Nonlinear Network Description for Many-Body Quantum Systems in Continuous Space
NASA Astrophysics Data System (ADS)
Ruggeri, Michele; Moroni, Saverio; Holzmann, Markus
2018-05-01
We show that the recently introduced iterative backflow wave function can be interpreted as a general neural network in continuum space with nonlinear functions in the hidden units. Using this wave function in variational Monte Carlo simulations of liquid 4He in two and three dimensions, we typically find a tenfold increase in accuracy over currently used wave functions. Furthermore, subsequent stages of the iteration procedure define a set of increasingly good wave functions, each with its own variational energy and variance of the local energy: extrapolation to zero variance gives energies in close agreement with the exact values. For two dimensional 4He, we also show that the iterative backflow wave function can describe both the liquid and the solid phase with the same functional form—a feature shared with the shadow wave function, but now joined by much higher accuracy. We also achieve significant progress for liquid 3He in three dimensions, improving previous variational and fixed-node energies.
Material nonlinear analysis via mixed-iterative finite element method
NASA Technical Reports Server (NTRS)
Sutjahjo, Edhi; Chamis, Christos C.
1992-01-01
The performance of elastic-plastic mixed-iterative analysis is examined through a set of convergence studies. Membrane and bending behaviors are tested using 4-node quadrilateral finite elements. The membrane result is excellent, which indicates the implementation of elastic-plastic mixed-iterative analysis is appropriate. On the other hand, further research to improve bending performance of the method seems to be warranted.
Use of Picard and Newton iteration for solving nonlinear ground water flow equations
Mehl, S.
2006-01-01
This study examines the use of Picard and Newton iteration to solve the nonlinear, saturated ground water flow equation. Here, a simple three-node problem is used to demonstrate the convergence difficulties that can arise when solving the nonlinear, saturated ground water flow equation in both homogeneous and heterogeneous systems with and without nonlinear boundary conditions. For these cases, the characteristic types of convergence patterns are examined. Viewing these convergence patterns as orbits of an attractor in a dynamical system provides further insight. It is shown that the nonlinearity that arises from nonlinear head-dependent boundary conditions can cause more convergence difficulties than the nonlinearity that arises from flow in an unconfined aquifer. Furthermore, the effects of damping on both convergence and convergence rate are investigated. It is shown that no single strategy is effective for all problems and how understanding pitfalls and merits of several methods can be helpful in overcoming convergence difficulties. Results show that Picard iterations can be a simple and effective method for the solution of nonlinear, saturated ground water flow problems.
Nonlinear Krylov and moving nodes in the method of lines
NASA Astrophysics Data System (ADS)
Miller, Keith
2005-11-01
We report on some successes and problem areas in the Method of Lines from our work with moving node finite element methods. First, we report on our "nonlinear Krylov accelerator" for the modified Newton's method on the nonlinear equations of our stiff ODE solver. Since 1990 it has been robust, simple, cheap, and automatic on all our moving node computations. We publicize further trials with it here because it should be of great general usefulness to all those solving evolutionary equations. Second, we discuss the need for reliable automatic choice of spatially variable time steps. Third, we discuss the need for robust and efficient iterative solvers for the difficult linearized equations (Jx=b) of our stiff ODE solver. Here, the 1997 thesis of Zulu Xaba has made significant progress.
2011-02-25
fast method of predicting the number of iterations needed for converged results. A new hybrid technique is proposed to predict the convergence history...interchanging between the modes, whereas a smaller veering (or crossing) region shows fast mode switching. Then, the nonlinear vibration re- sponse of the...problems of interest involve dynamic ( fast ) crack propagation, then the nodes selected by the proposed approach at some time instant might not
The 3D inelastic analysis methods for hot section components
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Maffeo, R. J.; Tipton, M. T.; Weber, G.
1992-01-01
A two-year program to develop advanced 3D inelastic structural stress analysis methods and solution strategies for more accurate and cost effective analysis of combustors, turbine blades, and vanes is described. The approach was to develop a matrix of formulation elements and constitutive models. Three constitutive models were developed in conjunction with optimized iterating techniques, accelerators, and convergence criteria within a framework of dynamic time incrementing. Three formulation models were developed: an eight-noded midsurface shell element; a nine-noded midsurface shell element; and a twenty-noded isoparametric solid element. A separate computer program has been developed for each combination of constitutive model-formulation model. Each program provides a functional stand alone capability for performing cyclic nonlinear structural analysis. In addition, the analysis capabilities incorporated into each program can be abstracted in subroutine form for incorporation into other codes or to form new combinations.
Single-agent parallel window search
NASA Technical Reports Server (NTRS)
Powley, Curt; Korf, Richard E.
1991-01-01
Parallel window search is applied to single-agent problems by having different processes simultaneously perform iterations of Iterative-Deepening-A(asterisk) (IDA-asterisk) on the same problem but with different cost thresholds. This approach is limited by the time to perform the goal iteration. To overcome this disadvantage, the authors consider node ordering. They discuss how global node ordering by minimum h among nodes with equal f = g + h values can reduce the time complexity of serial IDA-asterisk by reducing the time to perform the iterations prior to the goal iteration. Finally, the two ideas of parallel window search and node ordering are combined to eliminate the weaknesses of each approach while retaining the strengths. The resulting approach, called simply parallel window search, can be used to find a near-optimal solution quickly, improve the solution until it is optimal, and then finally guarantee optimality, depending on the amount of time available.
Robust iterative method for nonlinear Helmholtz equation
NASA Astrophysics Data System (ADS)
Yuan, Lijun; Lu, Ya Yan
2017-08-01
A new iterative method is developed for solving the two-dimensional nonlinear Helmholtz equation which governs polarized light in media with the optical Kerr nonlinearity. In the strongly nonlinear regime, the nonlinear Helmholtz equation could have multiple solutions related to phenomena such as optical bistability and symmetry breaking. The new method exhibits a much more robust convergence behavior than existing iterative methods, such as frozen-nonlinearity iteration, Newton's method and damped Newton's method, and it can be used to find solutions when good initial guesses are unavailable. Numerical results are presented for the scattering of light by a nonlinear circular cylinder based on the exact nonlocal boundary condition and a pseudospectral method in the polar coordinate system.
Application of Conjugate Gradient methods to tidal simulation
Barragy, E.; Carey, G.F.; Walters, R.A.
1993-01-01
A harmonic decomposition technique is applied to the shallow water equations to yield a complex, nonsymmetric, nonlinear, Helmholtz type problem for the sea surface and an accompanying complex, nonlinear diagonal problem for the velocities. The equation for the sea surface is linearized using successive approximation and then discretized with linear, triangular finite elements. The study focuses on applying iterative methods to solve the resulting complex linear systems. The comparative evaluation includes both standard iterative methods for the real subsystems and complex versions of the well known Bi-Conjugate Gradient and Bi-Conjugate Gradient Squared methods. Several Incomplete LU type preconditioners are discussed, and the effects of node ordering, rejection strategy, domain geometry and Coriolis parameter (affecting asymmetry) are investigated. Implementation details for the complex case are discussed. Performance studies are presented and comparisons made with a frontal solver. ?? 1993.
Improved Convergence and Robustness of USM3D Solutions on Mixed-Element Grids
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frink, Neal T.
2016-01-01
Several improvements to the mixed-element USM3D discretization and defect-correction schemes have been made. A new methodology for nonlinear iterations, called the Hierarchical Adaptive Nonlinear Iteration Method, has been developed and implemented. The Hierarchical Adaptive Nonlinear Iteration Method provides two additional hierarchies around a simple and approximate preconditioner of USM3D. The hierarchies are a matrix-free linear solver for the exact linearization of Reynolds-averaged Navier-Stokes equations and a nonlinear control of the solution update. Two variants of the Hierarchical Adaptive Nonlinear Iteration Method are assessed on four benchmark cases, namely, a zero-pressure-gradient flat plate, a bump-in-channel configuration, the NACA 0012 airfoil, and a NASA Common Research Model configuration. The new methodology provides a convergence acceleration factor of 1.4 to 13 over the preconditioner-alone method representing the baseline solver technology.
Improved Convergence and Robustness of USM3D Solutions on Mixed-Element Grids
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frinks, Neal T.
2016-01-01
Several improvements to the mixed-elementUSM3Ddiscretization and defect-correction schemes have been made. A new methodology for nonlinear iterations, called the Hierarchical Adaptive Nonlinear Iteration Method, has been developed and implemented. The Hierarchical Adaptive Nonlinear Iteration Method provides two additional hierarchies around a simple and approximate preconditioner of USM3D. The hierarchies are a matrix-free linear solver for the exact linearization of Reynolds-averaged Navier-Stokes equations and a nonlinear control of the solution update. Two variants of the Hierarchical Adaptive Nonlinear Iteration Method are assessed on four benchmark cases, namely, a zero-pressure-gradient flat plate, a bump-in-channel configuration, the NACA 0012 airfoil, and a NASA Common Research Model configuration. The new methodology provides a convergence acceleration factor of 1.4 to 13 over the preconditioner-alone method representing the baseline solver technology.
NASA Astrophysics Data System (ADS)
Al-Chalabi, Rifat M. Khalil
1997-09-01
Development of an improvement to the computational efficiency of the existing nested iterative solution strategy of the Nodal Exapansion Method (NEM) nodal based neutron diffusion code NESTLE is presented. The improvement in the solution strategy is the result of developing a multilevel acceleration scheme that does not suffer from the numerical stalling associated with a number of iterative solution methods. The acceleration scheme is based on the multigrid method, which is specifically adapted for incorporation into the NEM nonlinear iterative strategy. This scheme optimizes the computational interplay between the spatial discretization and the NEM nonlinear iterative solution process through the use of the multigrid method. The combination of the NEM nodal method, calculation of the homogenized, neutron nodal balance coefficients (i.e. restriction operator), efficient underlying smoothing algorithm (power method of NESTLE), and the finer mesh reconstruction algorithm (i.e. prolongation operator), all operating on a sequence of coarser spatial nodes, constitutes the multilevel acceleration scheme employed in this research. Two implementations of the multigrid method into the NESTLE code were examined; the Imbedded NEM Strategy and the Imbedded CMFD Strategy. The main difference in implementation between the two methods is that in the Imbedded NEM Strategy, the NEM solution is required at every MG level. Numerical tests have shown that the Imbedded NEM Strategy suffers from divergence at coarse- grid levels, hence all the results for the different benchmarks presented here were obtained using the Imbedded CMFD Strategy. The novelties in the developed MG method are as follows: the formulation of the restriction and prolongation operators, and the selection of the relaxation method. The restriction operator utilizes a variation of the reactor physics, consistent homogenization technique. The prolongation operator is based upon a variant of the pin power reconstruction methodology. The relaxation method, which is the power method, utilizes a constant coefficient matrix within the NEM non-linear iterative strategy. The choice of the MG nesting within the nested iterative strategy enables the incorporation of other non-linear effects with no additional coding effort. In addition, if an eigenvalue problem is being solved, it remains an eigenvalue problem at all grid levels, simplifying coding implementation. The merit of the developed MG method was tested by incorporating it into the NESTLE iterative solver, and employing it to solve four different benchmark problems. In addition to the base cases, three different sensitivity studies are performed, examining the effects of number of MG levels, homogenized coupling coefficients correction (i.e. restriction operator), and fine-mesh reconstruction algorithm (i.e. prolongation operator). The multilevel acceleration scheme developed in this research provides the foundation for developing adaptive multilevel acceleration methods for steady-state and transient NEM nodal neutron diffusion equations. (Abstract shortened by UMI.)
Development of iterative techniques for the solution of unsteady compressible viscous flows
NASA Technical Reports Server (NTRS)
Sankar, Lakshmi N.; Hixon, Duane
1991-01-01
Efficient iterative solution methods are being developed for the numerical solution of two- and three-dimensional compressible Navier-Stokes equations. Iterative time marching methods have several advantages over classical multi-step explicit time marching schemes, and non-iterative implicit time marching schemes. Iterative schemes have better stability characteristics than non-iterative explicit and implicit schemes. Thus, the extra work required by iterative schemes can also be designed to perform efficiently on current and future generation scalable, missively parallel machines. An obvious candidate for iteratively solving the system of coupled nonlinear algebraic equations arising in CFD applications is the Newton method. Newton's method was implemented in existing finite difference and finite volume methods. Depending on the complexity of the problem, the number of Newton iterations needed per step to solve the discretized system of equations can, however, vary dramatically from a few to several hundred. Another popular approach based on the classical conjugate gradient method, known as the GMRES (Generalized Minimum Residual) algorithm is investigated. The GMRES algorithm was used in the past by a number of researchers for solving steady viscous and inviscid flow problems with considerable success. Here, the suitability of this algorithm is investigated for solving the system of nonlinear equations that arise in unsteady Navier-Stokes solvers at each time step. Unlike the Newton method which attempts to drive the error in the solution at each and every node down to zero, the GMRES algorithm only seeks to minimize the L2 norm of the error. In the GMRES algorithm the changes in the flow properties from one time step to the next are assumed to be the sum of a set of orthogonal vectors. By choosing the number of vectors to a reasonably small value N (between 5 and 20) the work required for advancing the solution from one time step to the next may be kept to (N+1) times that of a noniterative scheme. Many of the operations required by the GMRES algorithm such as matrix-vector multiplies, matrix additions and subtractions can all be vectorized and parallelized efficiently.
Zhang, Huaguang; Song, Ruizhuo; Wei, Qinglai; Zhang, Tieyan
2011-12-01
In this paper, a novel heuristic dynamic programming (HDP) iteration algorithm is proposed to solve the optimal tracking control problem for a class of nonlinear discrete-time systems with time delays. The novel algorithm contains state updating, control policy iteration, and performance index iteration. To get the optimal states, the states are also updated. Furthermore, the "backward iteration" is applied to state updating. Two neural networks are used to approximate the performance index function and compute the optimal control policy for facilitating the implementation of HDP iteration algorithm. At last, we present two examples to demonstrate the effectiveness of the proposed HDP iteration algorithm.
New Scheduling Algorithms for Agile All-Photonic Networks
NASA Astrophysics Data System (ADS)
Mehri, Mohammad Saleh; Ghaffarpour Rahbar, Akbar
2017-12-01
An optical overlaid star network is a class of agile all-photonic networks that consists of one or more core node(s) at the center of the star network and a number of edge nodes around the core node. In this architecture, a core node may use a scheduling algorithm for transmission of traffic through the network. A core node is responsible for scheduling optical packets that arrive from edge nodes and switching them toward their destinations. Nowadays, most edge nodes use virtual output queue (VOQ) architecture for buffering client packets to achieve high throughput. This paper presents two efficient scheduling algorithms called discretionary iterative matching (DIM) and adaptive DIM. These schedulers find maximum matching in a small number of iterations and provide high throughput and incur low delay. The number of arbiters in these schedulers and the number of messages exchanged between inputs and outputs of a core node are reduced. We show that DIM and adaptive DIM can provide better performance in comparison with iterative round-robin matching with SLIP (iSLIP). SLIP means the act of sliding for a short distance to select one of the requested connections based on the scheduling algorithm.
Iterative Neighbour-Information Gathering for Ranking Nodes in Complex Networks
NASA Astrophysics Data System (ADS)
Xu, Shuang; Wang, Pei; Lü, Jinhu
2017-01-01
Designing node influence ranking algorithms can provide insights into network dynamics, functions and structures. Increasingly evidences reveal that node’s spreading ability largely depends on its neighbours. We introduce an iterative neighbourinformation gathering (Ing) process with three parameters, including a transformation matrix, a priori information and an iteration time. The Ing process iteratively combines priori information from neighbours via the transformation matrix, and iteratively assigns an Ing score to each node to evaluate its influence. The algorithm appropriates for any types of networks, and includes some traditional centralities as special cases, such as degree, semi-local, LeaderRank. The Ing process converges in strongly connected networks with speed relying on the first two largest eigenvalues of the transformation matrix. Interestingly, the eigenvector centrality corresponds to a limit case of the algorithm. By comparing with eight renowned centralities, simulations of susceptible-infected-removed (SIR) model on real-world networks reveal that the Ing can offer more exact rankings, even without a priori information. We also observe that an optimal iteration time is always in existence to realize best characterizing of node influence. The proposed algorithms bridge the gaps among some existing measures, and may have potential applications in infectious disease control, designing of optimal information spreading strategies.
NASA Technical Reports Server (NTRS)
Winget, J. M.; Hughes, T. J. R.
1985-01-01
The particular problems investigated in the present study arise from nonlinear transient heat conduction. One of two types of nonlinearities considered is related to a material temperature dependence which is frequently needed to accurately model behavior over the range of temperature of engineering interest. The second nonlinearity is introduced by radiation boundary conditions. The finite element equations arising from the solution of nonlinear transient heat conduction problems are formulated. The finite element matrix equations are temporally discretized, and a nonlinear iterative solution algorithm is proposed. Algorithms for solving the linear problem are discussed, taking into account the form of the matrix equations, Gaussian elimination, cost, and iterative techniques. Attention is also given to approximate factorization, implementational aspects, and numerical results.
Advanced nodal neutron diffusion method with space-dependent cross sections: ILLICO-VX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajic, H.L.; Ougouag, A.M.
1987-01-01
Advanced transverse integrated nodal methods for neutron diffusion developed since the 1970s require that node- or assembly-homogenized cross sections be known. The underlying structural heterogeneity can be accurately accounted for in homogenization procedures by the use of heterogeneity or discontinuity factors. Other (milder) types of heterogeneity, burnup-induced or due to thermal-hydraulic feedback, can be resolved by explicitly accounting for the spatial variations of material properties. This can be done during the nodal computations via nonlinear iterations. The new method has been implemented in the code ILLICO-VX (ILLICO variable cross-section method). Numerous numerical tests were performed. As expected, the convergence ratemore » of ILLICO-VX is lower than that of ILLICO, requiring approx. 30% more outer iterations per k/sub eff/ computation. The methodology has also been implemented as the NOMAD-VX option of the NOMAD, multicycle, multigroup, two- and three-dimensional nodal diffusion depletion code. The burnup-induced heterogeneities (space dependence of cross sections) are calculated during the burnup steps.« less
An iterative method for systems of nonlinear hyperbolic equations
NASA Technical Reports Server (NTRS)
Scroggs, Jeffrey S.
1989-01-01
An iterative algorithm for the efficient solution of systems of nonlinear hyperbolic equations is presented. Parallelism is evident at several levels. In the formation of the iteration, the equations are decoupled, thereby providing large grain parallelism. Parallelism may also be exploited within the solves for each equation. Convergence of the interation is established via a bounding function argument. Experimental results in two-dimensions are presented.
Nested Conjugate Gradient Algorithm with Nested Preconditioning for Non-linear Image Restoration.
Skariah, Deepak G; Arigovindan, Muthuvel
2017-06-19
We develop a novel optimization algorithm, which we call Nested Non-Linear Conjugate Gradient algorithm (NNCG), for image restoration based on quadratic data fitting and smooth non-quadratic regularization. The algorithm is constructed as a nesting of two conjugate gradient (CG) iterations. The outer iteration is constructed as a preconditioned non-linear CG algorithm; the preconditioning is performed by the inner CG iteration that is linear. The inner CG iteration, which performs preconditioning for outer CG iteration, itself is accelerated by an another FFT based non-iterative preconditioner. We prove that the method converges to a stationary point for both convex and non-convex regularization functionals. We demonstrate experimentally that proposed method outperforms the well-known majorization-minimization method used for convex regularization, and a non-convex inertial-proximal method for non-convex regularization functional.
Unification of two fractal families
NASA Astrophysics Data System (ADS)
Liu, Ying
1995-06-01
Barnsley and Hurd classify the fractal images into two families: iterated function system fractals (IFS fractals) and fractal transform fractals, or local iterated function system fractals (LIFS fractals). We will call IFS fractals, class 2 fractals and LIFS fractals, class 3 fractals. In this paper, we will unify these two approaches plus another family of fractals, the class 5 fractals. The basic idea is given as follows: a dynamical system can be represented by a digraph, the nodes in a digraph can be divided into two parts: transient states and persistent states. For bilevel images, a persistent node is a black pixel. A transient node is a white pixel. For images with more than two gray levels, a stochastic digraph is used. A transient node is a pixel with the intensity of 0. The intensity of a persistent node is determined by a relative frequency. In this way, the two families of fractals can be generated in a similar way. In this paper, we will first present a classification of dynamical systems and introduce the transformation based on digraphs, then we will unify the two approaches for fractal binary images. We will compare the decoding algorithms of the two families. Finally, we will generalize the discussion to continuous-tone images.
Energy-Efficient Cognitive Radio Sensor Networks: Parametric and Convex Transformations
Naeem, Muhammad; Illanko, Kandasamy; Karmokar, Ashok; Anpalagan, Alagan; Jaseemuddin, Muhammad
2013-01-01
Designing energy-efficient cognitive radio sensor networks is important to intelligently use battery energy and to maximize the sensor network life. In this paper, the problem of determining the power allocation that maximizes the energy-efficiency of cognitive radio-based wireless sensor networks is formed as a constrained optimization problem, where the objective function is the ratio of network throughput and the network power. The proposed constrained optimization problem belongs to a class of nonlinear fractional programming problems. Charnes-Cooper Transformation is used to transform the nonlinear fractional problem into an equivalent concave optimization problem. The structure of the power allocation policy for the transformed concave problem is found to be of a water-filling type. The problem is also transformed into a parametric form for which a ε-optimal iterative solution exists. The convergence of the iterative algorithms is proven, and numerical solutions are presented. The iterative solutions are compared with the optimal solution obtained from the transformed concave problem, and the effects of different system parameters (interference threshold level, the number of primary users and secondary sensor nodes) on the performance of the proposed algorithms are investigated. PMID:23966194
Iterative methods for mixed finite element equations
NASA Technical Reports Server (NTRS)
Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.
1985-01-01
Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.
New methods of testing nonlinear hypothesis using iterative NLLS estimator
NASA Astrophysics Data System (ADS)
Mahaboob, B.; Venkateswarlu, B.; Mokeshrayalu, G.; Balasiddamuni, P.
2017-11-01
This research paper discusses the method of testing nonlinear hypothesis using iterative Nonlinear Least Squares (NLLS) estimator. Takeshi Amemiya [1] explained this method. However in the present research paper, a modified Wald test statistic due to Engle, Robert [6] is proposed to test the nonlinear hypothesis using iterative NLLS estimator. An alternative method for testing nonlinear hypothesis using iterative NLLS estimator based on nonlinear hypothesis using iterative NLLS estimator based on nonlinear studentized residuals has been proposed. In this research article an innovative method of testing nonlinear hypothesis using iterative restricted NLLS estimator is derived. Pesaran and Deaton [10] explained the methods of testing nonlinear hypothesis. This paper uses asymptotic properties of nonlinear least squares estimator proposed by Jenrich [8]. The main purpose of this paper is to provide very innovative methods of testing nonlinear hypothesis using iterative NLLS estimator, iterative NLLS estimator based on nonlinear studentized residuals and iterative restricted NLLS estimator. Eakambaram et al. [12] discussed least absolute deviation estimations versus nonlinear regression model with heteroscedastic errors and also they studied the problem of heteroscedasticity with reference to nonlinear regression models with suitable illustration. William Grene [13] examined the interaction effect in nonlinear models disused by Ai and Norton [14] and suggested ways to examine the effects that do not involve statistical testing. Peter [15] provided guidelines for identifying composite hypothesis and addressing the probability of false rejection for multiple hypotheses.
Iterative Nonlinear Tikhonov Algorithm with Constraints for Electromagnetic Tomography
NASA Technical Reports Server (NTRS)
Xu, Feng; Deshpande, Manohar
2012-01-01
Low frequency electromagnetic tomography such as the capacitance tomography (ECT) has been proposed for monitoring and mass-gauging of gas-liquid two-phase system under microgravity condition in NASA's future long-term space missions. Due to the ill-posed inverse problem of ECT, images reconstructed using conventional linear algorithms often suffer from limitations such as low resolution and blurred edges. Hence, new efficient high resolution nonlinear imaging algorithms are needed for accurate two-phase imaging. The proposed Iterative Nonlinear Tikhonov Regularized Algorithm with Constraints (INTAC) is based on an efficient finite element method (FEM) forward model of quasi-static electromagnetic problem. It iteratively minimizes the discrepancy between FEM simulated and actual measured capacitances by adjusting the reconstructed image using the Tikhonov regularized method. More importantly, it enforces the known permittivity of two phases to the unknown pixels which exceed the reasonable range of permittivity in each iteration. This strategy does not only stabilize the converging process, but also produces sharper images. Simulations show that resolution improvement of over 2 times can be achieved by INTAC with respect to conventional approaches. Strategies to further improve spatial imaging resolution are suggested, as well as techniques to accelerate nonlinear forward model and thus increase the temporal resolution.
On 3D inelastic analysis methods for hot section components
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Chen, P. C.; Dame, L. T.; Holt, R. V.; Huang, H.; Hartle, M.; Gellin, S.; Allen, D. H.; Haisler, W. E.
1986-01-01
Accomplishments are described for the 2-year program, to develop advanced 3-D inelastic structural stress analysis methods and solution strategies for more accurate and cost effective analysis of combustors, turbine blades and vanes. The approach was to develop a matrix of formulation elements and constitutive models. Three constitutive models were developed in conjunction with optimized iterating techniques, accelerators, and convergence criteria within a framework of dynamic time incrementing. Three formulations models were developed; an eight-noded mid-surface shell element, a nine-noded mid-surface shell element and a twenty-noded isoparametric solid element. A separate computer program was developed for each combination of constitutive model-formulation model. Each program provides a functional stand alone capability for performing cyclic nonlinear structural analysis. In addition, the analysis capabilities incorporated into each program can be abstracted in subroutine form for incorporation into other codes or to form new combinations.
NASA Astrophysics Data System (ADS)
Li, Meng; Gu, Xian-Ming; Huang, Chengming; Fei, Mingfa; Zhang, Guoyu
2018-04-01
In this paper, a fast linearized conservative finite element method is studied for solving the strongly coupled nonlinear fractional Schrödinger equations. We prove that the scheme preserves both the mass and energy, which are defined by virtue of some recursion relationships. Using the Sobolev inequalities and then employing the mathematical induction, the discrete scheme is proved to be unconditionally convergent in the sense of L2-norm and H α / 2-norm, which means that there are no any constraints on the grid ratios. Then, the prior bound of the discrete solution in L2-norm and L∞-norm are also obtained. Moreover, we propose an iterative algorithm, by which the coefficient matrix is independent of the time level, and thus it leads to Toeplitz-like linear systems that can be efficiently solved by Krylov subspace solvers with circulant preconditioners. This method can reduce the memory requirement of the proposed linearized finite element scheme from O (M2) to O (M) and the computational complexity from O (M3) to O (Mlog M) in each iterative step, where M is the number of grid nodes. Finally, numerical results are carried out to verify the correction of the theoretical analysis, simulate the collision of two solitary waves, and show the utility of the fast numerical solution techniques.
Improved Iterative Decoding of Network-Channel Codes for Multiple-Access Relay Channel.
Majumder, Saikat; Verma, Shrish
2015-01-01
Cooperative communication using relay nodes is one of the most effective means of exploiting space diversity for low cost nodes in wireless network. In cooperative communication, users, besides communicating their own information, also relay the information of other users. In this paper we investigate a scheme where cooperation is achieved using a common relay node which performs network coding to provide space diversity for two information nodes transmitting to a base station. We propose a scheme which uses Reed-Solomon error correcting code for encoding the information bit at the user nodes and convolutional code as network code, instead of XOR based network coding. Based on this encoder, we propose iterative soft decoding of joint network-channel code by treating it as a concatenated Reed-Solomon convolutional code. Simulation results show significant improvement in performance compared to existing scheme based on compound codes.
Value Iteration Adaptive Dynamic Programming for Optimal Control of Discrete-Time Nonlinear Systems.
Wei, Qinglai; Liu, Derong; Lin, Hanquan
2016-03-01
In this paper, a value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon undiscounted optimal control problems for discrete-time nonlinear systems. The present value iteration ADP algorithm permits an arbitrary positive semi-definite function to initialize the algorithm. A novel convergence analysis is developed to guarantee that the iterative value function converges to the optimal performance index function. Initialized by different initial functions, it is proven that the iterative value function will be monotonically nonincreasing, monotonically nondecreasing, or nonmonotonic and will converge to the optimum. In this paper, for the first time, the admissibility properties of the iterative control laws are developed for value iteration algorithms. It is emphasized that new termination criteria are established to guarantee the effectiveness of the iterative control laws. Neural networks are used to approximate the iterative value function and compute the iterative control law, respectively, for facilitating the implementation of the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the present method.
Generalized hamming networks and applications.
Koutroumbas, Konstantinos; Kalouptsidis, Nicholas
2005-09-01
In this paper the classical Hamming network is generalized in various ways. First, for the Hamming maxnet, a generalized model is proposed, which covers under its umbrella most of the existing versions of the Hamming Maxnet. The network dynamics are time varying while the commonly used ramp function may be replaced by a much more general non-linear function. Also, the weight parameters of the network are time varying. A detailed convergence analysis is provided. A bound on the number of iterations required for convergence is derived and its distribution functions are given for the cases where the initial values of the nodes of the Hamming maxnet stem from the uniform and the peak distributions. Stabilization mechanisms aiming to prevent the node(s) with the maximum initial value diverging to infinity or decaying to zero are described. Simulations demonstrate the advantages of the proposed extension. Also, a rough comparison between the proposed generalized scheme as well as the original Hamming maxnet and its variants is carried out in terms of the time required for convergence, in hardware implementations. Finally, the other two parts of the Hamming network, namely the competitors generating module and the decoding module, are briefly considered in the framework of various applications such as classification/clustering, vector quantization and function optimization.
Nonlinear Dynamic Responses of Composite Rotor Blades
1988-08-01
models. QHD40 is an eight-noded plate element with seven degrees of freedom (three midsurface displacements, two rotations and two higher order terms for...in-plane displacements) per corner node and three degrees of freedom (transverse midsurface displacement and two rotations) per mid-state node. QHD48...and QHD48S are eight-noded plate and shell elements respectively, with six degrees of freedom (three midsurface displacements and three rotations
NASA Technical Reports Server (NTRS)
Nakazawa, Shohei
1991-01-01
Formulations and algorithms implemented in the MHOST finite element program are discussed. The code uses a novel concept of the mixed iterative solution technique for the efficient 3-D computations of turbine engine hot section components. The general framework of variational formulation and solution algorithms are discussed which were derived from the mixed three field Hu-Washizu principle. This formulation enables the use of nodal interpolation for coordinates, displacements, strains, and stresses. Algorithmic description of the mixed iterative method includes variations for the quasi static, transient dynamic and buckling analyses. The global-local analysis procedure referred to as the subelement refinement is developed in the framework of the mixed iterative solution, of which the detail is presented. The numerically integrated isoparametric elements implemented in the framework is discussed. Methods to filter certain parts of strain and project the element discontinuous quantities to the nodes are developed for a family of linear elements. Integration algorithms are described for linear and nonlinear equations included in MHOST program.
Nonlinear Fourier transform—towards the construction of nonlinear Fourier modes
NASA Astrophysics Data System (ADS)
Saksida, Pavle
2018-01-01
We study a version of the nonlinear Fourier transform associated with ZS-AKNS systems. This version is suitable for the construction of nonlinear analogues of Fourier modes, and for the perturbation-theoretic study of their superposition. We provide an iterative scheme for computing the inverse of our transform. The relevant formulae are expressed in terms of Bell polynomials and functions related to them. In order to prove the validity of our iterative scheme, we show that our transform has the necessary analytic properties. We show that up to order three of the perturbation parameter, the nonlinear Fourier mode is a complex sinusoid modulated by the second Bernoulli polynomial. We describe an application of the nonlinear superposition of two modes to a problem of transmission through a nonlinear medium.
Ramani, Sathish; Liu, Zhihao; Rosen, Jeffrey; Nielsen, Jon-Fredrik; Fessler, Jeffrey A.
2012-01-01
Regularized iterative reconstruction algorithms for imaging inverse problems require selection of appropriate regularization parameter values. We focus on the challenging problem of tuning regularization parameters for nonlinear algorithms for the case of additive (possibly complex) Gaussian noise. Generalized cross-validation (GCV) and (weighted) mean-squared error (MSE) approaches (based on Stein's Unbiased Risk Estimate— SURE) need the Jacobian matrix of the nonlinear reconstruction operator (representative of the iterative algorithm) with respect to the data. We derive the desired Jacobian matrix for two types of nonlinear iterative algorithms: a fast variant of the standard iterative reweighted least-squares method and the contemporary split-Bregman algorithm, both of which can accommodate a wide variety of analysis- and synthesis-type regularizers. The proposed approach iteratively computes two weighted SURE-type measures: Predicted-SURE and Projected-SURE (that require knowledge of noise variance σ2), and GCV (that does not need σ2) for these algorithms. We apply the methods to image restoration and to magnetic resonance image (MRI) reconstruction using total variation (TV) and an analysis-type ℓ1-regularization. We demonstrate through simulations and experiments with real data that minimizing Predicted-SURE and Projected-SURE consistently lead to near-MSE-optimal reconstructions. We also observed that minimizing GCV yields reconstruction results that are near-MSE-optimal for image restoration and slightly sub-optimal for MRI. Theoretical derivations in this work related to Jacobian matrix evaluations can be extended, in principle, to other types of regularizers and reconstruction algorithms. PMID:22531764
Naff, Richard L.; Banta, Edward R.
2008-01-01
The preconditioned conjugate gradient with improved nonlinear control (PCGN) package provides addi-tional means by which the solution of nonlinear ground-water flow problems can be controlled as compared to existing solver packages for MODFLOW. Picard iteration is used to solve nonlinear ground-water flow equations by iteratively solving a linear approximation of the nonlinear equations. The linear solution is provided by means of the preconditioned conjugate gradient algorithm where preconditioning is provided by the modi-fied incomplete Cholesky algorithm. The incomplete Cholesky scheme incorporates two levels of fill, 0 and 1, in which the pivots can be modified so that the row sums of the preconditioning matrix and the original matrix are approximately equal. A relaxation factor is used to implement the modified pivots, which determines the degree of modification allowed. The effects of fill level and degree of pivot modification are briefly explored by means of a synthetic, heterogeneous finite-difference matrix; results are reported in the final section of this report. The preconditioned conjugate gradient method is coupled with Picard iteration so as to efficiently solve the nonlinear equations associated with many ground-water flow problems. The description of this coupling of the linear solver with Picard iteration is a primary concern of this document.
Performing an allreduce operation on a plurality of compute nodes of a parallel computer
Faraj, Ahmad
2013-07-09
Methods, apparatus, and products are disclosed for performing an allreduce operation on a plurality of compute nodes of a parallel computer, each node including at least two processing cores, that include: establishing, for each node, a plurality of logical rings, each ring including a different set of at least one core on that node, each ring including the cores on at least two of the nodes; iteratively for each node: assigning each core of that node to one of the rings established for that node to which the core has not previously been assigned, and performing, for each ring for that node, a global allreduce operation using contribution data for the cores assigned to that ring or any global allreduce results from previous global allreduce operations, yielding current global allreduce results for each core; and performing, for each node, a local allreduce operation using the global allreduce results.
A network model of successive partitioning-limited solute diffusion through the stratum corneum.
Schumm, Phillip; Scoglio, Caterina M; van der Merwe, Deon
2010-02-07
As the most exposed point of contact with the external environment, the skin is an important barrier to many chemical exposures, including medications, potentially toxic chemicals and cosmetics. Traditional dermal absorption models treat the stratum corneum lipids as a homogenous medium through which solutes diffuse according to Fick's first law of diffusion. This approach does not explain non-linear absorption and irregular distribution patterns within the stratum corneum lipids as observed in experimental data. A network model, based on successive partitioning-limited solute diffusion through the stratum corneum, where the lipid structure is represented by a large, sparse, and regular network where nodes have variable characteristics, offers an alternative, efficient, and flexible approach to dermal absorption modeling that simulates non-linear absorption data patterns. Four model versions are presented: two linear models, which have unlimited node capacities, and two non-linear models, which have limited node capacities. The non-linear model outputs produce absorption to dose relationships that can be best characterized quantitatively by using power equations, similar to the equations used to describe non-linear experimental data.
Collective behavior of large-scale neural networks with GPU acceleration.
Qu, Jingyi; Wang, Rubin
2017-12-01
In this paper, the collective behaviors of a small-world neuronal network motivated by the anatomy of a mammalian cortex based on both Izhikevich model and Rulkov model are studied. The Izhikevich model can not only reproduce the rich behaviors of biological neurons but also has only two equations and one nonlinear term. Rulkov model is in the form of difference equations that generate a sequence of membrane potential samples in discrete moments of time to improve computational efficiency. These two models are suitable for the construction of large scale neural networks. By varying some key parameters, such as the connection probability and the number of nearest neighbor of each node, the coupled neurons will exhibit types of temporal and spatial characteristics. It is demonstrated that the implementation of GPU can achieve more and more acceleration than CPU with the increasing of neuron number and iterations. These two small-world network models and GPU acceleration give us a new opportunity to reproduce the real biological network containing a large number of neurons.
Iterative Methods for Solving Nonlinear Parabolic Problem in Pension Saving Management
NASA Astrophysics Data System (ADS)
Koleva, M. N.
2011-11-01
In this work we consider a nonlinear parabolic equation, obtained from Riccati like transformation of the Hamilton-Jacobi-Bellman equation, arising in pension saving management. We discuss two numerical iterative methods for solving the model problem—fully implicit Picard method and mixed Picard-Newton method, which preserves the parabolic characteristics of the differential problem. Numerical experiments for comparison the accuracy and effectiveness of the algorithms are discussed. Finally, observations are given.
NASA Astrophysics Data System (ADS)
Del Carpio R., Maikol; Hashemi, M. Javad; Mosqueda, Gilberto
2017-10-01
This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highlynonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model of a 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.
Systems and methods for optimal power flow on a radial network
Low, Steven H.; Peng, Qiuyu
2018-04-24
Node controllers and power distribution networks in accordance with embodiments of the invention enable distributed power control. One embodiment includes a node controller including a distributed power control application; a plurality of node operating parameters describing the operating parameter of a node and a set of at least one node selected from the group consisting of an ancestor node and at least one child node; wherein send node operating parameters to nodes in the set of at least one node; receive operating parameters from the nodes in the set of at least one node; calculate a plurality of updated node operating parameters using an iterative process to determine the updated node operating parameters using the node operating parameters that describe the operating parameters of the node and the set of at least one node, where the iterative process involves evaluation of a closed form solution; and adjust node operating parameters.
Constrained State Estimation for Individual Localization in Wireless Body Sensor Networks
Feng, Xiaoxue; Snoussi, Hichem; Liang, Yan; Jiao, Lianmeng
2014-01-01
Wireless body sensor networks based on ultra-wideband radio have recently received much research attention due to its wide applications in health-care, security, sports and entertainment. Accurate localization is a fundamental problem to realize the development of effective location-aware applications above. In this paper the problem of constrained state estimation for individual localization in wireless body sensor networks is addressed. Priori knowledge about geometry among the on-body nodes as additional constraint is incorporated into the traditional filtering system. The analytical expression of state estimation with linear constraint to exploit the additional information is derived. Furthermore, for nonlinear constraint, first-order and second-order linearizations via Taylor series expansion are proposed to transform the nonlinear constraint to the linear case. Examples between the first-order and second-order nonlinear constrained filters based on interacting multiple model extended kalman filter (IMM-EKF) show that the second-order solution for higher order nonlinearity as present in this paper outperforms the first-order solution, and constrained IMM-EKF obtains superior estimation than IMM-EKF without constraint. Another brownian motion individual localization example also illustrates the effectiveness of constrained nonlinear iterative least square (NILS), which gets better filtering performance than NILS without constraint. PMID:25390408
Optimal Variational Asymptotic Method for Nonlinear Fractional Partial Differential Equations.
Baranwal, Vipul K; Pandey, Ram K; Singh, Om P
2014-01-01
We propose optimal variational asymptotic method to solve time fractional nonlinear partial differential equations. In the proposed method, an arbitrary number of auxiliary parameters γ 0, γ 1, γ 2,… and auxiliary functions H 0(x), H 1(x), H 2(x),… are introduced in the correction functional of the standard variational iteration method. The optimal values of these parameters are obtained by minimizing the square residual error. To test the method, we apply it to solve two important classes of nonlinear partial differential equations: (1) the fractional advection-diffusion equation with nonlinear source term and (2) the fractional Swift-Hohenberg equation. Only few iterations are required to achieve fairly accurate solutions of both the first and second problems.
Design and optimization of color lookup tables on a simplex topology.
Monga, Vishal; Bala, Raja; Mo, Xuan
2012-04-01
An important computational problem in color imaging is the design of color transforms that map color between devices or from a device-dependent space (e.g., RGB/CMYK) to a device-independent space (e.g., CIELAB) and vice versa. Real-time processing constraints entail that such nonlinear color transforms be implemented using multidimensional lookup tables (LUTs). Furthermore, relatively sparse LUTs (with efficient interpolation) are employed in practice because of storage and memory constraints. This paper presents a principled design methodology rooted in constrained convex optimization to design color LUTs on a simplex topology. The use of n simplexes, i.e., simplexes in n dimensions, as opposed to traditional lattices, recently has been of great interest in color LUT design for simplex topologies that allow both more analytically tractable formulations and greater efficiency in the LUT. In this framework of n-simplex interpolation, our central contribution is to develop an elegant iterative algorithm that jointly optimizes the placement of nodes of the color LUT and the output values at those nodes to minimize interpolation error in an expected sense. This is in contrast to existing work, which exclusively designs either node locations or the output values. We also develop new analytical results for the problem of node location optimization, which reduces to constrained optimization of a large but sparse interpolation matrix in our framework. We evaluate our n -simplex color LUTs against the state-of-the-art lattice (e.g., International Color Consortium profiles) and simplex-based techniques for approximating two representative multidimensional color transforms that characterize a CMYK xerographic printer and an RGB scanner, respectively. The results show that color LUTs designed on simplexes offer very significant benefits over traditional lattice-based alternatives in improving color transform accuracy even with a much smaller number of nodes.
Two-dimensional computer simulation of EMVJ and grating solar cells under AMO illumination
NASA Technical Reports Server (NTRS)
Gray, J. L.; Schwartz, R. J.
1984-01-01
A computer program, SCAP2D (Solar Cell Analysis Program in 2-Dimensions), is used to evaluate the Etched Multiple Vertical Junction (EMVJ) and grating solar cells. The aim is to demonstrate how SCAP2D can be used to evaluate cell designs. The cell designs studied are by no means optimal designs. The SCAP2D program solves the three coupled, nonlinear partial differential equations, Poisson's Equation and the hole and electron continuity equations, simultaneously in two-dimensions using finite differences to discretize the equations and Newton's Method to linearize them. The variables solved for are the electrostatic potential and the hole and electron concentrations. Each linear system of equations is solved directly by Gaussian Elimination. Convergence of the Newton Iteration is assumed when the largest correction to the electrostatic potential or hole or electron quasi-potential is less than some predetermined error. A typical problem involves 2000 nodes with a Jacobi matrix of order 6000 and a bandwidth of 243.
NEAMS-IPL MOOSE Framework Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slaughter, Andrew Edward; Permann, Cody James; Kong, Fande
The Multiapp Picard iteration Milestone’s purpose was to support a framework level “tight-coupling” method within the hierarchical Multiapp’s execution scheme. This new solution scheme gives developers new choices for running multiphysics applications, particularly those with very strong nonlinear effects or those requiring coupling across disparate time or spatial scales. Figure 1 shows a typical Multiapp setup in MOOSE. Each node represents a separate simulation containing a separate equation system. MOOSE solves the equation system on each node in turn, in a user-controlled manner. Information can be aggregated or split and transferred from parent to child or child to parent asmore » needed between solves. Performing a tightly coupled execution scheme using this method wasn’t possible in the original implementation. This is was due to the inability to back up to a previous state once a converged solution was accepted at a particular Multiapp level.« less
Simulation of the hot rolling of steel with direct iteration
NASA Astrophysics Data System (ADS)
Hanoglu, Umut; Šarler, Božidar
2017-10-01
In this study a simulation system based on the meshless Local Radial Basis Function Collocation Method (LRBFCM) is applied for the hot rolling of steel. Rolling is a complex, 3D, thermo-mechanical problem; however, 2D cross-sectional slices are used as computational domains that are aligned with the rolling direction and no heat flow or strain is considered in the direction that is orthogonal to the slices. For each predefined position with respect to the rolling direction, the solution procedure is repeated until the slice reaches the final rolling position. Collocation nodes are initially distributed over the domain and boundaries of the initial slice. A local solution is achieved by considering the overlapping influence domains with either 5 or 7 nodes. Radial Basis Functions (RBFs) are used for the temperature discretization in the thermal model and displacement discretization in the mechanical model. The meshless solution procedure does not require a mesh-generation algorithm in the classic sense. Strong-form mechanical and thermal models are run for each slice regarding the contact with the roll's surface. Ideal plastic material behavior is considered for the mechanical results, where the nonlinear stress-strain relation is solved with a direct iteration. The majority of the Finite Element Model (FEM) simulations, including commercial software, use a conventional Newton-Raphson algorithm. However, direct iteration is chosen here due to its better compatibility with meshless methods. In order to overcome any unforeseen stability issues, the redistribution of the nodes by Elliptic Node Generation (ENG) is applied to one or more slices throughout the simulation. The rolling simulation presented here helps the user to design, test and optimize different rolling schedules. The results can be seen minutes after the simulation's start in terms of temperature, displacement, stress and strain fields as well as important technological parameters, like the roll-separating forces, roll toque, etc. An example of a rolling simulation, in which an initial size of 110x110 mm steel is rolled to a round bar with 80 mm diameter, is shown in Fig. 3. A user-friendly computer application for industrial use is created by using the C# and .NET frameworks.
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
2010-01-01
Cell-centered and node-centered approaches have been compared for unstructured finite-volume discretization of inviscid fluxes. The grids range from regular grids to irregular grids, including mixed-element grids and grids with random perturbations of nodes. Accuracy, complexity, and convergence rates of defect-correction iterations are studied for eight nominally second-order accurate schemes: two node-centered schemes with weighted and unweighted least-squares (LSQ) methods for gradient reconstruction and six cell-centered schemes two node-averaging with and without clipping and four schemes that employ different stencils for LSQ gradient reconstruction. The cell-centered nearest-neighbor (CC-NN) scheme has the lowest complexity; a version of the scheme that involves smart augmentation of the LSQ stencil (CC-SA) has only marginal complexity increase. All other schemes have larger complexity; complexity of node-centered (NC) schemes are somewhat lower than complexity of cell-centered node-averaging (CC-NA) and full-augmentation (CC-FA) schemes. On highly anisotropic grids typical of those encountered in grid adaptation, discretization errors of five of the six cell-centered schemes converge with second order on all tested grids; the CC-NA scheme with clipping degrades solution accuracy to first order. The NC schemes converge with second order on regular and/or triangular grids and with first order on perturbed quadrilaterals and mixed-element grids. All schemes may produce large relative errors in gradient reconstruction on grids with perturbed nodes. Defect-correction iterations for schemes employing weighted least-square gradient reconstruction diverge on perturbed stretched grids. Overall, the CC-NN and CC-SA schemes offer the best options of the lowest complexity and secondorder discretization errors. On anisotropic grids over a curved body typical of turbulent flow simulations, the discretization errors converge with second order and are small for the CC-NN, CC-SA, and CC-FA schemes on all grids and for NC schemes on triangular grids; the discretization errors of the CC-NA scheme without clipping do not converge on irregular grids. Accurate gradient reconstruction can be achieved by introducing a local approximate mapping; without approximate mapping, only the NC scheme with weighted LSQ method provides accurate gradients. Defect correction iterations for the CC-NA scheme without clipping diverge; for the NC scheme with weighted LSQ method, the iterations either diverge or converge very slowly. The best option in curved geometries is the CC-SA scheme that offers low complexity, second-order discretization errors, and fast convergence.
NASA Astrophysics Data System (ADS)
Whiteley, J. P.
2017-10-01
Large, incompressible elastic deformations are governed by a system of nonlinear partial differential equations. The finite element discretisation of these partial differential equations yields a system of nonlinear algebraic equations that are usually solved using Newton's method. On each iteration of Newton's method, a linear system must be solved. We exploit the structure of the Jacobian matrix to propose a preconditioner, comprising two steps. The first step is the solution of a relatively small, symmetric, positive definite linear system using the preconditioned conjugate gradient method. This is followed by a small number of multigrid V-cycles for a larger linear system. Through the use of exemplar elastic deformations, the preconditioner is demonstrated to facilitate the iterative solution of the linear systems arising. The number of GMRES iterations required has only a very weak dependence on the number of degrees of freedom of the linear systems.
NASA Astrophysics Data System (ADS)
Elgohary, T.; Kim, D.; Turner, J.; Junkins, J.
2014-09-01
Several methods exist for integrating the motion in high order gravity fields. Some recent methods use an approximate starting orbit, and an efficient method is needed for generating warm starts that account for specific low order gravity approximations. By introducing two scalar Lagrange-like invariants and employing Leibniz product rule, the perturbed motion is integrated by a novel recursive formulation. The Lagrange-like invariants allow exact arbitrary order time derivatives. Restricting attention to the perturbations due to the zonal harmonics J2 through J6, we illustrate an idea. The recursively generated vector-valued time derivatives for the trajectory are used to develop a continuation series-based solution for propagating position and velocity. Numerical comparisons indicate performance improvements of ~ 70X over existing explicit Runge-Kutta methods while maintaining mm accuracy for the orbit predictions. The Modified Chebyshev Picard Iteration (MCPI) is an iterative path approximation method to solve nonlinear ordinary differential equations. The MCPI utilizes Picard iteration with orthogonal Chebyshev polynomial basis functions to recursively update the states. The key advantages of the MCPI are as follows: 1) Large segments of a trajectory can be approximated by evaluating the forcing function at multiple nodes along the current approximation during each iteration. 2) It can readily handle general gravity perturbations as well as non-conservative forces. 3) Parallel applications are possible. The Picard sequence converges to the solution over large time intervals when the forces are continuous and differentiable. According to the accuracy of the starting solutions, however, the MCPI may require significant number of iterations and function evaluations compared to other integrators. In this work, we provide an efficient methodology to establish good starting solutions from the continuation series method; this warm start improves the performance of the MCPI significantly and will likely be useful for other applications where efficiently computed approximate orbit solutions are needed.
Wei, Jianming; Zhang, Youan; Sun, Meimei; Geng, Baoliang
2017-09-01
This paper presents an adaptive iterative learning control scheme for a class of nonlinear systems with unknown time-varying delays and control direction preceded by unknown nonlinear backlash-like hysteresis. Boundary layer function is introduced to construct an auxiliary error variable, which relaxes the identical initial condition assumption of iterative learning control. For the controller design, integral Lyapunov function candidate is used, which avoids the possible singularity problem by introducing hyperbolic tangent funciton. After compensating for uncertainties with time-varying delays by combining appropriate Lyapunov-Krasovskii function with Young's inequality, an adaptive iterative learning control scheme is designed through neural approximation technique and Nussbaum function method. On the basis of the hyperbolic tangent function's characteristics, the system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapunov-like composite energy function (CEF) in two cases, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Dynamic weight evolution network with preferential attachment
NASA Astrophysics Data System (ADS)
Dai, Meifeng; Xie, Qi; Li, Lei
2014-12-01
A dynamic weight evolution network with preferential attachment is introduced. The network includes two significant characteristics. (i) Topological growth: triggered by newly added node with M links at each time step, each new edge carries an initial weight growing nonlinearly with time. (ii) Weight dynamics: the weight between two existing nodes experiences increasing or decreasing in a nonlinear way. By using continuum theory and mean-field method, we study the strength, the degree, the weight and their distributions. We find that the distributions exhibit a power-law feature. In particular, the relationship between the degree and the strength is nonlinear, and the power-law exponents of the three are the same. All the theoretical predictions are successfully contrasted with numerical simulations.
Bíró, Oszkár; Koczka, Gergely; Preis, Kurt
2014-01-01
An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer. PMID:24829517
Bíró, Oszkár; Koczka, Gergely; Preis, Kurt
2014-05-01
An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer.
Improved Convergence and Robustness of USM3D Solutions on Mixed Element Grids (Invited)
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frink, Neal T.
2015-01-01
Several improvements to the mixed-element USM3D discretization and defect-correction schemes have been made. A new methodology for nonlinear iterations, called the Hierarchical Adaptive Nonlinear Iteration Scheme (HANIS), has been developed and implemented. It provides two additional hierarchies around a simple and approximate preconditioner of USM3D. The hierarchies are a matrix-free linear solver for the exact linearization of Reynolds-averaged Navier Stokes (RANS) equations and a nonlinear control of the solution update. Two variants of the new methodology are assessed on four benchmark cases, namely, a zero-pressure gradient flat plate, a bump-in-channel configuration, the NACA 0012 airfoil, and a NASA Common Research Model configuration. The new methodology provides a convergence acceleration factor of 1.4 to 13 over the baseline solver technology.
Enhanced method of fast re-routing with load balancing in software-defined networks
NASA Astrophysics Data System (ADS)
Lemeshko, Oleksandr; Yeremenko, Oleksandra
2017-11-01
A two-level method of fast re-routing with load balancing in a software-defined network (SDN) is proposed. The novelty of the method consists, firstly, in the introduction of a two-level hierarchy of calculating the routing variables responsible for the formation of the primary and backup paths, and secondly, in ensuring a balanced load of the communication links of the network, which meets the requirements of the traffic engineering concept. The method provides implementation of link, node, path, and bandwidth protection schemes for fast re-routing in SDN. The separation in accordance with the interaction prediction principle along two hierarchical levels of the calculation functions of the primary (lower level) and backup (upper level) routes allowed to abandon the initial sufficiently large and nonlinear optimization problem by transiting to the iterative solution of linear optimization problems of half the dimension. The analysis of the proposed method confirmed its efficiency and effectiveness in terms of obtaining optimal solutions for ensuring balanced load of communication links and implementing the required network element protection schemes for fast re-routing in SDN.
Nonlinear dynamic modeling of rotor system supported by angular contact ball bearings
NASA Astrophysics Data System (ADS)
Wang, Hong; Han, Qinkai; Zhou, Daning
2017-02-01
In current bearing dynamic models, the displacement coordinate relations are usually utilized to approximately obtain the contact deformations between the rolling element and raceways, and then the nonlinear restoring forces of the rolling bearing could be calculated accordingly. Although the calculation efficiency is relatively higher, the accuracy is lower as the contact deformations should be solved through iterative analysis. Thus, an improved nonlinear dynamic model is presented in this paper. Considering the preload condition, surface waviness, Hertz contact and elastohydrodynamic lubrication, load distribution analysis is solved iteratively to more accurately obtain the contact deformations and angles between the rolling balls and raceways. The bearing restoring forces are then obtained through iteratively solving the load distribution equations at every time step. Dynamic tests upon a typical rotor system supported by two angular contact ball bearings are conducted to verify the model. Through comparisons, the differences between the nonlinear dynamic model and current models are also pointed out. The effects of axial preload, rotor eccentricity and inner/outer waviness amplitudes on the dynamic response are discussed in detail.
A Universal Tare Load Prediction Algorithm for Strain-Gage Balance Calibration Data Analysis
NASA Technical Reports Server (NTRS)
Ulbrich, N.
2011-01-01
An algorithm is discussed that may be used to estimate tare loads of wind tunnel strain-gage balance calibration data. The algorithm was originally developed by R. Galway of IAR/NRC Canada and has been described in the literature for the iterative analysis technique. Basic ideas of Galway's algorithm, however, are universally applicable and work for both the iterative and the non-iterative analysis technique. A recent modification of Galway's algorithm is presented that improves the convergence behavior of the tare load prediction process if it is used in combination with the non-iterative analysis technique. The modified algorithm allows an analyst to use an alternate method for the calculation of intermediate non-linear tare load estimates whenever Galway's original approach does not lead to a convergence of the tare load iterations. It is also shown in detail how Galway's algorithm may be applied to the non-iterative analysis technique. Hand load data from the calibration of a six-component force balance is used to illustrate the application of the original and modified tare load prediction method. During the analysis of the data both the iterative and the non-iterative analysis technique were applied. Overall, predicted tare loads for combinations of the two tare load prediction methods and the two balance data analysis techniques showed excellent agreement as long as the tare load iterations converged. The modified algorithm, however, appears to have an advantage over the original algorithm when absolute voltage measurements of gage outputs are processed using the non-iterative analysis technique. In these situations only the modified algorithm converged because it uses an exact solution of the intermediate non-linear tare load estimate for the tare load iteration.
On nonlinear finite element analysis in single-, multi- and parallel-processors
NASA Technical Reports Server (NTRS)
Utku, S.; Melosh, R.; Islam, M.; Salama, M.
1982-01-01
Numerical solution of nonlinear equilibrium problems of structures by means of Newton-Raphson type iterations is reviewed. Each step of the iteration is shown to correspond to the solution of a linear problem, therefore the feasibility of the finite element method for nonlinear analysis is established. Organization and flow of data for various types of digital computers, such as single-processor/single-level memory, single-processor/two-level-memory, vector-processor/two-level-memory, and parallel-processors, with and without sub-structuring (i.e. partitioning) are given. The effect of the relative costs of computation, memory and data transfer on substructuring is shown. The idea of assigning comparable size substructures to parallel processors is exploited. Under Cholesky type factorization schemes, the efficiency of parallel processing is shown to decrease due to the occasional shared data, just as that due to the shared facilities.
Efficient numerical method for analyzing optical bistability in photonic crystal microcavities.
Yuan, Lijun; Lu, Ya Yan
2013-05-20
Nonlinear optical effects can be enhanced by photonic crystal microcavities and be used to develop practical ultra-compact optical devices with low power requirements. The finite-difference time-domain method is the standard numerical method for simulating nonlinear optical devices, but it has limitations in terms of accuracy and efficiency. In this paper, a rigorous and efficient frequency-domain numerical method is developed for analyzing nonlinear optical devices where the nonlinear effect is concentrated in the microcavities. The method replaces the linear problem outside the microcavities by a rigorous and numerically computed boundary condition, then solves the nonlinear problem iteratively in a small region around the microcavities. Convergence of the iterative method is much easier to achieve since the size of the problem is significantly reduced. The method is presented for a specific two-dimensional photonic crystal waveguide-cavity system with a Kerr nonlinearity, using numerical methods that can take advantage of the geometric features of the structure. The method is able to calculate multiple solutions exhibiting the optical bistability phenomenon in the strongly nonlinear regime.
Dynamical processes and epidemic threshold on nonlinear coupled multiplex networks
NASA Astrophysics Data System (ADS)
Gao, Chao; Tang, Shaoting; Li, Weihua; Yang, Yaqian; Zheng, Zhiming
2018-04-01
Recently, the interplay between epidemic spreading and awareness diffusion has aroused the interest of many researchers, who have studied models mainly based on linear coupling relations between information and epidemic layers. However, in real-world networks the relation between two layers may be closely correlated with the property of individual nodes and exhibits nonlinear dynamical features. Here we propose a nonlinear coupled information-epidemic model (I-E model) and present a comprehensive analysis in a more generalized scenario where the upload rate differs from node to node, deletion rate varies between susceptible and infected states, and infection rate changes between unaware and aware states. In particular, we develop a theoretical framework of the intra- and inter-layer dynamical processes with a microscopic Markov chain approach (MMCA), and derive an analytic epidemic threshold. Our results suggest that the change of upload and deletion rate has little effect on the diffusion dynamics in the epidemic layer.
One-Dimensional Fokker-Planck Equation with Quadratically Nonlinear Quasilocal Drift
NASA Astrophysics Data System (ADS)
Shapovalov, A. V.
2018-04-01
The Fokker-Planck equation in one-dimensional spacetime with quadratically nonlinear nonlocal drift in the quasilocal approximation is reduced with the help of scaling of the coordinates and time to a partial differential equation with a third derivative in the spatial variable. Determining equations for the symmetries of the reduced equation are derived and the Lie symmetries are found. A group invariant solution having the form of a traveling wave is found. Within the framework of Adomian's iterative method, the first iterations of an approximate solution of the Cauchy problem are obtained. Two illustrative examples of exact solutions are found.
NASA Technical Reports Server (NTRS)
Wu, S. T.; Sun, M. T.; Sakurai, Takashi
1990-01-01
This paper presents a comparison between two numerical methods for the extrapolation of nonlinear force-free magnetic fields, viz the Iterative Method (IM) and the Progressive Extension Method (PEM). The advantages and disadvantages of these two methods are summarized, and the accuracy and numerical instability are discussed. On the basis of this investigation, it is claimed that the two methods do resemble each other qualitatively.
Antisynchronization of Two Complex Dynamical Networks
NASA Astrophysics Data System (ADS)
Banerjee, Ranjib; Grosu, Ioan; Dana, Syamal K.
A nonlinear type open-plus-closed-loop (OPCL) coupling is investi-gated for antisynchronization of two complex networks under unidirectional and bidirectional interactions where each node of the networks is considered as a continuous dynamical system. We present analytical results for antisynchroni-zation in identical networks. A numerical example is given for unidirectional coupling with each node represented by a spiking-bursting type Hindmarsh-Rose neuron model. Antisynchronization for mutual interaction is allowed only to inversion symmetric dynamical systems as chosen nodes.
Protograph LDPC Codes with Node Degrees at Least 3
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Jones, Christopher
2006-01-01
In this paper we present protograph codes with a small number of degree-3 nodes and one high degree node. The iterative decoding threshold for proposed rate 1/2 codes are lower, by about 0.2 dB, than the best known irregular LDPC codes with degree at least 3. The main motivation is to gain linear minimum distance to achieve low error floor. Also to construct rate-compatible protograph-based LDPC codes for fixed block length that simultaneously achieves low iterative decoding threshold and linear minimum distance. We start with a rate 1/2 protograph LDPC code with degree-3 nodes and one high degree node. Higher rate codes are obtained by connecting check nodes with degree-2 non-transmitted nodes. This is equivalent to constraint combining in the protograph. The condition where all constraints are combined corresponds to the highest rate code. This constraint must be connected to nodes of degree at least three for the graph to have linear minimum distance. Thus having node degree at least 3 for rate 1/2 guarantees linear minimum distance property to be preserved for higher rates. Through examples we show that the iterative decoding threshold as low as 0.544 dB can be achieved for small protographs with node degrees at least three. A family of low- to high-rate codes with minimum distance linearly increasing in block size and with capacity-approaching performance thresholds is presented. FPGA simulation results for a few example codes show that the proposed codes perform as predicted.
Mehl, Steffen W.; Hill, Mary C.
2006-01-01
This report documents the addition of shared node Local Grid Refinement (LGR) to MODFLOW-2005, the U.S. Geological Survey modular, transient, three-dimensional, finite-difference ground-water flow model. LGR provides the capability to simulate ground-water flow using one block-shaped higher-resolution local grid (a child model) within a coarser-grid parent model. LGR accomplishes this by iteratively coupling two separate MODFLOW-2005 models such that heads and fluxes are balanced across the shared interfacing boundary. LGR can be used in two-and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined ground-water systems. Traditional one-way coupled telescopic mesh refinement (TMR) methods can have large, often undetected, inconsistencies in heads and fluxes across the interface between two model grids. The iteratively coupled shared-node method of LGR provides a more rigorous coupling in which the solution accuracy is controlled by convergence criteria defined by the user. In realistic problems, this can result in substantially more accurate solutions and require an increase in computer processing time. The rigorous coupling enables sensitivity analysis, parameter estimation, and uncertainty analysis that reflects conditions in both model grids. This report describes the method used by LGR, evaluates LGR accuracy and performance for two- and three-dimensional test cases, provides input instructions, and lists selected input and output files for an example problem. It also presents the Boundary Flow and Head (BFH) Package, which allows the child and parent models to be simulated independently using the boundary conditions obtained through the iterative process of LGR.
An iterative hyperelastic parameters reconstruction for breast cancer assessment
NASA Astrophysics Data System (ADS)
Mehrabian, Hatef; Samani, Abbas
2008-03-01
In breast elastography, breast tissues usually undergo large compressions resulting in significant geometric and structural changes, and consequently nonlinear mechanical behavior. In this study, an elastography technique is presented where parameters characterizing tissue nonlinear behavior is reconstructed. Such parameters can be used for tumor tissue classification. To model the nonlinear behavior, tissues are treated as hyperelastic materials. The proposed technique uses a constrained iterative inversion method to reconstruct the tissue hyperelastic parameters. The reconstruction technique uses a nonlinear finite element (FE) model for solving the forward problem. In this research, we applied Yeoh and Polynomial models to model the tissue hyperelasticity. To mimic the breast geometry, we used a computational phantom, which comprises of a hemisphere connected to a cylinder. This phantom consists of two types of soft tissue to mimic adipose and fibroglandular tissues and a tumor. Simulation results show the feasibility of the proposed method in reconstructing the hyperelastic parameters of the tumor tissue.
NASA Astrophysics Data System (ADS)
Liu, Peipei; Yang, Suyoung; Lim, Hyung Jin; Park, Hyung Chul; Ko, In Chang; Sohn, Hoon
2014-03-01
Fatigue crack is one of the main culprits for the failure of metallic structures. Recently, it has been shown that nonlinear wave modulation spectroscopy (NWMS) is effective in detecting nonlinear mechanisms produced by fatigue crack. In this study, an active wireless sensor node for fatigue crack detection is developed based on NWMS. Using PZT transducers attached to a target structure, ultrasonic waves at two distinctive frequencies are generated, and their modulation due to fatigue crack formation is detected using another PZT transducer. Furthermore, a reference-free NWMS algorithm is developed so that fatigue crack can be detected without relying on history data of the structure with minimal parameter adjustment by the end users. The algorithm is embedded into FPGA, and the diagnosis is transmitted to a base station using a commercial wireless communication system. The whole design of the sensor node is fulfilled in a low power working strategy. Finally, an experimental verification has been performed using aluminum plate specimens to show the feasibility of the developed active wireless NWMS sensor node.
NASA Astrophysics Data System (ADS)
Zhu, Dianwen; Zhang, Wei; Zhao, Yue; Li, Changqing
2016-03-01
Dynamic fluorescence molecular tomography (FMT) has the potential to quantify physiological or biochemical information, known as pharmacokinetic parameters, which are important for cancer detection, drug development and delivery etc. To image those parameters, there are indirect methods, which are easier to implement but tend to provide images with low signal-to-noise ratio, and direct methods, which model all the measurement noises together and are statistically more efficient. The direct reconstruction methods in dynamic FMT have attracted a lot of attention recently. However, the coupling of tomographic image reconstruction and nonlinearity of kinetic parameter estimation due to the compartment modeling has imposed a huge computational burden to the direct reconstruction of the kinetic parameters. In this paper, we propose to take advantage of both the direct and indirect reconstruction ideas through a variable splitting strategy under the augmented Lagrangian framework. Each iteration of the direct reconstruction is split into two steps: the dynamic FMT image reconstruction and the node-wise nonlinear least squares fitting of the pharmacokinetic parameter images. Through numerical simulation studies, we have found that the proposed algorithm can achieve good reconstruction results within a small amount of time. This will be the first step for a combined dynamic PET and FMT imaging in the future.
Intrasystem Analysis Program (IAP) code summaries
NASA Astrophysics Data System (ADS)
Dobmeier, J. J.; Drozd, A. L. S.; Surace, J. A.
1983-05-01
This report contains detailed descriptions and capabilities of the codes that comprise the Intrasystem Analysis Program. The four codes are: Intrasystem Electromagnetic Compatibility Analysis Program (IEMCAP), General Electromagnetic Model for the Analysis of Complex Systems (GEMACS), Nonlinear Circuit Analysis Program (NCAP), and Wire Coupling Prediction Models (WIRE). IEMCAP is used for computer-aided evaluation of electromagnetic compatibility (ECM) at all stages of an Air Force system's life cycle, applicable to aircraft, space/missile, and ground-based systems. GEMACS utilizes a Method of Moments (MOM) formalism with the Electric Field Integral Equation (EFIE) for the solution of electromagnetic radiation and scattering problems. The code employs both full matrix decomposition and Banded Matrix Iteration solution techniques and is expressly designed for large problems. NCAP is a circuit analysis code which uses the Volterra approach to solve for the transfer functions and node voltage of weakly nonlinear circuits. The Wire Programs deal with the Application of Multiconductor Transmission Line Theory to the Prediction of Cable Coupling for specific classes of problems.
MILAMIN 2 - Fast MATLAB FEM solver
NASA Astrophysics Data System (ADS)
Dabrowski, Marcin; Krotkiewski, Marcin; Schmid, Daniel W.
2013-04-01
MILAMIN is a free and efficient MATLAB-based two-dimensional FEM solver utilizing unstructured meshes [Dabrowski et al., G-cubed (2008)]. The code consists of steady-state thermal diffusion and incompressible Stokes flow solvers implemented in approximately 200 lines of native MATLAB code. The brevity makes the code easily customizable. An important quality of MILAMIN is speed - it can handle millions of nodes within minutes on one CPU core of a standard desktop computer, and is faster than many commercial solutions. The new MILAMIN 2 allows three-dimensional modeling. It is designed as a set of functional modules that can be used as building blocks for efficient FEM simulations using MATLAB. The utilities are largely implemented as native MATLAB functions. For performance critical parts we use MUTILS - a suite of compiled MEX functions optimized for shared memory multi-core computers. The most important features of MILAMIN 2 are: 1. Modular approach to defining, tracking, and discretizing the geometry of the model 2. Interfaces to external mesh generators (e.g., Triangle, Fade2d, T3D) and mesh utilities (e.g., element type conversion, fast point location, boundary extraction) 3. Efficient computation of the stiffness matrix for a wide range of element types, anisotropic materials and three-dimensional problems 4. Fast global matrix assembly using a dedicated MEX function 5. Automatic integration rules 6. Flexible prescription (spatial, temporal, and field functions) and efficient application of Dirichlet, Neuman, and periodic boundary conditions 7. Treatment of transient and non-linear problems 8. Various iterative and multi-level solution strategies 9. Post-processing tools (e.g., numerical integration) 10. Visualization primitives using MATLAB, and VTK export functions We provide a large number of examples that show how to implement a custom FEM solver using the MILAMIN 2 framework. The examples are MATLAB scripts of increasing complexity that address a given technical topic (e.g., creating meshes, reordering nodes, applying boundary conditions), a given numerical topic (e.g., using various solution strategies, non-linear iterations), or that present a fully-developed solver designed to address a scientific topic (e.g., performing Stokes flow simulations in synthetic porous medium). References: Dabrowski, M., M. Krotkiewski, and D. W. Schmid MILAMIN: MATLAB-based finite element method solver for large problems, Geochem. Geophys. Geosyst., 9, Q04030, 2008
Computation of nonlinear ultrasound fields using a linearized contrast source method.
Verweij, Martin D; Demi, Libertario; van Dongen, Koen W A
2013-08-01
Nonlinear ultrasound is important in medical diagnostics because imaging of the higher harmonics improves resolution and reduces scattering artifacts. Second harmonic imaging is currently standard, and higher harmonic imaging is under investigation. The efficient development of novel imaging modalities and equipment requires accurate simulations of nonlinear wave fields in large volumes of realistic (lossy, inhomogeneous) media. The Iterative Nonlinear Contrast Source (INCS) method has been developed to deal with spatiotemporal domains measuring hundreds of wavelengths and periods. This full wave method considers the nonlinear term of the Westervelt equation as a nonlinear contrast source, and solves the equivalent integral equation via the Neumann iterative solution. Recently, the method has been extended with a contrast source that accounts for spatially varying attenuation. The current paper addresses the problem that the Neumann iterative solution converges badly for strong contrast sources. The remedy is linearization of the nonlinear contrast source, combined with application of more advanced methods for solving the resulting integral equation. Numerical results show that linearization in combination with a Bi-Conjugate Gradient Stabilized method allows the INCS method to deal with fairly strong, inhomogeneous attenuation, while the error due to the linearization can be eliminated by restarting the iterative scheme.
Nonlinear Analysis of Cavitating Propellers in Nonuniform Flow
1992-10-16
Helmholtz more than a century ago [4]. The method was later extended to treat curved bodies at zero cavitation number by Levi - Civita [4]. The theory was...122, 1895. [63] M.P. Tulin. Steady two -dimensional cavity flows about slender bodies . Technical Report 834, DTMB, May 1953. [64] M.P. Tulin...iterative solution for two -dimensional flows is remarkably fast and that the accuracy of the first iteration solution is sufficient for a wide range of
Abu-Almaalie, Zina; Ghassemlooy, Zabih; Bhatnagar, Manav R; Le-Minh, Hoa; Aslam, Nauman; Liaw, Shien-Kuei; Lee, It Ee
2016-11-20
Physical layer network coding (PNC) improves the throughput in wireless networks by enabling two nodes to exchange information using a minimum number of time slots. The PNC technique is proposed for two-way relay channel free space optical (TWR-FSO) communications with the aim of maximizing the utilization of network resources. The multipair TWR-FSO is considered in this paper, where a single antenna on each pair seeks to communicate via a common receiver aperture at the relay. Therefore, chip interleaving is adopted as a technique to separate the different transmitted signals at the relay node to perform PNC mapping. Accordingly, this scheme relies on the iterative multiuser technique for detection of users at the receiver. The bit error rate (BER) performance of the proposed system is examined under the combined influences of atmospheric loss, turbulence-induced channel fading, and pointing errors (PEs). By adopting the joint PNC mapping with interleaving and multiuser detection techniques, the BER results show that the proposed scheme can achieve a significant performance improvement against the degrading effects of turbulences and PEs. It is also demonstrated that a larger number of simultaneous users can be supported with this new scheme in establishing a communication link between multiple pairs of nodes in two time slots, thereby improving the channel capacity.
Mehl, Steffen W.; Hill, Mary C.
2013-01-01
This report documents the addition of ghost node Local Grid Refinement (LGR2) to MODFLOW-2005, the U.S. Geological Survey modular, transient, three-dimensional, finite-difference groundwater flow model. LGR2 provides the capability to simulate groundwater flow using multiple block-shaped higher-resolution local grids (a child model) within a coarser-grid parent model. LGR2 accomplishes this by iteratively coupling separate MODFLOW-2005 models such that heads and fluxes are balanced across the grid-refinement interface boundary. LGR2 can be used in two-and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined groundwater systems. Traditional one-way coupled telescopic mesh refinement methods can have large, often undetected, inconsistencies in heads and fluxes across the interface between two model grids. The iteratively coupled ghost-node method of LGR2 provides a more rigorous coupling in which the solution accuracy is controlled by convergence criteria defined by the user. In realistic problems, this can result in substantially more accurate solutions and require an increase in computer processing time. The rigorous coupling enables sensitivity analysis, parameter estimation, and uncertainty analysis that reflects conditions in both model grids. This report describes the method used by LGR2, evaluates accuracy and performance for two-and three-dimensional test cases, provides input instructions, and lists selected input and output files for an example problem. It also presents the Boundary Flow and Head (BFH2) Package, which allows the child and parent models to be simulated independently using the boundary conditions obtained through the iterative process of LGR2.
Joint Transmit Power Allocation and Splitting for SWIPT Aided OFDM-IDMA in Wireless Sensor Networks
Li, Shanshan; Zhou, Xiaotian; Wang, Cheng-Xiang; Yuan, Dongfeng; Zhang, Wensheng
2017-01-01
In this paper, we propose to combine Orthogonal Frequency Division Multiplexing-Interleave Division Multiple Access (OFDM-IDMA) with Simultaneous Wireless Information and Power Transfer (SWIPT), resulting in SWIPT aided OFDM-IDMA scheme for power-limited sensor networks. In the proposed system, the Receive Node (RN) applies Power Splitting (PS) to coordinate the Energy Harvesting (EH) and Information Decoding (ID) process, where the harvested energy is utilized to guarantee the iterative Multi-User Detection (MUD) of IDMA to work under sufficient number of iterations. Our objective is to minimize the total transmit power of Source Node (SN), while satisfying the requirements of both minimum harvested energy and Bit Error Rate (BER) performance from individual receive nodes. We formulate such a problem as a joint power allocation and splitting one, where the iteration number of MUD is also taken into consideration as the key parameter to affect both EH and ID constraints. To solve it, a sub-optimal algorithm is proposed to determine the power profile, PS ratio and iteration number of MUD in an iterative manner. Simulation results verify that the proposed algorithm can provide significant performance improvement. PMID:28677636
Joint Transmit Power Allocation and Splitting for SWIPT Aided OFDM-IDMA in Wireless Sensor Networks.
Li, Shanshan; Zhou, Xiaotian; Wang, Cheng-Xiang; Yuan, Dongfeng; Zhang, Wensheng
2017-07-04
In this paper, we propose to combine Orthogonal Frequency Division Multiplexing-Interleave Division Multiple Access (OFDM-IDMA) with Simultaneous Wireless Information and Power Transfer (SWIPT), resulting in SWIPT aided OFDM-IDMA scheme for power-limited sensor networks. In the proposed system, the Receive Node (RN) applies Power Splitting (PS) to coordinate the Energy Harvesting (EH) and Information Decoding (ID) process, where the harvested energy is utilized to guarantee the iterative Multi-User Detection (MUD) of IDMA to work under sufficient number of iterations. Our objective is to minimize the total transmit power of Source Node (SN), while satisfying the requirements of both minimum harvested energy and Bit Error Rate (BER) performance from individual receive nodes. We formulate such a problem as a joint power allocation and splitting one, where the iteration number of MUD is also taken into consideration as the key parameter to affect both EH and ID constraints. To solve it, a sub-optimal algorithm is proposed to determine the power profile, PS ratio and iteration number of MUD in an iterative manner. Simulation results verify that the proposed algorithm can provide significant performance improvement.
NASA Astrophysics Data System (ADS)
Chew, J. V. L.; Sulaiman, J.
2017-09-01
Partial differential equations that are used in describing the nonlinear heat and mass transfer phenomena are difficult to be solved. For the case where the exact solution is difficult to be obtained, it is necessary to use a numerical procedure such as the finite difference method to solve a particular partial differential equation. In term of numerical procedure, a particular method can be considered as an efficient method if the method can give an approximate solution within the specified error with the least computational complexity. Throughout this paper, the two-dimensional Porous Medium Equation (2D PME) is discretized by using the implicit finite difference scheme to construct the corresponding approximation equation. Then this approximation equation yields a large-sized and sparse nonlinear system. By using the Newton method to linearize the nonlinear system, this paper deals with the application of the Four-Point Newton-EGSOR (4NEGSOR) iterative method for solving the 2D PMEs. In addition to that, the efficiency of the 4NEGSOR iterative method is studied by solving three examples of the problems. Based on the comparative analysis, the Newton-Gauss-Seidel (NGS) and the Newton-SOR (NSOR) iterative methods are also considered. The numerical findings show that the 4NEGSOR method is superior to the NGS and the NSOR methods in terms of the number of iterations to get the converged solutions, the time of computation and the maximum absolute errors produced by the methods.
Quantum state matching of qubits via measurement-induced nonlinear transformations
NASA Astrophysics Data System (ADS)
Kálmán, Orsolya; Kiss, Tamás
2018-03-01
We consider the task of deciding whether an unknown qubit state falls in a prescribed neighborhood of a reference state. We assume that several copies of the unknown state are given and apply a unitary operation pairwise on them combined with a postselection scheme conditioned on the measurement result obtained on one of the qubits of the pair. The resulting transformation is a deterministic, nonlinear, chaotic map in the Hilbert space. We derive a class of these transformations capable of orthogonalizing nonorthogonal qubit states after a few iterations. These nonlinear maps orthogonalize states which correspond to the two different convergence regions of the nonlinear map. Based on the analysis of the border (the so-called Julia set) between the two regions of convergence, we show that it is always possible to find a map capable of deciding whether an unknown state is within a neighborhood of fixed radius around a desired quantum state. We analyze which one- and two-qubit operations would physically realize the scheme. It is possible to find a single two-qubit unitary gate for each map or, alternatively, a universal special two-qubit gate together with single-qubit gates in order to carry out the task. We note that it is enough to have a single physical realization of the required gates due to the iterative nature of the scheme.
Jafari, Masoumeh; Salimifard, Maryam; Dehghani, Maryam
2014-07-01
This paper presents an efficient method for identification of nonlinear Multi-Input Multi-Output (MIMO) systems in the presence of colored noises. The method studies the multivariable nonlinear Hammerstein and Wiener models, in which, the nonlinear memory-less block is approximated based on arbitrary vector-based basis functions. The linear time-invariant (LTI) block is modeled by an autoregressive moving average with exogenous (ARMAX) model which can effectively describe the moving average noises as well as the autoregressive and the exogenous dynamics. According to the multivariable nature of the system, a pseudo-linear-in-the-parameter model is obtained which includes two different kinds of unknown parameters, a vector and a matrix. Therefore, the standard least squares algorithm cannot be applied directly. To overcome this problem, a Hierarchical Least Squares Iterative (HLSI) algorithm is used to simultaneously estimate the vector and the matrix of unknown parameters as well as the noises. The efficiency of the proposed identification approaches are investigated through three nonlinear MIMO case studies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Development of iterative techniques for the solution of unsteady compressible viscous flows
NASA Technical Reports Server (NTRS)
Sankar, Lakshmi N.; Hixon, Duane
1992-01-01
The development of efficient iterative solution methods for the numerical solution of two- and three-dimensional compressible Navier-Stokes equations is discussed. Iterative time marching methods have several advantages over classical multi-step explicit time marching schemes, and non-iterative implicit time marching schemes. Iterative schemes have better stability characteristics than non-iterative explicit and implicit schemes. In this work, another approach based on the classical conjugate gradient method, known as the Generalized Minimum Residual (GMRES) algorithm is investigated. The GMRES algorithm has been used in the past by a number of researchers for solving steady viscous and inviscid flow problems. Here, we investigate the suitability of this algorithm for solving the system of non-linear equations that arise in unsteady Navier-Stokes solvers at each time step.
NASA Astrophysics Data System (ADS)
Azarnavid, Babak; Parand, Kourosh; Abbasbandy, Saeid
2018-06-01
This article discusses an iterative reproducing kernel method with respect to its effectiveness and capability of solving a fourth-order boundary value problem with nonlinear boundary conditions modeling beams on elastic foundations. Since there is no method of obtaining reproducing kernel which satisfies nonlinear boundary conditions, the standard reproducing kernel methods cannot be used directly to solve boundary value problems with nonlinear boundary conditions as there is no knowledge about the existence and uniqueness of the solution. The aim of this paper is, therefore, to construct an iterative method by the use of a combination of reproducing kernel Hilbert space method and a shooting-like technique to solve the mentioned problems. Error estimation for reproducing kernel Hilbert space methods for nonlinear boundary value problems have yet to be discussed in the literature. In this paper, we present error estimation for the reproducing kernel method to solve nonlinear boundary value problems probably for the first time. Some numerical results are given out to demonstrate the applicability of the method.
Military Standard Common APSE (Ada Programming Support Environment) Interface Set (CAIS).
1985-01-01
QUEUEASE. LAST-KEY (QUEENAME) . LASTREI.TIONI(QUEUE-NAME). FILE-NODE. PORN . ATTRIBUTTES. ACCESSCONTROL. LEVEL); CLOSE (QUEUE BASE); CLOSE(FILE NODE...PROPOSED XIIT-STD-C.4 31 J NNUAfY logs procedure zTERT (ITERATOR: out NODE ITERATON; MAMIE: NAME STRING.KIND: NODE KID : KEY : RELATIONSHIP KEY PA1TTE1 :R
Mehl, S.; Hill, M.C.
2004-01-01
This paper describes work that extends to three dimensions the two-dimensional local-grid refinement method for block-centered finite-difference groundwater models of Mehl and Hill [Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes. Adv Water Resour 2002;25(5):497-511]. In this approach, the (parent) finite-difference grid is discretized more finely within a (child) sub-region. The grid refinement method sequentially solves each grid and uses specified flux (parent) and specified head (child) boundary conditions to couple the grids. Iteration achieves convergence between heads and fluxes of both grids. Of most concern is how to interpolate heads onto the boundary of the child grid such that the physics of the parent-grid flow is retained in three dimensions. We develop a new two-step, "cage-shell" interpolation method based on the solution of the flow equation on the boundary of the child between nodes shared with the parent grid. Error analysis using a test case indicates that the shared-node local grid refinement method with cage-shell boundary head interpolation is accurate and robust, and the resulting code is used to investigate three-dimensional local grid refinement of stream-aquifer interactions. Results reveal that (1) the parent and child grids interact to shift the true head and flux solution to a different solution where the heads and fluxes of both grids are in equilibrium, (2) the locally refined model provided a solution for both heads and fluxes in the region of the refinement that was more accurate than a model without refinement only if iterations are performed so that both heads and fluxes are in equilibrium, and (3) the accuracy of the coupling is limited by the parent-grid size - A coarse parent grid limits correct representation of the hydraulics in the feedback from the child grid.
Assessment of Preconditioner for a USM3D Hierarchical Adaptive Nonlinear Method (HANIM) (Invited)
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frink, Neal T.
2016-01-01
Enhancements to the previously reported mixed-element USM3D Hierarchical Adaptive Nonlinear Iteration Method (HANIM) framework have been made to further improve robustness, efficiency, and accuracy of computational fluid dynamic simulations. The key enhancements include a multi-color line-implicit preconditioner, a discretely consistent symmetry boundary condition, and a line-mapping method for the turbulence source term discretization. The USM3D iterative convergence for the turbulent flows is assessed on four configurations. The configurations include a two-dimensional (2D) bump-in-channel, the 2D NACA 0012 airfoil, a three-dimensional (3D) bump-in-channel, and a 3D hemisphere cylinder. The Reynolds Averaged Navier Stokes (RANS) solutions have been obtained using a Spalart-Allmaras turbulence model and families of uniformly refined nested grids. Two types of HANIM solutions using line- and point-implicit preconditioners have been computed. Additional solutions using the point-implicit preconditioner alone (PA) method that broadly represents the baseline solver technology have also been computed. The line-implicit HANIM shows superior iterative convergence in most cases with progressively increasing benefits on finer grids.
A novel dynamical community detection algorithm based on weighting scheme
NASA Astrophysics Data System (ADS)
Li, Ju; Yu, Kai; Hu, Ke
2015-12-01
Network dynamics plays an important role in analyzing the correlation between the function properties and the topological structure. In this paper, we propose a novel dynamical iteration (DI) algorithm, which incorporates the iterative process of membership vector with weighting scheme, i.e. weighting W and tightness T. These new elements can be used to adjust the link strength and the node compactness for improving the speed and accuracy of community structure detection. To estimate the optimal stop time of iteration, we utilize a new stability measure which is defined as the Markov random walk auto-covariance. We do not need to specify the number of communities in advance. It naturally supports the overlapping communities by associating each node with a membership vector describing the node's involvement in each community. Theoretical analysis and experiments show that the algorithm can uncover communities effectively and efficiently.
Deconvolution of interferometric data using interior point iterative algorithms
NASA Astrophysics Data System (ADS)
Theys, C.; Lantéri, H.; Aime, C.
2016-09-01
We address the problem of deconvolution of astronomical images that could be obtained with future large interferometers in space. The presentation is made in two complementary parts. The first part gives an introduction to the image deconvolution with linear and nonlinear algorithms. The emphasis is made on nonlinear iterative algorithms that verify the constraints of non-negativity and constant flux. The Richardson-Lucy algorithm appears there as a special case for photon counting conditions. More generally, the algorithm published recently by Lanteri et al. (2015) is based on scale invariant divergences without assumption on the statistic model of the data. The two proposed algorithms are interior-point algorithms, the latter being more efficient in terms of speed of calculation. These algorithms are applied to the deconvolution of simulated images corresponding to an interferometric system of 16 diluted telescopes in space. Two non-redundant configurations, one disposed around a circle and the other on an hexagonal lattice, are compared for their effectiveness on a simple astronomical object. The comparison is made in the direct and Fourier spaces. Raw "dirty" images have many artifacts due to replicas of the original object. Linear methods cannot remove these replicas while iterative methods clearly show their efficacy in these examples.
Memory-induced nonlinear dynamics of excitation in cardiac diseases.
Landaw, Julian; Qu, Zhilin
2018-04-01
Excitable cells, such as cardiac myocytes, exhibit short-term memory, i.e., the state of the cell depends on its history of excitation. Memory can originate from slow recovery of membrane ion channels or from accumulation of intracellular ion concentrations, such as calcium ion or sodium ion concentration accumulation. Here we examine the effects of memory on excitation dynamics in cardiac myocytes under two diseased conditions, early repolarization and reduced repolarization reserve, each with memory from two different sources: slow recovery of a potassium ion channel and slow accumulation of the intracellular calcium ion concentration. We first carry out computer simulations of action potential models described by differential equations to demonstrate complex excitation dynamics, such as chaos. We then develop iterated map models that incorporate memory, which accurately capture the complex excitation dynamics and bifurcations of the action potential models. Finally, we carry out theoretical analyses of the iterated map models to reveal the underlying mechanisms of memory-induced nonlinear dynamics. Our study demonstrates that the memory effect can be unmasked or greatly exacerbated under certain diseased conditions, which promotes complex excitation dynamics, such as chaos. The iterated map models reveal that memory converts a monotonic iterated map function into a nonmonotonic one to promote the bifurcations leading to high periodicity and chaos.
Memory-induced nonlinear dynamics of excitation in cardiac diseases
NASA Astrophysics Data System (ADS)
Landaw, Julian; Qu, Zhilin
2018-04-01
Excitable cells, such as cardiac myocytes, exhibit short-term memory, i.e., the state of the cell depends on its history of excitation. Memory can originate from slow recovery of membrane ion channels or from accumulation of intracellular ion concentrations, such as calcium ion or sodium ion concentration accumulation. Here we examine the effects of memory on excitation dynamics in cardiac myocytes under two diseased conditions, early repolarization and reduced repolarization reserve, each with memory from two different sources: slow recovery of a potassium ion channel and slow accumulation of the intracellular calcium ion concentration. We first carry out computer simulations of action potential models described by differential equations to demonstrate complex excitation dynamics, such as chaos. We then develop iterated map models that incorporate memory, which accurately capture the complex excitation dynamics and bifurcations of the action potential models. Finally, we carry out theoretical analyses of the iterated map models to reveal the underlying mechanisms of memory-induced nonlinear dynamics. Our study demonstrates that the memory effect can be unmasked or greatly exacerbated under certain diseased conditions, which promotes complex excitation dynamics, such as chaos. The iterated map models reveal that memory converts a monotonic iterated map function into a nonmonotonic one to promote the bifurcations leading to high periodicity and chaos.
A one-dimensional nonlinear problem of thermoelasticity in extended thermodynamics
NASA Astrophysics Data System (ADS)
Rawy, E. K.
2018-06-01
We solve a nonlinear, one-dimensional initial boundary-value problem of thermoelasticity in generalized thermodynamics. A Cattaneo-type evolution equation for the heat flux is used, which differs from the one used extensively in the literature. The hyperbolic nature of the associated linear system is clarified through a study of the characteristic curves. Progressive wave solutions with two finite speeds are noted. A numerical treatment is presented for the nonlinear system using a three-step, quasi-linearization, iterative finite-difference scheme for which the linear system of equations is the initial step in the iteration. The obtained results are discussed in detail. They clearly show the hyperbolic nature of the system, and may be of interest in investigating thermoelastic materials, not only at low temperatures, but also during high temperature processes involving rapid changes in temperature as in laser treatment of surfaces.
Learning-Based Adaptive Optimal Tracking Control of Strict-Feedback Nonlinear Systems.
Gao, Weinan; Jiang, Zhong-Ping; Weinan Gao; Zhong-Ping Jiang; Gao, Weinan; Jiang, Zhong-Ping
2018-06-01
This paper proposes a novel data-driven control approach to address the problem of adaptive optimal tracking for a class of nonlinear systems taking the strict-feedback form. Adaptive dynamic programming (ADP) and nonlinear output regulation theories are integrated for the first time to compute an adaptive near-optimal tracker without any a priori knowledge of the system dynamics. Fundamentally different from adaptive optimal stabilization problems, the solution to a Hamilton-Jacobi-Bellman (HJB) equation, not necessarily a positive definite function, cannot be approximated through the existing iterative methods. This paper proposes a novel policy iteration technique for solving positive semidefinite HJB equations with rigorous convergence analysis. A two-phase data-driven learning method is developed and implemented online by ADP. The efficacy of the proposed adaptive optimal tracking control methodology is demonstrated via a Van der Pol oscillator with time-varying exogenous signals.
Wang, Fei-Yue; Jin, Ning; Liu, Derong; Wei, Qinglai
2011-01-01
In this paper, we study the finite-horizon optimal control problem for discrete-time nonlinear systems using the adaptive dynamic programming (ADP) approach. The idea is to use an iterative ADP algorithm to obtain the optimal control law which makes the performance index function close to the greatest lower bound of all performance indices within an ε-error bound. The optimal number of control steps can also be obtained by the proposed ADP algorithms. A convergence analysis of the proposed ADP algorithms in terms of performance index function and control policy is made. In order to facilitate the implementation of the iterative ADP algorithms, neural networks are used for approximating the performance index function, computing the optimal control policy, and modeling the nonlinear system. Finally, two simulation examples are employed to illustrate the applicability of the proposed method.
Nonlinear mechanical behavior of thermoplastic matrix materials for advanced composites
NASA Technical Reports Server (NTRS)
Arenz, R. J.; Landel, R. F.
1989-01-01
Two recent theories of nonlinear mechanical response are quantitatively compared and related to experimental data. Computer techniques are formulated to handle the numerical integration and iterative procedures needed to solve the associated sets of coupled nonlinear differential equations. Problems encountered during these formulations are discussed and some open questions described. Bearing in mind these cautions, the consequences of changing parameters that appear in the formulations on the resulting engineering properties are discussed. Hence, engineering approaches to the analysis of thermoplastic matrix material can be suggested.
Linear and nonlinear dynamic analysis of redundant load path bearingless rotor systems
NASA Technical Reports Server (NTRS)
Murthy, V. R.; Shultz, Louis A.
1994-01-01
The goal of this research is to develop the transfer matrix method to treat nonlinear autonomous boundary value problems with multiple branches. The application is the complete nonlinear aeroelastic analysis of multiple-branched rotor blades. Once the development is complete, it can be incorporated into the existing transfer matrix analyses. There are several difficulties to be overcome in reaching this objective. The conventional transfer matrix method is limited in that it is applicable only to linear branch chain-like structures, but consideration of multiple branch modeling is important for bearingless rotors. Also, hingeless and bearingless rotor blade dynamic characteristics (particularly their aeroelasticity problems) are inherently nonlinear. The nonlinear equations of motion and the multiple-branched boundary value problem are treated together using a direct transfer matrix method. First, the formulation is applied to a nonlinear single-branch blade to validate the nonlinear portion of the formulation. The nonlinear system of equations is iteratively solved using a form of Newton-Raphson iteration scheme developed for differential equations of continuous systems. The formulation is then applied to determine the nonlinear steady state trim and aeroelastic stability of a rotor blade in hover with two branches at the root. A comprehensive computer program is developed and is used to obtain numerical results for the (1) free vibration, (2) nonlinearly deformed steady state, (3) free vibration about the nonlinearly deformed steady state, and (4) aeroelastic stability tasks. The numerical results obtained by the present method agree with results from other methods.
Construction of Protograph LDPC Codes with Linear Minimum Distance
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Sam; Jones, Christopher
2006-01-01
A construction method for protograph-based LDPC codes that simultaneously achieve low iterative decoding threshold and linear minimum distance is proposed. We start with a high-rate protograph LDPC code with variable node degrees of at least 3. Lower rate codes are obtained by splitting check nodes and connecting them by degree-2 nodes. This guarantees the linear minimum distance property for the lower-rate codes. Excluding checks connected to degree-1 nodes, we show that the number of degree-2 nodes should be at most one less than the number of checks for the protograph LDPC code to have linear minimum distance. Iterative decoding thresholds are obtained by using the reciprocal channel approximation. Thresholds are lowered by using either precoding or at least one very high-degree node in the base protograph. A family of high- to low-rate codes with minimum distance linearly increasing in block size and with capacity-approaching performance thresholds is presented. FPGA simulation results for a few example codes show that the proposed codes perform as predicted.
Numerical solutions of nonlinear STIFF initial value problems by perturbed functional iterations
NASA Technical Reports Server (NTRS)
Dey, S. K.
1982-01-01
Numerical solution of nonlinear stiff initial value problems by a perturbed functional iterative scheme is discussed. The algorithm does not fully linearize the system and requires only the diagonal terms of the Jacobian. Some examples related to chemical kinetics are presented.
NASA Astrophysics Data System (ADS)
Costiner, Sorin; Ta'asan, Shlomo
1995-07-01
Algorithms for nonlinear eigenvalue problems (EP's) often require solving self-consistently a large number of EP's. Convergence difficulties may occur if the solution is not sought in an appropriate region, if global constraints have to be satisfied, or if close or equal eigenvalues are present. Multigrid (MG) algorithms for nonlinear problems and for EP's obtained from discretizations of partial differential EP have often been shown to be more efficient than single level algorithms. This paper presents MG techniques and a MG algorithm for nonlinear Schrödinger Poisson EP's. The algorithm overcomes the above mentioned difficulties combining the following techniques: a MG simultaneous treatment of the eigenvectors and nonlinearity, and with the global constrains; MG stable subspace continuation techniques for the treatment of nonlinearity; and a MG projection coupled with backrotations for separation of solutions. These techniques keep the solutions in an appropriate region, where the algorithm converges fast, and reduce the large number of self-consistent iterations to only a few or one MG simultaneous iteration. The MG projection makes it possible to efficiently overcome difficulties related to clusters of close and equal eigenvalues. Computational examples for the nonlinear Schrödinger-Poisson EP in two and three dimensions, presenting special computational difficulties that are due to the nonlinearity and to the equal and closely clustered eigenvalues are demonstrated. For these cases, the algorithm requires O(qN) operations for the calculation of q eigenvectors of size N and for the corresponding eigenvalues. One MG simultaneous cycle per fine level was performed. The total computational cost is equivalent to only a few Gauss-Seidel relaxations per eigenvector. An asymptotic convergence rate of 0.15 per MG cycle is attained.
Reduction of asymmetric wall force in ITER disruptions with fast current quench
NASA Astrophysics Data System (ADS)
Strauss, H.
2018-02-01
One of the problems caused by disruptions in tokamaks is the asymmetric electromechanical force produced in conducting structures surrounding the plasma. The asymmetric wall force in ITER asymmetric vertical displacement event (AVDE) disruptions is calculated in nonlinear 3D MHD simulations. It is found that the wall force can vary by almost an order of magnitude, depending on the ratio of the current quench time to the resistive wall magnetic penetration time. In ITER, this ratio is relatively low, resulting in a low asymmetric wall force. In JET, this ratio is relatively high, resulting in a high asymmetric wall force. Previous extrapolations based on JET measurements have greatly overestimated the ITER wall force. It is shown that there are two limiting regimes of AVDEs, and it is explained why the asymmetric wall force is different in the two limits.
NASA Astrophysics Data System (ADS)
Albert, L.; Rottensteiner, F.; Heipke, C.
2015-08-01
Land cover and land use exhibit strong contextual dependencies. We propose a novel approach for the simultaneous classification of land cover and land use, where semantic and spatial context is considered. The image sites for land cover and land use classification form a hierarchy consisting of two layers: a land cover layer and a land use layer. We apply Conditional Random Fields (CRF) at both layers. The layers differ with respect to the image entities corresponding to the nodes, the employed features and the classes to be distinguished. In the land cover layer, the nodes represent super-pixels; in the land use layer, the nodes correspond to objects from a geospatial database. Both CRFs model spatial dependencies between neighbouring image sites. The complex semantic relations between land cover and land use are integrated in the classification process by using contextual features. We propose a new iterative inference procedure for the simultaneous classification of land cover and land use, in which the two classification tasks mutually influence each other. This helps to improve the classification accuracy for certain classes. The main idea of this approach is that semantic context helps to refine the class predictions, which, in turn, leads to more expressive context information. Thus, potentially wrong decisions can be reversed at later stages. The approach is designed for input data based on aerial images. Experiments are carried out on a test site to evaluate the performance of the proposed method. We show the effectiveness of the iterative inference procedure and demonstrate that a smaller size of the super-pixels has a positive influence on the classification result.
NASA Astrophysics Data System (ADS)
Ikelle, Luc T.; Osen, Are; Amundsen, Lasse; Shen, Yunqing
2004-12-01
The classical linear solutions to the problem of multiple attenuation, like predictive deconvolution, τ-p filtering, or F-K filtering, are generally fast, stable, and robust compared to non-linear solutions, which are generally either iterative or in the form of a series with an infinite number of terms. These qualities have made the linear solutions more attractive to seismic data-processing practitioners. However, most linear solutions, including predictive deconvolution or F-K filtering, contain severe assumptions about the model of the subsurface and the class of free-surface multiples they can attenuate. These assumptions limit their usefulness. In a recent paper, we described an exception to this assertion for OBS data. We showed in that paper that a linear and non-iterative solution to the problem of attenuating free-surface multiples which is as accurate as iterative non-linear solutions can be constructed for OBS data. We here present a similar linear and non-iterative solution for attenuating free-surface multiples in towed-streamer data. For most practical purposes, this linear solution is as accurate as the non-linear ones.
A fast method to emulate an iterative POCS image reconstruction algorithm.
Zeng, Gengsheng L
2017-10-01
Iterative image reconstruction algorithms are commonly used to optimize an objective function, especially when the objective function is nonquadratic. Generally speaking, the iterative algorithms are computationally inefficient. This paper presents a fast algorithm that has one backprojection and no forward projection. This paper derives a new method to solve an optimization problem. The nonquadratic constraint, for example, an edge-preserving denoising constraint is implemented as a nonlinear filter. The algorithm is derived based on the POCS (projections onto projections onto convex sets) approach. A windowed FBP (filtered backprojection) algorithm enforces the data fidelity. An iterative procedure, divided into segments, enforces edge-enhancement denoising. Each segment performs nonlinear filtering. The derived iterative algorithm is computationally efficient. It contains only one backprojection and no forward projection. Low-dose CT data are used for algorithm feasibility studies. The nonlinearity is implemented as an edge-enhancing noise-smoothing filter. The patient studies results demonstrate its effectiveness in processing low-dose x ray CT data. This fast algorithm can be used to replace many iterative algorithms. © 2017 American Association of Physicists in Medicine.
2014-10-01
nonlinear and non-stationary signals. It aims at decomposing a signal, via an iterative sifting procedure, into several intrinsic mode functions ...stationary signals. It aims at decomposing a signal, via an iterative sifting procedure into several intrinsic mode functions (IMFs), and each of the... function , optimization. 1 Introduction It is well known that nonlinear and non-stationary signal analysis is important and difficult. His- torically
A comparison of several methods of solving nonlinear regression groundwater flow problems
Cooley, Richard L.
1985-01-01
Computational efficiency and computer memory requirements for four methods of minimizing functions were compared for four test nonlinear-regression steady state groundwater flow problems. The fastest methods were the Marquardt and quasi-linearization methods, which required almost identical computer times and numbers of iterations; the next fastest was the quasi-Newton method, and last was the Fletcher-Reeves method, which did not converge in 100 iterations for two of the problems. The fastest method per iteration was the Fletcher-Reeves method, and this was followed closely by the quasi-Newton method. The Marquardt and quasi-linearization methods were slower. For all four methods the speed per iteration was directly related to the number of parameters in the model. However, this effect was much more pronounced for the Marquardt and quasi-linearization methods than for the other two. Hence the quasi-Newton (and perhaps Fletcher-Reeves) method might be more efficient than either the Marquardt or quasi-linearization methods if the number of parameters in a particular model were large, although this remains to be proven. The Marquardt method required somewhat less central memory than the quasi-linearization metilod for three of the four problems. For all four problems the quasi-Newton method required roughly two thirds to three quarters of the memory required by the Marquardt method, and the Fletcher-Reeves method required slightly less memory than the quasi-Newton method. Memory requirements were not excessive for any of the four methods.
NASA Technical Reports Server (NTRS)
Periaux, J.
1979-01-01
The numerical simulation of the transonic flows of idealized fluids and of incompressible viscous fluids, by the nonlinear least squares methods is presented. The nonlinear equations, the boundary conditions, and the various constraints controlling the two types of flow are described. The standard iterative methods for solving a quasi elliptical nonlinear equation with partial derivatives are reviewed with emphasis placed on two examples: the fixed point method applied to the Gelder functional in the case of compressible subsonic flows and the Newton method used in the technique of decomposition of the lifting potential. The new abstract least squares method is discussed. It consists of substituting the nonlinear equation by a problem of minimization in a H to the minus 1 type Sobolev functional space.
Parallel iterative methods for sparse linear and nonlinear equations
NASA Technical Reports Server (NTRS)
Saad, Youcef
1989-01-01
As three-dimensional models are gaining importance, iterative methods will become almost mandatory. Among these, preconditioned Krylov subspace methods have been viewed as the most efficient and reliable, when solving linear as well as nonlinear systems of equations. There has been several different approaches taken to adapt iterative methods for supercomputers. Some of these approaches are discussed and the methods that deal more specifically with general unstructured sparse matrices, such as those arising from finite element methods, are emphasized.
Dickinson, J.E.; James, S.C.; Mehl, S.; Hill, M.C.; Leake, S.A.; Zyvoloski, G.A.; Faunt, C.C.; Eddebbarh, A.-A.
2007-01-01
A flexible, robust method for linking parent (regional-scale) and child (local-scale) grids of locally refined models that use different numerical methods is developed based on a new, iterative ghost-node method. Tests are presented for two-dimensional and three-dimensional pumped systems that are homogeneous or that have simple heterogeneity. The parent and child grids are simulated using the block-centered finite-difference MODFLOW and control-volume finite-element FEHM models, respectively. The models are solved iteratively through head-dependent (child model) and specified-flow (parent model) boundary conditions. Boundary conditions for models with nonmatching grids or zones of different hydraulic conductivity are derived and tested against heads and flows from analytical or globally-refined models. Results indicate that for homogeneous two- and three-dimensional models with matched grids (integer number of child cells per parent cell), the new method is nearly as accurate as the coupling of two MODFLOW models using the shared-node method and, surprisingly, errors are slightly lower for nonmatching grids (noninteger number of child cells per parent cell). For heterogeneous three-dimensional systems, this paper compares two methods for each of the two sets of boundary conditions: external heads at head-dependent boundary conditions for the child model are calculated using bilinear interpolation or a Darcy-weighted interpolation; specified-flow boundary conditions for the parent model are calculated using model-grid or hydrogeologic-unit hydraulic conductivities. Results suggest that significantly more accurate heads and flows are produced when both Darcy-weighted interpolation and hydrogeologic-unit hydraulic conductivities are used, while the other methods produce larger errors at the boundary between the regional and local models. The tests suggest that, if posed correctly, the ghost-node method performs well. Additional testing is needed for highly heterogeneous systems. ?? 2007 Elsevier Ltd. All rights reserved.
The coupling of fluids, dynamics, and controls on advanced architecture computers
NASA Technical Reports Server (NTRS)
Atwood, Christopher
1995-01-01
This grant provided for the demonstration of coupled controls, body dynamics, and fluids computations in a workstation cluster environment; and an investigation of the impact of peer-peer communication on flow solver performance and robustness. The findings of these investigations were documented in the conference articles.The attached publication, 'Towards Distributed Fluids/Controls Simulations', documents the solution and scaling of the coupled Navier-Stokes, Euler rigid-body dynamics, and state feedback control equations for a two-dimensional canard-wing. The poor scaling shown was due to serialized grid connectivity computation and Ethernet bandwidth limits. The scaling of a peer-to-peer communication flow code on an IBM SP-2 was also shown. The scaling of the code on the switched fabric-linked nodes was good, with a 2.4 percent loss due to communication of intergrid boundary point information. The code performance on 30 worker nodes was 1.7 (mu)s/point/iteration, or a factor of three over a Cray C-90 head. The attached paper, 'Nonlinear Fluid Computations in a Distributed Environment', documents the effect of several computational rate enhancing methods on convergence. For the cases shown, the highest throughput was achieved using boundary updates at each step, with the manager process performing communication tasks only. Constrained domain decomposition of the implicit fluid equations did not degrade the convergence rate or final solution. The scaling of a coupled body/fluid dynamics problem on an Ethernet-linked cluster was also shown.
Euclidean commute time distance embedding and its application to spectral anomaly detection
NASA Astrophysics Data System (ADS)
Albano, James A.; Messinger, David W.
2012-06-01
Spectral image analysis problems often begin by performing a preprocessing step composed of applying a transformation that generates an alternative representation of the spectral data. In this paper, a transformation based on a Markov-chain model of a random walk on a graph is introduced. More precisely, we quantify the random walk using a quantity known as the average commute time distance and find a nonlinear transformation that embeds the nodes of a graph in a Euclidean space where the separation between them is equal to the square root of this quantity. This has been referred to as the Commute Time Distance (CTD) transformation and it has the important characteristic of increasing when the number of paths between two nodes decreases and/or the lengths of those paths increase. Remarkably, a closed form solution exists for computing the average commute time distance that avoids running an iterative process and is found by simply performing an eigendecomposition on the graph Laplacian matrix. Contained in this paper is a discussion of the particular graph constructed on the spectral data for which the commute time distance is then calculated from, an introduction of some important properties of the graph Laplacian matrix, and a subspace projection that approximately preserves the maximal variance of the square root commute time distance. Finally, RX anomaly detection and Topological Anomaly Detection (TAD) algorithms will be applied to the CTD subspace followed by a discussion of their results.
Using LDPC Code Constraints to Aid Recovery of Symbol Timing
NASA Technical Reports Server (NTRS)
Jones, Christopher; Villasnor, John; Lee, Dong-U; Vales, Esteban
2008-01-01
A method of utilizing information available in the constraints imposed by a low-density parity-check (LDPC) code has been proposed as a means of aiding the recovery of symbol timing in the reception of a binary-phase-shift-keying (BPSK) signal representing such a code in the presence of noise, timing error, and/or Doppler shift between the transmitter and the receiver. This method and the receiver architecture in which it would be implemented belong to a class of timing-recovery methods and corresponding receiver architectures characterized as pilotless in that they do not require transmission and reception of pilot signals. Acquisition and tracking of a signal of the type described above have traditionally been performed upstream of, and independently of, decoding and have typically involved utilization of a phase-locked loop (PLL). However, the LDPC decoding process, which is iterative, provides information that can be fed back to the timing-recovery receiver circuits to improve performance significantly over that attainable in the absence of such feedback. Prior methods of coupling LDPC decoding with timing recovery had focused on the use of output code words produced as the iterations progress. In contrast, in the present method, one exploits the information available from the metrics computed for the constraint nodes of an LDPC code during the decoding process. In addition, the method involves the use of a waveform model that captures, better than do the waveform models of the prior methods, distortions introduced by receiver timing errors and transmitter/ receiver motions. An LDPC code is commonly represented by use of a bipartite graph containing two sets of nodes. In the graph corresponding to an (n,k) code, the n variable nodes correspond to the code word symbols and the n-k constraint nodes represent the constraints that the code places on the variable nodes in order for them to form a valid code word. The decoding procedure involves iterative computation of values associated with these nodes. A constraint node represents a parity-check equation using a set of variable nodes as inputs. A valid decoded code word is obtained if all parity-check equations are satisfied. After each iteration, the metrics associated with each constraint node can be evaluated to determine the status of the associated parity check. Heretofore, normally, these metrics would be utilized only within the LDPC decoding process to assess whether or not variable nodes had converged to a codeword. In the present method, it is recognized that these metrics can be used to determine accuracy of the timing estimates used in acquiring the sampled data that constitute the input to the LDPC decoder. In fact, the number of constraints that are satisfied exhibits a peak near the optimal timing estimate. Coarse timing estimation (or first-stage estimation as described below) is found via a parametric search for this peak. The present method calls for a two-stage receiver architecture illustrated in the figure. The first stage would correct large time delays and frequency offsets; the second stage would track random walks and correct residual time and frequency offsets. In the first stage, constraint-node feedback from the LDPC decoder would be employed in a search algorithm in which the searches would be performed in successively narrower windows to find the correct time delay and/or frequency offset. The second stage would include a conventional first-order PLL with a decision-aided timing-error detector that would utilize, as its decision aid, decoded symbols from the LDPC decoder. The method has been tested by means of computational simulations in cases involving various timing and frequency errors. The results of the simulations ined in the ideal case of perfect timing in the receiver.
A new solution procedure for a nonlinear infinite beam equation of motion
NASA Astrophysics Data System (ADS)
Jang, T. S.
2016-10-01
Our goal of this paper is of a purely theoretical question, however which would be fundamental in computational partial differential equations: Can a linear solution-structure for the equation of motion for an infinite nonlinear beam be directly manipulated for constructing its nonlinear solution? Here, the equation of motion is modeled as mathematically a fourth-order nonlinear partial differential equation. To answer the question, a pseudo-parameter is firstly introduced to modify the equation of motion. And then, an integral formalism for the modified equation is found here, being taken as a linear solution-structure. It enables us to formulate a nonlinear integral equation of second kind, equivalent to the original equation of motion. The fixed point approach, applied to the integral equation, results in proposing a new iterative solution procedure for constructing the nonlinear solution of the original beam equation of motion, which consists luckily of just the simple regular numerical integration for its iterative process; i.e., it appears to be fairly simple as well as straightforward to apply. A mathematical analysis is carried out on both natures of convergence and uniqueness of the iterative procedure by proving a contractive character of a nonlinear operator. It follows conclusively,therefore, that it would be one of the useful nonlinear strategies for integrating the equation of motion for a nonlinear infinite beam, whereby the preceding question may be answered. In addition, it may be worth noticing that the pseudo-parameter introduced here has double roles; firstly, it connects the original beam equation of motion with the integral equation, second, it is related with the convergence of the iterative method proposed here.
Zhang, Yang; Chong, Edwin K. P.; Hannig, Jan; ...
2013-01-01
We inmore » troduce a continuum modeling method to approximate a class of large wireless networks by nonlinear partial differential equations (PDEs). This method is based on the convergence of a sequence of underlying Markov chains of the network indexed by N , the number of nodes in the network. As N goes to infinity, the sequence converges to a continuum limit, which is the solution of a certain nonlinear PDE. We first describe PDE models for networks with uniformly located nodes and then generalize to networks with nonuniformly located, and possibly mobile, nodes. Based on the PDE models, we develop a method to control the transmissions in nonuniform networks so that the continuum limit is invariant under perturbations in node locations. This enables the networks to maintain stable global characteristics in the presence of varying node locations.« less
NASA Technical Reports Server (NTRS)
Costiner, Sorin; Taasan, Shlomo
1994-01-01
This paper presents multigrid (MG) techniques for nonlinear eigenvalue problems (EP) and emphasizes an MG algorithm for a nonlinear Schrodinger EP. The algorithm overcomes the mentioned difficulties combining the following techniques: an MG projection coupled with backrotations for separation of solutions and treatment of difficulties related to clusters of close and equal eigenvalues; MG subspace continuation techniques for treatment of the nonlinearity; an MG simultaneous treatment of the eigenvectors at the same time with the nonlinearity and with the global constraints. The simultaneous MG techniques reduce the large number of self consistent iterations to only a few or one MG simultaneous iteration and keep the solutions in a right neighborhood where the algorithm converges fast.
A numerical scheme to solve unstable boundary value problems
NASA Technical Reports Server (NTRS)
Kalnay-Rivas, E.
1977-01-01
The considered scheme makes it possible to determine an unstable steady state solution in cases in which, because of lack of symmetry, such a solution cannot be obtained analytically, and other time integration or relaxation schemes, because of instability, fail to converge. The iterative solution of a single complex equation is discussed and a nonlinear system of equations is considered. Described applications of the scheme are related to a steady state solution with shear instability, an unstable nonlinear Ekman boundary layer, and the steady state solution of a baroclinic atmosphere with asymmetric forcing. The scheme makes use of forward and backward time integrations of the original spatial differential operators and of an approximation of the adjoint operators. Only two computations of the time derivative per iteration are required.
NASA Astrophysics Data System (ADS)
Cheng, X. Y.; Wang, H. B.; Jia, Y. L.; Dong, YH
2018-05-01
In this paper, an open-closed-loop iterative learning control (ILC) algorithm is constructed for a class of nonlinear systems subjecting to random data dropouts. The ILC algorithm is implemented by a networked control system (NCS), where only the off-line data is transmitted by network while the real-time data is delivered in the point-to-point way. Thus, there are two controllers rather than one in the control system, which makes better use of the saved and current information and thereby improves the performance achieved by open-loop control alone. During the transfer of off-line data between the nonlinear plant and the remote controller data dropout occurs randomly and the data dropout rate is modeled as a binary Bernoulli random variable. Both measurement and control data dropouts are taken into consideration simultaneously. The convergence criterion is derived based on rigorous analysis. Finally, the simulation results verify the effectiveness of the proposed method.
NASA Technical Reports Server (NTRS)
Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The efficiency gains obtained using higher-order implicit Runge-Kutta schemes as compared with the second-order accurate backward difference schemes for the unsteady Navier-Stokes equations are investigated. Three different algorithms for solving the nonlinear system of equations arising at each timestep are presented. The first algorithm (NMG) is a pseudo-time-stepping scheme which employs a non-linear full approximation storage (FAS) agglomeration multigrid method to accelerate convergence. The other two algorithms are based on Inexact Newton's methods. The linear system arising at each Newton step is solved using iterative/Krylov techniques and left preconditioning is used to accelerate convergence of the linear solvers. One of the methods (LMG) uses Richardson's iterative scheme for solving the linear system at each Newton step while the other (PGMRES) uses the Generalized Minimal Residual method. Results demonstrating the relative superiority of these Newton's methods based schemes are presented. Efficiency gains as high as 10 are obtained by combining the higher-order time integration schemes with the more efficient nonlinear solvers.
Scientific study of data analysis
NASA Technical Reports Server (NTRS)
Wu, S. T.
1990-01-01
We present a comparison between two numerical methods for the extrapolation of nonlinear force-free magnetic fields, the Iterative Method (IM) and the Progressive Extension Method (PEM). The advantages and disadvantages of these two methods are summarized and the accuracy and numerical instability are discussed. On the basis of this investigation, we claim that the two methods do resemble each other qualitatively.
Matching pursuit parallel decomposition of seismic data
NASA Astrophysics Data System (ADS)
Li, Chuanhui; Zhang, Fanchang
2017-07-01
In order to improve the computation speed of matching pursuit decomposition of seismic data, a matching pursuit parallel algorithm is designed in this paper. We pick a fixed number of envelope peaks from the current signal in every iteration according to the number of compute nodes and assign them to the compute nodes on average to search the optimal Morlet wavelets in parallel. With the help of parallel computer systems and Message Passing Interface, the parallel algorithm gives full play to the advantages of parallel computing to significantly improve the computation speed of the matching pursuit decomposition and also has good expandability. Besides, searching only one optimal Morlet wavelet by every compute node in every iteration is the most efficient implementation.
Convergence characteristics of nonlinear vortex-lattice methods for configuration aerodynamics
NASA Technical Reports Server (NTRS)
Seginer, A.; Rusak, Z.; Wasserstrom, E.
1983-01-01
Nonlinear panel methods have no proof for the existence and uniqueness of their solutions. The convergence characteristics of an iterative, nonlinear vortex-lattice method are, therefore, carefully investigated. The effects of several parameters, including (1) the surface-paneling method, (2) an integration method of the trajectories of the wake vortices, (3) vortex-grid refinement, and (4) the initial conditions for the first iteration on the computed aerodynamic coefficients and on the flow-field details are presented. The convergence of the iterative-solution procedure is usually rapid. The solution converges with grid refinement to a constant value, but the final value is not unique and varies with the wing surface-paneling and wake-discretization methods within some range in the vicinity of the experimental result.
Rate-Compatible Protograph LDPC Codes
NASA Technical Reports Server (NTRS)
Nguyen, Thuy V. (Inventor); Nosratinia, Aria (Inventor); Divsalar, Dariush (Inventor)
2014-01-01
Digital communication coding methods resulting in rate-compatible low density parity-check (LDPC) codes built from protographs. Described digital coding methods start with a desired code rate and a selection of the numbers of variable nodes and check nodes to be used in the protograph. Constraints are set to satisfy a linear minimum distance growth property for the protograph. All possible edges in the graph are searched for the minimum iterative decoding threshold and the protograph with the lowest iterative decoding threshold is selected. Protographs designed in this manner are used in decode and forward relay channels.
NASA Technical Reports Server (NTRS)
Puliafito, E.; Bevilacqua, R.; Olivero, J.; Degenhardt, W.
1992-01-01
The formal retrieval error analysis of Rodgers (1990) allows the quantitative determination of such retrieval properties as measurement error sensitivity, resolution, and inversion bias. This technique was applied to five numerical inversion techniques and two nonlinear iterative techniques used for the retrieval of middle atmospheric constituent concentrations from limb-scanning millimeter-wave spectroscopic measurements. It is found that the iterative methods have better vertical resolution, but are slightly more sensitive to measurement error than constrained matrix methods. The iterative methods converge to the exact solution, whereas two of the matrix methods under consideration have an explicit constraint, the sensitivity of the solution to the a priori profile. Tradeoffs of these retrieval characteristics are presented.
Numerical simulation and comparison of nonlinear self-focusing based on iteration and ray tracing
NASA Astrophysics Data System (ADS)
Li, Xiaotong; Chen, Hao; Wang, Weiwei; Ruan, Wangchao; Zhang, Luwei; Cen, Zhaofeng
2017-05-01
Self-focusing is observed in nonlinear materials owing to the interaction between laser and matter when laser beam propagates. Some of numerical simulation strategies such as the beam propagation method (BPM) based on nonlinear Schrödinger equation and ray tracing method based on Fermat's principle have applied to simulate the self-focusing process. In this paper we present an iteration nonlinear ray tracing method in that the nonlinear material is also cut into massive slices just like the existing approaches, but instead of paraxial approximation and split-step Fourier transform, a large quantity of sampled real rays are traced step by step through the system with changing refractive index and laser intensity by iteration. In this process a smooth treatment is employed to generate a laser density distribution at each slice to decrease the error caused by the under-sampling. The characteristics of this method is that the nonlinear refractive indices of the points on current slice are calculated by iteration so as to solve the problem of unknown parameters in the material caused by the causal relationship between laser intensity and nonlinear refractive index. Compared with the beam propagation method, this algorithm is more suitable for engineering application with lower time complexity, and has the calculation capacity for numerical simulation of self-focusing process in the systems including both of linear and nonlinear optical media. If the sampled rays are traced with their complex amplitudes and light paths or phases, it will be possible to simulate the superposition effects of different beam. At the end of the paper, the advantages and disadvantages of this algorithm are discussed.
Achieving algorithmic resilience for temporal integration through spectral deferred corrections
Grout, Ray; Kolla, Hemanth; Minion, Michael; ...
2017-05-08
Spectral deferred corrections (SDC) is an iterative approach for constructing higher-order-accurate numerical approximations of ordinary differential equations. SDC starts with an initial approximation of the solution defined at a set of Gaussian or spectral collocation nodes over a time interval and uses an iterative application of lower-order time discretizations applied to a correction equation to improve the solution at these nodes. Each deferred correction sweep increases the formal order of accuracy of the method up to the limit inherent in the accuracy defined by the collocation points. In this paper, we demonstrate that SDC is well suited to recovering frommore » soft (transient) hardware faults in the data. A strategy where extra correction iterations are used to recover from soft errors and provide algorithmic resilience is proposed. Specifically, in this approach the iteration is continued until the residual (a measure of the error in the approximation) is small relative to the residual of the first correction iteration and changes slowly between successive iterations. Here, we demonstrate the effectiveness of this strategy for both canonical test problems and a comprehensive situation involving a mature scientific application code that solves the reacting Navier-Stokes equations for combustion research.« less
Achieving algorithmic resilience for temporal integration through spectral deferred corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grout, Ray; Kolla, Hemanth; Minion, Michael
2017-05-08
Spectral deferred corrections (SDC) is an iterative approach for constructing higher- order accurate numerical approximations of ordinary differential equations. SDC starts with an initial approximation of the solution defined at a set of Gaussian or spectral collocation nodes over a time interval and uses an iterative application of lower-order time discretizations applied to a correction equation to improve the solution at these nodes. Each deferred correction sweep increases the formal order of accuracy of the method up to the limit inherent in the accuracy defined by the collocation points. In this paper, we demonstrate that SDC is well suited tomore » recovering from soft (transient) hardware faults in the data. A strategy where extra correction iterations are used to recover from soft errors and provide algorithmic resilience is proposed. Specifically, in this approach the iteration is continued until the residual (a measure of the error in the approximation) is small relative to the residual on the first correction iteration and changes slowly between successive iterations. We demonstrate the effectiveness of this strategy for both canonical test problems and a comprehen- sive situation involving a mature scientific application code that solves the reacting Navier-Stokes equations for combustion research.« less
Achieving algorithmic resilience for temporal integration through spectral deferred corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grout, Ray; Kolla, Hemanth; Minion, Michael
2017-05-08
Spectral deferred corrections (SDC) is an iterative approach for constructing higher-order-accurate numerical approximations of ordinary differential equations. SDC starts with an initial approximation of the solution defined at a set of Gaussian or spectral collocation nodes over a time interval and uses an iterative application of lower-order time discretizations applied to a correction equation to improve the solution at these nodes. Each deferred correction sweep increases the formal order of accuracy of the method up to the limit inherent in the accuracy defined by the collocation points. In this paper, we demonstrate that SDC is well suited to recovering frommore » soft (transient) hardware faults in the data. A strategy where extra correction iterations are used to recover from soft errors and provide algorithmic resilience is proposed. Specifically, in this approach the iteration is continued until the residual (a measure of the error in the approximation) is small relative to the residual of the first correction iteration and changes slowly between successive iterations. We demonstrate the effectiveness of this strategy for both canonical test problems and a comprehensive situation involving a mature scientific application code that solves the reacting Navier-Stokes equations for combustion research.« less
Numerical methods for solving moment equations in kinetic theory of neuronal network dynamics
NASA Astrophysics Data System (ADS)
Rangan, Aaditya V.; Cai, David; Tao, Louis
2007-02-01
Recently developed kinetic theory and related closures for neuronal network dynamics have been demonstrated to be a powerful theoretical framework for investigating coarse-grained dynamical properties of neuronal networks. The moment equations arising from the kinetic theory are a system of (1 + 1)-dimensional nonlinear partial differential equations (PDE) on a bounded domain with nonlinear boundary conditions. The PDEs themselves are self-consistently specified by parameters which are functions of the boundary values of the solution. The moment equations can be stiff in space and time. Numerical methods are presented here for efficiently and accurately solving these moment equations. The essential ingredients in our numerical methods include: (i) the system is discretized in time with an implicit Euler method within a spectral deferred correction framework, therefore, the PDEs of the kinetic theory are reduced to a sequence, in time, of boundary value problems (BVPs) with nonlinear boundary conditions; (ii) a set of auxiliary parameters is introduced to recast the original BVP with nonlinear boundary conditions as BVPs with linear boundary conditions - with additional algebraic constraints on the auxiliary parameters; (iii) a careful combination of two Newton's iterates for the nonlinear BVP with linear boundary condition, interlaced with a Newton's iterate for solving the associated algebraic constraints is constructed to achieve quadratic convergence for obtaining the solutions with self-consistent parameters. It is shown that a simple fixed-point iteration can only achieve a linear convergence for the self-consistent parameters. The practicability and efficiency of our numerical methods for solving the moment equations of the kinetic theory are illustrated with numerical examples. It is further demonstrated that the moment equations derived from the kinetic theory of neuronal network dynamics can very well capture the coarse-grained dynamical properties of integrate-and-fire neuronal networks.
Scalable and Axiomatic Ranking of Network Role Similarity
Jin, Ruoming; Lee, Victor E.; Li, Longjie
2014-01-01
A key task in analyzing social networks and other complex networks is role analysis: describing and categorizing nodes according to how they interact with other nodes. Two nodes have the same role if they interact with equivalent sets of neighbors. The most fundamental role equivalence is automorphic equivalence. Unfortunately, the fastest algorithms known for graph automorphism are nonpolynomial. Moreover, since exact equivalence is rare, a more meaningful task is measuring the role similarity between any two nodes. This task is closely related to the structural or link-based similarity problem that SimRank addresses. However, SimRank and other existing similarity measures are not sufficient because they do not guarantee to recognize automorphically or structurally equivalent nodes. This paper makes two contributions. First, we present and justify several axiomatic properties necessary for a role similarity measure or metric. Second, we present RoleSim, a new similarity metric which satisfies these axioms and which can be computed with a simple iterative algorithm. We rigorously prove that RoleSim satisfies all these axiomatic properties. We also introduce Iceberg RoleSim, a scalable algorithm which discovers all pairs with RoleSim scores above a user-defined threshold θ. We demonstrate the interpretative power of RoleSim on both both synthetic and real datasets. PMID:25383066
NASA Astrophysics Data System (ADS)
Boski, Marcin; Paszke, Wojciech
2017-01-01
This paper deals with designing of iterative learning control schemes for uncertain systems with static nonlinearities. More specifically, the nonlinear part is supposed to be sector bounded and system matrices are assumed to range in the polytope of matrices. For systems with such nonlinearities and uncertainties the repetitive process setting is exploited to develop a linear matrix inequality based conditions for computing the feedback and feedforward (learning) controllers. These controllers guarantee acceptable dynamics along the trials and ensure convergence of the trial-to-trial error dynamics, respectively. Numerical examples illustrate the theoretical results and confirm effectiveness of the designed control scheme.
A model reduction approach to numerical inversion for a parabolic partial differential equation
NASA Astrophysics Data System (ADS)
Borcea, Liliana; Druskin, Vladimir; Mamonov, Alexander V.; Zaslavsky, Mikhail
2014-12-01
We propose a novel numerical inversion algorithm for the coefficients of parabolic partial differential equations, based on model reduction. The study is motivated by the application of controlled source electromagnetic exploration, where the unknown is the subsurface electrical resistivity and the data are time resolved surface measurements of the magnetic field. The algorithm presented in this paper considers inversion in one and two dimensions. The reduced model is obtained with rational interpolation in the frequency (Laplace) domain and a rational Krylov subspace projection method. It amounts to a nonlinear mapping from the function space of the unknown resistivity to the small dimensional space of the parameters of the reduced model. We use this mapping as a nonlinear preconditioner for the Gauss-Newton iterative solution of the inverse problem. The advantage of the inversion algorithm is twofold. First, the nonlinear preconditioner resolves most of the nonlinearity of the problem. Thus the iterations are less likely to get stuck in local minima and the convergence is fast. Second, the inversion is computationally efficient because it avoids repeated accurate simulations of the time-domain response. We study the stability of the inversion algorithm for various rational Krylov subspaces, and assess its performance with numerical experiments.
Djordjevic, Ivan B; Vasic, Bane
2006-05-29
A maximum a posteriori probability (MAP) symbol decoding supplemented with iterative decoding is proposed as an effective mean for suppression of intrachannel nonlinearities. The MAP detector, based on Bahl-Cocke-Jelinek-Raviv algorithm, operates on the channel trellis, a dynamical model of intersymbol interference, and provides soft-decision outputs processed further in an iterative decoder. A dramatic performance improvement is demonstrated. The main reason is that the conventional maximum-likelihood sequence detector based on Viterbi algorithm provides hard-decision outputs only, hence preventing the soft iterative decoding. The proposed scheme operates very well in the presence of strong intrachannel intersymbol interference, when other advanced forward error correction schemes fail, and it is also suitable for 40 Gb/s upgrade over existing 10 Gb/s infrastructure.
Power iteration ranking via hybrid diffusion for vital nodes identification
NASA Astrophysics Data System (ADS)
Wu, Tao; Xian, Xingping; Zhong, Linfeng; Xiong, Xi; Stanley, H. Eugene
2018-09-01
One of the most interesting challenges in network science is to understand the relation between network structure and dynamics on it, and many topological properties, including degree distribution, community strength and clustering coefficient, have been proposed in the last decade. Prominent in this context is the centrality measures, which aim at quantifying the relative importance of individual nodes in the overall topology with regard to network organization and function. However, most of the previous centrality measures have been proposed based on different concepts and each of them focuses on a specific structural feature of networks. Thus, the straightforward and standard methods may lead to some bias against node importance measure. In this paper, we introduce two physical processes with potential complementarity between them. Then we propose to combine them as an elegant integration with the classic eigenvector centrality framework to improve the accuracy of node ranking. To test the produced power iteration ranking (PIRank) algorithm, we apply it to the selection of attack targets in network optimal attack problem. Extensive experimental results on synthetic networks and real-world networks suggest that the proposed centrality performs better than other well-known measures. Moreover, comparing with the eigenvector centrality, the PIRank algorithm can achieve about thirty percent performance improvement while keeping similar running time. Our experiment on random networks also shows that PIRank algorithm can avoid the localization phenomenon of eigenvector centrality, in particular for the networks with high-degree hubs.
Cong, Zhang
2018-03-01
Based on extended state observer, a novel and practical design method is developed to solve the distributed cooperative tracking problem of higher-order nonlinear multiagent systems with lumped disturbance in a fixed communication topology directed graph. The proposed method is designed to guarantee all the follower nodes ultimately and uniformly converge to the leader node with bounded residual errors. The leader node, modeled as a higher-order non-autonomous nonlinear system, acts as a command generator giving commands only to a small portion of the networked follower nodes. Extended state observer is used to estimate the local states and lumped disturbance of each follower node. Moreover, each distributed controller can work independently only requiring the relative states and/or the estimated relative states information between itself and its neighbors. Finally an engineering application of multi flight simulators systems is demonstrated to test and verify the effectiveness of the proposed algorithm. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Elastic-plastic mixed-iterative finite element analysis: Implementation and performance assessment
NASA Technical Reports Server (NTRS)
Sutjahjo, Edhi; Chamis, Christos C.
1993-01-01
An elastic-plastic algorithm based on Von Mises and associative flow criteria is implemented in MHOST-a mixed iterative finite element analysis computer program developed by NASA Lewis Research Center. The performance of the resulting elastic-plastic mixed-iterative analysis is examined through a set of convergence studies. Membrane and bending behaviors of 4-node quadrilateral shell finite elements are tested for elastic-plastic performance. Generally, the membrane results are excellent, indicating the implementation of elastic-plastic mixed-iterative analysis is appropriate.
A system of nonlinear set valued variational inclusions.
Tang, Yong-Kun; Chang, Shih-Sen; Salahuddin, Salahuddin
2014-01-01
In this paper, we studied the existence theorems and techniques for finding the solutions of a system of nonlinear set valued variational inclusions in Hilbert spaces. To overcome the difficulties, due to the presence of a proper convex lower semicontinuous function ϕ and a mapping g which appeared in the considered problems, we have used the resolvent operator technique to suggest an iterative algorithm to compute approximate solutions of the system of nonlinear set valued variational inclusions. The convergence of the iterative sequences generated by algorithm is also proved. 49J40; 47H06.
Artificial neural network in breast lesions from fine-needle aspiration cytology smear.
Subbaiah, R M; Dey, Pranab; Nijhawan, Raje
2014-03-01
Artificial neural networks (ANNs) are applied in engineering and certain medical fields. ANN has immense potential and is rarely been used in breast lesions. In this present study, we attempted to build up a complete robust back propagation ANN model based on cytomorphological data, morphometric data, nuclear densitometric data, and gray level co-occurrence matrix (GLCM) of ductal carcinoma and fibroadenomas of breast cases diagnosed on fine-needle aspiration cytology (FNAC). We selected 52 cases of fibroadenomas and 60 cases of infiltrating ductal carcinoma of breast diagnosed on FNAC by two cytologists. Essential cytological data was quantitated by two independent cytologists (SRM, PD). With the help of Image J software, nuclear morphomeric, densitometric, and GLCM features were measured in all the cases on hematoxylin and eosin-stained smears. With the available data, an ANN model was built up with the help of Neurointelligence software. The network was designed as 41-20-1 (41 input nodes, 20 hidden nodes, 1 output node). The network was trained by the online back propagation algorithm and 500 iterations were done. Learning was adjusted after every iteration. ANN model correctly identified all cases of fibroadenomas and infiltrating carcinomas in the test set. This is one of the first successful composite ANN models of breast carcinomas. This basic model can be used to diagnose the gray zone area of the breast lesions on FNAC. We assume that this model may have far-reaching implications in future. Copyright © 2013 Wiley Periodicals, Inc.
Distributed Sensor Fusion for Scalar Field Mapping Using Mobile Sensor Networks.
La, Hung Manh; Sheng, Weihua
2013-04-01
In this paper, autonomous mobile sensor networks are deployed to measure a scalar field and build its map. We develop a novel method for multiple mobile sensor nodes to build this map using noisy sensor measurements. Our method consists of two parts. First, we develop a distributed sensor fusion algorithm by integrating two different distributed consensus filters to achieve cooperative sensing among sensor nodes. This fusion algorithm has two phases. In the first phase, the weighted average consensus filter is developed, which allows each sensor node to find an estimate of the value of the scalar field at each time step. In the second phase, the average consensus filter is used to allow each sensor node to find a confidence of the estimate at each time step. The final estimate of the value of the scalar field is iteratively updated during the movement of the mobile sensors via weighted average. Second, we develop the distributed flocking-control algorithm to drive the mobile sensors to form a network and track the virtual leader moving along the field when only a small subset of the mobile sensors know the information of the leader. Experimental results are provided to demonstrate our proposed algorithms.
Improvements on a non-invasive, parameter-free approach to inverse form finding
NASA Astrophysics Data System (ADS)
Landkammer, P.; Caspari, M.; Steinmann, P.
2017-08-01
Our objective is to determine the optimal undeformed workpiece geometry (material configuration) within forming processes when the prescribed deformed geometry (spatial configuration) is given. For solving the resulting shape optimization problem—also denoted as inverse form finding—we use a novel parameter-free approach, which relocates in each iteration the material nodal positions as design variables. The spatial nodal positions computed by an elasto-plastic finite element (FE) forming simulation are compared with their prescribed values. The objective function expresses a least-squares summation of the differences between the computed and the prescribed nodal positions. Here, a recently developed shape optimization approach (Landkammer and Steinmann in Comput Mech 57(2):169-191, 2016) is investigated with a view to enhance its stability and efficiency. Motivated by nonlinear optimization theory a detailed justification of the algorithm is given. Furthermore, a classification according to shape changing design, fixed and controlled nodal coordinates is introduced. Two examples with large elasto-plastic strains demonstrate that using a superconvergent patch recovery technique instead of a least-squares (L2 )-smoothing improves the efficiency. Updating the interior discretization nodes by solving a fictitious elastic problem also reduces the number of required FE iterations and avoids severe mesh distortions. Furthermore, the impact of the inclusion of the second deformation gradient in the Hessian of the Quasi-Newton approach is analyzed. Inverse form finding is a crucial issue in metal forming applications. As a special feature, the approach is designed to be coupled in a non-invasive fashion to arbitrary FE software.
Improvements on a non-invasive, parameter-free approach to inverse form finding
NASA Astrophysics Data System (ADS)
Landkammer, P.; Caspari, M.; Steinmann, P.
2018-04-01
Our objective is to determine the optimal undeformed workpiece geometry (material configuration) within forming processes when the prescribed deformed geometry (spatial configuration) is given. For solving the resulting shape optimization problem—also denoted as inverse form finding—we use a novel parameter-free approach, which relocates in each iteration the material nodal positions as design variables. The spatial nodal positions computed by an elasto-plastic finite element (FE) forming simulation are compared with their prescribed values. The objective function expresses a least-squares summation of the differences between the computed and the prescribed nodal positions. Here, a recently developed shape optimization approach (Landkammer and Steinmann in Comput Mech 57(2):169-191, 2016) is investigated with a view to enhance its stability and efficiency. Motivated by nonlinear optimization theory a detailed justification of the algorithm is given. Furthermore, a classification according to shape changing design, fixed and controlled nodal coordinates is introduced. Two examples with large elasto-plastic strains demonstrate that using a superconvergent patch recovery technique instead of a least-squares (L2)-smoothing improves the efficiency. Updating the interior discretization nodes by solving a fictitious elastic problem also reduces the number of required FE iterations and avoids severe mesh distortions. Furthermore, the impact of the inclusion of the second deformation gradient in the Hessian of the Quasi-Newton approach is analyzed. Inverse form finding is a crucial issue in metal forming applications. As a special feature, the approach is designed to be coupled in a non-invasive fashion to arbitrary FE software.
Computational aspects of helicopter trim analysis and damping levels from Floquet theory
NASA Technical Reports Server (NTRS)
Gaonkar, Gopal H.; Achar, N. S.
1992-01-01
Helicopter trim settings of periodic initial state and control inputs are investigated for convergence of Newton iteration in computing the settings sequentially and in parallel. The trim analysis uses a shooting method and a weak version of two temporal finite element methods with displacement formulation and with mixed formulation of displacements and momenta. These three methods broadly represent two main approaches of trim analysis: adaptation of initial-value and finite element boundary-value codes to periodic boundary conditions, particularly for unstable and marginally stable systems. In each method, both the sequential and in-parallel schemes are used and the resulting nonlinear algebraic equations are solved by damped Newton iteration with an optimally selected damping parameter. The impact of damped Newton iteration, including earlier-observed divergence problems in trim analysis, is demonstrated by the maximum condition number of the Jacobian matrices of the iterative scheme and by virtual elimination of divergence. The advantages of the in-parallel scheme over the conventional sequential scheme are also demonstrated.
Two-dimensional periodic structures in solid state laser resonator
NASA Astrophysics Data System (ADS)
Okulov, Alexey Y.
1991-07-01
Transverse effects in nonlinear optical devices are being widely investigated. Recently, synchronization of a laser set by means of the Talbot effect has been demonstrated experimentally. This paper considers a Talbot cavity formed by a solid-state amplifying laser separated from the output mirror by a free space interval. This approach involves the approximation of the nonlinear medium as a thin layer, within which the diffraction is negligible. The other part of a resonator is empty, and the wave field is transformed by the Fresnel-Kirchoff integral. As a result, the dynamics of the transverse (and temporal) structure is computed by a successively iterated nonlinear local map (one- or two-dimensional) and a linear nonlocal map (generally speaking, infinitely dimensional).
Newton's method: A link between continuous and discrete solutions of nonlinear problems
NASA Technical Reports Server (NTRS)
Thurston, G. A.
1980-01-01
Newton's method for nonlinear mechanics problems replaces the governing nonlinear equations by an iterative sequence of linear equations. When the linear equations are linear differential equations, the equations are usually solved by numerical methods. The iterative sequence in Newton's method can exhibit poor convergence properties when the nonlinear problem has multiple solutions for a fixed set of parameters, unless the iterative sequences are aimed at solving for each solution separately. The theory of the linear differential operators is often a better guide for solution strategies in applying Newton's method than the theory of linear algebra associated with the numerical analogs of the differential operators. In fact, the theory for the differential operators can suggest the choice of numerical linear operators. In this paper the method of variation of parameters from the theory of linear ordinary differential equations is examined in detail in the context of Newton's method to demonstrate how it might be used as a guide for numerical solutions.
Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan
2016-01-01
Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations.
N-dark-dark solitons for the coupled higher-order nonlinear Schrödinger equations in optical fibers
NASA Astrophysics Data System (ADS)
Zhang, Hai-Qiang; Wang, Yue
2017-11-01
In this paper, we construct the binary Darboux transformation on the coupled higher-order dispersive nonlinear Schrödinger equations in optical fibers. We present the N-fold iterative transformation in terms of the determinants. By the limit technique, we derive the N-dark-dark soliton solutions from the non-vanishing background. Based on the obtained solutions, we find that the collision mechanisms of dark vector solitons exhibit the standard elastic collisions in both two components.
Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan
2016-01-01
Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations. PMID:27031232
Nonlinear random response prediction using MSC/NASTRAN
NASA Technical Reports Server (NTRS)
Robinson, J. H.; Chiang, C. K.; Rizzi, S. A.
1993-01-01
An equivalent linearization technique was incorporated into MSC/NASTRAN to predict the nonlinear random response of structures by means of Direct Matrix Abstract Programming (DMAP) modifications and inclusion of the nonlinear differential stiffness module inside the iteration loop. An iterative process was used to determine the rms displacements. Numerical results obtained for validation on simple plates and beams are in good agreement with existing solutions in both the linear and linearized regions. The versatility of the implementation will enable the analyst to determine the nonlinear random responses for complex structures under combined loads. The thermo-acoustic response of a hexagonal thermal protection system panel is used to highlight some of the features of the program.
On the safety of ITER accelerators.
Li, Ge
2013-01-01
Three 1 MV/40A accelerators in heating neutral beams (HNB) are on track to be implemented in the International Thermonuclear Experimental Reactor (ITER). ITER may produce 500 MWt of power by 2026 and may serve as a green energy roadmap for the world. They will generate -1 MV 1 h long-pulse ion beams to be neutralised for plasma heating. Due to frequently occurring vacuum sparking in the accelerators, the snubbers are used to limit the fault arc current to improve ITER safety. However, recent analyses of its reference design have raised concerns. General nonlinear transformer theory is developed for the snubber to unify the former snubbers' different design models with a clear mechanism. Satisfactory agreement between theory and tests indicates that scaling up to a 1 MV voltage may be possible. These results confirm the nonlinear process behind transformer theory and map out a reliable snubber design for a safer ITER.
On the safety of ITER accelerators
Li, Ge
2013-01-01
Three 1 MV/40A accelerators in heating neutral beams (HNB) are on track to be implemented in the International Thermonuclear Experimental Reactor (ITER). ITER may produce 500 MWt of power by 2026 and may serve as a green energy roadmap for the world. They will generate −1 MV 1 h long-pulse ion beams to be neutralised for plasma heating. Due to frequently occurring vacuum sparking in the accelerators, the snubbers are used to limit the fault arc current to improve ITER safety. However, recent analyses of its reference design have raised concerns. General nonlinear transformer theory is developed for the snubber to unify the former snubbers' different design models with a clear mechanism. Satisfactory agreement between theory and tests indicates that scaling up to a 1 MV voltage may be possible. These results confirm the nonlinear process behind transformer theory and map out a reliable snubber design for a safer ITER. PMID:24008267
Small target pre-detection with an attention mechanism
NASA Astrophysics Data System (ADS)
Wang, Yuehuan; Zhang, Tianxu; Wang, Guoyou
2002-04-01
We introduce the concept of predetection based on an attention mechanism to improve the efficiency of small-target detection by limiting the image region of detection. According to the characteristics of small-target detection, local contrast is taken as the only feature in predetection and a nonlinear sampling model is adopted to make the predetection adaptive to detect small targets with different area sizes. To simplify the predetection itself and decrease the false alarm probability, neighboring nodes in the sampling grid are used to generate a saliency map, and a short-term memory is adopted to accelerate the `pop-out' of targets. We discuss the fact that the proposed approach is simple enough in computational complexity. In addition, even in a cluttered background, attention can be led to targets in a satisfying few iterations, which ensures that the detection efficiency will not be decreased due to false alarms. Experimental results are presented to demonstrate the applicability of the approach.
Regularization with numerical extrapolation for finite and UV-divergent multi-loop integrals
NASA Astrophysics Data System (ADS)
de Doncker, E.; Yuasa, F.; Kato, K.; Ishikawa, T.; Kapenga, J.; Olagbemi, O.
2018-03-01
We give numerical integration results for Feynman loop diagrams such as those covered by Laporta (2000) and by Baikov and Chetyrkin (2010), and which may give rise to loop integrals with UV singularities. We explore automatic adaptive integration using multivariate techniques from the PARINT package for multivariate integration, as well as iterated integration with programs from the QUADPACK package, and a trapezoidal method based on a double exponential transformation. PARINT is layered over MPI (Message Passing Interface), and incorporates advanced parallel/distributed techniques including load balancing among processes that may be distributed over a cluster or a network/grid of nodes. Results are included for 2-loop vertex and box diagrams and for sets of 2-, 3- and 4-loop self-energy diagrams with or without UV terms. Numerical regularization of integrals with singular terms is achieved by linear and non-linear extrapolation methods.
RF Pulse Design using Nonlinear Gradient Magnetic Fields
Kopanoglu, Emre; Constable, R. Todd
2014-01-01
Purpose An iterative k-space trajectory and radio-frequency (RF) pulse design method is proposed for Excitation using Nonlinear Gradient Magnetic fields (ENiGMa). Theory and Methods The spatial encoding functions (SEFs) generated by nonlinear gradient fields (NLGFs) are linearly dependent in Cartesian-coordinates. Left uncorrected, this may lead to flip-angle variations in excitation profiles. In the proposed method, SEFs (k-space samples) are selected using a Matching-Pursuit algorithm, and the RF pulse is designed using a Conjugate-Gradient algorithm. Three variants of the proposed approach are given: the full-algorithm, a computationally-cheaper version, and a third version for designing spoke-based trajectories. The method is demonstrated for various target excitation profiles using simulations and phantom experiments. Results The method is compared to other iterative (Matching-Pursuit and Conjugate Gradient) and non-iterative (coordinate-transformation and Jacobian-based) pulse design methods as well as uniform density spiral and EPI trajectories. The results show that the proposed method can increase excitation fidelity significantly. Conclusion An iterative method for designing k-space trajectories and RF pulses using nonlinear gradient fields is proposed. The method can either be used for selecting the SEFs individually to guide trajectory design, or can be adapted to design and optimize specific trajectories of interest. PMID:25203286
NASA Astrophysics Data System (ADS)
Domnisoru, L.; Modiga, A.; Gasparotti, C.
2016-08-01
At the ship's design, the first step of the hull structural assessment is based on the longitudinal strength analysis, with head wave equivalent loads by the ships' classification societies’ rules. This paper presents an enhancement of the longitudinal strength analysis, considering the general case of the oblique quasi-static equivalent waves, based on the own non-linear iterative procedure and in-house program. The numerical approach is developed for the mono-hull ships, without restrictions on 3D-hull offset lines non-linearities, and involves three interlinked iterative cycles on floating, pitch and roll trim equilibrium conditions. Besides the ship-wave equilibrium parameters, the ship's girder wave induced loads are obtained. As numerical study case we have considered a large LPG liquefied petroleum gas carrier. The numerical results of the large LPG are compared with the statistical design values from several ships' classification societies’ rules. This study makes possible to obtain the oblique wave conditions that are inducing the maximum loads into the large LPG ship's girder. The numerical results of this study are pointing out that the non-linear iterative approach is necessary for the computation of the extreme loads induced by the oblique waves, ensuring better accuracy of the large LPG ship's longitudinal strength assessment.
Wei, Qinglai; Liu, Derong; Lin, Qiao
In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.
Program for the solution of multipoint boundary value problems of quasilinear differential equations
NASA Technical Reports Server (NTRS)
1973-01-01
Linear equations are solved by a method of superposition of solutions of a sequence of initial value problems. For nonlinear equations and/or boundary conditions, the solution is iterative and in each iteration a problem like the linear case is solved. A simple Taylor series expansion is used for the linearization of both nonlinear equations and nonlinear boundary conditions. The perturbation method of solution is used in preference to quasilinearization because of programming ease, and smaller storage requirements; and experiments indicate that the desired convergence properties exist although no proof or convergence is given.
An optimization model for the US Air-Traffic System
NASA Technical Reports Server (NTRS)
Mulvey, J. M.
1986-01-01
A systematic approach for monitoring U.S. air traffic was developed in the context of system-wide planning and control. Towards this end, a network optimization model with nonlinear objectives was chosen as the central element in the planning/control system. The network representation was selected because: (1) it provides a comprehensive structure for depicting essential aspects of the air traffic system, (2) it can be solved efficiently for large scale problems, and (3) the design can be easily communicated to non-technical users through computer graphics. Briefly, the network planning models consider the flow of traffic through a graph as the basic structure. Nodes depict locations and time periods for either individual planes or for aggregated groups of airplanes. Arcs define variables as actual airplanes flying through space or as delays across time periods. As such, a special case of the network can be used to model the so called flow control problem. Due to the large number of interacting variables and the difficulty in subdividing the problem into relatively independent subproblems, an integrated model was designed which will depict the entire high level (above 29000 feet) jet route system for the 48 contiguous states in the U.S. As a first step in demonstrating the concept's feasibility a nonlinear risk/cost model was developed for the Indianapolis Airspace. The nonlinear network program --NLPNETG-- was employed in solving the resulting test cases. This optimization program uses the Truncated-Newton method (quadratic approximation) for determining the search direction at each iteration in the nonlinear algorithm. It was shown that aircraft could be re-routed in an optimal fashion whenever traffic congestion increased beyond an acceptable level, as measured by the nonlinear risk function.
A Random Walk Approach to Query Informative Constraints for Clustering.
Abin, Ahmad Ali
2017-08-09
This paper presents a random walk approach to the problem of querying informative constraints for clustering. The proposed method is based on the properties of the commute time, that is the expected time taken for a random walk to travel between two nodes and return, on the adjacency graph of data. Commute time has the nice property of that, the more short paths connect two given nodes in a graph, the more similar those nodes are. Since computing the commute time takes the Laplacian eigenspectrum into account, we use this property in a recursive fashion to query informative constraints for clustering. At each recursion, the proposed method constructs the adjacency graph of data and utilizes the spectral properties of the commute time matrix to bipartition the adjacency graph. Thereafter, the proposed method benefits from the commute times distance on graph to query informative constraints between partitions. This process iterates for each partition until the stop condition becomes true. Experiments on real-world data show the efficiency of the proposed method for constraints selection.
Nonlinear Finite Element Analysis of Shells with Large Aspect Ratio
NASA Technical Reports Server (NTRS)
Chang, T. Y.; Sawamiphakdi, K.
1984-01-01
A higher order degenerated shell element with nine nodes was selected for large deformation and post-buckling analysis of thick or thin shells. Elastic-plastic material properties are also included. The post-buckling analysis algorithm is given. Using a square plate, it was demonstrated that the none-node element does not have shear locking effect even if its aspect ratio was increased to the order 10 to the 8th power. Two sample problems are given to illustrate the analysis capability of the shell element.
NASA Astrophysics Data System (ADS)
Bai, Wei-wei; Ren, Jun-sheng; Li, Tie-shan
2018-06-01
This paper explores a highly accurate identification modeling approach for the ship maneuvering motion with fullscale trial. A multi-innovation gradient iterative (MIGI) approach is proposed to optimize the distance metric of locally weighted learning (LWL), and a novel non-parametric modeling technique is developed for a nonlinear ship maneuvering system. This proposed method's advantages are as follows: first, it can avoid the unmodeled dynamics and multicollinearity inherent to the conventional parametric model; second, it eliminates the over-learning or underlearning and obtains the optimal distance metric; and third, the MIGI is not sensitive to the initial parameter value and requires less time during the training phase. These advantages result in a highly accurate mathematical modeling technique that can be conveniently implemented in applications. To verify the characteristics of this mathematical model, two examples are used as the model platforms to study the ship maneuvering.
Iterative algorithms for a non-linear inverse problem in atmospheric lidar
NASA Astrophysics Data System (ADS)
Denevi, Giulia; Garbarino, Sara; Sorrentino, Alberto
2017-08-01
We consider the inverse problem of retrieving aerosol extinction coefficients from Raman lidar measurements. In this problem the unknown and the data are related through the exponential of a linear operator, the unknown is non-negative and the data follow the Poisson distribution. Standard methods work on the log-transformed data and solve the resulting linear inverse problem, but neglect to take into account the noise statistics. In this study we show that proper modelling of the noise distribution can improve substantially the quality of the reconstructed extinction profiles. To achieve this goal, we consider the non-linear inverse problem with non-negativity constraint, and propose two iterative algorithms derived using the Karush-Kuhn-Tucker conditions. We validate the algorithms with synthetic and experimental data. As expected, the proposed algorithms out-perform standard methods in terms of sensitivity to noise and reliability of the estimated profile.
Nonlinear image registration with bidirectional metric and reciprocal regularization
Ying, Shihui; Li, Dan; Xiao, Bin; Peng, Yaxin; Du, Shaoyi; Xu, Meifeng
2017-01-01
Nonlinear registration is an important technique to align two different images and widely applied in medical image analysis. In this paper, we develop a novel nonlinear registration framework based on the diffeomorphic demons, where a reciprocal regularizer is introduced to assume that the deformation between two images is an exact diffeomorphism. In detail, first, we adopt a bidirectional metric to improve the symmetry of the energy functional, whose variables are two reciprocal deformations. Secondly, we slack these two deformations into two independent variables and introduce a reciprocal regularizer to assure the deformations being the exact diffeomorphism. Then, we utilize an alternating iterative strategy to decouple the model into two minimizing subproblems, where a new closed form for the approximate velocity of deformation is calculated. Finally, we compare our proposed algorithm on two data sets of real brain MR images with two relative and conventional methods. The results validate that our proposed method improves accuracy and robustness of registration, as well as the gained bidirectional deformations are actually reciprocal. PMID:28231342
NASA Astrophysics Data System (ADS)
Joshi, Aditya; Lindsey, Brooks D.; Dayton, Paul A.; Pinton, Gianmarco; Muller, Marie
2017-05-01
Ultrasound contrast agents (UCA), such as microbubbles, enhance the scattering properties of blood, which is otherwise hypoechoic. The multiple scattering interactions of the acoustic field with UCA are poorly understood due to the complexity of the multiple scattering theories and the nonlinear microbubble response. The majority of bubble models describe the behavior of UCA as single, isolated microbubbles suspended in infinite medium. Multiple scattering models such as the independent scattering approximation can approximate phase velocity and attenuation for low scatterer volume fractions. However, all current models and simulation approaches only describe multiple scattering and nonlinear bubble dynamics separately. Here we present an approach that combines two existing models: (1) a full-wave model that describes nonlinear propagation and scattering interactions in a heterogeneous attenuating medium and (2) a Paul-Sarkar model that describes the nonlinear interactions between an acoustic field and microbubbles. These two models were solved numerically and combined with an iterative approach. The convergence of this combined model was explored in silico for 0.5 × 106 microbubbles ml-1, 1% and 2% bubble concentration by volume. The backscattering predicted by our modeling approach was verified experimentally with water tank measurements performed with a 128-element linear array transducer. An excellent agreement in terms of the fundamental and harmonic acoustic fields is shown. Additionally, our model correctly predicts the phase velocity and attenuation measured using through transmission and predicted by the independent scattering approximation.
Photonic single nonlinear-delay dynamical node for information processing
NASA Astrophysics Data System (ADS)
Ortín, Silvia; San-Martín, Daniel; Pesquera, Luis; Gutiérrez, José Manuel
2012-06-01
An electro-optical system with a delay loop based on semiconductor lasers is investigated for information processing by performing numerical simulations. This system can replace a complex network of many nonlinear elements for the implementation of Reservoir Computing. We show that a single nonlinear-delay dynamical system has the basic properties to perform as reservoir: short-term memory and separation property. The computing performance of this system is evaluated for two prediction tasks: Lorenz chaotic time series and nonlinear auto-regressive moving average (NARMA) model. We sweep the parameters of the system to find the best performance. The results achieved for the Lorenz and the NARMA-10 tasks are comparable to those obtained by other machine learning methods.
Adaptive Dynamic Programming for Discrete-Time Zero-Sum Games.
Wei, Qinglai; Liu, Derong; Lin, Qiao; Song, Ruizhuo
2018-04-01
In this paper, a novel adaptive dynamic programming (ADP) algorithm, called "iterative zero-sum ADP algorithm," is developed to solve infinite-horizon discrete-time two-player zero-sum games of nonlinear systems. The present iterative zero-sum ADP algorithm permits arbitrary positive semidefinite functions to initialize the upper and lower iterations. A novel convergence analysis is developed to guarantee the upper and lower iterative value functions to converge to the upper and lower optimums, respectively. When the saddle-point equilibrium exists, it is emphasized that both the upper and lower iterative value functions are proved to converge to the optimal solution of the zero-sum game, where the existence criteria of the saddle-point equilibrium are not required. If the saddle-point equilibrium does not exist, the upper and lower optimal performance index functions are obtained, respectively, where the upper and lower performance index functions are proved to be not equivalent. Finally, simulation results and comparisons are shown to illustrate the performance of the present method.
A Bifurcation Problem for a Nonlinear Partial Differential Equation of Parabolic Type,
NONLINEAR DIFFERENTIAL EQUATIONS, INTEGRATION), (*PARTIAL DIFFERENTIAL EQUATIONS, BOUNDARY VALUE PROBLEMS), BANACH SPACE , MAPPING (TRANSFORMATIONS), SET THEORY, TOPOLOGY, ITERATIONS, STABILITY, THEOREMS
Self-adaptive predictor-corrector algorithm for static nonlinear structural analysis
NASA Technical Reports Server (NTRS)
Padovan, J.
1981-01-01
A multiphase selfadaptive predictor corrector type algorithm was developed. This algorithm enables the solution of highly nonlinear structural responses including kinematic, kinetic and material effects as well as pro/post buckling behavior. The strategy involves three main phases: (1) the use of a warpable hyperelliptic constraint surface which serves to upperbound dependent iterate excursions during successive incremental Newton Ramphson (INR) type iterations; (20 uses an energy constraint to scale the generation of successive iterates so as to maintain the appropriate form of local convergence behavior; (3) the use of quality of convergence checks which enable various self adaptive modifications of the algorithmic structure when necessary. The restructuring is achieved by tightening various conditioning parameters as well as switch to different algorithmic levels to improve the convergence process. The capabilities of the procedure to handle various types of static nonlinear structural behavior are illustrated.
NASA Astrophysics Data System (ADS)
Zhong, XiaoXu; Liao, ShiJun
2018-01-01
Analytic approximations of the Von Kármán's plate equations in integral form for a circular plate under external uniform pressure to arbitrary magnitude are successfully obtained by means of the homotopy analysis method (HAM), an analytic approximation technique for highly nonlinear problems. Two HAM-based approaches are proposed for either a given external uniform pressure Q or a given central deflection, respectively. Both of them are valid for uniform pressure to arbitrary magnitude by choosing proper values of the so-called convergence-control parameters c 1 and c 2 in the frame of the HAM. Besides, it is found that the HAM-based iteration approaches generally converge much faster than the interpolation iterative method. Furthermore, we prove that the interpolation iterative method is a special case of the first-order HAM iteration approach for a given external uniform pressure Q when c 1 = - θ and c 2 = -1, where θ denotes the interpolation iterative parameter. Therefore, according to the convergence theorem of Zheng and Zhou about the interpolation iterative method, the HAM-based approaches are valid for uniform pressure to arbitrary magnitude at least in the special case c 1 = - θ and c 2 = -1. In addition, we prove that the HAM approach for the Von Kármán's plate equations in differential form is just a special case of the HAM for the Von Kármán's plate equations in integral form mentioned in this paper. All of these illustrate the validity and great potential of the HAM for highly nonlinear problems, and its superiority over perturbation techniques.
Solving coupled groundwater flow systems using a Jacobian Free Newton Krylov method
NASA Astrophysics Data System (ADS)
Mehl, S.
2012-12-01
Jacobian Free Newton Kyrlov (JFNK) methods can have several advantages for simulating coupled groundwater flow processes versus conventional methods. Conventional methods are defined here as those based on an iterative coupling (rather than a direct coupling) and/or that use Picard iteration rather than Newton iteration. In an iterative coupling, the systems are solved separately, coupling information is updated and exchanged between the systems, and the systems are re-solved, etc., until convergence is achieved. Trusted simulators, such as Modflow, are based on these conventional methods of coupling and work well in many cases. An advantage of the JFNK method is that it only requires calculation of the residual vector of the system of equations and thus can make use of existing simulators regardless of how the equations are formulated. This opens the possibility of coupling different process models via augmentation of a residual vector by each separate process, which often requires substantially fewer changes to the existing source code than if the processes were directly coupled. However, appropriate perturbation sizes need to be determined for accurate approximations of the Frechet derivative, which is not always straightforward. Furthermore, preconditioning is necessary for reasonable convergence of the linear solution required at each Kyrlov iteration. Existing preconditioners can be used and applied separately to each process which maximizes use of existing code and robust preconditioners. In this work, iteratively coupled parent-child local grid refinement models of groundwater flow and groundwater flow models with nonlinear exchanges to streams are used to demonstrate the utility of the JFNK approach for Modflow models. Use of incomplete Cholesky preconditioners with various levels of fill are examined on a suite of nonlinear and linear models to analyze the effect of the preconditioner. Comparisons of convergence and computer simulation time are made using conventional iteratively coupled methods and those based on Picard iteration to those formulated with JFNK to gain insights on the types of nonlinearities and system features that make one approach advantageous. Results indicate that nonlinearities associated with stream/aquifer exchanges are more problematic than those resulting from unconfined flow.
Global Asymptotic Behavior of Iterative Implicit Schemes
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.
1994-01-01
The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics.
A superlinear interior points algorithm for engineering design optimization
NASA Technical Reports Server (NTRS)
Herskovits, J.; Asquier, J.
1990-01-01
We present a quasi-Newton interior points algorithm for nonlinear constrained optimization. It is based on a general approach consisting of the iterative solution in the primal and dual spaces of the equalities in Karush-Kuhn-Tucker optimality conditions. This is done in such a way to have primal and dual feasibility at each iteration, which ensures satisfaction of those optimality conditions at the limit points. This approach is very strong and efficient, since at each iteration it only requires the solution of two linear systems with the same matrix, instead of quadratic programming subproblems. It is also particularly appropriate for engineering design optimization inasmuch at each iteration a feasible design is obtained. The present algorithm uses a quasi-Newton approximation of the second derivative of the Lagrangian function in order to have superlinear asymptotic convergence. We discuss theoretical aspects of the algorithm and its computer implementation.
Joint recognition and discrimination in nonlinear feature space
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1997-09-01
A new general method for linear and nonlinear feature extraction is presented. It is novel since it provides both representation and discrimination while most other methods are concerned with only one of these issues. We call this approach the maximum representation and discrimination feature (MRDF) method and show that the Bayes classifier and the Karhunen- Loeve transform are special cases of it. We refer to our nonlinear feature extraction technique as nonlinear eigen- feature extraction. It is new since it has a closed-form solution and produces nonlinear decision surfaces with higher rank than do iterative methods. Results on synthetic databases are shown and compared with results from standard Fukunaga- Koontz transform and Fisher discriminant function methods. The method is also applied to an automated product inspection problem (discrimination) and to the classification and pose estimation of two similar objects (representation and discrimination).
3D modelling of non-linear visco-elasto-plastic crustal and lithospheric processes using LaMEM
NASA Astrophysics Data System (ADS)
Popov, Anton; Kaus, Boris
2016-04-01
LaMEM (Lithosphere and Mantle Evolution Model) is a three-dimensional thermo-mechanical numerical code to simulate crustal and lithospheric deformation. The code is based on a staggered finite difference (FDSTAG) discretization in space, which is a stable and very efficient technique to solve the (nearly) incompressible Stokes equations that does not suffer from spurious pressure modes or artificial compressibility (a typical feature of low-order finite element techniques). Higher order finite element methods are more accurate than FDSTAG methods under idealized test cases where the jump in viscosity is exactly aligned with the boundaries of the elements. Yet, geodynamically more realistic cases involve evolving subduction zones, nonlinear rheologies or localized plastic shear bands. In these cases, the viscosity pattern evolves spontaneously during a simulation or even during nonlinear iterations, and the advantages of higher order methods disappear and they all converge with approximately first order accuracy, similar to that of FDSTAG [1]. Yet, since FDSTAG methods have considerably less degrees of freedom than quadratic finite element methods, they require about an order of magnitude less memory for the same number of nodes in 3D which also implies that every matrix-vector multiplication is significantly faster. LaMEM is build on top of the PETSc library and uses the particle-in-cell technique to track material properties, history variables which makes it straightforward to incorporate effects like phase changes or chemistry. An internal free surface is present, together with (simple) erosion and sedimentation processes, and a number of methods are available to import complex geometries into the code (e.g, http://geomio.bitbucket.org). Customized Galerkin coupled geometric multigrid preconditioners are implemented which resulted in a good parallel scalability of the code (we have tested LaMEM on 458'752 cores [2]). Yet, the drawback of using FDSTAG discretizations is that the Jacobian, which is a key component for fast and robust convergence of Newton-Raphson nonlinear iterative solvers, is more difficult to implement than in FE codes and actually results in a larger stencil. Rather than discretizing it explicitly, we therefore developed a matrix-free analytical Jacobian implementation for the coupled sets of momentum, mass, and energy conservation equations, combined with visco-elasto-plastic rheologies. Tests show that for simple nonlinear viscous rheologies there is little advantage of the MF approach over the standard MFFD PETSc approach, but that iterations converge slightly faster if plasticity is present. Results also show that the Newton solver usually converges in a quadratic manner even for pressure-dependent Drucker-Prager rheologies and without harmonic viscosity averaging of plastic and viscous rheologies. Yet, if the timestep is too large (and the model becomes effectively viscoplastic), or if the shear band pattern changes dramatically, stagnation of iterations might occur. This can be remedied with an appropriate regularization, which we discuss. LaMEM is available as open source software. [1] Thielmann, M., May, D.A., and Kaus, B., 2014, Discretization Errors in the Hybrid Finite Element Particle-in-cell Method: Pure and Applied Geophysics,, doi: 10.1007/s00024-014-0808-9. [2] Kaus B.J.P., Popov A.A., Baumann T.S., Püsök A.E., Bauville A., Fernandez N., Collignon M. (2015) Forward and inverse modelling of lithospheric deformation on geological timescales. NIC Symposium 2016 - Proceedings. NIC Series. Vol. 48.
Iterative pass optimization of sequence data
NASA Technical Reports Server (NTRS)
Wheeler, Ward C.
2003-01-01
The problem of determining the minimum-cost hypothetical ancestral sequences for a given cladogram is known to be NP-complete. This "tree alignment" problem has motivated the considerable effort placed in multiple sequence alignment procedures. Wheeler in 1996 proposed a heuristic method, direct optimization, to calculate cladogram costs without the intervention of multiple sequence alignment. This method, though more efficient in time and more effective in cladogram length than many alignment-based procedures, greedily optimizes nodes based on descendent information only. In their proposal of an exact multiple alignment solution, Sankoff et al. in 1976 described a heuristic procedure--the iterative improvement method--to create alignments at internal nodes by solving a series of median problems. The combination of a three-sequence direct optimization with iterative improvement and a branch-length-based cladogram cost procedure, provides an algorithm that frequently results in superior (i.e., lower) cladogram costs. This iterative pass optimization is both computation and memory intensive, but economies can be made to reduce this burden. An example in arthropod systematics is discussed. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.
NASA Technical Reports Server (NTRS)
Chen, Fang-Jenq
1997-01-01
Flow visualization produces data in the form of two-dimensional images. If the optical components of a camera system are perfect, the transformation equations between the two-dimensional image and the three-dimensional object space are linear and easy to solve. However, real camera lenses introduce nonlinear distortions that affect the accuracy of transformation unless proper corrections are applied. An iterative least-squares adjustment algorithm is developed to solve the nonlinear transformation equations incorporated with distortion corrections. Experimental applications demonstrate that a relative precision on the order of 40,000 is achievable without tedious laboratory calibrations of the camera.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Kausik, E-mail: kausik.chatterjee@aggiemail.usu.edu; Center for Atmospheric and Space Sciences, Utah State University, Logan, UT 84322; Roadcap, John R., E-mail: john.roadcap@us.af.mil
The objective of this paper is the exposition of a recently-developed, novel Green's function Monte Carlo (GFMC) algorithm for the solution of nonlinear partial differential equations and its application to the modeling of the plasma sheath region around a cylindrical conducting object, carrying a potential and moving at low speeds through an otherwise neutral medium. The plasma sheath is modeled in equilibrium through the GFMC solution of the nonlinear Poisson–Boltzmann (NPB) equation. The traditional Monte Carlo based approaches for the solution of nonlinear equations are iterative in nature, involving branching stochastic processes which are used to calculate linear functionals ofmore » the solution of nonlinear integral equations. Over the last several years, one of the authors of this paper, K. Chatterjee has been developing a philosophically-different approach, where the linearization of the equation of interest is not required and hence there is no need for iteration and the simulation of branching processes. Instead, an approximate expression for the Green's function is obtained using perturbation theory, which is used to formulate the random walk equations within the problem sub-domains where the random walker makes its walks. However, as a trade-off, the dimensions of these sub-domains have to be restricted by the limitations imposed by perturbation theory. The greatest advantage of this approach is the ease and simplicity of parallelization stemming from the lack of the need for iteration, as a result of which the parallelization procedure is identical to the parallelization procedure for the GFMC solution of a linear problem. The application area of interest is in the modeling of the communication breakdown problem during a space vehicle's re-entry into the atmosphere. However, additional application areas are being explored in the modeling of electromagnetic propagation through the atmosphere/ionosphere in UHF/GPS applications.« less
NASA Astrophysics Data System (ADS)
Chatterjee, Kausik; Roadcap, John R.; Singh, Surendra
2014-11-01
The objective of this paper is the exposition of a recently-developed, novel Green's function Monte Carlo (GFMC) algorithm for the solution of nonlinear partial differential equations and its application to the modeling of the plasma sheath region around a cylindrical conducting object, carrying a potential and moving at low speeds through an otherwise neutral medium. The plasma sheath is modeled in equilibrium through the GFMC solution of the nonlinear Poisson-Boltzmann (NPB) equation. The traditional Monte Carlo based approaches for the solution of nonlinear equations are iterative in nature, involving branching stochastic processes which are used to calculate linear functionals of the solution of nonlinear integral equations. Over the last several years, one of the authors of this paper, K. Chatterjee has been developing a philosophically-different approach, where the linearization of the equation of interest is not required and hence there is no need for iteration and the simulation of branching processes. Instead, an approximate expression for the Green's function is obtained using perturbation theory, which is used to formulate the random walk equations within the problem sub-domains where the random walker makes its walks. However, as a trade-off, the dimensions of these sub-domains have to be restricted by the limitations imposed by perturbation theory. The greatest advantage of this approach is the ease and simplicity of parallelization stemming from the lack of the need for iteration, as a result of which the parallelization procedure is identical to the parallelization procedure for the GFMC solution of a linear problem. The application area of interest is in the modeling of the communication breakdown problem during a space vehicle's re-entry into the atmosphere. However, additional application areas are being explored in the modeling of electromagnetic propagation through the atmosphere/ionosphere in UHF/GPS applications.
A Structure-Adaptive Hybrid RBF-BP Classifier with an Optimized Learning Strategy
Wen, Hui; Xie, Weixin; Pei, Jihong
2016-01-01
This paper presents a structure-adaptive hybrid RBF-BP (SAHRBF-BP) classifier with an optimized learning strategy. SAHRBF-BP is composed of a structure-adaptive RBF network and a BP network of cascade, where the number of RBF hidden nodes is adjusted adaptively according to the distribution of sample space, the adaptive RBF network is used for nonlinear kernel mapping and the BP network is used for nonlinear classification. The optimized learning strategy is as follows: firstly, a potential function is introduced into training sample space to adaptively determine the number of initial RBF hidden nodes and node parameters, and a form of heterogeneous samples repulsive force is designed to further optimize each generated RBF hidden node parameters, the optimized structure-adaptive RBF network is used for adaptively nonlinear mapping the sample space; then, according to the number of adaptively generated RBF hidden nodes, the number of subsequent BP input nodes can be determined, and the overall SAHRBF-BP classifier is built up; finally, different training sample sets are used to train the BP network parameters in SAHRBF-BP. Compared with other algorithms applied to different data sets, experiments show the superiority of SAHRBF-BP. Especially on most low dimensional and large number of data sets, the classification performance of SAHRBF-BP outperforms other training SLFNs algorithms. PMID:27792737
Iterative nonlinear joint transform correlation for the detection of objects in cluttered scenes
NASA Astrophysics Data System (ADS)
Haist, Tobias; Tiziani, Hans J.
1999-03-01
An iterative correlation technique with digital image processing in the feedback loop for the detection of small objects in cluttered scenes is proposed. A scanning aperture is combined with the method in order to improve the immunity against noise and clutter. Multiple reference objects or different views of one object are processed in parallel. We demonstrate the method by detecting a noisy and distorted face in a crowd with a nonlinear joint transform correlator.
NASA Astrophysics Data System (ADS)
An, Hyunuk; Ichikawa, Yutaka; Tachikawa, Yasuto; Shiiba, Michiharu
2012-11-01
SummaryThree different iteration methods for a three-dimensional coordinate-transformed saturated-unsaturated flow model are compared in this study. The Picard and Newton iteration methods are the common approaches for solving Richards' equation. The Picard method is simple to implement and cost-efficient (on an individual iteration basis). However it converges slower than the Newton method. On the other hand, although the Newton method converges faster, it is more complex to implement and consumes more CPU resources per iteration than the Picard method. The comparison of the two methods in finite-element model (FEM) for saturated-unsaturated flow has been well evaluated in previous studies. However, two iteration methods might exhibit different behavior in the coordinate-transformed finite-difference model (FDM). In addition, the Newton-Krylov method could be a suitable alternative for the coordinate-transformed FDM because it requires the evaluation of a 19-point stencil matrix. The formation of a 19-point stencil is quite a complex and laborious procedure. Instead, the Newton-Krylov method calculates the matrix-vector product, which can be easily approximated by calculating the differences of the original nonlinear function. In this respect, the Newton-Krylov method might be the most appropriate iteration method for coordinate-transformed FDM. However, this method involves the additional cost of taking an approximation at each Krylov iteration in the Newton-Krylov method. In this paper, we evaluated the efficiency and robustness of three iteration methods—the Picard, Newton, and Newton-Krylov methods—for simulating saturated-unsaturated flow through porous media using a three-dimensional coordinate-transformed FDM.
Centrality measures in temporal networks with time series analysis
NASA Astrophysics Data System (ADS)
Huang, Qiangjuan; Zhao, Chengli; Zhang, Xue; Wang, Xiaojie; Yi, Dongyun
2017-05-01
The study of identifying important nodes in networks has a wide application in different fields. However, the current researches are mostly based on static or aggregated networks. Recently, the increasing attention to networks with time-varying structure promotes the study of node centrality in temporal networks. In this paper, we define a supra-evolution matrix to depict the temporal network structure. With using of the time series analysis, the relationships between different time layers can be learned automatically. Based on the special form of the supra-evolution matrix, the eigenvector centrality calculating problem is turned into the calculation of eigenvectors of several low-dimensional matrices through iteration, which effectively reduces the computational complexity. Experiments are carried out on two real-world temporal networks, Enron email communication network and DBLP co-authorship network, the results of which show that our method is more efficient at discovering the important nodes than the common aggregating method.
Numerical solution of Euler's equation by perturbed functionals
NASA Technical Reports Server (NTRS)
Dey, S. K.
1985-01-01
A perturbed functional iteration has been developed to solve nonlinear systems. It adds at each iteration level, unique perturbation parameters to nonlinear Gauss-Seidel iterates which enhances its convergence properties. As convergence is approached these parameters are damped out. Local linearization along the diagonal has been used to compute these parameters. The method requires no computation of Jacobian or factorization of matrices. Analysis of convergence depends on properties of certain contraction-type mappings, known as D-mappings. In this article, application of this method to solve an implicit finite difference approximation of Euler's equation is studied. Some representative results for the well known shock tube problem and compressible flows in a nozzle are given.
A Method to Solve Interior and Exterior Camera Calibration Parameters for Image Resection
NASA Technical Reports Server (NTRS)
Samtaney, Ravi
1999-01-01
An iterative method is presented to solve the internal and external camera calibration parameters, given model target points and their images from one or more camera locations. The direct linear transform formulation was used to obtain a guess for the iterative method, and herein lies one of the strengths of the present method. In all test cases, the method converged to the correct solution. In general, an overdetermined system of nonlinear equations is solved in the least-squares sense. The iterative method presented is based on Newton-Raphson for solving systems of nonlinear algebraic equations. The Jacobian is analytically derived and the pseudo-inverse of the Jacobian is obtained by singular value decomposition.
Nonlinear Motion Tracking by Deep Learning Architecture
NASA Astrophysics Data System (ADS)
Verma, Arnav; Samaiya, Devesh; Gupta, Karunesh K.
2018-03-01
In the world of Artificial Intelligence, object motion tracking is one of the major problems. The extensive research is being carried out to track people in crowd. This paper presents a unique technique for nonlinear motion tracking in the absence of prior knowledge of nature of nonlinear path that the object being tracked may follow. We achieve this by first obtaining the centroid of the object and then using the centroid as the current example for a recurrent neural network trained using real-time recurrent learning. We have tweaked the standard algorithm slightly and have accumulated the gradient for few previous iterations instead of using just the current iteration as is the norm. We show that for a single object, such a recurrent neural network is highly capable of approximating the nonlinearity of its path.
Neural Generalized Predictive Control: A Newton-Raphson Implementation
NASA Technical Reports Server (NTRS)
Soloway, Donald; Haley, Pamela J.
1997-01-01
An efficient implementation of Generalized Predictive Control using a multi-layer feedforward neural network as the plant's nonlinear model is presented. In using Newton-Raphson as the optimization algorithm, the number of iterations needed for convergence is significantly reduced from other techniques. The main cost of the Newton-Raphson algorithm is in the calculation of the Hessian, but even with this overhead the low iteration numbers make Newton-Raphson faster than other techniques and a viable algorithm for real-time control. This paper presents a detailed derivation of the Neural Generalized Predictive Control algorithm with Newton-Raphson as the minimization algorithm. Simulation results show convergence to a good solution within two iterations and timing data show that real-time control is possible. Comments about the algorithm's implementation are also included.
Iterated reaction graphs: simulating complex Maillard reaction pathways.
Patel, S; Rabone, J; Russell, S; Tissen, J; Klaffke, W
2001-01-01
This study investigates a new method of simulating a complex chemical system including feedback loops and parallel reactions. The practical purpose of this approach is to model the actual reactions that take place in the Maillard process, a set of food browning reactions, in sufficient detail to be able to predict the volatile composition of the Maillard products. The developed framework, called iterated reaction graphs, consists of two main elements: a soup of molecules and a reaction base of Maillard reactions. An iterative process loops through the reaction base, taking reactants from and feeding products back to the soup. This produces a reaction graph, with molecules as nodes and reactions as arcs. The iterated reaction graph is updated and validated by comparing output with the main products found by classical gas-chromatographic/mass spectrometric analysis. To ensure a realistic output and convergence to desired volatiles only, the approach contains a number of novel elements: rate kinetics are treated as reaction probabilities; only a subset of the true chemistry is modeled; and the reactions are blocked into groups.
Empirical OPC rule inference for rapid RET application
NASA Astrophysics Data System (ADS)
Kulkarni, Anand P.
2006-10-01
A given technological node (45 nm, 65 nm) can be expected to process thousands of individual designs. Iterative methods applied at the node consume valuable days in determining proper placement of OPC features, and manufacturing and testing mask correspondence to wafer patterns in a trial-and-error fashion for each design. Repeating this fabrication process for each individual design is a time-consuming and expensive process. We present a novel technique which sidesteps the requirement to iterate through the model-based OPC analysis and pattern verification cycle on subsequent designs at the same node. Our approach relies on the inference of rules from a correct pattern at the wafer surface it relates to the OPC and pre-OPC pattern layout files. We begin with an offline phase where we obtain a "gold standard" design file that has been fab-tested at the node with a prepared, post-OPC layout file that corresponds to the intended on-wafer pattern. We then run an offline analysis to infer rules to be used in this method. During the analysis, our method implicitly identifies contextual OPC strategies for optimal placement of RET features on any design at that node. Using these strategies, we can apply OPC to subsequent designs at the same node with accuracy comparable to the original design file but significantly smaller expected runtimes. The technique promises to offer a rapid and accurate complement to existing RET application strategies.
Radac, Mircea-Bogdan; Precup, Radu-Emil; Roman, Raul-Cristian
2018-02-01
This paper proposes a combined Virtual Reference Feedback Tuning-Q-learning model-free control approach, which tunes nonlinear static state feedback controllers to achieve output model reference tracking in an optimal control framework. The novel iterative Batch Fitted Q-learning strategy uses two neural networks to represent the value function (critic) and the controller (actor), and it is referred to as a mixed Virtual Reference Feedback Tuning-Batch Fitted Q-learning approach. Learning convergence of the Q-learning schemes generally depends, among other settings, on the efficient exploration of the state-action space. Handcrafting test signals for efficient exploration is difficult even for input-output stable unknown processes. Virtual Reference Feedback Tuning can ensure an initial stabilizing controller to be learned from few input-output data and it can be next used to collect substantially more input-state data in a controlled mode, in a constrained environment, by compensating the process dynamics. This data is used to learn significantly superior nonlinear state feedback neural networks controllers for model reference tracking, using the proposed Batch Fitted Q-learning iterative tuning strategy, motivating the original combination of the two techniques. The mixed Virtual Reference Feedback Tuning-Batch Fitted Q-learning approach is experimentally validated for water level control of a multi input-multi output nonlinear constrained coupled two-tank system. Discussions on the observed control behavior are offered. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
On the critical forcing amplitude of forced nonlinear oscillators
NASA Astrophysics Data System (ADS)
Febbo, Mariano; Ji, Jinchen C.
2013-12-01
The steady-state response of forced single degree-of-freedom weakly nonlinear oscillators under primary resonance conditions can exhibit saddle-node bifurcations, jump and hysteresis phenomena, if the amplitude of the excitation exceeds a certain value. This critical value of excitation amplitude or critical forcing amplitude plays an important role in determining the occurrence of saddle-node bifurcations in the frequency-response curve. This work develops an alternative method to determine the critical forcing amplitude for single degree-of-freedom nonlinear oscillators. Based on Lagrange multipliers approach, the proposed method considers the calculation of the critical forcing amplitude as an optimization problem with constraints that are imposed by the existence of locations of vertical tangency. In comparison with the Gröbner basis method, the proposed approach is more straightforward and thus easy to apply for finding the critical forcing amplitude both analytically and numerically. Three examples are given to confirm the validity of the theoretical predictions. The first two present the analytical form for the critical forcing amplitude and the third one is an example of a numerically computed solution.
A New Newton-Like Iterative Method for Roots of Analytic Functions
ERIC Educational Resources Information Center
Otolorin, Olayiwola
2005-01-01
A new Newton-like iterative formula for the solution of non-linear equations is proposed. To derive the formula, the convergence criteria of the one-parameter iteration formula, and also the quasilinearization in the derivation of Newton's formula are reviewed. The result is a new formula which eliminates the limitations of other methods. There is…
NASA Astrophysics Data System (ADS)
Liu, Jian; Ruan, Xiaoe
2017-07-01
This paper develops two kinds of derivative-type networked iterative learning control (NILC) schemes for repetitive discrete-time systems with stochastic communication delay occurred in input and output channels and modelled as 0-1 Bernoulli-type stochastic variable. In the two schemes, the delayed signal of the current control input is replaced by the synchronous input utilised at the previous iteration, whilst for the delayed signal of the system output the one scheme substitutes it by the synchronous predetermined desired trajectory and the other takes it by the synchronous output at the previous operation, respectively. In virtue of the mathematical expectation, the tracking performance is analysed which exhibits that for both the linear time-invariant and nonlinear affine systems the two kinds of NILCs are convergent under the assumptions that the probabilities of communication delays are adequately constrained and the product of the input-output coupling matrices is full-column rank. Last, two illustrative examples are presented to demonstrate the effectiveness and validity of the proposed NILC schemes.
NASA Astrophysics Data System (ADS)
Khawaja, U. Al; Al-Refai, M.; Shchedrin, Gavriil; Carr, Lincoln D.
2018-06-01
Fractional nonlinear differential equations present an interplay between two common and important effective descriptions used to simplify high dimensional or more complicated theories: nonlinearity and fractional derivatives. These effective descriptions thus appear commonly in physical and mathematical modeling. We present a new series method providing systematic controlled accuracy for solutions of fractional nonlinear differential equations, including the fractional nonlinear Schrödinger equation and the fractional nonlinear diffusion equation. The method relies on spatially iterative use of power series expansions. Our approach permits an arbitrarily large radius of convergence and thus solves the typical divergence problem endemic to power series approaches. In the specific case of the fractional nonlinear Schrödinger equation we find fractional generalizations of cnoidal waves of Jacobi elliptic functions as well as a fractional bright soliton. For the fractional nonlinear diffusion equation we find the combination of fractional and nonlinear effects results in a more strongly localized solution which nevertheless still exhibits power law tails, albeit at a much lower density.
A new Newton-like method for solving nonlinear equations.
Saheya, B; Chen, Guo-Qing; Sui, Yun-Kang; Wu, Cai-Ying
2016-01-01
This paper presents an iterative scheme for solving nonline ar equations. We establish a new rational approximation model with linear numerator and denominator which has generalizes the local linear model. We then employ the new approximation for nonlinear equations and propose an improved Newton's method to solve it. The new method revises the Jacobian matrix by a rank one matrix each iteration and obtains the quadratic convergence property. The numerical performance and comparison show that the proposed method is efficient.
Direct Iterative Nonlinear Inversion by Multi-frequency T-matrix Completion
NASA Astrophysics Data System (ADS)
Jakobsen, M.; Wu, R. S.
2016-12-01
Researchers in the mathematical physics community have recently proposed a conceptually new method for solving nonlinear inverse scattering problems (like FWI) which is inspired by the theory of nonlocality of physical interactions. The conceptually new method, which may be referred to as the T-matrix completion method, is very interesting since it is not based on linearization at any stage. Also, there are no gradient vectors or (inverse) Hessian matrices to calculate. However, the convergence radius of this promising T-matrix completion method is seriously restricted by it's use of single-frequency scattering data only. In this study, we have developed a modified version of the T-matrix completion method which we believe is more suitable for applications to nonlinear inverse scattering problems in (exploration) seismology, because it makes use of multi-frequency data. Essentially, we have simplified the single-frequency T-matrix completion method of Levinson and Markel and combined it with the standard sequential frequency inversion (multi-scale regularization) method. For each frequency, we first estimate the experimental T-matrix by using the Moore-Penrose pseudo inverse concept. Then this experimental T-matrix is used to initiate an iterative procedure for successive estimation of the scattering potential and the T-matrix using the Lippmann-Schwinger for the nonlinear relation between these two quantities. The main physical requirements in the basic iterative cycle is that the T-matrix should be data-compatible and the scattering potential operator should be dominantly local; although a non-local scattering potential operator is allowed in the intermediate iterations. In our simplified T-matrix completion strategy, we ensure that the T-matrix updates are always data compatible simply by adding a suitable correction term in the real space coordinate representation. The use of singular-value decomposition representations are not required in our formulation since we have developed an efficient domain decomposition method. The results of several numerical experiments for the SEG/EAGE salt model illustrate the importance of using multi-frequency data when performing frequency domain full waveform inversion in strongly scattering media via the new concept of T-matrix completion.
Chimera states in two-dimensional networks of locally coupled oscillators
NASA Astrophysics Data System (ADS)
Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.
2018-02-01
Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera states in detail over a large range of coupling parameter. The existence of chimera states is confirmed by instantaneous angular frequency, order parameter and strength of incoherence.
Chimera states in two-dimensional networks of locally coupled oscillators.
Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K; Ghosh, Dibakar; Lakshmanan, M
2018-02-01
Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera states in detail over a large range of coupling parameter. The existence of chimera states is confirmed by instantaneous angular frequency, order parameter and strength of incoherence.
Glaholt, Stephen P; Chen, Celia Y; Demidenko, Eugene; Bugge, Deenie M; Folt, Carol L; Shaw, Joseph R
2012-08-15
The study of stressor interactions by eco-toxicologists using nonlinear response variables is limited by required amounts of a priori knowledge, complexity of experimental designs, the use of linear models, and the lack of use of optimal designs of nonlinear models to characterize complex interactions. Therefore, we developed AID, an adaptive-iterative design for eco-toxicologist to more accurately and efficiently examine complex multiple stressor interactions. AID incorporates the power of the general linear model and A-optimal criteria with an iterative process that: 1) minimizes the required amount of a priori knowledge, 2) simplifies the experimental design, and 3) quantifies both individual and interactive effects. Once a stable model is determined, the best fit model is identified and the direction and magnitude of stressors, individually and all combinations (including complex interactions) are quantified. To validate AID, we selected five commonly co-occurring components of polluted aquatic systems, three metal stressors (Cd, Zn, As) and two water chemistry parameters (pH, hardness) to be tested using standard acute toxicity tests in which Daphnia mortality is the (nonlinear) response variable. We found after the initial data input of experimental data, although literature values (e.g. EC-values) may also be used, and after only two iterations of AID, our dose response model was stable. The model ln(Cd)*ln(Zn) was determined the best predictor of Daphnia mortality response to the combined effects of Cd, Zn, As, pH, and hardness. This model was then used to accurately identify and quantify the strength of both greater- (e.g. As*Cd) and less-than additive interactions (e.g. Cd*Zn). Interestingly, our study found only binary interactions significant, not higher order interactions. We conclude that AID is more efficient and effective at assessing multiple stressor interactions than current methods. Other applications, including life-history endpoints commonly used by regulators, could benefit from AID's efficiency in assessing water quality criteria. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rani, Monika; Bhatti, Harbax S.; Singh, Vikramjeet
2017-11-01
In optical communication, the behavior of the ultrashort pulses of optical solitons can be described through nonlinear Schrodinger equation. This partial differential equation is widely used to contemplate a number of physically important phenomena, including optical shock waves, laser and plasma physics, quantum mechanics, elastic media, etc. The exact analytical solution of (1+n)-dimensional higher order nonlinear Schrodinger equation by He's variational iteration method has been presented. Our proposed solutions are very helpful in studying the solitary wave phenomena and ensure rapid convergent series and avoid round off errors. Different examples with graphical representations have been given to justify the capability of the method.
Radiofrequency pulse design using nonlinear gradient magnetic fields.
Kopanoglu, Emre; Constable, R Todd
2015-09-01
An iterative k-space trajectory and radiofrequency (RF) pulse design method is proposed for excitation using nonlinear gradient magnetic fields. The spatial encoding functions (SEFs) generated by nonlinear gradient fields are linearly dependent in Cartesian coordinates. Left uncorrected, this may lead to flip angle variations in excitation profiles. In the proposed method, SEFs (k-space samples) are selected using a matching pursuit algorithm, and the RF pulse is designed using a conjugate gradient algorithm. Three variants of the proposed approach are given: the full algorithm, a computationally cheaper version, and a third version for designing spoke-based trajectories. The method is demonstrated for various target excitation profiles using simulations and phantom experiments. The method is compared with other iterative (matching pursuit and conjugate gradient) and noniterative (coordinate-transformation and Jacobian-based) pulse design methods as well as uniform density spiral and EPI trajectories. The results show that the proposed method can increase excitation fidelity. An iterative method for designing k-space trajectories and RF pulses using nonlinear gradient fields is proposed. The method can either be used for selecting the SEFs individually to guide trajectory design, or can be adapted to design and optimize specific trajectories of interest. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Cartarius, Holger; Musslimani, Ziad H.; Schwarz, Lukas; Wunner, Günter
2018-03-01
The spectral renormalization method was introduced in 2005 as an effective way to compute ground states of nonlinear Schrödinger and Gross-Pitaevskii type equations. In this paper, we introduce an orthogonal spectral renormalization (OSR) method to compute ground and excited states (and their respective eigenvalues) of linear and nonlinear eigenvalue problems. The implementation of the algorithm follows four simple steps: (i) reformulate the underlying eigenvalue problem as a fixed-point equation, (ii) introduce a renormalization factor that controls the convergence properties of the iteration, (iii) perform a Gram-Schmidt orthogonalization process in order to prevent the iteration from converging to an unwanted mode, and (iv) compute the solution sought using a fixed-point iteration. The advantages of the OSR scheme over other known methods (such as Newton's and self-consistency) are (i) it allows the flexibility to choose large varieties of initial guesses without diverging, (ii) it is easy to implement especially at higher dimensions, and (iii) it can easily handle problems with complex and random potentials. The OSR method is implemented on benchmark Hermitian linear and nonlinear eigenvalue problems as well as linear and nonlinear non-Hermitian PT -symmetric models.
Non-linear eigensolver-based alternative to traditional SCF methods
NASA Astrophysics Data System (ADS)
Gavin, Brendan; Polizzi, Eric
2013-03-01
The self-consistent iterative procedure in Density Functional Theory calculations is revisited using a new, highly efficient and robust algorithm for solving the non-linear eigenvector problem (i.e. H(X)X = EX;) of the Kohn-Sham equations. This new scheme is derived from a generalization of the FEAST eigenvalue algorithm, and provides a fundamental and practical numerical solution for addressing the non-linearity of the Hamiltonian with the occupied eigenvectors. In contrast to SCF techniques, the traditional outer iterations are replaced by subspace iterations that are intrinsic to the FEAST algorithm, while the non-linearity is handled at the level of a projected reduced system which is orders of magnitude smaller than the original one. Using a series of numerical examples, it will be shown that our approach can outperform the traditional SCF mixing techniques such as Pulay-DIIS by providing a high converge rate and by converging to the correct solution regardless of the choice of the initial guess. We also discuss a practical implementation of the technique that can be achieved effectively using the FEAST solver package. This research is supported by NSF under Grant #ECCS-0846457 and Intel Corporation.
Band Structure Simulations of the Photoinduced Changes in the MgB₂:Cr Films.
Kityk, Iwan V; Fedorchuk, Anatolii O; Ozga, Katarzyna; AlZayed, Nasser S
2015-04-02
An approach for description of the photoinduced nonlinear optical effects in the superconducting MgB₂:Cr₂O₃ nanocrystalline film is proposed. It includes the molecular dynamics step-by-step optimization of the two separate crystalline phases. The principal role for the photoinduced nonlinear optical properties plays nanointerface between the two phases. The first modified layers possess a form of slightly modified perfect crystalline structure. The next layer is added to the perfect crystalline structure and the iteration procedure is repeated for the next layer. The total energy here is considered as a varied parameter. To avoid potential jumps on the borders we have carried out additional derivative procedure.
Transient response of an active nonlinear sandwich piezolaminated plate
NASA Astrophysics Data System (ADS)
Oveisi, Atta; Nestorović, Tamara
2017-04-01
In this paper, the dynamic modelling and active vibration control of a piezolaminated plate with geometrical nonlinearities are investigated using a semi-analytical approach. For active vibration control purposes, the core orthotropic elastic layer is assumed to be perfectly bonded with two piezo-layers on its top and bottom surfaces which act as sensor and actuator, respectively. In the modelling procedure, the piezo-layers are assumed to be connected via a proportional derivative (PD) feedback control law. Hamilton's principle is employed to acquire the strong form of the dynamic equation in terms of additional higher order strain expressions by means of von Karman strain-displacement correlation. The obtained nonlinear partial differential equation (NPDE) is converted to a system of nonlinear ordinary differential equations (NODEs) by engaging Galerkin method and using the orthogonality of shape functions for the simply supported boundary conditions. Then, the resulting system of NODEs is solved numerically by employing the built-in Mathematica function, "NDSolve". Next, the vibration attenuation performance is evaluated and sensitivity of the closed-loop system is investigated for several control parameters and the external disturbance parameters. The proposed solution in open loop configuration is validated by finite element (FE) package ABAQUS both in the spatial domain and for the time-/frequency-dependent response.
NASA Astrophysics Data System (ADS)
Peng, Heng; Liu, Yinghua; Chen, Haofeng
2018-05-01
In this paper, a novel direct method called the stress compensation method (SCM) is proposed for limit and shakedown analysis of large-scale elastoplastic structures. Without needing to solve the specific mathematical programming problem, the SCM is a two-level iterative procedure based on a sequence of linear elastic finite element solutions where the global stiffness matrix is decomposed only once. In the inner loop, the static admissible residual stress field for shakedown analysis is constructed. In the outer loop, a series of decreasing load multipliers are updated to approach to the shakedown limit multiplier by using an efficient and robust iteration control technique, where the static shakedown theorem is adopted. Three numerical examples up to about 140,000 finite element nodes confirm the applicability and efficiency of this method for two-dimensional and three-dimensional elastoplastic structures, with detailed discussions on the convergence and the accuracy of the proposed algorithm.
Explicit formulation of second and third order optical nonlinearity in the FDTD framework
NASA Astrophysics Data System (ADS)
Varin, Charles; Emms, Rhys; Bart, Graeme; Fennel, Thomas; Brabec, Thomas
2018-01-01
The finite-difference time-domain (FDTD) method is a flexible and powerful technique for rigorously solving Maxwell's equations. However, three-dimensional optical nonlinearity in current commercial and research FDTD softwares requires solving iteratively an implicit form of Maxwell's equations over the entire numerical space and at each time step. Reaching numerical convergence demands significant computational resources and practical implementation often requires major modifications to the core FDTD engine. In this paper, we present an explicit method to include second and third order optical nonlinearity in the FDTD framework based on a nonlinear generalization of the Lorentz dispersion model. A formal derivation of the nonlinear Lorentz dispersion equation is equally provided, starting from the quantum mechanical equations describing nonlinear optics in the two-level approximation. With the proposed approach, numerical integration of optical nonlinearity and dispersion in FDTD is intuitive, transparent, and fully explicit. A strong-field formulation is also proposed, which opens an interesting avenue for FDTD-based modelling of the extreme nonlinear optics phenomena involved in laser filamentation and femtosecond micromachining of dielectrics.
NASA Technical Reports Server (NTRS)
Cunningham, A. M., Jr.
1976-01-01
The feasibility of calculating steady mean flow solutions for nonlinear transonic flow over finite wings with a linear theory aerodynamic computer program is studied. The methodology is based on independent solutions for upper and lower surface pressures that are coupled through the external flow fields. Two approaches for coupling the solutions are investigated which include the diaphragm and the edge singularity method. The final method is a combination of both where a line source along the wing leading edge is used to account for blunt nose airfoil effects; and the upper and lower surface flow fields are coupled through a diaphragm in the plane of the wing. An iterative solution is used to arrive at the nonuniform flow solution for both nonlifting and lifting cases. Final results for a swept tapered wing in subcritical flow show that the method converges in three iterations and gives excellent agreement with experiment at alpha = 0 deg and 2 deg. Recommendations are made for development of a procedure for routine application.
NASA Astrophysics Data System (ADS)
Lasche, George; Coldwell, Robert; Metzger, Robert
2017-09-01
A new application (known as "VRF", or "Visual RobFit") for analysis of high-resolution gamma-ray spectra has been developed using non-linear fitting techniques to fit full-spectrum nuclide shapes. In contrast to conventional methods based on the results of an initial peak-search, the VRF analysis method forms, at each of many automated iterations, a spectrum-wide shape for each nuclide and, also at each iteration, it adjusts the activities of each nuclide, as well as user-enabled parameters of energy calibration, attenuation by up to three intervening or self-absorbing materials, peak width as a function of energy, full-energy peak efficiency, and coincidence summing until no better fit to the data can be obtained. This approach, which employs a new and significantly advanced underlying fitting engine especially adapted to nuclear spectra, allows identification of minor peaks that are masked by larger, overlapping peaks that would not otherwise be possible. The application and method are briefly described and two examples are presented.
NASA Technical Reports Server (NTRS)
Mironenko, G.
1972-01-01
Programs for the analyses of the free or forced, undamped vibrations of one or two elastically-coupled lumped parameter teams are presented. Bearing nonlinearities, casing and rotor distributed mass and elasticity, rotor imbalance, forcing functions, gyroscopic moments, rotary inertia, and shear and flexural deformations are all included in the system dynamics analysis. All bearings have nonlinear load displacement characteristics, the solution is achieved by iteration. Rotor imbalances allowed by such considerations as pilot tolerances and runouts as well as bearing clearances (allowing concail or cylindrical whirl) determine the forcing function magnitudes. The computer programs first obtain a solution wherein the bearings are treated as linear springs of given spring rates. Then, based upon the computed bearing reactions, new spring rates are predicted and another solution of the modified system is made. The iteration is continued until the changes to bearing spring rates and bearing reactions become negligibly small.
Analysis of complex neural circuits with nonlinear multidimensional hidden state models
Friedman, Alexander; Slocum, Joshua F.; Tyulmankov, Danil; Gibb, Leif G.; Altshuler, Alex; Ruangwises, Suthee; Shi, Qinru; Toro Arana, Sebastian E.; Beck, Dirk W.; Sholes, Jacquelyn E. C.; Graybiel, Ann M.
2016-01-01
A universal need in understanding complex networks is the identification of individual information channels and their mutual interactions under different conditions. In neuroscience, our premier example, networks made up of billions of nodes dynamically interact to bring about thought and action. Granger causality is a powerful tool for identifying linear interactions, but handling nonlinear interactions remains an unmet challenge. We present a nonlinear multidimensional hidden state (NMHS) approach that achieves interaction strength analysis and decoding of networks with nonlinear interactions by including latent state variables for each node in the network. We compare NMHS to Granger causality in analyzing neural circuit recordings and simulations, improvised music, and sociodemographic data. We conclude that NMHS significantly extends the scope of analyses of multidimensional, nonlinear networks, notably in coping with the complexity of the brain. PMID:27222584
Hou, Huazhou; Zhang, Qingling
2016-11-01
In this paper we investigate the finite-time synchronization for second-order multi-agent system via pinning exponent sliding mode control. Firstly, for the nonlinear multi-agent system, differential mean value theorem is employed to transfer the nonlinear system into linear system, then, by pinning only one node in the system with novel exponent sliding mode control, we can achieve synchronization in finite time. Secondly, considering the 3-DOF helicopter system with nonlinear dynamics and disturbances, the novel exponent sliding mode control protocol is applied to only one node to achieve the synchronization. Finally, the simulation results show the effectiveness and the advantages of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Adaptable Iterative and Recursive Kalman Filter Schemes
NASA Technical Reports Server (NTRS)
Zanetti, Renato
2014-01-01
Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.
Optimal control in adaptive optics modeling of nonlinear systems
NASA Astrophysics Data System (ADS)
Herrmann, J.
The problem of using an adaptive optics system to correct for nonlinear effects like thermal blooming is addressed using a model containing nonlinear lenses through which Gaussian beams are propagated. The best correction of this nonlinear system can be formulated as a deterministic open loop optimal control problem. This treatment gives a limit for the best possible correction. Aspects of adaptive control and servo systems are not included at this stage. An attempt is made to determine that control in the transmitter plane which minimizes the time averaged area or maximizes the fluence in the target plane. The standard minimization procedure leads to a two-point-boundary-value problem, which is ill-conditioned in the case. The optimal control problem was solved using an iterative gradient technique. An instantaneous correction is introduced and compared with the optimal correction. The results of the calculations show that for short times or weak nonlinearities the instantaneous correction is close to the optimal correction, but that for long times and strong nonlinearities a large difference develops between the two types of correction. For these cases the steady state correction becomes better than the instantaneous correction and approaches the optimum correction.
Nonlinearity response correction in phase-shifting deflectometry
NASA Astrophysics Data System (ADS)
Nguyen, Manh The; Kang, Pilseong; Ghim, Young-Sik; Rhee, Hyug-Gyo
2018-04-01
Owing to the nonlinearity response of digital devices such as screens and cameras in phase-shifting deflectometry, non-sinusoidal phase-shifted fringe patterns are generated and additional measurement errors are introduced. In this paper, a new deflectometry technique is described for overcoming these problems using a pre-distorted pattern combined with an advanced iterative algorithm. The experiment results show that this method can reconstruct the 3D surface map of a sample without fringe print-through caused by the nonlinearity response of digital devices. The proposed technique is verified by measuring the surface height variations in a deformable mirror and comparing them with the measurement result obtained using a coordinate measuring machine. The difference between the two measurement results is estimated to be less than 13 µm.
A triangular thin shell finite element: Nonlinear analysis. [structural analysis
NASA Technical Reports Server (NTRS)
Thomas, G. R.; Gallagher, R. H.
1975-01-01
Aspects of the formulation of a triangular thin shell finite element which pertain to geometrically nonlinear (small strain, finite displacement) behavior are described. The procedure for solution of the resulting nonlinear algebraic equations combines a one-step incremental (tangent stiffness) approach with one iteration in the Newton-Raphson mode. A method is presented which permits a rational estimation of step size in this procedure. Limit points are calculated by means of a superposition scheme coupled to the incremental side of the solution procedure while bifurcation points are calculated through a process of interpolation of the determinants of the tangent-stiffness matrix. Numerical results are obtained for a flat plate and two curved shell problems and are compared with alternative solutions.
Gauss Seidel-type methods for energy states of a multi-component Bose Einstein condensate
NASA Astrophysics Data System (ADS)
Chang, Shu-Ming; Lin, Wen-Wei; Shieh, Shih-Feng
2005-01-01
In this paper, we propose two iterative methods, a Jacobi-type iteration (JI) and a Gauss-Seidel-type iteration (GSI), for the computation of energy states of the time-independent vector Gross-Pitaevskii equation (VGPE) which describes a multi-component Bose-Einstein condensate (BEC). A discretization of the VGPE leads to a nonlinear algebraic eigenvalue problem (NAEP). We prove that the GSI method converges locally and linearly to a solution of the NAEP if and only if the associated minimized energy functional problem has a strictly local minimum. The GSI method can thus be used to compute ground states and positive bound states, as well as the corresponding energies of a multi-component BEC. Numerical experience shows that the GSI converges much faster than JI and converges globally within 10-20 steps.
Design of the DEMO Fusion Reactor Following ITER.
Garabedian, Paul R; McFadden, Geoffrey B
2009-01-01
Runs of the NSTAB nonlinear stability code show there are many three-dimensional (3D) solutions of the advanced tokamak problem subject to axially symmetric boundary conditions. These numerical simulations based on mathematical equations in conservation form predict that the ITER international tokamak project will encounter persistent disruptions and edge localized mode (ELMS) crashes. Test particle runs of the TRAN transport code suggest that for quasineutrality to prevail in tokamaks a certain minimum level of 3D asymmetry of the magnetic spectrum is required which is comparable to that found in quasiaxially symmetric (QAS) stellarators. The computational theory suggests that a QAS stellarator with two field periods and proportions like those of ITER is a good candidate for a fusion reactor. For a demonstration reactor (DEMO) we seek an experiment that combines the best features of ITER, with a system of QAS coils providing external rotational transform, which is a measure of the poloidal field. We have discovered a configuration with unusually good quasisymmetry that is ideal for this task.
Design of the DEMO Fusion Reactor Following ITER
Garabedian, Paul R.; McFadden, Geoffrey B.
2009-01-01
Runs of the NSTAB nonlinear stability code show there are many three-dimensional (3D) solutions of the advanced tokamak problem subject to axially symmetric boundary conditions. These numerical simulations based on mathematical equations in conservation form predict that the ITER international tokamak project will encounter persistent disruptions and edge localized mode (ELMS) crashes. Test particle runs of the TRAN transport code suggest that for quasineutrality to prevail in tokamaks a certain minimum level of 3D asymmetry of the magnetic spectrum is required which is comparable to that found in quasiaxially symmetric (QAS) stellarators. The computational theory suggests that a QAS stellarator with two field periods and proportions like those of ITER is a good candidate for a fusion reactor. For a demonstration reactor (DEMO) we seek an experiment that combines the best features of ITER, with a system of QAS coils providing external rotational transform, which is a measure of the poloidal field. We have discovered a configuration with unusually good quasisymmetry that is ideal for this task. PMID:27504224
Fast in-memory elastic full-waveform inversion using consumer-grade GPUs
NASA Astrophysics Data System (ADS)
Sivertsen Bergslid, Tore; Birger Raknes, Espen; Arntsen, Børge
2017-04-01
Full-waveform inversion (FWI) is a technique to estimate subsurface properties by using the recorded waveform produced by a seismic source and applying inverse theory. This is done through an iterative optimization procedure, where each iteration requires solving the wave equation many times, then trying to minimize the difference between the modeled and the measured seismic data. Having to model many of these seismic sources per iteration means that this is a highly computationally demanding procedure, which usually involves writing a lot of data to disk. We have written code that does forward modeling and inversion entirely in memory. A typical HPC cluster has many more CPUs than GPUs. Since FWI involves modeling many seismic sources per iteration, the obvious approach is to parallelize the code on a source-by-source basis, where each core of the CPU performs one modeling, and do all modelings simultaneously. With this approach, the GPU is already at a major disadvantage in pure numbers. Fortunately, GPUs can more than make up for this hardware disadvantage by performing each modeling much faster than a CPU. Another benefit of parallelizing each individual modeling is that it lets each modeling use a lot more RAM. If one node has 128 GB of RAM and 20 CPU cores, each modeling can use only 6.4 GB RAM if one is running the node at full capacity with source-by-source parallelization on the CPU. A parallelized per-source code using GPUs can use 64 GB RAM per modeling. Whenever a modeling uses more RAM than is available and has to start using regular disk space the runtime increases dramatically, due to slow file I/O. The extremely high computational speed of the GPUs combined with the large amount of RAM available for each modeling lets us do high frequency FWI for fairly large models very quickly. For a single modeling, our GPU code outperforms the single-threaded CPU-code by a factor of about 75. Successful inversions have been run on data with frequencies up to 40 Hz for a model of 2001 by 600 grid points with 5 m grid spacing and 5000 time steps, in less than 2.5 minutes per source. In practice, using 15 nodes (30 GPUs) to model 101 sources, each iteration took approximately 9 minutes. For reference, the same inversion run with our CPU code uses two hours per iteration. This was done using only a very simple wavefield interpolation technique, saving every second timestep. Using a more sophisticated checkpointing or wavefield reconstruction method would allow us to increase this model size significantly. Our results show that ordinary gaming GPUs are a viable alternative to the expensive professional GPUs often used today, when performing large scale modeling and inversion in geophysics.
An extended harmonic balance method based on incremental nonlinear control parameters
NASA Astrophysics Data System (ADS)
Khodaparast, Hamed Haddad; Madinei, Hadi; Friswell, Michael I.; Adhikari, Sondipon; Coggon, Simon; Cooper, Jonathan E.
2017-02-01
A new formulation for calculating the steady-state responses of multiple-degree-of-freedom (MDOF) non-linear dynamic systems due to harmonic excitation is developed. This is aimed at solving multi-dimensional nonlinear systems using linear equations. Nonlinearity is parameterised by a set of 'non-linear control parameters' such that the dynamic system is effectively linear for zero values of these parameters and nonlinearity increases with increasing values of these parameters. Two sets of linear equations which are formed from a first-order truncated Taylor series expansion are developed. The first set of linear equations provides the summation of sensitivities of linear system responses with respect to non-linear control parameters and the second set are recursive equations that use the previous responses to update the sensitivities. The obtained sensitivities of steady-state responses are then used to calculate the steady state responses of non-linear dynamic systems in an iterative process. The application and verification of the method are illustrated using a non-linear Micro-Electro-Mechanical System (MEMS) subject to a base harmonic excitation. The non-linear control parameters in these examples are the DC voltages that are applied to the electrodes of the MEMS devices.
NASA Astrophysics Data System (ADS)
Zotos, Euaggelos E.
2018-06-01
The circular Sitnikov problem, where the two primary bodies are prolate or oblate spheroids, is numerically investigated. In particular, the basins of convergence on the complex plane are revealed by using a large collection of numerical methods of several order. We consider four cases, regarding the value of the oblateness coefficient which determines the nature of the roots (attractors) of the system. For all cases we use the iterative schemes for performing a thorough and systematic classification of the nodes on the complex plane. The distribution of the iterations as well as the probability and their correlations with the corresponding basins of convergence are also discussed. Our numerical computations indicate that most of the iterative schemes provide relatively similar convergence structures on the complex plane. However, there are some numerical methods for which the corresponding basins of attraction are extremely complicated with highly fractal basin boundaries. Moreover, it is proved that the efficiency strongly varies between the numerical methods.
HeinzelCluster: accelerated reconstruction for FORE and OSEM3D.
Vollmar, S; Michel, C; Treffert, J T; Newport, D F; Casey, M; Knöss, C; Wienhard, K; Liu, X; Defrise, M; Heiss, W D
2002-08-07
Using iterative three-dimensional (3D) reconstruction techniques for reconstruction of positron emission tomography (PET) is not feasible on most single-processor machines due to the excessive computing time needed, especially so for the large sinogram sizes of our high-resolution research tomograph (HRRT). In our first approach to speed up reconstruction time we transform the 3D scan into the format of a two-dimensional (2D) scan with sinograms that can be reconstructed independently using Fourier rebinning (FORE) and a fast 2D reconstruction method. On our dedicated reconstruction cluster (seven four-processor systems, Intel PIII@700 MHz, switched fast ethernet and Myrinet, Windows NT Server), we process these 2D sinograms in parallel. We have achieved a speedup > 23 using 26 processors and also compared results for different communication methods (RPC, Syngo, Myrinet GM). The other approach is to parallelize OSEM3D (implementation of C Michel), which has produced the best results for HRRT data so far and is more suitable for an adequate treatment of the sinogram gaps that result from the detector geometry of the HRRT. We have implemented two levels of parallelization for four dedicated cluster (a shared memory fine-grain level on each node utilizing all four processors and a coarse-grain level allowing for 15 nodes) reducing the time for one core iteration from over 7 h to about 35 min.
Implementation on a nonlinear concrete cracking algorithm in NASTRAN
NASA Technical Reports Server (NTRS)
Herting, D. N.; Herendeen, D. L.; Hoesly, R. L.; Chang, H.
1976-01-01
A computer code for the analysis of reinforced concrete structures was developed using NASTRAN as a basis. Nonlinear iteration procedures were developed for obtaining solutions with a wide variety of loading sequences. A direct access file system was used to save results at each load step to restart within the solution module for further analysis. A multi-nested looping capability was implemented to control the iterations and change the loads. The basis for the analysis is a set of mutli-layer plate elements which allow local definition of materials and cracking properties.
Constructing networks from a dynamical system perspective for multivariate nonlinear time series.
Nakamura, Tomomichi; Tanizawa, Toshihiro; Small, Michael
2016-03-01
We describe a method for constructing networks for multivariate nonlinear time series. We approach the interaction between the various scalar time series from a deterministic dynamical system perspective and provide a generic and algorithmic test for whether the interaction between two measured time series is statistically significant. The method can be applied even when the data exhibit no obvious qualitative similarity: a situation in which the naive method utilizing the cross correlation function directly cannot correctly identify connectivity. To establish the connectivity between nodes we apply the previously proposed small-shuffle surrogate (SSS) method, which can investigate whether there are correlation structures in short-term variabilities (irregular fluctuations) between two data sets from the viewpoint of deterministic dynamical systems. The procedure to construct networks based on this idea is composed of three steps: (i) each time series is considered as a basic node of a network, (ii) the SSS method is applied to verify the connectivity between each pair of time series taken from the whole multivariate time series, and (iii) the pair of nodes is connected with an undirected edge when the null hypothesis cannot be rejected. The network constructed by the proposed method indicates the intrinsic (essential) connectivity of the elements included in the system or the underlying (assumed) system. The method is demonstrated for numerical data sets generated by known systems and applied to several experimental time series.
An implicit-iterative solution of the heat conduction equation with a radiation boundary condition
NASA Technical Reports Server (NTRS)
Williams, S. D.; Curry, D. M.
1977-01-01
For the problem of predicting one-dimensional heat transfer between conducting and radiating mediums by an implicit finite difference method, four different formulations were used to approximate the surface radiation boundary condition while retaining an implicit formulation for the interior temperature nodes. These formulations are an explicit boundary condition, a linearized boundary condition, an iterative boundary condition, and a semi-iterative boundary method. The results of these methods in predicting surface temperature on the space shuttle orbiter thermal protection system model under a variety of heating rates were compared. The iterative technique caused the surface temperature to be bounded at each step. While the linearized and explicit methods were generally more efficient, the iterative and semi-iterative techniques provided a realistic surface temperature response without requiring step size control techniques.
Global Optimal Trajectory in Chaos and NP-Hardness
NASA Astrophysics Data System (ADS)
Latorre, Vittorio; Gao, David Yang
This paper presents an unconventional theory and method for solving general nonlinear dynamical systems. Instead of the direct iterative methods, the discretized nonlinear system is first formulated as a global optimization problem via the least squares method. A newly developed canonical duality theory shows that this nonconvex minimization problem can be solved deterministically in polynomial time if a global optimality condition is satisfied. The so-called pseudo-chaos produced by linear iterative methods are mainly due to the intrinsic numerical error accumulations. Otherwise, the global optimization problem could be NP-hard and the nonlinear system can be really chaotic. A conjecture is proposed, which reveals the connection between chaos in nonlinear dynamics and NP-hardness in computer science. The methodology and the conjecture are verified by applications to the well-known logistic equation, a forced memristive circuit and the Lorenz system. Computational results show that the canonical duality theory can be used to identify chaotic systems and to obtain realistic global optimal solutions in nonlinear dynamical systems. The method and results presented in this paper should bring some new insights into nonlinear dynamical systems and NP-hardness in computational complexity theory.
Successive Over-Relaxation Technique for High-Performance Blind Image Deconvolution
2015-06-08
deconvolution, space surveillance, Gauss - Seidel iteration 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18, NUMBER OF PAGES 5...sensible approximate solutions to the ill-posed nonlinear inverse problem. These solutions are addresses as fixed points of the iteration which consists in...alternating approximations (AA) for the object and for the PSF performed with a prescribed number of inner iterative descents from trivial (zero
NASA Technical Reports Server (NTRS)
Maskew, B.
1982-01-01
VSAERO is a computer program used to predict the nonlinear aerodynamic characteristics of arbitrary three-dimensional configurations in subsonic flow. Nonlinear effects of vortex separation and vortex surface interaction are treated in an iterative wake-shape calculation procedure, while the effects of viscosity are treated in an iterative loop coupling potential-flow and integral boundary-layer calculations. The program employs a surface singularity panel method using quadrilateral panels on which doublet and source singularities are distributed in a piecewise constant form. This user's manual provides a brief overview of the mathematical model, instructions for configuration modeling and a description of the input and output data. A listing of a sample case is included.
Nonlinear analysis of composite thin-walled helicopter blades
NASA Astrophysics Data System (ADS)
Kalfon, J. P.; Rand, O.
Nonlinear theoretical modeling of laminated thin-walled composite helicopter rotor blades is presented. The derivation is based on nonlinear geometry with a detailed treatment of the body loads in the axial direction which are induced by the rotation. While the in-plane warping is neglected, a three-dimensional generic out-of-plane warping distribution is included. The formulation may also handle varying thicknesses and mass distribution along the cross-sectional walls. The problem is solved by successive iterations in which a system of equations is constructed and solved for each cross-section. In this method, the differential equations in the spanwise directions are formulated and solved using a finite-differences scheme which allows simple adaptation of the spanwise discretization mesh during iterations.
Aslam, Muhammad; Hu, Xiaopeng; Wang, Fan
2017-12-13
Smart reconfiguration of a dynamic networking environment is offered by the central control of Software-Defined Networking (SDN). Centralized SDN-based management architectures are capable of retrieving global topology intelligence and decoupling the forwarding plane from the control plane. Routing protocols developed for conventional Wireless Sensor Networks (WSNs) utilize limited iterative reconfiguration methods to optimize environmental reporting. However, the challenging networking scenarios of WSNs involve a performance overhead due to constant periodic iterative reconfigurations. In this paper, we propose the SDN-based Application-aware Centralized adaptive Flow Iterative Reconfiguring (SACFIR) routing protocol with the centralized SDN iterative solver controller to maintain the load-balancing between flow reconfigurations and flow allocation cost. The proposed SACFIR's routing protocol offers a unique iterative path-selection algorithm, which initially computes suitable clustering based on residual resources at the control layer and then implements application-aware threshold-based multi-hop report transmissions on the forwarding plane. The operation of the SACFIR algorithm is centrally supervised by the SDN controller residing at the Base Station (BS). This paper extends SACFIR to SDN-based Application-aware Main-value Centralized adaptive Flow Iterative Reconfiguring (SAMCFIR) to establish both proactive and reactive reporting. The SAMCFIR transmission phase enables sensor nodes to trigger direct transmissions for main-value reports, while in the case of SACFIR, all reports follow computed routes. Our SDN-enabled proposed models adjust the reconfiguration period according to the traffic burden on sensor nodes, which results in heterogeneity awareness, load-balancing and application-specific reconfigurations of WSNs. Extensive experimental simulation-based results show that SACFIR and SAMCFIR yield the maximum scalability, network lifetime and stability period when compared to existing routing protocols.
Hu, Xiaopeng; Wang, Fan
2017-01-01
Smart reconfiguration of a dynamic networking environment is offered by the central control of Software-Defined Networking (SDN). Centralized SDN-based management architectures are capable of retrieving global topology intelligence and decoupling the forwarding plane from the control plane. Routing protocols developed for conventional Wireless Sensor Networks (WSNs) utilize limited iterative reconfiguration methods to optimize environmental reporting. However, the challenging networking scenarios of WSNs involve a performance overhead due to constant periodic iterative reconfigurations. In this paper, we propose the SDN-based Application-aware Centralized adaptive Flow Iterative Reconfiguring (SACFIR) routing protocol with the centralized SDN iterative solver controller to maintain the load-balancing between flow reconfigurations and flow allocation cost. The proposed SACFIR’s routing protocol offers a unique iterative path-selection algorithm, which initially computes suitable clustering based on residual resources at the control layer and then implements application-aware threshold-based multi-hop report transmissions on the forwarding plane. The operation of the SACFIR algorithm is centrally supervised by the SDN controller residing at the Base Station (BS). This paper extends SACFIR to SDN-based Application-aware Main-value Centralized adaptive Flow Iterative Reconfiguring (SAMCFIR) to establish both proactive and reactive reporting. The SAMCFIR transmission phase enables sensor nodes to trigger direct transmissions for main-value reports, while in the case of SACFIR, all reports follow computed routes. Our SDN-enabled proposed models adjust the reconfiguration period according to the traffic burden on sensor nodes, which results in heterogeneity awareness, load-balancing and application-specific reconfigurations of WSNs. Extensive experimental simulation-based results show that SACFIR and SAMCFIR yield the maximum scalability, network lifetime and stability period when compared to existing routing protocols. PMID:29236031
Multiresolution MR elastography using nonlinear inversion
McGarry, M. D. J.; Van Houten, E. E. W.; Johnson, C. L.; Georgiadis, J. G.; Sutton, B. P.; Weaver, J. B.; Paulsen, K. D.
2012-01-01
Purpose: Nonlinear inversion (NLI) in MR elastography requires discretization of the displacement field for a finite element (FE) solution of the “forward problem”, and discretization of the unknown mechanical property field for the iterative solution of the “inverse problem”. The resolution requirements for these two discretizations are different: the forward problem requires sufficient resolution of the displacement FE mesh to ensure convergence, whereas lowering the mechanical property resolution in the inverse problem stabilizes the mechanical property estimates in the presence of measurement noise. Previous NLI implementations use the same FE mesh to support the displacement and property fields, requiring a trade-off between the competing resolution requirements. Methods: This work implements and evaluates multiresolution FE meshes for NLI elastography, allowing independent discretizations of the displacements and each mechanical property parameter to be estimated. The displacement resolution can then be selected to ensure mesh convergence, and the resolution of the property meshes can be independently manipulated to control the stability of the inversion. Results: Phantom experiments indicate that eight nodes per wavelength (NPW) are sufficient for accurate mechanical property recovery, whereas mechanical property estimation from 50 Hz in vivo brain data stabilizes once the displacement resolution reaches 1.7 mm (approximately 19 NPW). Viscoelastic mechanical property estimates of in vivo brain tissue show that subsampling the loss modulus while holding the storage modulus resolution constant does not substantially alter the storage modulus images. Controlling the ratio of the number of measurements to unknown mechanical properties by subsampling the mechanical property distributions (relative to the data resolution) improves the repeatability of the property estimates, at a cost of modestly decreased spatial resolution. Conclusions: Multiresolution NLI elastography provides a more flexible framework for mechanical property estimation compared to previous single mesh implementations. PMID:23039674
NASA Astrophysics Data System (ADS)
Zhang, Chuan; Wang, Xingyuan; Luo, Chao; Li, Junqiu; Wang, Chunpeng
2018-03-01
In this paper, we focus on the robust outer synchronization problem between two nonlinear complex networks with parametric disturbances and mixed time-varying delays. Firstly, a general complex network model is proposed. Besides the nonlinear couplings, the network model in this paper can possess parametric disturbances, internal time-varying delay, discrete time-varying delay and distributed time-varying delay. Then, according to the robust control strategy, linear matrix inequality and Lyapunov stability theory, several outer synchronization protocols are strictly derived. Simple linear matrix controllers are designed to driver the response network synchronize to the drive network. Additionally, our results can be applied on the complex networks without parametric disturbances. Finally, by utilizing the delayed Lorenz chaotic system as the dynamics of all nodes, simulation examples are given to demonstrate the effectiveness of our theoretical results.
Chaos crisis and bistability of self-pulsing dynamics in a laser diode with phase-conjugate feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virte, Martin; Karsaklian Dal Bosco, Andreas; Wolfersberger, Delphine
2011-10-15
A laser diode subject to a phase-conjugate optical feedback can exhibit rich nonlinear dynamics and chaos. We report here on two bifurcation mechanisms that appear when increasing the amount of light being fed back to the laser. First, we report on a full suppression of chaos from a crisis induced by a saddle-node bifurcation on self-pulsing, so-called external-cavity-mode solutions (ECMs). Second, the feedback-dependent torus and saddle-node bifurcations on ECMs may be responsible for large regions of bistability between ECMs of different and high (beyond gigahertz) frequencies.
An interative solution of an integral equation for radiative transfer by using variational technique
NASA Technical Reports Server (NTRS)
Yoshikawa, K. K.
1973-01-01
An effective iterative technique is introduced to solve a nonlinear integral equation frequently associated with radiative transfer problems. The problem is formulated in such a way that each step of an iterative sequence requires the solution of a linear integral equation. The advantage of a previously introduced variational technique which utilizes a stepwise constant trial function is exploited to cope with the nonlinear problem. The method is simple and straightforward. Rapid convergence is obtained by employing a linear interpolation of the iterative solutions. Using absorption coefficients of the Milne-Eddington type, which are applicable to some planetary atmospheric radiation problems. Solutions are found in terms of temperature and radiative flux. These solutions are presented numerically and show excellent agreement with other numerical solutions.
Frequency-domain full-waveform inversion with non-linear descent directions
NASA Astrophysics Data System (ADS)
Geng, Yu; Pan, Wenyong; Innanen, Kristopher A.
2018-05-01
Full-waveform inversion (FWI) is a highly non-linear inverse problem, normally solved iteratively, with each iteration involving an update constructed through linear operations on the residuals. Incorporating a flexible degree of non-linearity within each update may have important consequences for convergence rates, determination of low model wavenumbers and discrimination of parameters. We examine one approach for doing so, wherein higher order scattering terms are included within the sensitivity kernel during the construction of the descent direction, adjusting it away from that of the standard Gauss-Newton approach. These scattering terms are naturally admitted when we construct the sensitivity kernel by varying not the current but the to-be-updated model at each iteration. Linear and/or non-linear inverse scattering methodologies allow these additional sensitivity contributions to be computed from the current data residuals within any given update. We show that in the presence of pre-critical reflection data, the error in a second-order non-linear update to a background of s0 is, in our scheme, proportional to at most (Δs/s0)3 in the actual parameter jump Δs causing the reflection. In contrast, the error in a standard Gauss-Newton FWI update is proportional to (Δs/s0)2. For numerical implementation of more complex cases, we introduce a non-linear frequency-domain scheme, with an inner and an outer loop. A perturbation is determined from the data residuals within the inner loop, and a descent direction based on the resulting non-linear sensitivity kernel is computed in the outer loop. We examine the response of this non-linear FWI using acoustic single-parameter synthetics derived from the Marmousi model. The inverted results vary depending on data frequency ranges and initial models, but we conclude that the non-linear FWI has the capability to generate high-resolution model estimates in both shallow and deep regions, and to converge rapidly, relative to a benchmark FWI approach involving the standard gradient.
NASA Astrophysics Data System (ADS)
Allen, Jeffery M.
This research involves a few First-Order System Least Squares (FOSLS) formulations of a nonlinear-Stokes flow model for ice sheets. In Glen's flow law, a commonly used constitutive equation for ice rheology, the viscosity becomes infinite as the velocity gradients approach zero. This typically occurs near the ice surface or where there is basal sliding. The computational difficulties associated with the infinite viscosity are often overcome by an arbitrary modification of Glen's law that bounds the maximum viscosity. The FOSLS formulations developed in this thesis are designed to overcome this difficulty. The first FOSLS formulation is just the first-order representation of the standard nonlinear, full-Stokes and is known as the viscosity formulation and suffers from the problem above. To overcome the problem of infinite viscosity, two new formulation exploit the fact that the deviatoric stress, the product of viscosity and strain-rate, approaches zero as the viscosity goes to infinity. Using the deviatoric stress as the basis for a first-order system results in the the basic fluidity system. Augmenting the basic fluidity system with a curl-type equation results in the augmented fluidity system, which is more amenable to the iterative solver, Algebraic MultiGrid (AMG). A Nested Iteration (NI) Newton-FOSLS-AMG approach is used to solve the nonlinear-Stokes problems. Several test problems from the ISMIP set of benchmarks is examined to test the effectiveness of the various formulations. These test show that the viscosity based method is more expensive and less accurate. The basic fluidity system shows optimal finite-element convergence. However, there is not yet an efficient iterative solver for this type of system and this is the topic of future research. Alternatively, AMG performs better on the augmented fluidity system when using specific scaling. Unfortunately, this scaling results in reduced finite-element convergence.
Pseudo-random dynamic address configuration (PRDAC) algorithm for mobile ad hoc networks
NASA Astrophysics Data System (ADS)
Wu, Shaochuan; Tan, Xuezhi
2007-11-01
By analyzing all kinds of address configuration algorithms, this paper provides a new pseudo-random dynamic address configuration (PRDAC) algorithm for mobile ad hoc networks. Based on PRDAC, the first node that initials this network randomly chooses a nonlinear shift register that can generates an m-sequence. When another node joins this network, the initial node will act as an IP address configuration sever to compute an IP address according to this nonlinear shift register, and then allocates this address and tell the generator polynomial of this shift register to this new node. By this means, when other node joins this network, any node that has obtained an IP address can act as a server to allocate address to this new node. PRDAC can also efficiently avoid IP conflicts and deal with network partition and merge as same as prophet address (PA) allocation and dynamic configuration and distribution protocol (DCDP). Furthermore, PRDAC has less algorithm complexity, less computational complexity and more sufficient assumption than PA. In addition, PRDAC radically avoids address conflicts and maximizes the utilization rate of IP addresses. Analysis and simulation results show that PRDAC has rapid convergence, low overhead and immune from topological structures.
Mehraeen, Shahab; Dierks, Travis; Jagannathan, S; Crow, Mariesa L
2013-12-01
In this paper, the nearly optimal solution for discrete-time (DT) affine nonlinear control systems in the presence of partially unknown internal system dynamics and disturbances is considered. The approach is based on successive approximate solution of the Hamilton-Jacobi-Isaacs (HJI) equation, which appears in optimal control. Successive approximation approach for updating control and disturbance inputs for DT nonlinear affine systems are proposed. Moreover, sufficient conditions for the convergence of the approximate HJI solution to the saddle point are derived, and an iterative approach to approximate the HJI equation using a neural network (NN) is presented. Then, the requirement of full knowledge of the internal dynamics of the nonlinear DT system is relaxed by using a second NN online approximator. The result is a closed-loop optimal NN controller via offline learning. A numerical example is provided illustrating the effectiveness of the approach.
Nonlinear Attitude Filtering Methods
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Crassidis, John L.; Cheng, Yang
2005-01-01
This paper provides a survey of modern nonlinear filtering methods for attitude estimation. Early applications relied mostly on the extended Kalman filter for attitude estimation. Since these applications, several new approaches have been developed that have proven to be superior to the extended Kalman filter. Several of these approaches maintain the basic structure of the extended Kalman filter, but employ various modifications in order to provide better convergence or improve other performance characteristics. Examples of such approaches include: filter QUEST, extended QUEST, the super-iterated extended Kalman filter, the interlaced extended Kalman filter, and the second-order Kalman filter. Filters that propagate and update a discrete set of sigma points rather than using linearized equations for the mean and covariance are also reviewed. A two-step approach is discussed with a first-step state that linearizes the measurement model and an iterative second step to recover the desired attitude states. These approaches are all based on the Gaussian assumption that the probability density function is adequately specified by its mean and covariance. Other approaches that do not require this assumption are reviewed, including particle filters and a Bayesian filter based on a non-Gaussian, finite-parameter probability density function on SO(3). Finally, the predictive filter, nonlinear observers and adaptive approaches are shown. The strengths and weaknesses of the various approaches are discussed.
Nonlinear multilayers as optical limiters
NASA Astrophysics Data System (ADS)
Turner-Valle, Jennifer Anne
1998-10-01
In this work we present a non-iterative technique for computing the steady-state optical properties of nonlinear multilayers and we examine nonlinear multilayer designs for optical limiters. Optical limiters are filters with intensity-dependent transmission designed to curtail the transmission of incident light above a threshold irradiance value in order to protect optical sensors from damage due to intense light. Thin film multilayers composed of nonlinear materials exhibiting an intensity-dependent refractive index are used as the basis for optical limiter designs in order to enhance the nonlinear filter response by magnifying the electric field in the nonlinear materials through interference effects. The nonlinear multilayer designs considered in this work are based on linear optical interference filter designs which are selected for their spectral properties and electric field distributions. Quarter wave stacks and cavity filters are examined for their suitability as sensor protectors and their manufacturability. The underlying non-iterative technique used to calculate the optical response of these filters derives from recognizing that the multi-valued calculation of output irradiance as a function of incident irradiance may be turned into a single-valued calculation of incident irradiance as a function of output irradiance. Finally, the benefits and drawbacks of using nonlinear multilayer for optical limiting are examined and future research directions are proposed.
Application of the Homotopy Perturbation Method to the Nonlinear Pendulum
ERIC Educational Resources Information Center
Belendez, A.; Hernandez, A.; Belendez, T.; Marquez, A.
2007-01-01
The homotopy perturbation method is used to solve the nonlinear differential equation that governs the nonlinear oscillations of a simple pendulum, and an approximate expression for its period is obtained. Only one iteration leads to high accuracy of the solutions and the relative error for the approximate period is less than 2% for amplitudes as…
Yan, Zheng; Wang, Jun
2014-03-01
This paper presents a neural network approach to robust model predictive control (MPC) for constrained discrete-time nonlinear systems with unmodeled dynamics affected by bounded uncertainties. The exact nonlinear model of underlying process is not precisely known, but a partially known nominal model is available. This partially known nonlinear model is first decomposed to an affine term plus an unknown high-order term via Jacobian linearization. The linearization residue combined with unmodeled dynamics is then modeled using an extreme learning machine via supervised learning. The minimax methodology is exploited to deal with bounded uncertainties. The minimax optimization problem is reformulated as a convex minimization problem and is iteratively solved by a two-layer recurrent neural network. The proposed neurodynamic approach to nonlinear MPC improves the computational efficiency and sheds a light for real-time implementability of MPC technology. Simulation results are provided to substantiate the effectiveness and characteristics of the proposed approach.
Convergence analysis of two-node CMFD method for two-group neutron diffusion eigenvalue problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Yongjin; Park, Jinsu; Lee, Hyun Chul
2015-12-01
In this paper, the nonlinear coarse-mesh finite difference method with two-node local problem (CMFD2N) is proven to be unconditionally stable for neutron diffusion eigenvalue problems. The explicit current correction factor (CCF) is derived based on the two-node analytic nodal method (ANM2N), and a Fourier stability analysis is applied to the linearized algorithm. It is shown that the analytic convergence rate obtained by the Fourier analysis compares very well with the numerically measured convergence rate. It is also shown that the theoretical convergence rate is only governed by the converged second harmonic buckling and the mesh size. It is also notedmore » that the convergence rate of the CCF of the CMFD2N algorithm is dependent on the mesh size, but not on the total problem size. This is contrary to expectation for eigenvalue problem. The novel points of this paper are the analytical derivation of the convergence rate of the CMFD2N algorithm for eigenvalue problem, and the convergence analysis based on the analytic derivations.« less
Optimal analytic method for the nonlinear Hasegawa-Mima equation
NASA Astrophysics Data System (ADS)
Baxter, Mathew; Van Gorder, Robert A.; Vajravelu, Kuppalapalle
2014-05-01
The Hasegawa-Mima equation is a nonlinear partial differential equation that describes the electric potential due to a drift wave in a plasma. In the present paper, we apply the method of homotopy analysis to a slightly more general Hasegawa-Mima equation, which accounts for hyper-viscous damping or viscous dissipation. First, we outline the method for the general initial/boundary value problem over a compact rectangular spatial domain. We use a two-stage method, where both the convergence control parameter and the auxiliary linear operator are optimally selected to minimize the residual error due to the approximation. To do the latter, we consider a family of operators parameterized by a constant which gives the decay rate of the solutions. After outlining the general method, we consider a number of concrete examples in order to demonstrate the utility of this approach. The results enable us to study properties of the initial/boundary value problem for the generalized Hasegawa-Mima equation. In several cases considered, we are able to obtain solutions with extremely small residual errors after relatively few iterations are computed (residual errors on the order of 10-15 are found in multiple cases after only three iterations). The results demonstrate that selecting a parameterized auxiliary linear operator can be extremely useful for minimizing residual errors when used concurrently with the optimal homotopy analysis method, suggesting that this approach can prove useful for a number of nonlinear partial differential equations arising in physics and nonlinear mechanics.
Hopf, Barbara; Dutz, Franz J; Bosselmann, Thomas; Willsch, Michael; Koch, Alexander W; Roths, Johannes
2018-04-30
A new iterative matrix algorithm has been applied to improve the precision of temperature and force decoupling in multi-parameter FBG sensing. For the first time, this evaluation technique allows the integration of nonlinearities in the sensor's temperature characteristic and the temperature dependence of the sensor's force sensitivity. Applied to a sensor cable consisting of two FBGs in fibers with 80 µm and 125 µm cladding diameter installed in a 7 m-long coiled PEEK capillary, this technique significantly reduced the uncertainties in friction-compensated temperature measurements. In the presence of high friction-induced forces of up to 1.6 N the uncertainties in temperature evaluation were reduced from several degrees Celsius if using a standard linear matrix approach to less than 0.5°C if using the iterative matrix approach in an extended temperature range between -35°C and 125°C.
Mizutani, Eiji; Demmel, James W
2003-01-01
This paper briefly introduces our numerical linear algebra approaches for solving structured nonlinear least squares problems arising from 'multiple-output' neural-network (NN) models. Our algorithms feature trust-region regularization, and exploit sparsity of either the 'block-angular' residual Jacobian matrix or the 'block-arrow' Gauss-Newton Hessian (or Fisher information matrix in statistical sense) depending on problem scale so as to render a large class of NN-learning algorithms 'efficient' in both memory and operation costs. Using a relatively large real-world nonlinear regression application, we shall explain algorithmic strengths and weaknesses, analyzing simulation results obtained by both direct and iterative trust-region algorithms with two distinct NN models: 'multilayer perceptrons' (MLP) and 'complementary mixtures of MLP-experts' (or neuro-fuzzy modular networks).
Highly Accurate Analytical Approximate Solution to a Nonlinear Pseudo-Oscillator
NASA Astrophysics Data System (ADS)
Wu, Baisheng; Liu, Weijia; Lim, C. W.
2017-07-01
A second-order Newton method is presented to construct analytical approximate solutions to a nonlinear pseudo-oscillator in which the restoring force is inversely proportional to the dependent variable. The nonlinear equation is first expressed in a specific form, and it is then solved in two steps, a predictor and a corrector step. In each step, the harmonic balance method is used in an appropriate manner to obtain a set of linear algebraic equations. With only one simple second-order Newton iteration step, a short, explicit, and highly accurate analytical approximate solution can be derived. The approximate solutions are valid for all amplitudes of the pseudo-oscillator. Furthermore, the method incorporates second-order Taylor expansion in a natural way, and it is of significant faster convergence rate.
NASA Astrophysics Data System (ADS)
Sagar, Vikram; Zhao, Yi
2017-02-01
In the present work, the effect of personal behavior induced preventive measures is studied on the spread of epidemics over scale free networks that are characterized by the differential rate of disease transmission. The role of personal behavior induced preventive measures is parameterized in terms of variable λ, which modulates the number of concurrent contacts a node makes with the fraction of its neighboring nodes. The dynamics of the disease is described by a non-linear Susceptible Infected Susceptible model based upon the discrete time Markov Chain method. The network mean field approach is generalized to account for the effect of non-linear coupling between the aforementioned factors on the collective dynamics of nodes. The upper bound estimates of the disease outbreak threshold obtained from the mean field theory are found to be in good agreement with the corresponding non-linear stochastic model. From the results of parametric study, it is shown that the epidemic size has inverse dependence on the preventive measures (λ). It has also been shown that the increase in the average degree of the nodes lowers the time of spread and enhances the size of epidemics.
Adaptive nodes enrich nonlinear cooperative learning beyond traditional adaptation by links.
Sardi, Shira; Vardi, Roni; Goldental, Amir; Sheinin, Anton; Uzan, Herut; Kanter, Ido
2018-03-23
Physical models typically assume time-independent interactions, whereas neural networks and machine learning incorporate interactions that function as adjustable parameters. Here we demonstrate a new type of abundant cooperative nonlinear dynamics where learning is attributed solely to the nodes, instead of the network links which their number is significantly larger. The nodal, neuronal, fast adaptation follows its relative anisotropic (dendritic) input timings, as indicated experimentally, similarly to the slow learning mechanism currently attributed to the links, synapses. It represents a non-local learning rule, where effectively many incoming links to a node concurrently undergo the same adaptation. The network dynamics is now counterintuitively governed by the weak links, which previously were assumed to be insignificant. This cooperative nonlinear dynamic adaptation presents a self-controlled mechanism to prevent divergence or vanishing of the learning parameters, as opposed to learning by links, and also supports self-oscillations of the effective learning parameters. It hints on a hierarchical computational complexity of nodes, following their number of anisotropic inputs and opens new horizons for advanced deep learning algorithms and artificial intelligence based applications, as well as a new mechanism for enhanced and fast learning by neural networks.
Fuzzy neural network technique for system state forecasting.
Li, Dezhi; Wang, Wilson; Ismail, Fathy
2013-10-01
In many system state forecasting applications, the prediction is performed based on multiple datasets, each corresponding to a distinct system condition. The traditional methods dealing with multiple datasets (e.g., vector autoregressive moving average models and neural networks) have some shortcomings, such as limited modeling capability and opaque reasoning operations. To tackle these problems, a novel fuzzy neural network (FNN) is proposed in this paper to effectively extract information from multiple datasets, so as to improve forecasting accuracy. The proposed predictor consists of both autoregressive (AR) nodes modeling and nonlinear nodes modeling; AR models/nodes are used to capture the linear correlation of the datasets, and the nonlinear correlation of the datasets are modeled with nonlinear neuron nodes. A novel particle swarm technique [i.e., Laplace particle swarm (LPS) method] is proposed to facilitate parameters estimation of the predictor and improve modeling accuracy. The effectiveness of the developed FNN predictor and the associated LPS method is verified by a series of tests related to Mackey-Glass data forecast, exchange rate data prediction, and gear system prognosis. Test results show that the developed FNN predictor and the LPS method can capture the dynamics of multiple datasets effectively and track system characteristics accurately.
Efficient Iterative Methods Applied to the Solution of Transonic Flows
NASA Astrophysics Data System (ADS)
Wissink, Andrew M.; Lyrintzis, Anastasios S.; Chronopoulos, Anthony T.
1996-02-01
We investigate the use of an inexact Newton's method to solve the potential equations in the transonic regime. As a test case, we solve the two-dimensional steady transonic small disturbance equation. Approximate factorization/ADI techniques have traditionally been employed for implicit solutions of this nonlinear equation. Instead, we apply Newton's method using an exact analytical determination of the Jacobian with preconditioned conjugate gradient-like iterative solvers for solution of the linear systems in each Newton iteration. Two iterative solvers are tested; a block s-step version of the classical Orthomin(k) algorithm called orthogonal s-step Orthomin (OSOmin) and the well-known GMRES method. The preconditioner is a vectorizable and parallelizable version of incomplete LU (ILU) factorization. Efficiency of the Newton-Iterative method on vector and parallel computer architectures is the main issue addressed. In vectorized tests on a single processor of the Cray C-90, the performance of Newton-OSOmin is superior to Newton-GMRES and a more traditional monotone AF/ADI method (MAF) for a variety of transonic Mach numbers and mesh sizes. Newton-GMRES is superior to MAF for some cases. The parallel performance of the Newton method is also found to be very good on multiple processors of the Cray C-90 and on the massively parallel thinking machine CM-5, where very fast execution rates (up to 9 Gflops) are found for large problems.
NASA Astrophysics Data System (ADS)
Bertolesi, Elisa; Milani, Gabriele; Poggi, Carlo
2016-12-01
Two FE modeling techniques are presented and critically discussed for the non-linear analysis of tuff masonry panels reinforced with FRCM and subjected to standard diagonal compression tests. The specimens, tested at the University of Naples (Italy), are unreinforced and FRCM retrofitted walls. The extensive characterization of the constituent materials allowed adopting here very sophisticated numerical modeling techniques. In particular, here the results obtained by means of a micro-modeling strategy and homogenization approach are compared. The first modeling technique is a tridimensional heterogeneous micro-modeling where constituent materials (bricks, joints, reinforcing mortar and reinforcing grid) are modeled separately. The second approach is based on a two-step homogenization procedure, previously developed by the authors, where the elementary cell is discretized by means of three-noded plane stress elements and non-linear interfaces. The non-linear structural analyses are performed replacing the homogenized orthotropic continuum with a rigid element and non-linear spring assemblage (RBSM). All the simulations here presented are performed using the commercial software Abaqus. Pros and cons of the two approaches are herein discussed with reference to their reliability in reproducing global force-displacement curves and crack patterns, as well as to the rather different computational effort required by the two strategies.
Analysis of deformable image registration accuracy using computational modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong Hualiang; Kim, Jinkoo; Chetty, Indrin J.
2010-03-15
Computer aided modeling of anatomic deformation, allowing various techniques and protocols in radiation therapy to be systematically verified and studied, has become increasingly attractive. In this study the potential issues in deformable image registration (DIR) were analyzed based on two numerical phantoms: One, a synthesized, low intensity gradient prostate image, and the other a lung patient's CT image data set. Each phantom was modeled with region-specific material parameters with its deformation solved using a finite element method. The resultant displacements were used to construct a benchmark to quantify the displacement errors of the Demons and B-Spline-based registrations. The results showmore » that the accuracy of these registration algorithms depends on the chosen parameters, the selection of which is closely associated with the intensity gradients of the underlying images. For the Demons algorithm, both single resolution (SR) and multiresolution (MR) registrations required approximately 300 iterations to reach an accuracy of 1.4 mm mean error in the lung patient's CT image (and 0.7 mm mean error averaged in the lung only). For the low gradient prostate phantom, these algorithms (both SR and MR) required at least 1600 iterations to reduce their mean errors to 2 mm. For the B-Spline algorithms, best performance (mean errors of 1.9 mm for SR and 1.6 mm for MR, respectively) on the low gradient prostate was achieved using five grid nodes in each direction. Adding more grid nodes resulted in larger errors. For the lung patient's CT data set, the B-Spline registrations required ten grid nodes in each direction for highest accuracy (1.4 mm for SR and 1.5 mm for MR). The numbers of iterations or grid nodes required for optimal registrations depended on the intensity gradients of the underlying images. In summary, the performance of the Demons and B-Spline registrations have been quantitatively evaluated using numerical phantoms. The results show that parameter selection for optimal accuracy is closely related to the intensity gradients of the underlying images. Also, the result that the DIR algorithms produce much lower errors in heterogeneous lung regions relative to homogeneous (low intensity gradient) regions, suggests that feature-based evaluation of deformable image registration accuracy must be viewed cautiously.« less
A General Interface Method for Aeroelastic Analysis of Aircraft
NASA Technical Reports Server (NTRS)
Tzong, T.; Chen, H. H.; Chang, K. C.; Wu, T.; Cebeci, T.
1996-01-01
The aeroelastic analysis of an aircraft requires an accurate and efficient procedure to couple aerodynamics and structures. The procedure needs an interface method to bridge the gap between the aerodynamic and structural models in order to transform loads and displacements. Such an interface method is described in this report. This interface method transforms loads computed by any aerodynamic code to a structural finite element (FE) model and converts the displacements from the FE model to the aerodynamic model. The approach is based on FE technology in which virtual work is employed to transform the aerodynamic pressures into FE nodal forces. The displacements at the FE nodes are then converted back to aerodynamic grid points on the aircraft surface through the reciprocal theorem in structural engineering. The method allows both high and crude fidelities of both models and does not require an intermediate modeling. In addition, the method performs the conversion of loads and displacements directly between individual aerodynamic grid point and its corresponding structural finite element and, hence, is very efficient for large aircraft models. This report also describes the application of this aero-structure interface method to a simple wing and an MD-90 wing. The results show that the aeroelastic effect is very important. For the simple wing, both linear and nonlinear approaches are used. In the linear approach, the deformation of the structural model is considered small, and the loads from the deformed aerodynamic model are applied to the original geometry of the structure. In the nonlinear approach, the geometry of the structure and its stiffness matrix are updated in every iteration and the increments of loads from the previous iteration are applied to the new structural geometry in order to compute the displacement increments. Additional studies to apply the aero-structure interaction procedure to more complicated geometry will be conducted in the second phase of the present contract.
Element fracture technique for hypervelocity impact simulation
NASA Astrophysics Data System (ADS)
Zhang, Xiao-tian; Li, Xiao-gang; Liu, Tao; Jia, Guang-hui
2015-05-01
Hypervelocity impact dynamics is the theoretical support of spacecraft shielding against space debris. The numerical simulation has become an important approach for obtaining the ballistic limits of the spacecraft shields. Currently, the most widely used algorithm for hypervelocity impact is the smoothed particle hydrodynamics (SPH). Although the finite element method (FEM) is widely used in fracture mechanics and low-velocity impacts, the standard FEM can hardly simulate the debris cloud generated by hypervelocity impact. This paper presents a successful application of the node-separation technique for hypervelocity impact debris cloud simulation. The node-separation technique assigns individual/coincident nodes for the adjacent elements, and it applies constraints to the coincident node sets in the modeling step. In the explicit iteration, the cracks are generated by releasing the constrained node sets that meet the fracture criterion. Additionally, the distorted elements are identified from two aspects - self-piercing and phase change - and are deleted so that the constitutive computation can continue. FEM with the node-separation technique is used for thin-wall hypervelocity impact simulations. The internal structures of the debris cloud in the simulation output are compared with that in the test X-ray graphs under different material fracture criteria. It shows that the pressure criterion is more appropriate for hypervelocity impact. The internal structures of the debris cloud are also simulated and compared under different thickness-to-diameter ratios (t/D). The simulation outputs show the same spall pattern with the tests. Finally, the triple-plate impact case is simulated with node-separation FEM.
NASA Astrophysics Data System (ADS)
Yuan, Jian-guo; Tong, Qing-zhen; Huang, Sheng; Wang, Yong
2013-11-01
An effective hierarchical reliable belief propagation (HRBP) decoding algorithm is proposed according to the structural characteristics of systematically constructed Gallager low-density parity-check (SCG-LDPC) codes. The novel decoding algorithm combines the layered iteration with the reliability judgment, and can greatly reduce the number of the variable nodes involved in the subsequent iteration process and accelerate the convergence rate. The result of simulation for SCG-LDPC(3969,3720) code shows that the novel HRBP decoding algorithm can greatly reduce the computing amount at the condition of ensuring the performance compared with the traditional belief propagation (BP) algorithm. The bit error rate (BER) of the HRBP algorithm is considerable at the threshold value of 15, but in the subsequent iteration process, the number of the variable nodes for the HRBP algorithm can be reduced by about 70% at the high signal-to-noise ratio (SNR) compared with the BP algorithm. When the threshold value is further increased, the HRBP algorithm will gradually degenerate into the layered-BP algorithm, but at the BER of 10-7 and the maximal iteration number of 30, the net coding gain (NCG) of the HRBP algorithm is 0.2 dB more than that of the BP algorithm, and the average iteration times can be reduced by about 40% at the high SNR. Therefore, the novel HRBP decoding algorithm is more suitable for optical communication systems.
A novel community detection method in bipartite networks
NASA Astrophysics Data System (ADS)
Zhou, Cangqi; Feng, Liang; Zhao, Qianchuan
2018-02-01
Community structure is a common and important feature in many complex networks, including bipartite networks, which are used as a standard model for many empirical networks comprised of two types of nodes. In this paper, we propose a two-stage method for detecting community structure in bipartite networks. Firstly, we extend the widely-used Louvain algorithm to bipartite networks. The effectiveness and efficiency of the Louvain algorithm have been proved by many applications. However, there lacks a Louvain-like algorithm specially modified for bipartite networks. Based on bipartite modularity, a measure that extends unipartite modularity and that quantifies the strength of partitions in bipartite networks, we fill the gap by developing the Bi-Louvain algorithm that iteratively groups the nodes in each part by turns. This algorithm in bipartite networks often produces a balanced network structure with equal numbers of two types of nodes. Secondly, for the balanced network yielded by the first algorithm, we use an agglomerative clustering method to further cluster the network. We demonstrate that the calculation of the gain of modularity of each aggregation, and the operation of joining two communities can be compactly calculated by matrix operations for all pairs of communities simultaneously. At last, a complete hierarchical community structure is unfolded. We apply our method to two benchmark data sets and a large-scale data set from an e-commerce company, showing that it effectively identifies community structure in bipartite networks.
Probabilistic distance-based quantizer design for distributed estimation
NASA Astrophysics Data System (ADS)
Kim, Yoon Hak
2016-12-01
We consider an iterative design of independently operating local quantizers at nodes that should cooperate without interaction to achieve application objectives for distributed estimation systems. We suggest as a new cost function a probabilistic distance between the posterior distribution and its quantized one expressed as the Kullback Leibler (KL) divergence. We first present the analysis that minimizing the KL divergence in the cyclic generalized Lloyd design framework is equivalent to maximizing the logarithmic quantized posterior distribution on the average which can be further computationally reduced in our iterative design. We propose an iterative design algorithm that seeks to maximize the simplified version of the posterior quantized distribution and discuss that our algorithm converges to a global optimum due to the convexity of the cost function and generates the most informative quantized measurements. We also provide an independent encoding technique that enables minimization of the cost function and can be efficiently simplified for a practical use of power-constrained nodes. We finally demonstrate through extensive experiments an obvious advantage of improved estimation performance as compared with the typical designs and the novel design techniques previously published.
Unsupervised iterative detection of land mines in highly cluttered environments.
Batman, Sinan; Goutsias, John
2003-01-01
An unsupervised iterative scheme is proposed for land mine detection in heavily cluttered scenes. This scheme is based on iterating hybrid multispectral filters that consist of a decorrelating linear transform coupled with a nonlinear morphological detector. Detections extracted from the first pass are used to improve results in subsequent iterations. The procedure stops after a predetermined number of iterations. The proposed scheme addresses several weaknesses associated with previous adaptations of morphological approaches to land mine detection. Improvement in detection performance, robustness with respect to clutter inhomogeneities, a completely unsupervised operation, and computational efficiency are the main highlights of the method. Experimental results reveal excellent performance.
TACT1- TRANSIENT THERMAL ANALYSIS OF A COOLED TURBINE BLADE OR VANE EQUIPPED WITH A COOLANT INSERT
NASA Technical Reports Server (NTRS)
Gaugler, R. E.
1994-01-01
As turbine-engine core operating conditions become more severe, designers must develop more effective means of cooling blades and vanes. In order to design reliable, cooled turbine blades, advanced transient thermal calculation techniques are required. The TACT1 computer program was developed to perform transient and steady-state heat-transfer and coolant-flow analyses for cooled blades, given the outside hot-gas boundary condition, the coolant inlet conditions, the geometry of the blade shell, and the cooling configuration. TACT1 can analyze turbine blades, or vanes, equipped with a central coolant-plenum insert from which coolant-air impinges on the inner surface of the blade shell. Coolant-side heat-transfer coefficients are calculated with the heat transfer mode at each station being user specified as either impingement with crossflow, forced convection channel flow, or forced convection over pin fins. A limited capability to handle film cooling is also available in the program. The TACT1 program solves for the blade temperature distribution using a transient energy equation for each node. The nodal energy balances are linearized, one-dimensional, heat-conduction equations which are applied at the wall-outer-surface node, at the junction of the cladding and the metal node, and at the wall-inner-surface node. At the mid-metal node a linear, three-dimensional, heat-conduction equation is used. Similarly, the coolant pressure distribution is determined by solving the set of transfer momentum equations for the one-dimensional flow between adjacent fluid nodes. In the coolant channel, energy and momentum equations for one-dimensional compressible flow, including friction and heat transfer, are used for the elemental channel length between two coolant nodes. The TACT1 program first obtains a steady-state solution using iterative calculations to obtain convergence of stable temperatures, pressures, coolant-flow split, and overall coolant mass balance. Transient calculations are based on the steady-state solutions obtained. Input to the TACT1 program includes a geometrical description of the blade and insert, the nodal spacing to be used, and the boundary conditions describing the outside hot-gas and the coolant-inlet conditions. The program output includes the value of nodal temperatures and pressures at each iteration. The final solution output includes the temperature at each coolant node, and the coolant flow rates and Reynolds numbers. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 480K of 8 bit bytes. The TACT1 program was developed in 1978.
A biological phantom for evaluation of CT image reconstruction algorithms
NASA Astrophysics Data System (ADS)
Cammin, J.; Fung, G. S. K.; Fishman, E. K.; Siewerdsen, J. H.; Stayman, J. W.; Taguchi, K.
2014-03-01
In recent years, iterative algorithms have become popular in diagnostic CT imaging to reduce noise or radiation dose to the patient. The non-linear nature of these algorithms leads to non-linearities in the imaging chain. However, the methods to assess the performance of CT imaging systems were developed assuming the linear process of filtered backprojection (FBP). Those methods may not be suitable any longer when applied to non-linear systems. In order to evaluate the imaging performance, a phantom is typically scanned and the image quality is measured using various indices. For reasons of practicality, cost, and durability, those phantoms often consist of simple water containers with uniform cylinder inserts. However, these phantoms do not represent the rich structure and patterns of real tissue accurately. As a result, the measured image quality or detectability performance for lesions may not reflect the performance on clinical images. The discrepancy between estimated and real performance may be even larger for iterative methods which sometimes produce "plastic-like", patchy images with homogeneous patterns. Consequently, more realistic phantoms should be used to assess the performance of iterative algorithms. We designed and constructed a biological phantom consisting of porcine organs and tissue that models a human abdomen, including liver lesions. We scanned the phantom on a clinical CT scanner and compared basic image quality indices between filtered backprojection and an iterative reconstruction algorithm.
Conservative and bounded volume-of-fluid advection on unstructured grids
NASA Astrophysics Data System (ADS)
Ivey, Christopher B.; Moin, Parviz
2017-12-01
This paper presents a novel Eulerian-Lagrangian piecewise-linear interface calculation (PLIC) volume-of-fluid (VOF) advection method, which is three-dimensional, unsplit, and discretely conservative and bounded. The approach is developed with reference to a collocated node-based finite-volume two-phase flow solver that utilizes the median-dual mesh constructed from non-convex polyhedra. The proposed advection algorithm satisfies conservation and boundedness of the liquid volume fraction irrespective of the underlying flux polyhedron geometry, which differs from contemporary unsplit VOF schemes that prescribe topologically complicated flux polyhedron geometries in efforts to satisfy conservation. Instead of prescribing complicated flux-polyhedron geometries, which are prone to topological failures, our VOF advection scheme, the non-intersecting flux polyhedron advection (NIFPA) method, builds the flux polyhedron iteratively such that its intersection with neighboring flux polyhedra, and any other unavailable volume, is empty and its total volume matches the calculated flux volume. During each iteration, a candidate nominal flux polyhedron is extruded using an iteration dependent scalar. The candidate is subsequently intersected with the volume guaranteed available to it at the time of the flux calculation to generate the candidate flux polyhedron. The difference in the volume of the candidate flux polyhedron and the actual flux volume is used to calculate extrusion during the next iteration. The choice in nominal flux polyhedron impacts the cost and accuracy of the scheme; however, it does not impact the methods underlying conservation and boundedness. As such, various robust nominal flux polyhedron are proposed and tested using canonical periodic kinematic test cases: Zalesak's disk and two- and three-dimensional deformation. The tests are conducted on the median duals of a quadrilateral and triangular primal mesh, in two-dimensions, and on the median duals of a hexahedral, wedge and tetrahedral primal mesh, in three-dimensions. Comparisons are made with the adaptation of a conventional unsplit VOF advection scheme to our collocated node-based flow solver. Depending on the choice in the nominal flux polyhedron, the NIFPA scheme presented accuracies ranging from zeroth to second order and calculation times that differed by orders of magnitude. For the nominal flux polyhedra which demonstrate second-order accuracy on all tests and meshes, the NIFPA method's cost was comparable to the traditional topologically complex second-order accurate VOF advection scheme.
Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation
NASA Technical Reports Server (NTRS)
Cai, Xiao-Chuan; Gropp, William D.; Keyes, David E.; Melvin, Robin G.; Young, David P.
1996-01-01
We study parallel two-level overlapping Schwarz algorithms for solving nonlinear finite element problems, in particular, for the full potential equation of aerodynamics discretized in two dimensions with bilinear elements. The overall algorithm, Newton-Krylov-Schwarz (NKS), employs an inexact finite-difference Newton method and a Krylov space iterative method, with a two-level overlapping Schwarz method as a preconditioner. We demonstrate that NKS, combined with a density upwinding continuation strategy for problems with weak shocks, is robust and, economical for this class of mixed elliptic-hyperbolic nonlinear partial differential equations, with proper specification of several parameters. We study upwinding parameters, inner convergence tolerance, coarse grid density, subdomain overlap, and the level of fill-in in the incomplete factorization, and report their effect on numerical convergence rate, overall execution time, and parallel efficiency on a distributed-memory parallel computer.
NASA Astrophysics Data System (ADS)
Eftekhar, Roya; Hu, Hao; Zheng, Yingcai
2018-06-01
Iterative solution process is fundamental in seismic inversions, such as in full-waveform inversions and some inverse scattering methods. However, the convergence could be slow or even divergent depending on the initial model used in the iteration. We propose to apply Shanks transformation (ST for short) to accelerate the convergence of the iterative solution. ST is a local nonlinear transformation, which transforms a series locally into another series with an improved convergence property. ST works by separating the series into a smooth background trend called the secular term versus an oscillatory transient term. ST then accelerates the convergence of the secular term. Since the transformation is local, we do not need to know all the terms in the original series which is very important in the numerical implementation. The ST performance was tested numerically for both the forward Born series and the inverse scattering series (ISS). The ST has been shown to accelerate the convergence in several examples, including three examples of forward modeling using the Born series and two examples of velocity inversion based on a particular type of the ISS. We observe that ST is effective in accelerating the convergence and it can also achieve convergence even for a weakly divergent scattering series. As such, it provides a useful technique to invert for a large-contrast medium perturbation in seismic inversion.
A highly parallel multigrid-like method for the solution of the Euler equations
NASA Technical Reports Server (NTRS)
Tuminaro, Ray S.
1989-01-01
We consider a highly parallel multigrid-like method for the solution of the two dimensional steady Euler equations. The new method, introduced as filtering multigrid, is similar to a standard multigrid scheme in that convergence on the finest grid is accelerated by iterations on coarser grids. In the filtering method, however, additional fine grid subproblems are processed concurrently with coarse grid computations to further accelerate convergence. These additional problems are obtained by splitting the residual into a smooth and an oscillatory component. The smooth component is then used to form a coarse grid problem (similar to standard multigrid) while the oscillatory component is used for a fine grid subproblem. The primary advantage in the filtering approach is that fewer iterations are required and that most of the additional work per iteration can be performed in parallel with the standard coarse grid computations. We generalize the filtering algorithm to a version suitable for nonlinear problems. We emphasize that this generalization is conceptually straight-forward and relatively easy to implement. In particular, no explicit linearization (e.g., formation of Jacobians) needs to be performed (similar to the FAS multigrid approach). We illustrate the nonlinear version by applying it to the Euler equations, and presenting numerical results. Finally, a performance evaluation is made based on execution time models and convergence information obtained from numerical experiments.
Collaborative emitter tracking using Rao-Blackwellized random exchange diffusion particle filtering
NASA Astrophysics Data System (ADS)
Bruno, Marcelo G. S.; Dias, Stiven S.
2014-12-01
We introduce in this paper the fully distributed, random exchange diffusion particle filter (ReDif-PF) to track a moving emitter using multiple received signal strength (RSS) sensors. We consider scenarios with both known and unknown sensor model parameters. In the unknown parameter case, a Rao-Blackwellized (RB) version of the random exchange diffusion particle filter, referred to as the RB ReDif-PF, is introduced. In a simulated scenario with a partially connected network, the proposed ReDif-PF outperformed a PF tracker that assimilates local neighboring measurements only and also outperformed a linearized random exchange distributed extended Kalman filter (ReDif-EKF). Furthermore, the novel ReDif-PF matched the tracking error performance of alternative suboptimal distributed PFs based respectively on iterative Markov chain move steps and selective average gossiping with an inter-node communication cost that is roughly two orders of magnitude lower than the corresponding cost for the Markov chain and selective gossip filters. Compared to a broadcast-based filter which exactly mimics the optimal centralized tracker or its equivalent (exact) consensus-based implementations, ReDif-PF showed a degradation in steady-state error performance. However, compared to the optimal consensus-based trackers, ReDif-PF is better suited for real-time applications since it does not require iterative inter-node communication between measurement arrivals.
Enhancing Scalability and Efficiency of the TOUGH2_MP for LinuxClusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Keni; Wu, Yu-Shu
2006-04-17
TOUGH2{_}MP, the parallel version TOUGH2 code, has been enhanced by implementing more efficient communication schemes. This enhancement is achieved through reducing the amount of small-size messages and the volume of large messages. The message exchange speed is further improved by using non-blocking communications for both linear and nonlinear iterations. In addition, we have modified the AZTEC parallel linear-equation solver to nonblocking communication. Through the improvement of code structuring and bug fixing, the new version code is now more stable, while demonstrating similar or even better nonlinear iteration converging speed than the original TOUGH2 code. As a result, the new versionmore » of TOUGH2{_}MP is improved significantly in its efficiency. In this paper, the scalability and efficiency of the parallel code are demonstrated by solving two large-scale problems. The testing results indicate that speedup of the code may depend on both problem size and complexity. In general, the code has excellent scalability in memory requirement as well as computing time.« less
NASA Astrophysics Data System (ADS)
Novak, A.; Simon, L.; Lotton, P.
2018-04-01
Mechanical transducers, such as shakers, loudspeakers and compression drivers that are used as excitation devices to excite acoustical or mechanical nonlinear systems under test are imperfect. Due to their nonlinear behaviour, unwanted contributions appear at their output besides the wanted part of the signal. Since these devices are used to study nonlinear systems, it should be required to measure properly the systems under test by overcoming the influence of the nonlinear excitation device. In this paper, a simple method that corrects distorted output signal of the excitation device by means of predistortion of its input signal is presented. A periodic signal is applied to the input of the excitation device and, from analysing the output signal of the device, the input signal is modified in such a way that the undesirable spectral components in the output of the excitation device are cancelled out after few iterations of real-time processing. The experimental results provided on an electrodynamic shaker show that the spectral purity of the generated acceleration output approaches 100 dB after few iterations (1 s). This output signal, applied to the system under test, is thus cleaned from the undesirable components produced by the excitation device; this is an important condition to ensure a correct measurement of the nonlinear system under test.
Three-dimensional marginal separation
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1988-01-01
The three dimensional marginal separation of a boundary layer along a line of symmetry is considered. The key equation governing the displacement function is derived, and found to be a nonlinear integral equation in two space variables. This is solved iteratively using a pseudo-spectral approach, based partly in double Fourier space, and partly in physical space. Qualitatively, the results are similar to previously reported two dimensional results (which are also computed to test the accuracy of the numerical scheme); however quantitatively the three dimensional results are much different.
1990-11-01
Applying the chain rule: dB dB dH dB 1 (180) 95 It remains to calculate dBi/ dHi and dB i+1/dHi+ 1 . Now as calculation pro - ceeds from node to node...simulation models can be powerful tools for studying these issues. However, to be useful, the water quality model must be properly vuited for the problem...0 GN_1(QNANQN _1AN_ ) = 0 GN(QN,AN) = 0 (47) 44. The e. l solution of these nobi -e-.a. equations c .-n proceed in two ways. First the nonlinear terms
Computation of optimal output-feedback compensators for linear time-invariant systems
NASA Technical Reports Server (NTRS)
Platzman, L. K.
1972-01-01
The control of linear time-invariant systems with respect to a quadratic performance criterion was considered, subject to the constraint that the control vector be a constant linear transformation of the output vector. The optimal feedback matrix, f*, was selected to optimize the expected performance, given the covariance of the initial state. It is first shown that the expected performance criterion can be expressed as the ratio of two multinomials in the element of f. This expression provides the basis for a feasible method of determining f* in the case of single-input single-output systems. A number of iterative algorithms are then proposed for the calculation of f* for multiple input-output systems. For two of these, monotone convergence is proved, but they involve the solution of nonlinear matrix equations at each iteration. Another is proposed involving the solution of Lyapunov equations at each iteration, and the gradual increase of the magnitude of a penalty function. Experience with this algorithm will be needed to determine whether or not it does, indeed, possess desirable convergence properties, and whether it can be used to determine the globally optimal f*.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, X; Petrongolo, M; Wang, T
Purpose: A general problem of dual-energy CT (DECT) is that the decomposition is sensitive to noise in the two sets of dual-energy projection data, resulting in severely degraded qualities of decomposed images. We have previously proposed an iterative denoising method for DECT. Using a linear decomposition function, the method does not gain the full benefits of DECT on beam-hardening correction. In this work, we expand the framework of our iterative method to include non-linear decomposition models for noise suppression in DECT. Methods: We first obtain decomposed projections, which are free of beam-hardening artifacts, using a lookup table pre-measured on amore » calibration phantom. First-pass material images with high noise are reconstructed from the decomposed projections using standard filter-backprojection reconstruction. Noise on the decomposed images is then suppressed by an iterative method, which is formulated in the form of least-square estimation with smoothness regularization. Based on the design principles of a best linear unbiased estimator, we include the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. Analytical formulae are derived to compute the variance-covariance matrix from the measured decomposition lookup table. Results: We have evaluated the proposed method via phantom studies. Using non-linear decomposition, our method effectively suppresses the streaking artifacts of beam-hardening and obtains more uniform images than our previous approach based on a linear model. The proposed method reduces the average noise standard deviation of two basis materials by one order of magnitude without sacrificing the spatial resolution. Conclusion: We propose a general framework of iterative denoising for material decomposition of DECT. Preliminary phantom studies have shown the proposed method improves the image uniformity and reduces noise level without resolution loss. In the future, we will perform more phantom studies to further validate the performance of the purposed method. This work is supported by a Varian MRA grant.« less
Remote synchronization of amplitudes across an experimental ring of non-linear oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it, E-mail: lminati@istituto-besta.it
In this paper, the emergence of remote synchronization in a ring of 32 unidirectionally coupled non-linear oscillators is reported. Each oscillator consists of 3 negative voltage gain stages connected in a loop to which two integrators are superimposed and receives input from its preceding neighbour via a “mixing” stage whose gains form the main system control parameters. Collective behaviour of the network is investigated numerically and experimentally, based on a custom-designed circuit board featuring 32 field-programmable analog arrays. A diverse set of synchronization patterns is observed depending on the control parameters. While phase synchronization ensues globally, albeit imperfectly, for certainmore » control parameter values, amplitudes delineate subsets of non-adjacent but preferentially synchronized nodes; this cannot be trivially explained by synchronization paths along sequences of structurally connected nodes and is therefore interpreted as representing a form of remote synchronization. Complex topology of functional synchronization thus emerges from underlying elementary structural connectivity. In addition to the Kuramoto order parameter and cross-correlation coefficient, other synchronization measures are considered, and preliminary findings suggest that generalized synchronization may identify functional relationships across nodes otherwise not visible. Further work elucidating the mechanism underlying this observation of remote synchronization is necessary, to support which experimental data and board design materials have been made freely downloadable.« less
Remote synchronization of amplitudes across an experimental ring of non-linear oscillators.
Minati, Ludovico
2015-12-01
In this paper, the emergence of remote synchronization in a ring of 32 unidirectionally coupled non-linear oscillators is reported. Each oscillator consists of 3 negative voltage gain stages connected in a loop to which two integrators are superimposed and receives input from its preceding neighbour via a "mixing" stage whose gains form the main system control parameters. Collective behaviour of the network is investigated numerically and experimentally, based on a custom-designed circuit board featuring 32 field-programmable analog arrays. A diverse set of synchronization patterns is observed depending on the control parameters. While phase synchronization ensues globally, albeit imperfectly, for certain control parameter values, amplitudes delineate subsets of non-adjacent but preferentially synchronized nodes; this cannot be trivially explained by synchronization paths along sequences of structurally connected nodes and is therefore interpreted as representing a form of remote synchronization. Complex topology of functional synchronization thus emerges from underlying elementary structural connectivity. In addition to the Kuramoto order parameter and cross-correlation coefficient, other synchronization measures are considered, and preliminary findings suggest that generalized synchronization may identify functional relationships across nodes otherwise not visible. Further work elucidating the mechanism underlying this observation of remote synchronization is necessary, to support which experimental data and board design materials have been made freely downloadable.
Numerical simulations of self-focusing of ultrafast laser pulses
NASA Astrophysics Data System (ADS)
Fibich, Gadi; Ren, Weiqing; Wang, Xiao-Ping
2003-05-01
Simulation of nonlinear propagation of intense ultrafast laser pulses is a hard problem, because of the steep spatial gradients and the temporal shocks that form during the propagation. In this study we adapt the iterative grid distribution method of Ren and Wang [J. Comput. Phys. 159, 246 (2000)] to solve the two-dimensional nonlinear Schrödinger equation with normal time dispersion, space-time focusing, and self-steepening. Our simulations show that, after the asymmetric temporal pulse splitting, the rear peak self-focuses faster than the front one. As a result, the collapse of the rear peak is arrested before that of the front peak. Unlike what has sometimes been conjectured, however, collapse of the two peaks is not arrested through multiple splittings, but rather through temporal dispersion.
NASA Astrophysics Data System (ADS)
Radhakrishnan, Srinivasan; Duvvuru, Arjun; Sultornsanee, Sivarit; Kamarthi, Sagar
2016-02-01
The cross correlation coefficient has been widely applied in financial time series analysis, in specific, for understanding chaotic behaviour in terms of stock price and index movements during crisis periods. To better understand time series correlation dynamics, the cross correlation matrices are represented as networks, in which a node stands for an individual time series and a link indicates cross correlation between a pair of nodes. These networks are converted into simpler trees using different schemes. In this context, Minimum Spanning Trees (MST) are the most favoured tree structures because of their ability to preserve all the nodes and thereby retain essential information imbued in the network. Although cross correlations underlying MSTs capture essential information, they do not faithfully capture dynamic behaviour embedded in the time series data of financial systems because cross correlation is a reliable measure only if the relationship between the time series is linear. To address the issue, this work investigates a new measure called phase synchronization (PS) for establishing correlations among different time series which relate to one another, linearly or nonlinearly. In this approach the strength of a link between a pair of time series (nodes) is determined by the level of phase synchronization between them. We compare the performance of phase synchronization based MST with cross correlation based MST along selected network measures across temporal frame that includes economically good and crisis periods. We observe agreement in the directionality of the results across these two methods. They show similar trends, upward or downward, when comparing selected network measures. Though both the methods give similar trends, the phase synchronization based MST is a more reliable representation of the dynamic behaviour of financial systems than the cross correlation based MST because of the former's ability to quantify nonlinear relationships among time series or relations among phase shifted time series.
NASA Astrophysics Data System (ADS)
Chacon, L.; Finn, J. M.; Knoll, D. A.
2000-10-01
Recently, a new parallel velocity instability has been found.(J. M. Finn, Phys. Plasmas), 2, 12 (1995) This mode is a tearing mode driven unstable by curvature effects and sound wave coupling in the presence of parallel velocity shear. Under such conditions, linear theory predicts that tearing instabilities will grow even in situations in which the classical tearing mode is stable. This could then be a viable seed mechanism for the neoclassical tearing mode, and hence a non-linear study is of interest. Here, the linear and non-linear stages of this instability are explored using a fully implicit, fully nonlinear 2D reduced resistive MHD code,(L. Chacon et al), ``Implicit, Jacobian-free Newton-Krylov 2D reduced resistive MHD nonlinear solver,'' submitted to J. Comput. Phys. (2000) including viscosity and particle transport effects. The nonlinear implicit time integration is performed using the Newton-Raphson iterative algorithm. Krylov iterative techniques are employed for the required algebraic matrix inversions, implemented Jacobian-free (i.e., without ever forming and storing the Jacobian matrix), and preconditioned with a ``physics-based'' preconditioner. Nonlinear results indicate that, for large total plasma beta and large parallel velocity shear, the instability results in the generation of large poloidal shear flows and large magnetic islands even in regimes when the classical tearing mode is absolutely stable. For small viscosity, the time asymptotic state can be turbulent.
Nonreciprocal Signal Routing in an Active Quantum Network
NASA Astrophysics Data System (ADS)
Tureci, Hakan E.; Metelmann, Anja
As superconductor quantum technologies are moving towards large-scale integrated circuits, a robust and flexible approach to routing photons at the quantum level becomes a critical problem. Active circuits, which contain driven linear or non-linear elements judiciously embedded in the circuit offer a viable solution. We present a general strategy for routing non-reciprocally quantum signals between two sites of a given lattice of resonators, implementable with existing superconducting circuit components. Our approach makes use of a dual lattice of superconducting non-linear elements on the links connecting the nodes of the main lattice. Solutions for spatially selective driving of the link-elements can be found, which optimally balance coherent and dissipative hopping of microwave photons to non-reciprocally route signals between two given nodes. In certain lattices these optimal solutions are obtained at the exceptional point of the scattering matrix of the network. The presented strategy provides a design space that is governed by a dynamically tunable non-Hermitian generator that can be used to minimize the added quantum noise as well. This work was supported by the U.S. Army Research Office (ARO) under Grant No. W911NF-15-1-0299.
Analysis of chaotic saddles in a nonlinear vibro-impact system
NASA Astrophysics Data System (ADS)
Feng, Jinqian
2017-07-01
In this paper, a computational investigation of chaotic saddles in a nonlinear vibro-impact system is presented. For a classical Duffing vibro-impact oscillator, we employ the bisection procedure and an improved stagger-and-step method to present evidence of visual chaotic saddles on the fractal basin boundary and in the internal basin, respectively. The results show that the period saddles play an important role in the evolution of chaotic saddle. The dynamics mechanics of three types of bifurcation such as saddle-node bifurcation, chaotic saddle crisis bifurcation and interior chaotic crisis bifurcation are discussed. The results reveal that the period saddle created at saddle-node bifurcation is responsible for the switch of the internal chaotic saddle to the boundary chaotic saddle. At chaotic saddle crisis bifurcation, a large chaotic saddle can divide into two different chaotic saddle connected by a period saddle. The intersection points between stable and unstable manifolds of this period saddle supply access for chaotic orbits from one chaotic saddle to another and eventually induce the coupling of these two chaotic saddle. Interior chaotic crisis bifurcation is associated with the intersection of stable and unstable manifolds of the period saddle connecting two chaotic invariant sets. In addition, the gaps in chaotic saddle is responsible for the fractal structure.
Finite element analysis of wrinkling membranes
NASA Technical Reports Server (NTRS)
Miller, R. K.; Hedgepeth, J. M.; Weingarten, V. I.; Das, P.; Kahyai, S.
1984-01-01
The development of a nonlinear numerical algorithm for the analysis of stresses and displacements in partly wrinkled flat membranes, and its implementation on the SAP VII finite-element code are described. A comparison of numerical results with exact solutions of two benchmark problems reveals excellent agreement, with good convergence of the required iterative procedure. An exact solution of a problem involving axisymmetric deformations of a partly wrinkled shallow curved membrane is also reported.
Zhu, Yuanheng; Zhao, Dongbin; Yang, Xiong; Zhang, Qichao
2018-02-01
Sum of squares (SOS) polynomials have provided a computationally tractable way to deal with inequality constraints appearing in many control problems. It can also act as an approximator in the framework of adaptive dynamic programming. In this paper, an approximate solution to the optimal control of polynomial nonlinear systems is proposed. Under a given attenuation coefficient, the Hamilton-Jacobi-Isaacs equation is relaxed to an optimization problem with a set of inequalities. After applying the policy iteration technique and constraining inequalities to SOS, the optimization problem is divided into a sequence of feasible semidefinite programming problems. With the converged solution, the attenuation coefficient is further minimized to a lower value. After iterations, approximate solutions to the smallest -gain and the associated optimal controller are obtained. Four examples are employed to verify the effectiveness of the proposed algorithm.
An efficient numerical algorithm for transverse impact problems
NASA Technical Reports Server (NTRS)
Sankar, B. V.; Sun, C. T.
1985-01-01
Transverse impact problems in which the elastic and plastic indentation effects are considered, involve a nonlinear integral equation for the contact force, which, in practice, is usually solved by an iterative scheme with small increments in time. In this paper, a numerical method is proposed wherein the iterations of the nonlinear problem are separated from the structural response computations. This makes the numerical procedures much simpler and also efficient. The proposed method is applied to some impact problems for which solutions are available, and they are found to be in good agreement. The effect of the magnitude of time increment on the results is also discussed.
Closed-form estimates of the domain of attraction for nonlinear systems via fuzzy-polynomial models.
Pitarch, José Luis; Sala, Antonio; Ariño, Carlos Vicente
2014-04-01
In this paper, the domain of attraction of the origin of a nonlinear system is estimated in closed form via level sets with polynomial boundaries, iteratively computed. In particular, the domain of attraction is expanded from a previous estimate, such as a classical Lyapunov level set. With the use of fuzzy-polynomial models, the domain of attraction analysis can be carried out via sum of squares optimization and an iterative algorithm. The result is a function that bounds the domain of attraction, free from the usual restriction of being positive and decrescent in all the interior of its level sets.
Zhu, Yuanheng; Zhao, Dongbin; Li, Xiangjun
2017-03-01
H ∞ control is a powerful method to solve the disturbance attenuation problems that occur in some control systems. The design of such controllers relies on solving the zero-sum game (ZSG). But in practical applications, the exact dynamics is mostly unknown. Identification of dynamics also produces errors that are detrimental to the control performance. To overcome this problem, an iterative adaptive dynamic programming algorithm is proposed in this paper to solve the continuous-time, unknown nonlinear ZSG with only online data. A model-free approach to the Hamilton-Jacobi-Isaacs equation is developed based on the policy iteration method. Control and disturbance policies and value are approximated by neural networks (NNs) under the critic-actor-disturber structure. The NN weights are solved by the least-squares method. According to the theoretical analysis, our algorithm is equivalent to a Gauss-Newton method solving an optimization problem, and it converges uniformly to the optimal solution. The online data can also be used repeatedly, which is highly efficient. Simulation results demonstrate its feasibility to solve the unknown nonlinear ZSG. When compared with other algorithms, it saves a significant amount of online measurement time.
NASA Astrophysics Data System (ADS)
Zhang, Jiangjiang; Lin, Guang; Li, Weixuan; Wu, Laosheng; Zeng, Lingzao
2018-03-01
Ensemble smoother (ES) has been widely used in inverse modeling of hydrologic systems. However, for problems where the distribution of model parameters is multimodal, using ES directly would be problematic. One popular solution is to use a clustering algorithm to identify each mode and update the clusters with ES separately. However, this strategy may not be very efficient when the dimension of parameter space is high or the number of modes is large. Alternatively, we propose in this paper a very simple and efficient algorithm, i.e., the iterative local updating ensemble smoother (ILUES), to explore multimodal distributions of model parameters in nonlinear hydrologic systems. The ILUES algorithm works by updating local ensembles of each sample with ES to explore possible multimodal distributions. To achieve satisfactory data matches in nonlinear problems, we adopt an iterative form of ES to assimilate the measurements multiple times. Numerical cases involving nonlinearity and multimodality are tested to illustrate the performance of the proposed method. It is shown that overall the ILUES algorithm can well quantify the parametric uncertainties of complex hydrologic models, no matter whether the multimodal distribution exists.
Parametric Loop Division for 3D Localization in Wireless Sensor Networks
Ahmad, Tanveer
2017-01-01
Localization in Wireless Sensor Networks (WSNs) has been an active topic for more than two decades. A variety of algorithms were proposed to improve the localization accuracy. However, they are either limited to two-dimensional (2D) space, or require specific sensor deployment for proper operations. In this paper, we proposed a three-dimensional (3D) localization scheme for WSNs based on the well-known parametric Loop division (PLD) algorithm. The proposed scheme localizes a sensor node in a region bounded by a network of anchor nodes. By iteratively shrinking that region towards its center point, the proposed scheme provides better localization accuracy as compared to existing schemes. Furthermore, it is cost-effective and independent of environmental irregularity. We provide an analytical framework for the proposed scheme and find its lower bound accuracy. Simulation results shows that the proposed algorithm provides an average localization accuracy of 0.89 m with a standard deviation of 1.2 m. PMID:28737714
Efficient iterative methods applied to the solution of transonic flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wissink, A.M.; Lyrintzis, A.S.; Chronopoulos, A.T.
1996-02-01
We investigate the use of an inexact Newton`s method to solve the potential equations in the transonic regime. As a test case, we solve the two-dimensional steady transonic small disturbance equation. Approximate factorization/ADI techniques have traditionally been employed for implicit solutions of this nonlinear equation. Instead, we apply Newton`s method using an exact analytical determination of the Jacobian with preconditioned conjugate gradient-like iterative solvers for solution of the linear systems in each Newton iteration. Two iterative solvers are tested; a block s-step version of the classical Orthomin(k) algorithm called orthogonal s-step Orthomin (OSOmin) and the well-known GIVIRES method. The preconditionermore » is a vectorizable and parallelizable version of incomplete LU (ILU) factorization. Efficiency of the Newton-Iterative method on vector and parallel computer architectures is the main issue addressed. In vectorized tests on a single processor of the Cray C-90, the performance of Newton-OSOmin is superior to Newton-GMRES and a more traditional monotone AF/ADI method (MAF) for a variety of transonic Mach numbers and mesh sizes. Newton- GIVIRES is superior to MAF for some cases. The parallel performance of the Newton method is also found to be very good on multiple processors of the Cray C-90 and on the massively parallel thinking machine CM-5, where very fast execution rates (up to 9 Gflops) are found for large problems. 38 refs., 14 figs., 7 tabs.« less
Zhang, Chenglin; Yan, Lei; Han, Song; Guan, Xinping
2017-01-01
Target localization, which aims to estimate the location of an unknown target, is one of the key issues in applications of underwater acoustic sensor networks (UASNs). However, the constrained property of an underwater environment, such as restricted communication capacity of sensor nodes and sensing noises, makes target localization a challenging problem. This paper relies on fractional sensor nodes to formulate a support vector learning-based particle filter algorithm for the localization problem in communication-constrained underwater acoustic sensor networks. A node-selection strategy is exploited to pick fractional sensor nodes with short-distance pattern to participate in the sensing process at each time frame. Subsequently, we propose a least-square support vector regression (LSSVR)-based observation function, through which an iterative regression strategy is used to deal with the distorted data caused by sensing noises, to improve the observation accuracy. At the same time, we integrate the observation to formulate the likelihood function, which effectively update the weights of particles. Thus, the particle effectiveness is enhanced to avoid “particle degeneracy” problem and improve localization accuracy. In order to validate the performance of the proposed localization algorithm, two different noise scenarios are investigated. The simulation results show that the proposed localization algorithm can efficiently improve the localization accuracy. In addition, the node-selection strategy can effectively select the subset of sensor nodes to improve the communication efficiency of the sensor network. PMID:29267252
Li, Xinbin; Zhang, Chenglin; Yan, Lei; Han, Song; Guan, Xinping
2017-12-21
Target localization, which aims to estimate the location of an unknown target, is one of the key issues in applications of underwater acoustic sensor networks (UASNs). However, the constrained property of an underwater environment, such as restricted communication capacity of sensor nodes and sensing noises, makes target localization a challenging problem. This paper relies on fractional sensor nodes to formulate a support vector learning-based particle filter algorithm for the localization problem in communication-constrained underwater acoustic sensor networks. A node-selection strategy is exploited to pick fractional sensor nodes with short-distance pattern to participate in the sensing process at each time frame. Subsequently, we propose a least-square support vector regression (LSSVR)-based observation function, through which an iterative regression strategy is used to deal with the distorted data caused by sensing noises, to improve the observation accuracy. At the same time, we integrate the observation to formulate the likelihood function, which effectively update the weights of particles. Thus, the particle effectiveness is enhanced to avoid "particle degeneracy" problem and improve localization accuracy. In order to validate the performance of the proposed localization algorithm, two different noise scenarios are investigated. The simulation results show that the proposed localization algorithm can efficiently improve the localization accuracy. In addition, the node-selection strategy can effectively select the subset of sensor nodes to improve the communication efficiency of the sensor network.
Hopping in the Crowd to Unveil Network Topology.
Asllani, Malbor; Carletti, Timoteo; Di Patti, Francesca; Fanelli, Duccio; Piazza, Francesco
2018-04-13
We introduce a nonlinear operator to model diffusion on a complex undirected network under crowded conditions. We show that the asymptotic distribution of diffusing agents is a nonlinear function of the nodes' degree and saturates to a constant value for sufficiently large connectivities, at variance with standard diffusion in the absence of excluded-volume effects. Building on this observation, we define and solve an inverse problem, aimed at reconstructing the a priori unknown connectivity distribution. The method gathers all the necessary information by repeating a limited number of independent measurements of the asymptotic density at a single node, which can be chosen randomly. The technique is successfully tested against both synthetic and real data and is also shown to estimate with great accuracy the total number of nodes.
Hopping in the Crowd to Unveil Network Topology
NASA Astrophysics Data System (ADS)
Asllani, Malbor; Carletti, Timoteo; Di Patti, Francesca; Fanelli, Duccio; Piazza, Francesco
2018-04-01
We introduce a nonlinear operator to model diffusion on a complex undirected network under crowded conditions. We show that the asymptotic distribution of diffusing agents is a nonlinear function of the nodes' degree and saturates to a constant value for sufficiently large connectivities, at variance with standard diffusion in the absence of excluded-volume effects. Building on this observation, we define and solve an inverse problem, aimed at reconstructing the a priori unknown connectivity distribution. The method gathers all the necessary information by repeating a limited number of independent measurements of the asymptotic density at a single node, which can be chosen randomly. The technique is successfully tested against both synthetic and real data and is also shown to estimate with great accuracy the total number of nodes.
Fast Inbound Top-K Query for Random Walk with Restart.
Zhang, Chao; Jiang, Shan; Chen, Yucheng; Sun, Yidan; Han, Jiawei
2015-09-01
Random walk with restart (RWR) is widely recognized as one of the most important node proximity measures for graphs, as it captures the holistic graph structure and is robust to noise in the graph. In this paper, we study a novel query based on the RWR measure, called the inbound top-k (Ink) query. Given a query node q and a number k , the Ink query aims at retrieving k nodes in the graph that have the largest weighted RWR scores to q . Ink queries can be highly useful for various applications such as traffic scheduling, disease treatment, and targeted advertising. Nevertheless, none of the existing RWR computation techniques can accurately and efficiently process the Ink query in large graphs. We propose two algorithms, namely Squeeze and Ripple, both of which can accurately answer the Ink query in a fast and incremental manner. To identify the top- k nodes, Squeeze iteratively performs matrix-vector multiplication and estimates the lower and upper bounds for all the nodes in the graph. Ripple employs a more aggressive strategy by only estimating the RWR scores for the nodes falling in the vicinity of q , the nodes outside the vicinity do not need to be evaluated because their RWR scores are propagated from the boundary of the vicinity and thus upper bounded. Ripple incrementally expands the vicinity until the top- k result set can be obtained. Our extensive experiments on real-life graph data sets show that Ink queries can retrieve interesting results, and the proposed algorithms are orders of magnitude faster than state-of-the-art method.
Compliance matrices for cracked bodies
NASA Technical Reports Server (NTRS)
Ballarini, R.
1986-01-01
An algorithm is developed to construct the compliance matrix for a cracked solid in the integral-equation formulation of two-dimensional linear-elastic fracture mechanics. The integral equation is reduced to a system of algebraic equations for unknown values of the dislocation-density function at discrete points on the interval from -1 to 1, using the numerical procedure described by Gerasoulis (1982). Sample numerical results are presented, and it is suggested that the algorithm is especially useful in cases where iterative solutions are required; e.g., models of fiber-reinforced concrete, rocks, or ceramics where microcracking, fiber bridging, and other nonlinear effects are treated as nonlinear springs along the crack surfaces (Ballarini et al., 1984).
Zeng, Zhi-Li; Cheng, Li-Ming; Zhu, Rui; Wang, Jian-Jie; Yu, Yan
2011-08-23
To build an effective nonlinear three-dimensional finite-element (FE) model of T(11)-L(3) segments for a further biomechanical study of thoracolumbar spine. The CT (computed tomography) scan images of healthy adult T(11)-L(3) segments were imported into software Simpleware 2.0 to generate a triangular mesh model. Using software Geomagic 8 for model repair and optimization, a solid model was generated into the finite element software Abaqus 6.9. The reasonable element C3D8 was selected for bone structures. Created between bony endplates, the intervertebral disc was subdivided into nucleus pulposus and annulus fibrosus (44% nucleus, 56% annulus). The nucleus was filled with 5 layers of 8-node solid elements and annulus reinforced by 8 crisscross collagenous fiber layers. The nucleus and annulus were meshed by C3D8RH while the collagen fibers meshed by two node-truss elements. The anterior (ALL) and posterior (PLL) longitudinal ligaments, flavum (FL), supraspinous (SSL), interspinous (ISL) and intertransverse (ITL) ligaments were modeled with S4R shell elements while capsular ligament (CL) was modeled with 3-node shell element. All surrounding ligaments were represented by envelope of 1 mm uniform thickness. The discs and bone structures were modeled with hyper-elastic and elasto-plastic material laws respectively while the ligaments governed by visco-elastic material law. The nonlinear three-dimensional finite-element model of T(11)-L(3) segments was generated and its efficacy verified through validating the geometric similarity and disc load-displacement and stress distribution under the impact of violence. Using ABAQUS/ EXPLICIT 6.9 the explicit dynamic finite element solver, the impact test was simulated in vitro. In this study, a 3-dimensional, nonlinear FE model including 5 vertebrae, 4 intervertebral discs and 7 ligaments consisted of 78 887 elements and 71 939 nodes. The model had good geometric similarity under the same conditions. The results of FEM intervertebral disc load-displacement curve were similar to those of in vitro test. The stress distribution results of vertebral cortical bone, posterior complex and cancellous bone were similar to those of other static experiments in a dynamic impact test under the observation of stress cloud. With the advantages of high geometric and mechanical similarity and complete thoracolumbar, hexahedral meshes, nonlinear finite element model may facilitate the impact loading test for a further dynamic analysis of injury mechanism for thoracolumbar burst fracture.
Newton's method for nonlinear stochastic wave equations driven by one-dimensional Brownian motion.
Leszczynski, Henryk; Wrzosek, Monika
2017-02-01
We consider nonlinear stochastic wave equations driven by one-dimensional white noise with respect to time. The existence of solutions is proved by means of Picard iterations. Next we apply Newton's method. Moreover, a second-order convergence in a probabilistic sense is demonstrated.
Contextual analysis of immunological response through whole-organ fluorescent imaging.
Woodruff, Matthew C; Herndon, Caroline N; Heesters, B A; Carroll, Michael C
2013-09-01
As fluorescent microscopy has developed, significant insights have been gained into the establishment of immune response within secondary lymphoid organs, particularly in draining lymph nodes. While established techniques such as confocal imaging and intravital multi-photon microscopy have proven invaluable, they provide limited insight into the architectural and structural context in which these responses occur. To interrogate the role of the lymph node environment in immune response effectively, a new set of imaging tools taking into account broader architectural context must be implemented into emerging immunological questions. Using two different methods of whole-organ imaging, optical clearing and three-dimensional reconstruction of serially sectioned lymph nodes, fluorescent representations of whole lymph nodes can be acquired at cellular resolution. Using freely available post-processing tools, images of unlimited size and depth can be assembled into cohesive, contextual snapshots of immunological response. Through the implementation of robust iterative analysis techniques, these highly complex three-dimensional images can be objectified into sortable object data sets. These data can then be used to interrogate complex questions at the cellular level within the broader context of lymph node biology. By combining existing imaging technology with complex methods of sample preparation and capture, we have developed efficient systems for contextualizing immunological phenomena within lymphatic architecture. In combination with robust approaches to image analysis, these advances provide a path to integrating scientific understanding of basic lymphatic biology into the complex nature of immunological response.
A finite difference solution for the propagation of sound in near sonic flows
NASA Technical Reports Server (NTRS)
Hariharan, S. I.; Lester, H. C.
1983-01-01
An explicit time/space finite difference procedure is used to model the propagation of sound in a quasi one-dimensional duct containing high Mach number subsonic flow. Nonlinear acoustic equations are derived by perturbing the time-dependent Euler equations about a steady, compressible mean flow. The governing difference relations are based on a fourth-order, two-step (predictor-corrector) MacCormack scheme. The solution algorithm functions by switching on a time harmonic source and allowing the difference equations to iterate to a steady state. The principal effect of the non-linearities was to shift acoustical energy to higher harmonics. With increased source strengths, wave steepening was observed. This phenomenon suggests that the acoustical response may approach a shock behavior at at higher sound pressure level as the throat Mach number aproaches unity. On a peak level basis, good agreement between the nonlinear finite difference and linear finite element solutions was observed, even through a peak sound pressure level of about 150 dB occurred in the throat region. Nonlinear steady state waveform solutions are shown to be in excellent agreement with a nonlinear asymptotic theory.
1986-05-31
Nonlinear Feedback Control 8-16 for Spacecraft Attitude Maneuvers" 2. " Spacecraft Attitude Control Using 17-35... nonlinear state feedback control laws are developed for space- craft attitude control using the Euler parameters and conjugate angular momenta. Time... Nonlinear Feedback Control for Spacecraft Attitude Maneuvers," to appear in AIAA J. of Guidance, Control, and Dynamics, (AIAA Paper No. 83-2230-CP,
Demi, L; van Dongen, K W A; Verweij, M D
2011-03-01
Experimental data reveals that attenuation is an important phenomenon in medical ultrasound. Attenuation is particularly important for medical applications based on nonlinear acoustics, since higher harmonics experience higher attenuation than the fundamental. Here, a method is presented to accurately solve the wave equation for nonlinear acoustic media with spatially inhomogeneous attenuation. Losses are modeled by a spatially dependent compliance relaxation function, which is included in the Westervelt equation. Introduction of absorption in the form of a causal relaxation function automatically results in the appearance of dispersion. The appearance of inhomogeneities implies the presence of a spatially inhomogeneous contrast source in the presented full-wave method leading to inclusion of forward and backward scattering. The contrast source problem is solved iteratively using a Neumann scheme, similar to the iterative nonlinear contrast source (INCS) method. The presented method is directionally independent and capable of dealing with weakly to moderately nonlinear, large scale, three-dimensional wave fields occurring in diagnostic ultrasound. Convergence of the method has been investigated and results for homogeneous, lossy, linear media show full agreement with the exact results. Moreover, the performance of the method is demonstrated through simulations involving steered and unsteered beams in nonlinear media with spatially homogeneous and inhomogeneous attenuation. © 2011 Acoustical Society of America
perturbation formulas of Groebner (1960) and Alexseev (1961) for the solution of ordinary differential equations. These formulas are generalized and...iteration methods are given, which include the Methods of Picard, Groebner -Knapp, Poincare, Chen, as special cases. Chapter 3 generalizes an iterated
NASA Astrophysics Data System (ADS)
Woollands, Robyn M.; Read, Julie L.; Probe, Austin B.; Junkins, John L.
2017-12-01
We present a new method for solving the multiple revolution perturbed Lambert problem using the method of particular solutions and modified Chebyshev-Picard iteration. The method of particular solutions differs from the well-known Newton-shooting method in that integration of the state transition matrix (36 additional differential equations) is not required, and instead it makes use of a reference trajectory and a set of n particular solutions. Any numerical integrator can be used for solving two-point boundary problems with the method of particular solutions, however we show that using modified Chebyshev-Picard iteration affords an avenue for increased efficiency that is not available with other step-by-step integrators. We take advantage of the path approximation nature of modified Chebyshev-Picard iteration (nodes iteratively converge to fixed points in space) and utilize a variable fidelity force model for propagating the reference trajectory. Remarkably, we demonstrate that computing the particular solutions with only low fidelity function evaluations greatly increases the efficiency of the algorithm while maintaining machine precision accuracy. Our study reveals that solving the perturbed Lambert's problem using the method of particular solutions with modified Chebyshev-Picard iteration is about an order of magnitude faster compared with the classical shooting method and a tenth-twelfth order Runge-Kutta integrator. It is well known that the solution to Lambert's problem over multiple revolutions is not unique and to ensure that all possible solutions are considered we make use of a reliable preexisting Keplerian Lambert solver to warm start our perturbed algorithm.
TRUST84. Sat-Unsat Flow in Deformable Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narasimhan, T.N.
1984-11-01
TRUST84 solves for transient and steady-state flow in variably saturated deformable media in one, two, or three dimensions. It can handle porous media, fractured media, or fractured-porous media. Boundary conditions may be an arbitrary function of time. Sources or sinks may be a function of time or of potential. The theoretical model considers a general three-dimensional field of flow in conjunction with a one-dimensional vertical deformation field. The governing equation expresses the conservation of fluid mass in an elemental volume that has a constant volume of solids. Deformation of the porous medium may be nonelastic. Permeability and the compressibility coefficientsmore » may be nonlinearly related to effective stress. Relationships between permeability and saturation with pore water pressure in the unsaturated zone may be characterized by hysteresis. The relation between pore pressure change and effective stress change may be a function of saturation. The basic calculational model of the conductive heat transfer code TRUMP is applied in TRUST84 to the flow of fluids in porous media. The model combines an integrated finite difference algorithm for numerically solving the governing equation with a mixed explicit-implicit iterative scheme in which the explicit changes in potential are first computed for all elements in the system, after which implicit corrections are made only for those elements for which the stable time-step is less than the time-step being used. Time-step sizes are automatically controlled to optimize the number of iterations, to control maximum change to potential during a time-step, and to obtain desired output information. Time derivatives, estimated on the basis of system behavior during the two previous time-steps, are used to start the iteration process and to evaluate nonlinear coefficients. Both heterogeneity and anisotropy can be handled.« less
Wasito, Ito; Hashim, Siti Zaiton M; Sukmaningrum, Sri
2007-01-01
Gene expression profiling plays an important role in the identification of biological and clinical properties of human solid tumors such as colorectal carcinoma. Profiling is required to reveal underlying molecular features for diagnostic and therapeutic purposes. A non-parametric density-estimation-based approach called iterative local Gaussian clustering (ILGC), was used to identify clusters of expressed genes. We used experimental data from a previous study by Muro and others consisting of 1,536 genes in 100 colorectal cancer and 11 normal tissues. In this dataset, the ILGC finds three clusters, two large and one small gene clusters, similar to their results which used Gaussian mixture clustering. The correlation of each cluster of genes and clinical properties of malignancy of human colorectal cancer was analysed for the existence of tumor or normal, the existence of distant metastasis and the existence of lymph node metastasis. PMID:18305825
Wasito, Ito; Hashim, Siti Zaiton M; Sukmaningrum, Sri
2007-12-30
Gene expression profiling plays an important role in the identification of biological and clinical properties of human solid tumors such as colorectal carcinoma. Profiling is required to reveal underlying molecular features for diagnostic and therapeutic purposes. A non-parametric density-estimation-based approach called iterative local Gaussian clustering (ILGC), was used to identify clusters of expressed genes. We used experimental data from a previous study by Muro and others consisting of 1,536 genes in 100 colorectal cancer and 11 normal tissues. In this dataset, the ILGC finds three clusters, two large and one small gene clusters, similar to their results which used Gaussian mixture clustering. The correlation of each cluster of genes and clinical properties of malignancy of human colorectal cancer was analysed for the existence of tumor or normal, the existence of distant metastasis and the existence of lymph node metastasis.
Hayashi, Ryusuke; Watanabe, Osamu; Yokoyama, Hiroki; Nishida, Shin'ya
2017-06-01
Characterization of the functional relationship between sensory inputs and neuronal or observers' perceptual responses is one of the fundamental goals of systems neuroscience and psychophysics. Conventional methods, such as reverse correlation and spike-triggered data analyses are limited in their ability to resolve complex and inherently nonlinear neuronal/perceptual processes because these methods require input stimuli to be Gaussian with a zero mean. Recent studies have shown that analyses based on a generalized linear model (GLM) do not require such specific input characteristics and have advantages over conventional methods. GLM, however, relies on iterative optimization algorithms and its calculation costs become very expensive when estimating the nonlinear parameters of a large-scale system using large volumes of data. In this paper, we introduce a new analytical method for identifying a nonlinear system without relying on iterative calculations and yet also not requiring any specific stimulus distribution. We demonstrate the results of numerical simulations, showing that our noniterative method is as accurate as GLM in estimating nonlinear parameters in many cases and outperforms conventional, spike-triggered data analyses. As an example of the application of our method to actual psychophysical data, we investigated how different spatiotemporal frequency channels interact in assessments of motion direction. The nonlinear interaction estimated by our method was consistent with findings from previous vision studies and supports the validity of our method for nonlinear system identification.
Benhammouda, Brahim
2016-01-01
Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems.
Polynomial elimination theory and non-linear stability analysis for the Euler equations
NASA Technical Reports Server (NTRS)
Kennon, S. R.; Dulikravich, G. S.; Jespersen, D. C.
1986-01-01
Numerical methods are presented that exploit the polynomial properties of discretizations of the Euler equations. It is noted that most finite difference or finite volume discretizations of the steady-state Euler equations produce a polynomial system of equations to be solved. These equations are solved using classical polynomial elimination theory, with some innovative modifications. This paper also presents some preliminary results of a new non-linear stability analysis technique. This technique is applicable to determining the stability of polynomial iterative schemes. Results are presented for applying the elimination technique to a one-dimensional test case. For this test case, the exact solution is computed in three iterations. The non-linear stability analysis is applied to determine the optimal time step for solving Burgers' equation using the MacCormack scheme. The estimated optimal time step is very close to the time step that arises from a linear stability analysis.
Song, Ruizhuo; Lewis, Frank L; Wei, Qinglai
2017-03-01
This paper establishes an off-policy integral reinforcement learning (IRL) method to solve nonlinear continuous-time (CT) nonzero-sum (NZS) games with unknown system dynamics. The IRL algorithm is presented to obtain the iterative control and off-policy learning is used to allow the dynamics to be completely unknown. Off-policy IRL is designed to do policy evaluation and policy improvement in the policy iteration algorithm. Critic and action networks are used to obtain the performance index and control for each player. The gradient descent algorithm makes the update of critic and action weights simultaneously. The convergence analysis of the weights is given. The asymptotic stability of the closed-loop system and the existence of Nash equilibrium are proved. The simulation study demonstrates the effectiveness of the developed method for nonlinear CT NZS games with unknown system dynamics.
An efficient flexible-order model for 3D nonlinear water waves
NASA Astrophysics Data System (ADS)
Engsig-Karup, A. P.; Bingham, H. B.; Lindberg, O.
2009-04-01
The flexible-order, finite difference based fully nonlinear potential flow model described in [H.B. Bingham, H. Zhang, On the accuracy of finite difference solutions for nonlinear water waves, J. Eng. Math. 58 (2007) 211-228] is extended to three dimensions (3D). In order to obtain an optimal scaling of the solution effort multigrid is employed to precondition a GMRES iterative solution of the discretized Laplace problem. A robust multigrid method based on Gauss-Seidel smoothing is found to require special treatment of the boundary conditions along solid boundaries, and in particular on the sea bottom. A new discretization scheme using one layer of grid points outside the fluid domain is presented and shown to provide convergent solutions over the full physical and discrete parameter space of interest. Linear analysis of the fundamental properties of the scheme with respect to accuracy, robustness and energy conservation are presented together with demonstrations of grid independent iteration count and optimal scaling of the solution effort. Calculations are made for 3D nonlinear wave problems for steep nonlinear waves and a shoaling problem which show good agreement with experimental measurements and other calculations from the literature.
1994-03-31
fluorescence intensity with temperature , which allows the fuel cn ce to be found directly from the acetaldehyde fluorescence. An alternative means of measuring... oxidizer . The measured quantities are used to form 17 a conserved scalar from which the mixtur fraction is determined in an iterative process. We have...turbulent nonpemIixed acetaklehyde flame. Acetaldehyde (CH3CHO) was chosen for its relatively high fluorescence yield and small variation of
NASA Astrophysics Data System (ADS)
Faugeras, Blaise; Blum, Jacques; Heumann, Holger; Boulbe, Cédric
2017-08-01
The modelization of polarimetry Faraday rotation measurements commonly used in tokamak plasma equilibrium reconstruction codes is an approximation to the Stokes model. This approximation is not valid for the foreseen ITER scenarios where high current and electron density plasma regimes are expected. In this work a method enabling the consistent resolution of the inverse equilibrium reconstruction problem in the framework of non-linear free-boundary equilibrium coupled to the Stokes model equation for polarimetry is provided. Using optimal control theory we derive the optimality system for this inverse problem. A sequential quadratic programming (SQP) method is proposed for its numerical resolution. Numerical experiments with noisy synthetic measurements in the ITER tokamak configuration for two test cases, the second of which is an H-mode plasma, show that the method is efficient and that the accuracy of the identification of the unknown profile functions is improved compared to the use of classical Faraday measurements.
NASA Astrophysics Data System (ADS)
Wu, Fang-Xiang; Mu, Lei; Shi, Zhong-Ke
2010-01-01
The models of gene regulatory networks are often derived from statistical thermodynamics principle or Michaelis-Menten kinetics equation. As a result, the models contain rational reaction rates which are nonlinear in both parameters and states. It is challenging to estimate parameters nonlinear in a model although there have been many traditional nonlinear parameter estimation methods such as Gauss-Newton iteration method and its variants. In this article, we develop a two-step method to estimate the parameters in rational reaction rates of gene regulatory networks via weighted linear least squares. This method takes the special structure of rational reaction rates into consideration. That is, in the rational reaction rates, the numerator and the denominator are linear in parameters. By designing a special weight matrix for the linear least squares, parameters in the numerator and the denominator can be estimated by solving two linear least squares problems. The main advantage of the developed method is that it can produce the analytical solutions to the estimation of parameters in rational reaction rates which originally is nonlinear parameter estimation problem. The developed method is applied to a couple of gene regulatory networks. The simulation results show the superior performance over Gauss-Newton method.
NASA Astrophysics Data System (ADS)
Manfredi, Sabato
2016-06-01
Large-scale dynamic systems are becoming highly pervasive in their occurrence with applications ranging from system biology, environment monitoring, sensor networks, and power systems. They are characterised by high dimensionality, complexity, and uncertainty in the node dynamic/interactions that require more and more computational demanding methods for their analysis and control design, as well as the network size and node system/interaction complexity increase. Therefore, it is a challenging problem to find scalable computational method for distributed control design of large-scale networks. In this paper, we investigate the robust distributed stabilisation problem of large-scale nonlinear multi-agent systems (briefly MASs) composed of non-identical (heterogeneous) linear dynamical systems coupled by uncertain nonlinear time-varying interconnections. By employing Lyapunov stability theory and linear matrix inequality (LMI) technique, new conditions are given for the distributed control design of large-scale MASs that can be easily solved by the toolbox of MATLAB. The stabilisability of each node dynamic is a sufficient assumption to design a global stabilising distributed control. The proposed approach improves some of the existing LMI-based results on MAS by both overcoming their computational limits and extending the applicative scenario to large-scale nonlinear heterogeneous MASs. Additionally, the proposed LMI conditions are further reduced in terms of computational requirement in the case of weakly heterogeneous MASs, which is a common scenario in real application where the network nodes and links are affected by parameter uncertainties. One of the main advantages of the proposed approach is to allow to move from a centralised towards a distributed computing architecture so that the expensive computation workload spent to solve LMIs may be shared among processors located at the networked nodes, thus increasing the scalability of the approach than the network size. Finally, a numerical example shows the applicability of the proposed method and its advantage in terms of computational complexity when compared with the existing approaches.
Application of the perturbation iteration method to boundary layer type problems.
Pakdemirli, Mehmet
2016-01-01
The recently developed perturbation iteration method is applied to boundary layer type singular problems for the first time. As a preliminary work on the topic, the simplest algorithm of PIA(1,1) is employed in the calculations. Linear and nonlinear problems are solved to outline the basic ideas of the new solution technique. The inner and outer solutions are determined with the iteration algorithm and matched to construct a composite expansion valid within all parts of the domain. The solutions are contrasted with the available exact or numerical solutions. It is shown that the perturbation-iteration algorithm can be effectively used for solving boundary layer type problems.
NASA Astrophysics Data System (ADS)
Bastani, Ali Foroush; Dastgerdi, Maryam Vahid; Mighani, Abolfazl
2018-06-01
The main aim of this paper is the analytical and numerical study of a time-dependent second-order nonlinear partial differential equation (PDE) arising from the endogenous stochastic volatility model, introduced in [Bensoussan, A., Crouhy, M. and Galai, D., Stochastic equity volatility related to the leverage effect (I): equity volatility behavior. Applied Mathematical Finance, 1, 63-85, 1994]. As the first step, we derive a consistent set of initial and boundary conditions to complement the PDE, when the firm is financed by equity and debt. In the sequel, we propose a Newton-based iteration scheme for nonlinear parabolic PDEs which is an extension of a method for solving elliptic partial differential equations introduced in [Fasshauer, G. E., Newton iteration with multiquadrics for the solution of nonlinear PDEs. Computers and Mathematics with Applications, 43, 423-438, 2002]. The scheme is based on multilevel collocation using radial basis functions (RBFs) to solve the resulting locally linearized elliptic PDEs obtained at each level of the Newton iteration. We show the effectiveness of the resulting framework by solving a prototypical example from the field and compare the results with those obtained from three different techniques: (1) a finite difference discretization; (2) a naive RBF collocation and (3) a benchmark approximation, introduced for the first time in this paper. The numerical results confirm the robustness, higher convergence rate and good stability properties of the proposed scheme compared to other alternatives. We also comment on some possible research directions in this field.
Nonlinear anomalous photocurrents in Weyl semimetals
NASA Astrophysics Data System (ADS)
Rostami, Habib; Polini, Marco
2018-05-01
We study the second-order nonlinear optical response of a Weyl semimetal (WSM), i.e., a three-dimensional metal with linear band touchings acting as pointlike sources of Berry curvature in momentum space, termed "Weyl-Berry monopoles." We first show that the anomalous second-order photocurrent of WSMs can be elegantly parametrized in terms of Weyl-Berry dipole and quadrupole moments. We then calculate the corresponding charge and node conductivities of WSMs with either broken time-reversal invariance or inversion symmetry. In particular, we predict a dissipationless second-order anomalous node conductivity for WSMs belonging to the TaAs family.
Method for nonlinear optimization for gas tagging and other systems
Chen, Ting; Gross, Kenny C.; Wegerich, Stephan
1998-01-01
A method and system for providing nuclear fuel rods with a configuration of isotopic gas tags. The method includes selecting a true location of a first gas tag node, selecting initial locations for the remaining n-1 nodes using target gas tag compositions, generating a set of random gene pools with L nodes, applying a Hopfield network for computing on energy, or cost, for each of the L gene pools and using selected constraints to establish minimum energy states to identify optimal gas tag nodes with each energy compared to a convergence threshold and then upon identifying the gas tag node continuing this procedure until establishing the next gas tag node until all remaining n nodes have been established.
Method for nonlinear optimization for gas tagging and other systems
Chen, T.; Gross, K.C.; Wegerich, S.
1998-01-06
A method and system are disclosed for providing nuclear fuel rods with a configuration of isotopic gas tags. The method includes selecting a true location of a first gas tag node, selecting initial locations for the remaining n-1 nodes using target gas tag compositions, generating a set of random gene pools with L nodes, applying a Hopfield network for computing on energy, or cost, for each of the L gene pools and using selected constraints to establish minimum energy states to identify optimal gas tag nodes with each energy compared to a convergence threshold and then upon identifying the gas tag node continuing this procedure until establishing the next gas tag node until all remaining n nodes have been established. 6 figs.
Yang, Guanxue; Wang, Lin; Wang, Xiaofan
2017-06-07
Reconstruction of networks underlying complex systems is one of the most crucial problems in many areas of engineering and science. In this paper, rather than identifying parameters of complex systems governed by pre-defined models or taking some polynomial and rational functions as a prior information for subsequent model selection, we put forward a general framework for nonlinear causal network reconstruction from time-series with limited observations. With obtaining multi-source datasets based on the data-fusion strategy, we propose a novel method to handle nonlinearity and directionality of complex networked systems, namely group lasso nonlinear conditional granger causality. Specially, our method can exploit different sets of radial basis functions to approximate the nonlinear interactions between each pair of nodes and integrate sparsity into grouped variables selection. The performance characteristic of our approach is firstly assessed with two types of simulated datasets from nonlinear vector autoregressive model and nonlinear dynamic models, and then verified based on the benchmark datasets from DREAM3 Challenge4. Effects of data size and noise intensity are also discussed. All of the results demonstrate that the proposed method performs better in terms of higher area under precision-recall curve.
Multi-component Wronskian solution to the Kadomtsev-Petviashvili equation
NASA Astrophysics Data System (ADS)
Xu, Tao; Sun, Fu-Wei; Zhang, Yi; Li, Juan
2014-01-01
It is known that the Kadomtsev-Petviashvili (KP) equation can be decomposed into the first two members of the coupled Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy by the binary non-linearization of Lax pairs. In this paper, we construct the N-th iterated Darboux transformation (DT) for the second- and third-order m-coupled AKNS systems. By using together the N-th iterated DT and Cramer's rule, we find that the KPII equation has the unreduced multi-component Wronskian solution and the KPI equation admits a reduced multi-component Wronskian solution. In particular, based on the unreduced and reduced two-component Wronskians, we obtain two families of fully-resonant line-soliton solutions which contain arbitrary numbers of asymptotic solitons as y → ∓∞ to the KPII equation, and the ordinary N-soliton solution to the KPI equation. In addition, we find that the KPI line solitons propagating in parallel can exhibit the bound state at the moment of collision.
NASA Astrophysics Data System (ADS)
Sun, Shu-Ting; Li, Xiao-Dong; Zhong, Ren-Xin
2017-10-01
For nonlinear switched discrete-time systems with input constraints, this paper presents an open-closed-loop iterative learning control (ILC) approach, which includes a feedforward ILC part and a feedback control part. Under a given switching rule, the mathematical induction is used to prove the convergence of ILC tracking error in each subsystem. It is demonstrated that the convergence of ILC tracking error is dependent on the feedforward control gain, but the feedback control can speed up the convergence process of ILC by a suitable selection of feedback control gain. A switched freeway traffic system is used to illustrate the effectiveness of the proposed ILC law.
A Decentralized Eigenvalue Computation Method for Spectrum Sensing Based on Average Consensus
NASA Astrophysics Data System (ADS)
Mohammadi, Jafar; Limmer, Steffen; Stańczak, Sławomir
2016-07-01
This paper considers eigenvalue estimation for the decentralized inference problem for spectrum sensing. We propose a decentralized eigenvalue computation algorithm based on the power method, which is referred to as generalized power method GPM; it is capable of estimating the eigenvalues of a given covariance matrix under certain conditions. Furthermore, we have developed a decentralized implementation of GPM by splitting the iterative operations into local and global computation tasks. The global tasks require data exchange to be performed among the nodes. For this task, we apply an average consensus algorithm to efficiently perform the global computations. As a special case, we consider a structured graph that is a tree with clusters of nodes at its leaves. For an accelerated distributed implementation, we propose to use computation over multiple access channel (CoMAC) as a building block of the algorithm. Numerical simulations are provided to illustrate the performance of the two algorithms.
Rheologic effects of crystal preferred orientation in upper mantle flow near plate boundaries
NASA Astrophysics Data System (ADS)
Blackman, Donna; Castelnau, Olivier; Dawson, Paul; Boyce, Donald
2016-04-01
Observations of anisotropy provide insight into upper mantle processes. Flow-induced mineral alignment provides a link between mantle deformation patterns and seismic anisotropy. Our study focuses on the rheologic effects of crystal preferred orientation (CPO), which develops during mantle flow, in order to assess whether corresponding anisotropic viscosity could significantly impact the pattern of flow. We employ a coupled nonlinear numerical method to link CPO and the flow model via a local viscosity tensor field that quantifies the stress/strain-rate response of a textured mineral aggregate. For a given flow field, the CPO is computed along streamlines using a self-consistent texture model and is then used to update the viscosity tensor field. The new viscosity tensor field defines the local properties for the next flow computation. This iteration produces a coupled nonlinear model for which seismic signatures can be predicted. Results thus far confirm that CPO can impact flow pattern by altering rheology in directionally-dependent ways, particularly in regions of high flow gradient. Multiple iterations run for an initial, linear stress/strain-rate case (power law exponent n=1) converge to a flow field and CPO distribution that are modestly different from the reference, scalar viscosity case. Upwelling rates directly below the spreading axis are slightly reduced and flow is focused somewhat toward the axis. Predicted seismic anisotropy differences are modest. P-wave anisotropy is a few percent greater in the flow 'corner', near the spreading axis, below the lithosphere and extending 40-100 km off axis. Predicted S-wave splitting differences would be below seafloor measurement limits. Calculations with non-linear stress/strain-rate relation, which is more realistic for olivine, indicate that effects are stronger than for the linear case. For n=2-3, the distribution and strength of CPO for the first iteration are greater than for n=1, although the fast seismic axis directions are similar. The greatest difference in CPO for the nonlinear cases develop at the flow 'corner' at depths of 10-30 km and 20-100 km off-axis. J index values up to 10% greater than the linear case are predicted near the lithosphere base in that region. Viscosity tensor components are notably altered in the nonlinear cases. Iterations between the texture and flow calculations for the non-linear cases are underway this winter; results will be reported in the presentation.
Structure-based control of complex networks with nonlinear dynamics.
Zañudo, Jorge Gomez Tejeda; Yang, Gang; Albert, Réka
2017-07-11
What can we learn about controlling a system solely from its underlying network structure? Here we adapt a recently developed framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system toward any of its natural long-term dynamic behaviors, regardless of the specific functional forms and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of structural controllability in control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case but not in specific model instances.
Shape regularized active contour based on dynamic programming for anatomical structure segmentation
NASA Astrophysics Data System (ADS)
Yu, Tianli; Luo, Jiebo; Singhal, Amit; Ahuja, Narendra
2005-04-01
We present a method to incorporate nonlinear shape prior constraints into segmenting different anatomical structures in medical images. Kernel space density estimation (KSDE) is used to derive the nonlinear shape statistics and enable building a single model for a class of objects with nonlinearly varying shapes. The object contour is coerced by image-based energy into the correct shape sub-distribution (e.g., left or right lung), without the need for model selection. In contrast to an earlier algorithm that uses a local gradient-descent search (susceptible to local minima), we propose an algorithm that iterates between dynamic programming (DP) and shape regularization. DP is capable of finding an optimal contour in the search space that maximizes a cost function related to the difference between the interior and exterior of the object. To enforce the nonlinear shape prior, we propose two shape regularization methods, global and local regularization. Global regularization is applied after each DP search to move the entire shape vector in the shape space in a gradient descent fashion to the position of probable shapes learned from training. The regularized shape is used as the starting shape for the next iteration. Local regularization is accomplished through modifying the search space of the DP. The modified search space only allows a certain amount of deformation of the local shape from the starting shape. Both regularization methods ensure the consistency between the resulted shape with the training shapes, while still preserving DP"s ability to search over a large range and avoid local minima. Our algorithm was applied to two different segmentation tasks for radiographic images: lung field and clavicle segmentation. Both applications have shown that our method is effective and versatile in segmenting various anatomical structures under prior shape constraints; and it is robust to noise and local minima caused by clutter (e.g., blood vessels) and other similar structures (e.g., ribs). We believe that the proposed algorithm represents a major step in the paradigm shift to object segmentation under nonlinear shape constraints.
NASA Astrophysics Data System (ADS)
Furuichi, Mikito; Nishiura, Daisuke
2017-10-01
We developed dynamic load-balancing algorithms for Particle Simulation Methods (PSM) involving short-range interactions, such as Smoothed Particle Hydrodynamics (SPH), Moving Particle Semi-implicit method (MPS), and Discrete Element method (DEM). These are needed to handle billions of particles modeled in large distributed-memory computer systems. Our method utilizes flexible orthogonal domain decomposition, allowing the sub-domain boundaries in the column to be different for each row. The imbalances in the execution time between parallel logical processes are treated as a nonlinear residual. Load-balancing is achieved by minimizing the residual within the framework of an iterative nonlinear solver, combined with a multigrid technique in the local smoother. Our iterative method is suitable for adjusting the sub-domain frequently by monitoring the performance of each computational process because it is computationally cheaper in terms of communication and memory costs than non-iterative methods. Numerical tests demonstrated the ability of our approach to handle workload imbalances arising from a non-uniform particle distribution, differences in particle types, or heterogeneous computer architecture which was difficult with previously proposed methods. We analyzed the parallel efficiency and scalability of our method using Earth simulator and K-computer supercomputer systems.
Neural node network and model, and method of teaching same
Parlos, A.G.; Atiya, A.F.; Fernandez, B.; Tsai, W.K.; Chong, K.T.
1995-12-26
The present invention is a fully connected feed forward network that includes at least one hidden layer. The hidden layer includes nodes in which the output of the node is fed back to that node as an input with a unit delay produced by a delay device occurring in the feedback path (local feedback). Each node within each layer also receives a delayed output (crosstalk) produced by a delay unit from all the other nodes within the same layer. The node performs a transfer function operation based on the inputs from the previous layer and the delayed outputs. The network can be implemented as analog or digital or within a general purpose processor. Two teaching methods can be used: (1) back propagation of weight calculation that includes the local feedback and the crosstalk or (2) more preferably a feed forward gradient decent which immediately follows the output computations and which also includes the local feedback and the crosstalk. Subsequent to the gradient propagation, the weights can be normalized, thereby preventing convergence to a local optimum. Education of the network can be incremental both on and off-line. An educated network is suitable for modeling and controlling dynamic nonlinear systems and time series systems and predicting the outputs as well as hidden states and parameters. The educated network can also be further educated during on-line processing. 21 figs.
Chen, G; Wu, F Y; Liu, Z C; Yang, K; Cui, F
2015-08-01
Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material properties automatically onto finite element models, which remains a great challenge. This paper proposes a node-based assignment approach and also compares it with the element-based approach in the literature. Both approaches were implemented using ABAQUS. The assignment procedure is divided into two steps: generating the data file of the image intensity of a bone in a MATLAB program and reading the data file into ABAQUS via user subroutines. The node-based approach assigns the material properties to each node of the finite element mesh, while the element-based approach assigns the material properties directly to each integration point of an element. Both approaches are independent from the type of elements. A number of FE meshes are tested and both give accurate solutions; comparatively the node-based approach involves less programming effort. The node-based approach is also independent from the type of analyses; it has been tested on the nonlinear analysis of a Sawbone femur. The node-based approach substantially improves the level of automation of the assignment procedure of bone material properties. It is the simplest and most powerful approach that is applicable to many types of analyses and elements. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Neural node network and model, and method of teaching same
Parlos, Alexander G.; Atiya, Amir F.; Fernandez, Benito; Tsai, Wei K.; Chong, Kil T.
1995-01-01
The present invention is a fully connected feed forward network that includes at least one hidden layer 16. The hidden layer 16 includes nodes 20 in which the output of the node is fed back to that node as an input with a unit delay produced by a delay device 24 occurring in the feedback path 22 (local feedback). Each node within each layer also receives a delayed output (crosstalk) produced by a delay unit 36 from all the other nodes within the same layer 16. The node performs a transfer function operation based on the inputs from the previous layer and the delayed outputs. The network can be implemented as analog or digital or within a general purpose processor. Two teaching methods can be used: (1) back propagation of weight calculation that includes the local feedback and the crosstalk or (2) more preferably a feed forward gradient decent which immediately follows the output computations and which also includes the local feedback and the crosstalk. Subsequent to the gradient propagation, the weights can be normalized, thereby preventing convergence to a local optimum. Education of the network can be incremental both on and off-line. An educated network is suitable for modeling and controlling dynamic nonlinear systems and time series systems and predicting the outputs as well as hidden states and parameters. The educated network can also be further educated during on-line processing.
Hop Optimization and Relay Node Selection in Multi-hop Wireless Ad-Hoc Networks
NASA Astrophysics Data System (ADS)
Li, Xiaohua(Edward)
In this paper we propose an efficient approach to determine the optimal hops for multi-hop ad hoc wireless networks. Based on the assumption that nodes use successive interference cancellation (SIC) and maximal ratio combining (MRC) to deal with mutual interference and to utilize all the received signal energy, we show that the signal-to-interference-plus-noise ratio (SINR) of a node is determined only by the nodes before it, not the nodes after it, along a packet forwarding path. Based on this observation, we propose an iterative procedure to select the relay nodes and to calculate the path SINR as well as capacity of an arbitrary multi-hop packet forwarding path. The complexity of the algorithm is extremely low, and scaling well with network size. The algorithm is applicable in arbitrarily large networks. Its performance is demonstrated as desirable by simulations. The algorithm can be helpful in analyzing the performance of multi-hop wireless networks.
Multistep-Ahead Air Passengers Traffic Prediction with Hybrid ARIMA-SVMs Models
Ming, Wei; Xiong, Tao
2014-01-01
The hybrid ARIMA-SVMs prediction models have been established recently, which take advantage of the unique strength of ARIMA and SVMs models in linear and nonlinear modeling, respectively. Built upon this hybrid ARIMA-SVMs models alike, this study goes further to extend them into the case of multistep-ahead prediction for air passengers traffic with the two most commonly used multistep-ahead prediction strategies, that is, iterated strategy and direct strategy. Additionally, the effectiveness of data preprocessing approaches, such as deseasonalization and detrending, is investigated and proofed along with the two strategies. Real data sets including four selected airlines' monthly series were collected to justify the effectiveness of the proposed approach. Empirical results demonstrate that the direct strategy performs better than iterative one in long term prediction case while iterative one performs better in the case of short term prediction. Furthermore, both deseasonalization and detrending can significantly improve the prediction accuracy for both strategies, indicating the necessity of data preprocessing. As such, this study contributes as a full reference to the planners from air transportation industries on how to tackle multistep-ahead prediction tasks in the implementation of either prediction strategy. PMID:24723814
Application of Contraction Mappings to the Control of Nonlinear Systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Killingsworth, W. R., Jr.
1972-01-01
The theoretical and applied aspects of successive approximation techniques are considered for the determination of controls for nonlinear dynamical systems. Particular emphasis is placed upon the methods of contraction mappings and modified contraction mappings. It is shown that application of the Pontryagin principle to the optimal nonlinear regulator problem results in necessary conditions for optimality in the form of a two point boundary value problem (TPBVP). The TPBVP is represented by an operator equation and functional analytic results on the iterative solution of operator equations are applied. The general convergence theorems are translated and applied to those operators arising from the optimal regulation of nonlinear systems. It is shown that simply structured matrices and similarity transformations may be used to facilitate the calculation of the matrix Green functions and the evaluation of the convergence criteria. A controllability theory based on the integral representation of TPBVP's, the implicit function theorem, and contraction mappings is developed for nonlinear dynamical systems. Contraction mappings are theoretically and practically applied to a nonlinear control problem with bounded input control and the Lipschitz norm is used to prove convergence for the nondifferentiable operator. A dynamic model representing community drug usage is developed and the contraction mappings method is used to study the optimal regulation of the nonlinear system.
NASA Technical Reports Server (NTRS)
Spanos, P. D.; Cao, T. T.; Hamilton, D. A.; Nelson, D. A. R.
1989-01-01
An efficient method for the load analysis of Shuttle-payload systems with linear or nonlinear attachment interfaces is presented which allows the kinematics of the interface degrees of freedom at a given time to be evaluated without calculating the combined system modal representation of the Space Shuttle and its payload. For the case of a nonlinear dynamic model, an iterative procedure is employed to converge the nonlinear terms of the equations of motion to reliable values. Results are presented for a Shuttle abort landing event.
An efficient strongly coupled immersed boundary method for deforming bodies
NASA Astrophysics Data System (ADS)
Goza, Andres; Colonius, Tim
2016-11-01
Immersed boundary methods treat the fluid and immersed solid with separate domains. As a result, a nonlinear interface constraint must be satisfied when these methods are applied to flow-structure interaction problems. This typically results in a large nonlinear system of equations that is difficult to solve efficiently. Often, this system is solved with a block Gauss-Seidel procedure, which is easy to implement but can require many iterations to converge for small solid-to-fluid mass ratios. Alternatively, a Newton-Raphson procedure can be used to solve the nonlinear system. This typically leads to convergence in a small number of iterations for arbitrary mass ratios, but involves the use of large Jacobian matrices. We present an immersed boundary formulation that, like the Newton-Raphson approach, uses a linearization of the system to perform iterations. It therefore inherits the same favorable convergence behavior. However, we avoid large Jacobian matrices by using a block LU factorization of the linearized system. We derive our method for general deforming surfaces and perform verification on 2D test problems of flow past beams. These test problems involve large amplitude flapping and a wide range of mass ratios. This work was partially supported by the Jet Propulsion Laboratory and Air Force Office of Scientific Research.
NASA Astrophysics Data System (ADS)
Doha, E. H.; Bhrawy, A. H.; Abdelkawy, M. A.; Van Gorder, Robert A.
2014-03-01
A Jacobi-Gauss-Lobatto collocation (J-GL-C) method, used in combination with the implicit Runge-Kutta method of fourth order, is proposed as a numerical algorithm for the approximation of solutions to nonlinear Schrödinger equations (NLSE) with initial-boundary data in 1+1 dimensions. Our procedure is implemented in two successive steps. In the first one, the J-GL-C is employed for approximating the functional dependence on the spatial variable, using (N-1) nodes of the Jacobi-Gauss-Lobatto interpolation which depends upon two general Jacobi parameters. The resulting equations together with the two-point boundary conditions induce a system of 2(N-1) first-order ordinary differential equations (ODEs) in time. In the second step, the implicit Runge-Kutta method of fourth order is applied to solve this temporal system. The proposed J-GL-C method, used in combination with the implicit Runge-Kutta method of fourth order, is employed to obtain highly accurate numerical approximations to four types of NLSE, including the attractive and repulsive NLSE and a Gross-Pitaevskii equation with space-periodic potential. The numerical results obtained by this algorithm have been compared with various exact solutions in order to demonstrate the accuracy and efficiency of the proposed method. Indeed, for relatively few nodes used, the absolute error in our numerical solutions is sufficiently small.
Cluster Synchronization of Diffusively Coupled Nonlinear Systems: A Contraction-Based Approach
NASA Astrophysics Data System (ADS)
Aminzare, Zahra; Dey, Biswadip; Davison, Elizabeth N.; Leonard, Naomi Ehrich
2018-04-01
Finding the conditions that foster synchronization in networked nonlinear systems is critical to understanding a wide range of biological and mechanical systems. However, the conditions proved in the literature for synchronization in nonlinear systems with linear coupling, such as has been used to model neuronal networks, are in general not strict enough to accurately determine the system behavior. We leverage contraction theory to derive new sufficient conditions for cluster synchronization in terms of the network structure, for a network where the intrinsic nonlinear dynamics of each node may differ. Our result requires that network connections satisfy a cluster-input-equivalence condition, and we explore the influence of this requirement on network dynamics. For application to networks of nodes with FitzHugh-Nagumo dynamics, we show that our new sufficient condition is tighter than those found in previous analyses that used smooth or nonsmooth Lyapunov functions. Improving the analytical conditions for when cluster synchronization will occur based on network configuration is a significant step toward facilitating understanding and control of complex networked systems.
Kazemi, Mahdi; Arefi, Mohammad Mehdi
2017-03-01
In this paper, an online identification algorithm is presented for nonlinear systems in the presence of output colored noise. The proposed method is based on extended recursive least squares (ERLS) algorithm, where the identified system is in polynomial Wiener form. To this end, an unknown intermediate signal is estimated by using an inner iterative algorithm. The iterative recursive algorithm adaptively modifies the vector of parameters of the presented Wiener model when the system parameters vary. In addition, to increase the robustness of the proposed method against variations, a robust RLS algorithm is applied to the model. Simulation results are provided to show the effectiveness of the proposed approach. Results confirm that the proposed method has fast convergence rate with robust characteristics, which increases the efficiency of the proposed model and identification approach. For instance, the FIT criterion will be achieved 92% in CSTR process where about 400 data is used. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Static Methods in the Design of Nonlinear Automatic Control Systems,
1984-06-27
227 Chapter VI. Ways of Decrease of the Number of Statistical Nodes During the Research of Nonlinear Systems...at present occupies the central place. This region of research was called the statistical dynamics of nonlinear H automatic control systems...receives further development in the numerous research of Soviet and C foreign scientists. Special role in the development of the statistical dynamics of
Sensitivity analysis for aeroacoustic and aeroelastic design of turbomachinery blades
NASA Technical Reports Server (NTRS)
Lorence, Christopher B.; Hall, Kenneth C.
1995-01-01
A new method for computing the effect that small changes in the airfoil shape and cascade geometry have on the aeroacoustic and aeroelastic behavior of turbomachinery cascades is presented. The nonlinear unsteady flow is assumed to be composed of a nonlinear steady flow plus a small perturbation unsteady flow that is harmonic in time. First, the full potential equation is used to describe the behavior of the nonlinear mean (steady) flow through a two-dimensional cascade. The small disturbance unsteady flow through the cascade is described by the linearized Euler equations. Using rapid distortion theory, the unsteady velocity is split into a rotational part that contains the vorticity and an irrotational part described by a scalar potential. The unsteady vorticity transport is described analytically in terms of the drift and stream functions computed from the steady flow. Hence, the solution of the linearized Euler equations may be reduced to a single inhomogeneous equation for the unsteady potential. The steady flow and small disturbance unsteady flow equations are discretized using bilinear quadrilateral isoparametric finite elements. The nonlinear mean flow solution and streamline computational grid are computed simultaneously using Newton iteration. At each step of the Newton iteration, LU decomposition is used to solve the resulting set of linear equations. The unsteady flow problem is linear, and is also solved using LU decomposition. Next, a sensitivity analysis is performed to determine the effect small changes in cascade and airfoil geometry have on the mean and unsteady flow fields. The sensitivity analysis makes use of the nominal steady and unsteady flow LU decompositions so that no additional matrices need to be factored. Hence, the present method is computationally very efficient. To demonstrate how the sensitivity analysis may be used to redesign cascades, a compressor is redesigned for improved aeroelastic stability and two different fan exit guide vanes are redesigned for reduced downstream radiated noise. In addition, a framework detailing how the two-dimensional version of the method may be used to redesign three-dimensional geometries is presented.
NASA Astrophysics Data System (ADS)
Lu, Y.; O'Riordan, E.; Cottone, F.; Boisseau, S.; Galayko, D.; Blokhina, E.; Marty, F.; Basset, P.
2016-12-01
This paper reports a batch-fabricated, low-frequency and wideband MEMS electrostatic vibration energy harvester (e-VEH), which implements corona-charged vertical electrets and nonlinear elastic stoppers. A numeric model is used to perform parametric study, where we observe a wideband bi-modality resulting from nonlinearity. The nonlinear stoppers improve the bandwidth and induce a frequency-up feature at low frequencies. When the e-VEH works with a bias of 45 V, the power reaches a maximum value of 6.6 μW at 428 Hz and 2.0 g rms, and is above 1 μW at 50 Hz. When the frequency drops below 60 Hz, a ‘frequency-up’ conversion behavior is observed with peaks of power at 34 Hz and 52 Hz. The -3 dB bandwidth is more than 60% of its central frequency, both including and excluding the hysteresis introduced by the nonlinear stoppers. We also perform experiments with wideband Gaussian noise. The device is eventually tested with an RF data transmission setup, where a communication node with an internal temperature sensor is powered. Every 2 min, a data transmission at 868 MHz is performed by the sensor node supplied by the e-VEH, and received at a distance of up to 15 m.
Spilker, R L; de Almeida, E S; Donzelli, P S
1992-01-01
This chapter addresses computationally demanding numerical formulations in the biomechanics of soft tissues. The theory of mixtures can be used to represent soft hydrated tissues in the human musculoskeletal system as a two-phase continuum consisting of an incompressible solid phase (collagen and proteoglycan) and an incompressible fluid phase (interstitial water). We first consider the finite deformation of soft hydrated tissues in which the solid phase is represented as hyperelastic. A finite element formulation of the governing nonlinear biphasic equations is presented based on a mixed-penalty approach and derived using the weighted residual method. Fluid and solid phase deformation, velocity, and pressure are interpolated within each element, and the pressure variables within each element are eliminated at the element level. A system of nonlinear, first-order differential equations in the fluid and solid phase deformation and velocity is obtained. In order to solve these equations, the contributions of the hyperelastic solid phase are incrementally linearized, a finite difference rule is introduced for temporal discretization, and an iterative scheme is adopted to achieve equilibrium at the end of each time increment. We demonstrate the accuracy and adequacy of the procedure using a six-node, isoparametric axisymmetric element, and we present an example problem for which independent numerical solution is available. Next, we present an automated, adaptive environment for the simulation of soft tissue continua in which the finite element analysis is coupled with automatic mesh generation, error indicators, and projection methods. Mesh generation and updating, including both refinement and coarsening, for the two-dimensional examples examined in this study are performed using the finite quadtree approach. The adaptive analysis is based on an error indicator which is the L2 norm of the difference between the finite element solution and a projected finite element solution. Total stress, calculated as the sum of the solid and fluid phase stresses, is used in the error indicator. To allow the finite difference algorithm to proceed in time using an updated mesh, solution values must be transferred to the new nodal locations. This rezoning is accomplished using a projected field for the primary variables. The accuracy and effectiveness of this adaptive finite element analysis is demonstrated using a linear, two-dimensional, axisymmetric problem corresponding to the indentation of a thin sheet of soft tissue. The method is shown to effectively capture the steep gradients and to produce solutions in good agreement with independent, converged, numerical solutions.
NASA Astrophysics Data System (ADS)
Gardner, Robin P.; Xu, Libai
2009-10-01
The Center for Engineering Applications of Radioisotopes (CEAR) has been working for over a decade on the Monte Carlo library least-squares (MCLLS) approach for treating non-linear radiation analyzer problems including: (1) prompt gamma-ray neutron activation analysis (PGNAA) for bulk analysis, (2) energy-dispersive X-ray fluorescence (EDXRF) analyzers, and (3) carbon/oxygen tool analysis in oil well logging. This approach essentially consists of using Monte Carlo simulation to generate the libraries of all the elements to be analyzed plus any other required background libraries. These libraries are then used in the linear library least-squares (LLS) approach with unknown sample spectra to analyze for all elements in the sample. Iterations of this are used until the LLS values agree with the composition used to generate the libraries. The current status of the methods (and topics) necessary to implement the MCLLS approach is reported. This includes: (1) the Monte Carlo codes such as CEARXRF, CEARCPG, and CEARCO for forward generation of the necessary elemental library spectra for the LLS calculation for X-ray fluorescence, neutron capture prompt gamma-ray analyzers, and carbon/oxygen tools; (2) the correction of spectral pulse pile-up (PPU) distortion by Monte Carlo simulation with the code CEARIPPU; (3) generation of detector response functions (DRF) for detectors with linear and non-linear responses for Monte Carlo simulation of pulse-height spectra; and (4) the use of the differential operator (DO) technique to make the necessary iterations for non-linear responses practical. In addition to commonly analyzed single spectra, coincidence spectra or even two-dimensional (2-D) coincidence spectra can also be used in the MCLLS approach and may provide more accurate results.
Estimating cosmic velocity fields from density fields and tidal tensors
NASA Astrophysics Data System (ADS)
Kitaura, Francisco-Shu; Angulo, Raul E.; Hoffman, Yehuda; Gottlöber, Stefan
2012-10-01
In this work we investigate the non-linear and non-local relation between cosmological density and peculiar velocity fields. Our goal is to provide an algorithm for the reconstruction of the non-linear velocity field from the fully non-linear density. We find that including the gravitational tidal field tensor using second-order Lagrangian perturbation theory based upon an estimate of the linear component of the non-linear density field significantly improves the estimate of the cosmic flow in comparison to linear theory not only in the low density, but also and more dramatically in the high-density regions. In particular we test two estimates of the linear component: the lognormal model and the iterative Lagrangian linearization. The present approach relies on a rigorous higher order Lagrangian perturbation theory analysis which incorporates a non-local relation. It does not require additional fitting from simulations being in this sense parameter free, it is independent of statistical-geometrical optimization and it is straightforward and efficient to compute. The method is demonstrated to yield an unbiased estimator of the velocity field on scales ≳5 h-1 Mpc with closely Gaussian distributed errors. Moreover, the statistics of the divergence of the peculiar velocity field is extremely well recovered showing a good agreement with the true one from N-body simulations. The typical errors of about 10 km s-1 (1σ confidence intervals) are reduced by more than 80 per cent with respect to linear theory in the scale range between 5 and 10 h-1 Mpc in high-density regions (δ > 2). We also find that iterative Lagrangian linearization is significantly superior in the low-density regime with respect to the lognormal model.
Isotope and fast ions turbulence suppression effects: Consequences for high-β ITER plasmas
NASA Astrophysics Data System (ADS)
Garcia, J.; Görler, T.; Jenko, F.
2018-05-01
The impact of isotope effects and fast ions on microturbulence is analyzed by means of non-linear gyrokinetic simulations for an ITER hybrid scenario at high beta obtained from previous integrated modelling simulations with simplified assumptions. Simulations show that ITER might work very close to threshold, and in these conditions, significant turbulence suppression is found from DD to DT plasmas. Electromagnetic effects are shown to play an important role in the onset of this isotope effect. Additionally, even external ExB flow shear, which is expected to be low in ITER, has a stronger impact on DT than on DD. The fast ions generated by fusion reactions can additionally reduce turbulence even more although the impact in ITER seems weaker than in present-day tokamaks.
The NLS-Based Nonlinear Grey Multivariate Model for Forecasting Pollutant Emissions in China.
Pei, Ling-Ling; Li, Qin; Wang, Zheng-Xin
2018-03-08
The relationship between pollutant discharge and economic growth has been a major research focus in environmental economics. To accurately estimate the nonlinear change law of China's pollutant discharge with economic growth, this study establishes a transformed nonlinear grey multivariable (TNGM (1, N )) model based on the nonlinear least square (NLS) method. The Gauss-Seidel iterative algorithm was used to solve the parameters of the TNGM (1, N ) model based on the NLS basic principle. This algorithm improves the precision of the model by continuous iteration and constantly approximating the optimal regression coefficient of the nonlinear model. In our empirical analysis, the traditional grey multivariate model GM (1, N ) and the NLS-based TNGM (1, N ) models were respectively adopted to forecast and analyze the relationship among wastewater discharge per capita (WDPC), and per capita emissions of SO₂ and dust, alongside GDP per capita in China during the period 1996-2015. Results indicated that the NLS algorithm is able to effectively help the grey multivariable model identify the nonlinear relationship between pollutant discharge and economic growth. The results show that the NLS-based TNGM (1, N ) model presents greater precision when forecasting WDPC, SO₂ emissions and dust emissions per capita, compared to the traditional GM (1, N ) model; WDPC indicates a growing tendency aligned with the growth of GDP, while the per capita emissions of SO₂ and dust reduce accordingly.
Growth and nonlinear response of driven water bells
NASA Astrophysics Data System (ADS)
Kolinski, John M.; Aharoni, Hillel; Fineberg, Jay; Sharon, Eran
2017-04-01
A water bell forms when a fluid jet impacts upon a target and separates into a two-dimensional sheet. Depending on the angle of separation from the target, the sheet can curve into a variety of different geometries. We show analytically that harmonic perturbations of water bells have linear wave solutions with geometry-dependent growth. We test the predictions of this model experimentally with a custom target system, and observe growth in agreement with the model below a critical forcing amplitude. Once the critical forcing amplitude is exceeded, a nonlinear transcritical bifurcation occurs; the response amplitude increases linearly with increasing forcing amplitude, albeit with a fundamentally different spatial form, and distinct nodes appear in the amplitude envelope.
A novel approach to solve nonlinear Fredholm integral equations of the second kind.
Li, Hu; Huang, Jin
2016-01-01
In this paper, we present a novel approach to solve nonlinear Fredholm integral equations of the second kind. This algorithm is constructed by the integral mean value theorem and Newton iteration. Convergence and error analysis of the numerical solutions are given. Moreover, Numerical examples show the algorithm is very effective and simple.
NASA Astrophysics Data System (ADS)
Ignatyev, A. V.; Ignatyev, V. A.; Onischenko, E. V.
2017-11-01
This article is the continuation of the work made bt the authors on the development of the algorithms that implement the finite element method in the form of a classical mixed method for the analysis of geometrically nonlinear bar systems [1-3]. The paper describes an improved algorithm of the formation of the nonlinear governing equations system for flexible plane frames and bars with large displacements of nodes based on the finite element method in a mixed classical form and the use of the procedure of step-by-step loading. An example of the analysis is given.
Wan, Xiaoqing; Zhao, Chunhui
2017-06-01
As a competitive machine learning algorithm, the stacked sparse autoencoder (SSA) has achieved outstanding popularity in exploiting high-level features for classification of hyperspectral images (HSIs). In general, in the SSA architecture, the nodes between adjacent layers are fully connected and need to be iteratively fine-tuned during the pretraining stage; however, the nodes of previous layers further away may be less likely to have a dense correlation to the given node of subsequent layers. Therefore, to reduce the classification error and increase the learning rate, this paper proposes the general framework of locally connected SSA; that is, the biologically inspired local receptive field (LRF) constrained SSA architecture is employed to simultaneously characterize the local correlations of spectral features and extract high-level feature representations of hyperspectral data. In addition, the appropriate receptive field constraint is concurrently updated by measuring the spatial distances from the neighbor nodes to the corresponding node. Finally, the efficient random forest classifier is cascaded to the last hidden layer of the SSA architecture as a benchmark classifier. Experimental results on two real HSI datasets demonstrate that the proposed hierarchical LRF constrained stacked sparse autoencoder and random forest (SSARF) provides encouraging results with respect to other contrastive methods, for instance, the improvements of overall accuracy in a range of 0.72%-10.87% for the Indian Pines dataset and 0.74%-7.90% for the Kennedy Space Center dataset; moreover, it generates lower running time compared with the result provided by similar SSARF based methodology.
An adaptive grid algorithm for one-dimensional nonlinear equations
NASA Technical Reports Server (NTRS)
Gutierrez, William E.; Hills, Richard G.
1990-01-01
Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and less computation time than required by the tridiagonal method. The performance of the adaptive grid method tends to degrade as the solution process proceeds in time, but still remains faster than the tridiagonal scheme.
Nonlinear optical response in narrow graphene nanoribbons
NASA Astrophysics Data System (ADS)
Karimi, Farhad; Knezevic, Irena
We present an iterative method to calculate the nonlinear optical response of armchair graphene nanoribbons (aGNRs) and zigzag graphene nanoribbons (zGNRs) while including the effects of dissipation. In contrast to methods that calculate the nonlinear response in the ballistic (dissipation-free) regime, here we obtain the nonlinear response of an electronic system to an external electromagnetic field while interacting with a dissipative environment (to second order). We use a self-consistent-field approach within a Markovian master-equation formalism (SCF-MMEF) coupled with full-wave electromagnetic equations, and we solve the master equation iteratively to obtain the higher-order response functions. We employ the SCF-MMEF to calculate the nonlinear conductance and susceptibility, as well as to calculate the dependence of the plasmon dispersion and plasmon propagation length on the intensity of the electromagnetic field in GNRs. The electron scattering mechanisms included in this work are scattering with intrinsic phonons, ionized impurities, surface optical phonons, and line-edge roughness. Unlike in wide GNRs, where ionized-impurity scattering dominates dissipation, in ultra-narrow nanoribbons on polar substrates optical-phonon scattering and ionized-impurity scattering are equally prominent. Support by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0008712.
Gradient flow of O(N) nonlinear sigma model at large N
Aoki, Sinya; Kikuchi, Kengo; Onogi, Tetsuya
2015-04-28
Here, we study the gradient flow equation for the O(N) nonlinear sigma model in two dimensions at large N. We parameterize solution of the field at flow time t in powers of bare fields by introducing the coefficient function X n for the n-th power term (n = 1, 3, ··· ). Reducing the flow equation by keeping only the contributions at leading order in large N, we obtain a set of equations for X n ’s, which can be solved iteratively starting from n = 1. For n = 1 case, we find an explicit form of the exactmore » solution. Using this solution, we show that the two point function at finite flow time t is finite. As an application, we obtain the non-perturbative running coupling defined from the energy density. We also discuss the solution for n = 3 case.« less
Hill, Mary C.
1990-01-01
This report documents PCG2 : a numerical code to be used with the U.S. Geological Survey modular three-dimensional, finite-difference, ground-water flow model . PCG2 uses the preconditioned conjugate-gradient method to solve the equations produced by the model for hydraulic head. Linear or nonlinear flow conditions may be simulated. PCG2 includes two reconditioning options : modified incomplete Cholesky preconditioning, which is efficient on scalar computers; and polynomial preconditioning, which requires less computer storage and, with modifications that depend on the computer used, is most efficient on vector computers . Convergence of the solver is determined using both head-change and residual criteria. Nonlinear problems are solved using Picard iterations. This documentation provides a description of the preconditioned conjugate gradient method and the two preconditioners, detailed instructions for linking PCG2 to the modular model, sample data inputs, a brief description of PCG2, and a FORTRAN listing.
NASA Astrophysics Data System (ADS)
A, Karimi; M, K. Tavassoly
2016-04-01
In this paper, after a brief review on the entangled squeezed states, we produce a new class of the continuous-variable-type entangled states, namely, deformed photon-added entangled squeezed states. These states are obtained via the iterated action of the f-deformed creation operator A = f (n)a † on the entangled squeezed states. In the continuation, by studying the criteria such as the degree of entanglement, quantum polarization as well as sub-Poissonian photon statistics, the two-mode correlation function, one-mode and two-mode squeezing, we investigate the nonclassical behaviors of the introduced states in detail by choosing a particular f-deformation function. It is revealed that the above-mentioned physical properties can be affected and so may be tuned by justifying the excitation number, after choosing a nonlinearity function. Finally, to generate the introduced states, we propose a theoretical scheme using the nonlinear Jaynes-Cummings model.
NASA Astrophysics Data System (ADS)
Singh, Randhir; Das, Nilima; Kumar, Jitendra
2017-06-01
An effective analytical technique is proposed for the solution of the Lane-Emden equations. The proposed technique is based on the variational iteration method (VIM) and the convergence control parameter h . In order to avoid solving a sequence of nonlinear algebraic or complicated integrals for the derivation of unknown constant, the boundary conditions are used before designing the recursive scheme for solution. The series solutions are found which converges rapidly to the exact solution. Convergence analysis and error bounds are discussed. Accuracy, applicability of the method is examined by solving three singular problems: i) nonlinear Poisson-Boltzmann equation, ii) distribution of heat sources in the human head, iii) second-kind Lane-Emden equation.
Parallel Dynamics Simulation Using a Krylov-Schwarz Linear Solution Scheme
Abhyankar, Shrirang; Constantinescu, Emil M.; Smith, Barry F.; ...
2016-11-07
Fast dynamics simulation of large-scale power systems is a computational challenge because of the need to solve a large set of stiff, nonlinear differential-algebraic equations at every time step. The main bottleneck in dynamic simulations is the solution of a linear system during each nonlinear iteration of Newton’s method. In this paper, we present a parallel Krylov- Schwarz linear solution scheme that uses the Krylov subspacebased iterative linear solver GMRES with an overlapping restricted additive Schwarz preconditioner. As a result, performance tests of the proposed Krylov-Schwarz scheme for several large test cases ranging from 2,000 to 20,000 buses, including amore » real utility network, show good scalability on different computing architectures.« less
A Block Iterative Finite Element Model for Nonlinear Leaky Aquifer Systems
NASA Astrophysics Data System (ADS)
Gambolati, Giuseppe; Teatini, Pietro
1996-01-01
A new quasi three-dimensional finite element model of groundwater flow is developed for highly compressible multiaquifer systems where aquitard permeability and elastic storage are dependent on hydraulic drawdown. The model is solved by a block iterative strategy, which is naturally suggested by the geological structure of the porous medium and can be shown to be mathematically equivalent to a block Gauss-Seidel procedure. As such it can be generalized into a block overrelaxation procedure and greatly accelerated by the use of the optimum overrelaxation factor. Results for both linear and nonlinear multiaquifer systems emphasize the excellent computational performance of the model and indicate that convergence in leaky systems can be improved up to as much as one order of magnitude.
Parallel Dynamics Simulation Using a Krylov-Schwarz Linear Solution Scheme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abhyankar, Shrirang; Constantinescu, Emil M.; Smith, Barry F.
Fast dynamics simulation of large-scale power systems is a computational challenge because of the need to solve a large set of stiff, nonlinear differential-algebraic equations at every time step. The main bottleneck in dynamic simulations is the solution of a linear system during each nonlinear iteration of Newton’s method. In this paper, we present a parallel Krylov- Schwarz linear solution scheme that uses the Krylov subspacebased iterative linear solver GMRES with an overlapping restricted additive Schwarz preconditioner. As a result, performance tests of the proposed Krylov-Schwarz scheme for several large test cases ranging from 2,000 to 20,000 buses, including amore » real utility network, show good scalability on different computing architectures.« less
Cooley, R.L.; Hill, M.C.
1992-01-01
Three methods of solving nonlinear least-squares problems were compared for robustness and efficiency using a series of hypothetical and field problems. A modified Gauss-Newton/full Newton hybrid method (MGN/FN) and an analogous method for which part of the Hessian matrix was replaced by a quasi-Newton approximation (MGN/QN) solved some of the problems with appreciably fewer iterations than required using only a modified Gauss-Newton (MGN) method. In these problems, model nonlinearity and a large variance for the observed data apparently caused MGN to converge more slowly than MGN/FN or MGN/QN after the sum of squared errors had almost stabilized. Other problems were solved as efficiently with MGN as with MGN/FN or MGN/QN. Because MGN/FN can require significantly more computer time per iteration and more computer storage for transient problems, it is less attractive for a general purpose algorithm than MGN/QN.
An hp symplectic pseudospectral method for nonlinear optimal control
NASA Astrophysics Data System (ADS)
Peng, Haijun; Wang, Xinwei; Li, Mingwu; Chen, Biaosong
2017-01-01
An adaptive symplectic pseudospectral method based on the dual variational principle is proposed and is successfully applied to solving nonlinear optimal control problems in this paper. The proposed method satisfies the first order necessary conditions of continuous optimal control problems, also the symplectic property of the original continuous Hamiltonian system is preserved. The original optimal control problem is transferred into a set of nonlinear equations which can be solved easily by Newton-Raphson iterations, and the Jacobian matrix is found to be sparse and symmetric. The proposed method, on one hand, exhibits exponent convergence rates when the number of collocation points are increasing with the fixed number of sub-intervals; on the other hand, exhibits linear convergence rates when the number of sub-intervals is increasing with the fixed number of collocation points. Furthermore, combining with the hp method based on the residual error of dynamic constraints, the proposed method can achieve given precisions in a few iterations. Five examples highlight the high precision and high computational efficiency of the proposed method.
Multistability in Chua's circuit with two stable node-foci
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, B. C.; Wang, N.; Xu, Q.
2016-04-15
Only using one-stage op-amp based negative impedance converter realization, a simplified Chua's diode with positive outer segment slope is introduced, based on which an improved Chua's circuit realization with more simpler circuit structure is designed. The improved Chua's circuit has identical mathematical model but completely different nonlinearity to the classical Chua's circuit, from which multiple attractors including coexisting point attractors, limit cycle, double-scroll chaotic attractor, or coexisting chaotic spiral attractors are numerically simulated and experimentally captured. Furthermore, with dimensionless Chua's equations, the dynamical properties of the Chua's system are studied including equilibrium and stability, phase portrait, bifurcation diagram, Lyapunov exponentmore » spectrum, and attraction basin. The results indicate that the system has two symmetric stable nonzero node-foci in global adjusting parameter regions and exhibits the unusual and striking dynamical behavior of multiple attractors with multistability.« less
The existence of periodic solutions for nonlinear beam equations on Td by a para-differential method
NASA Astrophysics Data System (ADS)
Chen, Bochao; Li, Yong; Gao, Yixian
2018-05-01
This paper focuses on the construction of periodic solutions of nonlinear beam equations on the $d$-dimensional tori. For a large set of frequencies, we demonstrate that an equivalent form of the nonlinear equations can be obtained by a para-differential conjugation. Given the non-resonant conditions on each finite dimensional subspaces, it is shown that the periodic solutions can be constructed for the block diagonal equation by a classical iteration scheme.
Solving regularly and singularly perturbed reaction-diffusion equations in three space dimensions
NASA Astrophysics Data System (ADS)
Moore, Peter K.
2007-06-01
In [P.K. Moore, Effects of basis selection and h-refinement on error estimator reliability and solution efficiency for higher-order methods in three space dimensions, Int. J. Numer. Anal. Mod. 3 (2006) 21-51] a fixed, high-order h-refinement finite element algorithm, Href, was introduced for solving reaction-diffusion equations in three space dimensions. In this paper Href is coupled with continuation creating an automatic method for solving regularly and singularly perturbed reaction-diffusion equations. The simple quasilinear Newton solver of Moore, (2006) is replaced by the nonlinear solver NITSOL [M. Pernice, H.F. Walker, NITSOL: a Newton iterative solver for nonlinear systems, SIAM J. Sci. Comput. 19 (1998) 302-318]. Good initial guesses for the nonlinear solver are obtained using continuation in the small parameter ɛ. Two strategies allow adaptive selection of ɛ. The first depends on the rate of convergence of the nonlinear solver and the second implements backtracking in ɛ. Finally a simple method is used to select the initial ɛ. Several examples illustrate the effectiveness of the algorithm.
NASA Technical Reports Server (NTRS)
Korivi, V. M.; Taylor, A. C., III; Newman, P. A.; Hou, G. J.-W.; Jones, H. E.
1992-01-01
An incremental strategy is presented for iteratively solving very large systems of linear equations, which are associated with aerodynamic sensitivity derivatives for advanced CFD codes. It is shown that the left-hand side matrix operator and the well-known factorization algorithm used to solve the nonlinear flow equations can also be used to efficiently solve the linear sensitivity equations. Two airfoil problems are considered as an example: subsonic low Reynolds number laminar flow and transonic high Reynolds number turbulent flow.
An efficient decoding for low density parity check codes
NASA Astrophysics Data System (ADS)
Zhao, Ling; Zhang, Xiaolin; Zhu, Manjie
2009-12-01
Low density parity check (LDPC) codes are a class of forward-error-correction codes. They are among the best-known codes capable of achieving low bit error rates (BER) approaching Shannon's capacity limit. Recently, LDPC codes have been adopted by the European Digital Video Broadcasting (DVB-S2) standard, and have also been proposed for the emerging IEEE 802.16 fixed and mobile broadband wireless-access standard. The consultative committee for space data system (CCSDS) has also recommended using LDPC codes in the deep space communications and near-earth communications. It is obvious that LDPC codes will be widely used in wired and wireless communication, magnetic recording, optical networking, DVB, and other fields in the near future. Efficient hardware implementation of LDPC codes is of great interest since LDPC codes are being considered for a wide range of applications. This paper presents an efficient partially parallel decoder architecture suited for quasi-cyclic (QC) LDPC codes using Belief propagation algorithm for decoding. Algorithmic transformation and architectural level optimization are incorporated to reduce the critical path. First, analyze the check matrix of LDPC code, to find out the relationship between the row weight and the column weight. And then, the sharing level of the check node updating units (CNU) and the variable node updating units (VNU) are determined according to the relationship. After that, rearrange the CNU and the VNU, and divide them into several smaller parts, with the help of some assistant logic circuit, these smaller parts can be grouped into CNU during the check node update processing and grouped into VNU during the variable node update processing. These smaller parts are called node update kernel units (NKU) and the assistant logic circuit are called node update auxiliary unit (NAU). With NAUs' help, the two steps of iteration operation are completed by NKUs, which brings in great hardware resource reduction. Meanwhile, efficient techniques have been developed to reduce the computation delay of the node processing units and to minimize hardware overhead for parallel processing. This method may be applied not only to regular LDPC codes, but also to the irregular ones. Based on the proposed architectures, a (7493, 6096) irregular QC-LDPC code decoder is described using verilog hardware design language and implemented on Altera field programmable gate array (FPGA) StratixII EP2S130. The implementation results show that over 20% of logic core size can be saved than conventional partially parallel decoder architectures without any performance degradation. If the decoding clock is 100MHz, the proposed decoder can achieve a maximum (source data) decoding throughput of 133 Mb/s at 18 iterations.
Neighbourhood-consensus message passing and its potentials in image processing applications
NASA Astrophysics Data System (ADS)
Ružic, Tijana; Pižurica, Aleksandra; Philips, Wilfried
2011-03-01
In this paper, a novel algorithm for inference in Markov Random Fields (MRFs) is presented. Its goal is to find approximate maximum a posteriori estimates in a simple manner by combining neighbourhood influence of iterated conditional modes (ICM) and message passing of loopy belief propagation (LBP). We call the proposed method neighbourhood-consensus message passing because a single joint message is sent from the specified neighbourhood to the central node. The message, as a function of beliefs, represents the agreement of all nodes within the neighbourhood regarding the labels of the central node. This way we are able to overcome the disadvantages of reference algorithms, ICM and LBP. On one hand, more information is propagated in comparison with ICM, while on the other hand, the huge amount of pairwise interactions is avoided in comparison with LBP by working with neighbourhoods. The idea is related to the previously developed iterated conditional expectations algorithm. Here we revisit it and redefine it in a message passing framework in a more general form. The results on three different benchmarks demonstrate that the proposed technique can perform well both for binary and multi-label MRFs without any limitations on the model definition. Furthermore, it manifests improved performance over related techniques either in terms of quality and/or speed.
Nonlinear electrodynamics of high-temperature superconductors
NASA Astrophysics Data System (ADS)
Zutic, Igor
We investigate the effects of nonlinear electrodynamics in unconventional superconductors. These effects can serve as fingerprints to identify the symmetry of the superconducting pairing state and to provide information about the unknown pairing mechanism in High Temperature Superconductors (HTSC). In the Meissner regime, at low temperatures, a nonlinear magnetic response arises from the presence of lines on the Fermi surface where the superconducting energy gap is very small or zero. This can be used to perform "node spectroscopy", that is, as a sensitive bulk probe to locate the angular position of those lines. We first compute the nonlinear magnetic moment as a function of applied field and geometry, assuming d-wave pairing and anisotropic penetration depth, for realistic finite sample. Our novel, numerically implemented, perturbative procedure exploits the small ratio of the penetration depths to the sample size and substantially reduces the computational work required. We next generalize these considerations to other candidates for the energy gap and to perform node spectroscopy. In calculating the nonlinear supercurrent response, we include the effects of orthorhombic distortion and a-b plane anisotropy. Analytic results presented demonstrate a systematic way to experimentally distinguish order parameters of different symmetries, including cases with mixed symmetry (for example, d+s and s+id). We finally extend our findings to the case of low frequency harmonic magnetic field. The nonlinear magnetic response for various physical quantities generates higher harmonics of the frequency of the applied field. We discuss how examination of the field and angular dependences of these harmonics allows determination of the structure of the energy gap. We show how to distinguish nodes from small minima ("quasinodes"). Gaps with nodal lines give rise to universal power law field dependences for the nonlinear magnetic moment and torque. They both have separable temporal and angular dependences. In contrast, with gap functions which only have quasinodes, these quantities do not display power laws in the applied field, and their temporal and angular dependences are not separable. We discuss how to perform measurements so as to maximize the nonlinear signal, and how to determine the gap function symmetry.
NASA Technical Reports Server (NTRS)
Gartling, D. K.; Roache, P. J.
1978-01-01
The efficiency characteristics of finite element and finite difference approximations for the steady-state solution of the Navier-Stokes equations are examined. The finite element method discussed is a standard Galerkin formulation of the incompressible, steady-state Navier-Stokes equations. The finite difference formulation uses simple centered differences that are O(delta x-squared). Operation counts indicate that a rapidly converging Newton-Raphson-Kantorovitch iteration scheme is generally preferable over a Picard method. A split NOS Picard iterative algorithm for the finite difference method was most efficient.
Song, Junqiang; Leng, Hongze; Lu, Fengshun
2014-01-01
We present a new numerical method to get the approximate solutions of fractional differential equations. A new operational matrix of integration for fractional-order Legendre functions (FLFs) is first derived. Then a modified variational iteration formula which can avoid “noise terms” is constructed. Finally a numerical method based on variational iteration method (VIM) and FLFs is developed for fractional differential equations (FDEs). Block-pulse functions (BPFs) are used to calculate the FLFs coefficient matrices of the nonlinear terms. Five examples are discussed to demonstrate the validity and applicability of the technique. PMID:24511303
Wang, G.L.; Chew, W.C.; Cui, T.J.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.
2004-01-01
Three-dimensional (3D) subsurface imaging by using inversion of data obtained from the very early time electromagnetic system (VETEM) was discussed. The study was carried out by using the distorted Born iterative method to match the internal nonlinear property of the 3D inversion problem. The forward solver was based on the total-current formulation bi-conjugate gradient-fast Fourier transform (BCCG-FFT). It was found that the selection of regularization parameter follow a heuristic rule as used in the Levenberg-Marquardt algorithm so that the iteration is stable.
Applications of compressed sensing image reconstruction to sparse view phase tomography
NASA Astrophysics Data System (ADS)
Ueda, Ryosuke; Kudo, Hiroyuki; Dong, Jian
2017-10-01
X-ray phase CT has a potential to give the higher contrast in soft tissue observations. To shorten the measure- ment time, sparse-view CT data acquisition has been attracting the attention. This paper applies two major compressed sensing (CS) approaches to image reconstruction in the x-ray sparse-view phase tomography. The first CS approach is the standard Total Variation (TV) regularization. The major drawbacks of TV regularization are a patchy artifact and loss in smooth intensity changes due to the piecewise constant nature of image model. The second CS method is a relatively new approach of CS which uses a nonlinear smoothing filter to design the regularization term. The nonlinear filter based CS is expected to reduce the major artifact in the TV regular- ization. The both cost functions can be minimized by the very fast iterative reconstruction method. However, in the past research activities, it is not clearly demonstrated how much image quality difference occurs between the TV regularization and the nonlinear filter based CS in x-ray phase CT applications. We clarify the issue by applying the two CS applications to the case of x-ray phase tomography. We provide results with numerically simulated data, which demonstrates that the nonlinear filter based CS outperforms the TV regularization in terms of textures and smooth intensity changes.
New ghost-node method for linking different models with varied grid refinement
James, S.C.; Dickinson, J.E.; Mehl, S.W.; Hill, M.C.; Leake, S.A.; Zyvoloski, G.A.; Eddebbarh, A.-A.
2006-01-01
A flexible, robust method for linking grids of locally refined ground-water flow models constructed with different numerical methods is needed to address a variety of hydrologic problems. This work outlines and tests a new ghost-node model-linking method for a refined "child" model that is contained within a larger and coarser "parent" model that is based on the iterative method of Steffen W. Mehl and Mary C. Hill (2002, Advances in Water Res., 25, p. 497-511; 2004, Advances in Water Res., 27, p. 899-912). The method is applicable to steady-state solutions for ground-water flow. Tests are presented for a homogeneous two-dimensional system that has matching grids (parent cells border an integer number of child cells) or nonmatching grids. The coupled grids are simulated by using the finite-difference and finite-element models MODFLOW and FEHM, respectively. The simulations require no alteration of the MODFLOW or FEHM models and are executed using a batch file on Windows operating systems. Results indicate that when the grids are matched spatially so that nodes and child-cell boundaries are aligned, the new coupling technique has error nearly equal to that when coupling two MODFLOW models. When the grids are nonmatching, model accuracy is slightly increased compared to that for matching-grid cases. Overall, results indicate that the ghost-node technique is a viable means to couple distinct models because the overall head and flow errors relative to the analytical solution are less than if only the regional coarse-grid model was used to simulate flow in the child model's domain.
DQM: Decentralized Quadratically Approximated Alternating Direction Method of Multipliers
NASA Astrophysics Data System (ADS)
Mokhtari, Aryan; Shi, Wei; Ling, Qing; Ribeiro, Alejandro
2016-10-01
This paper considers decentralized consensus optimization problems where nodes of a network have access to different summands of a global objective function. Nodes cooperate to minimize the global objective by exchanging information with neighbors only. A decentralized version of the alternating directions method of multipliers (DADMM) is a common method for solving this category of problems. DADMM exhibits linear convergence rate to the optimal objective but its implementation requires solving a convex optimization problem at each iteration. This can be computationally costly and may result in large overall convergence times. The decentralized quadratically approximated ADMM algorithm (DQM), which minimizes a quadratic approximation of the objective function that DADMM minimizes at each iteration, is proposed here. The consequent reduction in computational time is shown to have minimal effect on convergence properties. Convergence still proceeds at a linear rate with a guaranteed constant that is asymptotically equivalent to the DADMM linear convergence rate constant. Numerical results demonstrate advantages of DQM relative to DADMM and other alternatives in a logistic regression problem.
A diffusion model of protected population on bilocal habitat with generalized resource
NASA Astrophysics Data System (ADS)
Vasilyev, Maxim D.; Trofimtsev, Yuri I.; Vasilyeva, Natalya V.
2017-11-01
A model of population distribution in a two-dimensional area divided by an ecological barrier, i.e. the boundaries of natural reserve, is considered. Distribution of the population is defined by diffusion, directed migrations and areal resource. The exchange of specimens occurs between two parts of the habitat. The mathematical model is presented in the form of a boundary value problem for a system of non-linear parabolic equations with variable parameters of diffusion and growth function. The splitting space variables, sweep method and simple iteration methods were used for the numerical solution of a system. A set of programs was coded in Python. Numerical simulation results for the two-dimensional unsteady non-linear problem are analyzed in detail. The influence of migration flow coefficients and functions of natural birth/death ratio on the distributions of population densities is investigated. The results of the research would allow to describe the conditions of the stable and sustainable existence of populations in bilocal habitat containing the protected and non-protected zones.
NONLINEAR MULTIGRID SOLVER EXPLOITING AMGe COARSE SPACES WITH APPROXIMATION PROPERTIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, Max La Cour; Villa, Umberto E.; Engsig-Karup, Allan P.
The paper introduces a nonlinear multigrid solver for mixed nite element discretizations based on the Full Approximation Scheme (FAS) and element-based Algebraic Multigrid (AMGe). The main motivation to use FAS for unstruc- tured problems is the guaranteed approximation property of the AMGe coarse spaces that were developed recently at Lawrence Livermore National Laboratory. These give the ability to derive stable and accurate coarse nonlinear discretization problems. The previous attempts (including ones with the original AMGe method, [5, 11]), were less successful due to lack of such good approximation properties of the coarse spaces. With coarse spaces with approximation properties, ourmore » FAS approach on un- structured meshes should be as powerful/successful as FAS on geometrically re ned meshes. For comparison, Newton's method and Picard iterations with an inner state-of-the-art linear solver is compared to FAS on a nonlinear saddle point problem with applications to porous media ow. It is demonstrated that FAS is faster than Newton's method and Picard iterations for the experiments considered here. Due to the guaranteed approximation properties of our AMGe, the coarse spaces are very accurate, providing a solver with the potential for mesh-independent convergence on general unstructured meshes.« less
A different approach to estimate nonlinear regression model using numerical methods
NASA Astrophysics Data System (ADS)
Mahaboob, B.; Venkateswarlu, B.; Mokeshrayalu, G.; Balasiddamuni, P.
2017-11-01
This research paper concerns with the computational methods namely the Gauss-Newton method, Gradient algorithm methods (Newton-Raphson method, Steepest Descent or Steepest Ascent algorithm method, the Method of Scoring, the Method of Quadratic Hill-Climbing) based on numerical analysis to estimate parameters of nonlinear regression model in a very different way. Principles of matrix calculus have been used to discuss the Gradient-Algorithm methods. Yonathan Bard [1] discussed a comparison of gradient methods for the solution of nonlinear parameter estimation problems. However this article discusses an analytical approach to the gradient algorithm methods in a different way. This paper describes a new iterative technique namely Gauss-Newton method which differs from the iterative technique proposed by Gorden K. Smyth [2]. Hans Georg Bock et.al [10] proposed numerical methods for parameter estimation in DAE’s (Differential algebraic equation). Isabel Reis Dos Santos et al [11], Introduced weighted least squares procedure for estimating the unknown parameters of a nonlinear regression metamodel. For large-scale non smooth convex minimization the Hager and Zhang (HZ) conjugate gradient Method and the modified HZ (MHZ) method were presented by Gonglin Yuan et al [12].
NASA Astrophysics Data System (ADS)
Vasilenko, Georgii Ivanovich; Taratorin, Aleksandr Markovich
Linear, nonlinear, and iterative image-reconstruction (IR) algorithms are reviewed. Theoretical results are presented concerning controllable linear filters, the solution of ill-posed functional minimization problems, and the regularization of iterative IR algorithms. Attention is also given to the problem of superresolution and analytical spectrum continuation, the solution of the phase problem, and the reconstruction of images distorted by turbulence. IR in optical and optical-digital systems is discussed with emphasis on holographic techniques.
Optimized System Identification
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Longman, Richard W.
1999-01-01
In system identification, one usually cares most about finding a model whose outputs are as close as possible to the true system outputs when the same input is applied to both. However, most system identification algorithms do not minimize this output error. Often they minimize model equation error instead, as in typical least-squares fits using a finite-difference model, and it is seen here that this distinction is significant. Here, we develop a set of system identification algorithms that minimize output error for multi-input/multi-output and multi-input/single-output systems. This is done with sequential quadratic programming iterations on the nonlinear least-squares problems, with an eigendecomposition to handle indefinite second partials. This optimization minimizes a nonlinear function of many variables, and hence can converge to local minima. To handle this problem, we start the iterations from the OKID (Observer/Kalman Identification) algorithm result. Not only has OKID proved very effective in practice, it minimizes an output error of an observer which has the property that as the data set gets large, it converges to minimizing the criterion of interest here. Hence, it is a particularly good starting point for the nonlinear iterations here. Examples show that the methods developed here eliminate the bias that is often observed using any system identification methods of either over-estimating or under-estimating the damping of vibration modes in lightly damped structures.
Multidimensional radiative transfer with multilevel atoms. II. The non-linear multigrid method.
NASA Astrophysics Data System (ADS)
Fabiani Bendicho, P.; Trujillo Bueno, J.; Auer, L.
1997-08-01
A new iterative method for solving non-LTE multilevel radiative transfer (RT) problems in 1D, 2D or 3D geometries is presented. The scheme obtains the self-consistent solution of the kinetic and RT equations at the cost of only a few (<10) formal solutions of the RT equation. It combines, for the first time, non-linear multigrid iteration (Brandt, 1977, Math. Comp. 31, 333; Hackbush, 1985, Multi-Grid Methods and Applications, springer-Verlag, Berlin), an efficient multilevel RT scheme based on Gauss-Seidel iterations (cf. Trujillo Bueno & Fabiani Bendicho, 1995ApJ...455..646T), and accurate short-characteristics formal solution techniques. By combining a valid stopping criterion with a nested-grid strategy a converged solution with the desired true error is automatically guaranteed. Contrary to the current operator splitting methods the very high convergence speed of the new RT method does not deteriorate when the grid spatial resolution is increased. With this non-linear multigrid method non-LTE problems discretized on N grid points are solved in O(N) operations. The nested multigrid RT method presented here is, thus, particularly attractive in complicated multilevel transfer problems where small grid-sizes are required. The properties of the method are analyzed both analytically and with illustrative multilevel calculations for Ca II in 1D and 2D schematic model atmospheres.
AF-DHNN: Fuzzy Clustering and Inference-Based Node Fault Diagnosis Method for Fire Detection
Jin, Shan; Cui, Wen; Jin, Zhigang; Wang, Ying
2015-01-01
Wireless Sensor Networks (WSNs) have been utilized for node fault diagnosis in the fire detection field since the 1990s. However, the traditional methods have some problems, including complicated system structures, intensive computation needs, unsteady data detection and local minimum values. In this paper, a new diagnosis mechanism for WSN nodes is proposed, which is based on fuzzy theory and an Adaptive Fuzzy Discrete Hopfield Neural Network (AF-DHNN). First, the original status of each sensor over time is obtained with two features. One is the root mean square of the filtered signal (FRMS), the other is the normalized summation of the positive amplitudes of the difference spectrum between the measured signal and the healthy one (NSDS). Secondly, distributed fuzzy inference is introduced. The evident abnormal nodes’ status is pre-alarmed to save time. Thirdly, according to the dimensions of the diagnostic data, an adaptive diagnostic status system is established with a Fuzzy C-Means Algorithm (FCMA) and Sorting and Classification Algorithm to reducing the complexity of the fault determination. Fourthly, a Discrete Hopfield Neural Network (DHNN) with iterations is improved with the optimization of the sensors’ detected status information and standard diagnostic levels, with which the associative memory is achieved, and the search efficiency is improved. The experimental results show that the AF-DHNN method can diagnose abnormal WSN node faults promptly and effectively, which improves the WSN reliability. PMID:26193280
Status on Iterative Transform Phase Retrieval Applied to the GBT Data
NASA Technical Reports Server (NTRS)
Dean, Bruce; Aronstein, David; Smith, Scott; Shiri, Ron; Hollis, Jan M.; Lyons, Richard; Prestage, Richard; Hunter, Todd; Ghigo, Frank; Nikolic, Bojan
2007-01-01
This slide presentation reviews the use of iterative transform phase retrieval in the analysis of the Green Bank Radio Telescope (GBT) Data. It reviews the NASA projects that have used phase retrieval, and the testbed for the algorithm to be used for the James Webb Space Telescope. It shows the comparison of phase retrieval with an interferometer, and reviews the two approaches used for phase retrieval, iterative transform (ITA) or parametric (non-linear least squares model fitting). The concept of ITA Phase Retrieval is reviewed, and the application to Radio Antennas is reviewed. The presentation also examines the National Radio Astronomy Observatory (NRAO) data from the GBT, and the Fourier model that NRAO uses to analyze the data. The challenge for ITA phase retrieval is reviewed, and the coherent approximation for incoherent data is shown. The validity of the approximation is good for a large tilt. There is a review of the proof of concept of the Phase Review simulation using the input wavefront, and the initial sampling parameters estimate from the focused GBT data.
Efficient Deployment of Key Nodes for Optimal Coverage of Industrial Mobile Wireless Networks
Li, Xiaomin; Li, Di; Dong, Zhijie; Hu, Yage; Liu, Chengliang
2018-01-01
In recent years, industrial wireless networks (IWNs) have been transformed by the introduction of mobile nodes, and they now offer increased extensibility, mobility, and flexibility. Nevertheless, mobile nodes pose efficiency and reliability challenges. Efficient node deployment and management of channel interference directly affect network system performance, particularly for key node placement in clustered wireless networks. This study analyzes this system model, considering both industrial properties of wireless networks and their mobility. Then, static and mobile node coverage problems are unified and simplified to target coverage problems. We propose a novel strategy for the deployment of clustered heads in grouped industrial mobile wireless networks (IMWNs) based on the improved maximal clique model and the iterative computation of new candidate cluster head positions. The maximal cliques are obtained via a double-layer Tabu search. Each cluster head updates its new position via an improved virtual force while moving with full coverage to find the minimal inter-cluster interference. Finally, we develop a simulation environment. The simulation results, based on a performance comparison, show the efficacy of the proposed strategies and their superiority over current approaches. PMID:29439439
Fan, Desheng; Meng, Xiangfeng; Wang, Yurong; Yang, Xiulun; Pan, Xuemei; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi
2015-04-10
A multiple-image authentication method with a cascaded multilevel architecture in the Fresnel domain is proposed, in which a synthetic encoded complex amplitude is first fabricated, and its real amplitude component is generated by iterative amplitude encoding, random sampling, and space multiplexing for the low-level certification images, while the phase component of the synthetic encoded complex amplitude is constructed by iterative phase information encoding and multiplexing for the high-level certification images. Then the synthetic encoded complex amplitude is iteratively encoded into two phase-type ciphertexts located in two different transform planes. During high-level authentication, when the two phase-type ciphertexts and the high-level decryption key are presented to the system and then the Fresnel transform is carried out, a meaningful image with good quality and a high correlation coefficient with the original certification image can be recovered in the output plane. Similar to the procedure of high-level authentication, in the case of low-level authentication with the aid of a low-level decryption key, no significant or meaningful information is retrieved, but it can result in a remarkable peak output in the nonlinear correlation coefficient of the output image and the corresponding original certification image. Therefore, the method realizes different levels of accessibility to the original certification image for different authority levels with the same cascaded multilevel architecture.
The NLS-Based Nonlinear Grey Multivariate Model for Forecasting Pollutant Emissions in China
Pei, Ling-Ling; Li, Qin
2018-01-01
The relationship between pollutant discharge and economic growth has been a major research focus in environmental economics. To accurately estimate the nonlinear change law of China’s pollutant discharge with economic growth, this study establishes a transformed nonlinear grey multivariable (TNGM (1, N)) model based on the nonlinear least square (NLS) method. The Gauss–Seidel iterative algorithm was used to solve the parameters of the TNGM (1, N) model based on the NLS basic principle. This algorithm improves the precision of the model by continuous iteration and constantly approximating the optimal regression coefficient of the nonlinear model. In our empirical analysis, the traditional grey multivariate model GM (1, N) and the NLS-based TNGM (1, N) models were respectively adopted to forecast and analyze the relationship among wastewater discharge per capita (WDPC), and per capita emissions of SO2 and dust, alongside GDP per capita in China during the period 1996–2015. Results indicated that the NLS algorithm is able to effectively help the grey multivariable model identify the nonlinear relationship between pollutant discharge and economic growth. The results show that the NLS-based TNGM (1, N) model presents greater precision when forecasting WDPC, SO2 emissions and dust emissions per capita, compared to the traditional GM (1, N) model; WDPC indicates a growing tendency aligned with the growth of GDP, while the per capita emissions of SO2 and dust reduce accordingly. PMID:29517985
NASA Astrophysics Data System (ADS)
Al-Mayah, Adil; Moseley, Joanne; Velec, Mike; Brock, Kristy
2011-08-01
Both accuracy and efficiency are critical for the implementation of biomechanical model-based deformable registration in clinical practice. The focus of this investigation is to evaluate the potential of improving the efficiency of the deformable image registration of the human lungs without loss of accuracy. Three-dimensional finite element models have been developed using image data of 14 lung cancer patients. Each model consists of two lungs, tumor and external body. Sliding of the lungs inside the chest cavity is modeled using a frictionless surface-based contact model. The effect of the type of element, finite deformation and elasticity on the accuracy and computing time is investigated. Linear and quadrilateral tetrahedral elements are used with linear and nonlinear geometric analysis. Two types of material properties are applied namely: elastic and hyperelastic. The accuracy of each of the four models is examined using a number of anatomical landmarks representing the vessels bifurcation points distributed across the lungs. The registration error is not significantly affected by the element type or linearity of analysis, with an average vector error of around 2.8 mm. The displacement differences between linear and nonlinear analysis methods are calculated for all lungs nodes and a maximum value of 3.6 mm is found in one of the nodes near the entrance of the bronchial tree into the lungs. The 95 percentile of displacement difference ranges between 0.4 and 0.8 mm. However, the time required for the analysis is reduced from 95 min in the quadratic elements nonlinear geometry model to 3.4 min in the linear element linear geometry model. Therefore using linear tetrahedral elements with linear elastic materials and linear geometry is preferable for modeling the breathing motion of lungs for image-guided radiotherapy applications.
Modal Test/Analysis Correlation of Space Station Structures Using Nonlinear Sensitivity
NASA Technical Reports Server (NTRS)
Gupta, Viney K.; Newell, James F.; Berke, Laszlo; Armand, Sasan
1992-01-01
The modal correlation problem is formulated as a constrained optimization problem for validation of finite element models (FEM's). For large-scale structural applications, a pragmatic procedure for substructuring, model verification, and system integration is described to achieve effective modal correlation. The space station substructure FEM's are reduced using Lanczos vectors and integrated into a system FEM using Craig-Bampton component modal synthesis. The optimization code is interfaced with MSC/NASTRAN to solve the problem of modal test/analysis correlation; that is, the problem of validating FEM's for launch and on-orbit coupled loads analysis against experimentally observed frequencies and mode shapes. An iterative perturbation algorithm is derived and implemented to update nonlinear sensitivity (derivatives of eigenvalues and eigenvectors) during optimizer iterations, which reduced the number of finite element analyses.
Modal test/analysis correlation of Space Station structures using nonlinear sensitivity
NASA Technical Reports Server (NTRS)
Gupta, Viney K.; Newell, James F.; Berke, Laszlo; Armand, Sasan
1992-01-01
The modal correlation problem is formulated as a constrained optimization problem for validation of finite element models (FEM's). For large-scale structural applications, a pragmatic procedure for substructuring, model verification, and system integration is described to achieve effective modal correlations. The space station substructure FEM's are reduced using Lanczos vectors and integrated into a system FEM using Craig-Bampton component modal synthesis. The optimization code is interfaced with MSC/NASTRAN to solve the problem of modal test/analysis correlation; that is, the problem of validating FEM's for launch and on-orbit coupled loads analysis against experimentally observed frequencies and mode shapes. An iterative perturbation algorithm is derived and implemented to update nonlinear sensitivity (derivatives of eigenvalues and eigenvectors) during optimizer iterations, which reduced the number of finite element analyses.
NASA Astrophysics Data System (ADS)
Yarmohammadi, M.; Javadi, S.; Babolian, E.
2018-04-01
In this study a new spectral iterative method (SIM) based on fractional interpolation is presented for solving nonlinear fractional differential equations (FDEs) involving Caputo derivative. This method is equipped with a pre-algorithm to find the singularity index of solution of the problem. This pre-algorithm gives us a real parameter as the index of the fractional interpolation basis, for which the SIM achieves the highest order of convergence. In comparison with some recent results about the error estimates for fractional approximations, a more accurate convergence rate has been attained. We have also proposed the order of convergence for fractional interpolation error under the L2-norm. Finally, general error analysis of SIM has been considered. The numerical results clearly demonstrate the capability of the proposed method.
Burger, Karin; Koehler, Thomas; Chabior, Michael; Allner, Sebastian; Marschner, Mathias; Fehringer, Andreas; Willner, Marian; Pfeiffer, Franz; Noël, Peter
2014-12-29
Phase-contrast x-ray computed tomography has a high potential to become clinically implemented because of its complementarity to conventional absorption-contrast.In this study, we investigate noise-reducing but resolution-preserving analytical reconstruction methods to improve differential phase-contrast imaging. We apply the non-linear Perona-Malik filter on phase-contrast data prior or post filtered backprojected reconstruction. Secondly, the Hilbert kernel is replaced by regularized iterative integration followed by ramp filtered backprojection as used for absorption-contrast imaging. Combining the Perona-Malik filter with this integration algorithm allows to successfully reveal relevant sample features, quantitatively confirmed by significantly increased structural similarity indices and contrast-to-noise ratios. With this concept, phase-contrast imaging can be performed at considerably lower dose.
Compressively sampled MR image reconstruction using generalized thresholding iterative algorithm
NASA Astrophysics Data System (ADS)
Elahi, Sana; kaleem, Muhammad; Omer, Hammad
2018-01-01
Compressed sensing (CS) is an emerging area of interest in Magnetic Resonance Imaging (MRI). CS is used for the reconstruction of the images from a very limited number of samples in k-space. This significantly reduces the MRI data acquisition time. One important requirement for signal recovery in CS is the use of an appropriate non-linear reconstruction algorithm. It is a challenging task to choose a reconstruction algorithm that would accurately reconstruct the MR images from the under-sampled k-space data. Various algorithms have been used to solve the system of non-linear equations for better image quality and reconstruction speed in CS. In the recent past, iterative soft thresholding algorithm (ISTA) has been introduced in CS-MRI. This algorithm directly cancels the incoherent artifacts produced because of the undersampling in k -space. This paper introduces an improved iterative algorithm based on p -thresholding technique for CS-MRI image reconstruction. The use of p -thresholding function promotes sparsity in the image which is a key factor for CS based image reconstruction. The p -thresholding based iterative algorithm is a modification of ISTA, and minimizes non-convex functions. It has been shown that the proposed p -thresholding iterative algorithm can be used effectively to recover fully sampled image from the under-sampled data in MRI. The performance of the proposed method is verified using simulated and actual MRI data taken at St. Mary's Hospital, London. The quality of the reconstructed images is measured in terms of peak signal-to-noise ratio (PSNR), artifact power (AP), and structural similarity index measure (SSIM). The proposed approach shows improved performance when compared to other iterative algorithms based on log thresholding, soft thresholding and hard thresholding techniques at different reduction factors.
A refined mixed shear flexible finite element for the nonlinear analysis of laminated plates
NASA Technical Reports Server (NTRS)
Putcha, N. S.; Reddy, J. N.
1986-01-01
The present study is concerned with the development of a mixed shear flexible finite element with relaxed continuity for the geometrically linear and nonlinear analysis of laminated anisotropic plates. The formulation of the element is based on a refined higher-order theory. This theory satisfies the zero transverse shear stress boundary conditions on the top and bottom faces of the plate. Shear correction coefficients are not needed. The developed element consists of 11 degrees-of-freedom per node, taking into account three displacements, two rotations, and six moment resultants. An evaluation of the element is conducted with respect to the accuracy obtained in the bending of laminated anistropic rectangular plates with different lamination schemes, loadings, and boundary conditions.
Laser simulation applying Fox-Li iteration: investigation of reason for non-convergence
NASA Astrophysics Data System (ADS)
Paxton, Alan H.; Yang, Chi
2017-02-01
Fox-Li iteration is often used to numerically simulate lasers. If a solution is found, the complex field amplitude is a good indication of the laser mode. The case of a semiconductor laser, for which the medium possesses a self-focusing nonlinearity, was investigated. For a case of interest, the iterations did not yield a converged solution. Another approach was needed to explore the properties of the laser mode. The laser was treated (unphysically) as a regenerative amplifier. As the input to the amplifier, we required a smooth complex field distribution that matched the laser resonator. To obtain such a field, we found what would be the solution for the laser field if the strength of the self focusing nonlinearity were α = 0. This was used as the input to the laser, treated as an amplifier. Because the beam deteriorated as it propagated multiple passes in the resonator and through the gain medium (for α = 2.7), we concluded that a mode with good beam quality could not exist in the laser.
NASA Technical Reports Server (NTRS)
Koppenhoefer, Kyle C.; Gullerud, Arne S.; Ruggieri, Claudio; Dodds, Robert H., Jr.; Healy, Brian E.
1998-01-01
This report describes theoretical background material and commands necessary to use the WARP3D finite element code. WARP3D is under continuing development as a research code for the solution of very large-scale, 3-D solid models subjected to static and dynamic loads. Specific features in the code oriented toward the investigation of ductile fracture in metals include a robust finite strain formulation, a general J-integral computation facility (with inertia, face loading), an element extinction facility to model crack growth, nonlinear material models including viscoplastic effects, and the Gurson-Tver-gaard dilatant plasticity model for void growth. The nonlinear, dynamic equilibrium equations are solved using an incremental-iterative, implicit formulation with full Newton iterations to eliminate residual nodal forces. The history integration of the nonlinear equations of motion is accomplished with Newmarks Beta method. A central feature of WARP3D involves the use of a linear-preconditioned conjugate gradient (LPCG) solver implemented in an element-by-element format to replace a conventional direct linear equation solver. This software architecture dramatically reduces both the memory requirements and CPU time for very large, nonlinear solid models since formation of the assembled (dynamic) stiffness matrix is avoided. Analyses thus exhibit the numerical stability for large time (load) steps provided by the implicit formulation coupled with the low memory requirements characteristic of an explicit code. In addition to the much lower memory requirements of the LPCG solver, the CPU time required for solution of the linear equations during each Newton iteration is generally one-half or less of the CPU time required for a traditional direct solver. All other computational aspects of the code (element stiffnesses, element strains, stress updating, element internal forces) are implemented in the element-by- element, blocked architecture. This greatly improves vectorization of the code on uni-processor hardware and enables straightforward parallel-vector processing of element blocks on multi-processor hardware.
Minati, Ludovico; Chiesa, Pietro; Tabarelli, Davide; D'Incerti, Ludovico
2015-01-01
In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D2), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes. PMID:25833429
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it, E-mail: lminati@istituto-besta.it; Center for Mind/Brain Sciences, University of Trento, Trento; Chiesa, Pietro
In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D{sub 2}), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequencymore » activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.« less
Generalized Projective Synchronization between Two Complex Networks with Time-Varying Coupling Delay
NASA Astrophysics Data System (ADS)
Sun, Mei; Zeng, Chang-Yan; Tian, Li-Xin
2009-01-01
Generalized projective synchronization (GPS) between two complex networks with time-varying coupling delay is investigated. Based on the Lyapunov stability theory, a nonlinear controller and adaptive updated laws are designed. Feasibility of the proposed scheme is proven in theory. Moreover, two numerical examples are presented, using the energy resource system and Lü's system [Physica A 382 (2007) 672] as the nodes of the networks. GPS between two energy resource complex networks with time-varying coupling delay is achieved. This study can widen the application range of the generalized synchronization methods and will be instructive for the demand-supply of energy resource in some regions of China.
Empirical Research of Micro-blog Information Transmission Range by Guard nodes
NASA Astrophysics Data System (ADS)
Chen, Shan; Ji, Ling; Li, Guang
2018-03-01
The prediction and evaluation of information transmission in online social networks is a challenge. It is significant to solve this issue for monitoring public option and advertisement communication. First, the prediction process is described by a set language. Then with Sina Microblog system as used as the case object, the relationship between node influence and coverage rate is analyzed by using the topology structure of information nodes. A nonlinear model is built by a statistic method in a specific, bounded and controlled Microblog network. It can predict the message coverage rate by guard nodes. The experimental results show that the prediction model has higher accuracy to the source nodes which have lower influence in social network and practical application.
Carasso, Alfred S
2013-01-01
Identifying sources of ground water pollution, and deblurring nanoscale imagery as well as astronomical galaxy images, are two important applications involving numerical computation of parabolic equations backward in time. Surprisingly, very little is known about backward continuation in nonlinear parabolic equations. In this paper, an iterative procedure originating in spectroscopy in the 1930’s, is adapted into a useful tool for solving a wide class of 2D nonlinear backward parabolic equations. In addition, previously unsuspected difficulties are uncovered that may preclude useful backward continuation in parabolic equations deviating too strongly from the linear, autonomous, self adjoint, canonical model. This paper explores backward continuation in selected 2D nonlinear equations, by creating fictitious blurred images obtained by using several sharp images as initial data in these equations, and capturing the corresponding solutions at some positive time T. Successful backward continuation from t=T to t = 0, would recover the original sharp image. Visual recognition provides meaningful evaluation of the degree of success or failure in the reconstructed solutions. Instructive examples are developed, illustrating the unexpected influence of certain types of nonlinearities. Visually and statistically indistinguishable blurred images are presented, with vastly different deblurring results. These examples indicate that how an image is nonlinearly blurred is critical, in addition to the amount of blur. The equations studied represent nonlinear generalizations of Brownian motion, and the blurred images may be interpreted as visually expressing the results of novel stochastic processes. PMID:26401430
Carasso, Alfred S
2013-01-01
Identifying sources of ground water pollution, and deblurring nanoscale imagery as well as astronomical galaxy images, are two important applications involving numerical computation of parabolic equations backward in time. Surprisingly, very little is known about backward continuation in nonlinear parabolic equations. In this paper, an iterative procedure originating in spectroscopy in the 1930's, is adapted into a useful tool for solving a wide class of 2D nonlinear backward parabolic equations. In addition, previously unsuspected difficulties are uncovered that may preclude useful backward continuation in parabolic equations deviating too strongly from the linear, autonomous, self adjoint, canonical model. This paper explores backward continuation in selected 2D nonlinear equations, by creating fictitious blurred images obtained by using several sharp images as initial data in these equations, and capturing the corresponding solutions at some positive time T. Successful backward continuation from t=T to t = 0, would recover the original sharp image. Visual recognition provides meaningful evaluation of the degree of success or failure in the reconstructed solutions. Instructive examples are developed, illustrating the unexpected influence of certain types of nonlinearities. Visually and statistically indistinguishable blurred images are presented, with vastly different deblurring results. These examples indicate that how an image is nonlinearly blurred is critical, in addition to the amount of blur. The equations studied represent nonlinear generalizations of Brownian motion, and the blurred images may be interpreted as visually expressing the results of novel stochastic processes.
NASA Astrophysics Data System (ADS)
Sumin, M. I.
2015-06-01
A parametric nonlinear programming problem in a metric space with an operator equality constraint in a Hilbert space is studied assuming that its lower semicontinuous value function at a chosen individual parameter value has certain subdifferentiability properties in the sense of nonlinear (nonsmooth) analysis. Such subdifferentiability can be understood as the existence of a proximal subgradient or a Fréchet subdifferential. In other words, an individual problem has a corresponding generalized Kuhn-Tucker vector. Under this assumption, a stable sequential Kuhn-Tucker theorem in nondifferential iterative form is proved and discussed in terms of minimizing sequences on the basis of the dual regularization method. This theorem provides necessary and sufficient conditions for the stable construction of a minimizing approximate solution in the sense of Warga in the considered problem, whose initial data can be approximately specified. A substantial difference of the proved theorem from its classical same-named analogue is that the former takes into account the possible instability of the problem in the case of perturbed initial data and, as a consequence, allows for the inherited instability of classical optimality conditions. This theorem can be treated as a regularized generalization of the classical Uzawa algorithm to nonlinear programming problems. Finally, the theorem is applied to the "simplest" nonlinear optimal control problem, namely, to a time-optimal control problem.
Adaptive and iterative methods for simulations of nanopores with the PNP-Stokes equations
NASA Astrophysics Data System (ADS)
Mitscha-Baude, Gregor; Buttinger-Kreuzhuber, Andreas; Tulzer, Gerhard; Heitzinger, Clemens
2017-06-01
We present a 3D finite element solver for the nonlinear Poisson-Nernst-Planck (PNP) equations for electrodiffusion, coupled to the Stokes system of fluid dynamics. The model serves as a building block for the simulation of macromolecule dynamics inside nanopore sensors. The source code is released online at http://github.com/mitschabaude/nanopores. We add to existing numerical approaches by deploying goal-oriented adaptive mesh refinement. To reduce the computation overhead of mesh adaptivity, our error estimator uses the much cheaper Poisson-Boltzmann equation as a simplified model, which is justified on heuristic grounds but shown to work well in practice. To address the nonlinearity in the full PNP-Stokes system, three different linearization schemes are proposed and investigated, with two segregated iterative approaches both outperforming a naive application of Newton's method. Numerical experiments are reported on a real-world nanopore sensor geometry. We also investigate two different models for the interaction of target molecules with the nanopore sensor through the PNP-Stokes equations. In one model, the molecule is of finite size and is explicitly built into the geometry; while in the other, the molecule is located at a single point and only modeled implicitly - after solution of the system - which is computationally favorable. We compare the resulting force profiles of the electric and velocity fields acting on the molecule, and conclude that the point-size model fails to capture important physical effects such as the dependence of charge selectivity of the sensor on the molecule radius.
AZTEC: A parallel iterative package for the solving linear systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchinson, S.A.; Shadid, J.N.; Tuminaro, R.S.
1996-12-31
We describe a parallel linear system package, AZTEC. The package incorporates a number of parallel iterative methods (e.g. GMRES, biCGSTAB, CGS, TFQMR) and preconditioners (e.g. Jacobi, Gauss-Seidel, polynomial, domain decomposition with LU or ILU within subdomains). Additionally, AZTEC allows for the reuse of previous preconditioning factorizations within Newton schemes for nonlinear methods. Currently, a number of different users are using this package to solve a variety of PDE applications.
Resource utilization model for the algorithm to architecture mapping model
NASA Technical Reports Server (NTRS)
Stoughton, John W.; Patel, Rakesh R.
1993-01-01
The analytical model for resource utilization and the variable node time and conditional node model for the enhanced ATAMM model for a real-time data flow architecture are presented in this research. The Algorithm To Architecture Mapping Model, ATAMM, is a Petri net based graph theoretic model developed at Old Dominion University, and is capable of modeling the execution of large-grained algorithms on a real-time data flow architecture. Using the resource utilization model, the resource envelope may be obtained directly from a given graph and, consequently, the maximum number of required resources may be evaluated. The node timing diagram for one iteration period may be obtained using the analytical resource envelope. The variable node time model, which describes the change in resource requirement for the execution of an algorithm under node time variation, is useful to expand the applicability of the ATAMM model to heterogeneous architectures. The model also describes a method of detecting the presence of resource limited mode and its subsequent prevention. Graphs with conditional nodes are shown to be reduced to equivalent graphs with time varying nodes and, subsequently, may be analyzed using the variable node time model to determine resource requirements. Case studies are performed on three graphs for the illustration of applicability of the analytical theories.
Lin, Yunyue; Wu, Qishi; Cai, Xiaoshan; ...
2010-01-01
Data transmission from sensor nodes to a base station or a sink node often incurs significant energy consumption, which critically affects network lifetime. We generalize and solve the problem of deploying multiple base stations to maximize network lifetime in terms of two different metrics under one-hop and multihop communication models. In the one-hop communication model, the sensors far away from base stations always deplete their energy much faster than others. We propose an optimal solution and a heuristic approach based on the minimal enclosing circle algorithm to deploy a base station at the geometric center of each cluster. In themore » multihop communication model, both base station location and data routing mechanism need to be considered in maximizing network lifetime. We propose an iterative algorithm based on rigorous mathematical derivations and use linear programming to compute the optimal routing paths for data transmission. Simulation results show the distinguished performance of the proposed deployment algorithms in maximizing network lifetime.« less
Nonlinear Transient Problems Using Structure Compatible Heat Transfer Code
NASA Technical Reports Server (NTRS)
Hou, Gene
2000-01-01
The report documents the recent effort to enhance a transient linear heat transfer code so as to solve nonlinear problems. The linear heat transfer code was originally developed by Dr. Kim Bey of NASA Largely and called the Structure-Compatible Heat Transfer (SCHT) code. The report includes four parts. The first part outlines the formulation of the heat transfer problem of concern. The second and the third parts give detailed procedures to construct the nonlinear finite element equations and the required Jacobian matrices for the nonlinear iterative method, Newton-Raphson method. The final part summarizes the results of the numerical experiments on the newly enhanced SCHT code.
Nonlinear adaptive networks: A little theory, a few applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, R.D.; Qian, S.; Barnes, C.W.
1990-01-01
We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We than present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series tidal prediction in Venice Lagoon, sonar transient detection, control of nonlinear processes, balancing a double inverted pendulum and design advice for free electron lasers. 26 refs., 23 figs.
NASA Astrophysics Data System (ADS)
Zausner, Tobi
Chaos theory may provide models for creativity and for the personality of the artist. A collection of speculative hypotheses examines the connection between art and such fundamentals of non-linear dynamics as iteration, dissipative processes, open systems, entropy, sensitivity to stimuli, autocatalysis, subsystems, bifurcations, randomness, unpredictability, irreversibility, increasing levels of organization, far-from-equilibrium conditions, strange attractors, period doubling, intermittency and self-similar fractal organization. Non-linear dynamics may also explain why certain individuals suffer mental disorders while others remain intact during a lifetime of sustained creative output.
Structure-based control of complex networks with nonlinear dynamics
NASA Astrophysics Data System (ADS)
Zanudo, Jorge G. T.; Yang, Gang; Albert, Reka
What can we learn about controlling a system solely from its underlying network structure? Here we use a framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system towards any of its natural long term dynamic behaviors, regardless of the dynamic details and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of classical structural control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case, but not in specific model instances. This work was supported by NSF Grants PHY 1205840 and IIS 1160995. JGTZ is a recipient of a Stand Up To Cancer - The V Foundation Convergence Scholar Award.
A stopping criterion for the iterative solution of partial differential equations
NASA Astrophysics Data System (ADS)
Rao, Kaustubh; Malan, Paul; Perot, J. Blair
2018-01-01
A stopping criterion for iterative solution methods is presented that accurately estimates the solution error using low computational overhead. The proposed criterion uses information from prior solution changes to estimate the error. When the solution changes are noisy or stagnating it reverts to a less accurate but more robust, low-cost singular value estimate to approximate the error given the residual. This estimator can also be applied to iterative linear matrix solvers such as Krylov subspace or multigrid methods. Examples of the stopping criterion's ability to accurately estimate the non-linear and linear solution error are provided for a number of different test cases in incompressible fluid dynamics.
Pinning synchronization of delayed complex dynamical networks with nonlinear coupling
NASA Astrophysics Data System (ADS)
Cheng, Ranran; Peng, Mingshu; Yu, Weibin
2014-11-01
In this paper, we find that complex networks with the Watts-Strogatz or scale-free BA random topological architecture can be synchronized more easily by pin-controlling fewer nodes than regular systems. Theoretical analysis is included by means of Lyapunov functions and linear matrix inequalities (LMI) to make all nodes reach complete synchronization. Numerical examples are also provided to illustrate the importance of our theoretical analysis, which implies that there exists a gap between the theoretical prediction and numerical results about the minimum number of pinning controlled nodes.
Hudson, H M; Ma, J; Green, P
1994-01-01
Many algorithms for medical image reconstruction adopt versions of the expectation-maximization (EM) algorithm. In this approach, parameter estimates are obtained which maximize a complete data likelihood or penalized likelihood, in each iteration. Implicitly (and sometimes explicitly) penalized algorithms require smoothing of the current reconstruction in the image domain as part of their iteration scheme. In this paper, we discuss alternatives to EM which adapt Fisher's method of scoring (FS) and other methods for direct maximization of the incomplete data likelihood. Jacobi and Gauss-Seidel methods for non-linear optimization provide efficient algorithms applying FS in tomography. One approach uses smoothed projection data in its iterations. We investigate the convergence of Jacobi and Gauss-Seidel algorithms with clinical tomographic projection data.
Straight ahead running of a nonlinear car and driver model - new nonlinear behaviours highlighted
NASA Astrophysics Data System (ADS)
Della Rossa, Fabio; Mastinu, Giampiero
2018-05-01
The paper deals with the bifurcation analysis of a validated simple model describing a vehicle+driver running straight ahead. The mechanical model of the car has two degrees of freedom and the related equations of motion contain the nonlinear tyre characteristics. The driver is described by a very simple model. Bifurcation analysis is adopted for characterising straight ahead motion at different speeds for different drivers. A nonlinear sensitivity analysis is performed as a function of the driver's parameters and forward vehicle speed. A wealth of unreferenced bifurcations is discovered both for the understeering (UN) and for the oversteering (OV) vehicle. For the UN vehicle, a supercritical Hopf bifurcation may occur as the forward speed is increased. Also tangent (fold) bifurcations (saddle-node bifurcation of limit cycles) occur as the speed (or disturbance) is further increased. For the OV vehicle, a subcritical Hopf bifurcation occurs as the speed reaches a critical value. The preview distance (a driver's control parameter) plays a fundamental role in straight ahead driving. Either too short or too long preview distances are negative for straight ahead running.
NASA Astrophysics Data System (ADS)
Cicone, Antonio; Zhou, Haomin; Piersanti, Mirko; Materassi, Massimo; Spogli, Luca
2017-04-01
Nonlinear and nonstationary signals are ubiquitous in real life. Their decomposition and analysis is of crucial importance in many research fields. Traditional techniques, like Fourier and wavelet Transform have been proved to be limited in this context. In the last two decades new kind of nonlinear methods have been developed which are able to unravel hidden features of these kinds of signals. In this talk we will review the state of the art and present a new method, called Adaptive Local Iterative Filtering (ALIF). This method, developed originally to study mono-dimensional signals, unlike any other technique proposed so far, can be easily generalized to study two or higher dimensional signals. Furthermore, unlike most of the similar methods, it does not require any a priori assumption on the signal itself, so that the method can be applied as it is to any kind of signals. Applications of ALIF algorithm to real life signals analysis will be presented. Like, for instance, the behavior of the water level near the coastline in presence of a Tsunami, the length of the day signal, the temperature and pressure measured at ground level on a global grid, and the radio power scintillation from GNSS signals.
NASA Astrophysics Data System (ADS)
Cicone, A.; Zhou, H.; Piersanti, M.; Materassi, M.; Spogli, L.
2017-12-01
Nonlinear and nonstationary signals are ubiquitous in real life. Their decomposition and analysis is of crucial importance in many research fields. Traditional techniques, like Fourier and wavelet Transform have been proved to be limited in this context. In the last two decades new kind of nonlinear methods have been developed which are able to unravel hidden features of these kinds of signals. In this poster we present a new method, called Adaptive Local Iterative Filtering (ALIF). This technique, originally developed to study mono-dimensional signals, unlike any other algorithm proposed so far, can be easily generalized to study two or higher dimensional signals. Furthermore, unlike most of the similar methods, it does not require any a priori assumption on the signal itself, so that the technique can be applied as it is to any kind of signals. Applications of ALIF algorithm to real life signals analysis will be presented. Like, for instance, the behavior of the water level near the coastline in presence of a Tsunami, length of the day signal, pressure measured at ground level on a global grid, radio power scintillation from GNSS signals,
Dmitriev, S V; Kevrekidis, P G; Yoshikawa, N; Frantzeskakis, D J
2006-10-01
We propose a generalization of the discrete Klein-Gordon models free of the Peierls-Nabarro barrier derived in Spreight [Nonlinearity 12, 1373 (1999)] and Barashenkov [Phys. Rev. E 72, 035602(R) (2005)], such that they support not only kinks but a one-parameter set of exact static solutions. These solutions can be obtained iteratively from a two-point nonlinear map whose role is played by the discretized first integral of the static Klein-Gordon field, as suggested by Dmitriev [J. Phys. A 38, 7617 (2005)]. We then discuss some discrete phi4 models free of the Peierls-Nabarro barrier and identify for them the full space of available static solutions, including those derived recently by Cooper [Phys. Rev. E 72, 036605 (2005)] but not limited to them. These findings are also relevant to standing wave solutions of discrete nonlinear Schrödinger models. We also study stability of the obtained solutions. As an interesting aside, we derive the list of solutions to the continuum phi4 equation that fill the entire two-dimensional space of parameters obtained as the continuum limit of the corresponding space of the discrete models.
Simplifications for hydronic system models in modelica
Jorissen, F.; Wetter, M.; Helsen, L.
2018-01-12
Building systems and their heating, ventilation and air conditioning flow networks, are becoming increasingly complex. Some building energy simulation tools simulate these flow networks using pressure drop equations. These flow network models typically generate coupled algebraic nonlinear systems of equations, which become increasingly more difficult to solve as their sizes increase. This leads to longer computation times and can cause the solver to fail. These problems also arise when using the equation-based modelling language Modelica and Annex 60-based libraries. This may limit the applicability of the library to relatively small problems unless problems are restructured. This paper discusses two algebraicmore » loop types and presents an approach that decouples algebraic loops into smaller parts, or removes them completely. The approach is applied to a case study model where an algebraic loop of 86 iteration variables is decoupled into smaller parts with a maximum of five iteration variables.« less
Exploration and extension of an improved Riemann track fitting algorithm
NASA Astrophysics Data System (ADS)
Strandlie, A.; Frühwirth, R.
2017-09-01
Recently, a new Riemann track fit which operates on translated and scaled measurements has been proposed. This study shows that the new Riemann fit is virtually as precise as popular approaches such as the Kalman filter or an iterative non-linear track fitting procedure, and significantly more precise than other, non-iterative circular track fitting approaches over a large range of measurement uncertainties. The fit is then extended in two directions: first, the measurements are allowed to lie on plane sensors of arbitrary orientation; second, the full error propagation from the measurements to the estimated circle parameters is computed. The covariance matrix of the estimated track parameters can therefore be computed without recourse to asymptotic properties, and is consequently valid for any number of observation. It does, however, assume normally distributed measurement errors. The calculations are validated on a simulated track sample and show excellent agreement with the theoretical expectations.
NASA Astrophysics Data System (ADS)
Ullah, Asmat; Chen, Wen; Khan, Mushtaq Ahmad
2017-07-01
This paper introduces a fractional order total variation (FOTV) based model with three different weights in the fractional order derivative definition for multiplicative noise removal purpose. The fractional-order Euler Lagrange equation which is a highly non-linear partial differential equation (PDE) is obtained by the minimization of the energy functional for image restoration. Two numerical schemes namely an iterative scheme based on the dual theory and majorization- minimization algorithm (MMA) are used. To improve the restoration results, we opt for an adaptive parameter selection procedure for the proposed model by applying the trial and error method. We report numerical simulations which show the validity and state of the art performance of the fractional-order model in visual improvement as well as an increase in the peak signal to noise ratio comparing to corresponding methods. Numerical experiments also demonstrate that MMAbased methodology is slightly better than that of an iterative scheme.
Scalable Nonlinear Solvers for Fully Implicit Coupled Nuclear Fuel Modeling. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Xiao-Chuan; Keyes, David; Yang, Chao
2014-09-29
The focus of the project is on the development and customization of some highly scalable domain decomposition based preconditioning techniques for the numerical solution of nonlinear, coupled systems of partial differential equations (PDEs) arising from nuclear fuel simulations. These high-order PDEs represent multiple interacting physical fields (for example, heat conduction, oxygen transport, solid deformation), each is modeled by a certain type of Cahn-Hilliard and/or Allen-Cahn equations. Most existing approaches involve a careful splitting of the fields and the use of field-by-field iterations to obtain a solution of the coupled problem. Such approaches have many advantages such as ease of implementationmore » since only single field solvers are needed, but also exhibit disadvantages. For example, certain nonlinear interactions between the fields may not be fully captured, and for unsteady problems, stable time integration schemes are difficult to design. In addition, when implemented on large scale parallel computers, the sequential nature of the field-by-field iterations substantially reduces the parallel efficiency. To overcome the disadvantages, fully coupled approaches have been investigated in order to obtain full physics simulations.« less
A coupling method for a cardiovascular simulation model which includes the Kalman filter.
Hasegawa, Yuki; Shimayoshi, Takao; Amano, Akira; Matsuda, Tetsuya
2012-01-01
Multi-scale models of the cardiovascular system provide new insight that was unavailable with in vivo and in vitro experiments. For the cardiovascular system, multi-scale simulations provide a valuable perspective in analyzing the interaction of three phenomenons occurring at different spatial scales: circulatory hemodynamics, ventricular structural dynamics, and myocardial excitation-contraction. In order to simulate these interactions, multiscale cardiovascular simulation systems couple models that simulate different phenomena. However, coupling methods require a significant amount of calculation, since a system of non-linear equations must be solved for each timestep. Therefore, we proposed a coupling method which decreases the amount of calculation by using the Kalman filter. In our method, the Kalman filter calculates approximations for the solution to the system of non-linear equations at each timestep. The approximations are then used as initial values for solving the system of non-linear equations. The proposed method decreases the number of iterations required by 94.0% compared to the conventional strong coupling method. When compared with a smoothing spline predictor, the proposed method required 49.4% fewer iterations.
NASA Astrophysics Data System (ADS)
Holland, C.; Candy, J.; Howard, N. T.
2017-10-01
Developing accurate predictive transport models of burning plasma conditions is essential for confident prediction and optimization of next step experiments such as ITER and DEMO. Core transport in these plasmas is expected to be very small in gyroBohm-normalized units, such that the plasma should lie close to the critical gradients for onset of microturbulence instabilities. We present recent results investigating the scaling of linear critical gradients of ITG, TEM, and ETG modes as a function of parameters such as safety factor, magnetic shear, and collisionality for nominal conditions and geometry expected in ITER H-mode plasmas. A subset of these results is then compared against predictions from nonlinear gyrokinetic simulations, to quantify differences between linear and nonlinear thresholds. As part of this study, linear and nonlinear results from both GYRO and CGYRO codes will be compared against each other, as well as to predictions from the quasilinear TGLF model. Challenges arising from near-marginal turbulence dynamics are addressed. This work was supported by the US Department of Energy under US DE-SC0006957.
NASA Astrophysics Data System (ADS)
Saupe, Florian; Knoblach, Andreas
2015-02-01
Two different approaches for the determination of frequency response functions (FRFs) are used for the non-parametric closed loop identification of a flexible joint industrial manipulator with serial kinematics. The two applied experiment designs are based on low power multisine and high power chirp excitations. The main challenge is to eliminate disturbances of the FRF estimates caused by the numerous nonlinearities of the robot. For the experiment design based on chirp excitations, a simple iterative procedure is proposed which allows exploiting the good crest factor of chirp signals in a closed loop setup. An interesting synergy of the two approaches, beyond validation purposes, is pointed out.
TAP 1: A Finite Element Program for Steady-State Thermal Analysis of Convectively Cooled Structures
NASA Technical Reports Server (NTRS)
Thornton, E. A.
1976-01-01
The program has a finite element library of six elements: two conduction/convection elements to model heat transfer in a solid, two convection elements to model heat transfer in a fluid, and two integrated conduction/convection elements to represent combined heat transfer in tubular and plate/fin fluid passages. Nonlinear thermal analysis due to temperature dependent thermal parameters is performed using the Newton-Raphson iteration method. Program output includes nodal temperatures and element heat fluxes. Pressure drops in fluid passages may be computed as an option. A companion plotting program for displaying the finite element model and predicted temperature distributions is presented. User instructions and sample problems are presented in appendixes.
The application of MINIQUASI to thermal program boundary and initial value problems
NASA Technical Reports Server (NTRS)
1974-01-01
The feasibility of applying the solution techniques of Miniquasi to the set of equations which govern a thermoregulatory model is investigated. For solving nonlinear equations and/or boundary conditions, a Taylor Series expansion is required for linearization of both equations and boundary conditions. The solutions are iterative and in each iteration, a problem like the linear case is solved. It is shown that Miniquasi cannot be applied to the thermoregulatory model as originally planned.
Rate-compatible protograph LDPC code families with linear minimum distance
NASA Technical Reports Server (NTRS)
Divsalar, Dariush (Inventor); Dolinar, Jr., Samuel J. (Inventor); Jones, Christopher R. (Inventor)
2012-01-01
Digital communication coding methods are shown, which generate certain types of low-density parity-check (LDPC) codes built from protographs. A first method creates protographs having the linear minimum distance property and comprising at least one variable node with degree less than 3. A second method creates families of protographs of different rates, all structurally identical for all rates except for a rate-dependent designation of certain variable nodes as transmitted or non-transmitted. A third method creates families of protographs of different rates, all structurally identical for all rates except for a rate-dependent designation of the status of certain variable nodes as non-transmitted or set to zero. LDPC codes built from the protographs created by these methods can simultaneously have low error floors and low iterative decoding thresholds.
Accumulate repeat accumulate codes
NASA Technical Reports Server (NTRS)
Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung
2004-01-01
In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.
NASA Astrophysics Data System (ADS)
Gencoglu, Muharrem Tuncay; Baskonus, Haci Mehmet; Bulut, Hasan
2017-01-01
The main aim of this manuscript is to obtain numerical solutions for the nonlinear model of interpersonal relationships with time fractional derivative. The variational iteration method is theoretically implemented and numerically conducted only to yield the desired solutions. Numerical simulations of desired solutions are plotted by using Wolfram Mathematica 9. The authors would like to thank the reviewers for their comments that help improve the manuscript.
Improved Quasi-Newton method via PSB update for solving systems of nonlinear equations
NASA Astrophysics Data System (ADS)
Mamat, Mustafa; Dauda, M. K.; Waziri, M. Y.; Ahmad, Fadhilah; Mohamad, Fatma Susilawati
2016-10-01
The Newton method has some shortcomings which includes computation of the Jacobian matrix which may be difficult or even impossible to compute and solving the Newton system in every iteration. Also, the common setback with some quasi-Newton methods is that they need to compute and store an n × n matrix at each iteration, this is computationally costly for large scale problems. To overcome such drawbacks, an improved Method for solving systems of nonlinear equations via PSB (Powell-Symmetric-Broyden) update is proposed. In the proposed method, the approximate Jacobian inverse Hk of PSB is updated and its efficiency has improved thereby require low memory storage, hence the main aim of this paper. The preliminary numerical results show that the proposed method is practically efficient when applied on some benchmark problems.
Distorted Born iterative T-matrix method for inversion of CSEM data in anisotropic media
NASA Astrophysics Data System (ADS)
Jakobsen, Morten; Tveit, Svenn
2018-05-01
We present a direct iterative solutions to the nonlinear controlled-source electromagnetic (CSEM) inversion problem in the frequency domain, which is based on a volume integral equation formulation of the forward modelling problem in anisotropic conductive media. Our vectorial nonlinear inverse scattering approach effectively replaces an ill-posed nonlinear inverse problem with a series of linear ill-posed inverse problems, for which there already exist efficient (regularized) solution methods. The solution update the dyadic Green's function's from the source to the scattering-volume and from the scattering-volume to the receivers, after each iteration. The T-matrix approach of multiple scattering theory is used for efficient updating of all dyadic Green's functions after each linearized inversion step. This means that we have developed a T-matrix variant of the Distorted Born Iterative (DBI) method, which is often used in the acoustic and electromagnetic (medical) imaging communities as an alternative to contrast-source inversion. The main advantage of using the T-matrix approach in this context, is that it eliminates the need to perform a full forward simulation at each iteration of the DBI method, which is known to be consistent with the Gauss-Newton method. The T-matrix allows for a natural domain decomposition, since in the sense that a large model can be decomposed into an arbitrary number of domains that can be treated independently and in parallel. The T-matrix we use for efficient model updating is also independent of the source-receiver configuration, which could be an advantage when performing fast-repeat modelling and time-lapse inversion. The T-matrix is also compatible with the use of modern renormalization methods that can potentially help us to reduce the sensitivity of the CSEM inversion results on the starting model. To illustrate the performance and potential of our T-matrix variant of the DBI method for CSEM inversion, we performed a numerical experiments based on synthetic CSEM data associated with 2D VTI and 3D orthorombic model inversions. The results of our numerical experiment suggest that the DBIT method for inversion of CSEM data in anisotropic media is both accurate and efficient.
Elasto-Plastic Behavior of Aluminum Foams Subjected to Compression Loading
NASA Astrophysics Data System (ADS)
Silva, H. M.; Carvalho, C. D.; Peixinho, N. R.
2017-05-01
The non-linear behavior of uniform-size cellular foams made of aluminum is investigated when subjected to compressive loads while comparing numerical results obtained in the Finite Element Method software (FEM) ANSYS workbench and ANSYS Mechanical APDL (ANSYS Parametric Design Language). The numerical model is built on AUTODESK INVENTOR, being imported into ANSYS and solved by the Newton-Raphson iterative method. The most similar conditions were used in ANSYS mechanical and ANSYS workbench, as possible. The obtained numerical results and the differences between the two programs are presented and discussed
NASA Astrophysics Data System (ADS)
Chu, J.; Ha, K.; Hameed, S. N.
2011-12-01
We advance the hypothesis that regional characteristics of the East Asian Summer Monsoon (EASM) result from the presence of non-linear coupled features that modulate the seasonal circulation and rainfall at the intraseasonal timescale. To examine this hypothesis, we undertake the analysis of daily EASM variability using a non-linear multivariate data classifying algorithm known as Self Organizing Maps (SOM). SOM is used to locate archetypal circulation states present in a circulation state vector composed of important indices representing subtropical high pressure regions, the lower and upper level wind vectors and vertical and horizontal shear. These so-called nodes on the SOM identify prominent modes of temporal variations across the region Based on an analysis of the various SOM nodes, we identify 4 major intraseasonal phases of the EASM that are located at the far corners of the SOM. The first node describes a circulation state corresponding to weak tropical and subtropical pressure systems, weakened monsoonal winds, and cyclonic upper level vorticity. This mode that is related with large rainfall anomalies in South East China and Southern Japan occurs a few weeks prior to the onset of Changma rains in Korea. Based on its various characteristics, we identify it is as the Meiyu-Baiu phase. At the diagonally opposite corner from the node representing the Meiyu-Baiu phase, the circulation vector is its mirror image. Copious rains occur over Korea during this phase, which we term the post-Changma phase. The third node selected for this analysis represents the Changma-proper over Korea and occurs with a distinct circulation state corresponding to strengthened subtropical high, monsoonal winds and anticyclonic upper level vorticity to the southeast of Korea. The fourth node is diagonally opposite to this one and features a mirror image of the circulation vector. As Korea experiences a dry-spell associated with this SOM node, we refer to it as the dry-spell phase. We further demonstrate that a strong modulation of the Changma and dry-spell phases on the interannual timescales occurs during El Nino and La Nina years. Our results imply that the key to the predictability of the EASM on interannual timescales may lie with the analysis and exploitation of its non-linear characteristics.
NASA Technical Reports Server (NTRS)
Debussche, A.; Dubois, T.; Temam, R.
1993-01-01
Using results of Direct Numerical Simulation (DNS) in the case of two-dimensional homogeneous isotropic flows, the behavior of the small and large scales of Kolmogorov like flows at moderate Reynolds numbers are first analyzed in detail. Several estimates on the time variations of the small eddies and the nonlinear interaction terms were derived; those terms play the role of the Reynolds stress tensor in the case of LES. Since the time step of a numerical scheme is determined as a function of the energy-containing eddies of the flow, the variations of the small scales and of the nonlinear interaction terms over one iteration can become negligible by comparison with the accuracy of the computation. Based on this remark, a multilevel scheme which treats differently the small and the large eddies was proposed. Using mathematical developments, estimates of all the parameters involved in the algorithm, which then becomes a completely self-adaptive procedure were derived. Finally, realistic simulations of (Kolmorov like) flows over several eddy-turnover times were performed. The results are analyzed in detail and a parametric study of the nonlinear Galerkin method is performed.
Multivariate-$t$ nonlinear mixed models with application to censored multi-outcome AIDS studies.
Lin, Tsung-I; Wang, Wan-Lun
2017-10-01
In multivariate longitudinal HIV/AIDS studies, multi-outcome repeated measures on each patient over time may contain outliers, and the viral loads are often subject to a upper or lower limit of detection depending on the quantification assays. In this article, we consider an extension of the multivariate nonlinear mixed-effects model by adopting a joint multivariate-$t$ distribution for random effects and within-subject errors and taking the censoring information of multiple responses into account. The proposed model is called the multivariate-$t$ nonlinear mixed-effects model with censored responses (MtNLMMC), allowing for analyzing multi-outcome longitudinal data exhibiting nonlinear growth patterns with censorship and fat-tailed behavior. Utilizing the Taylor-series linearization method, a pseudo-data version of expectation conditional maximization either (ECME) algorithm is developed for iteratively carrying out maximum likelihood estimation. We illustrate our techniques with two data examples from HIV/AIDS studies. Experimental results signify that the MtNLMMC performs favorably compared to its Gaussian analogue and some existing approaches. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A Perturbation Analysis of Harmonics Generation from Saturated Elements in Power Systems
NASA Astrophysics Data System (ADS)
Kumano, Teruhisa
Nonlinear phenomena such as saturation in magnetic flux give considerable effects in power system analysis. It is reported that a failure in a real 500kV system triggered islanding operation, where resultant even harmonics caused malfunctions in protective relays. It is also reported that the major origin of this wave distortion is nothing but unidirectional magnetization of the transformer iron core. Time simulation is widely used today to analyze this type of phenomena, but it has basically two shortcomings. One is that the time simulation takes two much computing time in the vicinity of inflection points in the saturation characteristic curve because certain iterative procedure such as N-R (Newton-Raphson) should be used and such methods tend to be caught in an ill conditioned numerical hunting. The other is that such simulation methods sometimes do not help intuitive understanding of the studied phenomenon because the whole nonlinear equations are treated in a matrix form and not properly divided into understandable parts as done in linear systems. This paper proposes a new computation scheme which is based on so called perturbation method. Magnetic saturation in iron cores in a generator and a transformer are taken into account. The proposed method has a special feature against the first shortcoming of the N-R based time simulation method stated above. In the proposed method no iterative process is used to reduce the equation residue but uses perturbation series, which means free from the ill condition problem. Users have only to calculate each perturbation terms one by one until he reaches necessary accuracy. In a numerical example treated in the present paper the first order perturbation can make reasonably high accuracy, which means very fast computing. In numerical study three nonlinear elements are considered. Calculated results are almost identical to the conventional Newton-Raphson based time simulation, which shows the validity of the method. The proposed method would be effectively used in a screening where many case studies are needed.
NASA Astrophysics Data System (ADS)
Ghaderi, A. H.; Darooneh, A. H.
The behavior of nonlinear systems can be analyzed by artificial neural networks. Air temperature change is one example of the nonlinear systems. In this work, a new neural network method is proposed for forecasting maximum air temperature in two cities. In this method, the regular graph concept is used to construct some partially connected neural networks that have regular structures. The learning results of fully connected ANN and networks with proposed method are compared. In some case, the proposed method has the better result than conventional ANN. After specifying the best network, the effect of input pattern numbers on the prediction is studied and the results show that the increase of input patterns has a direct effect on the prediction accuracy.
On the assessment of spatial resolution of PET systems with iterative image reconstruction
NASA Astrophysics Data System (ADS)
Gong, Kuang; Cherry, Simon R.; Qi, Jinyi
2016-03-01
Spatial resolution is an important metric for performance characterization in PET systems. Measuring spatial resolution is straightforward with a linear reconstruction algorithm, such as filtered backprojection, and can be performed by reconstructing a point source scan and calculating the full-width-at-half-maximum (FWHM) along the principal directions. With the widespread adoption of iterative reconstruction methods, it is desirable to quantify the spatial resolution using an iterative reconstruction algorithm. However, the task can be difficult because the reconstruction algorithms are nonlinear and the non-negativity constraint can artificially enhance the apparent spatial resolution if a point source image is reconstructed without any background. Thus, it was recommended that a background should be added to the point source data before reconstruction for resolution measurement. However, there has been no detailed study on the effect of the point source contrast on the measured spatial resolution. Here we use point source scans from a preclinical PET scanner to investigate the relationship between measured spatial resolution and the point source contrast. We also evaluate whether the reconstruction of an isolated point source is predictive of the ability of the system to resolve two adjacent point sources. Our results indicate that when the point source contrast is below a certain threshold, the measured FWHM remains stable. Once the contrast is above the threshold, the measured FWHM monotonically decreases with increasing point source contrast. In addition, the measured FWHM also monotonically decreases with iteration number for maximum likelihood estimate. Therefore, when measuring system resolution with an iterative reconstruction algorithm, we recommend using a low-contrast point source and a fixed number of iterations.
Dynamic probability of reinforcement for cooperation: Random game termination in the centipede game.
Krockow, Eva M; Colman, Andrew M; Pulford, Briony D
2018-03-01
Experimental games have previously been used to study principles of human interaction. Many such games are characterized by iterated or repeated designs that model dynamic relationships, including reciprocal cooperation. To enable the study of infinite game repetitions and to avoid endgame effects of lower cooperation toward the final game round, investigators have introduced random termination rules. This study extends previous research that has focused narrowly on repeated Prisoner's Dilemma games by conducting a controlled experiment of two-player, random termination Centipede games involving probabilistic reinforcement and characterized by the longest decision sequences reported in the empirical literature to date (24 decision nodes). Specifically, we assessed mean exit points and cooperation rates, and compared the effects of four different termination rules: no random game termination, random game termination with constant termination probability, random game termination with increasing termination probability, and random game termination with decreasing termination probability. We found that although mean exit points were lower for games with shorter expected game lengths, the subjects' cooperativeness was significantly reduced only in the most extreme condition with decreasing computer termination probability and an expected game length of two decision nodes. © 2018 Society for the Experimental Analysis of Behavior.
Metric Ranking of Invariant Networks with Belief Propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Changxia; Ge, Yong; Song, Qinbao
The management of large-scale distributed information systems relies on the effective use and modeling of monitoring data collected at various points in the distributed information systems. A promising approach is to discover invariant relationships among the monitoring data and generate invariant networks, where a node is a monitoring data source (metric) and a link indicates an invariant relationship between two monitoring data. Such an invariant network representation can help system experts to localize and diagnose the system faults by examining those broken invariant relationships and their related metrics, because system faults usually propagate among the monitoring data and eventually leadmore » to some broken invariant relationships. However, at one time, there are usually a lot of broken links (invariant relationships) within an invariant network. Without proper guidance, it is difficult for system experts to manually inspect this large number of broken links. Thus, a critical challenge is how to effectively and efficiently rank metrics (nodes) of invariant networks according to the anomaly levels of metrics. The ranked list of metrics will provide system experts with useful guidance for them to localize and diagnose the system faults. To this end, we propose to model the nodes and the broken links as a Markov Random Field (MRF), and develop an iteration algorithm to infer the anomaly of each node based on belief propagation (BP). Finally, we validate the proposed algorithm on both realworld and synthetic data sets to illustrate its effectiveness.« less
The Life-Changing Magic of Nonlinearity in Network Control
NASA Astrophysics Data System (ADS)
Cornelius, Sean
The proper functioning and reliability of many man-made and natural systems is fundamentally tied to our ability to control them. Indeed, applications as diverse as ecosystem management, emergency response and cell reprogramming all, at their heart, require us to drive a system to--or keep it in--a desired state. This process is complicated by the nonlinear dynamics inherent to most real systems, which has traditionally been viewed as the principle obstacle to their control. In this talk, I will discuss two ways in which nonlinearity turns this view on its head, in fact representing an asset to the control of complex systems. First, I will show how nonlinearity in the form of multistability allows one to systematically design control interventions that can deliberately induce ``reverse cascading failures'', in which a network spontaneously evolves to a desirable (rather than a failed) state. Second, I will show that nonlinearity in the form of time-varying dynamics unexpectedly makes temporal networks easier to control than their static counterparts, with the former enjoying dramatic and simultaneous reductions in all costs of control. This is true despite the fact that temporality tends to fragment a network's structure, disrupting the paths that allow the directly-controlled or ``driver'' nodes to communicate with the rest of the network. Taken together, these studies shed new light on the crucial role of nonlinearity in network control, and provide support to the idea we can control nonlinearity, rather than letting nonlinearity control us.
Non-linear isotope and fast ions effects: routes for low turbulence in DT plasmas
NASA Astrophysics Data System (ADS)
Garcia, Jeronimo
2017-10-01
The isotope effect, i.e. the fact that heat and particle fluxes do not follow the expected Gyro-Bohm estimate for turbulent transport when the plasma mass is changed, is one of the main challenges in plasma theory. Of particular interest is the isotope exchange between the fusion of deuterium (DD) and deuterium-tritium (DT) nuclei as there are no clear indications of what kind of transport difference can be expected in burning plasmas. The GENE code is therefore used for computing DD vs DT linear and nonlinear microturbulence characteristics in the core plasma region of a previously ITER hybrid scenario at high beta obtained in the framework of simplified integrated modelling. Scans on common turbulence related quantitates as external ExB flow shear, Parallel Velocity Gradient (PVG), plasma beta, colisionality or the number of ion species have been performed. Additionally, the role of energetic particles, known to reduce Ion Temperature Gradient (ITG) turbulence has been also addressed. It is obtained that the ITER operational point will be close to threshold and in these conditions turbulence is dominated by ITG modes. A purely weak non-linear isotope effect, absent in linear scans, can be found when separately adding moderate ExB flow shear or electromagnetic effects, whereas collisionality just modulates the intensity. The isotope effect, on the other hand, becomes very strong in conditions with simultaneously moderate ExB flow shear, beta and low q profile with significant reductions of ion heat transport from DD to DT. By analyzing the radial structure of the two point electrostatic potential correlation function it has been found that the inherent Gyro-Bohm scaling for plasma microturbulence, which increases the radial correlation length at short scales form DD to DT, is counteracted by the concomitant appearance of a complex nonlinear multiscale space interaction involving external ExB flow shear, zonal flow activity, magnetic geometry and electromagnetic effects. The number of ion species and the fast ion population is also found to play a role in this non-linear process whereas a symmetry breaking between D and T, with systematic reduced heat and particle transport for T, is always obtained.
PID-based error signal modeling
NASA Astrophysics Data System (ADS)
Yohannes, Tesfay
1997-10-01
This paper introduces a PID based signal error modeling. The error modeling is based on the betterment process. The resulting iterative learning algorithm is introduced and a detailed proof is provided for both linear and nonlinear systems.
Noise removal in extended depth of field microscope images through nonlinear signal processing.
Zahreddine, Ramzi N; Cormack, Robert H; Cogswell, Carol J
2013-04-01
Extended depth of field (EDF) microscopy, achieved through computational optics, allows for real-time 3D imaging of live cell dynamics. EDF is achieved through a combination of point spread function engineering and digital image processing. A linear Wiener filter has been conventionally used to deconvolve the image, but it suffers from high frequency noise amplification and processing artifacts. A nonlinear processing scheme is proposed which extends the depth of field while minimizing background noise. The nonlinear filter is generated via a training algorithm and an iterative optimizer. Biological microscope images processed with the nonlinear filter show a significant improvement in image quality and signal-to-noise ratio over the conventional linear filter.
Using missing ordinal patterns to detect nonlinearity in time series data.
Kulp, Christopher W; Zunino, Luciano; Osborne, Thomas; Zawadzki, Brianna
2017-08-01
The number of missing ordinal patterns (NMP) is the number of ordinal patterns that do not appear in a series after it has been symbolized using the Bandt and Pompe methodology. In this paper, the NMP is demonstrated as a test for nonlinearity using a surrogate framework in order to see if the NMP for a series is statistically different from the NMP of iterative amplitude adjusted Fourier transform (IAAFT) surrogates. It is found that the NMP works well as a test statistic for nonlinearity, even in the cases of very short time series. Both model and experimental time series are used to demonstrate the efficacy of the NMP as a test for nonlinearity.
Blade loss transient dynamics analysis, volume 1. Task 2: TETRA 2 theoretical development
NASA Technical Reports Server (NTRS)
Gallardo, Vincente C.; Black, Gerald
1986-01-01
The theoretical development of the forced steady state analysis of the structural dynamic response of a turbine engine having nonlinear connecting elements is discussed. Based on modal synthesis, and the principle of harmonic balance, the governing relations are the compatibility of displacements at the nonlinear connecting elements. There are four displacement compatibility equations at each nonlinear connection, which are solved by iteration for the principle harmonic of the excitation frequency. The resulting computer program, TETRA 2, combines the original TETRA transient analysis (with flexible bladed disk) with the steady state capability. A more versatile nonlinear rub or bearing element which contains a hardening (or softening) spring, with or without deadband, is also incorporated.
A Two-Timescale Discretization Scheme for Collocation
NASA Technical Reports Server (NTRS)
Desai, Prasun; Conway, Bruce A.
2004-01-01
The development of a two-timescale discretization scheme for collocation is presented. This scheme allows a larger discretization to be utilized for smoothly varying state variables and a second finer discretization to be utilized for state variables having higher frequency dynamics. As such. the discretization scheme can be tailored to the dynamics of the particular state variables. In so doing. the size of the overall Nonlinear Programming (NLP) problem can be reduced significantly. Two two-timescale discretization architecture schemes are described. Comparison of results between the two-timescale method and conventional collocation show very good agreement. Differences of less than 0.5 percent are observed. Consequently. a significant reduction (by two-thirds) in the number of NLP parameters and iterations required for convergence can be achieved without sacrificing solution accuracy.
Anderson acceleration and application to the three-temperature energy equations
NASA Astrophysics Data System (ADS)
An, Hengbin; Jia, Xiaowei; Walker, Homer F.
2017-10-01
The Anderson acceleration method is an algorithm for accelerating the convergence of fixed-point iterations, including the Picard method. Anderson acceleration was first proposed in 1965 and, for some years, has been used successfully to accelerate the convergence of self-consistent field iterations in electronic-structure computations. Recently, the method has attracted growing attention in other application areas and among numerical analysts. Compared with a Newton-like method, an advantage of Anderson acceleration is that there is no need to form the Jacobian matrix. Thus the method is easy to implement. In this paper, an Anderson-accelerated Picard method is employed to solve the three-temperature energy equations, which are a type of strong nonlinear radiation-diffusion equations. Two strategies are used to improve the robustness of the Anderson acceleration method. One strategy is to adjust the iterates when necessary to satisfy the physical constraint. Another strategy is to monitor and, if necessary, reduce the matrix condition number of the least-squares problem in the Anderson-acceleration implementation so that numerical stability can be guaranteed. Numerical results show that the Anderson-accelerated Picard method can solve the three-temperature energy equations efficiently. Compared with the Picard method without acceleration, Anderson acceleration can reduce the number of iterations by at least half. A comparison between a Jacobian-free Newton-Krylov method, the Picard method, and the Anderson-accelerated Picard method is conducted in this paper.
NASA Technical Reports Server (NTRS)
Rizk, Magdi H.
1988-01-01
A scheme is developed for solving constrained optimization problems in which the objective function and the constraint function are dependent on the solution of the nonlinear flow equations. The scheme updates the design parameter iterative solutions and the flow variable iterative solutions simultaneously. It is applied to an advanced propeller design problem with the Euler equations used as the flow governing equations. The scheme's accuracy, efficiency and sensitivity to the computational parameters are tested.
Shi, Junwei; Liu, Fei; Zhang, Guanglei; Luo, Jianwen; Bai, Jing
2014-04-01
Owing to the high degree of scattering of light through tissues, the ill-posedness of fluorescence molecular tomography (FMT) inverse problem causes relatively low spatial resolution in the reconstruction results. Unlike L2 regularization, L1 regularization can preserve the details and reduce the noise effectively. Reconstruction is obtained through a restarted L1 regularization-based nonlinear conjugate gradient (re-L1-NCG) algorithm, which has been proven to be able to increase the computational speed with low memory consumption. The algorithm consists of inner and outer iterations. In the inner iteration, L1-NCG is used to obtain the L1-regularized results. In the outer iteration, the restarted strategy is used to increase the convergence speed of L1-NCG. To demonstrate the performance of re-L1-NCG in terms of spatial resolution, simulation and physical phantom studies with fluorescent targets located with different edge-to-edge distances were carried out. The reconstruction results show that the re-L1-NCG algorithm has the ability to resolve targets with an edge-to-edge distance of 0.1 cm at a depth of 1.5 cm, which is a significant improvement for FMT.
NASA Astrophysics Data System (ADS)
Yeckel, Andrew; Lun, Lisa; Derby, Jeffrey J.
2009-12-01
A new, approximate block Newton (ABN) method is derived and tested for the coupled solution of nonlinear models, each of which is treated as a modular, black box. Such an approach is motivated by a desire to maintain software flexibility without sacrificing solution efficiency or robustness. Though block Newton methods of similar type have been proposed and studied, we present a unique derivation and use it to sort out some of the more confusing points in the literature. In particular, we show that our ABN method behaves like a Newton iteration preconditioned by an inexact Newton solver derived from subproblem Jacobians. The method is demonstrated on several conjugate heat transfer problems modeled after melt crystal growth processes. These problems are represented by partitioned spatial regions, each modeled by independent heat transfer codes and linked by temperature and flux matching conditions at the boundaries common to the partitions. Whereas a typical block Gauss-Seidel iteration fails about half the time for the model problem, quadratic convergence is achieved by the ABN method under all conditions studied here. Additional performance advantages over existing methods are demonstrated and discussed.
Multilevel Iterative Methods in Nonlinear Computational Plasma Physics
NASA Astrophysics Data System (ADS)
Knoll, D. A.; Finn, J. M.
1997-11-01
Many applications in computational plasma physics involve the implicit numerical solution of coupled systems of nonlinear partial differential equations or integro-differential equations. Such problems arise in MHD, systems of Vlasov-Fokker-Planck equations, edge plasma fluid equations. We have been developing matrix-free Newton-Krylov algorithms for such problems and have applied these algorithms to the edge plasma fluid equations [1,2] and to the Vlasov-Fokker-Planck equation [3]. Recently we have found that with increasing grid refinement, the number of Krylov iterations required per Newton iteration has grown unmanageable [4]. This has led us to the study of multigrid methods as a means of preconditioning matrix-free Newton-Krylov methods. In this poster we will give details of the general multigrid preconditioned Newton-Krylov algorithm, as well as algorithm performance details on problems of interest in the areas of magnetohydrodynamics and edge plasma physics. Work supported by US DoE 1. Knoll and McHugh, J. Comput. Phys., 116, pg. 281 (1995) 2. Knoll and McHugh, Comput. Phys. Comm., 88, pg. 141 (1995) 3. Mousseau and Knoll, J. Comput. Phys. (1997) (to appear) 4. Knoll and McHugh, SIAM J. Sci. Comput. 19, (1998) (to appear)
NASA Technical Reports Server (NTRS)
Wolpert, David H. (Inventor)
2003-01-01
Distributed approach for determining a path connecting adjacent network nodes, for probabilistically or deterministically transporting an entity, with entity characteristic mu from a source node to a destination node. Each node i is directly connected to an arbitrary number J(mu) of nodes, labeled or numbered j=jl, j2, .... jJ(mu). In a deterministic version, a J(mu)-component baseline proportion vector p(i;mu) is associated with node i. A J(mu)-component applied proportion vector p*(i;mu) is determined from p(i;mu) to preclude an entity visiting a node more than once. Third and fourth J(mu)-component vectors, with components iteratively determined by Target(i;n(mu);mu),=alpha(mu).Target(i;n(mu)-1;mu)j+beta(mu).p* (i;mu)j and Actual(i;n(mu);+a(mu)j. Actual(i;n(mu)-l;mu)j+beta(mu).Sent(i;j'(mu);n(mu)-1;mu)j, are computed, where n(mu) is an entity sequence index and alpha(mu) and beta(mu) are selected numbers. In one embodiment, at each node i, the node j=j'(mu) with the largest vector component difference, Target(i;n(mu);mu)j'- Actual (i;n(mu);mu)j'. is chosen for the next link for entity transport, except in special gap circumstances, where the same link is optionally used for transporting consecutively arriving entities. The network nodes may be computer-controlled routers that switch collections of packets, frames, cells or other information units. Alternatively, the nodes may be waypoints for movement of physical items in a network or for transformation of a physical item. The nodes may be states of an entity undergoing state transitions, where allowed transitions are specified by the network and/or the destination node.
A finite element solver for 3-D compressible viscous flows
NASA Technical Reports Server (NTRS)
Reddy, K. C.; Reddy, J. N.; Nayani, S.
1990-01-01
Computation of the flow field inside a space shuttle main engine (SSME) requires the application of state of the art computational fluid dynamic (CFD) technology. Several computer codes are under development to solve 3-D flow through the hot gas manifold. Some algorithms were designed to solve the unsteady compressible Navier-Stokes equations, either by implicit or explicit factorization methods, using several hundred or thousands of time steps to reach a steady state solution. A new iterative algorithm is being developed for the solution of the implicit finite element equations without assembling global matrices. It is an efficient iteration scheme based on a modified nonlinear Gauss-Seidel iteration with symmetric sweeps. The algorithm is analyzed for a model equation and is shown to be unconditionally stable. Results from a series of test problems are presented. The finite element code was tested for couette flow, which is flow under a pressure gradient between two parallel plates in relative motion. Another problem that was solved is viscous laminar flow over a flat plate. The general 3-D finite element code was used to compute the flow in an axisymmetric turnaround duct at low Mach numbers.
Shattered Pellet Injection Simulations With NIMROD
NASA Astrophysics Data System (ADS)
Kim, Charlson; Parks, Paul; Lao, Lang; Lehnan, Michael; Loarte, Alberto; Izzo, Valerie; Nimrod Team
2017-10-01
Shattered Pellet Injection (SPI) will be the Disruption Mitigation System in ITER. SPI propels a cryo-pellet of high-Z and deuterium into a sharp bend of the flight tube, shattering the pellet into a plume of shards. These shards are injected into the plasma to quench it and mitigate forces and heat loads that may damage in-vessel components. We use NIMROD to perform 3-D nonlinear MHD simulations of SPI to study the thermal quench. This work builds upon prior Massive Gas Injection (MGI) studies by Izzo. A Particle-in-Cell (PIC) model is implemented to mimic the shards, providing a discrete moving source. Observations indicate that the quench proceeds in two phases. Initially, the outer plasma is shed via interchange-like instabilities while preserving the core temperature. This results in a steep gradient and triggers the second phase, an external kink-like event that collapses the core. We report on the radiation efficiency and toroidal peaking as well as fueling efficiency and other metrics that assess the efficacy of the SPI system. Work supported by GA ITER Contract ITER/CT/14/4300001108 and US DOE DE-FG02-95ER54309.
Hierarchically partitioned nonlinear equation solvers
NASA Technical Reports Server (NTRS)
Padovan, Joseph
1987-01-01
By partitioning solution space into a number of subspaces, a new multiply constrained partitioned Newton-Raphson nonlinear equation solver is developed. Specifically, for a given iteration, each of the various separate partitions are individually and simultaneously controlled. Due to the generality of the scheme, a hierarchy of partition levels can be employed. For finite-element-type applications, this includes the possibility of degree-of-freedom, nodal, elemental, geometric substructural, material and kinematically nonlinear group controls. It is noted that such partitioning can be continuously updated, depending on solution conditioning. In this context, convergence is ascertained at the individual partition level.
Prediction and control of chaotic processes using nonlinear adaptive networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, R.D.; Barnes, C.W.; Flake, G.W.
1990-01-01
We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We then present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series, tidal prediction in Venice lagoon, finite differencing, sonar transient detection, control of nonlinear processes, control of a negative ion source, balancing a double inverted pendulum and design advice for free electron lasers and laser fusion targets.
NASA Astrophysics Data System (ADS)
Chen, Bochao; Gao, Yixian; Jiang, Shan; Li, Yong
2018-06-01
The goal of this work is to study the existence of quasi-periodic solutions to nonlinear beam equations with a multiplicative potential. The nonlinearity is required to only finitely differentiable and the frequency is along a pre-assigned direction. The result holds on any compact Lie group or homogeneous manifold with respect to a compact Lie group, which includes standard torus Td, special orthogonal group SO (d), special unitary group SU (d), spheres Sd and the real and complex Grassmannians. The proof is based on a differentiable Nash-Moser iteration scheme.
Optimization design of LED heat dissipation structure based on strip fins
NASA Astrophysics Data System (ADS)
Xue, Lingyun; Wan, Wenbin; Chen, Qingguang; Rao, Huanle; Xu, Ping
2018-03-01
To solve the heat dissipation problem of LED, a radiator structure based on strip fins is designed and the method to optimize the structure parameters of strip fins is proposed in this paper. The combination of RBF neural networks and particle swarm optimization (PSO) algorithm is used for modeling and optimization respectively. During the experiment, the 150 datasets of LED junction temperature when structure parameters of number of strip fins, length, width and height of the fins have different values are obtained by ANSYS software. Then RBF neural network is applied to build the non-linear regression model and the parameters optimization of structure based on particle swarm optimization algorithm is performed with this model. The experimental results show that the lowest LED junction temperature reaches 43.88 degrees when the number of hidden layer nodes in RBF neural network is 10, the two learning factors in particle swarm optimization algorithm are 0.5, 0.5 respectively, the inertia factor is 1 and the maximum number of iterations is 100, and now the number of fins is 64, the distribution structure is 8*8, and the length, width and height of fins are 4.3mm, 4.48mm and 55.3mm respectively. To compare the modeling and optimization results, LED junction temperature at the optimized structure parameters was simulated and the result is 43.592°C which approximately equals to the optimal result. Compared with the ordinary plate-fin-type radiator structure whose temperature is 56.38°C, the structure greatly enhances heat dissipation performance of the structure.
A family of conjugate gradient methods for large-scale nonlinear equations.
Feng, Dexiang; Sun, Min; Wang, Xueyong
2017-01-01
In this paper, we present a family of conjugate gradient projection methods for solving large-scale nonlinear equations. At each iteration, it needs low storage and the subproblem can be easily solved. Compared with the existing solution methods for solving the problem, its global convergence is established without the restriction of the Lipschitz continuity on the underlying mapping. Preliminary numerical results are reported to show the efficiency of the proposed method.
Methods for Large-Scale Nonlinear Optimization.
1980-05-01
STANFORD, CALIFORNIA 94305 METHODS FOR LARGE-SCALE NONLINEAR OPTIMIZATION by Philip E. Gill, Waiter Murray, I Michael A. Saunden, and Masgaret H. Wright...typical iteration can be partitioned so that where B is an m X m basise matrix. This partition effectively divides the vari- ables into three classes... attention is given to the standard of the coding or the documentation. A much better way of obtaining mathematical software is from a software library
A comparison of multiprocessor scheduling methods for iterative data flow architectures
NASA Technical Reports Server (NTRS)
Storch, Matthew
1993-01-01
A comparative study is made between the Algorithm to Architecture Mapping Model (ATAMM) and three other related multiprocessing models from the published literature. The primary focus of all four models is the non-preemptive scheduling of large-grain iterative data flow graphs as required in real-time systems, control applications, signal processing, and pipelined computations. Important characteristics of the models such as injection control, dynamic assignment, multiple node instantiations, static optimum unfolding, range-chart guided scheduling, and mathematical optimization are identified. The models from the literature are compared with the ATAMM for performance, scheduling methods, memory requirements, and complexity of scheduling and design procedures.
Standardization of a Hierarchical Transactive Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammerstrom, Donald J.; Oliver, Terry V.; Melton, Ronald B.
2010-12-03
The authors describe work they have conducted toward the generalization and standardization of the transactive control approach that was first demonstrated in the Olympic Peninsula Project for the management of a transmission constraint. The newly generalized approach addresses several potential shortfalls of the prior approach: First, the authors have formalized a hierarchical node structure which defines the nodes and the functional signal pathways between these nodes. Second, by fully generalizing the inputs, outputs, and functional responsibilities of each node, the authors make the approach available to a much wider set of responsive assets and operational objectives. Third, the new, generalizedmore » approach defines transactive signals that include the predicted day-ahead future. This predictive feature allows the market-like bids and offers to become resolved iteratively over time, thus allowing the behaviors of responsive assets to be called upon both for the present and as future dispatch decisions are being made. The hierarchical transactive control approach is a key feature of a proposed Pacific Northwest smart grid demonstration.« less
Data Assimilation on a Quantum Annealing Computer: Feasibility and Scalability
NASA Astrophysics Data System (ADS)
Nearing, G. S.; Halem, M.; Chapman, D. R.; Pelissier, C. S.
2014-12-01
Data assimilation is one of the ubiquitous and computationally hard problems in the Earth Sciences. In particular, ensemble-based methods require a large number of model evaluations to estimate the prior probability density over system states, and variational methods require adjoint calculations and iteration to locate the maximum a posteriori solution in the presence of nonlinear models and observation operators. Quantum annealing computers (QAC) like the new D-Wave housed at the NASA Ames Research Center can be used for optimization and sampling, and therefore offers a new possibility for efficiently solving hard data assimilation problems. Coding on the QAC is not straightforward: a problem must be posed as a Quadratic Unconstrained Binary Optimization (QUBO) and mapped to a spherical Chimera graph. We have developed a method for compiling nonlinear 4D-Var problems on the D-Wave that consists of five steps: Emulating the nonlinear model and/or observation function using radial basis functions (RBF) or Chebyshev polynomials. Truncating a Taylor series around each RBF kernel. Reducing the Taylor polynomial to a quadratic using ancilla gadgets. Mapping the real-valued quadratic to a fixed-precision binary quadratic. Mapping the fully coupled binary quadratic to a partially coupled spherical Chimera graph using ancilla gadgets. At present the D-Wave contains 512 qbits (with 1024 and 2048 qbit machines due in the next two years); this machine size allows us to estimate only 3 state variables at each satellite overpass. However, QAC's solve optimization problems using a physical (quantum) system, and therefore do not require iterations or calculation of model adjoints. This has the potential to revolutionize our ability to efficiently perform variational data assimilation, as the size of these computers grows in the coming years.
Redundant Design in Interdependent Networks
2016-01-01
Modern infrastructure networks are often coupled together and thus could be modeled as interdependent networks. Overload and interdependent effect make interdependent networks more fragile when suffering from attacks. Existing research has primarily concentrated on the cascading failure process of interdependent networks without load, or the robustness of isolated network with load. Only limited research has been done on the cascading failure process caused by overload in interdependent networks. Redundant design is a primary approach to enhance the reliability and robustness of the system. In this paper, we propose two redundant methods, node back-up and dependency redundancy, and the experiment results indicate that two measures are effective and costless. Two detailed models about redundant design are introduced based on the non-linear load-capacity model. Based on the attributes and historical failure distribution of nodes, we introduce three static selecting strategies-Random-based, Degree-based, Initial load-based and a dynamic strategy-HFD (historical failure distribution) to identify which nodes could have a back-up with priority. In addition, we consider the cost and efficiency of different redundant proportions to determine the best proportion with maximal enhancement and minimal cost. Experiments on interdependent networks demonstrate that the combination of HFD and dependency redundancy is an effective and preferred measure to implement redundant design on interdependent networks. The results suggest that the redundant design proposed in this paper can permit construction of highly robust interactive networked systems. PMID:27764174
Online Exhibits & Concept Maps
NASA Astrophysics Data System (ADS)
Douma, M.
2009-12-01
Presenting the complexity of geosciences to the public via the Internet poses a number of challenges. For example, utilizing various - and sometimes redundant - Web 2.0 tools can quickly devour limited time. Do you tweet? Do you write press releases? Do you create an exhibit or concept map? The presentation will provide participants with a context for utilizing Web 2.0 tools by briefly highlighting methods of online scientific communication across several dimensions. It will address issues of: * breadth and depth (e.g. from narrow topics to well-rounded views), * presentation methods (e.g. from text to multimedia, from momentary to enduring), * sources and audiences (e.g. for experts or for the public, content developed by producers to that developed by users), * content display (e.g. from linear to non-linear, from instructive to entertaining), * barriers to entry (e.g. from an incumbent advantage to neophyte accessible, from amateur to professional), * cost and reach (e.g. from cheap to expensive), and * impact (e.g. the amount learned, from anonymity to brand awareness). Against this backdrop, the presentation will provide an overview of two methods of online information dissemination, exhibits and concept maps, using the WebExhibits online museum (www.webexhibits.org) and SpicyNodes information visualization tool (www.spicynodes.org) as examples, with tips on how geoscientists can use either to communicate their science. Richly interactive online exhibits can serve to engage a large audience, appeal to visitors with multiple learning styles, prompt exploration and discovery, and present a topic’s breadth and depth. WebExhibits, which was among the first online museums, delivers interactive information, virtual experiments, and hands-on activities to the public. While large, multidisciplinary exhibits on topics like “Color Vision and Art” or “Calendars Through the Ages” require teams of scholars, user interface experts, professional writers and editors, teachers, artists, and web designers, a smaller scale collaborative effort can result in an effective mini-exhibit. Online concept maps can present a large quantity of information in bite-size chunks, demonstrating interrelationships between pieces of information without inundating visitors. SpicyNodes uses radial mapping technology to enable visitors to learn about a topic or search for information in intuitive and organic ways. This online concept mapping tool can be used as a portal to invite exploration into topics, or as a means of displaying hierarchies of information. With nodes that contain text, audio, video, and links, interactive online concept maps especially engage visual, kinesthetic, and nonlinear learners. SpicyNodes is also useful for scientists who wish to complement papers, chapters, and books with an online interface that is especially appealing to nonlinear learners. Essentially, SpicyNodes shifts the burden of discovery from the reader to the author. For example, the author may create a nodemap on climate change with hundreds of nodes, but as visitors drill through the nodemap for information (e.g. from climate change to atmospheric gases to carbon dioxide), they see only a few nodes at a time and are not overwhelmed.
Derivative free Davidon-Fletcher-Powell (DFP) for solving symmetric systems of nonlinear equations
NASA Astrophysics Data System (ADS)
Mamat, M.; Dauda, M. K.; Mohamed, M. A. bin; Waziri, M. Y.; Mohamad, F. S.; Abdullah, H.
2018-03-01
Research from the work of engineers, economist, modelling, industry, computing, and scientist are mostly nonlinear equations in nature. Numerical solution to such systems is widely applied in those areas of mathematics. Over the years, there has been significant theoretical study to develop methods for solving such systems, despite these efforts, unfortunately the methods developed do have deficiency. In a contribution to solve systems of the form F(x) = 0, x ∈ Rn , a derivative free method via the classical Davidon-Fletcher-Powell (DFP) update is presented. This is achieved by simply approximating the inverse Hessian matrix with {Q}k+1-1 to θkI. The modified method satisfied the descent condition and possess local superlinear convergence properties. Interestingly, without computing any derivative, the proposed method never fail to converge throughout the numerical experiments. The output is based on number of iterations and CPU time, different initial starting points were used on a solve 40 benchmark test problems. With the aid of the squared norm merit function and derivative-free line search technique, the approach yield a method of solving symmetric systems of nonlinear equations that is capable of significantly reducing the CPU time and number of iteration, as compared to its counterparts. A comparison between the proposed method and classical DFP update were made and found that the proposed methodis the top performer and outperformed the existing method in almost all the cases. In terms of number of iterations, out of the 40 problems solved, the proposed method solved 38 successfully, (95%) while classical DFP solved 2 problems (i.e. 05%). In terms of CPU time, the proposed method solved 29 out of the 40 problems given, (i.e.72.5%) successfully whereas classical DFP solves 11 (27.5%). The method is valid in terms of derivation, reliable in terms of number of iterations and accurate in terms of CPU time. Thus, suitable and achived the objective.
Complex Dynamical Networks Constructed with Fully Controllable Nonlinear Nanomechanical Oscillators.
Fon, Warren; Matheny, Matthew H; Li, Jarvis; Krayzman, Lev; Cross, Michael C; D'Souza, Raissa M; Crutchfield, James P; Roukes, Michael L
2017-10-11
Control of the global parameters of complex networks has been explored experimentally in a variety of contexts. Yet, the more difficult prospect of realizing arbitrary network architectures, especially analog physical networks that provide dynamical control of individual nodes and edges, has remained elusive. Given the vast hierarchy of time scales involved, it also proves challenging to measure a complex network's full internal dynamics. These span from the fastest nodal dynamics to very slow epochs over which emergent global phenomena, including network synchronization and the manifestation of exotic steady states, eventually emerge. Here, we demonstrate an experimental system that satisfies these requirements. It is based upon modular, fully controllable, nonlinear radio frequency nanomechanical oscillators, designed to form the nodes of complex dynamical networks with edges of arbitrary topology. The dynamics of these oscillators and their surrounding network are analog and continuous-valued and can be fully interrogated in real time. They comprise a piezoelectric nanomechanical membrane resonator, which serves as the frequency-determining element within an electrical feedback circuit. This embodiment permits network interconnections entirely within the electrical domain and provides unprecedented node and edge control over a vast region of parameter space. Continuous measurement of the instantaneous amplitudes and phases of every constituent oscillator node are enabled, yielding full and detailed network data without reliance upon statistical quantities. We demonstrate the operation of this platform through the real-time capture of the dynamics of a three-node ring network as it evolves from the uncoupled state to full synchronization.
A handheld SPIO-based sentinel lymph node mapping device using differential magnetometry
NASA Astrophysics Data System (ADS)
Waanders, S.; Visscher, M.; Wildeboer, R. R.; Oderkerk, T. O. B.; Krooshoop, H. J. G.; ten Haken, B.
2016-11-01
Sentinel lymph node biopsy has become a staple tool in the diagnosis of breast cancer. By replacing the morbidity-plagued axillary node clearance with removing only those nodes most likely to contain metastases, it has greatly improved the quality of life of many breast cancer patients. However, due to the use of ionizing radiation emitted by the technetium-based tracer material, the current sentinel lymph node biopsy has serious drawbacks. Most urgently, the reliance on radioisotopes limits the application of this procedure to small parts of the developed world, and it imposes restrictions on patient planning and hospital logistics. Magnetic alternatives have been tested in recent years, but all have their own drawbacks, mostly related to interference from metallic instruments and electromagnetic noise coming from the human body. In this paper, we demonstrate an alternative approach that utilizes the unique nonlinear magnetic properties of superparamagnetic iron oxide nanoparticles to eliminate the drawbacks of both the traditional gamma-radiation centered approach and the novel magnetic techniques pioneered by others. Contrary to many other nonlinear magnetic approaches however, field amplitudes are limited to 5 mT, which enables handheld operation without additional cooling. We show that excellent mass sensitivity can be obtained without the need for external re-balancing of the probe to negate any influences from the human body. Additionally, we show how this approach can be used to suppress artefacts resulting from the presence of metallic instruments, which are a significant dealbreaker when using conventional magnetometry-based approaches.
Accelerating Subsurface Transport Simulation on Heterogeneous Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villa, Oreste; Gawande, Nitin A.; Tumeo, Antonino
Reactive transport numerical models simulate chemical and microbiological reactions that occur along a flowpath. These models have to compute reactions for a large number of locations. They solve the set of ordinary differential equations (ODEs) that describes the reaction for each location through the Newton-Raphson technique. This technique involves computing a Jacobian matrix and a residual vector for each set of equation, and then solving iteratively the linearized system by performing Gaussian Elimination and LU decomposition until convergence. STOMP, a well known subsurface flow simulation tool, employs matrices with sizes in the order of 100x100 elements and, for numerical accuracy,more » LU factorization with full pivoting instead of the faster partial pivoting. Modern high performance computing systems are heterogeneous machines whose nodes integrate both CPUs and GPUs, exposing unprecedented amounts of parallelism. To exploit all their computational power, applications must use both the types of processing elements. For the case of subsurface flow simulation, this mainly requires implementing efficient batched LU-based solvers and identifying efficient solutions for enabling load balancing among the different processors of the system. In this paper we discuss two approaches that allows scaling STOMP's performance on heterogeneous clusters. We initially identify the challenges in implementing batched LU-based solvers for small matrices on GPUs, and propose an implementation that fulfills STOMP's requirements. We compare this implementation to other existing solutions. Then, we combine the batched GPU solver with an OpenMP-based CPU solver, and present an adaptive load balancer that dynamically distributes the linear systems to solve between the two components inside a node. We show how these approaches, integrated into the full application, provide speed ups from 6 to 7 times on large problems, executed on up to 16 nodes of a cluster with two AMD Opteron 6272 and a Tesla M2090 per node.« less
Progress in neuromorphic photonics
NASA Astrophysics Data System (ADS)
Ferreira de Lima, Thomas; Shastri, Bhavin J.; Tait, Alexander N.; Nahmias, Mitchell A.; Prucnal, Paul R.
2017-03-01
As society's appetite for information continues to grow, so does our need to process this information with increasing speed and versatility. Many believe that the one-size-fits-all solution of digital electronics is becoming a limiting factor in certain areas such as data links, cognitive radio, and ultrafast control. Analog photonic devices have found relatively simple signal processing niches where electronics can no longer provide sufficient speed and reconfigurability. Recently, the landscape for commercially manufacturable photonic chips has been changing rapidly and now promises to achieve economies of scale previously enjoyed solely by microelectronics. By bridging the mathematical prowess of artificial neural networks to the underlying physics of optoelectronic devices, neuromorphic photonics could breach new domains of information processing demanding significant complexity, low cost, and unmatched speed. In this article, we review the progress in neuromorphic photonics, focusing on photonic integrated devices. The challenges and design rules for optoelectronic instantiation of artificial neurons are presented. The proposed photonic architecture revolves around the processing network node composed of two parts: a nonlinear element and a network interface. We then survey excitable lasers in the recent literature as candidates for the nonlinear node and microring-resonator weight banks as the network interface. Finally, we compare metrics between neuromorphic electronics and neuromorphic photonics and discuss potential applications.
NASA Astrophysics Data System (ADS)
Grosz, F. B., Jr.; Trick, T. N.
1982-07-01
It is proposed that nondominant states should be eliminated from the Newton algorithm in the steady-state analysis of nonlinear oscillatory systems. This technique not only improves convergence, but also reduces the size of the sensitivity matrix so that less computation is required for each iteration. One or more periods of integration should be performed after each periodic state estimation before the sensitivity computations are made for the next periodic state estimation. These extra periods of integration between Newton iterations are found to allow the fast states due to parasitic effects to settle, which enables the Newton algorithm to make a better prediction. In addition, the reliability of the algorithm is improved in high Q oscillator circuits by both local and global damping in which the amount of damping is proportional to the difference between the initial and final state values.
Guided particle swarm optimization method to solve general nonlinear optimization problems
NASA Astrophysics Data System (ADS)
Abdelhalim, Alyaa; Nakata, Kazuhide; El-Alem, Mahmoud; Eltawil, Amr
2018-04-01
The development of hybrid algorithms is becoming an important topic in the global optimization research area. This article proposes a new technique in hybridizing the particle swarm optimization (PSO) algorithm and the Nelder-Mead (NM) simplex search algorithm to solve general nonlinear unconstrained optimization problems. Unlike traditional hybrid methods, the proposed method hybridizes the NM algorithm inside the PSO to improve the velocities and positions of the particles iteratively. The new hybridization considers the PSO algorithm and NM algorithm as one heuristic, not in a sequential or hierarchical manner. The NM algorithm is applied to improve the initial random solution of the PSO algorithm and iteratively in every step to improve the overall performance of the method. The performance of the proposed method was tested over 20 optimization test functions with varying dimensions. Comprehensive comparisons with other methods in the literature indicate that the proposed solution method is promising and competitive.
Hamed, Kaveh Akbari; Gregg, Robert D
2016-07-01
This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially stabilize periodic orbits for a class of hybrid dynamical systems arising from bipedal walking. The algorithm assumes a class of parameterized and nonlinear decentralized feedback controllers which coordinate lower-dimensional hybrid subsystems based on a common phasing variable. The exponential stabilization problem is translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities, which can be easily solved with available software packages. A set of sufficient conditions for the convergence of the iterative algorithm to a stabilizing decentralized feedback control solution is presented. The power of the algorithm is demonstrated by designing a set of local nonlinear controllers that cooperatively produce stable walking for a 3D autonomous biped with 9 degrees of freedom, 3 degrees of underactuation, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg.
Hamed, Kaveh Akbari; Gregg, Robert D
2017-07-01
This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially and robustly stabilize periodic orbits for hybrid dynamical systems against possible uncertainties in discrete-time phases. The algorithm assumes a family of parameterized and decentralized nonlinear controllers to coordinate interconnected hybrid subsystems based on a common phasing variable. The exponential and [Formula: see text] robust stabilization problems of periodic orbits are translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities. By investigating the properties of the Poincaré map, some sufficient conditions for the convergence of the iterative algorithm are presented. The power of the algorithm is finally demonstrated through designing a set of robust stabilizing local nonlinear controllers for walking of an underactuated 3D autonomous bipedal robot with 9 degrees of freedom, impact model uncertainties, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg.
Hamed, Kaveh Akbari; Gregg, Robert D.
2016-01-01
This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially stabilize periodic orbits for a class of hybrid dynamical systems arising from bipedal walking. The algorithm assumes a class of parameterized and nonlinear decentralized feedback controllers which coordinate lower-dimensional hybrid subsystems based on a common phasing variable. The exponential stabilization problem is translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities, which can be easily solved with available software packages. A set of sufficient conditions for the convergence of the iterative algorithm to a stabilizing decentralized feedback control solution is presented. The power of the algorithm is demonstrated by designing a set of local nonlinear controllers that cooperatively produce stable walking for a 3D autonomous biped with 9 degrees of freedom, 3 degrees of underactuation, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg. PMID:27990059
Hamed, Kaveh Akbari; Gregg, Robert D.
2016-01-01
This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially and robustly stabilize periodic orbits for hybrid dynamical systems against possible uncertainties in discrete-time phases. The algorithm assumes a family of parameterized and decentralized nonlinear controllers to coordinate interconnected hybrid subsystems based on a common phasing variable. The exponential and H2 robust stabilization problems of periodic orbits are translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities. By investigating the properties of the Poincaré map, some sufficient conditions for the convergence of the iterative algorithm are presented. The power of the algorithm is finally demonstrated through designing a set of robust stabilizing local nonlinear controllers for walking of an underactuated 3D autonomous bipedal robot with 9 degrees of freedom, impact model uncertainties, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg. PMID:28959117
Visual display aid for orbital maneuvering - Design considerations
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Ellis, Stephen R.
1993-01-01
This paper describes the development of an interactive proximity operations planning system that allows on-site planning of fuel-efficient multiburn maneuvers in a potential multispacecraft environment. Although this display system most directly assists planning by providing visual feedback to aid visualization of the trajectories and constraints, its most significant features include: (1) the use of an 'inverse dynamics' algorithm that removes control nonlinearities facing the operator, and (2) a trajectory planning technique that separates, through a 'geometric spreadsheet', the normally coupled complex problems of planning orbital maneuvers and allows solution by an iterative sequence of simple independent actions. The visual feedback of trajectory shapes and operational constraints, provided by user-transparent and continuously active background computations, allows the operator to make fast, iterative design changes that rapidly converge to fuel-efficient solutions. The planning tool provides an example of operator-assisted optimization of nonlinear cost functions.
A Burning Plasma Experiment: the role of international collaboration
NASA Astrophysics Data System (ADS)
Prager, Stewart
2003-04-01
The world effort to develop fusion energy is at the threshold of a new stage in its research: the investigation of burning plasmas. A burning plasma is self-heated. The 100 million degree temperature of the plasma is maintained by the heat generated by the fusion reactions themselves, as occurs in burning stars. The fusion-generated alpha particles produce new physical phenomena that are strongly coupled together as a nonlinear complex system, posing a major plasma physics challenge. Two attractive options are being considered by the US fusion community as burning plasma facilities: the international ITER experiment and the US-based FIRE experiment. ITER (the International Thermonuclear Experimental Reactor) is a large, power-plant scale facility. It was conceived and designed by a partnership of the European Union, Japan, the Soviet Union, and the United States. At the completion of the first engineering design in 1998, the US discontinued its participation. FIRE (the Fusion Ignition Research Experiment) is a smaller, domestic facility that is at an advanced pre-conceptual design stage. Each facility has different scientific, programmatic and political implications. Selecting the optimal path for burning plasma science is itself a challenge. Recently, the Fusion Energy Sciences Advisory Committee recommended a dual path strategy in which the US seek to rejoin ITER, but be prepared to move forward with FIRE if the ITER negotiations do not reach fruition by July, 2004. Either the ITER or FIRE experiment would reveal the behavior of burning plasmas, generate large amounts of fusion power, and be a huge step in establishing the potential of fusion energy to contribute to the world's energy security.
An efficient method for solving the steady Euler equations
NASA Technical Reports Server (NTRS)
Liou, M. S.
1986-01-01
An efficient numerical procedure for solving a set of nonlinear partial differential equations is given, specifically for the steady Euler equations. Solutions of the equations were obtained by Newton's linearization procedure, commonly used to solve the roots of nonlinear algebraic equations. In application of the same procedure for solving a set of differential equations we give a theorem showing that a quadratic convergence rate can be achieved. While the domain of quadratic convergence depends on the problems studied and is unknown a priori, we show that firstand second-order derivatives of flux vectors determine whether the condition for quadratic convergence is satisfied. The first derivatives enter as an implicit operator for yielding new iterates and the second derivatives indicates smoothness of the flows considered. Consequently flows involving shocks are expected to require larger number of iterations. First-order upwind discretization in conjunction with the Steger-Warming flux-vector splitting is employed on the implicit operator and a diagonal dominant matrix results. However the explicit operator is represented by first- and seond-order upwind differencings, using both Steger-Warming's and van Leer's splittings. We discuss treatment of boundary conditions and solution procedures for solving the resulting block matrix system. With a set of test problems for one- and two-dimensional flows, we show detailed study as to the efficiency, accuracy, and convergence of the present method.
Iterative initial condition reconstruction
NASA Astrophysics Data System (ADS)
Schmittfull, Marcel; Baldauf, Tobias; Zaldarriaga, Matias
2017-07-01
Motivated by recent developments in perturbative calculations of the nonlinear evolution of large-scale structure, we present an iterative algorithm to reconstruct the initial conditions in a given volume starting from the dark matter distribution in real space. In our algorithm, objects are first moved back iteratively along estimated potential gradients, with a progressively reduced smoothing scale, until a nearly uniform catalog is obtained. The linear initial density is then estimated as the divergence of the cumulative displacement, with an optional second-order correction. This algorithm should undo nonlinear effects up to one-loop order, including the higher-order infrared resummation piece. We test the method using dark matter simulations in real space. At redshift z =0 , we find that after eight iterations the reconstructed density is more than 95% correlated with the initial density at k ≤0.35 h Mpc-1 . The reconstruction also reduces the power in the difference between reconstructed and initial fields by more than 2 orders of magnitude at k ≤0.2 h Mpc-1 , and it extends the range of scales where the full broadband shape of the power spectrum matches linear theory by a factor of 2-3. As a specific application, we consider measurements of the baryonic acoustic oscillation (BAO) scale that can be improved by reducing the degradation effects of large-scale flows. In our idealized dark matter simulations, the method improves the BAO signal-to-noise ratio by a factor of 2.7 at z =0 and by a factor of 2.5 at z =0.6 , improving standard BAO reconstruction by 70% at z =0 and 30% at z =0.6 , and matching the optimal BAO signal and signal-to-noise ratio of the linear density in the same volume. For BAO, the iterative nature of the reconstruction is the most important aspect.
Li, Bingyi; Chen, Liang; Yu, Wenyue; Xie, Yizhuang; Bian, Mingming; Zhang, Qingjun; Pang, Long
2018-01-01
With the development of satellite load technology and very large-scale integrated (VLSI) circuit technology, on-board real-time synthetic aperture radar (SAR) imaging systems have facilitated rapid response to disasters. A key goal of the on-board SAR imaging system design is to achieve high real-time processing performance under severe size, weight, and power consumption constraints. This paper presents a multi-node prototype system for real-time SAR imaging processing. We decompose the commonly used chirp scaling (CS) SAR imaging algorithm into two parts according to the computing features. The linearization and logic-memory optimum allocation methods are adopted to realize the nonlinear part in a reconfigurable structure, and the two-part bandwidth balance method is used to realize the linear part. Thus, float-point SAR imaging processing can be integrated into a single Field Programmable Gate Array (FPGA) chip instead of relying on distributed technologies. A single-processing node requires 10.6 s and consumes 17 W to focus on 25-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. The design methodology of the multi-FPGA parallel accelerating system under the real-time principle is introduced. As a proof of concept, a prototype with four processing nodes and one master node is implemented using a Xilinx xc6vlx315t FPGA. The weight and volume of one single machine are 10 kg and 32 cm × 24 cm × 20 cm, respectively, and the power consumption is under 100 W. The real-time performance of the proposed design is demonstrated on Chinese Gaofen-3 stripmap continuous imaging. PMID:29495637
Nonlinear signaling on biological networks: The role of stochasticity and spectral clustering
NASA Astrophysics Data System (ADS)
Hernandez-Hernandez, Gonzalo; Myers, Jesse; Alvarez-Lacalle, Enrique; Shiferaw, Yohannes
2017-03-01
Signal transduction within biological cells is governed by networks of interacting proteins. Communication between these proteins is mediated by signaling molecules which bind to receptors and induce stochastic transitions between different conformational states. Signaling is typically a cooperative process which requires the occurrence of multiple binding events so that reaction rates have a nonlinear dependence on the amount of signaling molecule. It is this nonlinearity that endows biological signaling networks with robust switchlike properties which are critical to their biological function. In this study we investigate how the properties of these signaling systems depend on the network architecture. Our main result is that these nonlinear networks exhibit bistability where the network activity can switch between states that correspond to a low and high activity level. We show that this bistable regime emerges at a critical coupling strength that is determined by the spectral structure of the network. In particular, the set of nodes that correspond to large components of the leading eigenvector of the adjacency matrix determines the onset of bistability. Above this transition the eigenvectors of the adjacency matrix determine a hierarchy of clusters, defined by its spectral properties, which are activated sequentially with increasing network activity. We argue further that the onset of bistability occurs either continuously or discontinuously depending upon whether the leading eigenvector is localized or delocalized. Finally, we show that at low network coupling stochastic transitions to the active branch are also driven by the set of nodes that contribute more strongly to the leading eigenvector. However, at high coupling, transitions are insensitive to network structure since the network can be activated by stochastic transitions of a few nodes. Thus this work identifies important features of biological signaling networks that may underlie their biological function.
Mesh refinement strategy for optimal control problems
NASA Astrophysics Data System (ADS)
Paiva, L. T.; Fontes, F. A. C. C.
2013-10-01
Direct methods are becoming the most used technique to solve nonlinear optimal control problems. Regular time meshes having equidistant spacing are frequently used. However, in some cases these meshes cannot cope accurately with nonlinear behavior. One way to improve the solution is to select a new mesh with a greater number of nodes. Another way, involves adaptive mesh refinement. In this case, the mesh nodes have non equidistant spacing which allow a non uniform nodes collocation. In the method presented in this paper, a time mesh refinement strategy based on the local error is developed. After computing a solution in a coarse mesh, the local error is evaluated, which gives information about the subintervals of time domain where refinement is needed. This procedure is repeated until the local error reaches a user-specified threshold. The technique is applied to solve the car-like vehicle problem aiming minimum consumption. The approach developed in this paper leads to results with greater accuracy and yet with lower overall computational time as compared to using a time meshes having equidistant spacing.
NASA Technical Reports Server (NTRS)
Pain, Bedabrata; Yang, Guang; Ortiz, Monico; Wrigley, Christopher; Hancock, Bruce; Cunningham, Thomas
2000-01-01
Noise in photodiode-type CMOS active pixel sensors (APS) is primarily due to the reset (kTC) noise at the sense node, since it is difficult to implement in-pixel correlated double sampling for a 2-D array. Signal integrated on the photodiode sense node (SENSE) is calculated by measuring difference between the voltage on the column bus (COL) - before and after the reset (RST) is pulsed. Lower than kTC noise can be achieved with photodiode-type pixels by employing "softreset" technique. Soft-reset refers to resetting with both drain and gate of the n-channel reset transistor kept at the same potential, causing the sense node to be reset using sub-threshold MOSFET current. However, lowering of noise is achieved only at the expense higher image lag and low-light-level non-linearity. In this paper, we present an analysis to explain the noise behavior, show evidence of degraded performance under low-light levels, and describe new pixels that eliminate non-linearity and lag without compromising noise.
NASA Astrophysics Data System (ADS)
Rastogi, Richa; Srivastava, Abhishek; Khonde, Kiran; Sirasala, Kirannmayi M.; Londhe, Ashutosh; Chavhan, Hitesh
2015-07-01
This paper presents an efficient parallel 3D Kirchhoff depth migration algorithm suitable for current class of multicore architecture. The fundamental Kirchhoff depth migration algorithm exhibits inherent parallelism however, when it comes to 3D data migration, as the data size increases the resource requirement of the algorithm also increases. This challenges its practical implementation even on current generation high performance computing systems. Therefore a smart parallelization approach is essential to handle 3D data for migration. The most compute intensive part of Kirchhoff depth migration algorithm is the calculation of traveltime tables due to its resource requirements such as memory/storage and I/O. In the current research work, we target this area and develop a competent parallel algorithm for post and prestack 3D Kirchhoff depth migration, using hybrid MPI+OpenMP programming techniques. We introduce a concept of flexi-depth iterations while depth migrating data in parallel imaging space, using optimized traveltime table computations. This concept provides flexibility to the algorithm by migrating data in a number of depth iterations, which depends upon the available node memory and the size of data to be migrated during runtime. Furthermore, it minimizes the requirements of storage, I/O and inter-node communication, thus making it advantageous over the conventional parallelization approaches. The developed parallel algorithm is demonstrated and analysed on Yuva II, a PARAM series of supercomputers. Optimization, performance and scalability experiment results along with the migration outcome show the effectiveness of the parallel algorithm.
Tseng, Jui-Pin
2017-02-01
This investigation establishes the global cluster synchronization of complex networks with a community structure based on an iterative approach. The units comprising the network are described by differential equations, and can be non-autonomous and involve time delays. In addition, units in the different communities can be governed by different equations. The coupling configuration of the network is rather general. The coupling terms can be non-diffusive, nonlinear, asymmetric, and with heterogeneous coupling delays. Based on this approach, both delay-dependent and delay-independent criteria for global cluster synchronization are derived. We implement the present approach for a nonlinearly coupled neural network with heterogeneous coupling delays. Two numerical examples are given to show that neural networks can behave in a variety of new collective ways under the synchronization criteria. These examples also demonstrate that neural networks remain synchronized in spite of coupling delays between neurons across different communities; however, they may lose synchrony if the coupling delays between the neurons within the same community are too large, such that the synchronization criteria are violated. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Zhi-Hai; Yuan, Jian-Hui; Guo, Kang-Xian
2018-04-25
Studies aimed at understanding the nonlinear optical (NLO) properties of GaAs/Ga 0.7 Al 0.3 As morse quantum well (QW) have focused on the intersubband optical absorption coefficients (OACs) and refractive index changes (RICs). These studies have taken two complimentary approaches: (1) The compact-density-matrix approach and iterative method have been used to obtain the expressions of OACs and RICs in morse QW. (2) Finite difference techniques have been used to obtain energy eigenvalues and their corresponding eigenfunctions of GaAs/Ga 0.7 Al 0.3 As morse QW under an applied magnetic field, hydrostatic pressure, and temperature. Our results show that the hydrostatic pressure and magnetic field have a significant influence on the position and the magnitude of the resonant peaks of the nonlinear OACs and RICs. Simultaneously, a saturation case is observed on the total absorption spectrum, which is modulated by the hydrostatic pressure and magnetic field. Physical reasons have been analyzed in depth.
Signal-Preserving Erratic Noise Attenuation via Iterative Robust Sparsity-Promoting Filter
Zhao, Qiang; Du, Qizhen; Gong, Xufei; ...
2018-04-06
Sparse domain thresholding filters operating in a sparse domain are highly effective in removing Gaussian random noise under Gaussian distribution assumption. Erratic noise, which designates non-Gaussian noise that consists of large isolated events with known or unknown distribution, also needs to be explicitly taken into account. However, conventional sparse domain thresholding filters based on the least-squares (LS) criterion are severely sensitive to data with high-amplitude and non-Gaussian noise, i.e., the erratic noise, which makes the suppression of this type of noise extremely challenging. Here, in this paper, we present a robust sparsity-promoting denoising model, in which the LS criterion ismore » replaced by the Huber criterion to weaken the effects of erratic noise. The random and erratic noise is distinguished by using a data-adaptive parameter in the presented method, where random noise is described by mean square, while the erratic noise is downweighted through a damped weight. Different from conventional sparse domain thresholding filters, definition of the misfit between noisy data and recovered signal via the Huber criterion results in a nonlinear optimization problem. With the help of theoretical pseudoseismic data, an iterative robust sparsity-promoting filter is proposed to transform the nonlinear optimization problem into a linear LS problem through an iterative procedure. The main advantage of this transformation is that the nonlinear denoising filter can be solved by conventional LS solvers. Lastly, tests with several data sets demonstrate that the proposed denoising filter can successfully attenuate the erratic noise without damaging useful signal when compared with conventional denoising approaches based on the LS criterion.« less
Signal-Preserving Erratic Noise Attenuation via Iterative Robust Sparsity-Promoting Filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Qiang; Du, Qizhen; Gong, Xufei
Sparse domain thresholding filters operating in a sparse domain are highly effective in removing Gaussian random noise under Gaussian distribution assumption. Erratic noise, which designates non-Gaussian noise that consists of large isolated events with known or unknown distribution, also needs to be explicitly taken into account. However, conventional sparse domain thresholding filters based on the least-squares (LS) criterion are severely sensitive to data with high-amplitude and non-Gaussian noise, i.e., the erratic noise, which makes the suppression of this type of noise extremely challenging. Here, in this paper, we present a robust sparsity-promoting denoising model, in which the LS criterion ismore » replaced by the Huber criterion to weaken the effects of erratic noise. The random and erratic noise is distinguished by using a data-adaptive parameter in the presented method, where random noise is described by mean square, while the erratic noise is downweighted through a damped weight. Different from conventional sparse domain thresholding filters, definition of the misfit between noisy data and recovered signal via the Huber criterion results in a nonlinear optimization problem. With the help of theoretical pseudoseismic data, an iterative robust sparsity-promoting filter is proposed to transform the nonlinear optimization problem into a linear LS problem through an iterative procedure. The main advantage of this transformation is that the nonlinear denoising filter can be solved by conventional LS solvers. Lastly, tests with several data sets demonstrate that the proposed denoising filter can successfully attenuate the erratic noise without damaging useful signal when compared with conventional denoising approaches based on the LS criterion.« less
A nonlinear relaxation/quasi-Newton algorithm for the compressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Edwards, Jack R.; Mcrae, D. S.
1992-01-01
A highly efficient implicit method for the computation of steady, two-dimensional compressible Navier-Stokes flowfields is presented. The discretization of the governing equations is hybrid in nature, with flux-vector splitting utilized in the streamwise direction and central differences with flux-limited artificial dissipation used for the transverse fluxes. Line Jacobi relaxation is used to provide a suitable initial guess for a new nonlinear iteration strategy based on line Gauss-Seidel sweeps. The applicability of quasi-Newton methods as convergence accelerators for this and other line relaxation algorithms is discussed, and efficient implementations of such techniques are presented. Convergence histories and comparisons with experimental data are presented for supersonic flow over a flat plate and for several high-speed compression corner interactions. Results indicate a marked improvement in computational efficiency over more conventional upwind relaxation strategies, particularly for flowfields containing large pockets of streamwise subsonic flow.
Li, Min; Xu, Tao
2015-03-01
Via the Nth Darboux transformation, a chain of nonsingular localized-wave solutions is derived for a nonlocal nonlinear Schrödinger equation with the self-induced parity-time (PT) -symmetric potential. It is found that the Nth iterated solution in general exhibits a variety of elastic interactions among 2N solitons on a continuous-wave background and each interacting soliton could be the dark or antidark type. The interactions with an arbitrary odd number of solitons can also be obtained under different degenerate conditions. With N=1 and 2, the two-soliton and four-soliton interactions and their various degenerate cases are discussed in the asymptotic analysis. Numerical simulations are performed to support the analytical results, and the stability analysis indicates that the PT-symmetry breaking can also destroy the stability of the soliton interactions.
SOM-based nonlinear least squares twin SVM via active contours for noisy image segmentation
NASA Astrophysics Data System (ADS)
Xie, Xiaomin; Wang, Tingting
2017-02-01
In this paper, a nonlinear least square twin support vector machine (NLSTSVM) with the integration of active contour model (ACM) is proposed for noisy image segmentation. Efforts have been made to seek the kernel-generated surfaces instead of hyper-planes for the pixels belonging to the foreground and background, respectively, using the kernel trick to enhance the performance. The concurrent self organizing maps (SOMs) are applied to approximate the intensity distributions in a supervised way, so as to establish the original training sets for the NLSTSVM. Further, the two sets are updated by adding the global region average intensities at each iteration. Moreover, a local variable regional term rather than edge stop function is adopted in the energy function to ameliorate the noise robustness. Experiment results demonstrate that our model holds the higher segmentation accuracy and more noise robustness.
Optical response in a laser-driven quantum pseudodot system
NASA Astrophysics Data System (ADS)
Kilic, D. Gul; Sakiroglu, S.; Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sokmen, I.
2017-03-01
We investigate theoretically the intense laser-induced optical absorption coefficients and refractive index changes in a two-dimensional quantum pseudodot system under an uniform magnetic field. The effects of non-resonant, monochromatic intense laser field upon the system are treated within the framework of high-frequency Floquet approach in which the system is supposed to be governed by a laser-dressed potential. Linear and nonlinear absorption coefficients and relative changes in the refractive index are obtained by means of the compact-density matrix approach and iterative method. The results of numerical calculations for a typical GaAs quantum dot reveal that the optical response depends strongly on the magnitude of external magnetic field and characteristic parameters of the confinement potential. Moreover, we have demonstrated that the intense laser field modifies the confinement and thereby causes remarkable changes in the linear and nonlinear optical properties of the system.
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Peters, Jeanne M.
1989-01-01
A computational procedure is presented for the nonlinear dynamic analysis of unsymmetric structures on vector multiprocessor systems. The procedure is based on a novel hierarchical partitioning strategy in which the response of the unsymmetric and antisymmetric response vectors (modes), each obtained by using only a fraction of the degrees of freedom of the original finite element model. The three key elements of the procedure which result in high degree of concurrency throughout the solution process are: (1) mixed (or primitive variable) formulation with independent shape functions for the different fields; (2) operator splitting or restructuring of the discrete equations at each time step to delineate the symmetric and antisymmetric vectors constituting the response; and (3) two level iterative process for generating the response of the structure. An assessment is made of the effectiveness of the procedure on the CRAY X-MP/4 computers.
Preconditioning strategies for nonlinear conjugate gradient methods, based on quasi-Newton updates
NASA Astrophysics Data System (ADS)
Andrea, Caliciotti; Giovanni, Fasano; Massimo, Roma
2016-10-01
This paper reports two proposals of possible preconditioners for the Nonlinear Conjugate Gradient (NCG) method, in large scale unconstrained optimization. On one hand, the common idea of our preconditioners is inspired to L-BFGS quasi-Newton updates, on the other hand we aim at explicitly approximating in some sense the inverse of the Hessian matrix. Since we deal with large scale optimization problems, we propose matrix-free approaches where the preconditioners are built using symmetric low-rank updating formulae. Our distinctive new contributions rely on using information on the objective function collected as by-product of the NCG, at previous iterations. Broadly speaking, our first approach exploits the secant equation, in order to impose interpolation conditions on the objective function. In the second proposal we adopt and ad hoc modified-secant approach, in order to possibly guarantee some additional theoretical properties.
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Lazarev, Alexander A.; Nikitovich, Diana V.
2017-08-01
Self-learning equivalent-convolutional neural structures (SLECNS) for auto-coding-decoding and image clustering are discussed. The SLECNS architectures and their spatially invariant equivalent models (SI EMs) using the corresponding matrix-matrix procedures with basic operations of continuous logic and non-linear processing are proposed. These SI EMs have several advantages, such as the ability to recognize image fragments with better efficiency and strong cross correlation. The proposed clustering method of fragments with regard to their structural features is suitable not only for binary, but also color images and combines self-learning and the formation of weight clustered matrix-patterns. Its model is constructed and designed on the basis of recursively processing algorithms and to k-average method. The experimental results confirmed that larger images and 2D binary fragments with a large numbers of elements may be clustered. For the first time the possibility of generalization of these models for space invariant case is shown. The experiment for an image with dimension of 256x256 (a reference array) and fragments with dimensions of 7x7 and 21x21 for clustering is carried out. The experiments, using the software environment Mathcad, showed that the proposed method is universal, has a significant convergence, the small number of iterations is easily, displayed on the matrix structure, and confirmed its prospects. Thus, to understand the mechanisms of self-learning equivalence-convolutional clustering, accompanying her to the competitive processes in neurons, and the neural auto-encoding-decoding and recognition principles with the use of self-learning cluster patterns is very important which used the algorithm and the principles of non-linear processing of two-dimensional spatial functions of images comparison. These SIEMs can simply describe the signals processing during the all training and recognition stages and they are suitable for unipolar-coding multilevel signals. We show that the implementation of SLECNS based on known equivalentors or traditional correlators is possible if they are based on proposed equivalental two-dimensional functions of image similarity. The clustering efficiency in such models and their implementation depends on the discriminant properties of neural elements of hidden layers. Therefore, the main models and architecture parameters and characteristics depends on the applied types of non-linear processing and function used for image comparison or for adaptive-equivalental weighing of input patterns. Real model experiments in Mathcad are demonstrated, which confirm that non-linear processing on equivalent functions allows you to determine the neuron winners and adjust the weight matrix. Experimental results have shown that such models can be successfully used for auto- and hetero-associative recognition. They can also be used to explain some mechanisms known as "focus" and "competing gain-inhibition concept". The SLECNS architecture and hardware implementations of its basic nodes based on multi-channel convolvers and correlators with time integration are proposed. The parameters and performance of such architectures are estimated.
Nonlinear MHD simulations of QH-mode DIII-D plasmas and implications for ITER high Q scenarios
NASA Astrophysics Data System (ADS)
Liu, F.; Huijsmans, G. T. A.; Loarte, A.; Garofalo, A. M.; Solomon, W. M.; Hoelzl, M.; Nkonga, B.; Pamela, S.; Becoulet, M.; Orain, F.; Van Vugt, D.
2018-01-01
In nonlinear MHD simulations of DIII-D QH-mode plasmas it has been found that low n kink/peeling modes (KPMs) are unstable and grow to a saturated kink-peeling mode. The features of the dominant saturated KPMs, which are localised toroidally by nonlinear coupling of harmonics, such as mode frequencies, density fluctuations and their effect on pedestal particle and energy transport, are in good agreement with the observations of the edge harmonic oscillation typically present in DIII-D QH-mode experiments. The nonlinear evolution of MHD modes including both kink-peeling modes and ballooning modes, is investigated through MHD simulations by varying the pedestal current and pressure relative to the initial conditions of DIII-D QH-mode plasma. The edge current and pressure at the pedestal are key parameters for the plasma either saturating to a QH-mode regime or a ballooning mode dominant regime. The influence of E × B flow and its shear on the QH-mode plasma has been investigated. E × B flow shear has a strong stabilisation effect on the medium to high-n modes but is destabilising for the n = 2 mode. The QH-mode extrapolation results of an ITER Q = 10 plasma show that the pedestal currents are large enough to destabilise n = 1-5 KPMs, leading to a stationary saturated kink-peeling mode.
Zhang, Shu; Taft, Cyrus W; Bentsman, Joseph; Hussey, Aaron; Petrus, Bryan
2012-09-01
Tuning a complex multi-loop PID based control system requires considerable experience. In today's power industry the number of available qualified tuners is dwindling and there is a great need for better tuning tools to maintain and improve the performance of complex multivariable processes. Multi-loop PID tuning is the procedure for the online tuning of a cluster of PID controllers operating in a closed loop with a multivariable process. This paper presents the first application of the simultaneous tuning technique to the multi-input-multi-output (MIMO) PID based nonlinear controller in the power plant control context, with the closed-loop system consisting of a MIMO nonlinear boiler/turbine model and a nonlinear cluster of six PID-type controllers. Although simplified, the dynamics and cross-coupling of the process and the PID cluster are similar to those used in a real power plant. The particular technique selected, iterative feedback tuning (IFT), utilizes the linearized version of the PID cluster for signal conditioning, but the data collection and tuning is carried out on the full nonlinear closed-loop system. Based on the figure of merit for the control system performance, the IFT is shown to deliver performance favorably comparable to that attained through the empirical tuning carried out by an experienced control engineer. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Approximate optimal tracking control for near-surface AUVs with wave disturbances
NASA Astrophysics Data System (ADS)
Yang, Qing; Su, Hao; Tang, Gongyou
2016-10-01
This paper considers the optimal trajectory tracking control problem for near-surface autonomous underwater vehicles (AUVs) in the presence of wave disturbances. An approximate optimal tracking control (AOTC) approach is proposed. Firstly, a six-degrees-of-freedom (six-DOF) AUV model with its body-fixed coordinate system is decoupled and simplified and then a nonlinear control model of AUVs in the vertical plane is given. Also, an exosystem model of wave disturbances is constructed based on Hirom approximation formula. Secondly, the time-parameterized desired trajectory which is tracked by the AUV's system is represented by the exosystem. Then, the coupled two-point boundary value (TPBV) problem of optimal tracking control for AUVs is derived from the theory of quadratic optimal control. By using a recently developed successive approximation approach to construct sequences, the coupled TPBV problem is transformed into a problem of solving two decoupled linear differential sequences of state vectors and adjoint vectors. By iteratively solving the two equation sequences, the AOTC law is obtained, which consists of a nonlinear optimal feedback item, an expected output tracking item, a feedforward disturbances rejection item, and a nonlinear compensatory term. Furthermore, a wave disturbances observer model is designed in order to solve the physically realizable problem. Simulation is carried out by using the Remote Environmental Unit (REMUS) AUV model to demonstrate the effectiveness of the proposed algorithm.
Discrete-Time Stable Generalized Self-Learning Optimal Control With Approximation Errors.
Wei, Qinglai; Li, Benkai; Song, Ruizhuo
2018-04-01
In this paper, a generalized policy iteration (GPI) algorithm with approximation errors is developed for solving infinite horizon optimal control problems for nonlinear systems. The developed stable GPI algorithm provides a general structure of discrete-time iterative adaptive dynamic programming algorithms, by which most of the discrete-time reinforcement learning algorithms can be described using the GPI structure. It is for the first time that approximation errors are explicitly considered in the GPI algorithm. The properties of the stable GPI algorithm with approximation errors are analyzed. The admissibility of the approximate iterative control law can be guaranteed if the approximation errors satisfy the admissibility criteria. The convergence of the developed algorithm is established, which shows that the iterative value function is convergent to a finite neighborhood of the optimal performance index function, if the approximate errors satisfy the convergence criterion. Finally, numerical examples and comparisons are presented.
Liu, Derong; Li, Hongliang; Wang, Ding
2015-06-01
In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms.
On a class of Newton-like methods for solving nonlinear equations
NASA Astrophysics Data System (ADS)
Argyros, Ioannis K.
2009-06-01
We provide a semilocal convergence analysis for a certain class of Newton-like methods considered also in [I.K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl. 298 (2004) 374-397; I.K. Argyros, Computational theory of iterative methods, in: C.K. Chui, L. Wuytack (Eds.), Series: Studies in Computational Mathematics, vol. 15, Elsevier Publ. Co, New York, USA, 2007; J.E. Dennis, Toward a unified convergence theory for Newton-like methods, in: L.B. Rall (Ed.), Nonlinear Functional Analysis and Applications, Academic Press, New York, 1971], in order to approximate a locally unique solution of an equation in a Banach space. Using a combination of Lipschitz and center-Lipschitz conditions, instead of only Lipschitz conditions [F.A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Math. 5 (1985) 71-84], we provide an analysis with the following advantages over the work in [F.A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Math. 5 (1985) 71-84] which improved the works in [W.E. Bosarge, P.L. Falb, A multipoint method of third order, J. Optimiz. Theory Appl. 4 (1969) 156-166; W.E. Bosarge, P.L. Falb, Infinite dimensional multipoint methods and the solution of two point boundary value problems, Numer. Math. 14 (1970) 264-286; J.E. Dennis, On the Kantorovich hypothesis for Newton's method, SIAM J. Numer. Anal. 6 (3) (1969) 493-507; J.E. Dennis, Toward a unified convergence theory for Newton-like methods, in: L.B. Rall (Ed.), Nonlinear Functional Analysis and Applications, Academic Press, New York, 1971; H.J. Kornstaedt, Ein allgemeiner Konvergenzstaz fü r verschä rfte Newton-Verfahrem, in: ISNM, vol. 28, Birkhaü ser Verlag, Basel and Stuttgart, 1975, pp. 53-69; P. Laasonen, Ein überquadratisch konvergenter iterativer algorithmus, Ann. Acad. Sci. Fenn. Ser I 450 (1969) 1-10; F.A. Potra, On a modified secant method, L'analyse numérique et la theorie de l'approximation 8 (2) (1979) 203-214; F.A. Potra, An application of the induction method of V. Pták to the study of Regula Falsi, Aplikace Matematiky 26 (1981) 111-120; F.A. Potra, On the convergence of a class of Newton-like methods, in: Iterative Solution of Nonlinear Systems of Equations, in: Lecture Notes in Mathematics, vol. 953, Springer-Verlag, New York, 1982; F.A. Potra, V. Pták, Nondiscrete induction and double step secant method, Math. Scand. 46 (1980) 236-250; F.A. Potra, V. Pták, On a class of modified Newton processes, Numer. Funct. Anal. Optim. 2 (1) (1980) 107-120; F.A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Math. 5 (1985) 71-84; J.W. Schmidt, Untere Fehlerschranken für Regula-Falsi Verfahren, Period. Math. Hungar. 9 (3) (1978) 241-247; J.W. Schmidt, H. Schwetlick, Ableitungsfreie Verfhren mit höherer Konvergenzgeschwindifkeit, Computing 3 (1968) 215-226; J.F. Traub, Iterative Methods for the Solution of Equations, Prentice Hall, Englewood Cliffs, New Jersey, 1964; M.A. Wolfe, Extended iterative methods for the solution of operator equations, Numer. Math. 31 (1978) 153-174]: larger convergence domain and weaker sufficient convergence conditions. Numerical examples further validating the results are also provided.
State Transition Matrix for Perturbed Orbital Motion Using Modified Chebyshev Picard Iteration
NASA Astrophysics Data System (ADS)
Read, Julie L.; Younes, Ahmad Bani; Macomber, Brent; Turner, James; Junkins, John L.
2015-06-01
The Modified Chebyshev Picard Iteration (MCPI) method has recently proven to be highly efficient for a given accuracy compared to several commonly adopted numerical integration methods, as a means to solve for perturbed orbital motion. This method utilizes Picard iteration, which generates a sequence of path approximations, and Chebyshev Polynomials, which are orthogonal and also enable both efficient and accurate function approximation. The nodes consistent with discrete Chebyshev orthogonality are generated using cosine sampling; this strategy also reduces the Runge effect and as a consequence of orthogonality, there is no matrix inversion required to find the basis function coefficients. The MCPI algorithms considered herein are parallel-structured so that they are immediately well-suited for massively parallel implementation with additional speedup. MCPI has a wide range of applications beyond ephemeris propagation, including the propagation of the State Transition Matrix (STM) for perturbed two-body motion. A solution is achieved for a spherical harmonic series representation of earth gravity (EGM2008), although the methodology is suitable for application to any gravity model. Included in this representation the normalized, Associated Legendre Functions are given and verified numerically. Modifications of the classical algorithm techniques, such as rewriting the STM equations in a second-order cascade formulation, gives rise to additional speedup. Timing results for the baseline formulation and this second-order formulation are given.
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr. (Principal Investigator)
1996-01-01
The goal of this research project is to develop assumed-stress hybrid elements with rotational degrees of freedom for analyzing composite structures. During the first year of the three-year activity, the effort was directed to further assess the AQ4 shell element and its extensions to buckling and free vibration problems. In addition, the development of a compatible 2-node beam element was to be accomplished. The extensions and new developments were implemented in the Computational Structural Mechanics Testbed COMET. An assessment was performed to verify the implementation and to assess the performance of these elements in terms of accuracy. During the second and third years, extensions to geometrically nonlinear problems were developed and tested. This effort involved working with the nonlinear solution strategy as well as the nonlinear formulation for the elements. This research has resulted in the development and implementation of two additional element processors (ES22 for the beam element and ES24 for the shell elements) in COMET. The software was developed using a SUN workstation and has been ported to the NASA Langley Convex named blackbird. Both element processors are now part of the baseline version of COMET.
NASA Technical Reports Server (NTRS)
Kamat, M. P.
1980-01-01
The formulation basis for establishing the static or dynamic equilibrium configurations of finite element models of structures which may behave in the nonlinear range are provided. With both geometric and time independent material nonlinearities included, the development is restricted to simple one and two dimensional finite elements which are regarded as being the basic elements for modeling full aircraft-like structures under crash conditions. Representations of a rigid link and an impenetrable contact plane are added to the deformation model so that any number of nodes of the finite element model may be connected by a rigid link or may contact the plane. Equilibrium configurations are derived as the stationary conditions of a potential function of the generalized nodal variables of the model. Minimization of the nonlinear potential function is achieved by using the best current variable metric update formula for use in unconstrained minimization. Powell's conjugate gradient algorithm, which offers very low storage requirements at some slight increase in the total number of calculations, is the other alternative algorithm to be used for extremely large scale problems.