled-model sea-surface temperatures (SSTs): one with 31 day running means (31 d), the other with a repeating mean annual cycle. This allows separation of the effects of interannual SST variability from those of coupled feedbacks on shorter timescales. Crucially, all simulations have a consistent mean state with very small SST biases against present-day climatology. 31d overestimates the frequency, intensity, and persistence of extreme tropical precipitation relative to the coupled model, likely due to excessive SST-forced precipitation variability. This implies that atmosphere-only attribution and time-slice experiments may overestimate the strength and duration of precipitation extremes. In the coupled model, air-sea feedbacks damp extreme precipitation, through negative local thermodynamic feedbacks between convection, surface fluxes, and SST.
A comparison of observed (HALOE) and modeled (CCM2) methane and stratospheric water vapor
NASA Technical Reports Server (NTRS)
Mote, Philip W.; Holton, James R.; Russell, James M., III; Boville, Byron A.
1993-01-01
Recent measurements (21 September-15 October 1992) of methane and water vapor by the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) are compared with model results for the same season from a troposphere-middle atmosphere version of the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM2). Several important features of the two constituent fields are well reproduced by the CCM2, despite the use of simplified methane photochemistry in the CCM2 and some notable differences between the model's zonal mean circulation and climatology. Observed features simulated by the model include the following: 1) subsidence over a deep layer in the Southern Hemisphere polar vortex; 2) widespread dehydration in the polar vortex; and 3) existence of a region of low water vapor mixing ratios extending from the Antarctic into the Northern Hemisphere tropics, which suggests that Antarctic dehydration contributes to midlatitude and tropical dryness in the stratosphere.
Atmospheric electric field and current configurations in the vicinity of mountains
NASA Technical Reports Server (NTRS)
Tzur, I.; Roble, R. G.; Adams, J. C.
1985-01-01
A number of investigations have been conducted regarding the electrical distortion produced by the earth's orography. Hays and Roble (1979) utilized their global model of atmospheric electricity to study the effect of large-scale orographic features on the currents and fields of the global circuit. The present paper is concerned with an extension of the previous work, taking into account an application of model calculations to orographic features with different configurations and an examination of the electric mapping of these features to ionospheric heights. A two-dimensional quasi-static numerical model of atmospheric electricity is employed. The model contains a detailed electrical conductivity profile. The model region extends from the surface to 100 km and includes the equalization layer located above approximately 70 km. The obtained results show that the electric field and current configurations above mountains depend upon the curvature of the mountain slopes, on the width of the mountain, and on the columnar resistance above the mountain (or mountain height).
NASA Astrophysics Data System (ADS)
Leukauf, Daniel; Gohm, Alexander; Rotach, Mathias W.; Posch, Christian
2016-04-01
Slope winds provide a mechanism for the vertical exchange of air between the valley and the free atmosphere aloft. By this means, heat, moisture and pollutants are exported or imported. However, it the static stability of the valley atmosphere is strong, one part of the up-slope flow is redirected towards the valley center and pollutants are recirculated within the valley. This may limit the venting potential of slope winds severely. The main objective of this study is to quantify the horizontal transport of pollutants from the slope wind layer into the stable valley core and to determine the dependency of this flux as a function of the initial stability of the atmosphere. For this purpose, we conducted large eddy simulations with the Weather Research and Forecasting (WRF) model for a quasi-two-dimensional valley. The valley geometry consists of two slopes with constant slope angle rising to a crest height of 1500 m and a 4 km wide flat valley floor in between. The valley is 20 km long and homogeneous in along-valley direction. Hence, only slope winds but no valley winds can evolve. The surface sensible heat flux is prescribed by a sine function with an amplitude of 125 W m-2. The initial sounding characterized by an atmosphere at rest and by a constant Brunt-Väisälä frequency which is varied between 0.006 s-1 and 0.02 s-1. A passive tracer is released with an arbitrary but constant rate at the valley floor. As expected, the atmospheric stability has a strong impact on the vertical and horizontal transport of tracer mass. A horizontal intrusion forms at the top of the mixed layer due to outflow from the slope wind layer. Tracer mass is transported from the slope towards the center of the valley. The efficiency of this mechanism increases with increasing stability N. For the lowest value of N, about 70% of the tracer mass released at the valley bottom is exported out of the valley. This value drops to about 12% in the case of the strongest stability. Hence, most of the tracer mass, which enters the slope wind layer at the valley bottom, is leaving it again through horizontal fluxes at the height of the intrusion and therefore remains inside the valley.
Coastal Jets, Oceanic Upwelling, Mesoscale Eddies, and Clouds in the Southeast Pacific
NASA Astrophysics Data System (ADS)
Hong, X.; Wang, S.; Jiang, Q.; O'Neill, L. W.; Hodur, R.; Chen, S.; Martin, P.; Cummings, J. A.
2009-12-01
Coastal jets, oceanic upwelling, mesoscale eddies, and clouds in the Southeast Pacific (SEP) are studied using the two-way-coupled COAMPS/NCOM system with the NCODA for the ocean data assimilation. The coupled system was run for the period of the VAMOS Ocean-Cloud-Atmosphere-Land Study (VOCALS) field campaign from 20 October to 30 November, 2008. The investigation of the feedback between the atmosphere and the ocean is focused on the periods of the strong and the weak coastal jets. During the strong coastal jet period, colder and drier air along the coast results in larger surface heat fluxes and increased boundary layer height. More extensive and organized clouds are generated in the strongly unstable conditions in the atmospheric boundary layer. The oceanic upwelling is stronger and the upwelled cold water extends further offshore. During the weak coastal jet period, the cyclonic and anti-cyclonic oceanic eddies propagate westward more significantly. The inertial oscillations induced by the variations of the wind stress also increase in strength with stronger phase shifts between the oscillations in the upper and the lower layers of the ocean. In addition, the model results from the coupled system were evaluated with available observations from the VOCALS field campaign.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montañés-Rodríguez, Pilar; González-Merino, B.; Pallé, E.
Currently, the analysis of transmission spectra is the most successful technique to probe the chemical composition of exoplanet atmospheres. However, the accuracy of these measurements is constrained by observational limitations and the diversity of possible atmospheric compositions. Here, we show the UV–VIS–IR transmission spectrum of Jupiter as if it were a transiting exoplanet, obtained by observing one of its satellites, Ganymede, while passing through Jupiter’s shadow, i.e., during a solar eclipse from Ganymede. The spectrum shows strong extinction due to the presence of clouds (aerosols) and haze in the atmosphere and strong absorption features from CH{sub 4}. More interestingly, themore » comparison with radiative transfer models reveals a spectral signature, which we attribute here to a Jupiter stratospheric layer of crystalline H{sub 2}O ice. The atomic transitions of Na are also present. These results are relevant for the modeling and interpretation of giant transiting exoplanets. They also open a new technique to explore the atmospheric composition of the upper layers of Jupiter’s atmosphere.« less
NASA Astrophysics Data System (ADS)
Gao, B.; Smits, K. M.
2017-12-01
Evaporation is a strongly coupled exchange process of mass, momentum and energy between the atmosphere and the soil. Several mechanisms influence evaporation, such as the atmospheric conditions, the structure of the soil surface, and the physical properties of the soil. Among the previous studies associated with evaporation modeling, most efforts use uncoupled models which simplify the influences of the atmosphere and soil through the use of resistance terms. Those that do consider the coupling between the free flow and porous media flow mainly consider flat terrain with grain-scale roughness. However, larger obstacles, which may form drags or ridges allowing normal convective air flow through the soil, are common in nature and may affect the evaporation significantly. Therefore, the goal of this work is to study the influence of large obstacles such as wavy surfaces on the flow behavior within the soil and exchange processes to the atmosphere under turbulent free-flow conditions. For simplicity, the soil surface with large obstacles are represented by a simple wavy surface. To do this, we modified a previously developed theory for two-phase two-component porous-medium flow, coupling it to single-phase two-component turbulent flow to simulate and analyze the evaporation from wavy soil surfaces. Detailed laboratory scale experiments using a wind tunnel interfaced with a porous media tank were carried out to test the modeling results. The characteristics of turbulent flow across a permeable wavy surface are discussed. Results demonstrate that there is an obvious recirculation zone formed at the surface, which is special because of the accumulation of water vapor and the thicker boundary layer in this area. In addition, the influences of both the free flow and porous medium on the evaporation are also analyzed. The porous medium affects the evaporation through the amount of water it can provide to the soil surface; while the atmosphere influences the evaporation through the gradients formed within the boundary layer. This study gives a primary cognition on the evaporation from bare soil surface with obstacles. Ongoing work will include a deep understanding of the mechanisms which may provide the basis for land-atmosphere study on field scale.
Parameterizations of Chromospheric Condensations in dG and dMe Model Flare Atmospheres
NASA Astrophysics Data System (ADS)
Kowalski, Adam F.; Allred, Joel C.
2018-01-01
The origin of the near-ultraviolet and optical continuum radiation in flares is critical for understanding particle acceleration and impulsive heating in stellar atmospheres. Radiative-hydrodynamic (RHD) simulations in 1D have shown that high energy deposition rates from electron beams produce two flaring layers at T ∼ 104 K that develop in the chromosphere: a cooling condensation (downflowing compression) and heated non-moving (stationary) flare layers just below the condensation. These atmospheres reproduce several observed phenomena in flare spectra, such as the red-wing asymmetry of the emission lines in solar flares and a small Balmer jump ratio in M dwarf flares. The high beam flux simulations are computationally expensive in 1D, and the (human) timescales for completing NLTE models with adaptive grids in 3D will likely be unwieldy for some time to come. We have developed a prescription for predicting the approximate evolved states, continuum optical depth, and emergent continuum flux spectra of RHD model flare atmospheres. These approximate prescriptions are based on an important atmospheric parameter: the column mass ({m}{ref}) at which hydrogen becomes nearly completely ionized at the depths that are approximately in steady state with the electron beam heating. Using this new modeling approach, we find that high energy flux density (>F11) electron beams are needed to reproduce the brightest observed continuum intensity in IRIS data of the 2014 March 29 X1 solar flare, and that variation in {m}{ref} from 0.001 to 0.02 g cm‑2 reproduces most of the observed range of the optical continuum flux ratios at the peak of M dwarf flares.
NASA Astrophysics Data System (ADS)
Sempreviva, A. M.
2009-09-01
The EC FP6 Marie Curie Training Network "ModObs” http://www.modobs.windeng.net addresses the improvement of atmospheric boundary layer (ABL) models to investigate the interplay of processes at different temporal and spatial scales, and to explore the added value from new observation techniques. The overall goal is to bring young scientists to work ogether with experienced researchers in developing a better interaction amongst scientific communities of modelers and experimentalists, using a comprehensive approach to "Climate Change”, "Clean Energy assessment” and "Environmental Policies”, issues. This poster describes the work in progress of ten students, funded by the network, under the supervision of a team of scientists within atmospheric physics, engineering and satellite remote sensing and end-users such as companies in the private sector, all with the appropriate expertise to integrate the most advanced research methods and techniques in the following topics. MODELING: GLOBAL-TO-MESO SCALE: Analytical and process oriented numerical models will be used to study the interaction between the atmosphere and the ocean on a regional scale. Initial results indicate an interaction between the intensity of polar lows and the subsurface warm core often present in the Nordic Seas (11). The presence of waves, mainly swell, influence the MABL fluxes and turbulence structure. The regional and global wave effect on the atmosphere will be also studied and quantified (7) MESO-SCALE: Applicability of the planetary boundary layer (PBL) parametrizations in the meso-scale WRF model to marine atmospheric boundary layer (MABL) over the North Sea is investigated. The most suitable existing PBL parametrization will be additionally improved and used for downscaling North Sea past and future climates (2). Application of the meso-scale model (MM5 and WRF) for the wind energy in off-shore and coastal area. Set-up of the meso-scale model, post-processing and verification of the data from the long simulation. Research of meso-scale phenomena for meteorological case study in Gulf of Finland (3). MICRO-SCALE: Large eddy simulation (LES) is used to study the planetary boundary layer under different complex effects: (a) Forcing from general circulation model (GCM): Comparison between GCM outputs and GCM-forced LES for maritime boundary layer (MBL) cases, namely the LASIE campaign (5). (b) Heterogeneity of the Marine Surface Layer (MSL ): Investigation of the air-sea turbulent exchange mechanisms under the effects of coastal discontinuity and horizontal gradient of temperature (1)(6). (c) Heterogeneity of land surface: Turbulence self-organization and its interaction with complex earth topography is studied (8). (d) Wind farm complexity: Wind site assessment as well as turbulent effects for terrains with different complexity are studied (2). OBSERVATIONS: CONTRIBUTION OF SATELLITE OBSERVATIONS FOR THE STUDY AND PARAMETRIZATION OF MARINE BOUNDARY LAYER: Evaluate the added-value of observations from the current generation of satellite with emphasis on the potential of remote sensing data in describing temporal and spatial structures. Foreseen applications include: improvement of MBL description on coastal areas, identification of areas of interest for wind energy applications, gain of information of temporal and spatial scales of variability useful for numerical model parameterizations (6). LIDAR, SODAR: REMOTE SENSING TECHNIQUES APPLIED FOR WIND ENERGY. According to aeroelastic simulations, the production of the power curve of a large wind turbine (rotor diameter larger than 100m) requires wind speed measurements at several heights within the rotor disc. Suitable wind profiles can be measured by LiDARs and SoDARs (1). EVOLUTION OF THE VERTICAL STRUCTURE OF THE ATMOSPHERIC MARINE BOUNDARY LAYER:The evolution of the vertical structure of the MABL following the change of surface conditions in a sequence of onshore - offshore - onshore flow, was observed by both ceilometer and radiosoundings during the LASIE (Ligurian Air-Sea Interaction Experiment) campaign sponsored by NATO in the Mediterranean Sea. In-situ and remote-sensing measurements were performed from two measuring platforms, A buoy ODAS, Italia1 and a ship N/O URANIA from the Italian National Council of Research CNR (1), (6) and (7).
NASA Astrophysics Data System (ADS)
Sempreviva, A. M.
2009-04-01
The EC FP6 Marie Curie Training Network "ModObs" http://www.modobs.windeng.net addresses the improvement of atmospheric boundary layer (ABL) models to investigate the interplay of processes at different temporal and spatial scales, and to explore the added value from new observation techniques. The overall goal is to bring young scientists to work together with experienced researchers in developing a better interaction amongst scientific communities of modelers and experimentalists, using a comprehensive approach to "Climate Change", "Clean Energy assessment" and "Environmental Policies", issues. This poster describes the work in progress of ten students, funded by the network, under the supervision of a team of scientists within atmospheric physics, engineering and satellite remote sensing and end-users such as companies in the private sector, all with the appropriate expertise to integrate the most advanced research methods and techniques in the following topics. MODELING: GLOBAL-TO-MESO SCALE: Analytical and process oriented numerical models will be used to study the interaction between the atmosphere and the ocean on a regional scale. Initial results indicate an interaction between the intensity of polar lows and the subsurface warm core often present in the Nordic Seas (11). The presence of waves, mainly swell, influence the MABL fluxes and turbulence structure. The regional and global wave effect on the atmosphere will be also studied and quantified (7) MESO-SCALE: Applicability of the planetary boundary layer (PBL) parametrizations in the meso-scale WRF model to marine atmospheric boundary layer (MABL) over the North Sea is investigated. The most suitable existing PBL parametrization will be additionally improved and used for downscaling North Sea past and future climates (2). Application of the meso-scale model (MM5 and WRF) for the wind energy in off-shore and coastal area. Set-up of the meso-scale model, post-processing and verification of the data from the long simulation. Research of meso-scale phenomena for meteorological case study in Gulf of Finland (3). MICRO-SCALE: Large eddy simulation (LES) is used to study the planetary boundary layer under different complex effects: (a) Forcing from general circulation model (GCM): Comparison between GCM outputs and GCM-forced LES for maritime boundary layer (MBL) cases, namely the LASIE campaign (5). (b) Heterogeneity of the Marine Surface Layer (MSL ): Investigation of the air-sea turbulent exchange mechanisms under the effects of coastal discontinuity and horizontal gradient of temperature (1)(6). (c) Heterogeneity of land surface: Turbulence self-organization and its interaction with complex earth topography is studied (8). (d) Wind farm complexity: Wind site assessment as well as turbulent effects for terrains with different complexity are studied (2). OBSERVATIONS: CONTRIBUTION OF SATELLITE OBSERVATIONS FOR THE STUDY AND PARAMETRIZATION OF MARINE BOUNDARY LAYER: Evaluate the added-value of observations from the current generation of satellite with emphasis on the potential of remote sensing data in describing temporal and spatial structures. Foreseen applications include: improvement of MBL description on coastal areas, identification of areas of interest for wind energy applications, gain of information of temporal and spatial scales of variability useful for numerical model parameterizations (6). LIDAR, SODAR: REMOTE SENSING TECHNIQUES APPLIED FOR WIND ENERGY. According to aeroelastic simulations, the production of the power curve of a large wind turbine (rotor diameter larger than 100m) requires wind speed measurements at several heights within the rotor disc. Suitable wind profiles can be measured by LiDARs and SoDARs (1). EVOLUTION OF THE VERTICAL STRUCTURE OF THE ATMOSPHERIC MARINE BOUNDARY LAYER:The evolution of the vertical structure of the MABL following the change of surface conditions in a sequence of onshore - offshore - onshore flow, was observed by both ceilometer and radiosoundings during the LASIE (Ligurian Air-Sea Interaction Experiment) campaign sponsored by NATO in the Mediterranean Sea. In-situ and remote-sensing measurements were performed from two measuring platforms, A buoy ODAS, Italia1 and a ship N/O URANIA from the Italian National Council of Research CNR (1), (6) and (7).
Bi-directional exchange of ammonia in a pine forest ecosystem - a model sensitivity analysis
NASA Astrophysics Data System (ADS)
Moravek, Alexander; Hrdina, Amy; Murphy, Jennifer
2016-04-01
Ammonia (NH3) is a key component in the global nitrogen cycle and of great importance for atmospheric chemistry, neutralizing atmospheric acids and leading to the formation of aerosol particles. For understanding the role of NH3 in both natural and anthropogenically influenced environments, the knowledge of processes regulating its exchange between ecosystems and the atmosphere is essential. A two-layer canopy compensation point model is used to evaluate the NH3 exchange in a pine forest in the Colorado Rocky Mountains. The net flux comprises the NH3 exchange of leaf stomata, its deposition to leaf cuticles and exchange with the forest ground. As key parameters the model uses in-canopy NH3 mixing ratios as well as leaf and soil emission potentials measured at the site in summer 2015. A sensitivity analysis is performed to evaluate the major exchange pathways as well as the model's constraints. In addition, the NH3 exchange is examined for an extended range of environmental conditions, such as droughts or varying concentrations of atmospheric pollutants, in order to investigate their influence on the overall net exchange.
Coastal Wind Profiles In The Mediterranean Area From A Wind Lidar During A Two Year Period
NASA Astrophysics Data System (ADS)
Gullì, Daniel; Avolio, Elenio; Calidonna, Claudia Roberta; Lo Feudo, Teresa; Torcasio, Rosa Claudia; Sempreviva, Anna Maria
2017-04-01
Reliable measurements of vertical profiles of wind speed and direction are the basis for testing models and methodologies of use for wind energy assessment. Modelling coastal areas further introduce the challenge of the coastal discontinuity, which is often not accurately resolved in meso-scale numerical model. Here, we present the analysis of two year of 10-minute averaged wind speed and direction vertical profiles collected during a two-year period from a Wind- lidar ZEPHIR 300® at a coastal suburban area. The lidar is located at the SUPER SITE of CNR-ISAC section of Lamezia Terme, Italy and both dataset and site are unique in the Mediterranean area. The instrument monitors at 10 vertical levels, from 10 m up to 300 m. The analysis is classified according to season, and wind directions for offshore and offshore flow. For onshore flow, we note an atmospheric layer at around 100 m that likely represents the effect an internal boundary layer caused by the sharp coastal discontinuity of the surface characteristics. For offshore flows, the profiles show a layer ranging between 80m and 100m, which might be ascribed to the land night time boundary layer combined to the impact of the building around the mast.
The colors of biomass burning aerosols in the atmosphere.
Liu, Chao; Chung, Chul Eddy; Zhang, Feng; Yin, Yan
2016-06-16
Biomass burning aerosols mainly consist of black carbon (BC) and organic aerosols (OAs), and some of OAs are brown carbon (BrC). This study simulates the colors of BrC, BC and their mixture with scattering OAs in the ambient atmosphere by using a combination of light scattering simulations, a two-stream radiative transfer model and a RGB (Red, Green, Blue) color model. We find that both BCs and tar balls (a class of BrC) appear brownish at small particle sizes and blackish at large sizes. This is because the aerosol absorption Ångström exponent (AAE) largely controls the color and larger particles give smaller AAE values. At realistic size distributions, BCs look more blackish than tar balls, but still exhibit some brown color. However, when the absorptance of aerosol layer at green wavelength becomes larger than approximately 0.8, all biomass burning aerosols look blackish. The colors for mixture of purely scattering and absorptive carbonaceous aerosol layers in the atmosphere are also investigated. We suggest that the brownishness of biomass burning aerosols indicates the amount of BC/BrC as well as the ratio of BC to BrC.
Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity
NASA Technical Reports Server (NTRS)
Blankenship, Clay; Zavodsky, Brad; Blackwell, William
2014-01-01
Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. This paper will describe the bias correction technique and results from forecasts evaluated by validation against a Total Precipitable Water (TPW) product from CIRA and against Global Forecast System (GFS) analyses.
Advances in the land surface model (LSM) and planetary boundary layer (PBL) components of the WRF-CMAQ coupled meteorology and air quality modeling system are described. The aim of these modifications was primarily to improve the modeling of ground level concentrations of trace c...
Use of an Existing Airborne Radon Data Base in the Verification of the NASA/AEAP Core Model
NASA Technical Reports Server (NTRS)
Kritz, Mark A.
1998-01-01
The primary objective of this project was to apply the tropospheric atmospheric radon (Rn222) measurements to the development and verification of the global 3-D atmospheric chemical transport model under development by NASA's Atmospheric Effects of Aviation Project (AEAP). The AEAP project had two principal components: (1) a modeling effort, whose goal was to create, test and apply an elaborate three-dimensional atmospheric chemical transport model (the NASA/AEAP Core model to an evaluation of the possible short and long-term effects of aircraft emissions on atmospheric chemistry and climate--and (2) a measurement effort, whose goal was to obtain a focused set of atmospheric measurements that would provide some of the observational data used in the modeling effort. My activity in this project was confined to the first of these components. Both atmospheric transport and atmospheric chemical reactions (as well the input and removal of chemical species) are accounted for in the NASA/AEAP Core model. Thus, for example, in assessing the effect of aircraft effluents on the chemistry of a given region of the upper troposphere, the model must keep track not only of the chemical reactions of the effluent species emitted by aircraft flying in this region, but also of the transport into the region of these (and other) species from other, remote sources--for example, via the vertical convection of boundary layer air to the upper troposphere. Radon, because of its known surface source and known radioactive half-life, and freedom from chemical production or loss, and from removal from the atmosphere by physical scavenging, is a recognized and valuable tool for testing the transport components of global transport and circulation models.
NASA Astrophysics Data System (ADS)
Strauss, L.; Serafin, S.; Grubišić, V.
2012-04-01
Wave-induced boundary-layer separation (BLS) results from the adverse-pressure gradient forces that are exerted on the atmospheric boundary-layer by internal gravity waves in flow over orography. BLS has received significant attention in recent years, particularly so, because it is a key ingredient in the formation of atmospheric rotors. Traditionally depicted as horizontal eddies in the lee of mountain ranges, rotors originate from the interaction between internal gravity waves and the atmospheric boundary-layer. Our study focuses on the first observationally documented case of wave-induced BLS, which occurred on 26 Jan 2006 in the lee of the Medicine Bow Mountains in SE Wyoming (USA). Observations from the University of Wyoming King Air (UWKA) aircraft, in particular, the remote sensing measurements with the Wyoming Cloud Radar (WCR), reveal strong wave activity, downslope winds in excess of 30 m/s, and near-surface flow reversal in the lee of the mountain range. The fine resolution of WCR data (on the order of 40x40 m2 for two-dimensional velocity fields) exhibits fine-scale vortical structures ("subrotors") which are embedded within the main rotor zone. Our case study intends to complete the characterisation of the observed boundary-layer separation event. Modelling of the event with the mesoscale Weather Research and Forecast Model (WRF) provides insight into the mesoscale triggers of wave-induced BLS and turbulence generation. Indeed, the mesoscale model underpins the expected concurrence of the essential processes (gravity waves, wave breaking, downslope windstorms, etc.) leading to BLS. To exploit the recorded in situ and radar data to their full extent, a quantitative evaluation of the structure and intensity of turbulence is conducted by means of a power spectral analysis of the vertical wind component, measured along the flight track. An intercomparison of observational and modelling results serves the purpose of model verification and can shed some more light onto the limits of validity of airborne observations and mesoscale modelling. For example, the exact timing, magnitude, and evolution of the internal gravity waves present in the mesoscale model are carefully analysed. As for the observations, measures of turbulence gained from in situ and radar data, collected over complex topography within a limited period of time, must be interpreted with caution. Approaches to tackling these challenges are a matter of ongoing research and will be discussed in concluding.
Atmospheric Turbulence Estimates from a Pulsed Lidar
NASA Technical Reports Server (NTRS)
Pruis, Matthew J.; Delisi, Donald P.; Ahmad, Nash'at N.; Proctor, Fred H.
2013-01-01
Estimates of the eddy dissipation rate (EDR) were obtained from measurements made by a coherent pulsed lidar and compared with estimates from mesoscale model simulations and measurements from an in situ sonic anemometer at the Denver International Airport and with EDR estimates from the last observation time of the trailing vortex pair. The estimates of EDR from the lidar were obtained using two different methodologies. The two methodologies show consistent estimates of the vertical profiles. Comparison of EDR derived from the Weather Research and Forecast (WRF) mesoscale model with the in situ lidar estimates show good agreement during the daytime convective boundary layer, but the WRF simulations tend to overestimate EDR during the nighttime. The EDR estimates from a sonic anemometer located at 7.3 meters above ground level are approximately one order of magnitude greater than both the WRF and lidar estimates - which are from greater heights - during the daytime convective boundary layer and substantially greater during the nighttime stable boundary layer. The consistency of the EDR estimates from different methods suggests a reasonable ability to predict the temporal evolution of a spatially averaged vertical profile of EDR in an airport terminal area using a mesoscale model during the daytime convective boundary layer. In the stable nighttime boundary layer, there may be added value to EDR estimates provided by in situ lidar measurements.
Semiempirical photospheric models of a solar flare on May 28, 2012
NASA Astrophysics Data System (ADS)
Andriets, E. S.; Kondrashova, N. N.
2015-02-01
The variation of the photosphere physical state during the decay phase of SF/B6.8-class solar flare on May 28, 2012 in active region NOAA 11490 is studied. We used the data of the spectropolarimetric observations with the French-Italian solar telescope THEMIS (Tenerife, Spain). Semi-empirical model atmospheres are derived from the inversion with SIR (Stokes Inversion based on Response functions) code. The inversion was based on Stokes profiles of six photospheric lines. Each model atmosphere has a two-component structure: a magnetic flux tube and non-magnetic surroundings. The Harvard Smithsonian Reference Atmosphere (HSRA) has been adopted for the surroundings. The macroturbulent velocity and the filling factor were assumed to be constant with the depth. The optical depth dependences of the temperature, magnetic field strength, and line-of-sight velocity are obtained from inversion. According to the received model atmospheres, the parameters of the magnetic field and the thermodynamical parameters changed during the decay phase of the flare. The model atmospheres showed that the photosphere remained in a disturbed state during observations after the maximum of the flare. There are temporal changes in the temperature and the magnetic field strength optical depth dependences. The temperature enhancement in the upper photospheric layers is found in the flaring atmospheres relative to the quiet-Sun model. The downflows are found in the low and upper photosphere at the decay phase of the flare.
Documentation of the Goddard Laboratory for atmospheres fourth-order two-layer shallow water model
NASA Technical Reports Server (NTRS)
Takacs, L. L. (Compiler)
1986-01-01
The theory and numerical treatment used in the 2-level GLA fourth-order shallow water model are described. This model was designed to emulate the horizontal finite differences used by the GLA Fourth-Order General Circulation Model (Kalnay et al., 1983) in addition to its grid structure, form of high-latitude and global filtering, and time-integration schemes. A user's guide is also provided instructing the user on how to create initial conditions, execute the model, and post-process the data history.
NASA Astrophysics Data System (ADS)
Chatterjee, Tanmoy; Peet, Yulia T.
2017-07-01
A large eddy simulation (LES) methodology coupled with near-wall modeling has been implemented in the current study for high Re neutral atmospheric boundary layer flows using an exponentially accurate spectral element method in an open-source research code Nek 5000. The effect of artificial length scales due to subgrid scale (SGS) and near wall modeling (NWM) on the scaling laws and structure of the inner and outer layer eddies is studied using varying SGS and NWM parameters in the spectral element framework. The study provides an understanding of the various length scales and dynamics of the eddies affected by the LES model and also the fundamental physics behind the inner and outer layer eddies which are responsible for the correct behavior of the mean statistics in accordance with the definition of equilibrium layers by Townsend. An economical and accurate LES model based on capturing the near wall coherent eddies has been designed, which is successful in eliminating the artificial length scale effects like the log-layer mismatch or the secondary peak generation in the streamwise variance.
NASA Astrophysics Data System (ADS)
Englberger, Antonia; Dörnbrack, Andreas
2018-03-01
The wake characteristics of a wind turbine for different regimes occurring throughout the diurnal cycle are investigated systematically by means of large-eddy simulation. Idealized diurnal cycle simulations of the atmospheric boundary layer are performed with the geophysical flow solver EULAG over both homogeneous and heterogeneous terrain. Under homogeneous conditions, the diurnal cycle significantly affects the low-level wind shear and atmospheric turbulence. A strong vertical wind shear and veering with height occur in the nocturnal stable boundary layer and in the morning boundary layer, whereas atmospheric turbulence is much larger in the convective boundary layer and in the evening boundary layer. The increased shear under heterogeneous conditions changes these wind characteristics, counteracting the formation of the night-time Ekman spiral. The convective, stable, evening, and morning regimes of the atmospheric boundary layer over a homogeneous surface as well as the convective and stable regimes over a heterogeneous surface are used to study the flow in a wind-turbine wake. Synchronized turbulent inflow data from the idealized atmospheric boundary-layer simulations with periodic horizontal boundary conditions are applied to the wind-turbine simulations with open streamwise boundary conditions. The resulting wake is strongly influenced by the stability of the atmosphere. In both cases, the flow in the wake recovers more rapidly under convective conditions during the day than under stable conditions at night. The simulated wakes produced for the night-time situation completely differ between heterogeneous and homogeneous surface conditions. The wake characteristics of the transitional periods are influenced by the flow regime prior to the transition. Furthermore, there are different wake deflections over the height of the rotor, which reflect the incoming wind direction.
LANDSAT-D investigations in snow hydrology. [Sierra Nevada Mountains
NASA Technical Reports Server (NTRS)
Dozier, J.
1983-01-01
Thematic mapper data for the southern Sierra Nevada area were registered to digital topographic data and compared to LANDSAT MSS and NOAA-7 AVHRR data of snow covered areas in order to determine the errors associated with using coarser resolution and to qualify the information lost when high resolution data are not available. Both the zenith and the azimuth variations in the radiative field are considered in an atmospheric radiative transfer model which deals with a plane parallel structured atmosphere composed of different layers, each assumed to be homogeneous in composition and to have a linear in tau temperature profile. Astronomical parameters for each layer are Earth-Sun distance and solar flux at the top of the atmosphere. Atmospheric parameters include pressure temperature, chemical composition of the air molecules, and the composition and size of the aerosol, water droplets, and ice crystals. Outputs of the model are the monochromatic radiance and irradiance at each level. The use of the model in atmospheric correction of remotely sensed data is discussed.
The role of feedbacks in Antarctic sea ice change
NASA Astrophysics Data System (ADS)
Feltham, D. L.; Frew, R. C.; Holland, P.
2017-12-01
The changes in Antarctic sea ice over the last thirty years have a strong seasonal dependence, and the way these changes grow in spring and decay in autumn suggests that feedbacks are strongly involved. The changes may ultimately be caused by atmospheric warming, the winds, snowfall changes, etc., but we cannot understand these forcings without first untangling the feedbacks. A highly simplified coupled sea ice -mixed layer model has been developed to investigate the importance of feedbacks on the evolution of sea ice in two contrasting regions in the Southern Ocean; the Amundsen Sea where sea ice extent has been decreasing, and the Weddell Sea where it has been expanding. The change in mixed layer depth in response to changes in the atmosphere to ocean energy flux is implicit in a strong negative feedback on ice cover changes in the Amundsen Sea, with atmospheric cooling leading to a deeper mixed layer resulting in greater entrainment of warm Circumpolar Deep Water, causing increased basal melting of sea ice. This strong negative feedback produces counter intuitive responses to changes in forcings in the Amundsen Sea. This feedback is absent in the Weddell due to the complete destratification and strong water column cooling that occurs each winter in simulations. The impact of other feedbacks, including the albedo feedback, changes in insulation due to ice thickness and changes in the freezing temperature of the mixed layer, were found to be of secondary importance compared to changes in the mixed layer depth.
Atmospheric Constraints on Landing Site Selection
NASA Astrophysics Data System (ADS)
Kass, David M.; Schofield, J. T.
2001-01-01
The Martian atmosphere is a significant part of the environment that the Mars Exploration Rovers (MER) will encounter. As such, it imposes important constraints on where the rovers can and cannot land. Unfortunately, as there are no meteorological instruments on the rovers, there is little atmospheric science that can be accomplished, and no scientific preference for landing sites. The atmosphere constrains landing site selection in two main areas, the entry descent and landing (EDL) process and the survivability of the rovers on the surface. EDL is influenced by the density profile and boundary layer winds (up to altitudes of 5 to 10 km). Surface survivability involves atmospheric dust, temperatures and winds. During EDL, the atmosphere is used to slow the lander down, both ballistically and on the parachute. This limits the maximum elevation of the landing site to -1.3 km below the MOLA reference aeroid. The landers need to encounter a sufficiently dense atmosphere to be able to stop, and the deeper the landing site, the more column integrated atmosphere the lander can pass through before reaching the surface. The current limit was determined both by a desire to be able to reach the hematite region and by a set of atmosphere models we developed for EDL simulations. These are based on Thermal Emission Spectrometer (TES) atmospheric profile measurements, Ames Mars General Circulation Model (MGCM) results, and the 1-D Ames GCM radiative/convective model by J. Murphy. The latter is used for the near surface diurnal cycle. The current version of our model encompasses representative latitude bands, but we intend to make specific models for the final candidate landing sites to insure that they fall within the general envelope. The second constraint imposed on potential landing sites through the EDL process is the near surface wind. The wind in the lower approximately 5 km determines the horizontal velocity that the landers have when they land. Due to the mechanics of the landing process, the total velocity (including both the horizontal and vertical components) determines whether or not the landers are successful. Unfortunately, the landing system has no easy way to nullify any horizontal velocity imparted by the wind, so the landing sites selected need to have as little wind as possible. In addition to the mean wind velocity, the landing system is sensitive to vertical wind shear in the lowest kilometer or so. Wind shear can deflect the retro rockets (RADs) from their nominal vertical orientation producing unwanted horizontal spacecraft velocities. Both mean velocity and wind shear are dominated by the the local topography and other surface properties (in particular albedo and thermal inertia which control the surface temperature). This is seen even in simplified 2-D mesoscale models. The effects in a fully 3-D model are expected to he even more topographically dependent. In particular there is potential for wind channeling in canyons and other terrain features. Boundary layer winds and wind shear are currently being modeled based on terrestrial data and boundary layer scaling laws modified for Martian conditions. We hope to supplement this with mesoscale model results (from several sources) once the number of landing sites is reduced to a manageable number.
NASA Astrophysics Data System (ADS)
Gohari, Iman; Korobenko, Artem; Yan, Jinhui; Bazilevs, Yuri; Sarkar, Sutanu
2016-11-01
Wind is a renewable energy resource that offers several advantages including low pollutant emission and inexpensive construction. Wind turbines operate in conditions dictated by the Atmospheric Boundary Layer (ABL) and that motivates the study of coupling ABL simulations with wind turbine dynamics. The ABL simulations can be used for realistic modeling of the environment which, with the use of fluid-structure interaction, can give realistic predictions of extracted power, rotor loading, and blade structural response. The ABL simulations provide inflow boundary conditions to the wind-turbine simulator which uses arbitrary Lagrangian-Eulerian variational multiscale formulation. In the present work, ABL simulations are performed to examine two different scenarios: (i) A neutral ABL with zero heat-flux and inversion layer at 350m, in which the wind turbine experiences maximum mean shear; (2) A shallow ABL with the surface cooling-rate of -1 K/hr, in which the wind turbine experiences maximum mean velocity at the low-level-jet nose height. We will discuss differences in the unsteady flow between the two different ABL conditions and their impact on the performance of the wind turbine cluster in the coupled ABL-wind turbine simulations.
NASA Astrophysics Data System (ADS)
Marzooqi, Mohamed Al; Basha, Ghouse; Ouarda, Taha B. M. J.; Armstrong, Peter; Molini, Annalisa
2014-05-01
Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature in the boundary layer over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main features however, desert ABLs present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as the transport of dust and pollutants, and turbulent fluxes of momentum, heat and water vapor in hyper-arid regions. In this study, we analyze a continuous record of observations of the atmospheric boundary layer (ABL) height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4oN, 54.6o E, Abu Dhabi, United Arab Emirates), starting March 2013. We compare different methods for the estimation of the ABL height from Ceilometer data such as, classic variance-, gradient-, log gradient- and second derivation-methods as well as recently developed techniques such as the Bayesian Method and Wavelet covariance transform. Our goal is to select the most suited technique for describing the climatology of the ABL in desert environments. Comparison of our results with radiosonde observations collected at the nearby airport of Abu Dhabi indicate that the WCT and the Bayesian method are the most suitable tools to accurately identify the ABL height in all weather conditions. These two methods are used for the definition of diurnal and seasonal climatologies of the boundary layer conditional to different atmospheric stability classes.
NASA Astrophysics Data System (ADS)
Kiliyanpilakkil, Velayudhan Praju
Atmospheric motions take place in spatial scales of sub-millimeters to few thousands of kilometers with temporal changes in the atmospheric variables occur in fractions of seconds to several years. Consequently, the variations in atmospheric kinetic energy associated with these atmospheric motions span over a broad spectrum of space and time. The mesoscale region acts as an energy transferring regime between the energy generating synoptic scale and the energy dissipating microscale. Therefore, the scaling characterizations of mesoscale wind fields are significant in the accurate estimation of the atmospheric energy budget. Moreover, the precise knowledge of the scaling characteristics of atmospheric mesoscale wind fields is important for the validation of the numerical models those focus on wind forecasting, dispersion, diffusion, horizontal transport, and optical turbulence. For these reasons, extensive studies have been conducted in the past to characterize the mesoscale wind fields. Nevertheless, the majority of these studies focused on near-surface and upper atmosphere mesoscale regimes. The present study attempt to identify the existence and to quantify the scaling of mesoscale wind fields in the lower atmospheric boundary layer (ABL; in the wind turbine layer) using wind observations from various research-grade instruments (e.g., sodars, anemometers). The scaling characteristics of the mesoscale wind speeds over diverse homogeneous flat terrains, conducted using structure function based analysis, revealed an altitudinal dependence of the scaling exponents. This altitudinal dependence of the wind speed scaling may be attributed to the buoyancy forcing. Subsequently, we use the framework of extended self-similarity (ESS) to characterize the observed scaling behavior. In the ESS framework, the relative scaling exponents of the mesoscale atmospheric boundary layer wind speed exhibit quasi-universal behavior; even far beyond the inertial range of turbulence (Delta t within 10 minutes to 6 hours range). The ESS framework based study is extended further to enquire its validity over complex terrain. This study, based on multiyear wind observations, demonstrate that the ESS holds for the lower ABL wind speed over the complex terrain as well. Another important inference from this study is that the ESS relative scaling exponents corresponding to the mesoscale wind speed closely matches the scaling characteristics of the inertial range turbulence, albeit not exactly identical. The current study proposes benchmark using ESS-based quasi-universal wind speed scaling characteristics in the ABL for the mesoscale modeling community. Using a state-of-the-art atmospheric mesoscale model in conjunction with different planetary boundary layer (PBL) parameterization schemes, multiple wind speed simulations have been conducted. This study reveals that the ESS scaling characteristics of the model simulated wind speed time series in the lower ABL vary significantly from their observational counterparts. The study demonstrate that the model simulated wind speed time series for the time intervals Delta t < 2 hours do not capture the ESS-based scaling characteristics. The detailed analysis of model simulations using different PBL schemes lead to the conclusion that there is a need for significant improvements in the turbulent closure parameterizations adapted in the new-generation atmospheric models. This study is unique as the ESS framework has never been reported or examined for the validation of PBL parameterizations.
Radicals and Reservoirs in the GMI Chemistry and Transport Model: Comparison to Measurements
NASA Technical Reports Server (NTRS)
Douglas, Anne R.; Stolarski, Richard S.; Strahan, Susan E.; Connell, Peter S.
2004-01-01
The most important use of atmospheric chemistry and transport models is to predict the future composition of the atmosphere. The amounts of gases like chlorofluorcarbons, methyl bromide, nitrous oxide and methane are changing and the stratospheric ozone layer will change because these gases are changing. Methyl bromide, nitrous oxide and methane all have natural sources, and also change because of human activity. Chlorofluorcarbons are man-made gases; these are known to decrease stratospheric ozone and future production is banned. They are long-lived gases, and many decades will pass before they are insignificant in the atmosphere. The models are used to predict changes in ozone and other gases; this is a straightforward application. The models must be also tested using observations for the present day atmosphere. This is a challenging task, because the model contains more than 50 species and more than 150 chemical reactions. Data from satellites, ground stations, aircraft and balloons are used to evaluate the model. Different models that are used in international assessments produce different results; in the most recent assessment some predict that ozone will return to 1980 levels by 2025 and others predict that this will not happen until 2050. Since all the parts of the models are conceptually the same, there must be differences in implementation that produce these differences, This work takes a single model, two different sets of winds and temperatures, and repeats the same prediction for the future. Here we compare the results for these two simulations with many observations. The purpose is to identify differences in the model results for the present atmosphere that will lead to different predictions. This sort of controlled comparison will reduce uncertainty in the predictions for stratospheric ozone.
Investigating the impact of diurnal cycle of SST on the intraseasonal and climate variability
NASA Astrophysics Data System (ADS)
Tseng, W. L.; Hsu, H. H.; Chang, C. W. J.; Keenlyside, N. S.; Lan, Y. Y.; Tsuang, B. J.; Tu, C. Y.
2016-12-01
The diurnal cycle is a prominent feature of our climate system and the most familiar example of externally forced variability. Despite this it remains poorly simulated in state-of-the-art climate models. A particular problem is the diurnal cycle in sea surface temperature (SST), which is a key variable in air-sea heat flux exchange. In most models the diurnal cycle in SST is not well resolved, due to insufficient vertical resolution in the upper ocean mixed-layer and insufficiently frequent ocean-atmosphere coupling. Here, we coupled a 1-dimensional ocean model (SIT) to two atmospheric general circulation model (ECHAM5 and CAM5). In particular, we focus on improving the representations of the diurnal cycle in SST in a climate model, and investigate the role of the diurnal cycle in climate and intraseasonal variability.
A Simulation Model of the Planetary Boundary Layer at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Hwang, B.
1978-01-01
A simulation model which predicts the behavior of the Atmospheric Boundary Layer has been developed and coded. The model is partially evaluated by comparing it with laboratory measurements and the sounding measurements at Kennedy Space Center. The applicability of such an approach should prove quite widespread.
NASA Technical Reports Server (NTRS)
Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.
1994-01-01
The proposed research involves four tasks. The first of these is to simulate accurately the turbulent processes in the atmospheric boundary layer. TASS was originally developed to study meso-gamma scale phenomena, such as tornadic storms, microbursts and windshear effects in terminal areas. Simulation of wake vortex evolution, however, will rely on appropriate representation of the physical processes in the surface layer and mixed layer. This involves two parts. First, a specified heat flux boundary condition must be implemented at the surface. Using this boundary condition, simulation results will be compared to experimental data and to other model results for validation. At this point, any necessary changes to the model will be implemented. Next, a surface energy budget parameterization will be added to the model. This will enable calculation of the surface fluxes by accounting for the radiative heat transfer to and from the ground and heat loss to the soil rather than simple specification of the fluxes. The second task involves running TASS with prescribed wake vortices in the initial condition. The vortex models will be supplied by NASA Langley Research Center. Sensitivity tests will be performed on different meteorological environments in the atmospheric boundary layer, which include stable, neutral, and unstable stratifications, calm and severe wind conditions, and dry and wet conditions. Vortex strength may be varied as well. Relevant non-dimensional parameters will include the following: Richardson number or Froude number, Bowen ratio, and height to length scale ratios. The model output will be analyzed and visualized to better understand the transport, decay, and growth rates of the wake vortices. The third task involves running simulations using observed data. MIT Lincoln Labs is currently planning field experiments at the Memphis airport to measure both meteorological conditions and wake vortex characteristics. Once this data becomes available, it can be used to validate the model for vortex behavior under different atmospheric conditions. The fourth task will be to simulate the wake in a more realistic environment covering a wider area. This will involve grid nesting, since high resolution will be required in the wake region but a larger total domain will be used. During the first allocation year, most of the first task will be accomplished.
NASA Astrophysics Data System (ADS)
Lefèvre, Maxence; Spiga, Aymeric; Lebonnois, Sébastien
2017-04-01
The impact of the cloud convective layer of the atmosphere of Venus on the global circulation remains unclear. The recent observations of gravity waves at the top of the cloud by the Venus Express mission provided some answers. These waves are not resolved at the scale of global circulation models (GCM), therefore we developed an unprecedented 3D turbulence-resolving Large-Eddy Simulations (LES) Venusian model (Lefèvre et al, 2016 JGR Planets) using the Weather Research and Forecast terrestrial model. The forcing consists of three different heating rates : two radiative ones for solar and infrared and one associated with the adiabatic cooling/warming of the global circulation. The rates are extracted from the Laboratoire de Météorlogie Dynamique (LMD) Venus GCM using two different cloud models. Thus we are able to characterize the convection and associated gravity waves in function of latitude and local time. To assess the impact of the global circulation on the convective layer, we used rates from a 1D radiative-convective model. The resolved layer, taking place between 1.0 105 and 3.8 104 Pa (48-53 km), is organized as polygonal closed cells of about 10 km wide with vertical wind of several meters per second. The convection emits gravity waves both above and below the convective layer leading to temperature perturbations of several tenths of Kelvin with vertical wavelength between 1 and 3 km and horizontal wavelength from 1 to 10 km. The thickness of the convective layer and the amplitudes of waves are consistent with observations, though slightly underestimated. The global dynamics heating greatly modify the convective layer.
Near-Surface Effects of Free Atmosphere Stratification in Free Convection
NASA Astrophysics Data System (ADS)
Mellado, Juan Pedro; van Heerwaarden, Chiel C.; Garcia, Jade Rachele
2016-04-01
The effect of a linear stratification in the free atmosphere on near-surface properties in a free convective boundary layer (CBL) is investigated by means of direct numerical simulation. We consider two regimes: a neutral stratification regime, which represents a CBL that grows into a residual layer, and a strong stratification regime, which represents the equilibrium (quasi-steady) entrainment regime. We find that the mean buoyancy varies as z^{-1/3}, in agreement with classical similarity theory. However, the root-mean-square (r.m.s.) of the buoyancy fluctuation and the r.m.s. of the vertical velocity vary as z^{-0.45} and ln z, respectively, both in disagreement with theory. These scaling laws are independent of the stratification regime, but the depth over which they are valid depends on the stratification. In the strong stratification regime, this depth is about 20 to 25 % of the CBL depth instead of the commonly used 10 %, which we only observe under neutral conditions. In both regimes, the near-surface flow structure can be interpreted as a hierarchy of circulations attached to the surface. Based on this structure, we define a new near-surface layer in free convection, the plume-merging layer, that is conceptually different from the constant-flux layer. The varying depth of the plume-merging layer depending on the stratification accounts for the varying depth of validity of the scaling laws. These findings imply that the buoyancy transfer law needed in mixed-layer and single-column models is well described by the classical similarity theory, independent of the stratification in the free atmosphere, even though other near-surface properties, such as the r.m.s. of the buoyancy fluctuation and the r.m.s. of the vertical velocity, are inconsistent with that theory.
NASA Astrophysics Data System (ADS)
Allaerts, Dries; Meyers, Johan
2014-05-01
Atmospheric boundary layers (ABL) are frequently capped by an inversion layer limiting the entrainment rate and boundary layer growth. Commonly used analytical models state that the entrainment rate is inversely proportional to the inversion strength. The height of the inversion turns out to be a second important parameter. Conventionally neutral atmospheric boundary layers (CNBL) are ABLs with zero surface heat flux developing against a stratified free atmosphere. In this regime the inversion-filling process is merely driven by the downward heat flux at the inversion base. As a result, CNBLs are strongly dependent on the heating history of the boundary layer and strong inversions will fail to erode during the course of the day. In case of large wind farms, the power output of the farm inside a CNBL will depend on the height and strength of the inversion above the boundary layer. On the other hand, increased turbulence levels induced by wind farms may partially undermine the rigid lid effect of the capping inversion, enhance vertical entrainment of air into the farm, and increase boundary layer growth. A suite of large eddy simulations (LES) is performed to investigate the effect of the capping inversion on the conventionally neutral atmospheric boundary layer and on the wind farm performance under varying initial conditions. For these simulations our in-house pseudo-spectral LES code SP-Wind is used. The wind turbines are modelled using a non-rotating actuator disk method. In the absence of wind farms, we find that a decrease in inversion strength corresponds to a decrease in the geostrophic angle and an increase in entrainment rate and geostrophic drag. Placing the initial inversion base at higher altitudes further reduces the effect of the capping inversion on the boundary layer. The inversion can be fully neglected once it is situated above the equilibrium height that a truly neutral boundary layer would attain under the same external conditions such as geostrophic wind speed and surface roughness. Wind farm simulations show the expected increase in boundary layer height and growth rate with respect to the case without wind farms. Raising the initial strength of the capping inversion in these simulations dampens the turbulent growth of the boundary layer above the farm, decreasing the farms energy extraction. The authors acknowledge support from the European Research Council (FP7-Ideas, grant no. 306471). Simulations were performed on the computing infrastructure of the VSC Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish Government.
A Simplified Land Model (SLM) for use in cloud-resolving models: Formulation and evaluation
NASA Astrophysics Data System (ADS)
Lee, Jungmin M.; Khairoutdinov, Marat
2015-09-01
A Simplified Land Model (SLM) that uses a minimalist set of parameters with a single-layer vegetation and multilevel soil structure has been developed distinguishing canopy and undercanopy energy budgets. The primary motivation has been to design a land model for use in the System for Atmospheric Modeling (SAM) cloud-resolving model to study land-atmosphere interactions with a sufficient level of realism. SLM uses simplified expressions for the transport of heat, moisture, momentum, and radiation in soil-vegetation system. The SLM performance has been evaluated over several land surface types using summertime tower observations of micrometeorological and biophysical data from three AmeriFlux sites, which include grassland, cropland, and deciduous-broadleaf forest. In general, the SLM captures the observed diurnal cycle of surface energy budget and soil temperature reasonably well, although reproducing the evolution of soil moisture, especially after rain events, has been challenging. The SLM coupled to SAM has been applied to the case of summertime shallow cumulus convection over land based on the Atmospheric Radiation Measurements (ARM) Southern Great Plain (SGP) observations. The simulated surface latent and sensible heat fluxes as well as the evolution of thermodynamic profiles in convective boundary layer agree well with the estimates based on the observations. Sensitivity of atmospheric boundary layer development to the soil moisture and different land cover types has been also examined.
Three-Layered Atmospheric Structure in Accretion Disks Around Stellar-Mass Black Holes
NASA Technical Reports Server (NTRS)
Zhang, S. N.; Cui, Wei; Chen, Wan; Yao, Yangsen; Zhang, Xiaoling; Sun, Xuejun; Wu, Xue-Bing; Xu, Haiguang
2000-01-01
Modeling of the x-ray spectra of the Galactic superluminal jet sources GRS 1915+105 and GRO J1655-40 reveals a three-layered atmospheric structure in the inner region of the inner accretion disks. Above the cold and optically thick disk with a temperature of 0.2 to 0.5 kiloelectron volts, there is a warm layer with a temperature of 1.0 to 1.5 kiloelectron volts and an optical depth around 10. Sometimes there is also a much hotter, optically thin corona above the warm layer, with a temperature of 100 kiloelectron volts or higher and an optical depth around unity. The structural similarity between the accretion disks and the solar atmosphere suggests that similar physical processes may be operating in these different systems.
Three-layered atmospheric structure in accretion disks around stellar-mass black holes
Zhang; Cui; Chen; Yao; Zhang; Sun; Wu; Xu
2000-02-18
Modeling of the x-ray spectra of the Galactic superluminal jet sources GRS 1915+105 and GRO J1655-40 reveals a three-layered atmospheric structure in the inner region of their accretion disks. Above the cold and optically thick disk with a temperature of 0.2 to 0.5 kiloelectron volts, there is a warm layer with a temperature of 1.0 to 1.5 kiloelectron volts and an optical depth around 10. Sometimes there is also a much hotter, optically thin corona above the warm layer, with a temperature of 100 kiloelectron volts or higher and an optical depth around unity. The structural similarity between the accretion disks and the solar atmosphere suggests that similar physical processes may be operating in these different systems.
Modification of the Atmospheric Boundary Layer by a Small Island: Observations from Nauru
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Stuart; Hacker, Jorg M.; Cole, Jason N.
2007-03-01
Nauru, a small island in the tropical pacific, generates plumes of clouds that may grow to several hundred km length. This study uses observations to examine the mesoscale disturbance of the marine atmospheric boundary layer by the island that produces these cloud streets. Observations of the surface layer were made from two ships in the vicinity of Nauru and from instruments on the island. The structure of the atmospheric boundary layer over the island was investigated using aircraft flights. Cloud production over Nauru was examined using remote sensing instruments. During the day the island surface layer was warmer than themore » marine surface layer and wind speed was lower than over the ocean. Surface heating forced the growth of a thermal internal boundary layer, above which a street of cumulus clouds formed. The production of clouds resulted in reduced downwelling shortwave irradiance at the island surface. A plume of warm-dry air was observed over the island which extended 15 – 20 km downwind.« less
Energy and water vapor transport across a simplified cloud-clear air interface
NASA Astrophysics Data System (ADS)
Gallana, L.; Di Savino, S.; De Santi, F.; Iovieno, M.; Tordella, D.
2014-11-01
We consider a simplified physics of the could interface where condensation, evaporation and radiation are neglected and momentum, thermal energy and water vapor transport is represented in terms of the Boussinesq model coupled to a passive scalar transport equation for the vapor. The interface is modeled as a layer separating two isotropic turbulent regions with different kinetic energy and vapor concentration. In particular, we focus on the small scale part of the inertial range of the atmospheric boundary layer as well as on the dissipative range of scales which are important to the micro-physics of warm clouds. We have numerically investigated stably stratified interfaces by locally perturbing at an initial instant the standard temperature lapse rate at the cloud interface and then observing the temporal evolution of the system. When the buoyancy term becomes of the same order of the inertial one, we observe a spatial redistribution of the kinetic energy which produce a concomitant pit of kinetic energy within the mixing layer. In this situation, the mixing layer contains two interfacial regions with opposite kinetic energy gradient, which in turn produces two intermittent sublayers in the velocity fluctuations field. This changes the structure of the field with respect to the corresponding non-stratified shearless mixing: the communication between the two turbulent region is weak, and the growth of the mixing layer stops. These results are discussed with respect to Large Eddy Simulations data for the Planetary Boundary Layers.
SIMULATION OF SUMMER-TIME DIURNAL BACTERIAL DYNAMICS IN THE ATMOSPHERIC SURFACE LAYER
A model was prepared to simulate the observed concentration dynamics of culturable bacteria in the diurnal summer atmosphere at a Willamette River Valley, Oregon location. The meteorological and bacterial mechanisms included in a dynamic null-dimensional model with one-second tim...
Coupled atmosphere/canopy model for remote sensing of plant reflectance features
NASA Technical Reports Server (NTRS)
Gerstl, S. A.; Zardecki, A.
1985-01-01
Solar radiative transfer through a coupled system of atmosphere and plant canopy is modeled as a multiple-scattering problem through a layered medium of random scatterers. The radiative transfer equation is solved by the discrete-ordinates finite-element method. Analytic expressions are derived that allow the calculation of scattering and absorption cross sections for any plant canopy layer form measurable biophysical parameters such as the leaf area index, leaf angle distribution, and individual leaf reflectance and transmittance data. An expression for a canopy scattering phase function is also given. Computational results are in good agreement with spectral reflectance measurements directly above a soybean canopy, and the concept of greenness- and brightness-transforms of Landsat MSS data is reconfirmed with the computed results. A sensitivity analysis with the coupled atmosphere/canopy model quantifies how satellite-sensed spectral radiances are affected by increased atmospheric aerosols, by varying leaf area index, by anisotropic leaf scattering, and by non-Lambertian soil boundary conditions. Possible extensions to a 2-D model are also discussed.
NASA Astrophysics Data System (ADS)
Prakash, Kumar Ravi; Nigam, Tanuja; Pant, Vimlesh
2018-04-01
A coupled atmosphere-ocean-wave model was used to examine mixing in the upper-oceanic layers under the influence of a very severe cyclonic storm Phailin over the Bay of Bengal (BoB) during 10-14 October 2013. The coupled model was found to improve the sea surface temperature over the uncoupled model. Model simulations highlight the prominent role of cyclone-induced near-inertial oscillations in subsurface mixing up to the thermocline depth. The inertial mixing introduced by the cyclone played a central role in the deepening of the thermocline and mixed layer depth by 40 and 15 m, respectively. For the first time over the BoB, a detailed analysis of inertial oscillation kinetic energy generation, propagation, and dissipation was carried out using an atmosphere-ocean-wave coupled model during a cyclone. A quantitative estimate of kinetic energy in the oceanic water column, its propagation, and its dissipation mechanisms were explained using the coupled atmosphere-ocean-wave model. The large shear generated by the inertial oscillations was found to overcome the stratification and initiate mixing at the base of the mixed layer. Greater mixing was found at the depths where the eddy kinetic diffusivity was large. The baroclinic current, holding a larger fraction of kinetic energy than the barotropic current, weakened rapidly after the passage of the cyclone. The shear induced by inertial oscillations was found to decrease rapidly with increasing depth below the thermocline. The dampening of the mixing process below the thermocline was explained through the enhanced dissipation rate of turbulent kinetic energy upon approaching the thermocline layer. The wave-current interaction and nonlinear wave-wave interaction were found to affect the process of downward mixing and cause the dissipation of inertial oscillations.
NASA Astrophysics Data System (ADS)
Roberts, T. J.; Dütsch, M.; Hole, L. R.; Voss, P. B.
2015-10-01
Observations from CMET (Controlled Meteorological) balloons are analyzed in combination with mesoscale model simulations to provide insights into tropospheric meteorological conditions (temperature, humidity, wind-speed) around Svalbard, European High Arctic. Five Controlled Meteorological (CMET) balloons were launched from Ny-Ålesund in Svalbard over 5-12 May 2011, and measured vertical atmospheric profiles above Spitsbergen Island and over coastal areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic marine boundary layer over a period of more than 10 h. The CMET profiles are compared to simulations using the Weather Research and Forecasting (WRF) model using nested grids and three different boundary layer schemes. Variability between the three model schemes was typically smaller than the discrepancies between the model runs and the observations. Over Spitsbergen, the CMET flights identified temperature inversions and low-level jets (LLJ) that were not captured by the model. Nevertheless, the model largely reproduced time-series obtained from the Ny-Ålesund meteorological station, with exception of surface winds during the LLJ. Over sea-ice east of Svalbard the model underestimated potential temperature and overestimated wind-speed compared to the CMET observations. This is most likely due to the full sea-ice coverage assumed by the model, and consequent underestimation of ocean-atmosphere exchange in the presence of leads or fractional coverage. The suite of continuous CMET soundings over a sea-ice free region to the northwest of Svalbard are analysed spatially and temporally, and compared to the model. The observed along-flight daytime increase in relative humidity is interpreted in terms of the diurnal cycle, and in the context of marine and terrestrial air-mass influences. Analysis of the balloon trajectory during the CMET soundings identifies strong wind-shear, with a low-level channeled flow. The study highlights the challenges of modelling the Arctic atmosphere, especially in coastal zones with varying topography, sea-ice and surface conditions. In this context, CMET balloons provide a valuable technology for profiling the free atmosphere and boundary layer in remote regions where few other observations are available for model validation.
NASA Technical Reports Server (NTRS)
Herrera, B. J.
1976-01-01
Static pressure data and flow field surveys of the boundary layer and shock layer on the lower surface of a 0.0175 scale model of the space shuttle orbiter were obtained in a hypersonic wind tunnel. The tests were conducted at Mach number 7.9 and Reynolds number based on the model length of 1.3 x 1 million to simulate atmospheric entry. Twenty-six stations were surveyed at 30 and 35 degree angles of attack.
Hydrodynamic escape from planetary atmospheres
NASA Astrophysics Data System (ADS)
Tian, Feng
Hydrodynamic escape is an important process in the formation and evolution of planetary atmospheres. Due to the existence of a singularity point near the transonic point, it is difficult to find transonic steady state solutions by solving the time-independent hydrodynamic equations. In addition to that, most previous works assume that all energy driving the escape flow is deposited in one narrow layer. This assumption not only results in less accurate solutions to the hydrodynamic escape problem, but also makes it difficult to include other chemical and physical processes in the hydrodynamic escape models. In this work, a numerical model describing the transonic hydrodynamic escape from planetary atmospheres is developed. A robust solution technique is used to solve the time dependent hydrodynamic equations. The method has been validated in an isothermal atmosphere where an analytical solution is available. The hydrodynamic model is applied to 3 cases: hydrogen escape from small orbit extrasolar planets, hydrogen escape from a hydrogen rich early Earth's atmosphere, and nitrogen/methane escape from Pluto's atmosphere. Results of simulations on extrasolar planets are in good agreement with the observations of the transiting extrasolar planet HD209458b. Hydrodynamic escape of hydrogen from other hypothetical close-in extrasolar planets are simulated and the influence of hydrogen escape on the long-term evolution of these extrasolar planets are discussed. Simulations on early Earth suggest that hydrodynamic escape of hydrogen from a hydrogen rich early Earth's atmosphere is about two orders magnitude slower than the diffusion limited escape rate. A hydrogen rich early Earth's atmosphere could have been maintained by the balance between the hydrogen escape and the supply of hydrogen into the atmosphere by volcanic outgassing. Origin of life may have occurred in the organic soup ocean created by the efficient formation of prebiotic molecules in the hydrogen rich early Earth's atmosphere. Simulations show that hydrodynamic escape of nitrogen from Pluto is able to remove a ~3 km layer of ice over the age of the solar system. The escape flux of neutral nitrogen may interact with the solar wind at Pluto's orbit and may be detected by the New Horizon mission.
Retrieval of ammonia abundances and cloud opacities on Jupiter from Voyager IRIS spectra
NASA Technical Reports Server (NTRS)
Conrath, B. J.; Gierasch, P. J.
1986-01-01
Gaseous ammonia abundances and cloud opacities are retrieved from Voyager IRIS 5- and 45-micron data on the basis of a simplified atmospheric model and a two-stream radiative transfer approximation, assuming a single cloud layer with 680-mbar base pressure and 0.14 gas scale height. Brightness temperature measurements obtained as a function of emission angle from selected planetary locations are used to verify the model and constrain a number of its parameters.
NASA Astrophysics Data System (ADS)
Wagenbrenner, N. S.; Forthofer, J.; Butler, B.; Shannon, K.
2014-12-01
Near-surface wind predictions are important for a number of applications, including transport and dispersion, wind energy forecasting, and wildfire behavior. Researchers and forecasters would benefit from a wind model that could be readily applied to complex terrain for use in these various disciplines. Unfortunately, near-surface winds in complex terrain are not handled well by traditional modeling approaches. Numerical weather prediction models employ coarse horizontal resolutions which do not adequately resolve sub-grid terrain features important to the surface flow. Computational fluid dynamics (CFD) models are increasingly being applied to simulate atmospheric boundary layer (ABL) flows, especially in wind energy applications; however, the standard functionality provided in commercial CFD models is not suitable for ABL flows. Appropriate CFD modeling in the ABL requires modification of empirically-derived wall function parameters and boundary conditions to avoid erroneous streamwise gradients due to inconsistences between inlet profiles and specified boundary conditions. This work presents a new version of a near-surface wind model for complex terrain called WindNinja. The new version of WindNinja offers two options for flow simulations: 1) the native, fast-running mass-consistent method available in previous model versions and 2) a CFD approach based on the OpenFOAM modeling framework and optimized for ABL flows. The model is described and evaluations of predictions with surface wind data collected from two recent field campaigns in complex terrain are presented. A comparison of predictions from the native mass-consistent method and the new CFD method is also provided.
A soil-canopy scheme for use in a numerical model of the atmosphere: 1D stand-alone model
NASA Astrophysics Data System (ADS)
Kowalczyk, E. A.; Garratt, J. R.; Krummel, P. B.
We provide a detailed description of a soil-canopy scheme for use in the CSIRO general circulation models (GCMs) (CSIRO-4 and CSIRO-9), in the form of a one-dimensional stand-alone model. In addition, the paper documents the model's ability to simulate realistic surface fluxes by comparison with mesoscale model simulations (involving more sophisticated soil and boundary-layer treatments) and observations, and the diurnal range in surface quantities, including extreme maximum surface temperatures. The sensitivity of the model to values of the surface resistance is also quantified. The model represents phase 1 of a longer-term plan to improve the atmospheric boundary layer (ABL) and surface schemes in the CSIRO GCMs.
NASA Astrophysics Data System (ADS)
Gorchakova, I. A.; Mokhov, I. I.; Anikin, P. P.; Emilenko, A. S.
2018-03-01
The aerosol longwave radiative forcing of the atmosphere and heating rate of the near-surface aerosol layer are estimated for the extreme smoke conditions in the Moscow region in summer 2010. Thermal radiation fluxes in the atmosphere are determined using the integral transmission function and semiempirical aerosol model developed on the basis of standard aerosol models and measurements at the Zvenigorod Scientific Station, Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences. The aerosol radiative forcing reached 33 W/m2 at the lower atmospheric boundary and ranged between-1.0 and 1.0 W/m2 at the upper atmospheric boundary. The heating rate of the 10-m atmospheric layer near surface was up to 0.2 K/h during the maximum smoke conditions on August 7-9. The sensitivity of the aerosol longwave radiative forcing to the changes in the aerosol absorption coefficient and aerosol optical thickness are estimated.
On the Development of Models for Height Profiles of the Wind Speed in the Atmospheric Surface Layer
NASA Astrophysics Data System (ADS)
Nikolaev, V. G.; Ganaga, S. V.; Kudryashov, Yu. I.; Nikolaev, V. V.
2018-03-01
The reliability of the known models of a height profile of the wind speed V( h) in the atmospheric boundary layer (ABL) and near-surface layer (NSL) is analyzed using the data of long-term ABL measurements accumulated in Russia in the state network of meteorological and aerological stations and the data of multilevel measurements at mast wind-measuring complexes. A new multilayer semiempirical model of V( h) is proposed which is based on aerodynamic and physical representations of the ABL vertical structure and relies on the hypothesis that wind-speed profiles providing the minimum wind friction on the ground and satisfying the conditions of profile smoothness are feasible in the ABL. This model ensures the best agreement with the data of meteorological, aerological, and mast wind measurements.
MGS-TES thermal inertia study of the Arsia Mons Caldera
Cushing, G.E.; Titus, T.N.
2008-01-01
Temperatures of the Arsia Mons caldera floor and two nearby control areas were obtained by the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES). These observations revealed that the Arsia Mons caldera floor exhibits thermal behavior different from the surrounding Tharsis region when compared with thermal models. Our technique compares modeled and observed data to determine best fit values of thermal inertia, layer depth, and albedo. Best fit modeled values are accurate in the two control regions, but those in the Arsia Mons' caldera are consistently either up to 15 K warmer than afternoon observations, or have albedo values that are more than two standard deviations higher than the observed mean. Models of both homogeneous and layered (such as dust over bedrock) cases were compared, with layered-cases indicating a surface layer at least thick enough to insulate itself from diurnal effects of an underlying substrate material. Because best fit models of the caldera floor poorly match observations, it is likely that the caldera floor experiences some physical process not incorporated into our thermal model. Even on Mars, Arsia Mons is an extreme environment where CO2 condenses upon the caldera floor every night, diurnal temperatures range each day by a factor of nearly 2, and annual average atmospheric pressure is only around one millibar. Here, we explore several possibilities that may explain the poor modeled fits to caldera floor and conclude that temperature dependent thermal conductivity may cause thermal inertia to vary diurnally, and this effect may be exaggerated by presence of water-ice clouds, which occur frequently above Arsia Mons. Copyright 2008 by the American Geophysical Union.
Radiative Impacts of Cloud Heterogeneity and Overlap in an Atmospheric General Circulation Model
NASA Technical Reports Server (NTRS)
Oreopoulos, L.; Lee, D.; Sud, Y. C.; Suarez, M. J.
2012-01-01
The radiative impacts of introducing horizontal heterogeneity of layer cloud condensate, and vertical overlap of condensate and cloud fraction are examined with the aid of a new radiation package operating in the GEOS-5 Atmospheric General Circulation Model. The impacts are examined in terms of diagnostic top-of-the-atmosphere shortwave (SW) and longwave (LW) cloud radiative effect (CRE) calculations for a range of assumptions and parameter specifications about the overlap. The investigation is conducted for two distinct cloud schemes, the one that comes with the standard GEOS-5 distribution, and another which has been recently used experimentally for its enhanced GEOS-5 distribution, and another which has been recently used experimentally for its enhanced cloud microphysical capabilities; both are coupled to a cloud generator allowing arbitrary cloud overlap specification. We find that cloud overlap radiative impacts are significantly stronger for the operational cloud scheme for which a change of cloud fraction overlap from maximum-random to generalized results to global changes of SW and LW CRE of approximately 4 Watts per square meter, and zonal changes of up to approximately 10 Watts per square meter. This is because of fewer occurrences compared to the other scheme of large layer cloud fractions and of multi-layer situations with large numbers of atmospheric being simultaneously cloudy, conditions that make overlap details more important. The impact on CRE of the details of condensate distribution overlap is much weaker. Once generalized overlap is adopted, both cloud schemes are only modestly sensitive to the exact values of the overlap parameters. We also find that if one of the CRE components is overestimated and the other underestimated, both cannot be driven towards observed values by adjustments to cloud condensate heterogeneity and overlap alone.
NASA Astrophysics Data System (ADS)
Holmes, Heather A.
Under the Clean Air Act, the U.S. Environmental Protection Agency is required to determine which air pollutants are harmful to human health, then regulate, monitor and establish criteria levels for these pollutants. To accomplish this and for scientific advancement, integration of knowledge from several disciplines is required including: engineering, atmospheric science, chemistry and public health. Recently, a shift has been made to establish interdisciplinary research groups to better understand the atmospheric processes that govern the transport of pollutants and chemical reactions of species in the atmospheric boundary layer (ABL). The primary reason for interdisciplinary collaboration is the need for atmospheric processes to be treated as a coupled system, and to design experiments that measure meteorological, chemical and physical variables simultaneously so forecasting models can be improved (i.e., meteorological and chemical process models). This dissertation focuses on integrating research disciplines to provide a more complete framework to study pollutants in the ABL. For example, chemical characterization of particulate matter (PM) and the physical processes governing PM distribution and mixing are combined to provide more comprehensive data for source apportionment. Data from three field experiments were utilized to study turbulence, meteorological and chemical parameters in the ABL. Two air quality field studies were conducted on the U.S./Mexico border. The first was located in Yuma, AZ to investigate the spatial and temporal variability of PM in an urban environment and relate chemical properties of ambient aerosols to physical findings. The second border air quality study was conducted in Nogales, Sonora, Mexico to investigate the relationship between indoor and outdoor air quality in order to better correlate cooking fuel types and home activities to elevated indoor PM concentrations. The final study was executed in southern Idaho and focused on comparing two gaseous dry deposition models to determine the fluxes of gaseous elemental mercury and reactive gaseous mercury using the measured concentrations and calculated deposition velocities for each species. Results indicate a large dependence on coupled physical, chemical and biological interactions for atmospheric processes, signifying the need for interdisciplinary collaboration.
Titan's lower troposphere: thermal structure and dynamics
NASA Astrophysics Data System (ADS)
Charnay, B.; Lebonnois, S.
2011-12-01
A new climate model for Titan's atmosphere has been developed, using the physics of the IPSL Titan 2-dimensional climate model with the current version of the LMDZ General Circulation Model's dynamical core. The GCM covers altitudes from the surface to 500 km with the diurnal cycle and the gravitational tides included. 1. Boundary layer and thermal structure The HASI profile of potential temperature shows a layer at 300 m, an other at 800 m and a slope change at 2 km ([5],[2]). Dune spacing on Titan is consistent with a 2-3 km boundary layer ([3]). We have reproduced this profile (see figure) and interpreted the layer at 300 m as a convective boundary layer, the layer at 800 m is a residual layer corresponding to the maximum diurnal vertical extension of the PBL. We interpret the slope change at 2 km as produced by the seasonal displacement of the ITCZ. This layer traps the circulation in the first two km and is responsible of the dune spacing. Finally we interpret the fog discovered in summer polar region ([1]) has clouds produced by the diurnal cycle of the PBL (as fair weather cumulus on Earth). 2. Surface winds 2.1 Effect of gravitational and thermal tides We analysed tropospheric winds and the influence of both the thermal and the gravitational tides. The impact of gravitational tides on the circulation is extremely small. Thermal tides have a visible effect, though quite tenuous. 2.2 Effect of topography We produced topography maps derived from spherical harmonic interpolation ([6]) on the reference ellipsoid ([4]). Surface temperatures at high altitude appear higher that the ambient air. Vertical air movements produce anabatic winds developing on smooth and long slopes. This could be one of the main causes controlling the direction of surface winds and the direction of dunes. References [1] Brown et al.: Discovery of fog at the south pole of Titan, Astrophys. J. 706 (2009), pp. L110-L113 [2] Griffith et al.: Titan's Tropical Storms in an Evolving Atmosphere, Astrophys. J. 687 (2008) L41-L44. [3] Lorenz et al.: A 3 km atmospheric boundary layer on Titan indiacted by dune spacing and Huygens data, Icarus 205, 719-721 (2010) [4] Luciano Iess et al.: Gravity Field, Shape, and Moment of Inertia of Titan, Science 327, 1367(2010) [5] Tokano et al.: Titan's planetary boundary layer structure at the Huygens landing site, J. Geophys. Res vol. 111 (2006) [6] HA. Zebker et al.: Size and Shape of Saturn's Moon TitanScience 324, 921(2009)
NASA Astrophysics Data System (ADS)
Feng, S.; Lauvaux, T.; Keller, K.; Davis, K. J.
2016-12-01
Current estimates of biogenic carbon fluxes over North America based on top-down atmospheric inversions are subject to considerable uncertainty. This uncertainty stems to a large part from the uncertain prior fluxes estimates with the associated error covariances and approximations in the atmospheric transport models that link observed carbon dioxide mixing ratios with surface fluxes. Specifically, approximations in the representation of vertical mixing associated with atmospheric turbulence or convective transport and largely under-determined prior fluxes and their error structures significantly hamper our capacity to reliably estimate regional carbon fluxes. The Atmospheric Carbon and Transport - America (ACT-America) mission aims at reducing the uncertainties in inverse fluxes at the regional-scale by deploying airborne and ground-based platforms to characterize atmospheric GHG mixing ratios and the concurrent atmospheric dynamics. Two aircraft measure the 3-dimensional distribution of greenhouse gases at synoptic scales, focusing on the atmospheric boundary layer and the free troposphere during both fair and stormy weather conditions. Here we analyze two main questions: (i) What level of information can we expect from the currently planned observations? (ii) How might ACT-America reduce the hindcast and predictive uncertainty of carbon estimates over North America?
NASA Technical Reports Server (NTRS)
Senocak, Inane
2003-01-01
The objective of the present study is to evaluate the dynamic procedure in LES of stratocumulus topped atmospheric boundary layer and assess the relative importance of subgrid-scale modeling, cloud microphysics and radiation modeling on the predictions. The simulations will also be used to gain insight into the processes leading to cloud top entrainment instability and cloud breakup. In this report we document the governing equations, numerical schemes and physical models that are employed in the Goddard Cumulus Ensemble model (GCEM3D). We also present the subgrid-scale dynamic procedures that have been implemented in the GCEM3D code for the purpose of the present study.
Feasibility study of a layer-oriented wavefront sensor for solar telescopes.
Marino, Jose; Wöger, Friedrich
2014-02-01
Solar multiconjugate adaptive optics systems rely on several wavefront sensors, which measure the incoming turbulent phase along several field directions to produce a tomographic reconstruction of the turbulent phase. In this paper, we explore an alternative wavefront sensing approach that attempts to directly measure the turbulent phase present at a particular height in the atmosphere: a layer-oriented cross-correlating Shack-Hartmann wavefront sensor (SHWFS). In an experiment at the Dunn Solar Telescope, we built a prototype layer-oriented cross-correlating SHWFS system conjugated to two separate atmospheric heights. We present the data obtained in the observations and complement these with ray-tracing computations to achieve a better understanding of the instrument's performance and limitations. The results obtained in this study strongly indicate that a layer-oriented cross-correlating SHWFS is not a practical design to measure the wavefront at a high layer in the atmosphere.
Li, Jian-hong; Pu, Jun-bing; Sun, Ping-an; Yuan, Dao-xian; Liu, Wen; Zhang, Tao; Mo, Xue
2015-11-01
Due to special hydrogeochemical characteristics of calcium-rich, alkaline and DIC-rich ( dissolved inorganic carbon) environment controlled by the weathering products from carbonate rock, the exchange characteristics, processes and controlling factors of greenhouse gas (CO2 and CH4) across water-air interface in karst water reservoir show obvious differences from those of non-karst water reservoir. Three water reservoirs (Dalongdong reservoir-karst reservoir, Wulixia reservoir--semi karst reservoir, Si'anjiang reservoir-non-karst reservoir) located in different geologic setting in Guangxi Zhuang Autonomous Region, China were chosen to reveal characteristics and controlling factors of greenhouse gas exchange flux across water-air interface. Two common approaches, floating chamber (FC) and thin boundary layer models (TBL), were employed to research and contrast greenhouse gas exchange flux across water-air interface from three reservoirs. The results showed that: (1) surface-layer water in reservoir area and discharging water under dam in Dalongdong water reservoir were the source of atmospheric CO2 and CH4. Surface-layer water in reservoir area in Wulixia water reservoir was the sink of atmospheric CO2 and the source of atmospheric CH4, while discharging water under dam was the source of atmospheric CO2 and CH4. Surface-layer water in Si'anjiang water reservoir was the sink of atmospheric CO2 and source of atmospheric CH4. (2) CO2 and CH4 effluxes in discharging water under dam were much more than those in surface-layer water in reservoir area regardless of karst reservoir or non karst reservoir. Accordingly, more attention should be paid to the CO2 and CH4 emission from discharging water under dam. (3) In the absence of submerged soil organic matters and plants, the difference of CH4 effluxes between karst groundwater-fed reservoir ( Dalongdong water reservoir) and non-karst area ( Wulixia water reservoir and Si'anjiang water reservoir) was less. However, CO2 efflux in karst groundwater-fed reservoir was much higher than that of reservoir in non-karst area due to groundwater of DIC-rich input from karst aquifer and thermal stratification.
The Mars water cycle at other epochs: Recent history of the polar caps and layered terrain
NASA Technical Reports Server (NTRS)
Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.
1992-01-01
The Martian polar caps and layered terrain presumably evolves by the deposition and removal of small amounts of water and dust each year, the current cap attributes therefore represent the incremental transport during a single year as integrated over long periods of time. The role was studied of condensation and sublimation of water ice in this process by examining the seasonal water cycle during the last 10(exp 7) yr. In the model, axial obliquity, eccentricity, and L sub s of perihelion vary according to dynamical models. At each epoch, the seasonal variations in temperature are calculated at the two poles, keeping track of the seasonal CO2 cap and the summertime sublimation of water vapor into the atmosphere; net exchange of water between the two caps is calculated based on the difference in the summertime sublimation between the two caps (or on the sublimation from one cap if the other is covered with CO2 frost all year). Results from the model can help to explain (1) the apparent inconsistency between the timescales inferred for layer formation and the much older crater retention age of the cap and (2) the difference in sizes of the two residual caps, with the south being smaller than the north.
NASA Technical Reports Server (NTRS)
Romanou, A.; Gregg, Watson W.; Romanski, J.; Kelley, M.; Bleck, R.; Healy, R.; Nazarenko, L.; Russell, G.; Schmidt, G. A.; Sun, S.;
2013-01-01
Results from twin control simulations of the preindustrial CO2 gas exchange (natural flux of CO2) between the ocean and the atmosphere are presented here using the NASA-GISS climate model, in which the same atmospheric component (modelE2) is coupled to two different ocean models, the Russell ocean model and HYCOM. Both incarnations of the GISS climate model are also coupled to the same ocean biogeochemistry module (NOBM) which estimates prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2. Model intercomparison is carried out at equilibrium conditions and model differences are contrasted with biases from present day climatologies. Although the models agree on the spatial patterns of the air-sea flux of CO2, they disagree on the strength of the North Atlantic and Southern Ocean sinks mainly because of kinematic (winds) and chemistry (pCO2) differences rather than thermodynamic (SST) ones. Biology/chemistry dissimilarities in the models stem from the different parameterizations of advective and diffusive processes, such as overturning, mixing and horizontal tracer advection and to a lesser degree from parameterizations of biogeochemical processes such as gravitational settling and sinking. The global meridional overturning circulation illustrates much of the different behavior of the biological pump in the two models, together with differences in mixed layer depth which are responsible for different SST, DIC and nutrient distributions in the two models and consequently different atmospheric feedbacks (in the wind, net heat and freshwater fluxes into the ocean).
Two-dimensional magnetohydrodynamic model of emerging magnetic flux in the solar atmosphere
NASA Technical Reports Server (NTRS)
Shibata, K.; Tajima, T.; Steinolfson, R. S.; Matsumoto, R.
1989-01-01
The nonlinear undular mode of the magnetic buoyancy instability in an isolated horizontal magnetic flux embedded in a two-temperature layered atmosphere (solar corona-chromosphere/photosphere) is investigated using a two-dimensional magnetohydrodynamic code. The results show that the flux sheet with beta of about 1 is initially located at the bottom of the photosphere, and that the gas slides down the expanding loop as the instability develops, with the evacuated loop rising as a result of enhanced magnetic buoyancy. The expansion of the magnetic loop in the nonlinear regime displays self-similar behavior. The rise velocity of the magnetic loop in the high chromosphere (10-15 km/s) and the velocity of downflow noted along the loop (30-50 km/s) are consistent with observed values for arch filament systems.
Mountain Wave Analysis Using Fourier Methods
2007-10-01
model for altitudes up to 18 km for the same location using the Hilo , Hawaii 1200 UTC rawinsonde for the background velocity and temperature profile... Hawaii terrain and atmosphere 46 for 12 Dec 2002 vii Tables 1...20 3. Three-Layer Model Specifications for Hawaii 12 December 2002 06 UTC 22 4. Three-Layer Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mather, J. F.; Erdélyi, R., E-mail: robertus@sheffield.ac.uk
2016-05-10
Magneto-acoustic gravity (MAG) waves have been studied intensively in the context of astrophysical plasmas. There are three popular choices of analytic modeling using a Cartesian coordinate system: a magnetic field parallel, perpendicular, or at an angle to the gravitational field. Here, we study a gravitationally stratified plasma embedded in a parallel, so called vertical, magnetic field. We find a governing equation for the auxiliary quantity Θ = p {sub 1}/ ρ {sub 0}, and find solutions in terms of hypergeometric functions. With the convenient relationship between Θ and the vertical velocity component, v {sub z}, we derive the solution formore » v{sub z}. We show that the four linearly independent functions for v{sub z} can also be cast as single hypergeometric functions, rather than the Frobenius series derived by Leroy and Schwartz. We are then able to analyze a case of approximation for a one-layer solution, taking the small wavelength limit. Motivated by solar atmospheric applications, we finally commence study of the eigenmodes of perturbations for a two-layer model using our solutions, solving the dispersion relation numerically. We show that, for a transition between a photospheric and chromospheric plasma embedded in a vertical magnetic field, modes exist that are between the observationally widely investigated three and five minute oscillation periods, interpreted as solar global oscillations in the lower solar atmosphere . It is also shown that, when the density contrast between the layers is large (e.g., applied to photosphere/chromosphere-corona), the global eigenmodes are practically a superposition of the same as in each of the separate one-layer systems.« less
NASA Astrophysics Data System (ADS)
McNider, R. T.; Steeneveld, G.; Holtslag, B.; Pielke, R. A.; Mackaro, S.; Nair, U. S.; Biazar, A. P.; Christy, J. R.; Walters, J.
2012-12-01
. One of the most significant signals in the thermometer-observed temperature record since 1900 is the decrease in the diurnal temperature range (DTR) over land. CMIP3 climate models only captured about 20% of this trend difference. An update of observed trends through 2010 indicates that CMIP5 models still only capture about 28%. Because climate models have not captured this asymmetry, many investigators have looked to forcing or processes that models have not included to explain the lack of fidelity of models. Our paper takes an alternative view of the role nonlinear dynamics of the stable nocturnal boundary layer (SNBL) may provide as a general explanation of the asymmetry. This was first postulated in a nonlinear analysis of a simple two layer model that found slight changes in incoming longwave radiation might result in large changes in the near surface temperature as the boundary is destabilized slightly due to the added downward radiation. This produced a mixing of warmer temperatures from aloft to the surface as the turbulent mixing was enhanced. In the present study we examine whether this behavior is retained in a more complete multi-layer column model with a state of the art radiation scheme for the stable boundary layer. The response of a nocturnal boundary layer to an added increment of downward radiation from CO2 and water vapor (4.8 W m -2 ) was compared to the solution without this forcing. These experiments showed that indeed the SNBL grew slightly and was less stable due to the added longwave radiation. The model showed that the shelter temperature warmed substantially due to this destabilization. Moreover, the budget calculations showed that only about 20% of the warming was due to the added longwave energy. Most of the warming at shelter height was due to the redistribution. Budget calculations in the paper also showed that the ultimate fate of the added input of longwave energy was highly sensitive to boundary layer parameters and turbulent parameterizations. The model showed that at light winds (weak turbulence) the atmosphere was not able to lift this energy off the surface and into the atmosphere. Thus, more radiation was emitted from the surface. If soil conductivity or heat capacity were large then more of the energy would heat the ground. Parameterizations of the type used in large scale models added much more sensible heat to the atmosphere. Based on these model analyses, it is likely that part of the observed long-term increase in minimum temperature is reflecting a redistribution of heat by changes in turbulence and not by an accumulation of heat in the SNBL. Because of the sensitivity of the shelter temperature to parameters and to uncertain turbulence parameterization in the SNBL, there should be caution about the use of minimum temperatures as a global warming metric in either observations or models.
NASA Astrophysics Data System (ADS)
Ohnaka, K.; Hofmann, K.-H.; Schertl, D.; Weigelt, G.; Malbet, F.; Massi, F.; Meilland, A.; Stee, Ph.
2012-01-01
Context. The mass-loss mechanism in normal K-M giant stars with small variability amplitudes is not yet understood, although the majority among red giant stars are precisely of this type. Aims: We present high-spatial and high-spectral resolution observations of the M7 giant BK Vir with AMBER at the Very Large Telescope Interferometer (VLTI). Our aim is to probe the physical properties of the outer atmosphere by spatially resolving the star in the individual CO first overtone lines. Methods: BK Vir was observed between 2.26 and 2.31 μm using the 16-32-48 m telescope configuration with an angular resolution of 9.8 mas and a spectral resolution of 12 000. Results: The uniform-disk diameters observed in the CO first overtone lines are 12 - 31% larger than those measured in the continuum. We also detected asymmetry in the CO line-forming region, which manifests itself as non-zero/non-π differential and closure phases. The data taken 1.5 months apart show possible time variation on a spatial scale of 30 mas (corresponding to 3 × stellar diameter) at the CO band head. Comparison of the observed data with the MARCS photospheric model shows that whereas the observed CO line spectrum can be satisfactorily reproduced by the model, the angular sizes observed in the CO lines are much larger than predicted by the model. Our model with two additional CO layers above the MARCS photosphere reproduces the observed spectrum and interferometric data in the CO lines simultaneously. This model suggests that the inner CO layer at ~1.2 R⋆ is very dense and warm with a CO column density of ~1022 cm-2 and temperatures of 1900 - 2100 K, while the outer CO layer at 2.5-3.0 R⋆ is characterized by column densities of 1019-1020 cm-2 and temperatures of 1500 - 2100 K. Conclusions: Our AMBER observations of BK Vir have spatially resolved the extended molecular outer atmosphere of a normal M giant in the individual CO lines for the first time. The temperatures derived for the CO layers are higher than, or equal to, the uppermost layer of the MARCS photospheric model, implying the operation of some heating mechanism in the outer atmosphere. This study also illustrates that testing photospheric models only with the spectra of strong molecular or atomic features can be misleading. Based on AMBER observations made with the Very Large Telescope Interferometer of the European Southern Observatory. Program ID: 081.D-0233(A) (AMBER Guaranteed Time Observation).
NASA Astrophysics Data System (ADS)
Bénech, Bruno; Ezcurra, Agustin; Lothon, Marie; Saïd, Frédérique; Campistron, Bernard; Lohou, Fabienne; Durand, Pierre
ESCOMPTE programme aims at studying the emissions of primary pollutants in industrial and urban areas, their transport, diffusion and transformation in the atmosphere. This experiment, carried out in southeast France, can be used to validate and to improve meteorological and chemical mesoscale models. One major goal of this experiment was to follow the pollutant plumes, and to investigate its thermodynamic and physico-chemical time evolution. This was realized by means of constant volume balloons, located by global position satellite (GPS) and equipped with thermodynamic and ozone sensors, flying at constant density levels. During the two ESCOMPTE campaigns that took place in June and July 2000 and 2001, 40 balloons were launched, 17 of them equipped with ozone sensors during the day from 0800 to 1800 UTC. Balloons' altitudes flight levels ranged between 400 and 1200 m altitude with Mistral (northerly synoptic flow) and Sea Breeze (southerly breeze) conditions. The atmospheric boundary layer (ABL) topography of the experimental domain is complex and varies strongly from day to day. Its depth presents a large gradient from the sea coast to the north part of the ESCOMPTE domain, and also more complex variability within the domain. The balloons' trajectories describe the evolution of the pollutant plume emitted from the industrial area of Fos-Berre or from the Marseille urban area. Constant volume balloons give a good description of the trajectories of these two plumes. The balloons, which fly at an isopicnic level, cross different atmospheric layers chiefly depending on the ABL height in relation with the constant volume balloons flight level. Thus, each balloon flight is decomposed into different segments that correspond to the same atmospheric layer. In each segment, the ozone content variation is analyzed in relation to other thermodynamical parameters measured by the balloon and mainly to the vapor mixing ratio content. During ESCOMPTE campaign, the mean linear rate of chemical net ozone production at the top of the atmospheric boundary layer was found to be around 6 ppb h -1.
NASA Astrophysics Data System (ADS)
Smalikho, Igor; Banakh, Viktor
2018-04-01
Feasibilities of determination of the wind turbulence parameters from data measured by the Stream Line coherent Doppler lidar under different atmospheric conditions have been studied experimentally. It has been found that the spatial structure of the turbulence is described well by the von Karman model in the layer of intensive mixing. From the lidar measurements at night under stable conditions the estimation of the outer scale of turbulence with the use of the von Karman model is not possible.
Mechanisms of impact of greenhouse gases on the Earth's ozone layer in the Polar Regions
NASA Astrophysics Data System (ADS)
Zadorozhny, Alexander; Dyominov, Igor
A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the atmosphere including aerosol physics is used to examine the impact of the greenhouse gases CO2, CH4, and N2O on the future long-term changes of the Earth's ozone layer, in particular on its expected recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circu-lation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the North to South Poles, as well as distribution of sulphate aerosol particles and polar strato-spheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from Climate Change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abun-dance of the greenhouse gases on the long-term changes of the Earth's ozone layer in the Polar Regions, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2, essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weak-ness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in Antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification be-gins to be more effective in Arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard the expected recovery of the ozone layer here. The difference in the impact of the greenhouse gases on the ozone layer at the southern and northern polar latitudes through PCS modification is determined by the difference in temperature regimes of the Polar Regions. The mechanism of the impact of the greenhouse gases on the polar ozone by means of modification of sulphate aerosol distribution in the atmosphere has been revealed and investigated, too. Numerical experiments show that enhancement of the surface area density of sulphate aerosol in the stratosphere caused by the growth of the greenhouse gases will reduce significantly the ozone depletion during the Antarctic ozone hole.
NASA Astrophysics Data System (ADS)
Bladé, Ileana
1997-08-01
This study examines the extent to which the thermodynamic interactions between the midlatitude atmosphere and the underlying oceanic mixed layer contribute to the low-frequency atmospheric variability. A general circulation model, run under perpetual northern winter conditions, is coupled to a motionless constant-depth mixed layer in midlatitudes, while elsewhere the sea surface temperature (SST) is kept fixed; interannual tropical SST forcing is not included. It is found that coupling does not modify the spatial organization of the variability. The influence of coupling is manifested as a slight reddening of the spectrum of 500-mb geopotential height and a significant enhancement of the lower-tropospheric thermal variance over the oceans at very low frequencies by virtue of the mixed-layer adjustment to surface air temperature variations that occurs on those timescales. This adjustment effectively reduces the thermal damping of the atmosphere associated with surface heat fluxes (or negative oceanic feedback), thus increasing the thermal variance and the persistence of circulation anomalies.In studying the covariability between ocean and atmosphere it is found that the dominant mode of natural atmospheric variability is coupled to the leading mode of SST in each ocean, with the atmosphere leading the ocean by about one month. The cross-correlation function between oceanic and atmospheric anomalies is strongly asymmetric about zero lag. The SST structures are consistent with direct forcing by the anomalous heat fluxes implied by the concurrent surface air temperature and wind fluctuations. Additionally, composites based on large amplitude SST anomaly events contain no evidence of direct driving of atmospheric perturbations by these SST anomalies. Thus, in terms of the spatial organization of the covariability and the evolution of the coupled system from one regime to another, large-scale air-sea interaction in the model is characterized by one-way atmospheric forcing of the mixed layer.These results are qualitatively consistent with those from an earlier idealized study. They imply a subtle but fundamental role for the midlatitude oceans as stabilizing rather than directly generating atmospheric anomalies. It is argued that this scenario is relevant to the dynamics of extratropical atmosphere-ocean coupling on intraseasonal timescales at least: the model is able to qualitatively reproduce the temporal and spatial characteristics of the observed dominant patterns of interaction on these timescales, particularly over the Atlantic.
Decadal change of the south Atlantic ocean Angola-Benguela frontal zone since 1980
NASA Astrophysics Data System (ADS)
Vizy, Edward K.; Cook, Kerry H.; Sun, Xiaoming
2018-01-01
High-resolution simulations with a regional atmospheric model coupled to an intermediate-level mixed layer ocean model along with multiple atmospheric and oceanic reanalyses are analyzed to understand how and why the Angola-Benguela frontal Zone (ABFZ) has changed since 1980. A southward shift of 0.05°-0.55° latitude decade-1 in the annual mean ABFZ position accompanied by an intensification of + 0.05 to + 0.13 K/100-km decade-1 has occurred as ocean mixed layer temperatures have warmed (cooled) equatorward (poleward) of the front over the 1980-2014 period. These changes are captured in a 35-year model integration. The oceanic warming north of the ABFZ is associated with a weakening of vertical entrainment, reduced cooling associated with vertical diffusion, and a deepening of the mixed layer along the Angola coast. These changes coincide with a steady weakening of the onshore atmospheric flow as the zonal pressure gradient between the eastern equatorial Atlantic and the Congo Basin weakens. Oceanic cooling poleward of the ABFZ is primarily due to enhanced advection of cooler water from the south and east, increased cooling by vertical diffusion, and shoaling of the mixed layer depth. In the atmosphere, these changes are related to an intensification and poleward shift of the South Atlantic sub-tropical anticyclone as surface winds, hence the westward mixed layer ocean currents, intensify in the Benguela upwelling region along the Namibian coast. With a few caveats, these findings demonstrate that air/sea interactions play a prominent role in influencing the observed decadal variability of the ABFZ over the southeastern Atlantic since 1980.
NASA Astrophysics Data System (ADS)
Dickson, N. C.; Gierens, K. M.; Rogers, H. L.; Jones, R. L.
2010-02-01
The global observation, assimilation and prediction in numerical models of ice super-saturated (ISS) regions (ISSR) are crucial if the climate impact of aircraft condensations trails (contrails) is to be fully understood, and if, for example, contrail formation is to be avoided through aircraft operational measures. A robust assessment of the global distribution of ISSR will further this debate, and ISS event occurrence, frequency and spatial scales have recently attracted significant attention. The mean horizontal path length through ISSR as observed by MOZAIC aircraft is 150 km (±250 km). The average vertical thickness of ISS layers is 600-800 m (±575 m) but layers ranging from 25 m to 3000 m have been observed, with up to one third of ISS layers thought to be less than 100 m deep. Given their small scales compared to typical atmospheric model grid sizes, statistical representations of the spatial scales of ISSR are required, in both horizontal and vertical dimensions, if global occurrence of ISSR is to be adequately represented in climate models. This paper uses radiosonde launches made by the UK Meteorological Office, from the British Isles, Gibraltar, St. Helena and the Falkland Islands between January 2002 and December 2006, to investigate the probabilistic occurrence of ISSR. Specifically each radiosonde profile is divided into 50- and 100-hPa pressure layers, to emulate the coarse vertical resolution of some atmospheric models. Then the high resolution observations contained within each thick pressure layer are used to calculate an average relative humidity and an ISS fraction for each individual thick pressure layer. These relative humidity pressure layer descriptions are then linked through a probability function to produce an s-shaped curve describing the ISS fraction in any average relative humidity pressure layer. An empirical investigation has shown that this one curve is statistically valid for mid-latitude locations, irrespective of season and altitude, however, pressure layer depth is an important variable. Using this empirical understanding of the s-shaped relationship a mathematical model was developed to represent the ISS fraction within any arbitrary thick pressure layer. Here the statistical distributions of actual high resolution RHi observations in any thick pressure layer, along with an error function, are used to mathematically describe the s-shape. Two models were developed to represent both 50- and 100-hPa pressure layers with each reconstructing their respective s-shapes within 8-10% of the empirical curves. These new models can be used, to represent the small scale structures of ISS events, in modelled data where only low vertical resolution is available. This will be useful in understanding, and improving the global distribution, both observed and forecasted, of ice super-saturation.
ERIC Educational Resources Information Center
Clearing, 1988
1988-01-01
Summarizes what is known about two major variables involved in certain types of chemical pollution that seem to be changing the structure of the Earth's atmosphere. Discusses the greenhouse effect and the ozone layer. (TW)
Midnight Temperature Maximum (MTM) in Whole Atmosphere Model (WAM) Simulations
2016-04-14
naturally strongly dissipative medium, eliminating the need for ‘‘ sponge layers’’ and extra numerical dissipation often imposed in upper layers to...stabilize atmospheric model codes. WAM employs no ‘‘ sponge layers’’ and remains stable using a substantially reduced numerical Rayleigh friction coeffi
Inversion Build-Up and Cold-Air Outflow in a Small Alpine Sinkhole
NASA Astrophysics Data System (ADS)
Lehner, Manuela; Whiteman, C. David; Dorninger, Manfred
2017-06-01
Semi-idealized model simulations are made of the nocturnal cold-air pool development in the approximately 1-km wide and 100-200-m deep Grünloch basin, Austria. The simulations show qualitatively good agreement with vertical temperature and wind profiles and surface measurements collected during a meteorological field expedition. A two-layer stable atmosphere forms in the basin, with a very strong inversion in the lowest part, below the approximate height of the lowest gap in the surrounding orography. The upper part of the stable layer is less strongly stratified and extends to the approximate height of the second-lowest gap. The basin atmosphere cools most strongly during the first few hours of the night, after which temperatures decrease only slowly. An outflow of air forms through the lowest gap in the surrounding orography. The outflow connects with a weak inflow of air through a gap on the opposite sidewall, forming a vertically and horizontally confined jet over the basin. Basin cooling shows strong sensitivity to surface-layer characteristics, highlighting the large impact of variations in vegetation and soil cover on cold-air pool development, as well as the importance of surface-layer parametrization in numerical simulations of cold-air-pool development.
A simplified model for the gravitational potential of the atmosphere and its effect on the geoid
NASA Technical Reports Server (NTRS)
Madden, S. J., Jr.
1972-01-01
The earth's atmosphere is considered as made up of oblate spheroidal layers of variable density lying over an oblate spheroidal earth. The gravitational attraction of the atmosphere at exterior points is computed and its contribution to the usual spherical harmonic gravitational expansion is assessed. The potential is also found for points at the bottom of the model atmosphere. This latter result is of interest for determination of the potential at the surface of the geoid. The atmospheric correction to the geoid determination from satellite coefficients is given.
INDIRECT ESTIMATION OF CONVECTIVE BOUNDARY LAYER STRUCTURE FOR USE IN ROUTINE DISPERSION MODELS
Dispersion models of the convectively driven atmospheric boundary layer (ABL) often require as input meteorological parameters that are not routinely measured. These parameters usually include (but are not limited to) the surface heat and momentum fluxes, the height of the cappin...
NASA Astrophysics Data System (ADS)
Panahifar, Hossein; Khalesifard, Hamid
2018-04-01
The vertical structure of the atmospheric boundary layer (ABL) has been studied by use of a depolarized LiDAR over Tehran, Iran. The boundary layer height (BLH) remains under 1km, and its retrieval from LiDAR have been compared with sonding measurements and meteorological model outputs. It is also shown that the wind speed and direction as well as topography lead to the persistence of air pollution in Tehran. The situation aggravate in fall and winter due to temperature inversion.
Arctic Ocean Model Intercomparison Using Sound Speed
NASA Astrophysics Data System (ADS)
Dukhovskoy, D. S.; Johnson, M. A.
2002-05-01
The monthly and annual means from three Arctic ocean - sea ice climate model simulations are compared for the period 1979-1997. Sound speed is used to integrate model outputs of temperature and salinity along a section between Barrow and Franz Josef Land. A statistical approach is used to test for differences among the three models for two basic data subsets. We integrated and then analyzed an upper layer between 2 m - 50 m, and also a deep layer from 500 m to the bottom. The deep layer is characterized by low time-variability. No high-frequency signals appear in the deep layer having been filtered out in the upper layer. There is no seasonal signal in the deep layer and the monthly means insignificantly oscillate about the long-period mean. For the deep ocean the long-period mean can be considered quasi-constant, at least within the 19 year period of our analysis. Thus we assumed that the deep ocean would be the best choice for comparing the means of the model outputs. The upper (mixed) layer was chosen to contrast the deep layer dynamics. There are distinct seasonal and interannual signals in the sound speed time series in this layer. The mixed layer is a major link in the ocean - air interaction mechanism. Thus, different mean states of the upper layer in the models might cause different responses in other components of the Arctic climate system. The upper layer also strongly reflects any differences in atmosphere forcing. To compare data from the three models we have used a one-way t-test for the population mean, the Wilcoxon one-sample signed-rank test (when the requirement of normality of tested data is violated), and one-way ANOVA method and F-test to verify our hypothesis that the model outputs have the same mean sound speed. The different statistical approaches have shown that all models have different mean characteristics of the deep and upper layers of the Arctic Ocean.
Interactions between marine biota and ENSO: a conceptual model analysis
NASA Astrophysics Data System (ADS)
Heinemann, M.; Timmermann, A.; Feudel, U.
2011-01-01
We develop a conceptual coupled atmosphere-ocean-ecosystem model for the tropical Pacific to investigate the interaction between marine biota and the El Niño-Southern Oscillation (ENSO). Ocean and atmosphere are represented by a two-box model for the equatorial Pacific cold tongue and the warm pool, including a simplified mixed layer scheme. Marine biota are represented by a three-component (nutrient, phytoplankton, and zooplankton) ecosystem model. The atmosphere-ocean model exhibits an oscillatory state which qualitatively captures the main physics of ENSO. During an ENSO cycle, the variation of nutrient upwelling, and, to a small extent, the variation of photosynthetically available radiation force an ecosystem oscillation. The simplified ecosystem in turn, due to the effect of phytoplankton on the absorption of shortwave radiation in the water column, leads to (1) a warming of the tropical Pacific, (2) a reduction of the ENSO amplitude, and (3) a prolongation of the ENSO period. We qualitatively investigate these bio-physical coupling mechanisms using continuation methods. It is demonstrated that bio-physical coupling may play a considerable role in modulating ENSO variability.
NASA Astrophysics Data System (ADS)
Knipp, D.; Kilcommons, L. M.; Damas, M. C.
2015-12-01
We have created a simple and user-friendly web application to visualize output from empirical atmospheric models that describe the lower atmosphere and the Space-Atmosphere Interface Region (SAIR). The Atmospheric Model Web Explorer (AtModWeb) is a lightweight, multi-user, Python-driven application which uses standard web technology (jQuery, HTML5, CSS3) to give an in-browser interface that can produce plots of modeled quantities such as temperature and individual species and total densities of neutral and ionized upper-atmosphere. Output may be displayed as: 1) a contour plot over a map projection, 2) a pseudo-color plot (heatmap) which allows visualization of a variable as a function of two spatial coordinates, or 3) a simple line plot of one spatial coordinate versus any number of desired model output variables. The application is designed around an abstraction of an empirical atmospheric model, essentially treating the model code as a black box, which makes it simple to add additional models without modifying the main body of the application. Currently implemented are the Naval Research Laboratory NRLMSISE00 model for neutral atmosphere and the International Reference Ionosphere (IRI). These models are relevant to the Low Earth Orbit environment and the SAIR. The interface is simple and usable, allowing users (students and experts) to specify time and location, and choose between historical (i.e. the values for the given date) or manual specification of whichever solar or geomagnetic activity drivers are required by the model. We present a number of use-case examples from research and education: 1) How does atmospheric density between the surface and 1000 km vary with time of day, season and solar cycle?; 2) How do ionospheric layers change with the solar cycle?; 3 How does the composition of the SAIR vary between day and night at a fixed altitude?
NASA Astrophysics Data System (ADS)
Roberts, G. C.; Cayez, G.; Ronflé-Nadaud, C.; Albrand, M.; Dralet, J. P.; Momboisse, G.; Nicoll, K.; Seity, Y.; Bronz, M.; Hattenberger, G.; Gorraz, M.; Bustico, A.
2014-12-01
Over the past decade, the scientific community has embraced the use of RPAS (remotely piloted aircraft system) as a tool to improve observations of the Earth's surface and atmospheric phenomena. The use of small RPAS (Remotely Piloted Aircraft System) in atmospheric research has increased because of their relative low-cost, compact size and ease of operation. Small RPAS are especially adapted for observing the atmospheric boundary layer processes at high vertical and temporal resolution. To this end, CNRM, ENAC, and ENM have developed the VOLTIGE (Vecteurs d'Observation de La Troposphere pour l'Investigation et la Gestion de l'Environnement) program to study the life cycle of fog with multiple, small RPAS. The instrumented RPAS flights have successfully observed the evolution of the boundary layer and dissipation of fog events. In addition, vertical profiles from the RPAS have been compared with Météo France forecast models, and the results suggest that forecast models may be improved using high resolution and frequent in-situ measurements. Within the VOLTIGE project, a flying-wing RPAS with four control surfaces was developed to separate elevator and aileron controls in order to reduce the pitch angle envelope and improve turbulence and albedo measurements. The result leads to a small RPAS with the capability of flying up to two hours with 150 grams of payload, while keeping the hand-launch capability as a constraint for regular atmospheric research missions. High frequency data logging has been integrated into the main autopilot in order to synchronize navigation and payload measurements, as well as allowing an efficient sensor-based navigation. The VOLTIGE program also encourages direct participation of students on the advancement of novel observing systems for atmospheric sciences, and provides a step towards deploying small RPAS in an operational network. VOLTIGE is funded by the Agence Nationale de Recherche (ANR-Blanc 2012) and supported by Aerospace Valley.
NASA Technical Reports Server (NTRS)
Pani, Shantau Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Tsay, Si-Chee; Lolli, Simone; Chuang, Ming-Tung; Lee, Chung-Te; Chantara, Somporn; Yu, Jin-Yi
2016-01-01
The aerosol radiative effect can be modulated by the vertical distribution and optical properties of aerosols, particularly when aerosol layers are decoupled. Direct aerosol radiative effects over the northern South China Sea (SCS) were assessed by incorporating an observed data set of aerosol optical properties obtained from the Seven South East Asian Studies (7-SEAS)/Dongsha Experiment into a radiative transfer model. Aerosol optical properties for a two-layer structure of aerosol transport were estimated. In the radiative transfer calculations, aerosol variability (i.e., diversity of source region, aerosol type, and vertical distribution) for the complex aerosol environment was also carefully quantified. The column-integrated aerosol optical depth (AOD) at 500nm was 0.1-0.3 for near-surface aerosols and increased 1-5 times in presence of upper layer biomass-burning aerosols. A case study showed the strong aerosol absorption (single-scattering albedo (omega) approx. = 0.92 at 440nm wavelength) exhibited by the upper layer when associated with predominantly biomass-burning aerosols, and the omega (approx. = 0.95) of near-surface aerosols was greater than that of the upper layer aerosols because of the presence of mixed type aerosols. The presence of upper level aerosol transport could enhance the radiative efficiency at the surface (i.e., cooling) and lower atmosphere (i.e., heating) by up to -13.7 and +9.6W/sq m2 per AOD, respectively. Such enhancement could potentially modify atmospheric stability, can influence atmospheric circulation, as well as the hydrological cycle over the tropical and low-latitude marginal northern SCS.
NASA Astrophysics Data System (ADS)
Narukull, V. R.; Schneider, N. M.; Yaswanth, C.; MohanaManasa, P.; Crismani, M. M. J.; Deighan, J.; Jain, S.
2017-12-01
The close encounter of comet Siding Spring (C/2013 A1, CSS) with Mars on 19 October 2014 had several aftermath effects on the Martian upper atmosphere. Instruments on several spacecraft, such as the IUVS and NGIMS on MAVEN, MARSIS on MEX, and the SHARAD on MRO reported the atmospheric effects of the CSS event. In this study, we re-examined the IUVS and MARSIS observations to get further insight into the CSS effects on the Martian upper atmosphere. The IUVS repeated its observations over the same location with an interval of 22.5 hours. By using these repeated observations, we computed the rate of vertical transport of metallic ions at a given location. This analysis is repeated over several locations. We found that the lifetime of the metallic ion layer increases with increase in altitude and the high-density layers decay faster than the low-density ones, in agreement with model simulations. These vertical transport rates are then used to examine time of the peak in metallic ion layer measured by NGIMS at 185 km. Previous studies have shown that there is an ambiguity in the altitude of the peak of metallic ion layer and that of the electron density layer due to CSS with the former being 60 km higher than the later. By re-analyzing the observations of IUVS and MARSIS, we addressed the ambiguity in altitude. The ambiguity in the altitude is mainly because of the differences in the orbital passes of the two spacecraft, the global inhomogeneity of the initial dust deposition, and the dispersion effects of the electron density profiles in the MARSIS observations.
NASA Astrophysics Data System (ADS)
Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Tsay, Si-Chee; Lolli, Simone; Chuang, Ming-Tung; Lee, Chung-Te; Chantara, Somporn; Yu, Jin-Yi
2016-05-01
The aerosol radiative effect can be modulated by the vertical distribution and optical properties of aerosols, particularly when aerosol layers are decoupled. Direct aerosol radiative effects over the northern South China Sea (SCS) were assessed by incorporating an observed data set of aerosol optical properties obtained from the Seven South East Asian Studies (7-SEAS)/Dongsha Experiment into a radiative transfer model. Aerosol optical properties for a two-layer structure of aerosol transport were estimated. In the radiative transfer calculations, aerosol variability (i.e., diversity of source region, aerosol type, and vertical distribution) for the complex aerosol environment was also carefully quantified. The column-integrated aerosol optical depth (AOD) at 500 nm was 0.1-0.3 for near-surface aerosols and increased 1-5 times in presence of upper layer biomass-burning aerosols. A case study showed the strong aerosol absorption (single-scattering albedo (ω) ≈ 0.92 at 440 nm wavelength) exhibited by the upper layer when associated with predominantly biomass-burning aerosols, and the ω (≈0.95) of near-surface aerosols was greater than that of the upper layer aerosols because of the presence of mixed type aerosols. The presence of upper level aerosol transport could enhance the radiative efficiency at the surface (i.e., cooling) and lower atmosphere (i.e., heating) by up to -13.7 and +9.6 W m-2 per AOD, respectively. Such enhancement could potentially modify atmospheric stability, can influence atmospheric circulation, as well as the hydrological cycle over the tropical and low-latitude marginal northern SCS.
The Bounce of SL-9 Impact Ejecta Plumes on Re-Entry
NASA Astrophysics Data System (ADS)
Deming, L. D.; Harrington, J.
1996-09-01
We have generated synthetic light curves of the re-entry of SL-9 ejecta plumes into Jupiter's atmosphere and have modeled the periodic oscillation of the observed R plume light curves (P. D. Nicholson et al. 1995, Geophys. Res. Lett. 22, 1613--1616) as a hydrodynamic bounce. Our model is separated into plume and atmospheric components. The plume portion of the model is a ballistic Monte Carlo calculation (Harrington and Deming, this meeting). In this paper we describe the atmospheric portion of the model. The infalling plume is divided over a spatial grid (in latitude/longitude). The plume is layered, and joined to a 1-D Lagrangian radiative-hydrodynamic model of the atmosphere, at each grid point. The radiative-hydrodynamic code solves the momentum, energy, and radiative transfer equations for both the infalling plume layers and the underlying atmosphere using an explicit finite difference scheme. It currently uses gray opacities for both the plume and the atmosphere, and the calculations indicate that a much greater opacity is needed for the plume than for the atmosphere. We compute the emergent infrared intensity at each grid point, and integrate spatially to yield a synthetic light curve. These curves exhibit many features in common with observed light curves, including a rapid rise to maximum light followed by a gradual decline due to radiative damping. Oscillatory behavior (the ``bounce'') is a persistent feature of the light curves, and is caused by the elastic nature of the plume impact. In addition to synthetic light curves, the model also calculates temperature profiles for the jovian atmosphere as heated by the plume infall.
Using Ground Measurements to Examine the Surface Layer Parameterization Scheme in NCEP GFS
NASA Astrophysics Data System (ADS)
Zheng, W.; Ek, M. B.; Mitchell, K.
2017-12-01
Understanding the behavior and the limitation of the surface layer parameneterization scheme is important for parameterization of surface-atmosphere exchange processes in atmospheric models, accurate prediction of near-surface temperature and identifying the role of different physical processes in contributing to errors. In this study, we examine the surface layer paramerization scheme in the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) using the ground flux measurements including the FLUXNET data. The model simulated surface fluxes, surface temperature and vertical profiles of temperature and wind speed are compared against the observations. The limits of applicability of the Monin-Obukhov similarity theory (MOST), which describes the vertical behavior of nondimensionalized mean flow and turbulence properties within the surface layer, are quantified in daytime and nighttime using the data. Results from unstable regimes and stable regimes are discussed.
Electrodynamic properties and height of atmospheric convective boundary layer
NASA Astrophysics Data System (ADS)
Anisimov, S. V.; Galichenko, S. V.; Mareev, E. A.
2017-09-01
We consider the relations between the mixed layer height and atmospheric electric parameters affected by convective mixing. Vertical turbulent transport of radon, its progeny and electrically charged particles is described under Lagrangian stochastic framework, which is the next step to develop a consistent model for the formation of electrical conditions in the atmospheric boundary layer. Using the data from detailed and complex measurements of vertical profiles of the temperature and turbulence statistics as input, we calculated non-stationary vertical profiles of radon and its daughter products concentrations, atmospheric electric conductivity and intensity of electric field in the convective boundary layer from the morning transition through early afternoon quasi-stationary conditions. These profiles demonstrate substantial variability due to the changing turbulent regime in the evolving boundary layer. We obtained quantitative estimates of the atmospheric electric field variability range essentially related to the sunrise and convection development. It is shown that the local change in the electrical conductivity is the only factor that can change the intensity of electric field at the earth's surface more than twice during the transition from night to day. The established relations between electric and turbulent parameters of the boundary layer indicate that the effect of sunrise is more pronounced in the case when development of convection is accompanied by an increase in aerosol concentration and, hence, a decrease in local conductivity.
Stably stratified canopy flow in complex terrain
NASA Astrophysics Data System (ADS)
Xu, X.; Yi, C.; Kutter, E.
2015-07-01
Stably stratified canopy flow in complex terrain has been considered a difficult condition for measuring net ecosystem-atmosphere exchanges of carbon, water vapor, and energy. A long-standing advection error in eddy-flux measurements is caused by stably stratified canopy flow. Such a condition with strong thermal gradient and less turbulent air is also difficult for modeling. To understand the challenging atmospheric condition for eddy-flux measurements, we use the renormalized group (RNG) k-ϵ turbulence model to investigate the main characteristics of stably stratified canopy flows in complex terrain. In this two-dimensional simulation, we imposed persistent constant heat flux at ground surface and linearly increasing cooling rate in the upper-canopy layer, vertically varying dissipative force from canopy drag elements, buoyancy forcing induced from thermal stratification and the hill terrain. These strong boundary effects keep nonlinearity in the two-dimensional Navier-Stokes equations high enough to generate turbulent behavior. The fundamental characteristics of nighttime canopy flow over complex terrain measured by the small number of available multi-tower advection experiments can be reproduced by this numerical simulation, such as (1) unstable layer in the canopy and super-stable layers associated with flow decoupling in deep canopy and near the top of canopy; (2) sub-canopy drainage flow and drainage flow near the top of canopy in calm night; (3) upward momentum transfer in canopy, downward heat transfer in upper canopy and upward heat transfer in deep canopy; and (4) large buoyancy suppression and weak shear production in strong stability.
A Prototype Two-Decade Fully-Coupled Fine-Resolution CCSM Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClean, Julie L.; Bader, David C; Bryan, Frank O.
2011-01-01
A fully coupled global simulation using the Community Climate System Model (CCSM) was configured using grid resolutions of 0.1{sup o} for the ocean and sea-ice, and 0.25{sup o} for the atmosphere and land, and was run under present-day greenhouse gas conditions for 20 years. It represents one of the first efforts to simulate the planetary system at such high horizontal resolution. The climatology of the circulation of the atmosphere and the upper ocean were compared with observational data and reanalysis products to identify persistent mean climate biases. Intensified and contracted polar vortices, and too cold sea surface temperatures (SSTs) inmore » the subpolar and mid-latitude Northern Hemisphere were the dominant biases produced by the model. Intense category 4 cyclones formed spontaneously in the tropical North Pacific. A case study of the ocean response to one such event shows the realistic formation of a cold SST wake, mixed layer deepening, and warming below the mixed layer. Too many tropical cyclones formed in the North Pacific however, due to too high SSTs in the tropical eastern Pacific. In the North Atlantic anomalously low SSTs lead to a dearth of hurricanes. Agulhas eddy pathways are more realistic than in equivalent stand-alone ocean simulations forced with atmospheric reanalysis.« less
NASA Astrophysics Data System (ADS)
Boytard, Mai-Lan; Royer, Philippe; Chazette, Patrick; Shang, Xiaoxia; Marnas, Fabien; Totems, Julien; Bizard, Anthony; Bennai, Baya; Sauvage, Laurent
2013-04-01
The HyMeX program (Hydrological cycle in Mediterranean eXperiment) aims at improving our understanding of hydrological cycle in the Mediterranen and at a better quantification and forecast of high-impact weather events in numerical weather prediction models. The first Special Observation Period (SOP1) took place in September/October 2012. During this period two aerosol Raman lidars have been deployed at Menorca Island (Spain) : one Water-vapor and Aerosol Raman LIdar (WALI) operated by LSCE/CEA (Laboratoire des Sciences du Climat et de l'Environnement/Commissariat à l'Energie Atomique) and one aerosol Raman and dual-polarization lidar (R-Man510) developed and commercialized by LEOSPHERE company. Both lidars have been continuously running during the campaign and have provided information on aerosol and cloud optical properties under various atmospheric conditions (maritime background aerosols, dust events, cirrus clouds...). We will present here the results of intercomparisons between R-Man510, and WALI aerosol lidar systems and collocated sunphotometer measurements. Limitations and uncertainties on the retrieval of extinction coefficients, depolarization ratio, aerosol optical depths and detection of atmospheric structures (planetary boundary layer height, aerosol/cloud layers) will be discussed according atmospheric conditions. The results will also be compared with theoretical uncertainty assessed with direct/inverse model of lidar profiles.
NASA Astrophysics Data System (ADS)
Eladawy, Ahmed; Shaltout, Mohamed; Sousa, Magda Catarina; Dias, João Miguel; Nadaoka, Kazuo
2018-05-01
The Gulf of Suez, Northern Islands protected area, and Hurghada zone are experiencing mega developments in all sectors including tourism, industry, and logistics. The need for moderately accurate near-shore hydrodynamic models is increasing to support the sustainable development of this oceanic area. This can be accomplished by following a nesting approach including the downscaling of global atmospheric and oceanic models into local models using higher resolution datasets. This work aims to present the development of a one-way coupling between atmospheric and hydrodynamic models for the Gulf of Suez (GOS) to understand the local oceanic characteristics and processes. The Regional Climate Model system (RegCM4) is used to simulate moderate resolution atmospheric features and its results are used to force a local dedicated application of Delft3D model. The results indicate that the predicted water level, water temperature, and evaporation accurately follow in situ measurements, remotely sensed data, and re-analysis data. The results suggest that the annual sea surface temperature is averaged at 23 °C, while the annual average of evaporation rates equals 8.02 mm/day. The study suggests that the water level displays a marked seasonal and spatial variation. Moreover, the water balance in the Gulf of Suez was controlled by the difference between inflows and outflows through the Straits of Gubal and by the net precipitation. In addition, the water balance indicated a net loss of approximately 3.9 × 10-3 m of water during 2013. Moreover, the exchange through the Straits of Gubal showed a two-way exchange with a net inflow of 0.0007 Sv, where the outflow dominated in the surface layer along the western coast and the inflow dominated in the lower layers along the middle of the Straits. To conclude, the one-way coupling modeling technique proved to be a reliable tool for studying local features of the GOS region.
NASA Astrophysics Data System (ADS)
Moody, M.; Bailey, B.; Stoll, R., II
2017-12-01
Understanding how changes in the microclimate near individual plants affects the surface energy budget is integral to modeling land-atmosphere interactions and a wide range of near surface atmospheric boundary layer phenomena. In urban areas, the complex geometry of the urban canopy layer results in large spatial deviations of turbulent fluxes further complicating the development of models. Accurately accounting for this heterogeneity in order to model urban energy and water use requires a sub-plant level understanding of microclimate variables. We present analysis of new experimental field data taken in and around two Blue Spruce (Picea pungens) trees at the University of Utah in 2015. The test sites were chosen in order study the effects of heterogeneity in an urban environment. An array of sensors were placed in and around the conifers to quantify transport in the soil-plant-atmosphere continuum: radiative fluxes, temperature, sap fluxes, etc. A spatial array of LEMS (Local Energy Measurement Systems) were deployed to obtain pressure, surrounding air temperature and relative humidity. These quantities are used to calculate the radiative and turbulent fluxes. Relying on measurements alone is insufficient to capture the complexity of microclimate distribution as one reaches sub-plant scales. A spatially-explicit radiation and energy balance model previously developed for deciduous trees was extended to include conifers. The model discretizes the tree into isothermal sub-volumes on which energy balances are performed and utilizes incoming radiation as the primary forcing input. The radiative transfer component of the model yields good agreement between measured and modeled upward longwave and shortwave radiative fluxes. Ultimately, the model was validated through an examination of the full energy budget including radiative and turbulent fluxes through isolated Picea pungens in an urban environment.
A solar radiation model for use in climate studies
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah
1992-01-01
A solar radiation routine is developed for use in climate studies that includes absorption and scattering due to ozone, water vapor, oxygen, carbon dioxide, clouds, and aerosols. Rayleigh scattering is also included. Broadband parameterization is used to compute the absorption by water vapor in a clear atmosphere, and the k-distribution method is applied to compute fluxes in a scattering atmosphere. The reflectivity and transmissivity of a scattering layer are computed analytically using the delta-four-stream discrete-ordinate approximation. The two-stream adding method is then applied to compute fluxes for a composite of clear and scattering layers. Compared to the results of high spectral resolution and detailed multiple-scattering calculations, fluxes and heating rate are accurately computed to within a few percent. The high accuracy of the flux and heating-rate calculations is achieved with a reasonable amount of computing time. With the UV and visible region grouped into four bands, this solar radiation routine is useful not only for climate studies but also for studies on photolysis in the upper atmosphere and photosynthesis in the biosphere.
NASA Astrophysics Data System (ADS)
Adkins, K. A.; Sescu, A.
2016-12-01
Simulation and modeling have shown that wind farms have an impact on the near-surface atmospheric boundary layer (ABL) as turbulent wakes generated by the turbines enhance vertical mixing. These changes alter downstream atmospheric properties. With a large portion of wind farms hosted within an agricultural context, changes to the environment can potentially have secondary impacts such as to the productivity of crops. With the exception of a few observational data sets that focus on the impact to near-surface temperature, little to no observational evidence exists. These few studies also lack high spatial resolution due to their use of a limited number of meteorological towers or remote sensing techniques. This study utilizes an instrumented small unmanned aerial system (sUAS) to gather in-situ field measurements from two Midwest wind farms, focusing on the impact that large utility-scale wind turbines have on relative humidity. Wind turbines are found to differentially alter the relative humidity in the downstream, spanwise and vertical directions under a variety of atmospheric stability conditions.
NASA Astrophysics Data System (ADS)
Los, S.; Hipps, L.; Alfieri, J. G.; Prueger, J. H.; Kustas, W. P.
2017-12-01
Agriculture in semi-arid regions is globally facing increasing stress on water resources. Hence, knowledge of water used in irrigated crops is essential for water resource management. However, quantifying spatial and temporal distribution of evapotranspiration (ET) has proven difficult because of the inherent complexities involved. Understanding of the complex biophysical relationships that govern ET is incomplete, particularly for heterogeneous vegetation. The USDA-ARS is developing a remotely-sensed ET modeling system that utilizes a two-source energy balance (TSEB) model capable of simulating turbulent water and energy exchange from measurements of radiometric land surface temperature. The modeling system has been tested over a number of vegetated surfaces and is currently being validated for vineyard sites in the Central Valley of California through the Grape Remote sensing Atmospheric Profiling & Evapotranspiration eXperiment (GRAPEX). The highly variable, elevated canopy structure and semi-arid climatic conditions of these sites give the opportunity to gain knowledge of both turbulent exchange processes and the TSEB model's ability to simulate turbulent fluxes for heterogeneous vegetation. Analyzed are fast-response (20 Hz) 3-D velocity, temperature, and humidity measurements gathered over 4 years at two vineyard sites. These data were collected at a height of 5 m, within the surface layer but above the canopy, and at 1.5 m, below the canopy top. Power spectra and cross-spectra are used to study behavior of turbulent water vapor exchanges and coupling between the canopy layer and surface layer under various atmospheric conditions. Frequent light winds and unstable daytime conditions, combined with the complicated canopy structure, often induce intermittent and episodic turbulence transport. This resulted in a modal behavior alternating between periods of more continuous canopy venting and periods where water vapor fluxes are dominated by transient, low frequency events. Aerodynamic resistances derived by the TSEB model are examined, and modeled fluxes of water and energy are compared to measured values for various conditions. Efforts to characterize periods of intermittent behavior are presented and particular attention to model performance is given to these intermittent periods.
NASA Astrophysics Data System (ADS)
Narapusetty, Balachandrudu
2017-06-01
The sensitivity of the sea-surface temperature (SST) prediction skill to the atmospheric internal variability (weather noise) in the North Pacific (20∘-60∘N;120∘E-80∘W) on decadal timescales is examined using state-of-the-art Climate Forecasting System model version 2 (CFS) and a variation of CFS in an Interactive Ensemble approach (CFSIE), wherein six copies of atmospheric components with different perturbed initial states of CFS are coupled with the same ocean model by exchanging heat, momentum and fresh water fluxes dynamically at the air-sea interface throughout the model integrations. The CFSIE experiments are designed to reduce weather noise and using a few ten-year long forecasts this study shows that reduction in weather noise leads to lower SST forecast skill. To understand the pathways that cause the reduced SST prediction skill, two twenty-year long forecasts produced with CFS and CFSIE for 1980-2000 are analyzed for the ocean subsurface characteristics that influence SST due to the reduction in weather noise in the North Pacific. The heat budget analysis in the oceanic mixed layer across the North Pacific reveals that weather noise significantly impacts the heat transport in the oceanic mixed layer. In the CFSIE forecasts, the reduced weather noise leads to increased variations in heat content due to shallower mixed layer, diminished heat storage and enhanced horizontal heat advection. The enhancement of the heat advection spans from the active Kuroshio regions of the east coast of Japan to the west coast of continental United States and significantly diffuses the basin-wide SST anomaly (SSTA) contrasts and leads to reduction in the SST prediction skill in decadal forecasts.
NASA Astrophysics Data System (ADS)
Yagüe, C.; Maqueda, G.; Ramos, D.; Sastre, M.; Viana, S.; Serrano, E.; Morales, G.; Ayarzagüena, B.; Viñas, C.; Sánchez, E.
2009-04-01
An Atmospheric Boundary Layer campaign was developed in Spain along June 2008 at the CIBA (Research Centre for the Lower Atmosphere) site which is placed on a fairly homogeneous terrain in the centre of an extensive plateau (41°49' N, 4°56' W). Different instrumentation at several levels was available on a new 10m meteorological mast, including temperature and humidity sensors, wind vanes and cup anemometers, as well as one sonic anemometer. Besides, two quartz-based microbarometers were installed at 50 and 100m on the main permanent 100m tower placed at CIBA. Three additional microbarometers were deployed on the surface on a triangular array of approximately 200 m side, and a tethered balloon was used in order to record vertical profiles of temperature, wind and humidity up to 1000m. Finally, a GRIMM particle monitor (MODEL 365), which can be used to continuously measure each six seconds simultaneously the PM10, PM2.5 and PM1 values, was deployed at 1.5m. This work will show some preliminary results from the campaign CIBA 2008, analysing the main physical processes present in the atmospheric Nocturnal Boundary Layer (NBL), the different stability periods observed and the corresponding turbulent parameters, as well as the coherent structures detected. The pressure perturbations measured from the surface and tower levels make possible to study the main wave parameters from wavelet transform, and compared the structures detected by the microbarometers with those detected in the wind and particles records.
Limitations of one-dimensional mesoscale PBL parameterizations in reproducing mountain-wave flows
Munoz-Esparza, Domingo; Sauer, Jeremy A.; Linn, Rodman R.; ...
2015-12-08
In this study, mesoscale models are considered to be the state of the art in modeling mountain-wave flows. Herein, we investigate the role and accuracy of planetary boundary layer (PBL) parameterizations in handling the interaction between large-scale mountain waves and the atmospheric boundary layer. To that end, we use recent large-eddy simulation (LES) results of mountain waves over a symmetric two-dimensional bell-shaped hill [Sauer et al., J. Atmos. Sci. (2015)], and compare them to four commonly used PBL schemes. We find that one-dimensional PBL parameterizations produce reasonable agreement with the LES results in terms of vertical wavelength, amplitude of velocitymore » and turbulent kinetic energy distribution in the downhill shooting flow region. However, the assumption of horizontal homogeneity in PBL parameterizations does not hold in the context of these complex flow configurations. This inappropriate modeling assumption results in a vertical wavelength shift producing errors of ≈ 10 m s–1 at downstream locations due to the presence of a coherent trapped lee wave that does not mix with the atmospheric boundary layer. In contrast, horizontally-integrated momentum flux derived from these PBL schemes displays a realistic pattern. Therefore results from mesoscale models using ensembles of one-dimensional PBL schemes can still potentially be used to parameterize drag effects in general circulation models. Nonetheless, three-dimensional PBL schemes must be developed in order for mesoscale models to accurately represent complex-terrain and other types of flows where one-dimensional PBL assumptions are violated.« less
NASA Astrophysics Data System (ADS)
Trautz, A.; Smits, K. M.; Illangasekare, T. H.; Schulte, P.
2014-12-01
The purpose of this study is to investigate the impacts of soil conditions (i.e. soil type, saturation) and atmospheric forcings (i.e. velocity, temperature, relative humidity) on the momentum, mass, and temperature boundary layers. The atmospheric conditions tested represent those typically found in semi-arid and arid climates and the soil conditions simulate the three stages of evaporation. The data generated will help identify the importance of different soil conditions and atmospheric forcings with respect to land-atmospheric interactions which will have direct implications on future numerical studies investigating the effects of turbulent air flow on evaporation. The experimental datasets generated for this study were performed using a unique climate controlled closed-circuit wind tunnel/porous media facility located at the Center for Experimental Study of Subsurface Environmental Processes (CESEP) at the Colorado School of Mines. The test apparatus consisting of a 7.3 m long porous media tank and wind tunnel, were outfitted with a sensor network to carefully measure wind velocity, air and soil temperature, relative humidity, soil moisture, and soil air pressure. Boundary layer measurements were made between the heights of 2 and 500 mm above the soil tank under constant conditions (i.e. wind velocity, temperature, relative humidity). The soil conditions (e.g. soil type, soil moisture) were varied between datasets to analyze their impact on the boundary layers. Experimental results show that the momentum boundary layer is very sensitive to the applied atmospheric conditions and soil conditions to a much less extent. Increases in velocity above porous media leads to momentum boundary layer thinning and closely reflect classical flat plate theory. The mass and thermal boundary layers are directly dependent on both atmospheric and soil conditions. Air pressure within the soil is independent of atmospheric temperature and relative humidity - wind velocity and soil moisture effects were observed. This data provides important insight into future work of accurately modeling the exchange processes associated with evaporation under various turbulent atmospheric conditions.
NASA Astrophysics Data System (ADS)
Benedict, James J.
The Madden-Julian Oscillation (MJO), an eastward-propagating atmospheric disturbance resembling a transient Walker cell, dominates intraseasonal (20--100 days) variability in the tropical Indian and West Pacific Ocean regions. The phenomenon is most active during the Northern Hemisphere winter and is characterized by cyclic periods of suppressed (dry phase) and active (wet phase) cloudiness and precipitation. Numerous complexities---multi-scale interactions of moist convection and large-scale wave dynamics, air-sea fluxes and feedbacks, topographical impacts, and tropical-extratropical interactions---challenge our ability to fully understand the MJO and result in its poor representation in most current general circulation models (GCMs). This study examines the representation of the MJO in a modified version of the NCAR Community Atmosphere Model (CAM). The modifications involve substituting conventional boundary layer, turbulence, and cloud parameterizations with a configuration of cloud-resolving models (CRMs) embedded into each GCM grid cell in a technique termed "superparameterization" (SP). Unlike many GCMs including the standard CAM, the SP-CAM displays robust intraseasonal convective variability. Two SP-CAM simulations are utilized in this study: one forced by observed sea-surface temperatures (SSTs; "uncoupled") and a second identical to the first except for a new treatment of tropical SSTs in which a simplified mixed-layer ocean model is used to predict SST anomalies that are coupled to the atmosphere ("coupled"). Key physical features of the MJO are captured in the uncoupled SP-CAM. Ahead (east) of the disturbance there is meridional boundary layer moisture convergence and a vertical progression of warmth, moisture, and convective heating from the lower to upper troposphere. The space-time dynamical response to convective heating is also reproduced, especially the vertical structure of anomalous westerly wind and its migration into the region of heavy rainfall as the disturbance propagates eastward. Advective drying processes in the MJO wake are also represented well. The coupled SP-CAM shows more realistic MJO eastward propagation, signal coherence and spatial structure relative to the uncoupled SP-CAM. The improvement varies with longitude but generally stems from better space-time relationships among MJO convective heating, its dynamical response, SSTs, surface fluxes, boundary layer properties, and vertical moisture structure. Coupled MJO events in the Indian Ocean display more realistic intensity; in the West Pacific, the coupled SP-CAM overestimates convective strength but shows an improved vertical structure relative to the uncoupled SP-CAM. Biases related to MJO convection are also examined. Overestimated convective intensity in the West Pacific appears to be linked to basic state biases, Maritime Continent topographical impacts, unrealistic convection-wind-evaporation feedbacks, and the neglect of convective momentum transport in the model. Phase errors between observed and simulated boundary layer moisture appear to stem from an unrealistic representation of shallow cumuli.
NASA Astrophysics Data System (ADS)
Stock, Joachim W.; Blaszczak-Boxe, Christopher S.; Lehmann, Ralph; Grenfell, J. Lee; Patzer, A. Beate C.; Rauer, Heike; Yung, Yuk L.
2017-07-01
Atmospheric chemical composition is crucial in determining a planet's atmospheric structure, stability, and evolution. Attaining a quantitative understanding of the essential chemical mechanisms governing atmospheric composition is nontrivial due to complex interactions between chemical species. Trace species, for example, can participate in catalytic cycles - affecting the abundance of major and other trace gas species. Specifically, for Mars, such cycles dictate the abundance of its primary atmospheric constituent, carbon dioxide (CO2), but also for one of its trace gases, ozone (O3). The identification of chemical pathways/cycles by hand is extremely demanding; hence, the application of numerical methods, such as the Pathway Analysis Program (PAP), is crucial to analyze and quantitatively exemplify chemical reaction networks. Here, we carry out the first automated quantitative chemical pathway analysis of Mars' atmosphere with respect to O3. PAP was applied to JPL/Caltech's 1-D updated photochemical Mars model's output data. We determine all significant chemical pathways and their contribution to O3 production and consumption (up to 80 km) in order to investigate the mechanisms causing the characteristic shape of the O3 volume mixing ratio profile, i.e. a ground layer maximum and an ozone layer at ∼50 km. These pathways explain why an O3 layer is present, why it is located at that particular altitude and what the different processes forming the near-surface and middle atmosphere O3 maxima are. Furthermore, we show that the Martian atmosphere can be divided into two chemically distinct regions according to the O(3P):O3 ratio. In the lower region (below approximately 24 km altitude) O3 is the most abundant Ox (= O3 + O(3P)) species. In the upper region (above approximately 24 km altitude), where the O3 layer is located, O(3P) is the most abundant Ox species. Earlier results concerning the formation of O3 on Mars can now be explained with the help of chemical pathways leading to a better understanding of the vertical O3 profile.
NASA Astrophysics Data System (ADS)
Li, Jiming; Lv, Qiaoyi; Jian, Bida; Zhang, Min; Zhao, Chuanfeng; Fu, Qiang; Kawamoto, Kazuaki; Zhang, Hua
2018-05-01
Studies have shown that changes in cloud cover are responsible for the rapid climate warming over the Tibetan Plateau (TP) in the past 3 decades. To simulate the total cloud cover, atmospheric models have to reasonably represent the characteristics of vertical overlap between cloud layers. Until now, however, this subject has received little attention due to the limited availability of observations, especially over the TP. Based on the above information, the main aim of this study is to examine the properties of cloud overlaps over the TP region and to build an empirical relationship between cloud overlap properties and large-scale atmospheric dynamics using 4 years (2007-2010) of data from the CloudSat cloud product and collocated ERA-Interim reanalysis data. To do this, the cloud overlap parameter α, which is an inverse exponential function of the cloud layer separation D and decorrelation length scale L, is calculated using CloudSat and is discussed. The parameters α and L are both widely used to characterize the transition from the maximum to random overlap assumption with increasing layer separations. For those non-adjacent layers without clear sky between them (that is, contiguous cloud layers), it is found that the overlap parameter α is sensitive to the unique thermodynamic and dynamic environment over the TP, i.e., the unstable atmospheric stratification and corresponding weak wind shear, which leads to maximum overlap (that is, greater α values). This finding agrees well with the previous studies. Finally, we parameterize the decorrelation length scale L as a function of the wind shear and atmospheric stability based on a multiple linear regression. Compared with previous parameterizations, this new scheme can improve the simulation of total cloud cover over the TP when the separations between cloud layers are greater than 1 km. This study thus suggests that the effects of both wind shear and atmospheric stability on cloud overlap should be taken into account in the parameterization of decorrelation length scale L in order to further improve the calculation of the radiative budget and the prediction of climate change over the TP in the atmospheric models.
The role of nutricline depth in regulating the ocean carbon cycle.
Cermeño, Pedro; Dutkiewicz, Stephanie; Harris, Roger P; Follows, Mick; Schofield, Oscar; Falkowski, Paul G
2008-12-23
Carbon uptake by marine phytoplankton, and its export as organic matter to the ocean interior (i.e., the "biological pump"), lowers the partial pressure of carbon dioxide (pCO(2)) in the upper ocean and facilitates the diffusive drawdown of atmospheric CO(2). Conversely, precipitation of calcium carbonate by marine planktonic calcifiers such as coccolithophorids increases pCO(2) and promotes its outgassing (i.e., the "alkalinity pump"). Over the past approximately 100 million years, these two carbon fluxes have been modulated by the relative abundance of diatoms and coccolithophores, resulting in biological feedback on atmospheric CO(2) and Earth's climate; yet, the processes determining the relative distribution of these two phytoplankton taxa remain poorly understood. We analyzed phytoplankton community composition in the Atlantic Ocean and show that the distribution of diatoms and coccolithophorids is correlated with the nutricline depth, a proxy of nutrient supply to the upper mixed layer of the ocean. Using this analysis in conjunction with a coupled atmosphere-ocean intermediate complexity model, we predict a dramatic reduction in the nutrient supply to the euphotic layer in the coming century as a result of increased thermal stratification. Our findings indicate that, by altering phytoplankton community composition, this causal relationship may lead to a decreased efficiency of the biological pump in sequestering atmospheric CO(2), implying a positive feedback in the climate system. These results provide a mechanistic basis for understanding the connection between upper ocean dynamics, the calcium carbonate-to-organic C production ratio and atmospheric pCO(2) variations on time scales ranging from seasonal cycles to geological transitions.
The near‐global mesospheric potassium layer: Observations and modeling
Dawkins, E. C. M.; Chipperfield, M. P.; Feng, W.
2015-01-01
Abstract The meteoric metal layers act as unique tracers of chemistry and dynamics in the upper atmosphere. Existing lidar studies from a few locations show that K exhibits a semiannual seasonality (winter and summer maxima), quite unlike the annual seasonality (winter maximum and summer minimum) seen with Na and Fe. This work uses spaceborne observations made with the Optical Spectrograph and InfraRed Imager System instrument on the Odin satellite to retrieve the near‐global K layer for the first time. The satellite data (2004 to mid‐2013) are used to validate the implementation of a recently proposed potassium chemistry scheme in a whole atmosphere chemistry climate model, which provides a chemical basis for this semiannual seasonal behavior. The satellite and model data show that this semiannual seasonality is near global in extent, with the strongest variation at middle and high latitudes. The column abundance, centroid layer height, and root‐mean‐square width of the K layer are consistent with the limited available lidar record. The K data set is then used to investigate the impact of polar mesospheric clouds on the metal layers at high latitudes during summer. Finally, the occurrence frequency of sporadic K layers and their possible link to sporadic E layers are examined. PMID:27478716
A model for straight and helical solar jets: II. Parametric study of the plasma beta.
Pariat, E; Dalmasse, K; DeVore, C R; Antiochos, S K; Karpen, J T
2016-12-01
Jets are dynamic, impulsive, well-collimated plasma events that develop at many different scales and in different layers of the solar atmosphere. Jets are believed to be induced by magnetic reconnection, a process central to many astrophysical phenomena. Within the solar atmosphere, jet-like events develop in many different environments, e.g., in the vicinity of active regions as well as in coronal holes, and at various scales, from small photospheric spicules to large coronal jets. In all these events, signatures of helical structure and/or twisting/rotating motions are regularly observed. The present study aims to establish that a single model can generally reproduce the observed properties of these jet-like events. In this study, using our state-of-the-art numerical solver ARMS, we present a parametric study of a numerical tridimensional magnetohydrodynamic (MHD) model of solar jet-like events. Within the MHD paradigm, we study the impact of varying the atmospheric plasma β on the generation and properties of solar-like jets. The parametric study validates our model of jets for plasma β ranging from 10 -3 to 1, typical of the different layers and magnetic environments of the solar atmosphere. Our model of jets can robustly explain the generation of helical solar jet-like events at various β ≤ 1. This study introduces the new original result that the plasma β modifies the morphology of the helical jet, explaining the different observed shapes of jets at different scales and in different layers of the solar atmosphere. Our results allow us to understand the energisation, triggering, and driving processes of jet-like events. Our model allows us to make predictions of the impulsiveness and energetics of jets as determined by the surrounding environment, as well as the morphological properties of the resulting jets.
Unforced decadal fluctuations in a coupled model of the atmosphere and ocean mixed layer
NASA Technical Reports Server (NTRS)
Barnett, T. P.; Del Genio, A. D.; Ruedy, R. A.
1992-01-01
Global average temperature in a 100-year control run of a model used for greenhouse gas response simulations showed low-frequency natural variability comparable in magnitude to that observed over the last 100 years. The model variability was found to be barotropic in the atmosphere, and located in the tropical strip with largest values near the equator in the Pacific. The model variations were traced to complex, low-frequency interactions between the meridional sea surface temperature gradients in the eastern equatorial Pacific, clouds at both high and low levels, and features of the tropical atmospheric circulation. The variations in these and other model parameters appear to oscillate between two limiting climate states. The physical scenario accounting for the oscillations on decadal time scales is almost certainly not found in the real world on shorter time scales due to limited resolution and the omission of key physics (e.g., equatorial ocean dynamics) in the model. The real message is that models with dynamical limitations can still produce significant long-term variability. Only a thorough physical diagnosis of such simulations and comparisons with decadal-length data sets will allow one to decide if faith in the model results is, or is not, warranted.
NASA Technical Reports Server (NTRS)
Polansky, A. C.
1982-01-01
A method for diagnosing surface parameters on a regional scale via geosynchronous satellite imagery is presented. Moisture availability, thermal inertia, atmospheric heat flux, and total evaporation are determined from three infrared images obtained from the Geostationary Operational Environmental Satellite (GOES). Three GOES images (early morning, midafternoon, and night) are obtained from computer tape. Two temperature-difference images are then created. The boundary-layer model is run, and its output is inverted via cubic regression equations. The satellite imagery is efficiently converted into output-variable fields. All computations are executed on a PDP 11/34 minicomputer. Output fields can be produced within one hour of the availability of aligned satellite subimages of a target area.
Extracting Urban Morphology for Atmospheric Modeling from Multispectral and SAR Satellite Imagery
NASA Astrophysics Data System (ADS)
Wittke, S.; Karila, K.; Puttonen, E.; Hellsten, A.; Auvinen, M.; Karjalainen, M.
2017-05-01
This paper presents an approach designed to derive an urban morphology map from satellite data while aiming to minimize the cost of data and user interference. The approach will help to provide updates to the current morphological databases around the world. The proposed urban morphology maps consist of two layers: 1) Digital Elevation Model (DEM) and 2) land cover map. Sentinel-2 data was used to create a land cover map, which was realized through image classification using optical range indices calculated from image data. For the purpose of atmospheric modeling, the most important classes are water and vegetation areas. The rest of the area includes bare soil and built-up areas among others, and they were merged into one class in the end. The classification result was validated with ground truth data collected both from field measurements and aerial imagery. The overall classification accuracy for the three classes is 91 %. TanDEM-X data was processed into two DEMs with different grid sizes using interferometric SAR processing. The resulting DEM has a RMSE of 3.2 meters compared to a high resolution DEM, which was estimated through 20 control points in flat areas. Comparing the derived DEM with the ground truth DEM from airborne LIDAR data, it can be seen that the street canyons, that are of high importance for urban atmospheric modeling are not detectable in the TanDEM-X DEM. However, the derived DEM is suitable for a class of urban atmospheric models. Based on the numerical modeling needs for regional atmospheric pollutant dispersion studies, the generated files enable the extraction of relevant parametrizations, such as Urban Canopy Parameters (UCP).
Seasonal simulations using a coupled ocean-atmosphere model with data assimilation
NASA Astrophysics Data System (ADS)
Larow, Timothy Edward
1997-10-01
A coupled ocean-atmosphere initialization scheme using Newtonian relaxation has been developed for the Florida State University coupled ocean-atmosphere global general circulation model. The coupled model is used for seasonal predictions of the boreal summers of 1987 and 1988. The atmosphere model is a modified version of the Florida State University global spectral model, resolution triangular truncation 42 waves. The ocean general circulation model consists of a slightly modified version developed by Latif (1987). Coupling is synchronous with exchange of information every two model hours. Using daily analysis from ECMWF and observed monthly mean SSTs from NCEP, two - one year, time dependent, Newtonian relaxation were conducted using the coupled model prior to the seasonal forecasts. Relaxation was selectively applied to the atmospheric vorticity, divergence, temperature, and dew point depression equations, and to the ocean's surface temperature equation. The ocean's initial conditions are from a six year ocean-only simulation which used observed wind stresses and a relaxation towards observed SSTs for forcings. Coupled initialization was conducted from 1 June 1986 to 1 June 1987 for the 1987 boreal forecast and from 1 June 1987 to 1 June 1988 for the 1988 boreal forecast. Examination of annual means of net heat flux, freshwater flux and wind stress obtained by from the initialization show close agreement with Oberhuber (1988) climatology and the Florida State University pseudo wind stress analysis. Sensitivity of the initialization/assimilation scheme was tested by conducting two - ten member ensemble integrations. Each member was integrated for 90 days (June-August) of the respective year. Initial conditions for the ensembles consisted of the same ocean state as used by the initialize forecasts, while the atmospheric initial conditions were from ECMWF analysis centered on 1 June of the respective year. Root mean square error and anomaly correlations between observed and forecasted SSTs in the Nino 3 and Nino 4 regions show greater skill between the initialized forecasts than the ensemble forecasts. It is hypothesized that differences in the specific humidity within the planetary boundary layer are responsible for the large SST errors noted with the ensembles.
Boundary-Layer Characteristics Over a Coastal Megacity
NASA Astrophysics Data System (ADS)
Melecio-Vazquez, D.; Ramamurthy, P.; Arend, M.; Moshary, F.; Gonzalez, J.
2017-12-01
Boundary-layer characteristics over New York City are analyzed for various local and synoptic conditions over several seasons. An array of vertical profilers, including a Doppler LiDAR, a micro-pulse LiDAR and a microwave radiometer are used to observe the structure and evolution of the boundary-layer. Additionally, an urbanized Weather Research and Forecasting (uWRF) model coupled to a high resolution landcover/land-use database is used to study the spatial variability in boundary layer characteristics. The summer daytime averaged potential temperature profile from the microwave radiometer shows the presence of a thermal internal boundary layer wherein a superadiabatic layer lies underneath a stable layer instead of a mixed-layer. Both the winter daytime and nighttime seasonal averages show that the atmosphere remains unstable near the surface and does not reach stable conditions during the nighttime. The mixing ratio seasonal averages show peaks in humidity near 200-m and 1100-m, above instrument level, which could result from sea breeze and anthropogenic sources. Ceilometer measurements show a high degree of variability in boundary layer height depending on wind direction. Comparison with uWRF results show that the model tends to overestimate convective efficiency for selected summer and winter cases and therefore shows a much deeper thermal boundary layer than the observed profiles. The model estimates a less humid atmosphere than seen in observations.
NASA Technical Reports Server (NTRS)
Praderie, F.; Simonneau, E.; Snow, T. P., Jr.
1975-01-01
Copernicus satellite observations of the Ly-alpha profiles in alpha Lyrae (Vega) are used to determine whether classical radiative-equilibrium LTE model atmospheres can fit the thermal structure in the outer layers of that star. Two plane-parallel LTE model photospheres of alpha Lyrae are considered: a line-blanketed radiative-equilibrium model with an effective temperature of 9650 K and log g of 4.05, and the same model with a temperature of 9500 K and log g of 4.0. The profiles of the Ly-alpha wings are computed, and it is found that classical LTE models are unable to predict either the observed violet wing or the red wing longwards of 1239 A, regardless of the line source function. It is concluded that the electron temperature must increase outwards over the surface value reached in radiative equilibrium.
Mechanisms of diurnal precipitation over the US Great Plains: a cloud resolving model perspective
NASA Astrophysics Data System (ADS)
Lee, Myong-In; Choi, Ildae; Tao, Wei-Kuo; Schubert, Siegfried D.; Kang, In-Sik
2010-02-01
The mechanisms of summertime diurnal precipitation in the US Great Plains were examined with the two-dimensional (2D) Goddard Cumulus Ensemble (GCE) cloud-resolving model (CRM). The model was constrained by the observed large-scale background state and surface flux derived from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program’s Intensive Observing Period (IOP) data at the Southern Great Plains (SGP). The model, when continuously-forced by realistic surface flux and large-scale advection, simulates reasonably well the temporal evolution of the observed rainfall episodes, particularly for the strongly forced precipitation events. However, the model exhibits a deficiency for the weakly forced events driven by diurnal convection. Additional tests were run with the GCE model in order to discriminate between the mechanisms that determine daytime and nighttime convection. In these tests, the model was constrained with the same repeating diurnal variation in the large-scale advection and/or surface flux. The results indicate that it is primarily the surface heat and moisture flux that is responsible for the development of deep convection in the afternoon, whereas the large-scale upward motion and associated moisture advection play an important role in preconditioning nocturnal convection. In the nighttime, high clouds are continuously built up through their interaction and feedback with long-wave radiation, eventually initiating deep convection from the boundary layer. Without these upper-level destabilization processes, the model tends to produce only daytime convection in response to boundary layer heating. This study suggests that the correct simulation of the diurnal variation in precipitation requires that the free-atmospheric destabilization mechanisms resolved in the CRM simulation must be adequately parameterized in current general circulation models (GCMs) many of which are overly sensitive to the parameterized boundary layer heating.
NASA Technical Reports Server (NTRS)
Lee, M.-I.; Choi, I.; Tao, W.-K.; Schubert, S. D.; Kang, I.-K.
2010-01-01
The mechanisms of summertime diurnal precipitation in the US Great Plains were examined with the two-dimensional (2D) Goddard Cumulus Ensemble (GCE) cloud-resolving model (CRM). The model was constrained by the observed large-scale background state and surface flux derived from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program s Intensive Observing Period (IOP) data at the Southern Great Plains (SGP). The model, when continuously-forced by realistic surface flux and large-scale advection, simulates reasonably well the temporal evolution of the observed rainfall episodes, particularly for the strongly forced precipitation events. However, the model exhibits a deficiency for the weakly forced events driven by diurnal convection. Additional tests were run with the GCE model in order to discriminate between the mechanisms that determine daytime and nighttime convection. In these tests, the model was constrained with the same repeating diurnal variation in the large-scale advection and/or surface flux. The results indicate that it is primarily the surface heat and moisture flux that is responsible for the development of deep convection in the afternoon, whereas the large-scale upward motion and associated moisture advection play an important role in preconditioning nocturnal convection. In the nighttime, high clouds are continuously built up through their interaction and feedback with long-wave radiation, eventually initiating deep convection from the boundary layer. Without these upper-level destabilization processes, the model tends to produce only daytime convection in response to boundary layer heating. This study suggests that the correct simulation of the diurnal variation in precipitation requires that the free-atmospheric destabilization mechanisms resolved in the CRM simulation must be adequately parameterized in current general circulation models (GCMs) many of which are overly sensitive to the parameterized boundary layer heating.
Effect of the Barrier Layer on the Upper Ocean Response to MJO Forcing
NASA Astrophysics Data System (ADS)
Bulusu, S.
2014-12-01
Recently, attention has been given to an upper ocean feature known as the Barrier Layer, which has been shown to impact meteorological phenomena from ENSO to tropical cyclones by suppressing vertical mixing, which reduces sea surface cooling and enhances surface heat fluxes. The calculation defines the Barrier Layer as the difference between the Isothermal Layer Depth (ILD) and Mixed Layer Depth (MLD). Proper representation of these features relies on precise observations of SSS to attain accurate measurements of the MLD and subsequently, the BLT. Compared to the many available in situ SSS measurements, the NASA Aquarius salinity mission currently obtains the closest observations to the true SSS. The role of subsurface features will be better understood through increased accuracy of SSS measurements. In this study BLT estimates are derived from satellite measurements using a multilinear regression model (MRM) in the Indian Ocean. The MRM relates BLT to satellite derived SSS, sea surface temperature (SST) and sea surface height anomalies (SSHA). Besides being a variable that responds passively to atmospheric conditions, SSS significantly controls upper ocean density and therefore the MLD. The formation of a Barrier Layer can lead to possible feedbacks that impact the atmospheric component of the Madden-Julian Oscillation (MJO), as stated as one of the three major hypotheses of the DYNAMO field campaign. This layer produces a stable stratification, reducing vertical mixing, which influences surface heat fluxes and thus could possibly impact atmospheric conditions during the MJO. Establishing the magnitude and extent of SSS variations during the MJO will be a useful tool for data assimilation into models to correctly represent both oceanic thermodynamic characteristics and atmospheric processes during intraseasonal variations.
NASA Technical Reports Server (NTRS)
Kaplan, M. L.; Zack, J. W.; Wong, V. C.; Tuccillo, J. J.; Coats, G. D.
1982-01-01
A mesoscale atmospheric simulation system is described that is being developed in order to improve the simulation of subsynoptic and mesoscale adjustments associated with cyclogenesis, severe storm development, and significant atmospheric transport processes. Present emphasis in model development is in the parameterization of physical processes, time-dependent boundary conditions, sophisticated initialization and analysis procedures, nested grid solutions, and applications software development. Basic characteristics of the system as of March 1982 are listed. In a case study, the Grand Island tornado outbreak of 3 June 1980 is considered in substantial detail. Results of simulations with a mesoscale atmospheric simulation system indicate that over the high plains subtle interactions between existing jet streaks and deep well mixed boundary layers can lead to well organized patterns of mesoscale divergence and pressure falls. The amplitude and positioning of these mesoscale features is a function of the subtle nonlinear interaction between the pre-existing jet-streak and deep well mixed boundary layers. Model results for the case study indicate that the model has the potential for forecasting the precursor mesoscale convective environment.
Equilibrium Climate Sensitivity Obtained From Multimillennial Runs of Two GFDL Climate Models
NASA Astrophysics Data System (ADS)
Paynter, D.; Frölicher, T. L.; Horowitz, L. W.; Silvers, L. G.
2018-02-01
Equilibrium climate sensitivity (ECS), defined as the long-term change in global mean surface air temperature in response to doubling atmospheric CO2, is usually computed from short atmospheric simulations over a mixed layer ocean, or inferred using a linear regression over a short-time period of adjustment. We report the actual ECS from multimillenial simulations of two Geophysical Fluid Dynamics Laboratory (GFDL) general circulation models (GCMs), ESM2M, and CM3 of 3.3 K and 4.8 K, respectively. Both values are 1 K higher than estimates for the same models reported in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change obtained by regressing the Earth's energy imbalance against temperature. This underestimate is mainly due to changes in the climate feedback parameter (-α) within the first century after atmospheric CO2 has stabilized. For both GCMs it is possible to estimate ECS with linear regression to within 0.3 K by increasing CO2 at 1% per year to doubling and using years 51-350 after CO2 is constant. We show that changes in -α differ between the two GCMs and are strongly tied to the changes in both vertical velocity at 500 hPa (ω500) and estimated inversion strength that the GCMs experience during the progression toward the equilibrium. This suggests that while cloud physics parametrizations are important for determining the strength of -α, the substantially different atmospheric state resulting from a changed sea surface temperature pattern may be of equal importance.
Simulations of Atmospheric Neutral Wave Coupling to the Ionosphere
NASA Astrophysics Data System (ADS)
Siefring, C. L.; Bernhardt, P. A.
2005-12-01
The densities in the E- and F-layer plasmas are much less than the density of background neutral atmosphere. Atmospheric neutral waves are primary sources of plasma density fluctuations and are the sources for triggering plasma instabilities. The neutral atmosphere supports acoustic waves, acoustic gravity waves, and Kelvin Helmholtz waves from wind shears. These waves help determine the structure of the ionosphere by changes in neutral density that affect ion-electron recombination and by neutral velocities that couple to the plasma via ion-neutral collisions. Neutral acoustic disturbances can arise from thunderstorms, chemical factory explosions and intentional high-explosive tests. Based on conservation of energy, acoustic waves grow in amplitude as they propagate upwards to lower atmospheric densities. Shock waves can form in an acoustic pulse that is eventually damped by viscosity. Ionospheric effects from acoustic waves include transient perturbations of E- and F-Regions and triggering of E-Region instabilities. Acoustic-gravity waves affect the ionosphere over large distances. Gravity wave sources include thunderstorms, auroral region disturbances, Space Shuttle launches and possibly solar eclipses. Low frequency acoustic-gravity waves propagate to yield traveling ionospheric disturbances (TID's), triggering of Equatorial bubbles, and possible periodic structuring of the E-Region. Gravity wave triggering of equatorial bubbles is studied numerically by solving the equations for plasma continuity and ion velocity along with Ohms law to provide an equation for the induced electric potential. Slow moving gravity waves provide density depressions on bottom of ionosphere and a gravitational Rayleigh-Taylor instability is initiated. Radar scatter detects field aligned irregularities in the resulting plasma bubble. Neutral Kelvin-Helmholtz waves are produced by strong mesospheric wind shears that are also coincident with the formation of intense E-layers. An atmospheric model for periodic structures with Kelvin-Helmholtz (KH) wavelengths is used to show the development of quasi-periodic structures in the E-layer. For the model, a background atmosphere near 100 km altitude with a scale height of 12.2 km is subjected to a wind shear profile varying by 100 m/s over a distance of 1.7 km. This neutral speed shear drives the KH instability with a growth time of about 100 seconds. The neutral KH wave is a source of plasma turbulence. The E-layer responds to the KH-Wave structure in the neutral atmosphere as an electrodynamic tracer. The plasma flow leads to small scale plasma field aligned irregularities from a gradient drift, plasma interchange instability (GDI) or a Farley-Buneman, two-stream instability (FBI). These irregularities are detected by radar scatter as quasi-periodic structures. All of these plasma phenomena would not occur without the initiation by neutral atmospheric waves.
Sulfur dioxide in the Venus atmosphere: I. Vertical distribution and variability
NASA Astrophysics Data System (ADS)
Vandaele, A. C.; Korablev, O.; Belyaev, D.; Chamberlain, S.; Evdokimova, D.; Encrenaz, Th.; Esposito, L.; Jessup, K. L.; Lefèvre, F.; Limaye, S.; Mahieux, A.; Marcq, E.; Mills, F. P.; Montmessin, F.; Parkinson, C. D.; Robert, S.; Roman, T.; Sandor, B.; Stolzenbach, A.; Wilson, C.; Wilquet, V.
2017-10-01
Recent observations of sulfur containing species (SO2, SO, OCS, and H2SO4) in Venus' mesosphere have generated controversy and great interest in the scientific community. These observations revealed unexpected spatial patterns and spatial/temporal variability that have not been satisfactorily explained by models. Sulfur oxide chemistry on Venus is closely linked to the global-scale cloud and haze layers, which are composed primarily of concentrated sulfuric acid. Sulfur oxide observations provide therefore important insight into the on-going chemical evolution of Venus' atmosphere, atmospheric dynamics, and possible volcanism. This paper is the first of a series of two investigating the SO2 and SO variability in the Venus atmosphere. This first part of the study will focus on the vertical distribution of SO2, considering mostly observations performed by instruments and techniques providing accurate vertical information. This comprises instruments in space (SPICAV/SOIR suite on board Venus Express) and Earth-based instruments (JCMT). The most noticeable feature of the vertical profile of the SO2 abundance in the Venus atmosphere is the presence of an inversion layer located at about 70-75 km, with VMRs increasing above. The observations presented in this compilation indicate that at least one other significant sulfur reservoir (in addition to SO2 and SO) must be present throughout the 70-100 km altitude region to explain the inversion in the SO2 vertical profile. No photochemical model has an explanation for this behaviour. GCM modelling indicates that dynamics may play an important role in generating an inflection point at 75 km altitude but does not provide a definitive explanation of the source of the inflection at all local times or latitudes The current study has been carried out within the frame of the International Space Science Institute (ISSI) International Team entitled 'SO2 variability in the Venus atmosphere'.
NASA Astrophysics Data System (ADS)
Rice, A. K.; Smits, K. M.; Cihan, A.; Howington, S. E.; Illangasekare, T. H.
2013-12-01
Understanding the movement of chemical vapors and gas through variably saturated soil subjected to atmospheric thermal and mass flux boundary conditions at the land/atmospheric interface is important to many applications, including landmine detection, methane leakage during natural gas production from shale and CO2 leakage from deep geologic storage. New, advanced technologies exist to sense chemical signatures and gas leakage at the land/atmosphere interface, but interpretation of sensor signals remains a challenge. Chemical vapors are subject to numerous interactions while migrating through the soil environment, masking source conditions. The process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal quantification of other processes, such as convective gas flow and temporal or spatial variation in soil moisture. Vapor migration is affected by atmospheric conditions (e.g. humidity, temperature, wind velocity), soil thermal and hydraulic properties and contaminant properties, all of which are physically and thermodynamically coupled. The complex coupling of two drastically different flow regimes in the subsurface and atmosphere is commonly ignored in modeling efforts, or simplifying assumptions are made to treat the systems as de-coupled. Experimental data under controlled laboratory settings are lacking to refine the theory for proper coupling and complex treatment of vapor migration through porous media in conversation with atmospheric flow and climate variations. Improving fundamental understanding and accurate quantification of these processes is not feasible in field settings due to lack of controlled initial and boundary conditions and inability to fully characterize the subsurface at all relevant scales. The goal of this work is to understand the influence of changes in atmospheric conditions to transport of vapors through variably saturated soil. We have developed a tank apparatus with a network of soil and atmospheric sensors and a head space for air flow to simulate the atmospheric boundary layer. Experiments were performed under varying temperature values at the soil surface bounded by the atmospheric boundary layer. The model of Smits et al. [2011], accounting for non-equilibrium phase change and coupled heat, water vapor and liquid water flux through soil, was amended to include organic vapor in the gas phase and migration mechanisms often overlooked in models (thermal and Knudsen diffusion, density driven advection). Experimental results show increased vapor mass flux across the soil/atmospheric interface due to heat applied from the atmosphere and coupling of heat and mass transfer in the shallow subsurface for both steady and diurnal temperature patterns. Comparison of model results to experimental data shows dynamic interactions between transport in porous media and boundary conditions. Results demonstrate the value of considering interactions of the atmosphere and subsurface to better understand chemical gas transport through unsaturated soils and the land/atmospheric interface.
Reynolds number invariance of the structure inclination angle in wall turbulence.
Marusic, Ivan; Heuer, Weston D C
2007-09-14
Cross correlations of the fluctuating wall-shear stress and the streamwise velocity in the logarithmic region of turbulent boundary layers are reported over 3 orders of magnitude change in Reynolds number. These results are obtained using hot-film and hot-wire anemometry in a wind tunnel facility, and sonic anemometers and a purpose-built wall-shear stress sensor in the near-neutral atmospheric surface layer on the salt flats of Utah's western desert. The direct measurement of fluctuating wall-shear stress in the atmospheric surface layer has not been available before. Structure inclination angles are inferred from the cross correlation results and are found to be invariant over the large range of Reynolds number. The findings justify the prior use of low Reynolds number experiments for obtaining structure angles for near-wall models in the large-eddy simulation of atmospheric surface layer flows.
Remote sensing of the boundary layer over the oceans. [by IRIS measurements
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Dalu, G.; Nath, N. R.; Lo, R.
1978-01-01
The paper explores the possibility of remotely sensing the boundary layer structure over the oceans by means of the Nimbus 4 IR Interferometric Spectrometer (IRIS) measurements in the water vapor bands. It is found from theoretical considerations that the moderately strong spectral lines in the 9-micron water vapor window region contain useful information about the lowest layers in the atmosphere. The difference between the observed line strength and the theoretically predicted line strength provides information about the departure in the atmospheric temperature and water vapor profiles from standard conditions. The observations of METEOR oceanographic expedition over the North and South Atlantic, and the Indian Ocean expedition make it possible to model the inversion conditions. It is concluded that significant characteristics of the temperature and water vapor profiles in the boundary layer of the atmosphere can be remotely sensed using the water vapor spectral measurements over the oceans.
NASA Astrophysics Data System (ADS)
Baek, Sunghye
2017-07-01
For more efficient and accurate computation of radiative flux, improvements have been achieved in two aspects, integration of the radiative transfer equation over space and angle. First, the treatment of the Monte Carlo-independent column approximation (MCICA) is modified focusing on efficiency using a reduced number of random samples ("G-packed") within a reconstructed and unified radiation package. The original McICA takes 20% of CPU time of radiation in the Global/Regional Integrated Model systems (GRIMs). The CPU time consumption of McICA is reduced by 70% without compromising accuracy. Second, parameterizations of shortwave two-stream approximations are revised to reduce errors with respect to the 16-stream discrete ordinate method. Delta-scaled two-stream approximation (TSA) is almost unanimously used in Global Circulation Model (GCM) but contains systematic errors which overestimate forward peak scattering as solar elevation decreases. These errors are alleviated by adjusting the parameterizations of each scattering element—aerosol, liquid, ice and snow cloud particles. Parameterizations are determined with 20,129 atmospheric columns of the GRIMs data and tested with 13,422 independent data columns. The result shows that the root-mean-square error (RMSE) over the all atmospheric layers is decreased by 39% on average without significant increase in computational time. Revised TSA developed and validated with a separate one-dimensional model is mounted on GRIMs for mid-term numerical weather forecasting. Monthly averaged global forecast skill scores are unchanged with revised TSA but the temperature at lower levels of the atmosphere (pressure ≥ 700 hPa) is slightly increased (< 0.5 K) with corrected atmospheric absorption.
A SAR Observation and Numerical Study on Ocean Surface Imprints of Atmospheric Vortex Streets.
Li, Xiaofeng; Zheng, Weizhong; Zou, Cheng-Zhi; Pichel, William G
2008-05-21
The sea surface imprints of Atmospheric Vortex Street (AVS) off Aleutian Volcanic Islands, Alaska were observed in two RADARSAT-1 Synthetic Aperture Radar (SAR) images separated by about 11 hours. In both images, three pairs of distinctive vortices shedding in the lee side of two volcanic mountains can be clearly seen. The length and width of the vortex street are about 60-70 km and 20 km, respectively. Although the AVS's in the two SAR images have similar shapes, the structure of vortices within the AVS is highly asymmetrical. The sea surface wind speed is estimated from the SAR images with wind direction input from Navy NOGAPS model. In this paper we present a complete MM5 model simulation of the observed AVS. The surface wind simulated from the MM5 model is in good agreement with SAR-derived wind. The vortex shedding rate calculated from the model run is about 1 hour and 50 minutes. Other basic characteristics of the AVS including propagation speed of the vortex, Strouhal and Reynolds numbers favorable for AVS generation are also derived. The wind associated with AVS modifies the cloud structure in the marine atmospheric boundary layer. The AVS cloud pattern is also observed on a MODIS visible band image taken between the two RADARSAT SAR images. An ENVISAT advance SAR image taken 4 hours after the second RADARSAT SAR image shows that the AVS has almost vanished.
NASA Astrophysics Data System (ADS)
Kramm, Gerhard
2010-07-01
In this paper we discuss the meaning of feedback parameter, greenhouse effect and transient climate response usually related to the globally averaged energy balance model of Schneider and Mass. After scrutinizing this model and the corresponding planetary radiation balance we state that (a) the this globally averaged energy balance model is flawed by unsuitable physical considerations, (b) the planetary radiation balance for an Earth in the absence of an atmosphere is fraught by the inappropriate assumption of a uniform surface temperature, the so-called radiative equilibrium temperature of about 255 K, and (c) the effect of the radiative anthropogenic forcing, considered as a perturbation to the natural system, is much smaller than the uncertainty involved in the solution of the model of Schneider and Mass. This uncertainty is mainly related to the empirical constants suggested by various authors and used for predicting the emission of infrared radiation by the Earth's skin. Furthermore, after inserting the absorption of solar radiation by atmospheric constituents and the exchange of sensible and latent heat between the Earth and the atmosphere into the model of Schneider and Mass the surface temperatures become appreciably lesser than the radiative equilibrium temperature. Moreover, neither the model of Schneider and Mass nor the Dines-type two-layer energy balance model for the Earth-atmosphere system, both contain the planetary radiation balance for an Earth in the absence of an atmosphere as an asymptotic solution, do not provide evidence for the existence of the so-called atmospheric greenhouse effect if realistic empirical data are used.
NASA Astrophysics Data System (ADS)
Huang, Melin; Huang, Bormin; Huang, Allen H.
2014-10-01
The Weather Research and Forecasting (WRF) model provided operational services worldwide in many areas and has linked to our daily activity, in particular during severe weather events. The scheme of Yonsei University (YSU) is one of planetary boundary layer (PBL) models in WRF. The PBL is responsible for vertical sub-grid-scale fluxes due to eddy transports in the whole atmospheric column, determines the flux profiles within the well-mixed boundary layer and the stable layer, and thus provide atmospheric tendencies of temperature, moisture (including clouds), and horizontal momentum in the entire atmospheric column. The YSU scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. To accelerate the computation process of the YSU scheme, we employ Intel Many Integrated Core (MIC) Architecture as it is a multiprocessor computer structure with merits of efficient parallelization and vectorization essentials. Our results show that the MIC-based optimization improved the performance of the first version of multi-threaded code on Xeon Phi 5110P by a factor of 2.4x. Furthermore, the same CPU-based optimizations improved the performance on Intel Xeon E5-2603 by a factor of 1.6x as compared to the first version of multi-threaded code.
NASA Technical Reports Server (NTRS)
Allison, D. E.
1984-01-01
A model is developed for the estimation of the surface fluxes of momentum, heat, and moisture of the cloud topped marine atmospheric boundary layer by use of satellite remotely sensed parameters. The parameters chosen for the problem are the integrated liquid water content, q sub li, the integrated water vapor content, q sub vi, the cloud top temperature, and either a measure of the 10 meter neutral wind speed or the friction velocity at the surface. Under the assumption of a horizontally homogeneous, well-mixed boundary layer, the model calculates the equivalent potential temperature and total water profiles of the boundary layer along with the boundary layer height from inputs of q sub li, q sub vi, and cloud top temperature. These values, along with the 10m neutral wind speed or friction velocity and the sea surface temperature are then used to estimate the surface fluxes. The development of a scheme to parameterize the integrated water vapor outside of the boundary layer for the cases of cold air outbreak and California coastal stratus is presented.
NASA Astrophysics Data System (ADS)
Glushkov, Alexander; Glushkov, Alexander; Loboda, Nataliya; Khokhlov, Valery; Serbov, Nikoly; Svinarenko, Andrey
The purpose of this paper is carrying out the detailed model of the CO2 global turnover in system of "atmosphere-ocean" with using the ocean quasi-homogeneous layer model. Practically all carried out models are functioning in the average annual regime and accounting for the carbon distribution in bio-sphere in most general form (Glushkov et al, 2003). We construct a modified model for cycle of the carbon dioxide, which allows to reproduce a season dynamics of carbon turnover in ocean with account of zone ocean structure (up quasi-homogeneous layer, thermocline and deepest layer). It is taken into account dependence of the CO2 transfer through the bounder between atmosphere and ocean upon temperature of water and air, wind velocity, buffer mechanism of the CO2 dissolution. The same program is realized for atmosphere part of whole system. It is obtained a tempo-ral and space distribution for concentration of non-organic carbon in ocean, partial press of dissolute CO2 and value of exchange on the border between atmosphere and ocean. It is estimated a role of the wind intermixing of the up ocean layer. The increasing of this effect leads to increasing the plankton mass and further particles, which are transferred by wind, contribute to more quick immersion of microscopic shells and organic material. It is fulfilled investigation of sen-sibility of the master differential equations system solutions from the model parameters. The master differential equa-tions system, describing a dynamics of the CO2 cycle, is numerically integrated by the four order Runge-Cutt method under given initial values of valuables till output of solution on periodic regime. At first it is indicated on possible real-zation of the chaos scenario in system. On our data, the difference of the average annual values for the non-organic car-bon concentration in the up quasi-homogeneous layer between equator and extreme southern zone is 0.15 mol/m3, be-tween the equator and extreme northern zone is 0.12 mol/m3. the maximum amplitude of season oscillations (40° -50° n.l.) is 0.07 mol/m3. A link between global cycle of carbon dioxide and global climate change is investigated. Refrences: Glushkov A.V., Khokhlov V.N., Prepelitsa G.P., Tsenenko I.A., Optics of atmosphere and ocean.-2004.-Vol.14,N7.-p.219-223; Glushkov A.V., Loboda N.S., Khokhlov V.N., Atmospheric Research (Elseiver).-2005.-Vol.77.-P.100-113;Glushkov A.V., Loboda N.S., Khokhlov V.N., Lovett L. Journal of Hydrology (Elseiver).-2006.-Vol. 322. N1-4.-P.14-24; Glushkov A.V., Khokhlov V.N., Loboda N.S., Quart.J.Royal Meteorol. Soc.-2006.-Vol.132.- pp.447-465; Glushkov A.V., Khokhlov V.N., Loboda N.S., Ponomarenko E.L., Environm. Inf. Arch.-2003.-Vol.1.-P.125-130.
NASA Astrophysics Data System (ADS)
Prakash, Kumar Ravi; Pant, Vimlesh
2017-01-01
A numerical simulation of very severe cyclonic storm `Phailin', which originated in southeastern Bay of Bengal (BoB) and propagated northwestward during 10-15 October 2013, was carried out using a coupled atmosphere-ocean model. A Model Coupling Toolkit (MCT) was used to make exchanges of fluxes consistent between the atmospheric model `Weather Research and Forecasting' (WRF) and ocean circulation model `Regional Ocean Modelling System' (ROMS) components of the `Coupled Ocean-Atmosphere-Wave-Sediment Transport' (COAWST) modelling system. The track and intensity of tropical cyclone (TC) Phailin simulated by the WRF component of the coupled model agrees well with the best-track estimates reported by the India Meteorological Department (IMD). Ocean model component (ROMS) was configured over the BoB domain; it utilized the wind stress and net surface heat fluxes from the WRF model to investigate upper oceanic response to the passage of TC Phailin. The coupled model shows pronounced sea surface cooling (2-2.5 °C) and an increase in sea surface salinity (SSS) (2-3 psu) after 06 GMT on 12 October 2013 over the northwestern BoB. Signature of this surface cooling was also observed in satellite data and buoy measurements. The oceanic mixed layer heat budget analysis reveals relative roles of different oceanic processes in controlling the mixed layer temperature over the region of observed cooling. The heat budget highlighted major contributions from horizontal advection and vertical entrainment processes in governing the mixed layer cooling (up to -0.1 °C h-1) and, thereby, reduction in sea surface temperature (SST) in the northwestern BoB during 11-12 October 2013. During the post-cyclone period, the net heat flux at surface regained its diurnal variations with a noontime peak that provided a warming tendency up to 0.05 °C h-1 in the mixed layer. Clear signatures of TC-induced upwelling are seen in vertical velocity (about 2.5 × 10-3 m s-1), rise in isotherms and isohalines along 85-88° E longitudes in the northwestern BoB. The study demonstrates that a coupled atmosphere-ocean model (WRF + ROMS) serves as a useful tool to investigate oceanic response to the passage of cyclones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jared A.; Hacker, Joshua P.; Delle Monache, Luca
2016-12-14
A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly due to a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL. In this study, we usemore » the WRF single column model (SCM), coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART), to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts.« less
NASA Astrophysics Data System (ADS)
Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, H. A. M.; Svensson, Gunilla; Vaillancourt, Paul A.; Zadra, Ayrton
2016-09-01
Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modeled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: some models lack the cloudy state of the boundary layer due to the representation of mixed-phase microphysics or to the interaction between micro- and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behavior.
A scheme for computing surface layer turbulent fluxes from mean flow surface observations
NASA Technical Reports Server (NTRS)
Hoffert, M. I.; Storch, J.
1978-01-01
A physical model and computational scheme are developed for generating turbulent surface stress, sensible heat flux and humidity flux from mean velocity, temperature and humidity at some fixed height in the atmospheric surface layer, where conditions at this reference level are presumed known from observations or the evolving state of a numerical atmospheric circulation model. The method is based on coupling the Monin-Obukov surface layer similarity profiles which include buoyant stability effects on mean velocity, temperature and humidity to a force-restore formulation for the evolution of surface soil temperature to yield the local values of shear stress, heat flux and surface temperature. A self-contained formulation is presented including parameterizations for solar and infrared radiant fluxes at the surface. Additional parameters needed to implement the scheme are the thermal heat capacity of the soil per unit surface area, surface aerodynamic roughness, latitude, solar declination, surface albedo, surface emissivity and atmospheric transmissivity to solar radiation.
NASA Astrophysics Data System (ADS)
Karpov, I. V.; Kshevetskii, S. P.
2017-11-01
The propagation of acoustic-gravity waves (AGW) from a source on the Earth's surface to the upper atmosphere is investigated with methods of mathematical modeling. The applied non-linear model of wave propagation in the atmosphere is based on numerical integration of a complete set of two-dimensional hydrodynamic equations. The source on the Earth's surface generates waves with frequencies near to the Brunt-Vaisala frequency. The results of simulation have revealed that some region of heating the atmosphere by propagated upward and dissipated AGWs arises above the source at altitudes nearby of 200 km. The horizontal scale of this heated region is about 1000 km in the case of the source that radiates AGWs during approximately 1 h. The appearing of the heated region has changed the conditions of AGW propagation in the atmosphere. When the heated region in the upper atmosphere has been formed, further a waveguide regime of propagation of waves with the periods shorter the Brunt-Vaisala period is realized. The upper boundary of the wave-guide coincides with the arisen heated region in the upper atmosphere. The considered mechanism of formation of large-scale disturbances in the upper atmosphere may be useful for explanation of connections of processes in the upper and lower atmospheric layers.
Unique, Non-Earthlike, Meteoritic Ion Behavior in Upper Atmosphere of Mars
NASA Technical Reports Server (NTRS)
Grebowsky, J. M.; Benna, M.; Plane, J. M. C.; Collinson, G. A.; Mahaffy, P. R.; Jakosky, B. M.
2017-01-01
Abstract Interplanetary dust particles have long been expected to produce permanent ionospheric metal ion layers at Mars, as on Earth, but the two environments are so different that uncertainty existed as to whether terrestrial-established understanding would apply to Mars. The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission made the first in situ detection of the continuous presence of Na+, Mg+, and Fe+ at Mars and indeed revealed non-Earthlike features/processes. There is no separation of the light Mg+ and the heavy Fe+ with increasing altitude as expected for gravity control. The metal ions are well-mixed with the neutral atmosphere at altitudes where no mixing process is expected. Isolated metal ion layers mimicking Earths sporadic E layers occur despite the lack of a strong magnetic field as required at Earth. Further, the metal ion distributions are coherent enough to always show atmospheric gravity wave signatures. All features and processes are unique to Mars.
Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa
2014-01-01
In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account.
Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa
2014-01-01
In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account. PMID:25309005
Stratospheric effects on trends of mesospheric ice clouds (Invited)
NASA Astrophysics Data System (ADS)
Luebken, F.; Baumgarten, G.; Berger, U.
2009-12-01
Ice layers in the summer mesosphere at middle and polar latitudes appear as `noctilucent clouds' (NLC) and `polar mesosphere clouds'(PMC) when observed by optical methods from the ground or from satellites, respectively. A newly developed model of the atmosphere called LIMA (Leibniz Institute Middle Atmosphere Model) nicely reproduces the mean conditions of the summer mesopause region and is used to study the ice layer morphology (LIMA/ice). LIMA nudges to ECMWF data in the troposphere and lower stratosphere which influences the background conditions in the mesosphere and ice cloud morphology. Since ice layer formation is very sensitive to the thermal structure of the mesopause region the morphology of NLC and PMC is frequently discussed in terms of long term variations. Model runs of LIMA/ice are now available for 1961 until 2008. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this gives negligible temperature trends at PMC altitudes (approximately 0.01-0.02 K/y). Trace gas concentrations are kept constant in LIMA except for water vapor which is modified by variable solar radiation. Still, long term trends in temperatures and ice layer parameters are observed, consistent with observations. We present results regarding inter-annual variability of upper mesosphere temperatures, water vapor, and ice clouds, and also long term variations. We compare our model results with satellite borne and lidar observations including some record high NLC parameters measured in the summer season of 2009. The latitudinal dependence of trends and ice layer parameters is discussed, including a NH/SH comparison. We will present an explanation of the trends in the background atmosphere and ice layer parameters.
Recent variability of the tropical tropopause inversion layer
NASA Astrophysics Data System (ADS)
Wang, Wuke; Matthes, Katja; Schmidt, Torsten; Neef, Lisa
2013-12-01
The recent variability of the tropopause temperature and the tropopause inversion layer (TIL) are investigated with Global Positioning System Radio Occultation data and simulations with the National Center for Atmospheric Research's Whole Atmosphere Community Climate Model (WACCM). Over the past decade (2001-2011) the data show an increase of 0.8 K in the tropopause temperature and a decrease of 0.4 K in the strength of the tropopause inversion layer in the tropics, meaning that the vertical temperature gradient has declined, and therefore that the stability above the tropopause has weakened. WACCM simulations with finer vertical resolution show a more realistic TIL structure and variability. Model simulations show that the increased tropopause temperature and the weaker tropopause inversion layer are related to weakened upwelling in the tropics. Such changes in the thermal structure of the upper troposphere and lower stratosphere may have important implications for climate, such as a possible rise in water vapor in the lower stratosphere.
Theoretical oscillation frequencies for solar-type dwarfs from stellar models with 〈3D〉-atmospheres
NASA Astrophysics Data System (ADS)
Jørgensen, Andreas Christ Sølvsten; Weiss, Achim; Mosumgaard, Jakob Rørsted; Silva Aguirre, Victor; Sahlholdt, Christian Lundsgaard
2017-12-01
We present a new method for replacing the outermost layers of stellar models with interpolated atmospheres based on results from 3D simulations, in order to correct for structural inadequacies of these layers. This replacement is known as patching. Tests, based on 3D atmospheres from three different codes and interior models with different input physics, are performed. Using solar models, we investigate how different patching criteria affect the eigenfrequencies. These criteria include the depth, at which the replacement is performed, the quantity, on which the replacement is based, and the mismatch in Teff and log g between the un-patched model and patched 3D atmosphere. We find the eigenfrequencies to be unaltered by the patching depth deep within the adiabatic region, while changing the patching quantity or the employed atmosphere grid leads to frequency shifts that may exceed 1 μHz. Likewise, the eigenfrequencies are sensitive to mismatches in Teff or log g. A thorough investigation of the accuracy of a new scheme, for interpolating mean 3D stratifications within the atmosphere grids, is furthermore performed. Throughout large parts of the atmosphere grids, our interpolation scheme yields sufficiently accurate results for the purpose of asteroseismology. We apply our procedure in asteroseismic analyses of four Kepler stars and draw the same conclusions as in the solar case: Correcting for structural deficiencies lowers the eigenfrequencies, this correction is slightly sensitive to the patching criteria, and the remaining frequency discrepancy between models and observations is less frequency dependent. Our work shows the applicability and relevance of patching in asteroseismology.
NASA Astrophysics Data System (ADS)
Smits, K. M.; Davarzani, H.; Illangasekare, T. H.
2012-12-01
The study of the interaction between the land and atmosphere is paramount to our understanding of many emerging problems to include climate change and the movement of green house gases such as possible leaking of sequestered CO2. Soil moisture distribution in the shallow subsurface becomes a critical factor in these problems. The heat and mass flux in the form of soil evaporation across the land surface couples the atmospheric boundary layer to the shallow subsurface. The coupling between land and the atmosphere leads to highly dynamic interactions between the porous media properties, transport processes and boundary conditions, resulting in dynamic evaporative behavior. However, the coupling at the land-atmospheric interface is rarely considered in most current models and their validation for practical applications. This is due to the complexity of the problem in field scenarios and the scarcity of field or laboratory data capable of testing and refining coupled energy and mass transfer theories. In most efforts to compute evaporation from soil, only indirect coupling is provided to characterize the interaction between non-isothermal multiphase flows under realistic atmospheric conditions even though heat and mass flux are controlled by the coupled dynamics of the land and the atmospheric boundary layer. In earlier drying modeling concepts, imposing evaporation flux (kinetic of relative humidity) and temperature as surface boundary condition is often needed. With the goal of improving our understanding of the land/atmospheric coupling, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model consists of the coupled equations of mass conservation for the liquid phase (water) and gas phase (water vapor and air) in porous medium with gas phase (water vapor and air) in free flow domain under non-isothermal, non-equilibrium conditions. The boundary conditions at the porous medium-free flow medium interface include dynamical, thermal and solutal equilibriums, and using the Beavers-Joseph slip boundary condition. What is unique about this model is that the evaporation rate and soil surface temperature conditions come directly from the model output. In order to experimentally validate the numerical results, we developed and used a unique two dimensional wind tunnel placed above a soil tank equipped with a network of different sensors. A series of experiments under varying boundary conditions were performed. Precision data under well-controlled transient heat and wind boundary conditions was generated. Results from numerical simulations were compared with experimental data. Results demonstrate that the coupling concept can predict the different stages of the drying process in porous media with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time at low velocity values; then, at high values of wind speed the evaporation rate becomes less dependent of flow in free fluid. In the opposite, the impact of the wind speed on the second stage evaporation (diffusion dominant stage) is not significant. The proposed theoretical model can be used to predict the evaporation process where a porous medium flow is coupled to a free flow for different practical applications.
NASA Astrophysics Data System (ADS)
Wang, Xian-Fei; Xiong, Shou-Mei
2012-11-01
The surface film formed on molten AZ91D magnesium alloy in an atmosphere containing SO2 was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS). The surface film primarily contained MgO and MgS and had a network structure. MgS increased the Pilling-Bedworth ratio of the film and enhanced its protective capability. The films with a few pores at the surface consisted of two layers with an outer MgO layer and an inner layer of MgO and MgS. The film without pores at the surface also contained MgS and small amounts of MgSO4 in the outer layer. Increasing the SO2 content in the atmosphere promoted film growth and the formation of the protective film was prevented with the increased temperature.
Atmospheric monitoring in MAGIC and data corrections
NASA Astrophysics Data System (ADS)
Fruck, Christian; Gaug, Markus
2015-03-01
A method for analyzing returns of a custom-made "micro"-LIDAR system, operated alongside the two MAGIC telescopes is presented. This method allows for calculating the transmission through the atmospheric boundary layer as well as thin cloud layers. This is achieved by applying exponential fits to regions of the back-scattering signal that are dominated by Rayleigh scattering. Making this real-time transmission information available for the MAGIC data stream allows to apply atmospheric corrections later on in the analysis. Such corrections allow for extending the effective observation time of MAGIC by including data taken under adverse atmospheric conditions. In the future they will help reducing the systematic uncertainties of energy and flux.
Effect of canopy and topography induced wakes on land-atmosphere fluxes of momentum and scalars
NASA Astrophysics Data System (ADS)
Markfort, C. D.; Zhang, W.; Porté-Agel, F.; Stefan, H. G.
2012-04-01
Wakes shed from natural and anthropogenic landscape features affect land-atmosphere fluxes of momentum and scalars, including water vapor and trace gases (e.g. CO2). Canopies and bluff bodies, such as forests, buildings and topography, cause boundary layer flow separation, and lead to a break down of standard Monin-Obukhov similarity relationships in the atmospheric boundary layer (ABL). Wakes generated by these land surface features persist for significant distances (>100 typical length scales) and affect a large fraction of the Earth's terrestrial surface. This effect is currently not accounted for in land-atmosphere models, and little is known about how heterogeneity of wake-generating features affect land surface fluxes. Additionally flux measurements, made in wake-affected regions, do not satisfy the homogeneous flow requirements for the standard eddy correlation (EC) method. This phenomenon, often referred to as wind sheltering, has been shown to affect momentum and kinetic energy fluxes at the lake-atmosphere interface (Markfort et al. 2010). This presentation will highlight results from controlled wind tunnel experiments of neutral and thermally stratified boundary layers, using particle image velocimetry (PIV) and custom x-wire/cold-wire anemometry, to understand how the physical structure of upstream bluff bodies and porous canopies as well as how thermal stability affect the flow separation zone, boundary layer recovery and surface fluxes. We have found that there is a nonlinear relationship between canopy length/porosity and flow separation downwind of a canopy to clearing transition. Results will provide the basis for new parameterizations to account for wake effects on land-atmosphere fluxes and corrections for the EC measurements over open fields, lakes, and wetlands. Key words: Atmospheric boundary layer; Wakes; Stratification; Land-Atmosphere Parameterization; Canopy
WRF Model Simulations of Terrain-Driven Atmospheric Eddies in Marine Stratocumulus Clouds
NASA Astrophysics Data System (ADS)
Muller, B. M.; Herbster, C. G.; Mosher, F. R.
2014-12-01
It is not unusual to observe atmospheric eddies in satellite imagery of the marine stratus and stratocumulus clouds that characterize the summertime weather of the California coastal region and near-shore oceanic environment. The winds of the marine atmospheric boundary layer (MABL) over the ocean interact with the high terrain of prominent headlands and islands to create order-10 km scale areas of swirling air that can contain a cloud-free eye, 180-degree wind reversals at the surface over a period of minutes, and may be associated with mixing and turbulence between the high-humidity air of the MABL and the much warmer and drier inversion layer air above. However, synoptic and even subsynoptic surface weather measurements, and the synoptic upper-air observing network are inadequate, or in some cases, completely unable, to detect and characterize the formation, movement, and even the existence of the eddies. They can literally slip between land-based surface observation locations, or stay over the near-shore ocean environment where there may be no surface meteorological measurements. This study presents Weather Research and Forecasting (WRF) Model simulations of these small-scale, terrain-driven, atmospheric features in the MABL from cases detected in GOES satellite imagery. The purpose is to use model output to diagnose the formation mechanisms, sources of vorticity, and the air flow in and around the eddies. Satellite imagery is compared to simulated atmospheric variables to validate features generated within the model atmosphere, and model output is employed as a surrogate atmosphere to better understand the atmospheric characteristics of the eddies. Model air parcel trajectories are estimated to trace the movement and sources of the air contained in and around these often-observed, but seldom-measured features.
Towards Adaptive Grids for Atmospheric Boundary-Layer Simulations
NASA Astrophysics Data System (ADS)
van Hooft, J. Antoon; Popinet, Stéphane; van Heerwaarden, Chiel C.; van der Linden, Steven J. A.; de Roode, Stephan R.; van de Wiel, Bas J. H.
2018-02-01
We present a proof-of-concept for the adaptive mesh refinement method applied to atmospheric boundary-layer simulations. Such a method may form an attractive alternative to static grids for studies on atmospheric flows that have a high degree of scale separation in space and/or time. Examples include the diurnal cycle and a convective boundary layer capped by a strong inversion. For such cases, large-eddy simulations using regular grids often have to rely on a subgrid-scale closure for the most challenging regions in the spatial and/or temporal domain. Here we analyze a flow configuration that describes the growth and subsequent decay of a convective boundary layer using direct numerical simulation (DNS). We validate the obtained results and benchmark the performance of the adaptive solver against two runs using fixed regular grids. It appears that the adaptive-mesh algorithm is able to coarsen and refine the grid dynamically whilst maintaining an accurate solution. In particular, during the initial growth of the convective boundary layer a high resolution is required compared to the subsequent stage of decaying turbulence. More specifically, the number of grid cells varies by two orders of magnitude over the course of the simulation. For this specific DNS case, the adaptive solver was not yet more efficient than the more traditional solver that is dedicated to these types of flows. However, the overall analysis shows that the method has a clear potential for numerical investigations of the most challenging atmospheric cases.
Towards Adaptive Grids for Atmospheric Boundary-Layer Simulations
NASA Astrophysics Data System (ADS)
van Hooft, J. Antoon; Popinet, Stéphane; van Heerwaarden, Chiel C.; van der Linden, Steven J. A.; de Roode, Stephan R.; van de Wiel, Bas J. H.
2018-06-01
We present a proof-of-concept for the adaptive mesh refinement method applied to atmospheric boundary-layer simulations. Such a method may form an attractive alternative to static grids for studies on atmospheric flows that have a high degree of scale separation in space and/or time. Examples include the diurnal cycle and a convective boundary layer capped by a strong inversion. For such cases, large-eddy simulations using regular grids often have to rely on a subgrid-scale closure for the most challenging regions in the spatial and/or temporal domain. Here we analyze a flow configuration that describes the growth and subsequent decay of a convective boundary layer using direct numerical simulation (DNS). We validate the obtained results and benchmark the performance of the adaptive solver against two runs using fixed regular grids. It appears that the adaptive-mesh algorithm is able to coarsen and refine the grid dynamically whilst maintaining an accurate solution. In particular, during the initial growth of the convective boundary layer a high resolution is required compared to the subsequent stage of decaying turbulence. More specifically, the number of grid cells varies by two orders of magnitude over the course of the simulation. For this specific DNS case, the adaptive solver was not yet more efficient than the more traditional solver that is dedicated to these types of flows. However, the overall analysis shows that the method has a clear potential for numerical investigations of the most challenging atmospheric cases.
Radiative transfer in a polluted urban planetary boundary layer
NASA Technical Reports Server (NTRS)
Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.
1977-01-01
Radiative transfer in a polluted urban atmosphere is studied using a dynamic model. The diurnal nature of radiative transfer for summer conditions is simulated for an urban area 40 km in extent and the effects of various parameters arising in the problem are investigated. The results of numerical computations show that air pollution has the potential of playing a major role in the radiative regime of the urban area. Absorption of solar energy by aerosols in realistic models of urban atmosphere are of the same order of magnitude as that due to water vapor. The predicted effect of the air pollution aerosol in the city is to warm the earth-atmosphere system, and the net effect of gaseous pollutant is to warm the surface and cool the planetary boundary layer, particularly near the top.
NASA Astrophysics Data System (ADS)
Barraclough, V.; Novotný, J.; Šafařík, P.
2018-06-01
This paper deals with flow around a bluff body of hyperboloid shape. It consists of results gathered in the course of research by means of Particle Image Velocimetry (PIV). The experiments were carried out by means of low-frequency 2D PIV in a range of Reynolds numbers from 40000 to 50000. A hyperboloid-shaped model was measured in a wind tunnel with a modelled atmospheric boundary layer (and additionally, in a low-speed wind tunnel with low turbulence). The model was tested in a subcritical range of Reynolds numbers and various planes in a wake of the model were captured with the intention of getting an estimation of 3D flow structures. The tunnel with the modelled atmospheric boundary layer has a high rate of turbulence, so the influence of the turbulence of incoming flow on the wake could be outlined. The ratio of the height of the model to a thickness of the modelled boundary layer in the tunnel was 1/3, meaning the turbulence in the boundary layer strongly influenced the flow around the model; it suppresses the wake which leads to a lot shorter area of recirculation than low turbulence incoming flow would cause.
Optimal reconstruction for closed-loop ground-layer adaptive optics with elongated spots.
Béchet, Clémentine; Tallon, Michel; Tallon-Bosc, Isabelle; Thiébaut, Éric; Le Louarn, Miska; Clare, Richard M
2010-11-01
The design of the laser-guide-star-based adaptive optics (AO) systems for the Extremely Large Telescopes requires careful study of the issue of elongated spots produced on Shack-Hartmann wavefront sensors. The importance of a correct modeling of the nonuniformity and correlations of the noise induced by this elongation has already been demonstrated for wavefront reconstruction. We report here on the first (to our knowledge) end-to-end simulations of closed-loop ground-layer AO with laser guide stars with such an improved noise model. The results are compared with the level of performance predicted by a classical noise model for the reconstruction. The performance is studied in terms of ensquared energy and confirms that, thanks to the improved noise model, central or side launching of the lasers does not affect the performance with respect to the laser guide stars' flux. These two launching schemes also perform similarly whatever the atmospheric turbulence strength.
NASA Astrophysics Data System (ADS)
Forrester, M.; Maxwell, R. M.; Bearup, L. A.; Gochis, D.
2017-12-01
Numerical meteorological models are frequently used to diagnose land-atmosphere interactions and predict large-scale response to extreme or hazardous events, including widespread land disturbance or perturbations to near-surface moisture. However, few atmospheric modeling platforms consider the impact that dynamic groundwater storage, specifically 3D subsurface flow, has on land-atmosphere interactions. In this study, we use the Weather Research and Forecasting (WRF) mesoscale meteorological model to identify ecohydrologic and land-atmosphere feedbacks to disturbance by the mountain pine beetle (MPB) over the Colorado Headwaters region. Disturbance simulations are applied to WRF with various lower boundary configurations: Including default Noah land surface model soil moisture representation; a version of WRF coupled to ParFlow (PF), an integrated groundwater-surface water model that resolves variably saturated flow in the subsurface; and WRF coupled to PF in a static water table version, simulating only vertical and no lateral subsurface flow. Our results agree with previous literature showing MPB-induced reductions in canopy transpiration in all lower boundary scenarios, as well as energy repartitioning, higher water tables, and higher planetary boundary layer over infested regions. Simulations show that expanding from local to watershed scale results in significant damping of MPB signal as unforested and unimpacted regions are added; and, while deforestation appears to have secondary feedbacks to planetary boundary layer and convection, these slight perturbations to cumulative summer precipitation are insignificant in the context of ensemble methodologies. Notably, the results suggest that groundwater representation in atmospheric modeling affects the response intensity of a land disturbance event. In the WRF-PF case, energy and atmospheric processes are more sensitive to disturbance in regions with higher water tables. Also, when dynamic subsurface hydrology is removed, WRF simulates a greater response to MPB at the land-atmosphere interface, including greater changes to daytime skin temperature, Bowen ratio and near-surface humidity. These findings highlight lower boundary representations in computational meteorology and numerical land-atmosphere modeling.
NASA Astrophysics Data System (ADS)
Shamanaeva, L. G.; Krasnenko, N. P.; Kapegesheva, O. F.
2018-04-01
Diurnal dynamics of the standard deviation (SD) of three wind velocity components measured with a minisodar in the atmospheric boundary layer is analyzed. Statistical analysis of measurement data demonstrates that the SDs for x- and y-components σx and σy lie in the range from 0.2 to 4 m/s, and σz = 0.1-1.2 m/s. The increase of σx and σy with the altitude is described sufficiently well by a power law with exponent changing from 0.22 to 1.3 depending on time of day, and σz increases by a linear law. Approximation constants are determined and errors of their application are estimated. It is found that the maximal diurnal spread of SD values is 56% for σx and σy and 94% for σz. The established physical laws and the obtained approximation constants allow the diurnal dynamics of the SDs for three wind velocity components in the atmospheric boundary layer to be determined and can be recommended for application in models of the atmospheric boundary layer.
NASA Technical Reports Server (NTRS)
Linsky, J. L.
1983-01-01
Progress in understanding active dwarf stars based on recent IUE, Einstein, and ground-based observations is reviewed. The extent of magnetic field control over nonflare phenomena in active dwarf stars is considered, and the spatial homogeneity and time variability of active dwarf atmospheres is discussed. The possibility that solar like flux tubes can explain enhanced heating in active dwarf stars in examined, and the roles of systematic flows in active dwarf star atmospheres are considered. The relation between heating rates in different layers of active dwarf stars is summarized, and the mechanism of chromosphere and transition region heating in these stars are discussed. The results of one-component and two-component models of active dwarf stars are addressed.
Coherence of simulated atmospheric boundary-layer turbulence
NASA Astrophysics Data System (ADS)
Jiadong, Zeng; Zhiguo, Li; Mingshui, Li
2017-12-01
The coherences in a plane perpendicular to incoming flow are measured in wind tunnel simulations of atmospheric turbulent flow. The measured coherences are compared with analytical expressions tailored to field measurements and with theoretical coherence models which assume homogeneous turbulence and the von Kármán’s spectrum. The comparison indicates that the simulated atmospheric boundary layer flow is approximately horizontally homogeneous turbulence. Based on the above assumption and the systematic analysis of lateral coherence, it can be concluded that the lateral coherences of simulated atmospheric boundary turbulence can be determined accurately using the von Kármán spectrum and the turbulence parameters measured by a few measurement points. The measured results also show that the spatial characteristics of vertical coherences are closely related to the dimensionless parameter {{Δ }}z/({\\bar{z}}0.3{L}ux 0.7). The vertical coherence at two heights can be roughly estimated by the ratio to {{Δ }}z/({\\bar{z}}0.3{L}ux 0.7). The relationship between the phase angles of u-, v- and w-components and the vertical separation distance and the height from the ground is further analyzed. Finally, the roles of the type of land surface roughness, the height from the ground, the turbulence intensity and the integral length scale in lateral and vertical coherences are also discussed in this study.
Modeling aerosol surface chemistry and gas-particle interaction kinetics with K2-SURF: PAH oxidation
NASA Astrophysics Data System (ADS)
Shiraiwa, M.; Garland, R.; Pöschl, U.
2009-04-01
Atmospheric aerosols are ubiquitous in the atmosphere. They have the ability to impact cloud properties, radiative balance and provide surfaces for heterogeneous reactions. The uptake of gaseous species on aerosol surfaces impacts both the aerosol particles and the atmospheric budget of trace gases. These subsequent changes to the aerosol can in turn impact the aerosol chemical and physical properties. However, this uptake, as well as the impact on the aerosol, is not fully understood. This uncertainty is due not only to limited measurement data, but also a dearth of comprehensive and applicable modeling formalizations used for the analysis, interpretation and description of these heterogeneous processes. Without a common model framework, comparing and extrapolating experimental data is difficult. In this study, a novel kinetic surface model (K2-SURF) [Ammann & Pöschl, 2007; Pöschl et al., 2007] was used to describe the oxidation of a variety of polycyclic aromatic hydrocarbons (PAHs). Integrated into this consistent and universally applicable kinetic and thermodynamic process model are the concepts, terminologies and mathematical formalizations essential to the description of atmospherically relevant physicochemical processes involving organic and mixed organic-inorganic aerosols. Within this process model framework, a detailed master mechanism, simplified mechanism and parameterizations of atmospheric aerosol chemistry are being developed and integrated in analogy to existing mechanisms and parameterizations of atmospheric gas-phase chemistry. One of the key aspects to this model is the defining of a clear distinction between various layers of the particle and surrounding gas phase. The processes occurring at each layer can be fully described using known fluxes and kinetic parameters. Using this system there is a clear separation of gas phase, gas-surface and surface bulk transport and reactions. The partitioning of compounds can be calculated using the flux values between the layers. By describing these layers unambiguously, the interactions of all species in the system can be appropriately modeled. In describing the oxidation of PAHs, the focus was on the interactions between the sorption layer and quasi-static surface layer. The results from a variety of published experimental studies [Pöschl et al., 2001; Kahan et al., 2006; Kwamena et al., 2004, 2006, 2007; Mmereki and Donaldson, 2003; Mmereki et al., 2004; Dubowski et al., 2004; Donaldson et al., 2005; Segal-Rosenheimer and Dubowski, 2007] were analyzed and compared utilizing K2-SURF. The heterogeneous reaction of PAH and O3 are found to follow a Langmuir-Hinshelwood mechanism, in which ozone first absorbs to the surface and then reacts with PAH. The Langmuir equilibrium constants and second-order-rate coefficients of surface reaction were estimated. In PAH/O3/solid substrate system, they showed similar reaction rate (×10), but large difference (×1000) in adsorption. The mean residence time and adsorption enthalpy were estimated for O3 at the surface of substrates, suggesting the chemisorption of O3 molecules or O atoms, respectively. Initial uptake coefficients of O3 under different conditions were also investigated. The observed dependence on gas-phase O3 concentration was well explained with K2-SURF model in five-order range. In addition, competitive adsorption of other gas phase species (NO2, H2O) was well described by the model. Possible mechanism of PAH degradation system and atmospheric implications are discussed.
Spectral model for clear sky atmospheric longwave radiation
NASA Astrophysics Data System (ADS)
Li, Mengying; Liao, Zhouyi; Coimbra, Carlos F. M.
2018-04-01
An efficient spectrally resolved radiative model is used to calculate surface downwelling longwave (DLW) radiation (0 ∼ 2500 cm-1) under clear sky (cloud free) conditions at the ground level. The wavenumber spectral resolution of the model is 0.01 cm-1 and the atmosphere is represented by 18 non-uniform plane-parallel layers with pressure in each layer determined on a pressure-based coordinate system. The model utilizes the most up-to-date (2016) HITRAN molecular spectral data for 7 atmospheric gases: H2O, CO2, O3, CH4, N2O, O2 and N2. The MT_CKD model is used to calculate water vapor and CO2 continuum absorption coefficients. Longwave absorption and scattering coefficients for aerosols are modeled using Mie theory. For the non-scattering atmosphere (aerosol free), the surface DLW agrees within 2.91% with mean values from the InterComparison of Radiation Codes in Climate Models (ICRCCM) program, with spectral deviations below 0.035 W cm m-2. For a scattering atmosphere with typical aerosol loading, the DLW calculated by the proposed model agrees within 3.08% relative error when compared to measured values at 7 climatologically diverse SURFRAD stations. This relative error is smaller than a calibrated parametric model regressed from data for those same 7 stations, and within the uncertainty (+/- 5 W m-2) of pyrgeometers commonly used for meteorological and climatological applications. The DLW increases by 1.86 ∼ 6.57 W m-2 when compared with aerosol-free conditions, and this increment decreases with increased water vapor content due to overlap with water vapor bands. As expected, the water vapor content at the layers closest to the surface contributes the most to the surface DLW, especially in the spectral region 0 ∼ 700 cm-1. Additional water vapor content (mostly from the lowest 1 km of the atmosphere) contributes to the spectral range of 400 ∼ 650 cm-1. Low altitude aerosols ( ∼ 3.46 km or less) contribute to the surface value of DLW mostly in the spectral range 750 ∼ 1400 cm-1.
NASA Astrophysics Data System (ADS)
Reuder, Joachim; Jonassen, Marius; Ólafsson, Haraldur
2012-10-01
During the last 5 years, the Small Unmanned Meteorological Observer SUMO has been developed as a flexible tool for atmospheric boundary layer (ABL) research to be operated as sounding system for the lowest 4 km of the atmosphere. Recently two main technical improvements have been accomplished. The integration of an inertial measurement unit (IMU) into the Paparazzi autopilot system has expanded the environmental conditions for SUMO operation. The implementation of a 5-hole probe for determining the 3D flow vector with 100 Hz resolution and a faster temperature sensor has enhanced the measurement capabilities. Results from two recent field campaigns are presented. During the first one, in Denmark, the potential of the system to study the effects of wind turbines on ABL turbulence was shown. During the second one, the BLLAST field campaign at the foothills of the Pyrenees, SUMO data proved to be highly valuable for studying the processes of the afternoon transition of the convective boundary layer.
Bao, Zhongwen; Haberer, Christina; Maier, Uli; Beckingham, Barbara; Amos, Richard T; Grathwohl, Peter
2015-12-15
Soil-atmosphere exchange is important for the environmental fate and atmospheric transport of many semi-volatile organic compounds (SVOCs). This study focuses on modeling the vapor phase exchange of semi-volatile hydrophobic organic pollutants between soil and the atmosphere using the multicomponent reactive transport code MIN3P. MIN3P is typically applied to simulate aqueous and vapor phase transport and reaction processes in the subsurface. We extended the code to also include an atmospheric boundary layer where eddy diffusion takes place. The relevant processes and parameters affecting soil-atmosphere exchange were investigated in several 1-D model scenarios and at various time scales (from years to centuries). Phenanthrene was chosen as a model compound, but results apply for other hydrophobic organic compounds as well. Gaseous phenanthrene was assumed to be constantly supplied to the system during a pollution period and a subsequent regulation period (with a 50% decline in the emission rate). Our results indicate that long-term soil-atmosphere exchange of phenanthrene is controlled by the soil compartment - re-volatilization thus depends on soil properties. A sensitivity analysis showed that accumulation and transport in soils in the short term is dominated by diffusion, whereas in the long term groundwater recharge and biodegradation become relevant. As expected, sorption causes retardation and slows down transport and biodegradation. If atmospheric concentration is reduced (e.g. after environmental regulations), re-volatilization from soil to the atmosphere occurs only for a relatively short time period. Therefore, the model results demonstrate that soils generally are sinks for atmospheric pollutants. The atmospheric boundary layer is only relevant for time scales of less than one month. The extended MIN3P code can also be applied to simulate fluctuating concentrations in the atmosphere, for instance due to temperature changes in the topsoil. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Klein, P. M.; Bonin, T. A.; Newman, J. F.; Wainwright, C. E.; Blumberg, W. G.; Turner, D. D.; Chilson, P. B.; Wharton, S.
2014-12-01
The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma in 2012 and 2013. Its main objective was to study turbulent phenomena in the lowest 2-km of the atmosphere using a variety of novel atmospheric profiling techniques including a sodar, multiple Doppler wind lidars (DWL), a Raman lidar and an atmospheric emitted radiance interferometer (AERI). Several instruments from the University of Oklahoma and Lawrence Livermore National Laboratory were deployed to augment the suite of in-situ and remote sensing instruments at the ARM site. The complementary nature of the deployed instruments with respect to resolution and height coverage provides for a near-complete picture of the dynamic and thermodynamic structure of the atmospheric boundary layer. LABLE can be considered unique in that it was designed as a multi-phase, low-cost, and multi-agency collaboration. Graduate students served as principal investigators who took the lead in designing and conducting experiments aimed at examining boundary-layer processes. This presentation provides an overview of the LABLE experiments and a summary of important results. One focus area will be the dynamic and thermodynamic structure of the nocturnal boundary layer and the formation of nocturnal low-level jets. Such low-level jets were frequently observed during both LABLE campaigns and often interacted with mesoscale atmospheric disturbances such as frontal passages. The combination of high-resolution AERI temperature profiles with DWL mean wind and turbulence profiles provided new insights about the structure and evolution of low-level jets.
LABLE: A Multi-Institutional, Student-Led, Atmospheric Boundary Layer Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, P.; Bonin, T. A.; Newman, J. F.
This paper presents an overview of the Lower Atmospheric Boundary Layer Experiment (LABLE), which included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was conducted as a collaborative effort between the University of Oklahoma (OU), the National Severe Storms Laboratory, Lawrence Livermore National Laboratory (LLNL), and the ARM program. LABLE can be considered unique in that it was designed as a multi-phase, low-cost, multi-agency collaboration. Graduate students served as principal investigators and took the lead in designing and conducting experiments aimed at examining boundary-layer processes. The mainmore » objective of LABLE was to study turbulent phenomena in the lowest 2 km of the atmosphere over heterogeneous terrain using a variety of novel atmospheric profiling techniques. Several instruments from OU and LLNL were deployed to augment the suite of in-situ and remote sensing instruments at the ARM site. The complementary nature of the deployed instruments with respect to resolution and height coverage provides a near-complete picture of the dynamic and thermodynamic structure of the atmospheric boundary layer. This paper provides an overview of the experiment including i) instruments deployed, ii) sampling strategies, iii) parameters observed, and iv) student involvement. To illustrate these components, the presented results focus on one particular aspect of LABLE, namely the study of the nocturnal boundary layer and the formation and structure of nocturnal low-level jets. During LABLE, low-level jets were frequently observed and they often interacted with mesoscale atmospheric disturbances such as frontal passages.« less
NASA Astrophysics Data System (ADS)
Traore, Abdoul Khadre; Ciais, Philippe; Vuichard, Nicolas; Poulter, Benjamin; Viovy, Nicolas; Guimberteau, Matthieu; Jung, Martin; Myneni, Ranga; Fisher, Joshua B.
2014-08-01
Few studies have evaluated land surface models for African ecosystems. Here we evaluate the Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) process-based model for the interannual variability (IAV) of the fraction of absorbed active radiation, the gross primary productivity (GPP), soil moisture, and evapotranspiration (ET). Two ORCHIDEE versions are tested, which differ by their soil hydrology parameterization, one with a two-layer simple bucket and the other a more complex 11-layer soil-water diffusion. In addition, we evaluate the sensitivity of climate forcing data, atmospheric CO2, and soil depth. Beside a very generic vegetation parameterization, ORCHIDEE simulates rather well the IAV of GPP and ET (0.5 < r < 0.9 interannual correlation) over Africa except in forestlands. The ORCHIDEE 11-layer version outperforms the two-layer version for simulating IAV of soil moisture, whereas both versions have similar performance of GPP and ET. Effects of CO2 trends, and of variable soil depth on the IAV of GPP, ET, and soil moisture are small, although these drivers influence the trends of these variables. The meteorological forcing data appear to be quite important for faithfully reproducing the IAV of simulated variables, suggesting that in regions with sparse weather station data, the model uncertainty is strongly related to uncertain meteorological forcing. Simulated variables are positively and strongly correlated with precipitation but negatively and weakly correlated with temperature and solar radiation. Model-derived and observation-based sensitivities are in agreement for the driving role of precipitation. However, the modeled GPP is too sensitive to precipitation, suggesting that processes such as increased water use efficiency during drought need to be incorporated in ORCHIDEE.
A Non-Fickian Mixing Model for Stratified Turbulent Flows
2013-09-30
lateral gradients in the mixed layer, indicative of surface fronts, and with the magnitude of mixed layer depth MLD. Direct testing with our results shows...both are induced by atmospheric forcing. In our case, atmospheric fluxes and wind forcing are still the cause of SM occurrence, but mostly through their...California upwelling simulations, where MLD did not change significantly between HR and LR simulations. As suggested by Capet et al. (2008b), this is likely
Dust aerosol radiative effect and influence on urban atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Zhang, L.; Chen, M.; Li, L.
2007-11-01
An 1.5-level-closure and 3-D non-stationary atmospheric boundary layer (ABL) model and a radiation transfer model with the output of Weather Research and Forecast (WRF) Model and lidar AML-1 are employed to simulate the dust aerosol radiative effect and its influence on ABL in Beijing for the period of 23-26 January 2002 when a dust storm occurred. The simulation shows that daytime dust aerosol radiative effect heats up the ABL at the mean rate of about 0.68 K/h. The horizontal wind speed from ground to 900 m layer is also overall increased, and the value changes about 0.01 m/s at 14:00 LT near the ground. At night, the dust aerosol radiative effect cools the ABL at the mean rate of -0.21 K/h and the wind speed lowers down at about -0.19 m/s at 02:00 LT near the ground.
NASA Astrophysics Data System (ADS)
Ismailov, N. D.; Talipov, N. Kh.; Voitsekhovskii, A. V.
2018-04-01
The results of an experimental study of photoelectric characteristics of two-layer photoresistors based on p-Cd x Hg1- x Te (x = 0.24-0.28) with a thin near-surface layer of n-type obtained by treatment in atmospheric gas plasma are presented. It is shown that the presence of a potential barrier between the p- and n-regions causes high photosensitivity and speed of operation of such photoresistors at T = 77 K
High-Sensitive Two-Layer Photoresistors Based on p-Cd x Hg1-x Te with a Converted Near-Surface Layer
NASA Astrophysics Data System (ADS)
Ismailov, N. D.; Talipov, N. Kh.; Voitsekhovskii, A. V.
2018-04-01
The results of an experimental study of photoelectric characteristics of two-layer photoresistors based on p-Cd x Hg1-x Te (x = 0.24-0.28) with a thin near-surface layer of n-type obtained by treatment in atmospheric gas plasma are presented. It is shown that the presence of a potential barrier between the p- and n-regions causes high photosensitivity and speed of operation of such photoresistors at T = 77 K
NASA Astrophysics Data System (ADS)
Dickson, N.
2009-12-01
The global observation, assimilation and prediction in numerical models of ice super-saturated (ISS) regions (ISSR) are crucial if the climate impact of aircraft condensations trails (contrails) is to be fully understood, and if, for example, contrail formation is to be avoided through aircraft operational measures. A robust assessment of the global distribution of ISSR will further this debate, and ISS event occurrence, frequency and spatial scales have recently attracted significant attention. The mean horizontal size of ISSR is 150 km (±250km) although 12-14% of ISS events occur on horizontal scales of less than 5km. The average vertical thickness of ISS layers is 600-800m (±575m) but layers ranging from 25m to 3000m have been observed, with up to one third of ISS layers thought to be less than 100m deep. Given their small scales compared to typical atmospheric model grid sizes, statistical representations of the spatial scales of ISSR are required, in both horizontal and vertical dimensions, if global occurrence of ISSR is to be adequately represented in climate models. This paper uses radiosonde launches made by the UK Meteorological Office, from the British Isles, Gibraltar, St. Helena and the Falkland Islands between January 2002 and December 2006, to investigate the probabilistic occurrence of ISSR. Specifically each radiosonde profile is divided into 50 and 100 hPa pressure layers, to emulate the coarse vertical resolution of some atmospheric models. Then the high resolution observations contained within each thick pressure layer are used to calculate an average relative humidity and an ISS fraction for each individual thick pressure layer. These relative humidity pressure layer descriptions are then linked through a probability function to produce an s-shaped curve describing the ISS fraction in any average relative humidity pressure layer. An empirical investigation has shown that this one curve is statistically valid for mid-latitude locations, irrespective of season and altitude, however, pressure layer depth is an important variable. Using this empirical understanding of the s-shaped relationship a mathematical model was developed to represent the ISS fraction within any arbitrary thick pressure layer. Here the statistical distributions of actual high resolution RHi observations in any thick pressure layer, along with an error function, are used to mathematically describe the s-shape. Two models were developed to represent both 50 and 100 hPa pressure layers with each reconstructing their respective s-shapes within 8-10% of the empirical curves. These new models can be used, to represent the small scale structures of ISS events, in modelled data where only low vertical resolution is available. This will be useful in understanding, and improving the global distribution, both observed and forecasted, of ice super-saturation.
NASA Technical Reports Server (NTRS)
Doose, Lyn R.; Karkoschka, Erich; Tomasko, Martin G.; Anderson, Carrie M.
2017-01-01
Prompted by the detection of stratospheric cloud layers by Cassini's Composite Infrared Spectrometer (CIRS; see Anderson, C.M., Samuelson, R.E. [2011]. Icarus 212, 762-778), we have re-examined the observations made by the Descent Imager/Spectral Radiometer (DISR) in the atmosphere of Titan together with two constraints from measurements made outside the atmosphere. No evidence of thin layers (<1 km) in the DISR image data sets is seen beyond the three previously reported layers at 21 km, 11 km, and 7 km by Karkoschka and Tomasko (Karkoschka, E., Tomasko, M.G. [2009]. Icarus 199, 442-448). On the other hand, there is evidence of a thicker layer centered at about 55 km. A rise in radiance gradients in the Downward-Looking Visible Spectrometer (DLVS) data below 55 km indicates an increase in the volume extinction coefficient near this altitude. To fit the geometric albedo measured from outside the atmosphere the decrease in the single scattering albedo of Titan's aerosols at high altitudes, noted in earlier studies of DISR data, must continue to much higher altitudes. The altitude of Titan's limb as a function of wavelength requires that the scale height of the aerosols decrease with altitude from the 65 km value seen in the DISR observations below 140 km to the 45 km value at higher altitudes. We compared the variation of radiance with nadir angle observed in the DISR images to improve our aerosol model. Our new aerosol model fits the altitude and wavelength variations of the observations at small and intermediate nadir angles but not for large nadir angles, indicating an effect that is not reproduced by our radiative transfer model. The volume extinction profiles are modeled by continuous functions except near the enhancement level near 55 km altitude. The wavelength dependence of the extinction optical depth is similar to earlier results at wavelengths from 500 to 700 nm, but is smaller at shorter wavelengths and larger toward longer wavelengths. A Hapke-like model is used for the ground reflectivity, and the variation of the Hapke single scattering albedo with wavelength is given. Fits to the visible spectrometers looking upward and downward are achieved except in the methane bands longward of 720 nm. This is possibly due to uncertainties in extrapolation of laboratory measurements from 1 km-am paths to much longer paths at lower pressures. It could also be due to changes in the single scattering phase functions at low altitudes, which strongly affect the path length through methane that the photons travel. We demonstrate the effects on the model fits by varying each model parameter individually in order to illustrate the sensitivity of our determination of each model parameter.
Simulations of arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE
Xie, Shaocheng; Boyle, James; Klein, Stephen A.; ...
2008-02-27
[1] Simulations of mixed-phase clouds in forecasts with the NCAR Atmosphere Model version 3 (CAM3) and the GFDL Atmospheric Model version 2 (AM2) for the Mixed-Phase Arctic Cloud Experiment (M-PACE) are performed using analysis data from numerical weather prediction centers. CAM3 significantly underestimates the observed boundary layer mixed-phase cloud fraction and cannot realistically simulate the variations of liquid water fraction with temperature and cloud height due to its oversimplified cloud microphysical scheme. In contrast, AM2 reasonably reproduces the observed boundary layer cloud fraction while its clouds contain much less cloud condensate than CAM3 and the observations. The simulation of themore » boundary layer mixed-phase clouds and their microphysical properties is considerably improved in CAM3 when a new physically based cloud microphysical scheme is used (CAM3LIU). The new scheme also leads to an improved simulation of the surface and top of the atmosphere longwave radiative fluxes. Sensitivity tests show that these results are not sensitive to the analysis data used for model initialization. Increasing model horizontal resolution helps capture the subgrid-scale features in Arctic frontal clouds but does not help improve the simulation of the single-layer boundary layer clouds. AM2 simulated cloud fraction and LWP are sensitive to the change in cloud ice number concentrations used in the Wegener-Bergeron-Findeisen process while CAM3LIU only shows moderate sensitivity in its cloud fields to this change. Furthermore, this paper shows that the Wegener-Bergeron-Findeisen process is important for these models to correctly simulate the observed features of mixed-phase clouds.« less
Simulations of Arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE
NASA Astrophysics Data System (ADS)
Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Liu, Xiaohong; Ghan, Steven
2008-02-01
Simulations of mixed-phase clouds in forecasts with the NCAR Atmosphere Model version 3 (CAM3) and the GFDL Atmospheric Model version 2 (AM2) for the Mixed-Phase Arctic Cloud Experiment (M-PACE) are performed using analysis data from numerical weather prediction centers. CAM3 significantly underestimates the observed boundary layer mixed-phase cloud fraction and cannot realistically simulate the variations of liquid water fraction with temperature and cloud height due to its oversimplified cloud microphysical scheme. In contrast, AM2 reasonably reproduces the observed boundary layer cloud fraction while its clouds contain much less cloud condensate than CAM3 and the observations. The simulation of the boundary layer mixed-phase clouds and their microphysical properties is considerably improved in CAM3 when a new physically based cloud microphysical scheme is used (CAM3LIU). The new scheme also leads to an improved simulation of the surface and top of the atmosphere longwave radiative fluxes. Sensitivity tests show that these results are not sensitive to the analysis data used for model initialization. Increasing model horizontal resolution helps capture the subgrid-scale features in Arctic frontal clouds but does not help improve the simulation of the single-layer boundary layer clouds. AM2 simulated cloud fraction and LWP are sensitive to the change in cloud ice number concentrations used in the Wegener-Bergeron-Findeisen process while CAM3LIU only shows moderate sensitivity in its cloud fields to this change. This paper shows that the Wegener-Bergeron-Findeisen process is important for these models to correctly simulate the observed features of mixed-phase clouds.
Analytical framework for modeling of long-range transport of fungal plant epidemics
NASA Astrophysics Data System (ADS)
Kogan, Oleg; O'Keeffe, Kevin; Schneider, David; Myers, Christopher; Analytical FrameworksInfectious Disease Dynamics Team
2015-03-01
A new framework for the study of long-range transport of fungal plant epidemics is proposed. The null nonlinear model includes advective transport through the free atmosphere, spore production on the ground, and transfer of spores between the ground and the advective atmospheric layer. The competition between the growth wave on the ground and the effect of the wind is most strongly reflected in upwind fronts, which can propagate into the wind for exponential initial conditions. If the rate of spore transfer into the advective layer is below critical, this happens for initital conditions with arbitrary steepness. Upwind fronts from localized initial conditions will propagate in the direction of the wind above this critical parameter, and will not propagate below it. On the other hand, the speed of the downwind front does not have a strong dependence on the rate of spore transfer between the advective layer and the ground. Thus, even vanishingly small, but finite transfer rates result in a substantial epidemic wave in the direction of the wind. We also consider the effect of an additional, random-walk like mechanism of transport through the near-ground atmospheric boundary layer, and attempt to understand which route dominates the transport over long distances.
NASA Astrophysics Data System (ADS)
Phillips, T. J.; Klein, S. A.; Ma, H. Y.; Tang, Q.
2016-12-01
Statistically significant coupling between summertime soil moisture and various atmospheric variables has been observed at the U.S. Southern Great Plains (SGP) facilities maintained by the U.S. DOE Atmospheric Radiation Measurement (ARM) program (Phillips and Klein, 2014 JGR). In the current study, we employ several independent measurements of shallow-depth soil moisture (SM) and of the surface evaporative fraction (EF) over multiple summers in order to estimate the range of SM-EF coupling strength at seven sites, and to approximate the SGP regional-scale coupling strength (and its uncertainty). We will use this estimate of regional-scale SM-EF coupling strength to evaluate its representation in version 5.1 of the global Community Atmosphere Model (CAM5.1) coupled to the CLM4 Land Model. Two experimental cases are considered for the 2003-2011 study period: 1) an Atmospheric Model Intercomparison Project (AMIP) run with historically observed sea surface temperatures specified, and 2) a more constrained hindcast run in which the CAM5.1 atmospheric state is initialized each day from the ERA Interim reanalysis, while the CLM4 initial conditions are obtained from an offline run of the land model using observed surface net radiation, precipitation, and wind as forcings. These twin experimental cases allow a distinction to be drawn between the land-atmosphere coupling in the free-running CAM5.1/CLM4 model and that in which the land and atmospheric states are constrained to remain closer to "reality". The constrained hindcast case, for example, should allow model errors in coupling strength to be related more closely to potential deficiencies in land-surface or atmospheric boundary-layer parameterizations. AcknowledgmentsThis work was funded by the U.S. Department of Energy Office of Science and was performed at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Stepanov, Dmitry; Gusev, Anatoly; Diansky, Nikolay
2016-04-01
Based on numerical simulations the study investigates impact of atmospheric forcing on heat content variability of the sub-surface layer in Japan/East Sea (JES), 1948-2009. We developed a model configuration based on a INMOM model and atmospheric forcing extracted from the CORE phase II experiment dataset 1948-2009, which enables to assess impact of only atmospheric forcing on heat content variability of the sub-surface layer of the JES. An analysis of kinetic energy (KE) and total heat content (THC) in the JES obtained from our numerical simulations showed that the simulated circulation of the JES is being quasi-steady state. It was found that the year-mean KE variations obtained from our numerical simulations are similar those extracted from the SODA reanalysis. Comparison of the simulated THC and that extracted from the SODA reanalysis showed significant consistence between them. An analysis of numerical simulations showed that the simulated circulation structure is very similar that obtained from the PALACE floats in the intermediate and abyssal layers in the JES. Using empirical orthogonal function analysis we studied spatial-temporal variability of the heat content of the sub-surface layer in the JES. Based on comparison of the simulated heat content variations with those obtained from natural observations an assessment of the atmospheric forcing impact on the heat content variability was obtained. Using singular value decomposition analysis we considered relationships between the heat content variability and wind stress curl as well as sensible heat flux in winter. It was established the major role of sensible heat flux in decadal variability of the heat content of the sub-surface layer in the JES. The research was supported by the Russian Foundation for Basic Research (grant N 14-05-00255) and the Council on the Russian Federation President Grants (grant N MK-3241.2015.5)
NASA Astrophysics Data System (ADS)
Soltanzadeh, Iman; Bonnardot, Valérie; Sturman, Andrew; Quénol, Hervé; Zawar-Reza, Peyman
2017-08-01
Global warming has implications for thermal stress for grapevines during ripening, so that wine producers need to adapt their viticultural practices to ensure optimum physiological response to environmental conditions in order to maintain wine quality. The aim of this paper is to assess the ability of the Weather Research and Forecasting (WRF) model to accurately represent atmospheric processes at high resolution (500 m) during two events during the grapevine ripening period in the Stellenbosch Wine of Origin district of South Africa. Two case studies were selected to identify areas of potentially high daytime heat stress when grapevine photosynthesis and grape composition were expected to be affected. The results of high-resolution atmospheric model simulations were compared to observations obtained from an automatic weather station (AWS) network in the vineyard region. Statistical analysis was performed to assess the ability of the WRF model to reproduce spatial and temporal variations of meteorological parameters at 500-m resolution. The model represented the spatial and temporal variation of meteorological variables very well, with an average model air temperature bias of 0.1 °C, while that for relative humidity was -5.0 % and that for wind speed 0.6 m s-1. Variation in model performance varied between AWS and with time of day, as WRF was not always able to accurately represent effects of nocturnal cooling within the complex terrain. Variations in performance between the two case studies resulted from effects of atmospheric boundary layer processes in complex terrain under the influence of the different synoptic conditions prevailing during the two periods.
NASA Astrophysics Data System (ADS)
Sun, Ruiyu
It is possible due to present day computing power to produce a fluid dynamical physically-based numerical solution to wildfire behavior, at least in the research mode. This type of wildfire modeling affords a flexibility and produces details that are not available in either current operational wildfire behavior models or field experiments. However before using these models to study wildfire, validation is necessary, and model results need to be systematically and objectively analyzed and compared to real fires. Plume theory and data from the Meteotron experiment, which was specially designed to provide results from measurements for the theoretical study of a convective plume produced by a high heat source at the ground, are used here to evaluate the fire plume properties simulated by two numerical wildfire models, the Fire Dynamics Simulator or FDS, and the Clark coupled atmosphere-fire model. The study indicates that the FDS produces good agreement with the plume theory and the Meteotron results. The study also suggests that the coupled atmosphere-fire model, a less explicit and ideally less computationally demanding model than the FDS; can produce good agreement, but that the agreement is sensitive to the method of putting the energy released from the fire into the atmosphere. The WFDS (Wildfire and wildland-urban interface FDS), an extension of the FDS to the vegetative fuel, and the Australian grass fire experiments are used to evaluate and improve the UULES-wildfire coupled model. Despite the simple fire parameterization in the UULES-wildfire coupled model, the fireline is fairly well predicted in terms of both shape and location in the simulation of Australian grass fire experiment F19. Finally, the UULES-wildfire coupled model is used to examine how the turbulent flow in the atmospheric boundary layer (ABL) affects the growth of the grass fires. The model fires showed significant randomness in fire growth: Fire spread is not deterministic in the ABL, and a probabilistic prediction method is warranted. Of the two contributors to the variability in fire growth in the grass fire simulations in the ABL, fire-induced convection, as opposed to the turbulent ABL wind, appears to be the more important one. One mechanism associated with enhanced fire-induced flow is the downdraft behind the frontal fireline. The downdraft is the direct result of the random interaction between the fire plume and the large eddies in the ABL. This study indicates a connection between fire variability in rate of spread and area burnt and so-called convective velocity scale, and it may be possible to use this boundary-layer scale parameter to account for the effects of ABL turbulence on fire spread and fire behavior in today's operational fire prediction systems.
NASA Technical Reports Server (NTRS)
Pallmann, A. J.; Dannevik, W. P.; Frisella, S. P.
1973-01-01
Radiative-conductive heat transfer has been investigated for the ground-atmosphere system of the planet Mars. The basic goal was the quantitative determination of time dependent vertical distributions of temperature and static stability for Southern-Hemispheric summer season and middle and polar latitudes, for both dust-free and dust-laden atmospheric conditions. The numerical algorithm which models at high spatial and temporal resolution the thermal energy transports in the dual ground-atmosphere system, is based on solution of the applicable heating rate equation, including radiative and molecular-conductive heat transport terms. The two subsystems are coupled by an internal thermal boundary condition applied at the ground-atmosphere interface level. Initial data and input parameters are based on Mariner 4, 6, 7, and 9 measurements and the JPL Mars Scientific Model. Numerical experiments were run for dust-free and dust-laden conditions in the midlatitudes, as well as ice-free and ice-covered polar regions. Representative results and their interpretation are presented. Finally, the theoretical framework of the generalized problem with nonconservative Mie scattering and explicit thermal-convective heat transfer is formulated, and applicable solution algorithms are outlined.
Retrieval of Venus' cloud parameters from VIRTIS nightside spectra in the latitude band 25°-55°N
NASA Astrophysics Data System (ADS)
Magurno, Davide; Maestri, Tiziano; Grassi, Davide; Piccioni, Giuseppe; Sindoni, Giuseppe
2017-09-01
Two years of data from the M-channel of the Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS), on board the European Space Agency mission Venus Express operating around the planet Venus, are analysed. Nocturnal data from a nadir viewpoint in the latitude band 25°N-55°N are selected for their configuration advantages and maximisation of the scene homogeneity. A reference model, and radiance spectrum, is defined based on average accepted values of the Venus main atmospheric and cloud parameters found in the literature. Extensive radiative transfer simulations are performed to provide a synthetic database of more than 10 000 VIRTIS radiances representing the natural variability of the system parameters (atmospheric temperature profile, cloud H2Osbnd H2SO4 solution concentration and vertical distribution, particle size distribution density and modal radius). A simulated-observed fitting algorithm of spectral radiances in window channels, based on a weighting procedure accounting for the latitudinal observed radiance variations, is used to derive the best atmosphere-cloud configuration for each observation. Results show that the reference Venus model does not adequately reproduce the observed VIRTIS spectra. In particular, the model accounting for a constant sulphuric acid concentration along the vertical extent of the clouds is never selected as a best fit. The 75%/96% and 84%/96% concentrations (the first values refer to the upper cloud layers and the second values to the lower ones) are the most commonly retrieved models representing more than 85% of the retrieved cases for any latitudinal band considered. It is shown that the assumption of stratified concentration of aqueous sulphuric acid allows to adequately fit the observed radiance, in particular the peak at 1.74 μm and around 4 μm. The analysis of the results concerning the microphysics suggests larger radii for the upper cloud layers in conjunction with a large reduction of their number density with respect to the reference standard. Considerable variation of the particle concentration in the Venus' atmosphere is retrieved for altitudes between 60 and 70 km. The retrieved models also suggest that lower cloud layers have smaller particle radii and larger number density than expected from the reference model. Latitudinal variations of microphysical and chemical parameters are also analysed.
NASA Astrophysics Data System (ADS)
Montzka, S. A.; Butler, J. H.; Dutton, G.; Thompson, T. M.; Hall, B.; Mondeel, D. J.; Elkins, J. W.
2005-05-01
The El-Nino/Southern-Oscillation (ENSO) dominates interannual climate variability and plays, therefore, a key role in seasonal-to-interannual prediction. Much is known by now about the main physical mechanisms that give rise to and modulate ENSO, but the values of several parameters that enter these mechanisms are an important unknown. We apply Extended Kalman Filtering (EKF) for both model state and parameter estimation in an intermediate, nonlinear, coupled ocean--atmosphere model of ENSO. The coupled model consists of an upper-ocean, reduced-gravity model of the Tropical Pacific and a steady-state atmospheric response to the sea surface temperature (SST). The model errors are assumed to be mainly in the atmospheric wind stress, and assimilated data are equatorial Pacific SSTs. Model behavior is very sensitive to two key parameters: (i) μ, the ocean-atmosphere coupling coefficient between SST and wind stress anomalies; and (ii) δs, the surface-layer coefficient. Previous work has shown that δs determines the period of the model's self-sustained oscillation, while μ measures the degree of nonlinearity. Depending on the values of these parameters, the spatio-temporal pattern of model solutions is either that of a delayed oscillator or of a westward propagating mode. Estimation of these parameters is tested first on synthetic data and allows us to recover the delayed-oscillator mode starting from model parameter values that correspond to the westward-propagating case. Assimilation of SST data from the NCEP-NCAR Reanalysis-2 shows that the parameters can vary on fairly short time scales and switch between values that approximate the two distinct modes of ENSO behavior. Rapid adjustments of these parameters occur, in particular, during strong ENSO events. Ways to apply EKF parameter estimation efficiently to state-of-the-art coupled ocean--atmosphere GCMs will be discussed.
IR spectral properties of dust and ice at the Mars south polar cap
NASA Astrophysics Data System (ADS)
Titus, T. N.; Kieffer, H. H.
2001-11-01
Removal of atmospheric dust effects is required to derive surface IR spectral emissivity. Commonly, the atmospheric-surface separation is based on radiative transfer (RT) spectral inversion methods using nadir-pointing observations. This methodology depends on a priori knowledge of the spectral shape of each atmospheric aerosol (e.g. dust or water ice) and a large thermal contrast between the surface and atmosphere. RT methods fail over the polar caps due to low thermal contrast between the atmosphere and the surface. We have used multi-angle Emission Phase Function (EPF) observations to estimate the opacity spectrum of dust over the springtime south polar cap and the underlying surface radiance, and thus, the surface emissivity. We include a few EPFs from Hellas Basin as a basis for comparisons between the spectral shape of polar and non-polar dust. Surface spectral emissivities over the seasonal cap are compared to CO2 models. Our results show that the spectral shape of the polar dust opacity is not constant, but is a two-parameter family that can be characterized by the 9 um and 20 um opacities. The 9 um opacity varies from 0.15 to 0.45 and characterizes the overall atmospheric conditions. The 9 um to 20 um opacity ratio varies from 2.0 to 5.1, suggesting changes in dust size distribution over the polar caps. Derived surface temperatures from the EPFs confirm that the slightly elevated temperatures (relative to CO2 frost temperature) observed in ``cryptic'' regions are a surface effect, not atmospheric. Comparison of broad-band reflectivity and surface emissivities to model spectra suggest the bright regions (e.g. perennial cap, Mountains of Mitchell) have higher albedos due to a thin surface layer of fine-grain CO2 (perhaps either frost or fractured ice) with an underlying layer of either coarse grain or slab CO2 ice.
Evolution of Asian aerosols during transpacific transport in INTEX-B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunlea, E. J.; DeCarlo, Peter; Aiken, Allison
2009-10-01
Measurements of aerosol composition were made with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) on board the NSF/NCAR C-130 aircraft as part of the Intercontinental Chemical Transport Experiment Phase B 5 (INTEX-B) field campaign over the Eastern Pacific Ocean. The HR-ToF-AMS measurements of non-refractory submicron aerosol mass are shown to compare well with other aerosol instrumentation in the INTEX-B field study. Two case studies are described for pollution layers transported across the Pacific from the Asian continent, intercepted 3–4 days and 7–10 days downwind of Asia, respectively. Aerosol chemistry is shown to 10 be a robust tracer formore » air masses originating in Asia, specifically the presence of sulfate dominated aerosol is a distinguishing feature of Asian pollution layers that have been transported to the Eastern Pacific. We examine the time scales of processing for sulfate and organic aerosol in the atmosphere and show that our observations confirm a conceptual model for transpacific transport from Asia proposed by Brock et al. (2004). 15 Our observations of both sulfate and organic aerosol in aged Asian pollution layers are consistent with fast formation near the Asian continent, followed by washout during lofting and subsequent transformation during transport across the Pacific. Our observations are the first atmospheric measurements to indicate that although secondary organic aerosol (SOA) formation from pollution happens on the timescale of one day, 20 the oxidation of organic aerosol continues at longer timescales in the atmosphere. Comparisons with chemical transport models of data from the entire campaign reveal an under-prediction of SOA mass in the MOZART model, but much smaller discrepancies with the GEOS-Chem model than found in previous studies over the Western Pacific. No evidence is found to support a previous hypothesis for significant secondary 25 organic aerosol formation in the free troposphere.« less
NASA Astrophysics Data System (ADS)
Endo, S.; Fridlind, A. M.; Lin, W.; Vogelmann, A. M.; Toto, T.; Liu, Y.
2013-12-01
Three cases of boundary layer clouds are analyzed in the FAst-physics System TEstbed and Research (FASTER) project, based on continental boundary-layer-cloud observations during the RACORO Campaign [Routine Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations] at the ARM Climate Research Facility's Southern Great Plains (SGP) site. The three 60-hour case study periods are selected to capture the temporal evolution of cumulus, stratiform, and drizzling boundary-layer cloud systems under a range of conditions, intentionally including those that are relatively more mixed or transitional in nature versus being of a purely canonical type. Multi-modal and temporally varying aerosol number size distribution profiles are derived from aircraft observations. Large eddy simulations (LESs) are performed for the three case study periods using the GISS Distributed Hydrodynamic Aerosol and Radiative Modeling Application (DHARMA) model and the WRF-FASTER model, which is the Weather Research and Forecasting (WRF) model implemented with forcing ingestion and other functions to constitute a flexible LES. The two LES models commonly capture the significant transitions of cloud-topped boundary layers in the three periods: diurnal evolution of cumulus layers repeating over multiple days, nighttime evolution/daytime diminution of thick stratus, and daytime breakup of stratus and stratocumulus clouds. Simulated transitions of thermodynamic structures of the cloud-topped boundary layers are examined by balloon-borne soundings and ground-based remote sensors. Aircraft observations are then used to statistically evaluate the predicted cloud droplet number size distributions under varying aerosol and cloud conditions. An ensemble approach is used to refine the model configuration for the combined use of observations with parallel LES and single-column model simulations. See Lin et al. poster for single-column model investigation.
Mixed layer modeling in the East Pacific warm pool during 2002
NASA Astrophysics Data System (ADS)
Van Roekel, Luke P.; Maloney, Eric D.
2012-06-01
Two vertical mixing models (the modified dynamic instability model of Price et al.; PWP, and K-Profile Parameterizaton; KPP) are used to analyze intraseasonal sea surface temperature (SST) variability in the northeast tropical Pacific near the Costa Rica Dome during boreal summer of 2002. Anomalies in surface latent heat flux and shortwave radiation are the root cause of the three intraseasonal SST oscillations of order 1°C amplitude that occur during this time, although surface stress variations have a significant impact on the third event. A slab ocean model that uses observed monthly varying mixed layer depths and accounts for penetrating shortwave radiation appears to well-simulate the first two SST oscillations, but not the third. The third oscillation is associated with small mixed layer depths (<5 m) forced by, and acting with, weak surface stresses and a stabilizing heat flux that cause a transient spike in SST of 2°C. Intraseasonal variations in freshwater flux due to precipitation and diurnal flux variability do not significantly impact these intraseasonal oscillations. These results suggest that a slab ocean coupled to an atmospheric general circulation model, as used in previous studies of east Pacific intraseasonal variability, may not be entirely adequate to realistically simulate SST variations. Further, while most of the results from the PWP and KPP models are similar, some important differences that emerge are discussed.
A model to determine open or closed cellular convection
NASA Technical Reports Server (NTRS)
Helfand, H. M.; Kalnay, E.
1981-01-01
A simple mechanism is proposed to explain the observed presence in the atmosphere of open or closed cellular convection. If convection is produced by cooling concentrated near the top of the cloud layer, as in radiative cooling of stratus clouds, it develops strong descending currents which are compensated by weak ascent over most of the horizontal area, and closed cells result. Conversely, heating concentrated near the bottom of a layer, as when an air mass is heated by warm water, results in strong ascending currents compensated by weak descent over most of the area, or open cells. This mechanism is similar to the one suggested by Stommel (1962) to explain the smallness of the oceans' sinking regions. The mechanism is studied numerically by means of a two-dimensional, nonlinear Boussinesq model.
Planetary Boundary Layer Simulation Using TASS
NASA Technical Reports Server (NTRS)
Schowalter, David G.; DeCroix, David S.; Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael
1996-01-01
Boundary conditions to an existing large-eddy simulation model have been changed in order to simulate turbulence in the atmospheric boundary layer. Several options are now available, including the use of a surface energy balance. In addition, we compare convective boundary layer simulations with the Wangara and Minnesota field experiments as well as with other model results. We find excellent agreement of modelled mean profiles of wind and temperature with observations and good agreement for velocity variances. Neutral boundary simulation results are compared with theory and with previously used models. Agreement with theory is reasonable, while agreement with previous models is excellent.
NASA Astrophysics Data System (ADS)
Wang, Weiyang; Lu, Jiguang; Tong, Hao; Ge, Mingyu; Li, Zhaosheng; Men, Yunpeng; Xu, Renxin
2017-03-01
X-ray-dim isolated neutron stars (XDINSs) are characterized by Planckian spectra in X-ray bands, but show optical/ultraviolet (UV) excesses: the factors by which the measured photometry exceeds those extrapolated from X-ray spectra. To solve this problem, a radiative model of bremsstrahlung emission from a plasma atmosphere is established in the regime of a strangeon star. A strangeon star atmosphere could simply be regarded as the upper layer of a normal neutron star. This plasma atmosphere, formed and maintained by the interstellar-medium-accreted matter due to the so-called strangeness barrier, is supposed to be of two temperatures. All seven XDINS spectra could be well fitted by the radiative model, from optical/UV to X-ray bands. The fitted radiation radii of XDINSs are from 7 to 13 km, while the modeled electron temperatures are between 50 and 250 eV, except RX J0806.4-4123, with a radiation radius of ˜3.5 km, indicating that this source could be a low-mass strangeon star candidate. This strangeon star model could further be tested by soft X-ray polarimetry, such as the Lightweight Asymmetry and Magnetism Probe, which is expected to be operational on China’s space station around 2020.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Weiyang; Lu, Jiguang; Men, Yunpeng
X-ray-dim isolated neutron stars (XDINSs) are characterized by Planckian spectra in X-ray bands, but show optical/ultraviolet (UV) excesses: the factors by which the measured photometry exceeds those extrapolated from X-ray spectra. To solve this problem, a radiative model of bremsstrahlung emission from a plasma atmosphere is established in the regime of a strangeon star. A strangeon star atmosphere could simply be regarded as the upper layer of a normal neutron star. This plasma atmosphere, formed and maintained by the interstellar-medium-accreted matter due to the so-called strangeness barrier, is supposed to be of two temperatures. All seven XDINS spectra could bemore » well fitted by the radiative model, from optical/UV to X-ray bands. The fitted radiation radii of XDINSs are from 7 to 13 km, while the modeled electron temperatures are between 50 and 250 eV, except RX J0806.4–4123, with a radiation radius of ∼3.5 km, indicating that this source could be a low-mass strangeon star candidate. This strangeon star model could further be tested by soft X-ray polarimetry, such as the Lightweight Asymmetry and Magnetism Probe, which is expected to be operational on China’s space station around 2020.« less
Chemistry and Transport In a Multi-Dimensional Model
NASA Technical Reports Server (NTRS)
Yung, Yuk L.; Allen, M.; Zurek, R. W.; Salawitch, R. J.
2002-01-01
The focus of the work funded under this proposal is the exchange between the stratosphere and the troposphere, and between the troposphere and the blaspheme. These two interfaces represent the frontiers of atmospheric chemistry. It is the combination of exchange processes at both interfaces that ultimately controls how the blaspheme (including human activities) affects the ozone layer. The modeling work was motivated by and attempts to integrate information obtained by aircraft, spacecraft, shuttle and oceanic measurements. The model development and research activities accomplished in the past three years provide a technical and intellectual basis for the research in this group. The innovative part of our research program is related to the IAV of ozone and the hydrological cycle. Other related but independently supported work include the study of isotopic fractionation of atmospheric species, e.g., N2O and CO2. Our theory suggests that we now have the ability to probe the middle atmosphere at a level of sensitivity where subtle details such as the isotopic composition of simple molecules can yield measurable systematic effects. This creates the possibility for probing the chemistry and dynamics of the middle atmosphere using all of the N2O and CO2 isotopologues. In the following we will briefly describe the model development and review the highlights of recent accomplishments.
Terminal Area Simulation System User's Guide - Version 10.0
NASA Technical Reports Server (NTRS)
Switzer, George F.; Proctor, Fred H.
2014-01-01
The Terminal Area Simulation System (TASS) is a three-dimensional, time-dependent, large eddy simulation model that has been developed for studies of wake vortex and weather hazards to aviation, along with other atmospheric turbulence, and cloud-scale weather phenomenology. This document describes the source code for TASS version 10.0 and provides users with needed documentation to run the model. The source code is programed in Fortran language and is formulated to take advantage of vector and efficient multi-processor scaling for execution on massively-parallel supercomputer clusters. The code contains different initialization modules allowing the study of aircraft wake vortex interaction with the atmosphere and ground, atmospheric turbulence, atmospheric boundary layers, precipitating convective clouds, hail storms, gust fronts, microburst windshear, supercell and mesoscale convective systems, tornadic storms, and ring vortices. The model is able to operate in either two- or three-dimensions with equations numerically formulated on a Cartesian grid. The primary output from the TASS is time-dependent domain fields generated by the prognostic equations and diagnosed variables. This document will enable a user to understand the general logic of TASS, and will show how to configure and initialize the model domain. Also described are the formats of the input and output files, as well as the parameters that control the input and output.
Properties of internal solitary waves in a symmetric three-layer fluid
NASA Astrophysics Data System (ADS)
Vladykina, E. A.; Polukhina, O. E.; Kurkin, A. A.
2009-04-01
Though all the natural media have smooth density stratifications (with the exception of special cases such as sea surface, inversion layer in the atmosphere), the scales of density variations can be different, and some of them can be considered as very sharp. Therefore for the description of internal wave propagation and interaction in the ocean and atmosphere the n-layer models are often used. In these models density profile is usually approximated by a piecewise-constant function. The advantage of the layered models is the finite number of parameters and relatively simple solutions of linear and weakly nonlinear problems. Layered models are also very popular in the laboratory experiments with stratified fluid. In this study we consider symmetric, continuously stratified, smoothed three-layer fluid bounded by rigid horizontal surface and bottom. Three-layer stratification is proved to be a proper approximation of sea water density profile in some basins in the World Ocean with specific hydrological conditions. Such a medium is interesting from the point of view of internal gravity wave dynamics, because in the symmetric case it leads to disappearing of quadratic nonlinearity when described in the framework of weakly nonlinear evolutionary models, that are derived through the asymptotic expansion in small parameters of nonlinearity and dispersion. The goal of our study is to determine the properties of localized stationary internal gravity waveforms (solitary waves) in this symmetric three-layer fluid. The investigation is carried out in the framework of improved mathematical model describing the transformation of internal wave fields generated by an initial disturbance. The model is based on the program complex for the numerical simulation of the two-dimensional (vertical plane) fully nonlinear Euler equations for incompressible stratified fluid under the Boussinesq approximation. Initial disturbances of both polarities evolve into stationary, solitary-like waves of corresponding polarity, for which we found the amplitude-width, amplitude-velocity, mass-amplitude, and energy-amplitude relations. Small-amplitude impulses to a good approximation can be described by the modified Korteweg-de Vries equation, but larger waves tend to become wide, and absolute value of their amplitude is bounded by the upper limit. Authors thank prof. K.G. Lamb for the opportunity to use the program code for numerical simulations of Euler equations. The research was supported by RFBR (09-05-00447, 09-05-00204) and by President of RF (MD-3024.2008.5 for young doctors of science).
The NASA environmental models of Mars
NASA Technical Reports Server (NTRS)
Kaplan, D. I.
1991-01-01
NASA environmental models are discussed with particular attention given to the Mars Global Reference Atmospheric Model (Mars-GRAM) and the Mars Terrain simulator. The Mars-GRAM model takes into account seasonal, diurnal, and surface topography and dust storm effects upon the atmosphere. It is also capable of simulating appropriate random density perturbations along any trajectory path through the atmosphere. The Mars Terrain Simulator is a software program that builds pseudo-Martian terrains by layering the effects of geological processes upon one another. Output pictures of the constructed surfaces can be viewed from any vantage point under any illumination conditions. Attention is also given to the document 'Environment of Mars, 1988' in which scientific models of the Martian atmosphere and Martian surface are presented.
NASA Technical Reports Server (NTRS)
Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.;
2015-01-01
The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere be tween and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2).These layer s contributed up to 60 of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. In addition, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.
NASA Astrophysics Data System (ADS)
Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; Hair, Johnathan W.; Hostetler, Chris A.; Hubbe, John; Jefferson, Anne; Johnson, Roy; Kassianov, Evgueni I.; Kluzek, Celine D.; Kollias, Pavlos; Lamer, Katia; Lantz, Kathleen; Mei, Fan; Miller, Mark A.; Michalsky, Joseph; Ortega, Ivan; Pekour, Mikhail; Rogers, Ray R.; Russell, Philip B.; Redemann, Jens; Sedlacek, Arthur J.; Segal-Rosenheimer, Michal; Schmid, Beat; Shilling, John E.; Shinozuka, Yohei; Springston, Stephen R.; Tomlinson, Jason M.; Tyrrell, Megan; Wilson, Jacqueline M.; Volkamer, Rainer; Zelenyuk, Alla; Berkowitz, Carl M.
2016-01-01
The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere between and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). These layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. In addition, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.
NASA Astrophysics Data System (ADS)
Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Lampert, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Bange, J.; Baars, H.
2014-12-01
This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN-situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard-Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturized by re-arranging the vital parts and composing them in a space saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time. Each system was characterized in the laboratory and calibrated with test aerosols. The CPCs are operated with two different lower detection threshold diameters of 6 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs. Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on two days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the boundary layer, derived from backscatter signals of a portable Raman lidar POLLYXT, allows a quick overview of the current vertical structure of atmospheric particles. Ground-based aerosol number concentrations are consistent with the results from flights in heights of a few meters. In addition, a direct comparison of ALADINA aerosol data and ground-based aerosol data, sampling the air at the same location, shows comparable values. MASC was operated simultaneously with complementary flight patterns. It is equipped with the same meteorological instruments that offer the possibility to determine turbulent fluxes. Therefore additional information about meteorological conditions was collected in the lowest part of the atmosphere. Vertical profiles up to 1000 m altitude indicate a high variability with distinct layers of aerosol especially for the small particles of a few nanometers in diameter. Particle bursts were observed on one day during the boundary layer development in the morning.
Penetrative cellular convection in a stratified atmosphere. [of stars
NASA Technical Reports Server (NTRS)
Massaguer, J. M.; Latour, J.; Toomre, J.; Zahn, J.-P.
1984-01-01
In the present investigation of penetrative convection within a simple compressible model, the middle one of the three layers of differing stratification prior to the onset of convection is a convectively unstable polytrope bounded above and below by two stably stratified polytropes. One- and two-mode steady solutions with hexagonal planforms have been studied for Rayleigh numbers up to aobut 1000 times critical, and for a range of Prandtl numbers, horizontal wavenumbers, and stratifications. These indicate that the penetration into the lower stable layer by downward plumes is substantially larger in a stratified medium than in a Boussinesq fluid, and produces an extended region of adiabatic stratification. The strong asymmetry between upward and downward penetration in compressible media has major implications for the mixing of stable regions above and below stellar convection zones.
Engineering aspects of the Large Binocular Telescope Observatory adaptive optics systems
NASA Astrophysics Data System (ADS)
Brusa, Guido; Ashby, Dave; Christou, Julian C.; Kern, Jonathan; Lefebvre, Michael; McMahon, Tom J.; Miller, Douglas; Rahmer, Gustavo; Sosa, Richard; Taylor, Gregory; Vogel, Conrad; Zhang, Xianyu
2016-07-01
Vertical profiles of the atmospheric optical turbulence strength and velocity is of critical importance for simulating, designing, and operating the next generation of instruments for the European Extremely Large Telescope. Many of these instruments are already well into the design phase meaning these profies are required immediately to ensure they are optimised for the unique conditions likely to be observed. Stereo-SCIDAR is a generalised SCIDAR instrument which is used to characterise the profile of the atmospheric optical turbulence strength and wind velocity using triangulation between two optical binary stars. Stereo-SCIDAR has demonstrated the capability to resolve turbulent layers with the required vertical resolution to support wide-field ELT instrument designs. These high resolution atmospheric parameters are critical for design studies and statistical evaluation of on-sky performance under real conditions. Here we report on the new Stereo-SCIDAR instrument installed on one of the Auxillary Telescope ports of the Very Large Telescope array at Cerro Paranal. Paranal is located approximately 20 km from Cerro Armazones, the site of the E-ELT. Although the surface layer of the turbulence will be different for the two sites due to local geography, the high-altitude resolution profiles of the free atmosphere from this instrument will be the most accurate available for the E-ELT site. In addition, these unbiased and independent profiles are also used to further characterise the site of the VLT. This enables instrument performance calibration, optimisation and data analysis of, for example, the ESO Adaptive Optics facility and the Next Generation Transit Survey. It will also be used to validate atmospheric models for turbulence forecasting. We show early results from the commissioning and address future implications of the results.
What are Up, Down and Net Fluxes?
Atmospheric Science Data Center
2014-12-08
... Given the vertical layered structure of Earth atmosphere above underlying surfaces, the vertical variability of these fluxes ... for the net energy loss or gain within any two such layers. This concept is important in defining the radiative heating or cooling ...
Atmosphere-Ocean Variations in the Indo-Pacific Sector during ENSO Episodes.
NASA Astrophysics Data System (ADS)
Lau, Ngar-Cheung; Nath, Mary Jo
2003-01-01
The influences of El Niño-Southern Oscillation (ENSO) events on air-sea interaction in the Indian-western Pacific (IWP) Oceans have been investigated using a general circulation model. Observed monthly sea surface temperature (SST) variations in the deep tropical eastern/central Pacific (DTEP) have been inserted in the lower boundary of this model through the 1950-99 period. At all maritime grid points outside of DTEP, the model atmosphere has been coupled with an oceanic mixed layer model with variable depth. Altogether 16 independent model runs have been conducted.Composite analysis of selected ENSO episodes illustrates that the prescribed SST anomalies in DTEP affect the surface atmospheric circulation and precipitation patterns in IWP through displacements of the near-equatorial Walker circulation and generation of Rossby wave modes in the subtropics. Such atmospheric responses modulate the surface fluxes as well as the oceanic mixed layer depth, and thereby establish a well-defined SST anomaly pattern in the IWP sector several months after the peak in ENSO forcing in DTEP. In most parts of the IWP region, the net SST tendency induced by atmospheric changes has the same polarity as the local composite SST anomaly, thus indicating that the atmospheric forcing acts to reinforce the underlying SST signal.By analyzing the output from a suite of auxiliary experiments, it is demonstrated that the SST perturbations in IWP (which are primarily generated by ENSO-related atmospheric changes) can, in turn, exert notable influences on the atmospheric conditions over that region. This feedback mechanism also plays an important role in the eastward migration of the subtropical anticyclones over the western Pacific in both hemispheres.
Experimental investigation of flow over two-dimensional multiple hill models.
Li, Qing'an; Maeda, Takao; Kamada, Yasunari; Yamada, Keisuke
2017-12-31
The aim of this study is to investigate the flow field characteristics in ABL (Atmospheric Boundary Layer) flow over multiple hills and valleys in two-dimensional models under neutral conditions. Active turbulence grids and boundary layer generation frame were used to simulate the natural winds in wind tunnel experiments. As a result, the mean wind velocity, the velocity vector diagram and turbulence intensity around the hills were investigated by using a PIV (Particle Image Velocimetry) system. From the measurement results, it was known that the average velocity was increased along the upstream slope of upside hill, and then separated at the top of the hills, the acceleration region of U/U ref >1 was generated at the downstream of the hill. Meanwhile, a large clockwise circulation flow was generated between the two hill models. Moreover, the turbulence intensity showed small value in the circulation flow regions. Compared to 1H model, the turbulence intensity in the mainstream direction showed larger value than that in the vertical direction. This paper provided a better understanding of the wind energy distribution on the terrain for proper selection of suitable sites for installing wind farms in the ABL. Copyright © 2017 Elsevier B.V. All rights reserved.
Multilevel Monte Carlo and improved timestepping methods in atmospheric dispersion modelling
NASA Astrophysics Data System (ADS)
Katsiolides, Grigoris; Müller, Eike H.; Scheichl, Robert; Shardlow, Tony; Giles, Michael B.; Thomson, David J.
2018-02-01
A common way to simulate the transport and spread of pollutants in the atmosphere is via stochastic Lagrangian dispersion models. Mathematically, these models describe turbulent transport processes with stochastic differential equations (SDEs). The computational bottleneck is the Monte Carlo algorithm, which simulates the motion of a large number of model particles in a turbulent velocity field; for each particle, a trajectory is calculated with a numerical timestepping method. Choosing an efficient numerical method is particularly important in operational emergency-response applications, such as tracking radioactive clouds from nuclear accidents or predicting the impact of volcanic ash clouds on international aviation, where accurate and timely predictions are essential. In this paper, we investigate the application of the Multilevel Monte Carlo (MLMC) method to simulate the propagation of particles in a representative one-dimensional dispersion scenario in the atmospheric boundary layer. MLMC can be shown to result in asymptotically superior computational complexity and reduced computational cost when compared to the Standard Monte Carlo (StMC) method, which is currently used in atmospheric dispersion modelling. To reduce the absolute cost of the method also in the non-asymptotic regime, it is equally important to choose the best possible numerical timestepping method on each level. To investigate this, we also compare the standard symplectic Euler method, which is used in many operational models, with two improved timestepping algorithms based on SDE splitting methods.
Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere.
Gorski, Galen; Strong, Courtenay; Good, Stephen P; Bares, Ryan; Ehleringer, James R; Bowen, Gabriel J
2015-03-17
Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. We show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration of water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. Our findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry.
Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere
Gorski, Galen; Strong, Courtenay; Good, Stephen P.; Bares, Ryan; Ehleringer, James R.; Bowen, Gabriel J.
2015-01-01
Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. We show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration of water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. Our findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry. PMID:25733906
Soil moisture profile variability in land-vegetation- atmosphere continuum
NASA Astrophysics Data System (ADS)
Wu, Wanru
Soil moisture is of critical importance to the physical processes governing energy and water exchanges at the land-air boundary. With respect to the exchange of water mass, soil moisture controls the response of the land surface to atmospheric forcing and determines the partitioning of precipitation into infiltration and runoff. Meanwhile, the soil acts as a reservoir for the storage of liquid water and slow release of water vapor into the atmosphere. The major motivation of the study is that the soil moisture profile is thought to make a substantial contribution to the climate variability through two-way interactions between the land-surface and the atmosphere in the coupled ocean-atmosphere-land climate system. The characteristics of soil moisture variability with soil depth may be important in affecting the atmosphere. The natural variability of soil moisture profile is demonstrated using observations. The 16-year field observational data of soil moisture with 11-layer (top 2.0 meters) measured soil depths over Illinois are analyzed and used to identify and quantify the soil moisture profile variability, where the atmospheric forcing (precipitation) anomaly propagates down through the land-branch of the hydrological cycle with amplitude damping, phase shift, and increasing persistence. Detailed statistical data analyses, which include application of the periodogram method, the wavelet method and the band-pass filter, are made of the variations of soil moisture profile and concurrently measured precipitation for comparison. Cross-spectral analysis is performed to obtain the coherence pattern and phase correlation of two time series for phase shift and amplitude damping calculation. A composite of the drought events during this time period is analyzed and compared with the normal (non-drought) case. A multi-layer land surface model is applied for modeling the soil moisture profile variability characteristics and investigating the underlying mechanisms. Numerical experiments are conducted to examine the impacts of some potential controlling factors, which include atmospheric forcing (periodic and pulse) at the upper boundary, the initial soil moisture profile, the relative root abundance and the soil texture, on the variability of soil moisture profile and the corresponding evapotranspiration. Similar statistical data analyses are performed for the experimental data. Observations from the First International Satellite Land Surface Climatological Project (ISLSCP) Field Experiment (FIFE) are analyzed and used for the testing of model. The integration of the observational and modeling approaches makes it possible to better understand the mechanisms by which the soil moisture profile variability is generated with phase shift, fluctuation amplitude damping and low-pass frequency filtering with soil depth, to improve the strategies of parameterizations in land surface schemes, and furthermore, to assess its contribution to climate variability.
NASA Astrophysics Data System (ADS)
Bunzel, Felix; Müller, Wolfgang A.; Dobrynin, Mikhail; Fröhlich, Kristina; Hagemann, Stefan; Pohlmann, Holger; Stacke, Tobias; Baehr, Johanna
2018-01-01
We evaluate the impact of a new five-layer soil-hydrology scheme on seasonal hindcast skill of 2 m temperatures over Europe obtained with the Max Planck Institute Earth System Model (MPI-ESM). Assimilation experiments from 1981 to 2010 and 10-member seasonal hindcasts initialized on 1 May each year are performed with MPI-ESM in two soil configurations, one using a bucket scheme and one a new five-layer soil-hydrology scheme. We find the seasonal hindcast skill for European summer temperatures to improve with the five-layer scheme compared to the bucket scheme and investigate possible causes for these improvements. First, improved indirect soil moisture assimilation allows for enhanced soil moisture-temperature feedbacks in the hindcasts. Additionally, this leads to improved prediction of anomalies in the 500 hPa geopotential height surface, reflecting more realistic atmospheric circulation patterns over Europe.
NASA Astrophysics Data System (ADS)
Schiavon, Mario; Mazzola, Mauro; Lupi, Angelo; Drofa, Oxana; Tampieri, Francesco; Pelliccioni, Armando; Choi, Taejin; Vitale, Vito; Viola, Angelo P.
2017-04-01
At high latitudes, the Atmospheric Boundary Layer ( ABL) is often characterized by extremely stable vertical stratification since the surface radiative cooling determines inversions in temperature profiles especially during the polar night over land, ice and snow surfaces. Improvements are required in the theoretical understanding of the turbulent behavior of the high-latitude ABL. The parameterizations of surface-atmosphere exchanges employed in numerical weather prediction and climate models have also to be tested in the Arctic area. Moreover, the boundary layer structure and dynamics influence the vertical distribution of aerosol. The main issue is related to the height of PBL: the question is whether some decoupling occurs between the surface layer and the atmosphere aloft when the PBL is shallow or the mechanical mixing due to the synoptic circulation provides an overall vertical homogeneity of the concentration of the aerosol irrespective of the stability conditions. In this aim, the work investigates the features of the high-latitude ABL with particular attention to its vertical structure, the relationships among the main turbulent statistics (in a similarity approach) and their variation with the ABL state. The used data refer to measurements collected since 2012 to 2016 by slow and fast response sensors deployed at the 34 m high Amundsen-Nobile Climate Change Tower (CCT) installed at Ny-Ålesund, Svalbard. Data from four conventional Young anemometers and Väisäla thermo-hygrometers at 2, 4.8, 10.3 and 33.4 m a.g.l., alternated by three lined up sonic anemometers at 3.7, 7.5 and 21 m a.g.l., are used in the analysis. The presented results highlight that the performance of the commonly adopted ABL similarity schemes (e.g. flux-gradient relationships and parameterizations for the stable ABL height) depends upon the ABL state, determined mainly by the wind speed and the shape of the profiles of second order moments (the two being related) . For neutral or stable stratification, strong wind and second order moments monotonically decreasing with height (traditional stable ABL), classical similarity schemes perform well also in the Arctic ABL. Instead, critical conditions, for which the classical similarity approach is not satisfactory, occur for low wind and profiles of second order moments deviating from the traditional case: e.g. upside-down ABL. Numerical experiments with the atmospheric model Bolam have been performed, for the whole period April-August 2013 in hindcast mode, on a domain covering the area of the observations, in order to assess the capability of an atmospheric numerical model to reproduce the observed vertical profiles in the PBL under different synoptic situations.
NASA Astrophysics Data System (ADS)
Shao, Yaping; Liu, Shaofeng; Schween, Jan H.; Crewell, Susanne
2013-08-01
A model is developed for the large-eddy simulation (LES) of heterogeneous atmosphere and land-surface processes. This couples a LES model with a land-surface scheme. New developments are made to the land-surface scheme to ensure the adequate representation of atmosphere-land-surface transfers on the large-eddy scale. These include, (1) a multi-layer canopy scheme; (2) a method for flux estimates consistent with the large-eddy subgrid closure; and (3) an appropriate soil-layer configuration. The model is then applied to a heterogeneous region with 60-m horizontal resolution and the results are compared with ground-based and airborne measurements. The simulated sensible and latent heat fluxes are found to agree well with the eddy-correlation measurements. Good agreement is also found in the modelled and observed net radiation, ground heat flux, soil temperature and moisture. Based on the model results, we study the patterns of the sensible and latent heat fluxes, how such patterns come into existence, and how large eddies propagate and destroy land-surface signals in the atmosphere. Near the surface, the flux and land-use patterns are found to be closely correlated. In the lower boundary layer, small eddies bearing land-surface signals organize and develop into larger eddies, which carry the signals to considerably higher levels. As a result, the instantaneous flux patterns appear to be unrelated to the land-use patterns, but on average, the correlation between them is significant and persistent up to about 650 m. For a given land-surface type, the scatter of the fluxes amounts to several hundred W { m }^{-2}, due to (1) large-eddy randomness; (2) rapid large-eddy and surface feedback; and (3) local advection related to surface heterogeneity.
Estimating lake-atmosphere CO2 exchange
Anderson, D.E.; Striegl, Robert G.; Stannard, D.I.; Michmerhuizen, C.M.; McConnaughey, T.A.; LaBaugh, J.W.
1999-01-01
Lake-atmosphere CO2 flux was directly measured above a small, woodland lake using the eddy covariance technique and compared with fluxes deduced from changes in measured lake-water CO2 storage and with flux predictions from boundary-layer and surface-renewal models. Over a 3-yr period, lake-atmosphere exchanges of CO2 were measured over 5 weeks in spring, summer, and fall. Observed springtime CO2 efflux was large (2.3-2.7 ??mol m-2 s-1) immediately after lake-thaw. That efflux decreased exponentially with time to less than 0.2 ??mol m-2 s-1 within 2 weeks. Substantial interannual variability was found in the magnitudes of springtime efflux, surface water CO2 concentrations, lake CO2 storage, and meteorological conditions. Summertime measurements show a weak diurnal trend with a small average downward flux (-0.17 ??mol m-2 s-1) to the lake's surface, while late fall flux was trendless and smaller (-0.0021 ??mol m-2 s-1). Large springtime efflux afforded an opportunity to make direct measurement of lake-atmosphere fluxes well above the detection limits of eddy covariance instruments, facilitating the testing of different gas flux methodologies and air-water gas-transfer models. Although there was an overall agreement in fluxes determined by eddy covariance and those calculated from lake-water storage change in CO2, agreement was inconsistent between eddy covariance flux measurements and fluxes predicted by boundary-layer and surface-renewal models. Comparison of measured and modeled transfer velocities for CO2, along with measured and modeled cumulative CO2 flux, indicates that in most instances the surface-renewal model underpredicts actual flux. Greater underestimates were found with comparisons involving homogeneous boundary-layer models. No physical mechanism responsible for the inconsistencies was identified by analyzing coincidentally measured environmental variables.
NASA Astrophysics Data System (ADS)
Mani, B.; Mandal, M.
2016-12-01
Numerical prediction of tropical cyclone (TC) track has improved significantly in recent years, but not the intensity. It is well accepted that TC induced sea surface temperature (SST) cooling in conjunction with pre-existing upper-ocean features have major influences on tropical cyclone intensity. Absence of two-way atmosphere-ocean feedback in the stand-alone atmosphere models has major consequences on their prediction of TC intensity. The present study investigates the role of upper-ocean on prediction of TC intensity and track based on coupled and uncoupled simulation of the Bay of Bengal (BoB) cyclone `Phailin'. The coupled simulation is conducted with the Mesoscale Coupled Modeling System (MCMS) which is a fully coupled atmosphere-ocean modeling system that includes the non-hydrostatic atmospheric model (WRF-ARW) and the three-dimensional hydrostatic ocean model (ROMS). The uncoupled simulation is performed using the atmosphere component of MCMS i.e., the customized version of WRF-ARW for BoB cyclones with prescribed (RTG) SST. The track and intensity of the storm is significantly better simulated by the MCMS and closely followed the observation. The peak intensity, landfall position and time are accurately predicted by MCMS, whereas the uncoupled simulation over predicted the storm intensity. Validation of storm induced SST cooling with the merged microwave-infrared satellite SST indicates that the MCMS simulation shows better correlation both in terms of spatial spread of cold wake and its magnitude. The analysis also suggests that the Pre-existing Cyclonic Eddy (PCE) observed adjacent to the storm enhanced the TC induced SST cooling. It is observed that the response of SST (i.e., cooling) to storm intensity is 12hr with 95% statistical significance. The air-sea enthalpy flux shows a clear asymmetry between Front Left (FL) and Rear Right (RR) regime to the storm center where TC induced cooling is more than 0.5K/24hr. The analysis of atmospheric boundary layer reveals the formation of persistent stable boundary layer (SBL) over the cold wake, which caused asymmetry in TC structure by quelling convection in the rainbands downstream to the cold wake. The present study signifies the importance of using MCMS in prediction of the BoB cyclone and encourages further investigation with more cyclone cases.
Research concerning the net flux of radiation in the atmosphere of Jupiter
NASA Technical Reports Server (NTRS)
Tomasko, M. G.
1996-01-01
The plan of the NFR (Net Flux of Radiation) team is for the data from the two solar channels (B and E) of NFR to be reduced with the goal of determining the solar heating rate. In order to determine the solar heating rate from the NFR measurements, effects due to the instrument's spatial and spectral response functions, to the temperature variation of the instrument (and associated drift of calibration), to the setting sun, and to the rotation of the probe (initially at a rate comparable to the NFR sampling frequency), all must be well modelled. In the past year, a forward modeling routine was created to simulate NFR data return in the B and E channels. The effects of varying parameters describing the atmospheric model (such as cloud location and thickness) and the descent profile (such as rotation rate) were investigated and an inversion routine was developed. For the forward modeling, existing radiative transfer codes were used to determine intensity fields within the Jovian atmosphere. A routine was developed to determine instantaneous instrument response by integrating the intensity field over the instrument response functions. A second routine was developed to determine the actual output of the NFR by integrating along an arbitrary descent trajectory. Near the top of the atmosphere, the upflux data alone are used to constrain the cloud structure of he atmosphere. To accomplish this, models are used to describe the variation in up flux between consecutive measurements in terms of variations of cloud opacity and variations in known parameters such as the solar zenith angle. This allows us to develop a zero-order model of cloud structure. Lower in the atmosphere, at levels where there is little or no azimuthal structure to the net flux measurements, both the up flux and net flux are used to derive layer transmission and reflection functions, which then determine layer opacity and single scattering albedo. A preliminary analysis of the data began in December 1995. In these data we could see the rapid oscillations expected at the beginning of the data due to probe rotation and the sun passing through the edge of the field of view. In addition, the time when this oscillation stopped was clearly visible. This sets the rough optical depth above the probe at this time.
Why CO2 cools the middle atmosphere - a consolidating model perspective
NASA Astrophysics Data System (ADS)
Goessling, Helge F.; Bathiany, Sebastian
2016-08-01
Complex models of the atmosphere show that increased carbon dioxide (CO2) concentrations, while warming the surface and troposphere, lead to lower temperatures in the stratosphere and mesosphere. This cooling, which is often referred to as "stratospheric cooling", is evident also in observations and considered to be one of the fingerprints of anthropogenic global warming. Although the responsible mechanisms have been identified, they have mostly been discussed heuristically, incompletely, or in combination with other effects such as ozone depletion, leaving the subject prone to misconceptions. Here we use a one-dimensional window-grey radiation model of the atmosphere to illustrate the physical essence of the mechanisms by which CO2 cools the stratosphere and mesosphere: (i) the blocking effect, associated with a cooling due to the fact that CO2 absorbs radiation at wavelengths where the atmosphere is already relatively opaque, and (ii) the indirect solar effect, associated with a cooling in places where an additional (solar) heating term is present (which on Earth is particularly the case in the upper parts of the ozone layer). By contrast, in the grey model without solar heating within the atmosphere, the cooling aloft is only a transient blocking phenomenon that is completely compensated as the surface attains its warmer equilibrium. Moreover, we quantify the relative contribution of these effects by simulating the response to an abrupt increase in CO2 (and chlorofluorocarbon) concentrations with an atmospheric general circulation model. We find that the two permanent effects contribute roughly equally to the CO2-induced cooling, with the indirect solar effect dominating around the stratopause and the blocking effect dominating otherwise.
How Many Convective Zones Are There in the Atmosphere of Venus?
NASA Astrophysics Data System (ADS)
Moroz, V. I.; Rodin, A. V.
2002-11-01
The qualitative characteristics of the vertical structure of the atmospheres of Venus and the Earth essentially differ. For instance, there are at least two, instead of one, zones with normal (thermal) convection on Venus. The first one is near the surface (a boundary layer); the second is at the altitudes of the lower part of the main cloud layer between 49 and 55 km. Contrary to the hypotheses proposed by Izakov (2001, 2002), the upper convective zone prevents energy transfer from the upper clouds to the subcloud atmosphere by ``anomalous turbulent heat conductivity.'' It is possible, however, that the anomalous turbulent heat conductivity takes part in the redistribution of the heat fluxes within the lower (subcloud) atmosphere.
NASA Astrophysics Data System (ADS)
Roadman, Jason Markos
Modern technology operating in the atmospheric boundary layer can always benefit from more accurate wind tunnel testing. While scaled atmospheric boundary layer tunnels have been well developed, tunnels replicating portions of the atmospheric boundary layer turbulence at full scale are a comparatively new concept. Testing at full-scale Reynolds numbers with full-scale turbulence in an "atmospheric wind tunnel" is sought. Many programs could utilize such a tool including Micro Aerial Vehicle(MAV) development, the wind energy industry, fuel efficient vehicle design, and the study of bird and insect flight, to name just a few. The small scale of MAVs provide the somewhat unique capability of full scale Reynolds number testing in a wind tunnel. However, that same small scale creates interactions under real world flight conditions, atmospheric gusts for example, that lead to a need for testing under more complex flows than the standard uniform flow found in most wind tunnels. It is for these reasons that MAVs are used as the initial testing application for the atmospheric gust tunnel. An analytical model for both discrete gusts and a continuous spectrum of gusts is examined. Then, methods for generating gusts in agreement with that model are investigated. Previously used methods are reviewed and a gust generation apparatus is designed. Expected turbulence and gust characteristics of this apparatus are compared with atmospheric data. The construction of an active "gust generator" for a new atmospheric tunnel is reviewed and the turbulence it generates is measured utilizing single and cross hot wires. Results from this grid are compared to atmospheric turbulence and it is shown that various gust strengths can be produced corresponding to weather ranging from calm to quite gusty. An initial test is performed in the atmospheric wind tunnel whereby the effects of various turbulence conditions on transition and separation on the upper surface of a MAV wing is investigated using the surface oil flow visualization technique.
Bounding the heterogeneous gas uptake on aerosols and ground using resistance model
NASA Astrophysics Data System (ADS)
Su, H.; Li, M.; Cheng, Y.
2017-12-01
Heterogeneous uptake on aerosols and ground are potential important atmospheric sinks for gases. Different schemes have been used to characterize the dry deposition and heterogeneous aerosol gas uptake, although they share similar characteristics. In this work, we propose a unified resistance model to compare the uptake flux on both ground and aerosols, to identify the dominate heterogeneous process within the planetary boundary layer (PBL). The Gamma(eq) is introduced to represent the reactive uptake coefficient on aerosols when these two processes are equally important. It's shown that Gamma(eq) is proportional to the dry deposition velocity, inversely proportional to aerosol surface area concentration. Under typical regional background condition, Gamma(eq) vary from 1x10-5 to 4x10-4 with gas species, land-use type and season, which indicates that aerosol gas uptake should be included in atmospheric models when uptake coefficient higher than 10-5. We address the importance of heterogeneous gas uptake on aerosols over ground especially for ozone uptake on liquid organic aerosols and for marine PBL atmosphere.
Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bange, H.W.; Bartell, U.H.; Rapsomanikis, S.
During three measurement campaigns on the Baltic and North Seas, atmospheric and dissolved methane was determined with an automated gas chromatographic system. Area-weighted mean saturation values in the sea surface waters were 113{+-}5% and 395{+-}82% and 126{+-}8%. On the bases of our data and a compilation of literature data the global oceanic emissions of methane were reassessed by introducing a concept of regional gas transfer coefficients. Our estimates computed with two different air-sea exchange models lie in the range of 11-18 Tg CH{sub 4} yr{sup -1}. Despite the fact that shelf areas and estuaries only represent a small part ofmore » the world`s ocean they contribute about 75% to the global oceanic emissions. We applied a simple, coupled, three-layer model to evaluate the time dependent variation of the oceanic flux to the atmosphere. The model calculations indicate that even with increasing tropospheric methane concentration, the ocean will remain a source of atmospheric methane. 72 refs., 7 figs., 7 tabs.« less
NASA Astrophysics Data System (ADS)
Lolli, Simone; Campbell, James R.; Lewis, Jasper R.; Gu, Yu; Welton, Ellsworth J.
2017-06-01
We compare, for the first time, the performance of a simplified atmospheric radiative transfer algorithm package, the Corti-Peter (CP) model, versus the more complex Fu-Liou-Gu (FLG) model, for resolving top-of-the-atmosphere radiative forcing characteristics from single-layer cirrus clouds obtained from the NASA Micro-Pulse Lidar Network database in 2010 and 2011 at Singapore and in Greenbelt, Maryland, USA, in 2012. Specifically, CP simplifies calculation of both clear-sky longwave and shortwave radiation through regression analysis applied to radiative calculations, which contributes significantly to differences between the two. The results of the intercomparison show that differences in annual net top-of-the-atmosphere (TOA) cloud radiative forcing can reach 65 %. This is particularly true when land surface temperatures are warmer than 288 K, where the CP regression analysis becomes less accurate. CP proves useful for first-order estimates of TOA cirrus cloud forcing, but may not be suitable for quantitative accuracy, including the absolute sign of cirrus cloud daytime TOA forcing that can readily oscillate around zero globally.
Qian, Yun; Yan, Huiping; Berg, Larry K.; ...
2016-10-28
Accuracy of turbulence parameterization in representing Planetary Boundary Layer (PBL) processes in climate models is critical for predicting the initiation and development of clouds, air quality issues, and underlying surface-atmosphere-cloud interactions. In this study, we 1) evaluate WRF model-simulated spatial patterns of precipitation and surface fluxes, as well as vertical profiles of potential temperature, humidity, moist static energy and moisture tendency terms as simulated by WRF at various spatial resolutions and with PBL, surface layer and shallow convection schemes against measurements, 2) identify model biases by examining the moisture tendency terms contributed by PBL and convection processes through nudging experiments,more » and 3) evaluate the dependence of modeled surface latent heat (LH) fluxes onPBL and surface layer schemes over the tropical ocean. The results show that PBL and surface parameterizations have surprisingly large impacts on precipitation, convection initiation and surface moisture fluxes over tropical oceans. All of the parameterizations tested tend to overpredict moisture in PBL and free atmosphere, and consequently result in larger moist static energy and precipitation. Moisture nudging tends to suppress the initiation of convection and reduces the excess precipitation. The reduction in precipitation bias in turn reduces the surface wind and LH flux biases, which suggests that the model drifts at least partly because of a positive feedback between precipitation and surface fluxes. The updated shallow convection scheme KF-CuP tends to suppress the initiation and development of deep convection, consequently decreasing precipitation. The Eta surface layer scheme predicts more reasonable LH fluxes and the LH-Wind Speed relationship than the MM5 scheme, especially when coupled with the MYJ scheme. By examining various parameterization schemes in WRF, we identify sources of biases and weaknesses of current PBL, surface layer and shallow convection schemes in reproducing PBL processes, the initiation of convection and intra-seasonal variability of precipitation.« less
NASA Astrophysics Data System (ADS)
Xue, Y.; Liu, Y.; Cox, P. M.; De Sales, F.; Lee, J.; Marx, L.; Hartman, M. D.; Yang, R.; Parton, W. J.; Qiu, B.; Ek, M. B.
2016-12-01
Evaluations of several dynamic vegetation models' (DVM) performances in the offline experiments and in the CMIP5 simulations suggest that most of the DVMs substantially overestimate leaf area index (LAI) and length of the growing season, which contribute to overestimation in their coupled models' precipitation. These results suggest important deficiencies in today's DVMs but also show the importance of proper ecological processes in the Earth System Modeling. We have developed a water-carbon-energy balance-based ecosystem model (SSiB4/TRIFFID) and verified it with field and satellite measurement at seasonal to decadal and longer scales. In the global offline tests, the model was integrated from 1950 to 2010 driven by observed meteorological forcing. The simulated trend and decadal variabilities in surface ecosystem conditions (e.g., Plant functional types, LAI, GPP), and surface water and energy balances are analyzed; further experiments and analyses are carried to isolate the contribution due to elevated atmospheric carbon concentration, global warming, soil moisture, and climate variability. How nitrogen processes simulated by the DayCent model Climate Forecast System (CFS) model, which has consistently shown improvements in simulated atmospheric & ocean conditions compared with those runs with specified vegetation conditions. In an experiment, two parametrizations that calculate the mean water potential in soil layers, which affect transpiration and plants' mortality, are tested. It shows that these two methods have substantial impact on global decadal variability of precipitation and surface temperature, with even opposite signs over some regions in the worlds. These results show the uncertainty in DVM modeling with significant implication for the future prediction. It is imperative to evaluate DVMs with comprehensive observational data.
Exploring the southern ocean response to climate change
NASA Technical Reports Server (NTRS)
Martinson, Douglas G.; Rind, David; Parkinson, Claire
1993-01-01
The purpose of this project was to couple a regional (Southern Ocean) ocean/sea ice model to the existing Goddard Institute for Space Science (GISS) atmospheric general circulation model (GCM). This modification recognizes: the relative isolation of the Southern Ocean; the need to account, prognostically, for the significant air/sea/ice interaction through all involved components; and the advantage of translating the atmospheric lower boundary (typically the rapidly changing ocean surface) to a level that is consistent with the physical response times governing the system evolution (that is, to the base of the fast responding ocean surface layer). The deeper ocean beneath this layer varies on time scales several orders of magnitude slower than the atmosphere and surface ocean, and therefore the boundary between the upper and deep ocean represents a more reasonable fixed boundary condition.
Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; ...
2016-08-27
We struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Artic winter using weather and climate models, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Themore » transformation from a moist to a cold dry air mass is modeled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: some models lack the cloudy state of the boundary layer due to the representation of mixed-phase microphysics or to the interaction between micro- and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Finally, observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behavior.« less
Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, HAM; Svensson, Gunilla; Vaillancourt, Paul A.; Zadra, Ayrton
2017-01-01
Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modelled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: Some models lack the cloudy state of the boundary layer due to the representation of mixed-phase micro-physics or to the interaction between micro-and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behaviour. PMID:28966718
Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, Ham; Svensson, Gunilla; Vaillancourt, Paul A; Zadra, Ayrton
2016-09-01
Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modelled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first L agrangian Arc tic air form ation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: Some models lack the cloudy state of the boundary layer due to the representation of mixed-phase micro-physics or to the interaction between micro-and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behaviour.
NASA Astrophysics Data System (ADS)
Adkins, Kevin; Elfajri, Oumnia; Sescu, Adrian
2016-11-01
Simulation and modeling have shown that wind farms have an impact on the near-surface atmospheric boundary layer (ABL) as turbulent wakes generated by the turbines enhance vertical mixing. These changes alter downstream atmospheric properties. With a large portion of wind farms hosted within an agricultural context, changes to the environment can potentially have secondary impacts such as to the productivity of crops. With the exception of a few observational data sets that focus on the impact to near-surface temperature, little to no observational evidence exists. These few studies also lack high spatial resolution due to their use of a limited number of meteorological towers or remote sensing techniques. This study utilizes an instrumented small unmanned aerial system (sUAS) to gather in-situ field measurements from two Midwest wind farms, focusing on the impact that large utility-scale wind turbines have on relative humidity. Results are also compared to numerical experiments conducted using large eddy simulation (LES). Wind turbines are found to differentially alter the relative humidity in the downstream, spanwise and vertical directions under a variety of atmospheric stability conditions.
NASA Astrophysics Data System (ADS)
Lomakina, N. Ya.
2017-11-01
The work presents the results of the applied climatic division of the Siberian region into districts based on the methodology of objective classification of the atmospheric boundary layer climates by the "temperature-moisture-wind" complex realized with using the method of principal components and the special similarity criteria of average profiles and the eigen values of correlation matrices. On the territory of Siberia, it was identified 14 homogeneous regions for winter season and 10 regions were revealed for summer. The local statistical models were constructed for each region. These include vertical profiles of mean values, mean square deviations, and matrices of interlevel correlation of temperature, specific humidity, zonal and meridional wind velocity. The advantage of the obtained local statistical models over the regional models is shown.
Theoretical and global scale model studies of the atmospheric sulfur/aerosol system
NASA Technical Reports Server (NTRS)
Kasibhatla, Prasad
1996-01-01
The primary focus during the third-phase of our on-going multi-year research effort has been on 3 activities. These are: (1) a global-scale model study of the anthropogenic component of the tropospheric sulfur cycle; (2) process-scale model studies of the factors influencing the distribution of aerosols in the remote marine atmosphere; and (3) an investigation of the mechanism of the OH-initiated oxidation of DMS in the remote marine boundary layer. In this paper, we describe in more detail our research activities in each of these areas. A major portion of our activities during the fourth and final phase of this project will involve the preparation and submission of manuscripts describing the results from our model studies of marine boundary-layer aerosols and DMS-oxidation mechanisms.
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Walker, G. K.; Zhou, Y. P.; Schmidt, Gavin A.; Lau, K. M.; Cahalan, R. F.
2008-01-01
A primary concern of CO2-induced warming is the associated rise of tropical (10S-10N) seasurface temperatures (SSTs). GISS Model-E was used to produce two sets of simulations-one with the present-day and one with doubled CO2 in the atmosphere. The intrinsic usefulness of model guidance in the tropics was confirmed when the model simulated realistic convective coupling between SSTs and atmospheric soundings and that the simulated-data correlations between SSTs and 300 hPa moiststatic energies were found to be similar to the observed. Model predicted SST limits: (i) one for the onset of deep convection and (ii) one for maximum SST, increased in the doubled C02 case. Changes in cloud heights, cloud frequencies, and cloud mass-fractions showed that convective-cloud changes increased the SSTs, while warmer mixed-layer of the doubled CO2 contained approximately 10% more water vapor; clearly that would be conducive to more intense storms and hurricanes.
NASA Technical Reports Server (NTRS)
Kuzmanoski, Maja; Box, M. A.; Schmid, B.; Box, G. P.; Wang, J.; Russell, P. B.; Bates, D.; Jonsson, H. H.; Welton, Ellsworth J.; Flagan, R. C.
2005-01-01
For a vertical profile with three distinct layers (marine boundary, pollution and dust), observed during the ACE-Asia campaign, we carried out a comparison between the modeled lidar ratio vertical profile and that obtained from collocated airborne NASA AATS-14 sunphotometer and shipborne Micro-Pulse Lidar (MPL) measurements. Vertically resolved lidar ratio was calculated from two size distribution vertical profiles - one obtained by inversion of sunphotometer-derived extinction spectra, and one measured in-situ - combined with the same refractive index model based on aerosol chemical composition. The aerosol model implies single scattering albedos of 0.78 - 0.81 and 0.93 - 0.96 at 0.523 microns (the wavelength of the lidar measurements), in the pollution and dust layers, respectively. The lidar ratios calculated from the two size distribution profiles have close values in the dust layer; they are however, significantly lower than the lidar ratios derived from combined lidar and sunphotometer measurements, most probably due to the use of a simple nonspherical model with a single particle shape in our calculations. In the pollution layer, the two size distribution profiles yield generally different lidar ratios. The retrieved size distributions yield a lidar ratio which is in better agreement with that derived from lidar/sunphotometer measurements in this layer, with still large differences at certain altitudes (the largest relative difference was 46%). We explain these differences by non-uniqueness of the result of the size distribution retrieval and lack of information on vertical variability of particle refractive index. Radiative transfer calculations for this profile showed significant atmospheric radiative forcing, which occurred mainly in the pollution layer. We demonstrate that if the extinction profile is known then information on the vertical structure of absorption and asymmetry parameter is not significant for estimating forcing at TOA and the surface, while it is of importance for estimating vertical profiles of radiative forcing and heating rates.
Liu, Zhao; Zheng, Chaorong; Wu, Yue
2018-02-01
Recently, the government installed a boundary layer profiler (BLP), which is operated under the Doppler beam swinging mode, in a coastal area of China, to acquire useful wind field information in the atmospheric boundary layer for several purposes. And under strong wind conditions, the performance of the BLP is evaluated. It is found that, even though the quality controlled BLP data show good agreement with the balloon observations, a systematic bias can always be found for the BLP data. For the low wind velocities, the BLP data tend to overestimate the atmospheric wind. However, with the increment of wind velocity, the BLP data show a tendency of underestimation. In order to remove the effect of poor quality data on bias correction, the probability distribution function of the differences between the two instruments is discussed, and it is found that the t location scale distribution is the most suitable probability model when compared to other probability models. After the outliers with a large discrepancy, which are outside of 95% confidence interval of the t location scale distribution, are discarded, the systematic bias can be successfully corrected using a first-order polynomial correction function. The methodology of bias correction used in the study not only can be referred for the correction of other wind profiling radars, but also can lay a solid basis for further analysis of the wind profiles.
NASA Astrophysics Data System (ADS)
Liu, Zhao; Zheng, Chaorong; Wu, Yue
2018-02-01
Recently, the government installed a boundary layer profiler (BLP), which is operated under the Doppler beam swinging mode, in a coastal area of China, to acquire useful wind field information in the atmospheric boundary layer for several purposes. And under strong wind conditions, the performance of the BLP is evaluated. It is found that, even though the quality controlled BLP data show good agreement with the balloon observations, a systematic bias can always be found for the BLP data. For the low wind velocities, the BLP data tend to overestimate the atmospheric wind. However, with the increment of wind velocity, the BLP data show a tendency of underestimation. In order to remove the effect of poor quality data on bias correction, the probability distribution function of the differences between the two instruments is discussed, and it is found that the t location scale distribution is the most suitable probability model when compared to other probability models. After the outliers with a large discrepancy, which are outside of 95% confidence interval of the t location scale distribution, are discarded, the systematic bias can be successfully corrected using a first-order polynomial correction function. The methodology of bias correction used in the study not only can be referred for the correction of other wind profiling radars, but also can lay a solid basis for further analysis of the wind profiles.
Sara Bonetti; Gabriele Manoli; Jean-Christopher Domec; Mario Putti; Marco Marani; Gabriel G. Katul
2015-01-01
A mechanistic model for the soil-plant system is coupled to a conventional slab representation of the atmospheric boundary layer (ABL) to explore the role of groundwater table (WT) variations and free atmospheric (FA) states on convective rainfall predisposition (CRP) at a Loblolly pine plantation site situated in the lower coastal plain of North Carolina....
Determination of real-time predictors of the wind turbine wake meandering
NASA Astrophysics Data System (ADS)
Muller, Yann-Aël; Aubrun, Sandrine; Masson, Christian
2015-03-01
The present work proposes an experimental methodology to characterize the unsteady properties of a wind turbine wake, called meandering, and particularly its ability to follow the large-scale motions induced by large turbulent eddies contained in the approach flow. The measurements were made in an atmospheric boundary layer wind tunnel. The wind turbine model is based on the actuator disc concept. One part of the work has been dedicated to the development of a methodology for horizontal wake tracking by mean of a transverse hot wire rake, whose dynamic response is adequate for spectral analysis. Spectral coherence analysis shows that the horizontal position of the wake correlates well with the upstream transverse velocity, especially for wavelength larger than three times the diameter of the disc but less so for smaller scales. Therefore, it is concluded that the wake is actually a rather passive tracer of the large surrounding turbulent structures. The influence of the rotor size and downstream distance on the wake meandering is studied. The fluctuations of the lateral force and the yawing torque affecting the wind turbine model are also measured and correlated with the wake meandering. Two approach flow configurations are then tested: an undisturbed incoming flow (modelled atmospheric boundary layer) and a disturbed incoming flow, with a wind turbine model located upstream. Results showed that the meandering process is amplified by the presence of the upstream wake. It is shown that the coherence between the lateral force fluctuations and the horizontal wake position is significant up to length scales larger than twice the wind turbine model diameter. This leads to the conclusion that the lateral force is a better candidate than the upstream transverse velocity to predict in real time the meandering process, for either undisturbed (wake free) or disturbed incoming atmospheric flows.
Global distribution of neutral wind shear associated with sporadic E layers derived from GAIA
NASA Astrophysics Data System (ADS)
Shinagawa, H.; Miyoshi, Y.; Jin, H.; Fujiwara, H.
2017-04-01
There have been a number of papers reporting that the statistical occurrence rate of the sporadic E (Es) layer depends not only on the local time and season but also on the geographical location, implying that geographical and seasonal dependence in vertical neutral wind shear is one of the factors responsible for the geographical and seasonal dependence in Es layer occurrences rate. To study the role of neutral wind shear in the global distribution of the Es layer occurrence rate, we employ a self-consistent atmosphere-ionosphere coupled model called GAIA (Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy), which incorporates meteorological reanalysis data in the lower atmosphere. The average distribution of neutral wind shear in the lower thermosphere is derived for the June-August and December-February periods, and the global distribution of vertical ion convergence is obtained to estimate the Es layer occurrence rate. It is found that the local and seasonal dependence of neutral wind shear is an important factor in determining the dependence of the Es layer occurrence rate on geographical distribution and seasonal variation. However, there are uncertainties in the simulated vertical neutral wind shears, which have larger scales than the observed wind shear scales. Furthermore, other processes such as localization of magnetic field distribution, background metallic ion distribution, ionospheric electric fields, and chemical processes of metallic ions are also likely to make an important contribution to geographical distribution and seasonal variation of the Es occurrence rate.
Monitoring trace gases in downtown Toronto using open-path Fourier transform infrared spectroscopy
NASA Astrophysics Data System (ADS)
Byrne, B.; Strong, K.; Colebatch, O.; Fogal, P.; Mittermeier, R. L.; Wunch, D.; Jones, D. B. A.
2017-12-01
Emissions of greenhouse gases (GHGs) in urban environments can be highly heterogeneous. For example, vehicles produce point source emissions which can result in heterogeneous GHG concentrations on scales <10 m. The highly localized scale of these emissions can make it difficult to measure mean GHG concentrations on scales of 100-1000 m. Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) measurements offer spatial averaging and continuous measurements of several trace gases simultaneously in the same airmass. We have set up an open-path system in downtown Toronto to monitor trace gases in the urban boundary layer. Concentrations of CO2, CO, CH4, and N2O are derived from atmospheric absorption spectra recorded over a two-way atmospheric open path of 320 m using non-linear least squares fitting. Using a simple box model and co-located boundary layer height measurements, we estimate surface fluxes of these gases in downtown Toronto from our OP-FTIR observations.
Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b.
Kreidberg, Laura; Bean, Jacob L; Désert, Jean-Michel; Benneke, Björn; Deming, Drake; Stevenson, Kevin B; Seager, Sara; Berta-Thompson, Zachory; Seifahrt, Andreas; Homeier, Derek
2014-01-02
Recent surveys have revealed that planets intermediate in size between Earth and Neptune ('super-Earths') are among the most common planets in the Galaxy. Atmospheric studies are the next step towards developing a comprehensive understanding of this new class of object. Much effort has been focused on using transmission spectroscopy to characterize the atmosphere of the super-Earth archetype GJ 1214b (refs 7 - 17), but previous observations did not have sufficient precision to distinguish between two interpretations for the atmosphere. The planet's atmosphere could be dominated by relatively heavy molecules, such as water (for example, a 100 per cent water vapour composition), or it could contain high-altitude clouds that obscure its lower layers. Here we report a measurement of the transmission spectrum of GJ 1214b at near-infrared wavelengths that definitively resolves this ambiguity. The data, obtained with the Hubble Space Telescope, are sufficiently precise to detect absorption features from a high mean-molecular-mass atmosphere. The observed spectrum, however, is featureless. We rule out cloud-free atmospheric models with compositions dominated by water, methane, carbon monoxide, nitrogen or carbon dioxide at greater than 5σ confidence. The planet's atmosphere must contain clouds to be consistent with the data.
Vertical Structure of the Urban Boundary Layer over Marseille Under Sea-Breeze Conditions
NASA Astrophysics Data System (ADS)
Lemonsu, Aude; Bastin, Sophie; Masson, Valéry; Drobinski, Philippe
2006-03-01
During the UBL-ESCOMPTE program (June July 2001), intensive observations were performed in Marseille (France). In particular, a Doppler lidar, located in the north of the city, provided radial velocity measurements on a 6-km radius area in the lowest 3 km of the troposphere. Thus, it is well adapted to document the vertical structure of the atmosphere above complex terrain, notably in Marseille, which is bordered by the Mediterranean sea and framed by numerous massifs. The present study focuses on the last day of the intensive observation period 2 (26 June 2001), which is characterized by a weak synoptic pressure gradient favouring the development of thermal circulations. Under such conditions, a complex stratification of the atmosphere is observed. Three-dimensional numerical simulations, with the Méso-NH atmospheric model including the town energy balance (TEB) urban parameterization, are conducted over south-eastern France. A complete evaluation of the model outputs was already performed at both regional and city scales. Here, the 250-m resolution outputs describing the vertical structure of the atmosphere above the Marseille area are compared to the Doppler lidar data, for which the spatial resolution is comparable. This joint analysis underscores the consistency between the atmospheric boundary layer (ABL) observed by the Doppler lidar and that modelled by Méso-NH. The observations and simulations reveal the presence of a shallow sea breeze (SSB) superimposed on a deep sea breeze (DSB) above Marseille during daytime. Because of the step-like shape of the Marseille coastline, the SSB is organized in two branches of different directions, which converge above the city centre. The analysis of the 250-m wind fields shows evidence of the role of the local topography on the local dynamics. Indeed, the topography tends to reinforce the SSB while it weakens the DSB. The ABL is directly affected by the different sea-breeze circulations, while the urban effects appear to be negligible.
Multi-wavelength Radio Continuum Emission Studies of Dust-free Red Giants
NASA Technical Reports Server (NTRS)
O'Gorman, Eamon; Harper, Graham M.; Brown, Alexander; Dranke, Stephen; Richards, Anita M. S.
2013-01-01
Multi-wavelength centimeter continuum observations of non-dusty, non-pulsating K spectral-type red giants directly sample their chromospheres and wind acceleration zones. Such stars are feeble emitters at these wavelengths, however, and previous observations have provided only a small number of modest signal-to-noise measurements slowly accumulated over three decades. We present multi-wavelength Karl G. Jansky Very Large Array thermal continuum observations of the wind acceleration zones of two dust-free red giants, Arcturus (alpha Boo: K2 III) and Aldebaran (alpha Tau: K5 III). Importantly, most of our observations of each star were carried out over just a few days, so that we obtained a snapshot of the different stellar atmospheric layers sampled at different wavelengths, independent of any long-term variability. We report the first detections at several wavelengths for each star including a detection at 10 cm (3.0 GHz: S band) for both stars and a 20 cm (1.5 GHz: L band) detection for alpha Boo. This is the first time single (non-binary) luminosity class III red giants have been detected at these continuum wavelengths. Our long-wavelength data sample the outer layers of alpha Boo's atmosphere where its wind velocity is approaching (or possibly has reached) its terminal value and the ionization balance is becoming frozen-in. For alpha Tau, however, our long-wavelength data are still sampling its inner atmosphere, where the wind is still accelerating probably due to its lower mass-loss rate. We compare our data with published semi-empirical models based on ultraviolet data, and the marked deviations highlight the need for new atmospheric models to be developed. Spectral indices are used to discuss the possible properties of the stellar atmospheres, and we find evidence for a rapidly cooling wind in the case of alpha Boo. Finally, we develop a simple analytical wind model for alpha Boo based on our new long-wavelength flux measurements.
MULTI-WAVELENGTH RADIO CONTINUUM EMISSION STUDIES OF DUST-FREE RED GIANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Gorman, Eamon; Harper, Graham M.; Brown, Alexander
2013-10-01
Multi-wavelength centimeter continuum observations of non-dusty, non-pulsating K spectral-type red giants directly sample their chromospheres and wind acceleration zones. Such stars are feeble emitters at these wavelengths, however, and previous observations have provided only a small number of modest signal-to-noise measurements slowly accumulated over three decades. We present multi-wavelength Karl G. Jansky Very Large Array thermal continuum observations of the wind acceleration zones of two dust-free red giants, Arcturus (α Boo: K2 III) and Aldebaran (α Tau: K5 III). Importantly, most of our observations of each star were carried out over just a few days, so that we obtained amore » snapshot of the different stellar atmospheric layers sampled at different wavelengths, independent of any long-term variability. We report the first detections at several wavelengths for each star including a detection at 10 cm (3.0 GHz: S band) for both stars and a 20 cm (1.5 GHz: L band) detection for α Boo. This is the first time single (non-binary) luminosity class III red giants have been detected at these continuum wavelengths. Our long-wavelength data sample the outer layers of α Boo's atmosphere where its wind velocity is approaching (or possibly has reached) its terminal value and the ionization balance is becoming frozen-in. For α Tau, however, our long-wavelength data are still sampling its inner atmosphere, where the wind is still accelerating probably due to its lower mass-loss rate. We compare our data with published semi-empirical models based on ultraviolet data, and the marked deviations highlight the need for new atmospheric models to be developed. Spectral indices are used to discuss the possible properties of the stellar atmospheres, and we find evidence for a rapidly cooling wind in the case of α Boo. Finally, we develop a simple analytical wind model for α Boo based on our new long-wavelength flux measurements.« less
The HD(CP)2 Observational Prototype Experiment (HOPE) - an overview
NASA Astrophysics Data System (ADS)
Macke, Andreas; Seifert, Patric; Baars, Holger; Barthlott, Christian; Beekmans, Christoph; Behrendt, Andreas; Bohn, Birger; Brueck, Matthias; Bühl, Johannes; Crewell, Susanne; Damian, Thomas; Deneke, Hartwig; Düsing, Sebastian; Foth, Andreas; Di Girolamo, Paolo; Hammann, Eva; Heinze, Rieke; Hirsikko, Anne; Kalisch, John; Kalthoff, Norbert; Kinne, Stefan; Kohler, Martin; Löhnert, Ulrich; Lakshmi Madhavan, Bomidi; Maurer, Vera; Muppa, Shravan Kumar; Schween, Jan; Serikov, Ilya; Siebert, Holger; Simmer, Clemens; Späth, Florian; Steinke, Sandra; Träumner, Katja; Trömel, Silke; Wehner, Birgit; Wieser, Andreas; Wulfmeyer, Volker; Xie, Xinxin
2017-04-01
The HD(CP)2 Observational Prototype Experiment (HOPE) was performed as a major 2-month field experiment in Jülich, Germany, in April and May 2013, followed by a smaller campaign in Melpitz, Germany, in September 2013. HOPE has been designed to provide an observational dataset for a critical evaluation of the new German community atmospheric icosahedral non-hydrostatic (ICON) model at the scale of the model simulations and further to provide information on land-surface-atmospheric boundary layer exchange, cloud and precipitation processes, as well as sub-grid variability and microphysical properties that are subject to parameterizations. HOPE focuses on the onset of clouds and precipitation in the convective atmospheric boundary layer. This paper summarizes the instrument set-ups, the intensive observation periods, and example results from both campaigns. HOPE-Jülich instrumentation included a radio sounding station, 4 Doppler lidars, 4 Raman lidars (3 of them provide temperature, 3 of them water vapour, and all of them particle backscatter data), 1 water vapour differential absorption lidar, 3 cloud radars, 5 microwave radiometers, 3 rain radars, 6 sky imagers, 99 pyranometers, and 5 sun photometers operated at different sites, some of them in synergy. The HOPE-Melpitz campaign combined ground-based remote sensing of aerosols and clouds with helicopter- and balloon-based in situ observations in the atmospheric column and at the surface. HOPE provided an unprecedented collection of atmospheric dynamical, thermodynamical, and micro- and macrophysical properties of aerosols, clouds, and precipitation with high spatial and temporal resolution within a cube of approximately 10 × 10 × 10 km3. HOPE data will significantly contribute to our understanding of boundary layer dynamics and the formation of clouds and precipitation. The datasets have been made available through a dedicated data portal. First applications of HOPE data for model evaluation have shown a general agreement between observed and modelled boundary layer height, turbulence characteristics, and cloud coverage, but they also point to significant differences that deserve further investigations from both the observational and the modelling perspective.
Thermodynamic constrains for life based on non-aqueous polar solvents on free-floating planets.
Badescu, Viorel
2011-02-01
Free-floating planets (FFPs) might originate either around a star or in solitary fashion. These bodies can retain molecular gases atmospheres which, upon cooling, have basal pressures of tens of bars or more. Pressure-induced opacity of these gases prevents such a body from eliminating its internal radioactive heat and its surface temperature can exceed for a long term the melting temperature of a life-supporting solvent. In this paper two non-aqueous but still polar solvents are considered: hydrogen sulfide and ammonia. Thermodynamic requirements to be fulfilled by a hypothetic gas constituent of a life-supporting FFP's atmosphere are studied. The three gases analyzed here (nitrogen, methane and ethane) are candidates. We show that bodies with ammonia oceans are possible in interstellar space. This may happen on FFPs of (significantly) smaller or larger mass than the Earth. Generally, in case of FFP smaller in size than the Earth, the atmosphere exhibits a convective layer near the surface and a radiative layer at higher altitudes while the atmosphere of FFPs larger in size than Earth does not exhibit a convective layer. The atmosphere mass of a life-hosting FFP of Earth size is two or three orders of magnitude larger than the mass of Earth atmosphere. For FFPs larger than the Earth and specific values of surface pressure and temperature, there are conditions for condensation (in the ethane atmosphere). Some arguments induce the conclusion than the associated surface pressures and temperatures should be treated with caution as appropriate life conditions.
Photochemistry, Ion Chemistry, and Haze Formation in Pluto’s Atmosphere
NASA Astrophysics Data System (ADS)
Summers, Michael E.; Stern, S. A.; Gladstone, G. Randal; Young, Leslie A.; Olkin, C. B.; Weaver, H. A.; Cheng, A. F.; Strobel, D. F.; Ennico, K. A.; Kammer, J. A.; Parker, A. H.; Retherford, K. D.; Schindhelm, E.; Singer, K. N.; Steffl, A. J.; Tsang, C. C.; Versteeg, M. H.; Greathouse, T. K.; Linscott, I. R.; Tyler, L. G.; Woods, W. W.; Hinson, D. P.; Parker, J. W.; Renaud, J. P.; Ewell, M.; Lisse, Cary M.
2015-11-01
The detection of ethylene (C2H4) and acetylene (C2H2) in Pluto’s atmosphere provides important ground-truth observations for validating photochemical models of Pluto’s atmosphere. Their detection also confirms the production of precursor chemical compounds involved in the formation of tholins, which are thought to give Pluto’s surface its reddish color. Photochemical models predict many other hydrocarbon and nitrile products, currently undetected, which may also be participants in tholin production on Pluto’s surface or on atmospheric haze particles. The observed atmospheric haze layer extending to altitudes of ~140 km above Pluto’s surface, suggests a global and very robust process of atmospheric particle nucleation, growth, and sedimentation onto Pluto’s surface. The high altitude extent of the haze layer suggests that the nucleation process begins above the expected altitude range where hydrocarbons become supersaturated (below ~30 km altitude). This situation may be analogous to that in Titan’s atmosphere, wherein nucleation and aerosol growth is directly related to large negative ion production. In the case of Pluto, this means that nucleation may occur at altitudes as high as 1200 km altitude where ionization in Pluto’s atmosphere peaks. In this paper we discuss these processes and their implications for haze formation in Pluto’s atmosphere and its deposition onto Pluto’s surface. This work was supported by NASA's New Horizons project.
NASA Astrophysics Data System (ADS)
Kreidberg, Laura; Line, Michael; Thorngren, Daniel; Morley, Caroline; Stevenson, Kevin
2018-01-01
The super-Neptune exoplanet WASP-107b is an exciting target for atmosphere characterization. It has an unusually large atmospheric scale height and a small, bright host star, raising the possibility of precise constraints on its current nature and formation history. In this talk, I will present the first atmospheric study of WASP-107b, a Hubble Space Telescope measurement of its near-infrared transmission spectrum. We determined the planet's composition with two techniques: atmospheric retrieval based on the transmission spectrum and interior structure modeling based on the observed mass and radius. The interior structure models set a 3σ upper limit on the atmospheric metallicity of 30x solar. The transmission spectrum shows strong evidence for water absorption (6.5σ confidence), and we infer a water abundance consistent with expectations for a solar abundance pattern. On the other hand, methane is depleted relative to expectations (at 3σ confidence), suggesting a low carbon-to-oxygen ratio or high internal heat flux. The water features are smaller than predicted for a cloudless atmosphere, crossing less than one scale height. A thick condensate layer at high altitudes (0.1 - 3 mbar) is needed to match the observations; however, we find that it is challenging for physically motivated cloud and haze models to produce opaque condensates at these pressures. Taken together, these findings serve as an illustration of the diversity and complexity of exoplanet atmospheres. The community can look forward to more such results with the high precision and wide spectral coverage afforded by future observing facilities.
Estimation of evaporation from equilibrium diurnal boundary layer humidity
NASA Astrophysics Data System (ADS)
Salvucci, G.; Rigden, A. J.; Li, D.; Gentine, P.
2017-12-01
Simplified conceptual models of the convective boundary layer as a well mixed profile of potential temperature (theta) and specific humidity (q) impinging on an initially stably stratified linear potential temperature profile have a long history in atmospheric sciences. These one dimensional representations of complex mixing are useful for gaining insights into land-atmosphere interactions and for prediction when state of the art LES approaches are infeasible. As previously shown (e.g. Betts), if one neglects the role of q in bouyancy, the framework yields a unique relation between mixed layer Theta, mixed layer height (h), and cumulative sensible heat flux (SH) throughout the day. Similarly assuming an initially q profile yields a simple relation between q, h, and cumulative latent heat flux (LH). The diurnal dynamics of theta and q are strongly dependent on SH and the initial lapse rates of theta (gamma_thet) and q (gamma q). In the estimation method proposed here, we further constrain these relations with two more assumptions: 1) The specific humidity is the same at the start of the period of boundary layer growth and at the collapse; and 2) Once the mixed layer reaches the LCL, further drying occurs proportionally to the deardorff convective velocity scale (omega) multiplied by q. Assumption (1) is based on the idea that below the cloud layer, there are no sinks of moisture within the mixed layer (neglecting lateral humidity divergence). Thus the net mixing of dry air aloft with evaporation from the surface must balance. Inclusion of the simple model of moisture loss above the LCL into the bulk-CBL model allows definition of an equilibrium humidity (q) condition at which the diurnal cycle of q repeats (i.e. additions of q from surface balance entrainment of dry air from above). Surprisingly, this framework allows estimation of LH from q, theta, and estimated net radiation by solving for the value of Evaporative Fraction (EF) for which the diurnal cycle of q repeats. Three parameters need specification: cloud area fraction, entrainment factor, and morning lapse rate. Surprisingly, a single set of values for these parameters are adequate to estimate EF at over 70 tested Ameriflux sites to within about 20%, though improvements are gained using a single regression model for gamma_thet that has been fitted to radiosonde data.
An updated model of induced airflow in the unsaturated zone
Baehr, Arthur L.; Joss, Craig J.
1995-01-01
Simulation of induced movement of air in the unsaturated zone provides a method to determine permeability and to design vapor extraction remediation systems. A previously published solution to the airflow equation for the case in which the unsaturated zone is separated from the atmosphere by a layer of lower permeability (such as a clay layer) has been superseded. The new solution simulates airflow through the layer of lower permeability more rigorously by defining the leakage in terms of the upper boundary condition rather than by adding a leakage term to the governing airflow equation. This note presents the derivation of the new solution. Formulas for steady state pressure, specific discharge, and mass flow in the domain are obtained for the new model and for the case in which the unsaturated zone is in direct contact with the atmosphere.
Tropical Cyclone Induced Air-Sea Interactions Over Oceanic Fronts
NASA Astrophysics Data System (ADS)
Shay, L. K.
2012-12-01
Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes, the amount of heat available to the tropical cyclone is predicated by the initial mixed layer depth and strength of the stratification that essentially set the level of entrainment mixing at the base of the mixed layer. In oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean to form cold wakes which reduces the air-sea fluxes. This is an example of negative feedback. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture transfers are available through the enthalpy fluxes (typically 1 to 1.5 kW m-2) into the hurricane boundary layer. When tropical cyclones move into favorable or neutral atmospheric conditions, tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina, Rita and Wilma in 2005, Dean and Felix in 2007 in the Caribbean Sea, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate air-sea and vertical mixing parameterizations. Thus, to constrain these models, having complete 3-D ocean profiles juxtaposed with atmospheric profiler measurements prior, during and subsequent to passage is an absolute necessity framed within regional scale satellite derived fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, P; Bonin, TA; Newman, JF
The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.
Observations and modelling of the boundary layer using remotely piloted aircraft
NASA Astrophysics Data System (ADS)
Cayez, Gregoire; Dralet, Jean-Philippe; Seity, Yann; Momboisse, Geraud; Hattenberger, Gautier; Bronz, Murat; Roberts, Greg
2014-05-01
Over the past decade, the scientific community considers the RPAS (remotely piloted aircraft system) as a tool which can help to improve their knowledge of climate and atmospheric phenomena. RPAS equipped with instruments can now conduct measurements in areas that are too hazardous or remote for a manned plane. RPAS are especially adapted system for observing the atmospheric boundary layer processes at high vertical and temporal resolution. The main objectives of VOLTIGE (Vecteur d'Observation de La Troposphère pour l'Investigation et la Gestion de l'Environnement) are to study the life cycle of fog with micro-RPAS, encourage direct participation of the students on the advancement and development of novel observing systems, and assess the feasibility of deploying RPAS in Météo-France's operational network. The instrumented RPAS flights successfully observed the evolution of small-scale meteorological events. Before the arrival of the warm pseudo-front, profiles show a temperature inversion of a hundred meters, which overlaps a cold and wet atmospheric layer. Subsequent profiles show the combination of the arrival of a marine air mass as well as the arrival of a higher level warm pseudo-front. A third case study characterizes the warm sector of the disturbance. Two distinct air masses are visible on the vertical profiles, and show a dry air above an air almost saturated and slightly colder. The temperature and the relative humidity profiles show < 1 meter vertical resolution with a difference between ascent and descent profiles within ± 0.5°C and ± 6 % RH. These results comply with the Météo-France standard limits of quality control. The RPAS profiles were compared with those of the Arome forecast model (an operational model at Météo France). The temperature and wind in the Arome model profiles generally agree with those of the RPAS (less for relative humidity profiles). The Arome model also suggests transitions between air masses occurred at a higher level than those measured by RPAS. These results suggest that forecast models may be improved using high resolution and frequent in-situ measurements.
The Unmanned Aerial System SUMO: an alternative measurement tool for polar boundary layer studies
NASA Astrophysics Data System (ADS)
Mayer, S.; Jonassen, M. O.; Reuder, J.
2012-04-01
Numerical weather prediction and climate models face special challenges in particular in the commonly stable conditions in the high-latitude environment. For process studies as well as for model validation purposes in-situ observations in the atmospheric boundary layer are highly required, but difficult to retrieve. We introduce a new measurement system for corresponding observations. The Small Unmanned Meteorological Observer SUMO consists of a small and light-weight auto-piloted model aircraft, equipped with a meteorological sensor package. SUMO has been operated in polar environments, among others during IPY on Spitsbergen in the year 2009 and has proven its capabilities for atmospheric measurements with high spatial and temporal resolution even at temperatures of -30 deg C. A comparison of the SUMO data with radiosondes and tethered balloons shows that SUMO can provide atmospheric profiles with comparable quality to those well-established systems. Its high data quality allowed its utilization for evaluation purposes of high-resolution model runs performed with the Weather Research and Forecasting model WRF and for the detailed investigation of an orographically modified flow during a case study.
The role of nutricline depth in regulating the ocean carbon cycle
Cermeño, Pedro; Dutkiewicz, Stephanie; Harris, Roger P.; Follows, Mick; Schofield, Oscar; Falkowski, Paul G.
2008-01-01
Carbon uptake by marine phytoplankton, and its export as organic matter to the ocean interior (i.e., the “biological pump”), lowers the partial pressure of carbon dioxide (pCO2) in the upper ocean and facilitates the diffusive drawdown of atmospheric CO2. Conversely, precipitation of calcium carbonate by marine planktonic calcifiers such as coccolithophorids increases pCO2 and promotes its outgassing (i.e., the “alkalinity pump”). Over the past ≈100 million years, these two carbon fluxes have been modulated by the relative abundance of diatoms and coccolithophores, resulting in biological feedback on atmospheric CO2 and Earth's climate; yet, the processes determining the relative distribution of these two phytoplankton taxa remain poorly understood. We analyzed phytoplankton community composition in the Atlantic Ocean and show that the distribution of diatoms and coccolithophorids is correlated with the nutricline depth, a proxy of nutrient supply to the upper mixed layer of the ocean. Using this analysis in conjunction with a coupled atmosphere–ocean intermediate complexity model, we predict a dramatic reduction in the nutrient supply to the euphotic layer in the coming century as a result of increased thermal stratification. Our findings indicate that, by altering phytoplankton community composition, this causal relationship may lead to a decreased efficiency of the biological pump in sequestering atmospheric CO2, implying a positive feedback in the climate system. These results provide a mechanistic basis for understanding the connection between upper ocean dynamics, the calcium carbonate-to-organic C production ratio and atmospheric pCO2 variations on time scales ranging from seasonal cycles to geological transitions. PMID:19075222
NASA Astrophysics Data System (ADS)
Roberts, Tjarda J.; Dütsch, Marina; Hole, Lars R.; Voss, Paul B.
2016-09-01
Observations from CMET (Controlled Meteorological) balloons are analysed to provide insights into tropospheric meteorological conditions (temperature, humidity, wind) around Svalbard, European High Arctic. Five Controlled Meteorological (CMET) balloons were launched from Ny-Ålesund in Svalbard (Spitsbergen) over 5-12 May 2011 and measured vertical atmospheric profiles over coastal areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic marine boundary layer (ABL) over a period of more than 10 h. Profiles from two CMET flights are compared to model output from ECMWF Era-Interim reanalysis (ERA-I) and to a high-resolution (15 km) Arctic System Reanalysis (ASR) product. To the east of Svalbard over sea ice, the CMET observed a stable ABL profile with a temperature inversion that was reproduced by ASR but not captured by ERA-I. In a coastal ice-free region to the west of Svalbard, the CMET observed a stable ABL with strong wind shear. The CMET profiles document increases in ABL temperature and humidity that are broadly reproduced by both ASR and ERA-I. The ASR finds a more stably stratified ABL than observed but captured the wind shear in contrast to ERA-I. Detailed analysis of the coastal CMET-automated soundings identifies small-scale temperature and humidity variations with a low-level flow and provides an estimate of local wind fields. We demonstrate that CMET balloons are a valuable approach for profiling the free atmosphere and boundary layer in remote regions such as the Arctic, where few other in situ observations are available for model validation.
NASA Astrophysics Data System (ADS)
Qiu, J.; Gu, Z. L.; Wang, Z. S.
2008-05-01
High-accuracy large-eddy simulations of neutral atmospheric surface-layer flow over a gapped plant canopy strip have been performed. Subgrid-scale (SGS) motions are parameterized by the Sagaut mixed length SGS model, with a modification to compute the SGS characteristic length self-adaptively. Shaw’s plant canopy model, taking the vertical variation of leaf area density into account, is applied to study the response of the atmospheric surface layer to the gapped dense forest strip. Differences in the region far away from the gap and in the middle of the gap are investigated, according to the instantaneous velocity magnitude, the zero-plane displacement, the potential temperature and the streamlines. The large-scale vortex structure, in the form of a roll vortex, is revealed in the region far away from the gap. The nonuniform spatial distribution of plants appears to cause the formation of the coherent structure. The roll vortex starts in the wake of the canopy, and results in strong fluctuations throughout the entire canopy region. Wind sweeps and ejections in the plant canopy are also attributed to the large vortex structure.
Global Monthly CO2 Flux Inversion Based on Results of Terrestrial Ecosystem Modeling
NASA Astrophysics Data System (ADS)
Deng, F.; Chen, J.; Peters, W.; Krol, M.
2008-12-01
Most of our understanding of the sources and sinks of atmospheric CO2 has come from inverse studies of atmospheric CO2 concentration measurements. However, the number of currently available observation stations and our ability to simulate the diurnal planetary boundary layer evolution over continental regions essentially limit the number of regions that can be reliably inverted globally, especially over continental areas. In order to overcome these restrictions, a nested inverse modeling system was developed based on the Bayesian principle for estimating carbon fluxes of 30 regions in North America and 20 regions for the rest of the globe. Inverse modeling was conducted in monthly steps using CO2 concentration measurements of 5 years (2000 - 2005) with the following two models: (a) An atmospheric transport model (TM5) is used to generate the transport matrix where the diurnal variation n of atmospheric CO2 concentration is considered to enhance the use of the afternoon-hour average CO2 concentration measurements over the continental sites. (b) A process-based terrestrial ecosystem model (BEPS) is used to produce hourly step carbon fluxes, which could minimize the limitation due to our inability to solve the inverse problem in a high resolution, as the background of our inversion. We will present our recent results achieved through a combination of the bottom-up modeling with BEPS and the top-down modeling based on TM5 driven by offline meteorological fields generated by the European Centre for Medium Range Weather Forecast (ECMFW).
NASA Technical Reports Server (NTRS)
Hlavka, Dennis; Tian, Lin; Hart, William; Li, Lihua; McGill, Matthew; Heymsfield, Gerald
2009-01-01
Aircraft lidar works by shooting laser pulses toward the earth and recording the return time and intensity of any of the light returning to the aircraft after scattering off atmospheric particles and/or the Earth s surface. The scattered light signatures can be analyzed to tell the exact location of cloud and aerosol layers and, with the aid of a few optical assumptions, can be analyzed to retrieve estimates of optical properties such as atmospheric transparency. Radar works in a similar fashion except it sends pulses toward earth at a much larger wavelength than lidar. Radar records the return time and intensity of cloud or rain reflection returning to the aircraft. Lidar can measure scatter from optically thin cirrus and aerosol layers whose particles are too small for the radar to detect. Radar can provide reflection profiles through thick cloud layers of larger particles that lidar cannot penetrate. Only after merging the two instrument products can accurate measurements of the locations of all layers in the full atmospheric column be achieved. Accurate knowledge of the vertical distribution of clouds is important information for understanding the Earth/atmosphere radiative balance and for improving weather/climate forecast models. This paper describes one such merged data set developed from the Tropical Composition, Cloud and Climate Coupling (TC4) experiment based in Costa Rica in July-August 2007 using the nadir viewing Cloud Physics Lidar (CPL) and the Cloud Radar System (CRS) on board the NASA ER-2 aircraft. Statistics were developed concerning cloud probability through the atmospheric column and frequency of the number of cloud layers. These statistics were calculated for the full study area, four sub-regions, and over land compared to over ocean across all available flights. The results are valid for the TC4 experiment only, as preferred cloud patterns took priority during mission planning. The TC4 Study Area was a very cloudy region, with cloudy profiles occurring 94 percent of the time during the ER-2 flights. One to three cloud layers were common, with the average calculated at 2.03 layers per profile. The upper troposphere had a cloud frequency generally over 30%, reaching 42 percent near 13 km during the study. There were regional differences. The Caribbean was much clearer than the Pacific regions. Land had a much higher frequency of high clouds than ocean areas. One region just south and west of Panama had a high probability of clouds below 15 km altitude with the frequency never dropping below 25% and reaching a maximum of 60% at 11-13 km altitude. These cloud statistics will help characterize the cloud volume for TC4 scientists as they try to understand the complexities of the tropical atmosphere.
In situ modification of chromatography adsorbents using cold atmospheric pressure plasmas
NASA Astrophysics Data System (ADS)
Olszewski, P.; Willett, T. C.; Theodosiou, E.; Thomas, O. R. T.; Walsh, J. L.
2013-05-01
Efficient manufacturing of increasingly sophisticated biopharmaceuticals requires the development of new breeds of chromatographic materials featuring two or more layers, with each layer affording different functions. This letter reports the in situ modification of a commercial beaded anion exchange adsorbent using atmospheric pressure plasma generated within gas bubbles. The results show that exposure to He-O2 plasma in this way yields significant reductions in the surface binding of plasmid DNA to the adsorbent exterior, with minimal loss of core protein binding capacity; thus, a bi-layered chromatography material exhibiting both size excluding and anion exchange functionalities within the same bead is produced.
Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange
NASA Astrophysics Data System (ADS)
Flechard, C. R.; Massad, R.-S.; Loubet, B.; Personne, E.; Simpson, D.; Bash, J. O.; Cooter, E. J.; Nemitz, E.; Sutton, M. A.
2013-07-01
Atmospheric ammonia (NH3) dominates global emissions of total reactive nitrogen (Nr), while emissions from agricultural production systems contribute about two-thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+) to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal) and space (patchwork landscapes). The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] / [H+] ratios (Γ). Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of airborne and deposited NH3 and NH4+. Models of soil/vegetation/atmosphere NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, "big leaf" canopy resistance models, to dynamic, multi-layer, multi-process, multi-chemical species schemes. Their level of complexity depends on their purpose, the spatial scale at which they are applied, the current level of parameterization, and the availability of the input data they require. State-of-the-art solutions for determining the emission/sink Γ potentials through the soil/canopy system include coupled, interactive chemical transport models (CTM) and soil/ecosystem modelling at the regional scale. However, it remains a matter for debate to what extent realistic options for future regional and global models should be based on process-based mechanistic versus empirical and regression-type models. Further discussion is needed on the extent and timescale by which new approaches can be used, such as integration with ecosystem models and satellite observations.
NASA Astrophysics Data System (ADS)
Trautz, A.; Smits, K. M.; Cihan, A.; Wallen, B.
2014-12-01
Soil-water evaporation is one of the governing processes responsible for controlling water and energy exchanges between the land and atmosphere. Despite its wide relevance and application in many natural and manmade environments (e.g. soil tillage practices, wheel-track compaction, fire burn environments, textural layering and buried ordinances), there are very few studies of evaporation from disturbed soil profiles. The purpose of this study was to explore the effect of soil disturbance and capillary coupling on water distribution and fluxes. We modified a theory previously developed by the authors that allows for coupling single-phase (gas), two-component (air and water vapor) transfer in the atmosphere and two-phase (gas, liquid), two-component (air and water vapor) flow in porous media at the REV scale under non-isothermal, non-equilibrium conditions to better account for the hydraulic and thermal interactions within the media. Modeling results were validated and compared using precision data generated in a two-dimensional soil tank consisting of a loosely packed soil surrounded by a tightly packed soil. The soil tank was outfitted with an array of sensors for the measurement of wind velocity, soil and air temperature, relative humidity, soil moisture, and weight. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process in heterogeneous soils with good accuracy. Evaporation from a heterogeneous soil consisting of a loose and tight packing condition is larger than the homogeneous equivalent systems. Liquid water is supplied from the loosely packed soil region to the tightly packed soil regions, sustaining a longer Stage I evaporation in the tightly packed regions with overall greater evaporation rate than uniform homogeneous packing. In contrast, lower evaporation rates from the loosely packed regions are observed due to a limited liquid water supply resulting from capillary flow to the tightly packed regions and a shorter stage 1 evaporation period.
A Model for Straight and Helical Solar Jets: II. Parametric Study of the Plasma Beta
NASA Technical Reports Server (NTRS)
Pariat, E.; Dalmasse, K.; DeVore, C. R.; Antiochos, S. K.; Karpen, J. T.
2016-01-01
Context. Jets are dynamic, impulsive, well-collimated plasma events that develop at many different scales and in different layers of the solar atmosphere. Aims. Jets are believed to be induced by magnetic reconnection, a process central to many astrophysical phenomena. Within the solar atmosphere, jet-like events develop in many different environments, e.g. in the vicinity of active regions as well as in coronal holes, and at various scales, from small photospheric spicules to large coronal jets. In all these events, signatures of helical structure and/or twisting/rotating motions are regularly observed. The present study aims to establish that a single model can generally reproduce the observed properties of these jet-like events. Methods. In this study, using our state-of-the-art numerical solver ARMS, we present a parametric study of a numerical tridimensional magnetohydrodynamic (MHD) model of solar jet-like events. Within the MHD paradigm, we study the impact of varying the atmospheric plasma beta on the generation and properties of solar-like jets. Results. The parametric study validates our model of jets for plasma beta ranging from 10(sup 3) to 1, typical of the different layers and magnetic environments of the solar atmosphere. Our model of jets can robustly explain the generation of helical solar jet-like events at various beta less than or equal to 1. We show that the plasma beta modifies the morphology of the helical jet, explaining the different observed shapes of jets at different scales and in different layers of the solar atmosphere. Conclusions. Our results allow us to understand the energisation, triggering, and driving processes of jet-like events. Our model allows us to make predictions of the impulsiveness and energetics of jets as determined by the surrounding environment, as well as the morphological properties of the resulting jets.
THE SIMULATION OF FINE SCALE NOCTURNAL BOUNDARY LAYER MOTIONS WITH A MESO-SCALE ATMOSPHERIC MODEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werth, D.; Kurzeja, R.; Parker, M.
A field project over the Atmospheric Radiation Measurement-Clouds and Radiation Testbed (ARM-CART) site during a period of several nights in September, 2007 was conducted to explore the evolution of the low-level jet (LLJ). Data was collected from a tower and a sodar and analyzed for turbulent behavior. To study the full range of nocturnal boundary layer (NBL) behavior, the Regional Atmospheric Modeling System (RAMS) was used to simulate the ARM-CART NBL field experiment and validated against the data collected from the site. This model was run at high resolution, and is ideal for calculating the interactions among the various motionsmore » within the boundary layer and their influence on the surface. The model reproduces adequately the synoptic situation and the formation and dissolution cycles of the low-level jet, although it suffers from insufficient cloud production and excessive nocturnal cooling. The authors suggest that observed heat flux data may further improve the realism of the simulations both in the cloud formation and in the jet characteristics. In a higher resolution simulation, the NBL experiences motion on a range of timescales as revealed by a wavelet analysis, and these are affected by the presence of the LLJ. The model can therefore be used to provide information on activity throughout the depth of the NBL.« less
NASA Astrophysics Data System (ADS)
Najibi, N.; Lu, M.; Devineni, N.
2017-12-01
Long duration floods cause substantial damages and prolonged interruptions to water resource facilities and critical infrastructure. We present a novel generalized statistical and physical based model for flood duration with a deeper understanding of dynamically coupled nexus of the land surface wetness, effective atmospheric circulation and moisture transport/release. We applied the model on large reservoirs in the Missouri River Basin. The results indicate that the flood duration is not only a function of available moisture in the air, but also the antecedent condition of the blocking system of atmospheric pressure, resulting in enhanced moisture convergence, as well as the effectiveness of moisture condensation process leading to release. Quantifying these dynamics with a two-layer climate informed Bayesian multilevel model, we explain more than 80% variations in flood duration. The model considers the complex interaction between moisture transport, synoptic-to-large-scale atmospheric circulation pattern, and the antecedent wetness condition in the basin. Our findings suggest that synergy between a large low-pressure blocking system and a higher rate of divergent wind often triggers a long duration flood, and the prerequisite for moisture supply to trigger such event is moderate, which is more associated with magnitude than duration. In turn, this condition causes an extremely long duration flood if the surface wetness rate advancing to the flood event was already increased.
Online coupled regional meteorology-chemistry models in Europe: current status and prospects
NASA Astrophysics Data System (ADS)
Baklanov, A.; Schluenzen, K. H.; Suppan, P.; Baldasano, J.; Brunner, D.; Aksoyoglu, S.; Carmichael, G.; Douros, J.; Flemming, J.; Forkel, R.; Galmarini, S.; Gauss, M.; Grell, G.; Hirtl, M.; Joffre, S.; Jorba, O.; Kaas, E.; Kaasik, M.; Kallos, G.; Kong, X.; Korsholm, U.; Kurganskiy, A.; Kushta, J.; Lohmann, U.; Mahura, A.; Manders-Groot, A.; Maurizi, A.; Moussiopoulos, N.; Rao, S. T.; Savage, N.; Seigneur, C.; Sokhi, R.; Solazzo, E.; Solomos, S.; Sørensen, B.; Tsegas, G.; Vignati, E.; Vogel, B.; Zhang, Y.
2013-05-01
The simulation of the coupled evolution of atmospheric dynamics, pollutant transport, chemical reactions and atmospheric composition is one of the most challenging tasks in environmental modelling, climate change studies, and weather forecasting for the next decades as they all involve strongly integrated processes. Weather strongly influences air quality (AQ) and atmospheric transport of hazardous materials, while atmospheric composition can influence both weather and climate by directly modifying the atmospheric radiation budget or indirectly affecting cloud formation. Until recently, however, due to the scientific complexities and lack of computational power, atmospheric chemistry and weather forecasting have developed as separate disciplines, leading to the development of separate modelling systems that are only loosely coupled. The continuous increase in computer power has now reached a stage that enables us to perform online coupling of regional meteorological models with atmospheric chemical transport models. The focus on integrated systems is timely, since recent research has shown that meteorology and chemistry feedbacks are important in the context of many research areas and applications, including numerical weather prediction (NWP), AQ forecasting as well as climate and Earth system modelling. However, the relative importance of online integration and its priorities, requirements and levels of detail necessary for representing different processes and feedbacks can greatly vary for these related communities: (i) NWP, (ii) AQ forecasting and assessments, (iii) climate and earth system modelling. Additional applications are likely to benefit from online modelling, e.g.: simulation of volcanic ash or forest fire plumes, pollen warnings, dust storms, oil/gas fires, geo-engineering tests involving changes in the radiation balance. The COST Action ES1004 - European framework for online integrated air quality and meteorology modelling (EuMetChem) - aims at paving the way towards a new generation of online integrated atmospheric chemical transport and meteorology modelling with two-way interactions between different atmospheric processes including dynamics, chemistry, clouds, radiation, boundary layer and emissions. As its first task, we summarise the current status of European modelling practices and experience with online coupled modelling of meteorology with atmospheric chemistry including feedback mechanisms and attempt reviewing the various issues connected to the different modules of such online coupled models but also providing recommendations for coping with them for the benefit of the modelling community at large.
NASA Technical Reports Server (NTRS)
Lin, Wuyin; Liu, Yangang; Vogelmann, Andrew M.; Fridlind, Ann; Endo, Satoshi; Song, Hua; Feng, Sha; Toto, Tami; Li, Zhijin; Zhang, Minghua
2015-01-01
Climatically important low-level clouds are commonly misrepresented in climate models. The FAst-physics System TEstbed and Research (FASTER) Project has constructed case studies from the Atmospheric Radiation Measurement Climate Research Facility's Southern Great Plain site during the RACORO aircraft campaign to facilitate research on model representation of boundary-layer clouds. This paper focuses on using the single-column Community Atmosphere Model version 5 (SCAM5) simulations of a multi-day continental shallow cumulus case to identify specific parameterization causes of low-cloud biases. Consistent model biases among the simulations driven by a set of alternative forcings suggest that uncertainty in the forcing plays only a relatively minor role. In-depth analysis reveals that the model's shallow cumulus convection scheme tends to significantly under-produce clouds during the times when shallow cumuli exist in the observations, while the deep convective and stratiform cloud schemes significantly over-produce low-level clouds throughout the day. The links between model biases and the underlying assumptions of the shallow cumulus scheme are further diagnosed with the aid of large-eddy simulations and aircraft measurements, and by suppressing the triggering of the deep convection scheme. It is found that the weak boundary layer turbulence simulated is directly responsible for the weak cumulus activity and the simulated boundary layer stratiform clouds. Increased vertical and temporal resolutions are shown to lead to stronger boundary layer turbulence and reduction of low-cloud biases.
Lin, Wuyin; Liu, Yangang; Vogelmann, Andrew M.; ...
2015-06-19
Climatically important low-level clouds are commonly misrepresented in climate models. The FAst-physics System TEstbed and Research (FASTER) project has constructed case studies from the Atmospheric Radiation Measurement (ARM) Climate Research Facility's Southern Great Plain site during the RACORO aircraft campaign to facilitate research on model representation of boundary-layer clouds. This paper focuses on using the single-column Community Atmosphere Model version 5 (SCAM5) simulations of a multi-day continental shallow cumulus case to identify specific parameterization causes of low-cloud biases. Consistent model biases among the simulations driven by a set of alternative forcings suggest that uncertainty in the forcing plays only amore » relatively minor role. In-depth analysis reveals that the model's shallow cumulus convection scheme tends to significantly under-produce clouds during the times when shallow cumuli exist in the observations, while the deep convective and stratiform cloud schemes significantly over-produce low-level clouds throughout the day. The links between model biases and the underlying assumptions of the shallow cumulus scheme are further diagnosed with the aid of large-eddy simulations and aircraft measurements, and by suppressing the triggering of the deep convection scheme. It is found that the weak boundary layer turbulence simulated is directly responsible for the weak cumulus activity and the simulated boundary layer stratiform clouds. Increased vertical and temporal resolutions are shown to lead to stronger boundary layer turbulence and reduction of low-cloud biases.« less
Zhao, Wei; Marchand, Roger; Fu, Qiang
2017-07-08
Millimeter Wavelength Cloud Radar (MMCR) data from December 1996 to December 2010, collected at the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program Southern Great Plains (SGP) site, are used to examine the diurnal cycle of hydrometeor occurrence. These data are categorized into clouds (-40 dBZ e ≤ reflectivity < -10 dBZ e), drizzle and light precipitation (-10 dBZ e ≤ reflectivity < 10 dBZ e), and heavy precipitation (reflectivity ≥ 10 dBZ e). The same criteria are implemented for the observation-equivalent reflectivity calculated by feeding outputs from a Multiscale Modeling Framework (MMF) climate model into a radar simulator.more » The MMF model consists of the National Center for Atmospheric Research Community Atmosphere Model with conventional cloud parameterizations replaced by a cloud-resolving model. We find that a radar simulator combined with the simple reflectivity categories can be an effective approach for evaluating diurnal variations in model hydrometeor occurrence. It is shown that the MMF only marginally captures observed increases in the occurrence of boundary layer clouds after sunrise in spring and autumn and does not capture diurnal changes in boundary layer clouds during the summer. Above the boundary layer, the MMF captures reasonably well diurnal variations in the vertical structure of clouds and light and heavy precipitation in the summer but not in the spring.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churchfield, M. J.; Michalakes, J.; Vanderwende, B.
Wind plant aerodynamics are directly affected by the microscale weather, which is directly influenced by the mesoscale weather. Microscale weather refers to processes that occur within the atmospheric boundary layer with the largest scales being a few hundred meters to a few kilometers depending on the atmospheric stability of the boundary layer. Mesoscale weather refers to large weather patterns, such as weather fronts, with the largest scales being hundreds of kilometers wide. Sometimes microscale simulations that capture mesoscale-driven variations (changes in wind speed and direction over time or across the spatial extent of a wind plant) are important in windmore » plant analysis. In this paper, we present our preliminary work in coupling a mesoscale weather model with a microscale atmospheric large-eddy simulation model. The coupling is one-way beginning with the weather model and ending with a computational fluid dynamics solver using the weather model in coarse large-eddy simulation mode as an intermediary. We simulate one hour of daytime moderately convective microscale development driven by the mesoscale data, which are applied as initial and boundary conditions to the microscale domain, at a site in Iowa. We analyze the time and distance necessary for the smallest resolvable microscales to develop.« less
NASA Astrophysics Data System (ADS)
Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan; Illangasekare, Tissa
2013-04-01
The study of the interaction between the land and atmosphere is paramount to our understanding of many emerging problems to include climate change, the movement of green house gases such as possible leaking of sequestered CO2 and the accurate detection of buried objects such as landmines. Soil moisture distribution in the shallow subsurface becomes a critical factor in all these problems. The heat and mass flux in the form of soil evaporation across the land surface couples the atmospheric boundary layer to the shallow subsurface. The coupling between land and the atmosphere leads to highly dynamic interactions between the porous media properties, transport processes and boundary conditions, resulting in dynamic evaporative behavior. However, the coupling at the land-atmospheric interface is rarely considered in most current models and their validation for practical applications. This is due to the complexity of the problem in field scenarios and the scarcity of field or laboratory data capable of testing and refining coupled energy and mass transfer theories. In most efforts to compute evaporation from soil, only indirect coupling is provided to characterize the interaction between non-isothermal multiphase flows under realistic atmospheric conditions even though heat and mass flux are controlled by the coupled dynamics of the land and the atmospheric boundary layer. In earlier drying modeling concepts, imposing evaporation flux (kinetic of relative humidity) and temperature as surface boundary condition is often needed. With the goal of improving our understanding of the land/atmospheric coupling, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model consists of the coupled equations of mass conservation for the liquid phase (water) and gas phase (water vapor and air) in porous medium with gas phase (water vapor and air) in free flow domain under non-isothermal, non-equilibrium conditions. The boundary conditions at the porous medium-free flow medium interface include dynamical, thermal and solutal equilibriums, and using the Beavers-Joseph slip boundary condition. What is unique about this model is that the evaporation rate and soil surface temperature conditions come directly from the model output. In order to experimentally validate the numerical results, we developed and used a unique two dimensional wind tunnel placed above a soil tank equipped with a network of different sensors. A series of experiments under varying boundary conditions, using a test sand for which the hydraulic and thermal properties were well characterized, were performed. Precision data for soil moisture, soil and air temperature and relative humidity, and also wind velocity under well-controlled transient heat and wind boundary conditions was generated. Results from numerical simulations were compared with experimental data. Results demonstrate that the coupling concept can predict the different stages of the drying process in porous media with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time at low velocity values; then, at high values of wind speed the evaporation rate becomes less dependent of flow in free fluid. In the opposite, the impact of the wind speed on the second stage evaporation (diffusion dominant stage) is not significant. The proposed theoretical model can be used to predict the evaporation process where a porous medium flow is coupled to a free flow for different practical applications.
Modelling of mercury emissions from background soils.
Scholtz, M T; Van Heyst, B J; Schroeder, W H
2003-03-20
Emissions of volatile mercury species from natural soils are believed to be a significant contributor to the atmospheric burden of mercury, but only order-of-magnitude estimates of emissions from these sources are available. The scaling-up of mercury flux measurements to regional or global scales is confounded by a limited understanding of the physical, chemical and biochemical processes that occur in the soil, a complex environmental matrix. This study is a first step toward the development of an air-surface exchange model for mercury (known as the mercury emission model (MEM)). The objective of the study is to model the partitioning and movement of inorganic Hg(II) and Hg(0) in open field soils, and to use MEM to interpret published data on mercury emissions to the atmosphere. MEM is a multi-layered, dynamic finite-element soil and atmospheric surface-layer model that simulates the exchange of heat, moisture and mercury between soils and the atmosphere. The model includes a simple formulation of the reduction of inorganic Hg(II) to Hg(0). Good agreement was found between the meteorological dependence of observed mercury emission fluxes, and hourly modelled fluxes, and it is concluded that MEM is able to simulate well the soil and atmospheric processes influencing the emission of Hg(0) to the atmosphere. The heretofore unexplained close correlation between soil temperature and mercury emission flux is fully modelled by MEM and is attributed to the temperature dependence of the Hg(0) Henry's Law coefficient and the control of the volumetric soil-air fraction on the diffusion of Hg(0) near the surface. The observed correlation between solar radiation intensity and mercury flux, appears in part to be due to the surface-energy balance between radiation, and sensible and latent heat fluxes which determines the soil temperature. The modelled results imply that empirical correlations that are based only on flux chamber data, may not extend to the open atmosphere for all weather scenarios.
Spin-up simulation behaviors in a climate model to build a basement of long-time simulation
NASA Astrophysics Data System (ADS)
Lee, J.; Xue, Y.; De Sales, F.
2015-12-01
It is essential to develop start-up information when conducting long-time climate simulation. In case that the initial condition is already available from the previous simulation of same type model this does not necessary; however, if not, model needs spin-up simulation to have adjusted and balanced initial condition with the model climatology. Otherwise, a severe spin may take several years. Some of model variables such as deep soil temperature fields and temperature in ocean deep layers in initial fields would affect model's further long-time simulation due to their long residual memories. To investigate the important factor for spin-up simulation in producing an atmospheric initial condition, we had conducted two different spin-up simulations when no atmospheric condition is available from exist datasets. One simulation employed atmospheric global circulation model (AGCM), namely Global Forecast System (GFS) of National Center for Environmental Prediction (NCEP), while the other employed atmosphere-ocean coupled global circulation model (CGCM), namely Climate Forecast System (CFS) of NCEP. Both models share the atmospheric modeling part and only difference is in applying of ocean model coupling, which is conducted by Modular Ocean Model version 4 (MOM4) of Geophysical Fluid Dynamics Laboratory (GFDL) in CFS. During a decade of spin-up simulation, prescribed sea-surface temperature (SST) fields of target year is forced to the GFS daily basis, while CFS digested only first time step ocean condition and freely iterated for the rest of the period. Both models were forced by CO2 condition and solar constant given from the target year. Our analyses of spin-up simulation results indicate that freely conducted interaction between the ocean and the atmosphere is more helpful to produce the initial condition for the target year rather than produced by fixed SST forcing. Since the GFS used prescribed forcing exactly given from the target year, this result is unexpected. The detail analysis will be discussed in this presentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yanni; Cervone, Guido; Barkley, Zachary
Most atmospheric models, including the Weather Research and Forecasting (WRF) model, use a spherical geographic coordinate system to internally represent input data and perform computations. However, most geographic information system (GIS) input data used by the models are based on a spheroid datum because it better represents the actual geometry of the earth. WRF and other atmospheric models use these GIS input layers as if they were in a spherical coordinate system without accounting for the difference in datum. When GIS layers are not properly reprojected, latitudinal errors of up to 21 km in the midlatitudes are introduced. Recent studiesmore » have suggested that for very high-resolution applications, the difference in datum in the GIS input data (e.g., terrain land use, orography) should be taken into account. However, the magnitude of errors introduced by the difference in coordinate systems remains unclear. This research quantifies the effect of using a spherical vs. a spheroid datum for the input GIS layers used by WRF to study greenhouse gas transport and dispersion in northeast Pennsylvania.« less
Cao, Yanni; Cervone, Guido; Barkley, Zachary; ...
2017-09-19
Most atmospheric models, including the Weather Research and Forecasting (WRF) model, use a spherical geographic coordinate system to internally represent input data and perform computations. However, most geographic information system (GIS) input data used by the models are based on a spheroid datum because it better represents the actual geometry of the earth. WRF and other atmospheric models use these GIS input layers as if they were in a spherical coordinate system without accounting for the difference in datum. When GIS layers are not properly reprojected, latitudinal errors of up to 21 km in the midlatitudes are introduced. Recent studiesmore » have suggested that for very high-resolution applications, the difference in datum in the GIS input data (e.g., terrain land use, orography) should be taken into account. However, the magnitude of errors introduced by the difference in coordinate systems remains unclear. This research quantifies the effect of using a spherical vs. a spheroid datum for the input GIS layers used by WRF to study greenhouse gas transport and dispersion in northeast Pennsylvania.« less
A priori testing of subgrid-scale models for large-eddy simulation of the atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Juneja, Anurag; Brasseur, James G.
1996-11-01
Subgrid-scale models are generally developed assuming homogeneous isotropic turbulence with the filter cutoff lying in the inertial range. In the surface layer and capping inversion regions of the atmospheric boundary layer, the turbulence is strongly anisotropic and, in general, influenced by both buoyancy and shear. Furthermore, the integral scale motions are under-resolved in these regions. Herein we perform direct numerical simulations of shear and buoyancy-generated homogeneous anisotropic turbulence to compute and analyze the actual subgrid-resolved-scale (SGS-RS) dynamics as the filter cutoff moves into the energy-containing scales. These are compared with the SGS-RS dynamics predicted by Smagorinsky-based models with a focus on motivating improved closures. We find that, in general, the underlying assumption of such models, that the anisotropic part of the subgrid stress tensor be aligned with the resolved strain rate tensor, is a poor approximation. Similarly, we find poor alignment between the actual and predicted stress divergence, and find low correlations between the actual and modeled subgrid-scale contribution to the pressure and pressure gradient. Details will be given in the talk.
NASA Astrophysics Data System (ADS)
Cao, Yanni; Cervone, Guido; Barkley, Zachary; Lauvaux, Thomas; Deng, Aijun; Taylor, Alan
2017-09-01
Most atmospheric models, including the Weather Research and Forecasting (WRF) model, use a spherical geographic coordinate system to internally represent input data and perform computations. However, most geographic information system (GIS) input data used by the models are based on a spheroid datum because it better represents the actual geometry of the earth. WRF and other atmospheric models use these GIS input layers as if they were in a spherical coordinate system without accounting for the difference in datum. When GIS layers are not properly reprojected, latitudinal errors of up to 21 km in the midlatitudes are introduced. Recent studies have suggested that for very high-resolution applications, the difference in datum in the GIS input data (e.g., terrain land use, orography) should be taken into account. However, the magnitude of errors introduced by the difference in coordinate systems remains unclear. This research quantifies the effect of using a spherical vs. a spheroid datum for the input GIS layers used by WRF to study greenhouse gas transport and dispersion in northeast Pennsylvania.
NASA Astrophysics Data System (ADS)
Wetzel, Peter J.; Boone, Aaron
1995-07-01
This paper presents a general description of, and demonstrates the capabilities of, the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE). The PLACE model is a detailed process model of the partly cloudy atmospheric boundary layer and underlying heterogeneous land surfaces. In its development, particular attention has been given to three of the model's subprocesses: the prediction of boundary layer cloud amount, the treatment of surface and soil subgrid heterogeneity, and the liquid water budget. The model includes a three-parameter nonprecipitating cumulus model that feeds back to the surface and boundary layer through radiative effects. Surface heterogeneity in the PLACE model is treated both statistically and by resolving explicit subgrid patches. The model maintains a vertical column of liquid water that is divided into seven reservoirs, from the surface interception store down to bedrock.Five single-day demonstration cases are presented, in which the PLACE model was initialized, run, and compared to field observations from four diverse sites. The model is shown to predict cloud amount well in these while predicting the surface fluxes with similar accuracy. A slight tendency to underpredict boundary layer depth is noted in all cases.Sensitivity tests were also run using anemometer-level forcing provided by the Project for Inter-comparison of Land-surface Parameterization Schemes (PILPS). The purpose is to demonstrate the relative impact of heterogeneity of surface parameters on the predicted annual mean surface fluxes. Significant sensitivity to subgrid variability of certain parameters is demonstrated, particularly to parameters related to soil moisture. A major result is that the PLACE-computed impact of total (homogeneous) deforestation of a rain forest is comparable in magnitude to the effect of imposing heterogeneity of certain surface variables, and is similarly comparable to the overall variance among the other PILPS participant models. Were this result to be bourne out by further analysis, it would suggest that today's average land surface parameterization has little credibility when applied to discriminating the local impacts of any plausible future climate change.