Approximation and Numerical Analysis of Nonlinear Equations of Evolution.
1980-01-31
dominant convective terms, or Stefan type problems such as the flow of fluids through porous media or the melting and freezing of ice. Such problems...means of formulating time-dependent Stefan problems was initiated. Classes of problems considered here include the one-phase and two-phase Stefan ...some new numerical methods were 2 developed for two dimensional, two-phase Stefan problems with time dependent boundary conditions. A variety of example
On a phase transition for semitransparent materials in terms of the Stefan problem
NASA Astrophysics Data System (ADS)
Rubtsov, N. A.; Sleptsov, S. D.
2017-01-01
The paper deals with justification of the formula for the latent heat of phase transition of the first kind, taking into account superheating and subcooling of the formed two-phase system, in application to the solution of Stefan problem in semitransparent materials.
NASA Astrophysics Data System (ADS)
Bollati, Julieta; Tarzia, Domingo A.
2018-04-01
Recently, in Tarzia (Thermal Sci 21A:1-11, 2017) for the classical two-phase Lamé-Clapeyron-Stefan problem an equivalence between the temperature and convective boundary conditions at the fixed face under a certain restriction was obtained. Motivated by this article we study the two-phase Stefan problem for a semi-infinite material with a latent heat defined as a power function of the position and a convective boundary condition at the fixed face. An exact solution is constructed using Kummer functions in case that an inequality for the convective transfer coefficient is satisfied generalizing recent works for the corresponding one-phase free boundary problem. We also consider the limit to our problem when that coefficient goes to infinity obtaining a new free boundary problem, which has been recently studied in Zhou et al. (J Eng Math 2017. https://doi.org/10.1007/s10665-017-9921-y).
NASA Astrophysics Data System (ADS)
Savvinova, Nadezhda A.; Sleptsov, Semen D.; Rubtsov, Nikolai A.
2017-11-01
A mathematical phase change model is a formulation of the Stefan problem. Various formulations of the Stefan problem modeling of radiative-conductive heat transfer during melting or solidification of a semitransparent material are presented. Analysis of numerical results show that the radiative heat transfer has a significant effect on temperature distributions during melting (solidification) of the semitransparent material. In this paper conditions for application of various statements of the Stefan problem are analyzed.
Automatic Control via Thermostats of a Hyperbolic Stefan Problem with Memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colli, P.; Grasselli, M.; Sprekels, J.
1999-03-15
A hyperbolic Stefan problem based on the linearized Gurtin-Pipkin heat conduction law is considered. The temperature and free boundary are controlled by a thermostat acting on the boundary. This feedback control is based on temperature measurements performed by real thermal sensors located within the domain containing the two-phase system and/or at its boundary. Three different types of thermostats are analyzed: simple switch, relay switch, and a Preisach hysteresis operator. The resulting models lead to integrodifferential hyperbolic Stefan problems with nonlinear and nonlocal boundary conditions. Existence results are proved in all the cases. Uniqueness is also shown, except in the situationmore » corresponding to the ideal switch.« less
The Boundary Element Method Applied to the Two Dimensional Stefan Moving Boundary Problem
1991-03-15
Unc), - ( UGt )t - (UG,,),,] - (UG), If we integrate this equation with respect to r from 0 to t - c and with respect to and ij on the region 11(r...and others. "Moving Boundary Problems in Phase Change Mod- els," SIGNUM Newsletter, 20: 8-12 (1985). 21. Stefan, J. "Ober einige Probleme der Theorie ...ier Wirmelcitung," S.-B. \\Vein. Akad. Mat. Natur., 98: 173-484 (1889). 22.-. "flber (lie Theorie der Eisbildung insbesondere fiber die lisbildung im
A simple level set method for solving Stefan problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S.; Merriman, B.; Osher, S.
1997-07-15
Discussed in this paper is an implicit finite difference scheme for solving a heat equation and a simple level set method for capturing the interface between solid and liquid phases which are used to solve Stefan problems.
Stefan problem for a finite liquid phase and its application to laser or electron beam welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasuya, T.; Shimoda, N.
1997-10-01
An exact solution of a heat conduction problem with the effect of latent heat of solidification (Stefan problem) is derived. The solution of the one dimensional Stefan problem for a finite liquid phase initially existing in a semi-infinite body is applied to evaluate temperature fields produced by laser or electron beam welding. The solution of the model has not been available before, as Carslaw and Jaeger [{ital Conduction of Heat in Solids}, 2nd ed. (Oxford University Press, New York, 1959)] pointed out. The heat conduction calculations are performed using thermal properties of carbon steel, and the comparison of the Stefanmore » problem with a simplified linear heat conduction model reveals that the solidification rate and cooling curve over 1273 K significantly depend on which model (Stefan or linear heat conduction problem) is applied, and that the type of the thermal model applied has little meaning for cooling curve below 1273 K. Since the heat conduction problems with a phase change arise in many important industrial fields, the solution derived in this study is ready to be used not only for welding but also for other industrial applications. {copyright} {ital 1997 American Institute of Physics.}« less
Solid–Liquid Phase Change Driven by Internal Heat Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Crepeau; Ali s. Siahpush
2012-07-01
This article presents results of solid-liquid phase change, the Stefan Problem, where melting is driven internal heat generation, in a cylindrical geometry. The comparison between a quasi-static analytical solution for Stefan numbers less than one and numerical solutions shows good agreement. The computational results of phase change with internal heat generation show how convection cells form in the liquid region. A scale analysis of the same problem shows four distinct regions of the melting process.
1989-05-01
NUMERICAL ANALYSIS OF STEFAN PROBLEMS FOR GENERALIZED MULTI- DIMENSIONAL PHASE-CHANGE STRUCTURES USING THE ENTHALPY TRANSFORMING MODEL 4.1 Summary...equation St Stefan number, cs(Tm-Tw)/H or cs(Tm-Ti)/H s circumferential distance coordinate, m, Section III s dimensionless interface position along...fluid, kg/m 3 0 viscous dissipation term in the energy eqn. (1.4), Section I; dummy variable, Section IV r dimensionless time, ta/L 2 a Stefan -Boltzmann
An inverse model for a free-boundary problem with a contact line: Steady case
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkov, Oleg; Protas, Bartosz
2009-07-20
This paper reformulates the two-phase solidification problem (i.e., the Stefan problem) as an inverse problem in which a cost functional is minimized with respect to the position of the interface and subject to PDE constraints. An advantage of this formulation is that it allows for a thermodynamically consistent treatment of the interface conditions in the presence of a contact point involving a third phase. It is argued that such an approach in fact represents a closure model for the original system and some of its key properties are investigated. We describe an efficient iterative solution method for the Stefan problemmore » formulated in this way which uses shape differentiation and adjoint equations to determine the gradient of the cost functional. Performance of the proposed approach is illustrated with sample computations concerning 2D steady solidification phenomena.« less
Optimal Control of Thermo--Fluid Phenomena in Variable Domains
NASA Astrophysics Data System (ADS)
Volkov, Oleg; Protas, Bartosz
2008-11-01
This presentation concerns our continued research on adjoint--based optimization of viscous incompressible flows (the Navier--Stokes problem) coupled with heat conduction involving change of phase (the Stefan problem), and occurring in domains with variable boundaries. This problem is motivated by optimization of advanced welding techniques used in automotive manufacturing, where the goal is to determine an optimal heat input, so as to obtain a desired shape of the weld pool surface upon solidification. We argue that computation of sensitivities (gradients) in such free--boundary problems requires the use of the shape--differential calculus as a key ingredient. We also show that, with such tools available, the computational solution of the direct and inverse (optimization) problems can in fact be achieved in a similar manner and in a comparable computational time. Our presentation will address certain mathematical and computational aspects of the method. As an illustration we will consider the two--phase Stefan problem with contact point singularities where our approach allows us to obtain a thermodynamically consistent solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandrov, D. V., E-mail: Dmitri.Alexandrov@usu.ru; Ivanov, A. A.
2009-05-15
The process of solidification of ternary systems in the presence of moving phase transition regions has been investigated theoretically in terms of the nonlinear equation of the liquidus surface. A mathematical model is developed and an approximate analytical solution to the Stefan problem is constructed for a linear temperature profile in two-phase zones. The temperature and impurity concentration distributions are determined, the solid-phase fractions in the phase transition regions are obtained, and the laws of motion of their boundaries are established. It is demonstrated that all boundaries move in accordance with the laws of direct proportionality to the square rootmore » of time, which is a general property of self-similar processes. It is substantiated that the concentration of an impurity of the substance undergoing a phase transition only in the cotectic zone increases in this zone and decreases in the main two-phase zone in which the other component of the substance undergoes a phase transition. In the process, the concentration reaches a maximum at the interface between the main two-phase zone and the cotectic two-phase zone. The revealed laws of motion of the outer boundaries of the entire phase transition region do not depend on the amount of the components under consideration and hold true for crystallization of a multicomponent system.« less
The two-dimensional Stefan problem with slightly varying heat flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gammon, J.; Howarth, J.A.
1995-09-01
The authors solve the two-dimensional stefan problem of solidification in a half-space, where the heat flux at the wall is a slightly varying function of positioning along the wall, by means of a large Stefan number approximation (which turns out to be equivalent to a small time solution), and then by means of the Heat Balance Integral Method, which is valid for all time, and which agrees with the large Stefan number solution for small times. A representative solution is given for a particular form of the heat flux perturbation.
On the Stefan Problem with Volumetric Energy Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Crepeau; Ali Siahpush; Blaine Spotten
2009-11-01
This paper presents results of solid-liquid phase change, driven by volumetric energy generation, in a vertical cylinder. We show excellent agreement between a quasi-static, approximate analytical solution valid for Stefan numbers less than one, and a computational model solved using the CFD code FLUENT®. A computational study also shows the effect that the volumetric energy generation has on both the mushy zone thickness and convection in the melt during phase change.
A Conserving Discretization for the Free Boundary in a Two-Dimensional Stefan Problem
NASA Astrophysics Data System (ADS)
Segal, Guus; Vuik, Kees; Vermolen, Fred
1998-03-01
The dissolution of a disk-likeAl2Cuparticle is considered. A characteristic property is that initially the particle has a nonsmooth boundary. The mathematical model of this dissolution process contains a description of the particle interface, of which the position varies in time. Such a model is called a Stefan problem. It is impossible to obtain an analytical solution for a general two-dimensional Stefan problem, so we use the finite element method to solve this problem numerically. First, we apply a classical moving mesh method. Computations show that after some time steps the predicted particle interface becomes very unrealistic. Therefore, we derive a new method for the displacement of the free boundary based on the balance of atoms. This method leads to good results, also, for nonsmooth boundaries. Some numerical experiments are given for the dissolution of anAl2Cuparticle in anAl-Cualloy.
Global stability of steady states in the classical Stefan problem for general boundary shapes
Hadžić, Mahir; Shkoller, Steve
2015-01-01
The classical one-phase Stefan problem (without surface tension) allows for a continuum of steady-state solutions, given by an arbitrary (but sufficiently smooth) domain together with zero temperature. We prove global-in-time stability of such steady states, assuming a sufficient degree of smoothness on the initial domain, but without any a priori restriction on the convexity properties of the initial shape. This is an extension of our previous result (Hadžić & Shkoller 2014 Commun. Pure Appl. Math. 68, 689–757 (doi:10.1002/cpa.21522)) in which we studied nearly spherical shapes. PMID:26261359
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaino, Koji
1994-09-01
Similarity curves for different Biot numbers are known to become indistinguishable with decreasing Stefan number; in other words, the similarity rule becomes more applicable for smaller Stefan number. In such a finned-tube-type storage unit as treated in this study, it has been found that the effect of Stefan number on the similarity curve varies with the number of fins. Sensible heat liberated during the solidification process has been calculated individually in a phase-change material with a heat-transfer tube and fins, and represented as a function of the frozen fraction for two specified values of Biot number, 0.1 and 1000, undermore » specified conditions of Stefan number and the number on fins. The latent-heat contribution to heat flow out of the storage unit has been examined in comparison with the sensible-heat contribution. The latent- and sensible-heat contributions are almost inversely related. This inverse relationship reduces the effect of the Stefan number on the applicability of the similarity rule.« less
Leonardi, Erminia; Angeli, Celestino
2010-01-14
The diffusion process in a multicomponent system can be formulated in a general form by the generalized Maxwell-Stefan equations. This formulation is able to describe the diffusion process in different systems, such as, for instance, bulk diffusion (in the gas, liquid, and solid phase) and diffusion in microporous materials (membranes, zeolites, nanotubes, etc.). The Maxwell-Stefan equations can be solved analytically (only in special cases) or by numerical approaches. Different numerical strategies have been previously presented, but the number of diffusing species is normally restricted, with only few exceptions, to three in bulk diffusion and to two in microporous systems, unless simplifications of the Maxwell-Stefan equations are considered. In the literature, a large effort has been devoted to the derivation of the analytic expression of the elements of the Fick-like diffusion matrix and therefore to the symbolic inversion of a square matrix with dimensions n x n (n being the number of independent components). This step, which can be easily performed for n = 2 and remains reasonable for n = 3, becomes rapidly very complex in problems with a large number of components. This paper addresses the problem of the numerical resolution of the Maxwell-Stefan equations in the transient regime for a one-dimensional system with a generic number of components, avoiding the definition of the analytic expression of the elements of the Fick-like diffusion matrix. To this aim, two approaches have been implemented in a computational code; the first is the simple finite difference second-order accurate in time Crank-Nicolson scheme for which the full mathematical derivation and the relevant final equations are reported. The second is based on the more accurate backward differentiation formulas, BDF, or Gear's method (Shampine, L. F. ; Gear, C. W. SIAM Rev. 1979, 21, 1.), as implemented in the Livermore solver for ordinary differential equations, LSODE (Hindmarsh, A. C. Serial Fortran Solvers for ODE Initial Value Problems, Technical Report; https://computation.llnl.gov/casc/odepack/odepack_ home.html (2006).). Both methods have been applied to a series of specific problems, such as bulk diffusion of acetone and methanol through stagnant air, uptake of two components on a microporous material in a model system, and permeation across a microporous membrane in model systems, both with the aim to validate the method and to add new information to the comprehension of the peculiar behavior of these systems. The approach is validated by comparison with different published results and with analytic expressions for the steady-state concentration profiles or fluxes in particular systems. The possibility to treat a generic number of components (the limitation being essentially the computational power) is also tested, and results are reported on the permeation of a five component mixture through a membrane in a model system. It is worth noticing that the algorithm here reported can be applied also to the Fick formulation of the diffusion problem with concentration-dependent diffusion coefficients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jo, J.C.; Shin, W.K.; Choi, C.Y.
Transient heat transfer problems with phase changes (Stefan problems) occur in many engineering situations, including potential core melting and solidification during pressurized-water-reactor severe accidents, ablation of thermal shields, melting and solidification of alloys, and many others. This article addresses the numerical analysis of nonlinear transient heat transfer with melting or solidification. An effective and simple procedure is presented for the simulation of the motion of the boundary and the transient temperature field during the phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual-reciprocity boundary-element method. The dual-reciprocity boundary-element approach providedmore » in this article is much simpler than the usual boundary-element method in applying a reciprocity principle and an available technique for dealing with the domain integral of the boundary element formulation simultaneously. In this article, attention is focused on two-dimensional melting (ablation)/solidification problems for simplicity. The accuracy and effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of some examples of one-phase ablation/solidification problems with their known semianalytical or numerical solutions where available.« less
Smoothed particle hydrodynamics method for evaporating multiphase flows.
Yang, Xiufeng; Kong, Song-Charng
2017-09-01
The smoothed particle hydrodynamics (SPH) method has been increasingly used for simulating fluid flows; however, its ability to simulate evaporating flow requires significant improvements. This paper proposes an SPH method for evaporating multiphase flows. The present SPH method can simulate the heat and mass transfers across the liquid-gas interfaces. The conservation equations of mass, momentum, and energy were reformulated based on SPH, then were used to govern the fluid flow and heat transfer in both the liquid and gas phases. The continuity equation of the vapor species was employed to simulate the vapor mass fraction in the gas phase. The vapor mass fraction at the interface was predicted by the Clausius-Clapeyron correlation. An evaporation rate was derived to predict the mass transfer from the liquid phase to the gas phase at the interface. Because of the mass transfer across the liquid-gas interface, the mass of an SPH particle was allowed to change. Alternative particle splitting and merging techniques were developed to avoid large mass difference between SPH particles of the same phase. The proposed method was tested by simulating three problems, including the Stefan problem, evaporation of a static drop, and evaporation of a drop impacting a hot surface. For the Stefan problem, the SPH results of the evaporation rate at the interface agreed well with the analytical solution. For drop evaporation, the SPH result was compared with the result predicted by a level-set method from the literature. In the case of drop impact on a hot surface, the evolution of the shape of the drop, temperature, and vapor mass fraction were predicted.
NASA Astrophysics Data System (ADS)
Helmers, Michael; Herrmann, Michael
2018-03-01
We consider a lattice regularization for an ill-posed diffusion equation with a trilinear constitutive law and study the dynamics of phase interfaces in the parabolic scaling limit. Our main result guarantees for a certain class of single-interface initial data that the lattice solutions satisfy asymptotically a free boundary problem with a hysteretic Stefan condition. The key challenge in the proof is to control the microscopic fluctuations that are inevitably produced by the backward diffusion when a particle passes the spinodal region.
NASA Astrophysics Data System (ADS)
Gim, Yongwan; Kim, Wontae
2018-01-01
In this presentation, we are going to explain the thermodynamic origin of warm inflation scenarios by using the effetive Stefan-Boltzmann law. In the warm inflation scenarios, radiation always exists to avoid the graceful exit problem, for which the radiation energy density should be assumed to be finite at the starting point of the warm inflation. To find out the origin of the non-vanishing initial radiation energy density, we derive an effective Stefan-Boltzmann law by considering the non-vanishing trace of the total energy-momentum tensors. The effective Stefan-Boltzmann law successfully shows where the initial radiation energy density is thermodynamically originated from. And by using the above effective Stefan-Boltzmann law, we also study the cosmological scalar perturbation, and obtain the sufficient radiation energy density in order for GUT baryogenesis at the end of inflation. This proceeding is based on Ref. [1
Basal melting driven by turbulent thermal convection
NASA Astrophysics Data System (ADS)
Rabbanipour Esfahani, Babak; Hirata, Silvia C.; Berti, Stefano; Calzavarini, Enrico
2018-05-01
Melting and, conversely, solidification processes in the presence of convection are key to many geophysical problems. An essential question related to these phenomena concerns the estimation of the (time-evolving) melting rate, which is tightly connected to the turbulent convective dynamics in the bulk of the melt fluid and the heat transfer at the liquid-solid interface. In this work, we consider a convective-melting model, constructed as a generalization of the Rayleigh-Bénard system, accounting for the basal melting of a solid. As the change of phase proceeds, a fluid layer grows at the heated bottom of the system and eventually reaches a turbulent convection state. By means of extensive lattice-Boltzmann numerical simulations employing an enthalpy formulation of the governing equations, we explore the model dynamics in two- and three-dimensional configurations. The focus of the analysis is on the scaling of global quantities like the heat flux and the kinetic energy with the Rayleigh number, as well as on the interface morphology and the effects of space dimensionality. Independently of dimensionality, we find that the convective-melting system behavior shares strong resemblances with that of the Rayleigh-Bénard one, and that the heat flux is only weakly enhanced with respect to that case. Such similarities are understood, at least to some extent, considering the resulting slow motion of the melting front (with respect to the turbulent fluid velocity fluctuations) and its generally little roughness (compared to the height of the fluid layer). Varying the Stefan number, accounting for the thermodynamical properties of the material, also seems to have only a mild effect, which implies the possibility of extrapolating results in numerically delicate low-Stefan setups from more convenient high-Stefan ones. Finally, we discuss the implications of our findings for the geophysically relevant problem of modeling Arctic ice melt ponds.
Phase-field simulations of velocity selection in rapidly solidified binary alloys
NASA Astrophysics Data System (ADS)
Fan, Jun; Greenwood, Michael; Haataja, Mikko; Provatas, Nikolas
2006-09-01
Time-dependent simulations of two-dimensional isothermal Ni-Cu dendrites are simulated using a phase-field model solved with a finite-difference adaptive mesh refinement technique. Dendrite tip velocity selection is examined and found to exhibit a transition between two markedly different regimes as undercooling is increased. At low undercooling, the dendrite tip growth rate is consistent with the kinetics of the classical Stefan problem, where the interface is assume to be in local equilibrium. At high undercooling, the growth velocity selected approaches a linear dependence on melt undercooling, consistent with the continuous growth kinetics of Aziz and with a one-dimensional steady-state phase-field asymptotic analysis of Ahmad [Phys. Rev. E 58, 3436 (1998)]. Our simulations are also consistent with other previously observed behaviors of dendritic growth as undercooling is increased. These include the transition of dendritic morphology to absolute stability and nonequilibrium solute partitioning. Our results show that phase-field models of solidification, which inherently contain a nonzero interface width, can be used to study the dynamics of complex solidification phenomena involving both equilibrium and nonequilibrium interface growth kinetics.
Numerical simulation of phase transition problems with explicit interface tracking
Hu, Yijing; Shi, Qiangqiang; de Almeida, Valmor F.; ...
2015-12-19
Phase change is ubiquitous in nature and industrial processes. Started from the Stefan problem, it is a topic with a long history in applied mathematics and sciences and continues to generate outstanding mathematical problems. For instance, the explicit tracking of the Gibbs dividing surface between phases is still a grand challenge. Our work has been motivated by such challenge and here we report on progress made in solving the governing equations of continuum transport in the presence of a moving interface by the front tracking method. The most pressing issue is the accounting of topological changes suffered by the interfacemore » between phases wherein break up and/or merge takes place. The underlying physics of topological changes require the incorporation of space-time subscales not at reach at the moment. Therefore we use heuristic geometrical arguments to reconnect phases in space. This heuristic approach provides new insight in various applications and it is extensible to include subscale physics and chemistry in the future. We demonstrate the method on applications such as simulating freezing, melting, dissolution, and precipitation. The later examples also include the coupling of the phase transition solution with the Navier-Stokes equations for the effect of flow convection.« less
ERIC Educational Resources Information Center
Physics Education, 1982
1982-01-01
Describes: (1) an apparatus which provides a simple method for measuring Stefan's constant; (2) a simple phase shifting circuit; (3) a radioactive decay computer program (for ZX81); and (4) phase difference between transformer voltages. (Author/JN)
Kurylyk, Barret L.; McKenzie, Jeffrey M; MacQuarrie, Kerry T. B.; Voss, Clifford I.
2014-01-01
Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.
Asinari, Pietro
2009-11-01
A finite difference lattice Boltzmann scheme for homogeneous mixture modeling, which recovers Maxwell-Stefan diffusion model in the continuum limit, without the restriction of the mixture-averaged diffusion approximation, was recently proposed [P. Asinari, Phys. Rev. E 77, 056706 (2008)]. The theoretical basis is the Bhatnagar-Gross-Krook-type kinetic model for gas mixtures [P. Andries, K. Aoki, and B. Perthame, J. Stat. Phys. 106, 993 (2002)]. In the present paper, the recovered macroscopic equations in the continuum limit are systematically investigated by varying the ratio between the characteristic diffusion speed and the characteristic barycentric speed. It comes out that the diffusion speed must be at least one order of magnitude (in terms of Knudsen number) smaller than the barycentric speed, in order to recover the Navier-Stokes equations for mixtures in the incompressible limit. Some further numerical tests are also reported. In particular, (1) the solvent and dilute test cases are considered, because they are limiting cases in which the Maxwell-Stefan model reduces automatically to Fickian cases. Moreover, (2) some tests based on the Stefan diffusion tube are reported for proving the complete capabilities of the proposed scheme in solving Maxwell-Stefan diffusion problems. The proposed scheme agrees well with the expected theoretical results.
NASA Astrophysics Data System (ADS)
Kolesnichenko, A. V.; Marov, M. Ya.
2018-01-01
The defining relations for the thermodynamic diffusion and heat fluxes in a multicomponent, partially ionized gas mixture in an external electromagnetic field have been obtained by the methods of the kinetic theory. Generalized Stefan-Maxwell relations and algebraic equations for anisotropic transport coefficients (the multicomponent diffusion, thermal diffusion, electric and thermoelectric conductivity coefficients as well as the thermal diffusion ratios) associated with diffusion-thermal processes have been derived. The defining second-order equations are derived by the Chapman-Enskog procedure using Sonine polynomial expansions. The modified Stefan-Maxwell relations are used for the description of ambipolar diffusion in the Earth's ionospheric plasma (in the F region) composed of electrons, ions of many species, and neutral particles in a strong electromagnetic field.
A comparison of Fick and Maxwell-Stefan diffusion formulations in PEMFC gas diffusion layers
NASA Astrophysics Data System (ADS)
Lindstrom, Michael; Wetton, Brian
2017-01-01
This paper explores the mathematical formulations of Fick and Maxwell-Stefan diffusion in the context of polymer electrolyte membrane fuel cell cathode gas diffusion layers. The simple Fick law with a diagonal diffusion matrix is an approximation of Maxwell-Stefan. Formulations of diffusion combined with mass-averaged Darcy flow are considered for three component gases. For this application, the formulations can be compared computationally in a simple, one dimensional setting. Despite the models' seemingly different structure, it is observed that the predictions of the formulations are very similar on the cathode when air is used as oxidant. The two formulations give quite different results when the Nitrogen in the air oxidant is replaced by helium (this is often done as a diagnostic for fuel cells designs). The two formulations also give quite different results for the anode with a dilute Hydrogen stream. These results give direction to when Maxwell-Stefan diffusion, which is more complicated to implement computationally in many codes, should be used in fuel cell simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suaste, Ernesto; Castillo, Victor; Gonzalez, Ruben
2004-07-15
A method for determination of the phase transition in piezoelectric ceramic based on the relationship expressed by the Stefan-Boltzmann law is reported, i.e., by means of the radiation that the piezoelectric ceramic emits when it is subjected to different temperatures. The experiment is performed in piezoelectric ceramic based on PbTiO{sub 3} modified by the partial substitution of rare earths for Pb in the Pb{sub 0.88}(Ln){sub 0.08}Ti{sub 0.98}Mn{sub 0.02}O{sub 3} system (Ln=La, Sm, Eu). From the measured emitted radiation, the value of the emissivity is calculated for each type of piezoelectric ceramic.
Modelling Phase Transition Phenomena in Fluids
2015-07-01
Sublimation line r @@I Triple point ? Vapourisation liner @@I Critical point -Fusion line Solid Liquid Gas Figure 1: Schematic of a phase diagram means that the...velocity field can be set zero, and only the balance of energy constitutes the Stefan model. In contrast to this the liquid - gas phase transitions...defined by requiring that the phase-transition line is crossed in a direction from solid to liquid or from liquid to gas (vapour) phases. The term T∗ δs is
Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, S. M.; Xiao, X.; Faber, K. T.
Alumina ceramics were freeze-cast from water- and camphene-based slurries under varying freezing conditions and examined using X-ray computed tomography (XCT). Pore network characteristics, i.e., porosity, pore size, geometric surface area, and tortuosity, were measured from XCT reconstructions and the data were used to develop a model to predict feature size from processing conditions. Classical solidification theory was used to examine relationships between pore size, temperature gradients, and freezing front velocity. Freezing front velocity was subsequently predicted from casting conditions via the two-phase Stefan problem. Resulting models for water-based samples agreed with solidification-based theories predicting lamellar spacing of binary eutectic alloys,more » and models for camphene-based samples concurred with those for dendritic growth. Relationships between freezing conditions and geometric surface area were also modeled by considering the inverse relationship between pore size and surface area. Tortuosity was determined to be dependent primarily on the type of dispersion medium. (C) 2015 Elsevier Ltd. All rights reserved.« less
NASA Astrophysics Data System (ADS)
Dodd, Michael; Ferrante, Antonino
2017-11-01
Our objective is to perform DNS of finite-size droplets that are evaporating in isotropic turbulence. This requires fully resolving the process of momentum, heat, and mass transfer between the droplets and surrounding gas. We developed a combined volume-of-fluid (VOF) method and low-Mach-number approach to simulate this flow. The two main novelties of the method are: (i) the VOF algorithm captures the motion of the liquid gas interface in the presence of mass transfer due to evaporation and condensation without requiring a projection step for the liquid velocity, and (ii) the low-Mach-number approach allows for local volume changes caused by phase change while the total volume of the liquid-gas system is constant. The method is verified against an analytical solution for a Stefan flow problem, and the D2 law is verified for a single droplet in quiescent gas. We also demonstrate the schemes robustness when performing DNS of an evaporating droplet in forced isotropic turbulence.
NASA Astrophysics Data System (ADS)
Fowler, Kathryn; Connolly, Paul J.; Topping, David O.; O'Meara, Simon
2018-02-01
The composition of atmospheric aerosol particles has been found to influence their micro-physical properties and their interaction with water vapour in the atmosphere. Core-shell models have been used to investigate the relationship between composition, viscosity and equilibration timescales. These models have traditionally relied on the Fickian laws of diffusion with no explicit account of non-ideal interactions. We introduce the Maxwell-Stefan diffusion framework as an alternative method, which explicitly accounts for non-ideal interactions through activity coefficients. e-folding time is the time it takes for the difference in surface and bulk concentration to change by an exponential factor and was used to investigate the interplay between viscosity and solubility and the effect this has on equilibration timescales within individual aerosol particles. The e-folding time was estimated after instantaneous increases in relative humidity to binary systems of water and an organic component. At low water mole fractions, viscous effects were found to dominate mixing. However, at high water mole fractions, equilibration times were more sensitive to a range in solubility, shown through the greater variation in e-folding times. This is the first time the Maxwell-Stefan framework has been applied to an atmospheric aerosol core-shell model and shows that there is a complex interplay between the viscous and solubility effects on aerosol composition that requires further investigation.
NASA Astrophysics Data System (ADS)
Varady, Mark; Bringuier, Stefan; Pearl, Thomas; Stevenson, Shawn; Mantooth, Brent
Decontamination of polymers exposed to chemical warfare agents (CWA) often proceeds by application of a liquid solution. Absorption of some decontaminant components proceed concurrently with extraction of the CWA, resulting in multicomponent diffusion in the polymer. In this work, the Maxwell-Stefan equations were used with the Flory-Huggins model of species activity to mathematically describe the transport of two species within a polymer. This model was used to predict the extraction of the nerve agent O-ethyl S-[2(diisopropylamino)ethyl] methylphosphonothioate (VX) from a silicone elastomer into both water and methanol. Comparisons with experimental results show good agreement with minimal fitting of model parameters from pure component uptake data. Reaction of the extracted VX with sodium hydroxide in the liquid-phase was also modeled and used to predict the overall rate of destruction of VX. Although the reaction proceeds more slowly in the methanol-based solution compared to the aqueous solution, the extraction rate is faster due to increasing VX mobility as methanol absorbs into the silicone, resulting in an overall faster rate of VX destruction.
PEG 400-Based Phase Change Materials Nano-Enhanced with Functionalized Graphene Nanoplatelets.
Marcos, Marco A; Cabaleiro, David; Guimarey, María J G; Comuñas, María J P; Fedele, Laura; Fernández, Josefa; Lugo, Luis
2017-12-29
This study presents new Nano-enhanced Phase Change Materials, NePCMs, formulated as dispersions of functionalized graphene nanoplatelets in a poly(ethylene glycol) with a mass-average molecular mass of 400 g·mol -1 for possible use in Thermal Energy Storage. Morphology, functionalization, purity, molecular mass and thermal stability of the graphene nanomaterial and/or the poly(ethylene glycol) were characterized. Design parameters of NePCMs were defined on the basis of a temporal stability study of nanoplatelet dispersions using dynamic light scattering. Influence of graphene loading on solid-liquid phase change transition temperature, latent heat of fusion, isobaric heat capacity, thermal conductivity, density, isobaric thermal expansivity, thermal diffusivity and dynamic viscosity were also investigated for designed dispersions. Graphene nanoplatelet loading leads to thermal conductivity enhancements up to 23% while the crystallization temperature reduces up to in 4 K. Finally, the heat storage capacities of base fluid and new designed NePCMs were examined by means of the thermophysical properties through Stefan and Rayleigh numbers. Functionalized graphene nanoplatelets leads to a slight increase in the Stefan number.
PEG 400-Based Phase Change Materials Nano-Enhanced with Functionalized Graphene Nanoplatelets
Marcos, Marco A.; Guimarey, María J. G.; Comuñas, María J. P.
2017-01-01
This study presents new Nano-enhanced Phase Change Materials, NePCMs, formulated as dispersions of functionalized graphene nanoplatelets in a poly(ethylene glycol) with a mass-average molecular mass of 400 g·mol−1 for possible use in Thermal Energy Storage. Morphology, functionalization, purity, molecular mass and thermal stability of the graphene nanomaterial and/or the poly(ethylene glycol) were characterized. Design parameters of NePCMs were defined on the basis of a temporal stability study of nanoplatelet dispersions using dynamic light scattering. Influence of graphene loading on solid-liquid phase change transition temperature, latent heat of fusion, isobaric heat capacity, thermal conductivity, density, isobaric thermal expansivity, thermal diffusivity and dynamic viscosity were also investigated for designed dispersions. Graphene nanoplatelet loading leads to thermal conductivity enhancements up to 23% while the crystallization temperature reduces up to in 4 K. Finally, the heat storage capacities of base fluid and new designed NePCMs were examined by means of the thermophysical properties through Stefan and Rayleigh numbers. Functionalized graphene nanoplatelets leads to a slight increase in the Stefan number. PMID:29286324
Heavy Fermion Materials and Quantum Phase Transitions Workshop on Frontiers of the Kondo Effect
2016-02-12
Stefan Kirchner (Max Planck) discussed the role of quantum criticality on the superconducting condensation in heavy-fermion superconductors , and...Collin Broholm (Johns Hopkins) discussed magnetic excitations of heavy fermion superconductors . The workshop concluded with a wide-ranging talk by
The Cybersecurity Challenge in Acquisition
2016-04-30
problems. Scarier yet, another group took control of a car’s computers through a cellular telephone and Bluetooth connections and could access...did more extensive work, hacking their way into a 2009 midsize car through its cellular, Bluetooth , and other wireless connections. Stefan Savage, a
Schremb, Markus; Campbell, James M; Christenson, Hugo K; Tropea, Cameron
2017-05-16
The thermal influence of a solid wall on the solidification of a sessile supercooled water drop is experimentally investigated. The velocity of the initial ice layer propagating along the solid substrate prior to dendritic solidification is determined from videos captured using a high-speed video system. Experiments are performed for varying substrate materials and liquid supercooling. In contrast to recent studies at moderate supercooling, in the case of metallic substrates only a weak influence of the substrate's thermal properties on the ice layer velocity is observed. Using the analytical solution of the two-phase Stefan problem, a semiempirical model for the ice layer velocity is developed. The experimental data are well described for all supercooling levels in the entire diffusion limited solidification regime. For higher supercooling, the model overestimates the freezing velocity due to kinetic effects during molecular attachment at the solid-liquid interface, which are not accounted for in the model. The experimental findings of the present work offer a new perspective on the design of anti-icing systems.
Multi-Component Diffusion with Application To Computational Aerothermodynamics
NASA Technical Reports Server (NTRS)
Sutton, Kenneth; Gnoffo, Peter A.
1998-01-01
The accuracy and complexity of solving multicomponent gaseous diffusion using the detailed multicomponent equations, the Stefan-Maxwell equations, and two commonly used approximate equations have been examined in a two part study. Part I examined the equations in a basic study with specified inputs in which the results are applicable for many applications. Part II addressed the application of the equations in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) computational code for high-speed entries in Earth's atmosphere. The results showed that the presented iterative scheme for solving the Stefan-Maxwell equations is an accurate and effective method as compared with solutions of the detailed equations. In general, good accuracy with the approximate equations cannot be guaranteed for a species or all species in a multi-component mixture. 'Corrected' forms of the approximate equations that ensured the diffusion mass fluxes sum to zero, as required, were more accurate than the uncorrected forms. Good accuracy, as compared with the Stefan- Maxwell results, were obtained with the 'corrected' approximate equations in defining the heating rates for the three Earth entries considered in Part II.
Heat transfer in damaged material
NASA Astrophysics Data System (ADS)
Kruis, J.
2013-10-01
Fully coupled thermo-mechanical analysis of civil engineering problems is studied. The mechanical analysis is based on damage mechanics which is useful for modeling of behaviour of quasi-brittle materials, especially in tension. The damage is assumed to be isotropic. The heat transfer is assumed in the form of heat conduction governed by the Fourier law and heat radiation governed by the Stefan-Boltzmann law. Fully coupled thermo-mechanical problem is formulated.
NASA Astrophysics Data System (ADS)
Fukao, Takeshi; Kurima, Shunsuke; Yokota, Tomomi
2018-05-01
This paper develops an abstract theory for subdifferential operators to give existence and uniqueness of solutions to the initial-boundary problem (P) for the nonlinear diffusion equation in an unbounded domain $\\Omega\\subset\\mathbb{R}^N$ ($N\\in{\\mathbb N}$), written as \\[ \\frac{\\partial u}{\\partial t} + (-\\Delta+1)\\beta(u) = g \\quad \\mbox{in}\\ \\Omega\\times(0, T), \\] which represents the porous media, the fast diffusion equations, etc., where $\\beta$ is a single-valued maximal monotone function on $\\mathbb{R}$, and $T>0$. Existence and uniqueness for (P) were directly proved under a growth condition for $\\beta$ even though the Stefan problem was excluded from examples of (P). This paper completely removes the growth condition for $\\beta$ by confirming Cauchy's criterion for solutions of the following approximate problem (P)$_{\\varepsilon}$ with approximate parameter $\\varepsilon>0$: \\[ \\frac{\\partial u_{\\varepsilon}}{\\partial t} + (-\\Delta+1)(\\varepsilon(-\\Delta+1)u_{\\varepsilon} + \\beta(u_{\\varepsilon}) + \\pi_{\\varepsilon}(u_{\\varepsilon})) = g \\quad \\mbox{in}\\ \\Omega\\times(0, T), \\] which is called the Cahn--Hilliard system, even if $\\Omega \\subset \\mathbb{R}^N$ ($N \\in \\mathbb{N}$) is an unbounded domain. Moreover, it can be seen that the Stefan problem is covered in the framework of this paper.
Droplet evaporation and combustion in a liquid-gas multiphase system
NASA Astrophysics Data System (ADS)
Muradoglu, Metin; Irfan, Muhammad
2017-11-01
Droplet evaporation and combustion in a liquid-gas multiphase system are studied computationally using a front-tracking method. One field formulation is used to solve the flow, energy and species equations with suitable jump conditions. Both phases are assumed to be incompressible; however, the divergence-free velocity field condition is modified to account for the phase change at the interface. Both temperature and species gradient driven phase change processes are simulated. Extensive validation studies are performed using the benchmark cases: The Stefan and the sucking interface problems, d2 law and wet bulb temperature comparison with the psychrometric chart values. The phase change solver is then extended to incorporate the burning process following the evaporation as a first step towards the development of a computational framework for spray combustion. We used detailed chemistry, variable transport properties and ideal gas behaviour for a n-heptane droplet combustion; the chemical kinetics being handled by the CHEMKIN. An operator-splitting approach is used to advance temperature and species mass fraction in time. The numerical results of the droplet burning rate, flame temperature and flame standoff ratio show good agreement with the experimental and previous numeric.
Energy Barriers and Hysteresis in Martensitic Phase Transformations
2008-08-01
glacial acetic acid (CH3COOH) and 10-15% perchloric acid (HCLO4) by volume, the cathode was stainless steel , the anode was stainless steel or Ti, the...Submitted to Acta Materialia Energy barriers and hysteresis in martensitic phase transformations Zhiyong Zhang, Richard D. James and Stefan Müller...hysteresis based on the growth from a small scale of fully developed austenite martensite needles. In this theory the energy of the transition layer plays a
PREFACE: 6th International Workshop on Multi-Rate Processes and Hysteresis (MURPHYS2012)
NASA Astrophysics Data System (ADS)
Dimian, Mihai; Rachinskii, Dmitrii
2015-02-01
The International Workshop on Multi-Rate Processes and Hysteresis (MURPHYS) conference series focuses on multiple scale systems, singular perturbation problems, phase transitions and hysteresis phenomena occurring in physical, biological, chemical, economical, engineering and information systems. The 6th edition was hosted by Stefan cel Mare University in the city of Suceava located in the beautiful multicultural land of Bukovina, Romania, from May 21 to 24, 2012. This continued the series of biennial multidisciplinary conferences organized in Cork, Ireland from 2002 to 2008 and in Pécs, Hungary in 2010. The MURPHYS 2012 Workshop brought together more than 50 researchers in hysteresis and multi-scale phenomena from the United State of America, the United Kingdom, France, Germany, Italy, Ireland, Czech Republic, Hungary, Greece, Ukraine, and Romania. Participants shared and discussed new developments of analytical techniques and numerical methods along with a variety of their applications in various areas, including material sciences, electrical and electronics engineering, mechanical engineering and civil structures, biological and eco-systems, economics and finance. The Workshop was sponsored by the European Social Fund through Sectoral Operational Program Human Resources 2007-2013 (PRO-DOCT) and Stefan cel Mare University, Suceava. The Organizing Committee was co-chaired by Mihai Dimian from Stefan cel Mare University, Suceava (Romania), Amalia Ivanyi from the University of Pecs (Hungary), and Dmitrii Rachinskii from the University College Cork (Ireland). All papers published in this volume of Journal of Physics: Conference Series have been peer reviewed through processes administered by the Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing. The Guest Editors wish to place on record their sincere gratitude to Miss Sarah Toms for the assistance she provided during the publication process. More information about the Workshop can be found at http://www.murphys.usv.ro/ Mihai Dimian and Dmitrii Rachinskii Guest Editors for Journal of Physics: Conference Series Proceedings of the 6th International Workshop on Multi-Rate Processes and Hysteresis
NASA Astrophysics Data System (ADS)
Kislitsyn, A. A.; Shastunova, U. Yu.; Yanbikova, Yu. F.
2018-05-01
On an experimental setup, the authors have measured temperature fields in frozen soil during the filling of a reservoir with hot heat-transfer agent (oil), and also the change in the shape and position of the front of ice melting (isotherms T = 0°C) with time. The approximate solution of a two-dimensional Stefan problem on thawing of frozen soil has been given; it has been shown that satisfactory agreement with experimental results can only be obtained with account taken of the convective transfer of heat due to the water motion in the region of thawed soil.
NASA Astrophysics Data System (ADS)
Kislitsyn, A. A.; Shastunova, U. Yu.; Yanbikova, Yu. F.
2018-03-01
On an experimental setup, the authors have measured temperature fields in frozen soil during the filling of a reservoir with hot heat-transfer agent (oil), and also the change in the shape and position of the front of ice melting (isotherms T = 0°C) with time. The approximate solution of a two-dimensional Stefan problem on thawing of frozen soil has been given; it has been shown that satisfactory agreement with experimental results can only be obtained with account taken of the convective transfer of heat due to the water motion in the region of thawed soil.
Controlling Particle Morphologies at Fluid Interfaces: Macro- and Micro- approaches
NASA Astrophysics Data System (ADS)
Beesabathuni, Shilpa Naidu
The controlled generation of varying shaped particles is important for many applications: consumer goods, biomedical diagnostics, food processing, adsorbents and pharmaceuticals which can benefit from the availability of geometrically complex and chemically inhomogeneous particles. This thesis presents two approaches to spherical and non-spherical particle synthesis using macro and microfluidics. In the first approach, a droplet microfluidic technique is explored to fabricate spherical conducting polymer, polyaniline, particles with precise control over morphology and functionality. Microfluidics has recently emerged as an important alternate to the synthesis of complex particles. The conducting polymer, polyaniline, is widely used and known for its stability, high conductivity, and favorable redox properties. In this approach, monodisperse micron-sized polyaniline spherical particles were synthesized using two-phase droplet microfluidics from Aniline and Ammonium persulfate oxidative polymerization in an oil-based continuous phase. The morphology of the polymerized particles is porous in nature which can be used for encapsulation as well as controlled release applications. Encapsulation of an enzyme, glucose oxidase, was also performed using the technique to synthesize microspheres for glucose sensing. The polymer microspheres were characterized using SEM, UV-Vis and EDX to understand the relationship between their microstructure and stability. In the second approach, molten drop impact in a cooling aqueous medium to generate non-spherical particles was explored. Viscoelastic wax based materials are widely used in many applications and their performance and application depends on the particle morphology and size. The deformation of millimeter size molten wax drops as they impacted an immiscible liquid interface was investigated. Spherical molten wax drops impinged on a cooling water bath, then deformed and as a result of solidification were arrested into various shapes such as ellipsoids, mushrooms, spherulites and discs. The final morphology of the wax particles is governed by the interfacial, inertial, viscous and thermal effects, which can be studied over a range of Weber, Capillary, Reynolds and Stefan numbers. A simplified Stefan problem for a spherical drop was solved. The time required to initiate a phase transition at the interface of the molten wax and water after impact was estimated and correlated with the drop deformation history and final wax particle shape to develop a capability to predict the shape. While the microfluidic synthesis approach offers precise control over morphology and functionality, large particle throughput is a limitation. The drop impact in a liquid medium emulsion approach is limited to crosslinking or heat sensitive materials but can be extended to large scale production for industrial applications. Both approaches are simple, robust and cost effective making them viable and attractive solutions for complex particle synthesis. The choice of the approach is dependent on considerations such as particle material, size, shape, throughput and end application.
NASA Astrophysics Data System (ADS)
Fu, Yu-Hang; Bai, Lin; Luo, Kai-Hong; Jin, Yong; Cheng, Yi
2017-04-01
In this work, we propose a general approach for modeling mass transfer and reaction of dilute solute(s) in incompressible three-phase flows by introducing a collision operator in lattice Boltzmann (LB) method. An LB equation was used to simulate the solute dynamics among three different fluids, in which the newly expanded collision operator was used to depict the interface behavior of dilute solute(s). The multiscale analysis showed that the presented model can recover the macroscopic transport equations derived from the Maxwell-Stefan equation for dilute solutes in three-phase systems. Compared with the analytical equation of state of solute and dynamic behavior, these results are proven to constitute a generalized framework to simulate solute distributions in three-phase flows, including compound soluble in one phase, compound adsorbed on single-interface, compound in two phases, and solute soluble in three phases. Moreover, numerical simulations of benchmark cases, such as phase decomposition, multilayered planar interfaces, and liquid lens, were performed to test the stability and efficiency of the model. Finally, the multiphase mass transfer and reaction in Janus droplet transport in a straight microchannel were well reproduced.
Application of temporal LNC logic in artificial intelligence
NASA Astrophysics Data System (ADS)
Adamek, Marek; Mulawka, Jan
2016-09-01
This paper presents the temporal logic inference engine developed in our university. It is an attempt to demonstrate implementation and practical application of temporal logic LNC developed in Cardinal Stefan Wyszynski University in Warsaw.1 The paper describes the fundamentals of LNC logic, architecture and implementation of inference engine. The practical application is shown by providing the solution for popular in Artificial Intelligence problem of Missionaries and Cannibals in terms of LNC logic. Both problem formulation and inference engine are described in details.
Harp, Dylan R.; Atchley, Adam L.; Painter, Scott L.; ...
2016-02-11
Here, the effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21more » $$^{st}$$ century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant, is less than that produced by structural climate model uncertainty for this location.« less
Harp, D. R.; Atchley, A. L.; Painter, S. L.; ...
2015-06-29
The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows formore » the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. As a result, by comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant, is less than that produced by structural climate model uncertainty for this location.« less
NASA Astrophysics Data System (ADS)
Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.
2016-02-01
The effects of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The null-space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of predictive uncertainty (due to soil property (parametric) uncertainty) and the inter-annual climate variability due to year to year differences in CESM climate forcings. After calibrating to measured borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant predictive uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Inter-annual climate variability in projected soil moisture content and Stefan number are small. A volume- and time-integrated Stefan number decreases significantly, indicating a shift in subsurface energy utilization in the future climate (latent heat of phase change becomes more important than heat conduction). Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we quantify the relative magnitude of soil property uncertainty to another source of permafrost uncertainty, structural climate model uncertainty. We show that the effect of calibration-constrained uncertainty in soil properties, although significant, is less than that produced by structural climate model uncertainty for this location.
NASA Astrophysics Data System (ADS)
Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.
2015-06-01
The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant, is less than that produced by structural climate model uncertainty for this location.
Unanimous Constitutional Consent and the Immigration Problem
2004-12-01
Wolf, EU-Erweiterung: Anmerkungen zum Balassa - Samuelson -Effekt, Nr. 3/2002, erschienen in: Stefan Reitz (Hg.): Theoretische und wirtschafispolitische...the individualistic norm. Their main argument is that the contradiction between collective coercion and individual freedom cannot be dissolved at the... arguments against this way of reasoning for there usually will be holes in that veil, so that it may be possible to draw conclusions from the past with
Scale/Analytical Analyses of Freezing and Convective Melting with Internal Heat Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali S. Siahpush; John Crepeau; Piyush Sabharwall
2013-07-01
Using a scale/analytical analysis approach, we model phase change (melting) for pure materials which generate constant internal heat generation for small Stefan numbers (approximately one). The analysis considers conduction in the solid phase and natural convection, driven by internal heat generation, in the liquid regime. The model is applied for a constant surface temperature boundary condition where the melting temperature is greater than the surface temperature in a cylindrical geometry. The analysis also consider constant heat flux (in a cylindrical geometry).We show the time scales in which conduction and convection heat transfer dominate.
Monetary and Fiscal Policy Interactions in the Euro Area
2004-03-01
Balassa - Samuelson -Effekt, Nr. 3/2002, erschienen in: Stefan Reitz (Hg.): Theoretische und wirtschaftspolitische Aspekte der internatio- nalen Integration...156, 2000, S. 646-660. Friihere Diskussionsbeitriige zur Finanzwissenschaft Josten, Stefan, Crime, Inequality, and Economic Growth. A Classical Argument
Podolsky electromagnetism at finite temperature: Implications on the Stefan-Boltzmann law
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonin, C. A.; Bufalo, R.; Pimentel, B. M.
2010-01-15
In this work we study Podolsky electromagnetism in thermodynamic equilibrium. We show that a Podolsky mass-dependent modification to the Stefan-Boltzmann law is induced and we use experimental data to limit the possible values for this free parameter.
Solidification of a binary mixture
NASA Technical Reports Server (NTRS)
Antar, B. N.
1982-01-01
The time dependent concentration and temperature profiles of a finite layer of a binary mixture are investigated during solidification. The coupled time dependent Stefan problem is solved numerically using an implicit finite differencing algorithm with the method of lines. Specifically, the temporal operator is approximated via an implicit finite difference operator resulting in a coupled set of ordinary differential equations for the spatial distribution of the temperature and concentration for each time. Since the resulting differential equations set form a boundary value problem with matching conditions at an unknown spatial point, the method of invariant imbedding is used for its solution.
Droplet size effects on film drainage between droplet and substrate.
Steinhaus, Benjamin; Spicer, Patrick T; Shen, Amy Q
2006-06-06
When a droplet approaches a solid surface, the thin liquid film between the droplet and the surface drains until an instability forms and then ruptures. In this study, we utilize microfluidics to investigate the effects of film thickness on the time to film rupture for water droplets in a flowing continuous phase of silicone oil deposited on solid poly(dimethylsiloxane) (PDMS) surfaces. The water droplets ranged in size from millimeters to micrometers, resulting in estimated values of the film thickness at rupture ranging from 600 nm down to 6 nm. The Stefan-Reynolds equation is used to model film drainage beneath both millimeter- and micrometer-scale droplets. For millimeter-scale droplets, the experimental and analytical film rupture times agree well, whereas large differences are observed for micrometer-scale droplets. We speculate that the differences in the micrometer-scale data result from the increases in the local thin film viscosity due to confinement-induced molecular structure changes in the silicone oil. A modified Stefan-Reynolds equation is used to account for the increased thin film viscosity of the micrometer-scale droplet drainage case.
Heating Parameter Estimation Using Coaxial Thermocouple Gages in Wind Tunnel Test Articles.
1984-12-01
Attack a Emissivity G Parameter Vector Pn Measurement Vector at nth Time Point p Density 0 Stefan-Boltzmann Constant 6 Transition Matrix APc Scaling...for. The radiation is modeled using the Stefan-Boltzmann Law, q = 60(U 4 - U, 4 ) (A-9) where 8 radiative emissivity a Stefan-Bol tzmann constant U...w00 I- 000 0 0111c :0 i zZ Z-4lwr I- E . - t J K - IL HHO "W 6i 0WZWZWO&000OW *0 . 0 - .- - -4 4 1"- 1 Lii w LiiU Li LI Li Lij Liw w ~ o 0 0wm ~wW6~w d
Determining Planetary Temperatures with the Stefan-Boltzmann Law
ERIC Educational Resources Information Center
LoPresto, Michael C.; Hagoort, Nichole
2011-01-01
What follows is a description of several activities involving the Stefan-Boltzmann radiation law that can provide laboratory experience beyond what is normally found in traditional introductory thermodynamics experiments on thermal expansion, specific heat, and heats of transformation. The activities also provide more extensive coverage of and…
Dr. Stefan Ambs: Increasing Diversity in Cancer Research: One Lab at a Time
As part of the series “Increasing Diversity in Cancer Research,” CRCHD interviewed Dr. Stefan Ambs, an investigator at NCI’s Center for Cancer Research, who is using novel approaches to discover gene differences in the tumors of African American patients.
Of Big Hegemonies and Little Tigers: Ecocentrism and Environmental Justice
ERIC Educational Resources Information Center
Kopnina, Helen
2016-01-01
Stefan Bengtsson's commentary about policy hegemony discusses the alternative discourses of socialism, nationalism, and globalism. However, Stefan does not adequately demonstrate how these discourses can overcome the Dominant Western Worldview (DWW), which is imbued with anthropocentrism. It will be argued here that most policy choices promoting…
NASA Astrophysics Data System (ADS)
Soba, A.; Denis, A.
2007-03-01
The codes PLACA and DPLACA, elaborated in this working group, simulate the behavior of a plate-type fuel containing in its core a foil of monolithic or dispersed fissile material, respectively, under normal operation conditions of a research reactor. Dispersion fuels usually consist of ceramic particles of a uranium compound in a high thermal conductivity matrix. The use of particles of a U-Mo alloy in a matrix of Al requires especially devoted subroutines able to simulate the growth of the interaction layer that develops between the particles and the matrix. A model is presented in this work that gives account of these particular phenomena. It is based on the assumption that diffusion of U and Al through the layer is the rate-determining step. Two moving interfaces separate the growing reaction layer from the original phases. The kinetics of these boundaries are solved as Stefan problems. In order to test the model and the associated code, some previous, simpler problems corresponding to similar systems for which analytical solutions or experimental data are known were simulated. Experiments performed with planar U-Mo/Al diffusion couples are reported in the literature, which purpose is to obtain information on the system parameters. These experiments were simulated with PLACA. Results of experiments performed with U-Mo particles disperse in Al either without or with irradiation, published in the open literature were simulated with DPLACA. A satisfactory prediction of the whole reaction layer thickness and of the individual fractions corresponding to alloy and matrix consumption was obtained.
An experimental study of laminar film condensation with Stefan number greater than unity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahajan, R.L.; Dickinson, D.A.; Chu, T.Y.
1991-05-01
Experimental laminar condensation heat transfer data are reported for fluids with Stefan number up to 3.5. The fluid is a member of a family of fluorinated fluids, which have been used extensively in the electronics industry for soldering, cooling, and testing applications. Experiments were performed by suddenly immersing cold copper spheres in the saturated vapor of this fluid, and heat transfer rates were calculated using the quasi-steady temperature response of the spheres. In these experiments, the difference between saturation and wall temperature varied from 0.5C to 190C. Over this range of temperature difference, the condensate properties vary significantly; viscosity ofmore » the condensate varies by a factor of nearly 50. Corrections for the temperature-dependent properties of the condensate therefore were incorporated in calculating the Nusselt number based on the average heat transfer coefficient. The results are discussed in light of past experimental data and theory for Stefan number less than unity. To the knowledge of the authors, this is the first reported study of condensation heat transfer examining the effects of Stefan number greater than unity.« less
Modeling Ignition of HMX with the Gibbs Formulation
NASA Astrophysics Data System (ADS)
Lee, Kibaek; Stewart, D. Scott
2017-06-01
We present a HMX model with the Gibbs formulation in which stress tensor and temperature are assumed to be in local equilibrium, but phase/chemical changes are not assumed to be in equilibrium. We assume multi-components for HMX including beta- and delta-phase, liquid, and gas phase of HMX and its gas products. Isotropic small strain solid model, modified Fried Howard liquid EOS, and ideal gas EOS are used for its relevant component. Phase/chemical changes are characterized as reactions and are in individual reaction rate. Maxwell-Stefan model is used for diffusion. Excited gas products in the local domain lead unreacted HMX solid to the ignition event. Density of the mixture, stress, strain, displacement, mass fractions, and temperature are considered in 1D domain with time histories. Office of Naval Research and Air Force Office of Scientific Research.
NASA Astrophysics Data System (ADS)
Enders, P.; Galley, J.
1988-11-01
The dynamics of heat transfer in stripe GaAlAs laser diodes is investigated by solving the linear diffusion equation for a quasitwo-dimensional multilayer structure. The calculations are rationalized drastically by the transfer matrix method and also using for the first time the asymptotes of the decay constants. Special attention is given to the convergence of the Fourier series. A comparison with experimental results reveals however that this is essentially the Stefan problem (with moving boundary conditions).
A Transition in the Cumulative Reaction Rate of Two Species Diffusion with Bimolecular Reaction
NASA Astrophysics Data System (ADS)
Rajaram, Harihar; Arshadi, Masoud
2015-04-01
Diffusion and bimolecular reaction between two initially separated reacting species is a prototypical small-scale description of reaction induced by transverse mixing. It is also relevant to diffusion controlled transport regimes as encountered in low-permeability matrix blocks in fractured media. In previous work, the reaction-diffusion problem has been analyzed as a Stefan problem involving a distinct moving boundary (reaction front), which predicts that front motion scales as √t, and the cumulative reaction rate scales as 1/√t-. We present a general non-dimensionalization of the problem and a perturbation analysis to show that there is an early time regime where the cumulative reaction rate scales as √t- rather than 1/√t. The duration of this early time regime (where the cumulative rate is kinetically rather than diffusion controlled) depends on the rate parameter, in a manner that is consistently predicted by our non-dimensionalization. We also present results on the scaling of the reaction front width. We present numerical simulations in homogeneous and heterogeneous porous media to demonstrate the limited influence of heterogeneity on the behavior of the reaction-diffusion system. We illustrate applications to the practical problem of in-situ chemical oxidation of TCE and PCE by permanganate, which is employed to remediate contaminated sites where the DNAPLs are largely dissolved in the rock matrix.
The inverse problem for definition of the shape of a molten contact bridge
NASA Astrophysics Data System (ADS)
Kharin, Stanislav N.; Sarsengeldin, Merey M.
2017-09-01
The paper presents the results of investigation of bridging phenomenon occurring at opening of electrical contacts. The mathematical model describing the dynamics of metal molten bridge takes into account the Thomson effect. It is based on the system of partial differential equations for temperature and electrical fields of the bridge in the domain containing two moving unknown boundaries. One of them is an interface between liquid and solid zones of the bridge and should be found by the solution of the corresponding Stefan problem. The second free boundary corresponds to the shape of the visible part of a bridge. Its definition is an inverse problem, for which solution it is necessary to find minimum of the energy consuming for the formation of the shape of a quasi-stationary bridge. Three components of this energy, namely surface tension, pinch effect and gravitation, are defined by the functional which minimum gives the required shape of the bridge. The solution of corresponding variation problem is found by the reduction of the problem to the solution of the system of ordinary differential equations. Calculated values of the voltage of the bridge rupture for various metals are in a good agreement with the experimental data. The criteria responsible for the mechanism of molten bridge rupture are introduced in the paper.
An experimental study of laminar film condensation with Stefan number greater than unity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahajan, R.L.; Dickinson, D.A.; Chu, T.Y.
1990-01-01
Experimental laminar condensation heat transfer data is reported for fluids with Stefan number up to 3.5. The fluid is a member of a family of fluorinated fluids developed in the last decade which have been extensively used in the electronics industry for soldering, cooling, and testing applications. Experiments were performed by suddenly immersing cold copper spheres in the saturated vapor of this fluid, and heat transfer rates were calculated using the quasi-steady temperature response of the spheres. In these experiments, the difference between saturation and wall temperature varied from 0.5{degree}C to 190{degree}C. Over this range of temperature difference, the condensatemore » properties vary significantly. For example, viscosity of the condense varies by a factor of over 50. Corrections for the temperature dependent properties of the condensate therefore were incorporated in calculating the Nusselt number based on the average heat transfer coefficient. The results are discussed in light of past experimental data theory for Stefan number less than 1. To the knowledge of the authors, this is the first reported study of condensation heat transfer for Stefan number greater that unity. 24 refs., 7 figs., 2 tabs.« less
Mass transport in gas diffusion layers of proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Martinez, Michael J.
This dissertation describes fundamental properties of gas diffusion media (GDM) and their relationship to the mass transport in proton exchange membrane fuel cells (PEMFCs). First, the accuracy of solving the multi-component equations for PEMFC by using a computational fluid dynamics (CFD) technique is examined. This technique uses an approximated multi-component (AMC) model with a correction term that guarantees the overall mass balance. Accuracy is assessed by comparing the species concentrations computed with the Maxwell-Stefan and the AMC model. This comparison is important because the structure of some CFD programs does not permit the direct use of the Maxwell-Stefan equations. Here, it is shown that the maximum error between the two models is less than 5%. Second, the ratio of tortuosity to porosity, known as the MacMullin number, is reported for different carbon cloth and carbon paper GDM. This analysis show that only carbon cloths GDM follow the commonly accepted Bruggeman equation and that carbon paper GDM have a different relationship between the tortuosity and the porosity. These differences are discussed in terms of path length created by the orientation of fibers of each GDM. Third, data for the hydrophilic and hydrophobic pore size distributions (PSD) are presented for two types of GDM used in PEMFCs. The data were obtained by using two common measurement methods, intrusion porosimetry (IP) and the method of standard porosimetry (MSP). The use of multiple working fluids to access hydrophilic and hydrophobic pores is discussed as well as the limitations associated with structural changes of the GDM during the tests. The differences in interpretations of the data between the two methods for both GDM have significant implications relative to the distribution of hydrophilic and hydrophobic pores that control liquid water transport. Finally, a two-phase mass-transport-only model (MTOM) that incorporates the tortuosity and the PSD data described above is presented. The model provides an understanding of the effect of PSD in the water transport by decoupling it from other factors. The MTOM shows that differences in GDM structure produce significant differences in the liquid saturation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gim, Yongwan; Kim, Wontae, E-mail: yongwan89@sogang.ac.kr, E-mail: wtkim@sogang.ac.kr
In warm inflation scenarios, radiation always exists, so that the radiation energy density is also assumed to be finite when inflation starts. To find out the origin of the non-vanishing initial radiation energy density, we revisit thermodynamic analysis for a warm inflation model and then derive an effective Stefan-Boltzmann law which is commensurate with the temperature-dependent effective potential by taking into account the non-vanishing trace of the total energy-momentum tensors. The effective Stefan-Boltzmann law shows that the zero energy density for radiation at the Grand Unification epoch increases until the inflation starts and it becomes eventually finite at the initialmore » stage of warm inflation. By using the above effective Stefan-Boltzmann law, we also study the cosmological scalar perturbation, and obtain the sufficient radiation energy density in order for GUT baryogenesis at the end of inflation.« less
Global Phenomena from Local Rules: Peer-to-Peer Networks and Crystal Steps
2007-01-01
2005. http://www.cachelogic.com, August 2005. [43] Vern Paxson and Sally Floyd. Wide area traffic: The failure of poisson modeling. IEEE/ACM...International Workshop on Peer-to-Peer Systems (IPTPS), Cambridge, Massachusetts, USA, March 2002. [45] Stefan Saroiu, Krishna P. Gummadi, Richard J...Implementation (ODSI), Boston, Mas- sachusetts, USA, December 2002. [46] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A measurement study of peer
RENDEZVOUS: Self-Organizing Services in an Active Network
2004-02-01
http://www.cs.washington.edu/research/networking/ants/, and http://www.cs.utah.edu/flux/janos/ants.html, 2001. [2] Krishna P. Gummadi, “King...Proceedings of the Tenth ACM SIGOPS European Workshop, September 2002. [9] Stefan Saroiu, P. Krishna Gummadi, Steven D. Gribble: A Measurement Study...Davis, Eric Lemar, and Brian Bershad. “Migration for Pervasive Applications.” Submitted to OSDI, June 2002. Gummadi, P. Krishna , Stefan Saroiu, and
Experimental Investigation of Irregular Wave Cancellation Using a Cycloidal Wave Energy Converter
2012-07-01
83388 EXPERIMENTAL INVESTIGATION OF IRREGULAR WAVE CANCELLATION USING A CYCLOIDAL WAVE ENERGY CONVERTER Stefan G. Siegel∗ Department of Aeronautics...United States Air Force Academy Air Force Academy, Colorado, 80840 USA Email: stefan @siegels.us Casey Fagley Department of Aeronautics United States Air...would like to acknowledge fruitful discussion with Dr. Jürgen Seidel and Dr. Tiger Jeans. This material is based upon activities supported by the
Finite-Size Effects of Binary Mutual Diffusion Coefficients from Molecular Dynamics
2018-01-01
Molecular dynamics simulations were performed for the prediction of the finite-size effects of Maxwell-Stefan diffusion coefficients of molecular mixtures and a wide variety of binary Lennard–Jones systems. A strong dependency of computed diffusivities on the system size was observed. Computed diffusivities were found to increase with the number of molecules. We propose a correction for the extrapolation of Maxwell–Stefan diffusion coefficients to the thermodynamic limit, based on the study by Yeh and Hummer (J. Phys. Chem. B, 2004, 108, 15873−15879). The proposed correction is a function of the viscosity of the system, the size of the simulation box, and the thermodynamic factor, which is a measure for the nonideality of the mixture. Verification is carried out for more than 200 distinct binary Lennard–Jones systems, as well as 9 binary systems of methanol, water, ethanol, acetone, methylamine, and carbon tetrachloride. Significant deviations between finite-size Maxwell–Stefan diffusivities and the corresponding diffusivities at the thermodynamic limit were found for mixtures close to demixing. In these cases, the finite-size correction can be even larger than the simulated (finite-size) Maxwell–Stefan diffusivity. Our results show that considering these finite-size effects is crucial and that the suggested correction allows for reliable computations. PMID:29664633
Bibliography on Cold Regions Science and Technology. Volume 33, Part 1 and Part 2
1979-12-01
334020 (1978, p 4.10, ruas 33-2685 young sea ice. Niedrauer, T.M., et a ). t1979, High speed tunneling. Tnrasiugin, A , (1978, p.10-t1I, rust Manual fnr...resist- tions In the western High Arctic. Snowi loatd Roofes Sgnowpyis no cu a ance, Test equipment. Bliss, LC., ed, Canada, Arctic Land Use Research toi...permafrost foundation of a Effect of cryogenous processes on the stability of high Numerical solution of problems of the Stefan type for multispsa industrial
Allie-Ebrahim, Tariq; Zhu, Qingyu; Bräuer, Pierre; Moggridge, Geoff D; D'Agostino, Carmine
2017-06-21
The Maxwell-Stefan model is a popular diffusion model originally developed to model diffusion of gases, which can be considered thermodynamically ideal mixtures, although its application has been extended to model diffusion in non-ideal liquid mixtures as well. A drawback of the model is that it requires the Maxwell-Stefan diffusion coefficients, which are not based on measurable quantities but they have to be estimated. As a result, numerous estimation methods, such as the Darken model, have been proposed to estimate these diffusion coefficients. However, the Darken model was derived, and is only well defined, for binary systems. This model has been extended to ternary systems according to two proposed forms, one by R. Krishna and J. M. van Baten, Ind. Eng. Chem. Res., 2005, 44, 6939-6947 and the other by X. Liu, T. J. H. Vlugt and A. Bardow, Ind. Eng. Chem. Res., 2011, 50, 10350-10358. In this paper, the two forms have been analysed against the ideal ternary system of methanol/butan-1-ol/propan-1-ol and using experimental values of self-diffusion coefficients. In particular, using pulsed gradient stimulated echo nuclear magnetic resonance (PGSTE-NMR) we have measured the self-diffusion coefficients in various methanol/butan-1-ol/propan-1-ol mixtures. The experimental values of self-diffusion coefficients were then used as the input data required for the Darken model. The predictions of the two proposed multicomponent forms of this model were then compared to experimental values of mutual diffusion coefficients for the ideal alcohol ternary system. This experimental-based approach showed that the Liu's model gives better predictions compared to that of Krishna and van Baten, although it was only accurate to within 26%. Nonetheless, the multicomponent Darken model in conjunction with self-diffusion measurements from PGSTE-NMR represents an attractive method for a rapid estimation of mutual diffusion in multicomponent systems, especially when compared to exhaustive MD simulations.
Effects of surface poisons on the oxidation of binary alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagan, P.S.; Polizzotti, R.S.; Luckman, G.
1985-10-01
A system of reaction-diffusion equations describing the oxidation of binary alloys in environments containing small amounts of surface poisons is analyzed. These poisons reduce the oxygen flux into the alloy, which causes the alloy to oxidize in two stages.During the initial stage, the oxidation reaction occurs in a stationary boundary layer at the alloy surface. Consequently, a thin zone containing a very high concentration of the metal oxide is created at the alloy surface. During the second stage, the oxidation reaction occurs in a moving boundary layer. This leads to a Stefan problem, which is analyzed by using asymptotic andmore » numerical techniques. By comparing the solutions to those of alloys in unpoisoned environments, it is concluded that surface poisons can lead to the formation of protective external oxide scales in alloys which would not normally form such scales. 11 references.« less
Computational Fluid Dynamic Solutions of Optimized Heat Shields Designed for Earth Entry
2010-01-01
domain ρ = Density (kg/m3) σ = Stefan Boltzmann constant τ = Shear stress tensor τT−V = T-V relaxation time τe−V = e-V relaxation time xi φ = Sweep angle...Vehicle DES = Differential evolutionary Scheme DOR = Design Optimization Tools DPLR = Data Parallel Line Relaxation GSLR = Gauss- Seidel Line... Stefan - Boltzmann constant. This model provides accurate heating predictions, especially for the non-ablating heat-shields explored in this work. Various
NASA Astrophysics Data System (ADS)
Pechenegov, Yu. Ya.; Mrakin, A. N.
2017-09-01
Recommendations are presented on calculating interphase heat transfer in gas-disperse systems of plants for thermochemical conversion of ground solid fuel. An analysis is made of the influence of the gas release of fuel particles on the heat transfer during their heating. It is shown that in the processes of thermal treatment of oil shales, the presence of gas release reduces substantially the intensity of interphase heat transfer compared to the heat transfer in the absence of thermochemical decomposition of the solid phase.
NASA Astrophysics Data System (ADS)
Giri, Shib Sankar; Das, Kalidas; Kundu, Prabir Kumar
2017-02-01
The present paper investigates the effect of Stefan blowing on the hydro-magnetic bioconvection of a water-based nanofluid flow containing gyrotactic microorganisms through a permeable surface. Also we studied both actively and passively the controlled flux of nanoparticles and the effect of a surface slip at the wall. We adopt a similarity approach to reduce the leading partial differential equations into ordinary differential equations along with two separate boundary conditions (active and passive) and solve the resulting equations numerically by employing the RK-4 method through the shooting technique to perform the flow analysis. Discussions on the effect of emerging flow parameter on the flow characteristic are made properly through graphs and charts. We observed that the effects of the traditional Lewis number and suction/blowing parameter on temperature distribution and microorganism concentration are converse to each other. A fair result comparison of the present paper with formerly obtained results is given.
Program 6 Technical Interchange Meeting Proceedings
1992-10-01
Buteau PRC (703)556-1355 Gary R. Dolson PRC (703) 5561859 David J. Gray Sterling (315)336-0500 Noreen S. Heyda Harris (407)984-6384 Jay Jesse GTE (719)570...Reed Sterling John Sautter Sterling (315)336-0500 Kevin Sculley PRC (402)291-5533 Stefan Shrier MRJ (703)934-9249 Peter Soliz Orion (505)262-2260...4730 Howard A. Melching GTE (719)570-8898 Noreen S. Heyda Harris (407)984-6384 Jonathan H. Reed Harris (407)984-6008 Stefan Shrier MRJ (703) 934-9249
Kocon, T
2001-01-01
Presentation of the District Hospital in Garwolin and the Regional Council Hospital in Maciejowice. List of names of physicians working in hospitals, public health centers and sick-fund centers. Biographies of physicians proceeding from the district and related somehow with it during the period of the II Republic, namely: Feliks Malinowski, Czesłow Bogucki, Józef Kenig, Stefan Niziński, Stefan Soszka, Władysław Galasiński, Józef Mazurek.
3D Navier-Stokes Flow Analysis for Shared and Distributed Memory MIMD Computers
1992-09-15
arithmetical averaged density or Stefan -Boltzmann constant (= 5.67032 x 10-8 ) Oai+1/2 intermediate term for Harten-Yee fluxes - k, O’ constants for k...system of algebraic equations. These equations I are solved using point Gauss- Seidel relaxation. This relaxation scheme is modified to be a lower-upper...interaction of the radiation with the gas. The radiative heat flux per unit area is then I = -(T [EwT - awTdb] (19) Here a is the Stefan Boltzmann
NASA Astrophysics Data System (ADS)
Woo, Mino; Wörner, Martin; Tischer, Steffen; Deutschmann, Olaf
2018-03-01
The multicomponent model and the effective diffusivity model are well established diffusion models for numerical simulation of single-phase flows consisting of several components but are seldom used for two-phase flows so far. In this paper, a specific numerical model for interfacial mass transfer by means of a continuous single-field concentration formulation is combined with the multicomponent model and effective diffusivity model and is validated for multicomponent mass transfer. For this purpose, several test cases for one-dimensional physical or reactive mass transfer of ternary mixtures are considered. The numerical results are compared with analytical or numerical solutions of the Maxell-Stefan equations and/or experimental data. The composition-dependent elements of the diffusivity matrix of the multicomponent and effective diffusivity model are found to substantially differ for non-dilute conditions. The species mole fraction or concentration profiles computed with both diffusion models are, however, for all test cases very similar and in good agreement with the analytical/numerical solutions or measurements. For practical computations, the effective diffusivity model is recommended due to its simplicity and lower computational costs.
Conceptual Commitments of AGI Systems: Editorial, Commentaries, and Response
NASA Astrophysics Data System (ADS)
2013-06-01
Editorial: Conceptual Commitments of AGI Systems Haris Dindo / James Marshall / Giovanni Pezzulo 23 General Problems of Unified Theories of Cognition, and Another Conceptual Commitment of LIDA Benjamin Angerer / Stefan Schneider 26 LIDA, Committed to Consciousness Antonio Chella 28 The Radical Interactionism Conceptual Commitment Olivier L. Georgeon / David W. Aha 31 Commitments of the Soar Cognitive Architecture John E. Laird 36 Conceptual Commitments of AGI Projects Pei Wang 39 Will (dis)Embodied LIDA Agents be Socially Interactive? Travis J. Wiltshire / Emilio J. C. Lobato / Florian G. Jentsch / Stephen M. Fiore 42 Author's Response to Commentaries Steve Strain / Stan Franklin 48
2010-04-01
factorization scheme (Lower-Upper Symmetric Gauss- Seidel ) can be used for time integration. Additional convergence acceleration is achieved by the...of the full Stefan -Maxwell equations. The diffusive mass flux of species S is computed according to: for 1 for jS S S Sm j jm S j eS jd S S S j j j...approximate factorization scheme (Lower-Upper Symmetric Gauss- Seidel ). For steady state problems, equation (69) reduces to R=0 because ddU t
NASA Astrophysics Data System (ADS)
Stefan, V. Alexander
2011-03-01
I propose a novel mechanism for the brain cancer tissue treatment: nonlinear interaction of ultrashort pulses of beat-photon, (ω1 -- ω2) , or double-photon, (ω1 +ω2) , beams with the cancer tissue. The multiphoton scattering is described via photon diffusion equation. The open-scull cerebral tissue can be irradiated with the beat-modulated photon pulses with the laser irradiances in the range of a few mW/cm2 , and repetition rate of a few 100s Hz generated in the beat-wave driven free electron laser. V. Stefan, B. I. Cohen, and C. Joshi, Nonlinear Mixing of Electromagnetic Waves in PlasmasScience 27 January 1989: V. Alexander Stefan, Genomic Medical Physics: A New Physics in the Making, (S-U-Press, 2008).} This highly accurate cancer tissue ablation removal may prove to be an efficient method for the treatment of brain cancer. Work supported in part by Nikola Tesla Laboratories (Stefan University), La Jolla, CA.
Cohesion and coordination effects on transition metal surface energies
NASA Astrophysics Data System (ADS)
Ruvireta, Judit; Vega, Lorena; Viñes, Francesc
2017-10-01
Here we explore the accuracy of Stefan equation and broken-bond model semiempirical approaches to obtain surface energies on transition metals. Cohesive factors are accounted for either via the vaporization enthalpies, as proposed in Stefan equation, or via cohesive energies, as employed in the broken-bond model. Coordination effects are considered including the saturation degree, as suggested in Stefan equation, employing Coordination Numbers (CN), or as the ratio of broken bonds, according to the bond-cutting model, considering as well the square root dependency of the bond strength on CN. Further, generalized coordination numbers CN bar are contemplated as well, exploring a total number of 12 semiempirical formulations on the three most densely packed surfaces of 3d, 4d, and 5d Transition Metals (TMs) displaying face-centered cubic (fcc), body-centered cubic (bcc), or hexagonal close-packed (hcp) crystallographic structures. Estimates are compared to available experimental surface energies obtained extrapolated to zero temperature. Results reveal that Stefan formula cohesive and coordination dependencies are only qualitative suited, but unadvised for quantitative discussion, as surface energies are highly overestimated, favoring in addition the stability of under-coordinated surfaces. Broken-bond cohesion and coordination dependencies are a suited basis for quantitative comparison, where square-root dependencies on CN to account for bond weakening are sensibly worse. An analysis using Wulff shaped averaged surface energies suggests the employment of broken-bond model using CN to gain surface energies for TMs, likely applicable to other metals.
NASA Astrophysics Data System (ADS)
Bellan, Selvan; Cheok, Cho Hyun; Gokon, Nobuyuki; Matsubara, Koji; Kodama, Tatsuya
2017-06-01
This paper presents a numerical analysis of unconstrained melting of high temperature(>1000K) phase change material (PCM) inside a cylindrical container. Sodium chloride and Silicon carbide have been used as phase change material and shell of the capsule respectively. The control volume discretization approach has been used to solve the conservation equations of mass, momentum and energy. The enthalpy-porosity method has been used to track the solid-liquid interface of the PCM during melting process. Transient numerical simulations have been performed in order to study the influence of radius of the capsule and the Stefan number on the heat transfer rate. The simulation results show that the counter-clockwise Buoyancy driven convection over the top part of the solid PCM enhances the melting rate quite faster than the bottom part.
Generalized Stefan-Boltzmann Law
NASA Astrophysics Data System (ADS)
Montambaux, Gilles
2018-03-01
We reconsider the thermodynamic derivation by L. Boltzmann of the Stefan law and we generalize it for various different physical systems whose chemical potential vanishes. Being only based on classical arguments, therefore independent of the quantum statistics, this derivation applies as well to the saturated Bose gas in various geometries as to "compensated" Fermi gas near a neutrality point, such as a gas of Weyl Fermions. It unifies in the same framework the thermodynamics of many different bosonic or fermionic non-interacting gases which were until now described in completely different contexts.
Application of Rapid Solidification Techniques to Aluminum Alloys
1980-10-01
relatkonship h e 4r eoTs/(T5 TG) (3.7) 32 where e is the surface emissivity, a is the Stefan Boltzmann constant, Ts and TG are the droplet and cooling...their fully implicit form and solved by a Gauss Seidel iteration routine. The results are I I 40I compared with the equivalent Newtonian case and...temperature respectively, Fo is the Fourier number or dimensionless time, Fo = aLt/r2 (5.2) and Ste is the Stefan number, Ste = CL (TM - TG)/AHM (5.3) which
Protein diffusiophoresis and salt osmotic diffusion in aqueous solutions.
Annunziata, Onofrio; Buzatu, Daniela; Albright, John G
2012-10-25
Diffusion of a solute can be induced by the concentration gradient of another solute in solution. This transport mechanism is known as cross-diffusion. We have investigated cross-diffusion in a ternary protein-salt-water system. Specifically, we measured the two cross-diffusion coefficients for the lysozyme-NaCl-water system at 25 °C and pH 4.5 as a function of protein and salt concentrations by Rayleigh interferometry. One cross-diffusion coefficient characterizes salt osmotic diffusion induced by a protein concentration gradient, and is related to protein-salt thermodynamic interactions as described by the theories of Donnan membrane equilibrium and protein preferential hydration. The other cross-diffusion coefficient characterizes protein diffusiophoresis induced by a salt concentration gradient, and is described as the difference between a preferential-interaction coefficient and a transport parameter. We first relate our experimental results to the protein net charge and the thermodynamic excess of water near the protein surface. We then extract the Stefan-Maxwell diffusion coefficient describing protein-salt interactions in water. We find that the value of this coefficient is negative, contrary to the friction interpretation of Stefan-Maxwell equations. This result is explained by considering protein hydration. Finally, protein diffusiophoresis is quantitatively examined by considering electrophoretic and hydration effects on protein migration and utilized to accurately estimate lysozyme electrophoretic mobility. To our knowledge, this is the first time that protein diffusiophoresis has been experimentally characterized and a protein-salt Stefan-Maxwell diffusion coefficient reported. This work represents a significant contribution for understanding and modeling the effect of concentration gradients in protein-salt aqueous systems relevant to diffusion-based mass-transfer technologies and transport in living systems.
Vapor Transport Within the Thermal Diffusion Cloud Chamber
NASA Technical Reports Server (NTRS)
Ferguson, Frank T.; Heist, Richard H.; Nuth, Joseph A., III
2000-01-01
A review of the equations used to determine the 1-D vapor transport in the thermal diffusion cloud chamber (TDCC) is presented. These equations closely follow those of the classical Stefan tube problem in which there is transport of a volatile species through a noncondensible, carrier gas. In both cases, the very plausible assumption is made that the background gas is stagnant. Unfortunately, this assumption results in a convective flux which is inconsistent with the momentum and continuity equations for both systems. The approximation permits derivation of an analytical solution for the concentration profile in the Stefan tube, but there is no computational advantage in the case of the TDCC. Furthermore, the degree of supersaturation is a sensitive function of the concentration profile in the TD CC and the stagnant background gas approximation can make a dramatic difference in the calculated supersaturation. In this work, the equations typically used with a TDCC are compared with very general transport equations describing the 1-D diffusion of the volatile species. Whereas no pressure dependence is predicted with the typical equations, a strong pressure dependence is present with the more general equations given in this work. The predicted behavior is consistent with observations in diffusion cloud experiments. It appears that the new equations may account for much of the pressure dependence noted in TDCC experiments, but a comparison between the new equations and previously obtained experimental data are needed for verification.
Laser Stimulated Genomic Exchange in Stem Cells. Laser Non-cloning Techniques
NASA Astrophysics Data System (ADS)
Stefan, V. Alexander
2012-02-01
I propose a novel technique for a pluripotent stem cell generation. Genomic exchange is stimulated by the beat-wave free electron laser, (B-W FEL), frequency matching with the frequencies of the DNAootnotetextJ.D. Watson and F. H. C. Crick, Nature, 171, 737-738 (1953). eigen-oscillations. B-W FEL-1ootnotetextV. Stefan, B.I.Cohen, C. Joshi Science, 243,4890, (Jan 27,1989); Stefan, et al., Bull. APS. 32, No. 9, 1713 (1987); Stefan, APS March-2011, #S1.143; APS- March-2009, #K1.276. scans entire stem cell; B-W FEL-2 probes the chromosomes. The scanning and probing lasers: 300-500nm and 100-300nm, respectively; irradiances: the order-of-10s mW/cm^2 (above the threshold value for a particular gene structure); repetition rate of few-100s Hz. A variety of genetic-matching conditions can be arranged. Genomic glitches, (the cell nucleus transferootnotetextScott Noggle et al. Nature, 478, 70-75 (06 October 2011).), can be hedged by the use of lasers.
Implicitly solving phase appearance and disappearance problems using two-fluid six-equation model
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-01-25
Phase appearance and disappearance issue presents serious numerical challenges in two-phase flow simulations using the two-fluid six-equation model. Numerical challenges arise from the singular equation system when one phase is absent, as well as from the discontinuity in the solution space when one phase appears or disappears. In this work, a high-resolution spatial discretization scheme on staggered grids and fully implicit methods were applied for the simulation of two-phase flow problems using the two-fluid six-equation model. A Jacobian-free Newton-Krylov (JFNK) method was used to solve the discretized nonlinear problem. An improved numerical treatment was proposed and proved to be effectivemore » to handle the numerical challenges. The treatment scheme is conceptually simple, easy to implement, and does not require explicit truncations on solutions, which is essential to conserve mass and energy. Various types of phase appearance and disappearance problems relevant to thermal-hydraulics analysis have been investigated, including a sedimentation problem, an oscillating manometer problem, a non-condensable gas injection problem, a single-phase flow with heat addition problem and a subcooled flow boiling problem. Successful simulations of these problems demonstrate the capability and robustness of the proposed numerical methods and numerical treatments. As a result, volume fraction of the absent phase can be calculated effectively as zero.« less
[Jesuits Chemists of Hapsburg Monarchy].
Južnič, Stanislav
2016-01-01
The achievements of the Jesuits from the Austrian and Bohemian provinces, who have published books on chemistry are focused. Their links with the area of today's Slovenia are particularly exposed. The guidelines which have enabled prompt victories of the ideas about the structure of matter of Jesuit Ru|er Bokovi are indicated. Inconceivable fast spread of Bošković's adherents in the Hapsburg monarchy is compared with a similar rapid introduction of the kinetic theories of atoms of Slovene Jožef Stefan and Ludwig Boltzmann in the same geographical area. Boltzmann was not only Stefan's best student, but he also married a half Slovenian maid.
NASA Astrophysics Data System (ADS)
White, Warren B.; Cayan, Daniel R.; Lean, Judith
1998-09-01
We constructed gridded fields of diabatic heat storage changes in the upper ocean from 20°S to 60°N from historical temperature profiles collected from 1955 to 1996. We filtered these 42 year records for periods of 8 to 15 years and 15 to 30 years, producing depth-weighted vertical average temperature (DVT) changes from the sea surface to the top of the main pycnocline. Basin and global averages of these DVT changes reveal decadal and interdecadal variability in phase across the Indian, Pacific, Atlantic, and Global Oceans, each significantly correlated with changing surface solar radiative forcing at a lag of 0+/-2 years. Decadal and interdecadal changes in global average DVT are 0.06°+/-0.01°K and 0.04°K+/-0.01°K, respectively, the same as those expected from consideration of the Stefan-Boltzmann radiation balance (i.e., 0.3°K per Wm-2) in response to 0.1% changes in surface solar radiative forcing of 0.2 Wm-2 and 0.15 Wm-2, respectively. Global spatial patterns of DVT changes are similar to temperature changes simulated in coupled ocean-atmosphere models, suggesting that natural modes of Earth's variability are phase-locked to the solar irradiance cycle. A trend in global average DVT of 0.15°K over this 42 year record cannot be explained by changing surface solar radiative forcing. But when we consider the 0.5 Wm-2 increase in surface radiative forcing estimated from the increase in atmospheric greenhouse gas and aerosol (GGA) concentrations over this period [Intergovernmental Panel on Climate Change, 1995], the Stefan-Boltzmann radiation balance yields this observed change. Moreover, the sum of solar and GGA surface radiative forcing can explain the relatively sharp increase in global and basin average DVT in the late 1970's.
Efficient numerical simulation of an electrothermal de-icer pad
NASA Technical Reports Server (NTRS)
Roelke, R. J.; Keith, T. G., Jr.; De Witt, K. J.; Wright, W. B.
1987-01-01
In this paper, a new approach to calculate the transient thermal behavior of an iced electrothermal de-icer pad was developed. The method of splines was used to obtain the temperature distribution within the layered pad. Splines were used in order to create a tridiagonal system of equations that could be directly solved by Gauss elimination. The Stefan problem was solved using the enthalpy method along with a recent implicit technique. Only one to three iterations were needed to locate the melt front during any time step. Computational times were shown to be greatly reduced over those of an existing one dimensional procedure without any reduction in accuracy; the curent technique was more than 10 times faster.
Gelfand-type problem for two-phase porous media
Gordon, Peter V.; Moroz, Vitaly
2014-01-01
We consider a generalization of the Gelfand problem arising in Frank-Kamenetskii theory of thermal explosion. This generalization is a natural extension of the Gelfand problem to two-phase materials, where, in contrast to the classical Gelfand problem which uses a single temperature approach, the state of the system is described by two different temperatures. We show that similar to the classical Gelfand problem the thermal explosion occurs exclusively owing to the absence of stationary temperature distribution. We also show that the presence of interphase heat exchange delays a thermal explosion. Moreover, we prove that in the limit of infinite heat exchange between phases the problem of thermal explosion in two-phase porous media reduces to the classical Gelfand problem with renormalized constants. PMID:24611025
Modelling of active layer thickness evolution on James Ross Island in 2006-2015
NASA Astrophysics Data System (ADS)
Hrbáček, Filip; Uxa, Tomáš
2017-04-01
Antarctic Peninsula region has been considered as one of the most rapidly warming areas on the Earth. However, the recent studies (Turner et al., 2016; Oliva et al., 2017) showed that significant air temperature cooling began around 2000 and has continued until present days. The climate cooling led to reduction of active layer thickness in several parts of Antarctic Peninsula region during decade 2006-2015, but the information about spatiotemporal variability of active layer thickness across the region remains largely incoherent due to lack of active layer temperature data from deeper profiles. Valuable insights into active layer thickness evolution in Antarctic Peninsula region can be, however, provided by thermal modelling techniques. These have been widely used to study the active layer dynamics in different regions of Arctic since 1990s. By contrast, they have been employed much less in Antarctica. In this study, we present our first results from two equilibrium models, the Stefan and Kudryavtsev equations, that were applied to calculate the annual active layer thickness based on ground temperature data from depth of 5 cm on one site on James Ross Island, Eastern Antarctic Peninsula, in period 2006/07 to 2014/15. Study site (Abernethy Flats) is located in the central part of the major ice-free area of James Ross Island called Ulu Peninsula. Monitoring of air temperature 2 m above ground surface and ground temperature in 50 cm profile began on January 2006. The profile was extended under the permafrost table down to 75 cm in February 2012, which allowed precise determination of active layer thickness, defined as a depth of 0°C isotherm, in period 2012 to 2015. The active layer thickness in the entire observation period was reconstructed using the Stefan and Kudryavtsev models, which were driven by ground temperature data from depth of 5 cm and physical parameters of the ground obtained by laboratory analyses (moisture content and bulk density) and calculations from ground heat flux measurement (thermal conductivity and thermal capacity). Model results were validated using the reference active layer thicknesses from the summer seasons of 2012/13 to 2014/15 with very good accuracy of 0 to 4 cm and -4 to 1 cm for the Stefan and the Kudryavtsev models, respectively. Average active layer thickness on Abernethy Flats varied between 62 cm (Stefan model) and 60 cm (Kudryavtsev model) in period 2006/07-2014/15. Both models showed average active layer thinning of -1.3 cm.year-1 (Stefan model) and -2.3 cm.year-1 (Kudryavtsev model). Maximum active layer thickness was predicted in summer season 2008/09, reaching 75 cm (Stefan model) and 83 cm (Kudryavtsev model), while the minimum active layer thickness was observed in summer season 2009/10 when both models predicted 36 cm. Our results show that both models are well suited for conditions of Antarctica because their accuracy is in the order of the first centimetres. The nine-year series confirmed thinning of active layer in this part of Antarctic Peninsula region, which was mainly related to variability of summer air temperature. References: Turner, J., Lu, H., White, I., King, J. C., Phillips, T., Scott Hosking, J. Bracegirdle, T. J.,Marshall, G. J., Mulvaney, R., Deb, P., 2016. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535, doi: 10.1038/nature18645 Oliva, M., Navarro, F., Hrbáček, F., Hernandéz, A., Nývlt, D., Perreira, P., Ruiz-Fernandéz, J., Trigo, R., in press. Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Science of Total Environment. dx.doi.org/10.1016/j.scitotenv.2016.12.030
Diffusion Driven Combustion Waves in Porous Media
NASA Technical Reports Server (NTRS)
Aldushin, A. P.; Matkowsky, B. J.
2000-01-01
Filtration of gas containing oxidizer, to the reaction zone in a porous medium, due, e.g., to a buoyancy force or to an external pressure gradient, leads to the propagation of Filtration combustion (FC) waves. The exothermic reaction occurs between the fuel component of the solid matrix and the oxidizer. In this paper, we analyze the ability of a reaction wave to propagate in a porous medium without the aid of filtration. We find that one possible mechanism of propagation is that the wave is driven by diffusion of oxidizer from the environment. The solution of the combustion problem describing diffusion driven waves is similar to the solution of the Stefan problem describing the propagation of phase transition waves, in that the temperature on the interface between the burned and unburned regions is constant, the combustion wave is described by a similarity solution which is a function of the similarity variable x/square root of(t) and the wave velocity decays as 1/square root of(t). The difference between the two problems is that in the combustion problem the temperature is not prescribed, but rather, is determined as part of the solution. We will show that the length of samples in which such self-sustained combustion waves can occur, must exceed a critical value which strongly depends on the combustion temperature T(sub b). Smaller values of T(sub b) require longer sample lengths for diffusion driven combustion waves to exist. Because of their relatively small velocity, diffusion driven waves are considered to be relevant for the case of low heat losses, which occur for large diameter samples or in microgravity conditions, Another possible mechanism of porous medium combustion describes waves which propagate by consuming the oxidizer initially stored in the pores of the sample. This occurs for abnormally high pressure and gas density. In this case, uniformly propagating planar waves, which are kinetically controlled, can propagate, Diffusion of oxidizer decreases the wave velocity. In addition to the reaction and diffusion layers, the uniformly propagating wave structure includes a layer with a pressure gradient, where the gas motion is induced by the production or consumption of the gas in the reaction as well as by thermal expansion of the gas. The width of this zone determines the scale of the combustion wave in the porous medium.
Vitrification and levitation of a liquid droplet on liquid nitrogen.
Song, Young S; Adler, Douglas; Xu, Feng; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M; Maas, Richard L; Demirci, Utkan
2010-03-09
The vitrification of a liquid occurs when ice crystal formation is prevented in the cryogenic environment through ultrarapid cooling. In general, vitrification entails a large temperature difference between the liquid and its surrounding medium. In our droplet vitrification experiments, we observed that such vitrification events are accompanied by a Leidenfrost phenomenon, which impedes the heat transfer to cool the liquid, when the liquid droplet comes into direct contact with liquid nitrogen. This is distinct from the more generally observed Leidenfrost phenomenon that occurs when a liquid droplet is self-vaporized on a hot plate. In the case of rapid cooling, the phase transition from liquid to vitrified solid (i.e., vitrification) and the levitation of droplets on liquid nitrogen (i.e., Leidenfrost phenomenon) take place simultaneously. Here, we investigate these two simultaneous physical events by using a theoretical model containing three dimensionless parameters (i.e., Stefan, Biot, and Fourier numbers). We explain theoretically and observe experimentally a threshold droplet radius during the vitrification of a cryoprotectant droplet in the presence of the Leidenfrost effect.
Vitrification and levitation of a liquid droplet on liquid nitrogen
Song, Young S.; Adler, Douglas; Xu, Feng; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M.; Maas, Richard L.; Demirci, Utkan
2010-01-01
The vitrification of a liquid occurs when ice crystal formation is prevented in the cryogenic environment through ultrarapid cooling. In general, vitrification entails a large temperature difference between the liquid and its surrounding medium. In our droplet vitrification experiments, we observed that such vitrification events are accompanied by a Leidenfrost phenomenon, which impedes the heat transfer to cool the liquid, when the liquid droplet comes into direct contact with liquid nitrogen. This is distinct from the more generally observed Leidenfrost phenomenon that occurs when a liquid droplet is self-vaporized on a hot plate. In the case of rapid cooling, the phase transition from liquid to vitrified solid (i.e., vitrification) and the levitation of droplets on liquid nitrogen (i.e., Leidenfrost phenomenon) take place simultaneously. Here, we investigate these two simultaneous physical events by using a theoretical model containing three dimensionless parameters (i.e., Stefan, Biot, and Fourier numbers). We explain theoretically and observe experimentally a threshold droplet radius during the vitrification of a cryoprotectant droplet in the presence of the Leidenfrost effect. PMID:20176969
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-04-01
The phase appearance/disappearance issue presents serious numerical challenges in two-phase flow simulations. Many existing reactor safety analysis codes use different kinds of treatments for the phase appearance/disappearance problem. However, to our best knowledge, there are no fully satisfactory solutions. Additionally, the majority of the existing reactor system analysis codes were developed using low-order numerical schemes in both space and time. In many situations, it is desirable to use high-resolution spatial discretization and fully implicit time integration schemes to reduce numerical errors. In this work, we adapted a high-resolution spatial discretization scheme on staggered grid mesh and fully implicit time integrationmore » methods (such as BDF1 and BDF2) to solve the two-phase flow problems. The discretized nonlinear system was solved by the Jacobian-free Newton Krylov (JFNK) method, which does not require the derivation and implementation of analytical Jacobian matrix. These methods were tested with a few two-phase flow problems with phase appearance/disappearance phenomena considered, such as a linear advection problem, an oscillating manometer problem, and a sedimentation problem. The JFNK method demonstrated extremely robust and stable behaviors in solving the two-phase flow problems with phase appearance/disappearance. No special treatments such as water level tracking or void fraction limiting were used. High-resolution spatial discretization and second- order fully implicit method also demonstrated their capabilities in significantly reducing numerical errors.« less
Hydrodynamic theory of diffusion in two-temperature multicomponent plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramshaw, J.D.; Chang, C.H.
Detailed numerical simulations of multicomponent plasmas require tractable expressions for species diffusion fluxes, which must be consistent with the given plasma current density J{sub q} to preserve local charge neutrality. The common situation in which J{sub q} = 0 is referred to as ambipolar diffusion. The use of formal kinetic theory in this context leads to results of formidable complexity. We derive simple tractable approximations for the diffusion fluxes in two-temperature multicomponent plasmas by means of a generalization of the hydrodynamical approach used by Maxwell, Stefan, Furry, and Williams. The resulting diffusion fluxes obey generalized Stefan-Maxwell equations that contain drivingmore » forces corresponding to ordinary, forced, pressure, and thermal diffusion. The ordinary diffusion fluxes are driven by gradients in pressure fractions rather than mole fractions. Simplifications due to the small electron mass are systematically exploited and lead to a general expression for the ambipolar electric field in the limit of infinite electrical conductivity. We present a self-consistent effective binary diffusion approximation for the diffusion fluxes. This approximation is well suited to numerical implementation and is currently in use in our LAVA computer code for simulating multicomponent thermal plasmas. Applications to date include a successful simulation of demixing effects in an argon-helium plasma jet, for which selected computational results are presented. Generalizations of the diffusion theory to finite electrical conductivity and nonzero magnetic field are currently in progress.« less
NASA Astrophysics Data System (ADS)
Sari, Ataallah; Sabziani, Javad
2017-06-01
Modeling and CFD simulation of a three-dimensional microreactor includes thirteen structured parallel channels is performed to study the hydrogen production via methanol steam reforming reaction over a Cu/ZnO/Al2O3 catalyst. The well-known Langmuir-Hinshelwood macro kinetic rate expressions reported by Peppley and coworkers [49] are considered to model the methanol steam reforming reactions. The effects of inlet steam to methanol ratio, pre-heat temperature, channels geometry and size, and the level of external heat flux on the hydrogen quality and quantity (i.e., hydrogen flow rate and CO concentration) are investigated. Moreover, the possibility of reducing the CO concentration by passing the reactor effluent through a water gas shift channel placed in series with the methanol reformer is studied. Afterwards, the simulation results are compared with the experimental data reported in the literature considering two different approaches of mixture-averaged and Maxwell-Stefan formulations to evaluate the diffusive flux of mass. The results indicate that the predictions of the Maxwell-Stefan model is in better agreement with experimental data than mixture-averaged one, especially at the lower feed flow rates.
Rudd, Robert E; Cabot, William H; Caspersen, Kyle J; Greenough, Jeffrey A; Richards, David F; Streitz, Frederick H; Miller, Paul L
2012-03-01
We use molecular dynamics (MD) to simulate diffusion in molten aluminum-copper (AlCu) alloys. The self-diffusivities and Maxwell-Stefan diffusivities are calculated for AlCu mixtures using the Green-Kubo formulas at temperatures from 1000 to 4000 K and pressures from 0 to 25 GPa, along with additional points at higher temperatures and pressures. The diffusivities are corrected for finite-size effects. The Maxwell-Stefan diffusivity is compared to the diffusivity calculated from the self-diffusivities using a generalization of the Darken equation. We find that the effects of cross-correlation are small. Using the calculated self-diffusivities, we have assessed whether dilute hard-sphere and dilute Lennard-Jones models apply to the molten mixture. Neither of the two dilute gas diffusivities describes the diffusivity in molten Al and Cu. We report generalized analytic models for the self-diffusivities and interdiffusivity (mutual diffusivity) that fit the MD results well. The MD-derived transport coefficients are in good agreement with the available experimental data. We also report MD calculations of the viscosity and an analytic fit to those results. The ionic thermal conductivity is discussed briefly.
NASA Astrophysics Data System (ADS)
Rudd, Robert E.; Cabot, William H.; Caspersen, Kyle J.; Greenough, Jeffrey A.; Richards, David F.; Streitz, Frederick H.; Miller, Paul L.
2012-03-01
We use molecular dynamics (MD) to simulate diffusion in molten aluminum-copper (AlCu) alloys. The self-diffusivities and Maxwell-Stefan diffusivities are calculated for AlCu mixtures using the Green-Kubo formulas at temperatures from 1000 to 4000 K and pressures from 0 to 25 GPa, along with additional points at higher temperatures and pressures. The diffusivities are corrected for finite-size effects. The Maxwell-Stefan diffusivity is compared to the diffusivity calculated from the self-diffusivities using a generalization of the Darken equation. We find that the effects of cross-correlation are small. Using the calculated self-diffusivities, we have assessed whether dilute hard-sphere and dilute Lennard-Jones models apply to the molten mixture. Neither of the two dilute gas diffusivities describes the diffusivity in molten Al and Cu. We report generalized analytic models for the self-diffusivities and interdiffusivity (mutual diffusivity) that fit the MD results well. The MD-derived transport coefficients are in good agreement with the available experimental data. We also report MD calculations of the viscosity and an analytic fit to those results. The ionic thermal conductivity is discussed briefly.
Impact of Metal Droplets: A Numerical Approach to Solidification
NASA Astrophysics Data System (ADS)
Koldeweij, Robin; Mandamparambil, Rajesh; Lohse, Detlef
2016-11-01
Layer-wise deposition of material to produce complex products is a subject of increasing technological relevance. Subsequent deposition of droplets is one of the possible 3d printing technologies to accomplish this. The shape of the solidified droplet is crucial for product quality. We employ the volume-of-fluid method (in the form of the open-source code Gerris) to study liquid metal (in particular tin) droplet impact. Heat transfer has been implemented based on the enthalpy approach for the liquid-solid phase. Solidification is modeled by adding a sink term to the momentum equations, reducing Navier-Stokes to Darcy's law for high solid fraction. Good agreement is found when validating the results against experimental data. We then map out a phase diagram in which we distinguish between solidification behavior based on Weber and Stefan number. In an intermediate impact regime impact, solidification due to a retracting phase occurs. In this regime the maximum spreading diameter almost exclusively depends on Weber number. Droplet shape oscillations lead to a broad variation of the morphology of the solidified droplet and determine the final droplet height. TNO.
NASA Astrophysics Data System (ADS)
Inogamov, Nail A.; Zhakhovsky, Vasily V.
2016-02-01
There are many important applications in which the ultrashort diffraction-limited and therefore tightly focused laser pulses irradiates metal films mounted on dielectric substrate. Here we present the detailed picture of laser peeling and 3D structure formation of the thin (relative to a depth of a heat affected zone in the bulk targets) gold films on glass substrate. The underlying physics of such diffraction-limited laser peeling was not well understood previously. Our approach is based on a physical model which takes into consideration the new calculations of the two-temperature (2T) equation of state (2T EoS) and the two-temperature transport coefficients together with the coupling parameter between electron and ion subsystems. The usage of the 2T EoS and the kinetic coefficients is required because absorption of an ultrashort pulse with duration of 10-1000 fs excites electron subsystem of metal and transfers substance into the 2T state with hot electrons (typical electron temperatures 1-3 eV) and much colder ions. It is shown that formation of submicrometer-sized 3D structures is a result of the electron-ion energy transfer, melting, and delamination of film from substrate under combined action of electron and ion pressures, capillary deceleration of the delaminated liquid metal or semiconductor, and ultrafast freezing of molten material. We found that the freezing is going in non-equilibrium regime with strongly overcooled liquid phase. In this case the Stefan approximation is non-applicable because the solidification front speed is limited by the diffusion rate of atoms in the molten material. To solve the problem we have developed the 2T Lagrangian code including all this reach physics in. We also used the high-performance combined Monte- Carlo and molecular dynamics code for simulation of surface 3D nanostructuring at later times after completion of electron-ion relaxation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dursch, Thomas J.; Ciontea, Monica A.; Radke, Clayton J.
2011-12-01
Nucleation and growth of ice in the fibrous gas-diffusion layer (GDL) of a proton-exchange membrane fuel cell (PEMFC) are studied using isothermal differential scanning calorimetry (DSC). Isothermal crystallization rates and pseudo-steady-state nucleation rates are obtained as a function of subcooling from heat-flow and induction-time measurements. Kinetics of ice nucleation and growth are studied at two polytetrafluoroethylene (PTFE) loadings (0 and 10 wt %) in a commercial GDL for temperatures between 240 and 273 K. A nonlinear ice-crystallization rate expression is developed using Johnson–Mehl–Avrami–Kolmogorov (JMAK) theory, in which the heat-transfer-limited growth rate is determined from the moving-boundary Stefan problem. Induction timesmore » follow a Poisson distribution and increase upon addition of PTFE, indicating that nucleation occurs more slowly on a hydrophobic fiber than on a hydrophilic fiber. The determined nucleation rates and induction times follow expected trends from classical nucleation theory. Finally, a validated rate expression is now available for predicting ice-crystallization kinetics in GDLs.« less
Problem Solving Software: What Does It Teach?
ERIC Educational Resources Information Center
Duffield, Judith A.
The purpose of this study was to examine the potential of computer-assisted instruction (CAI) for teaching problem solving skills. It was conducted in three phases. During the first phase, two pieces of problem solving software, "The King's Rule" and "Safari Search," were identified and analyzed. During the second phase, two groups of six…
[Intellectual exchange between Germany and Latin America: an interview with Stefan Rinke].
Rinke, Stefan; da Silva, André Felipe Cândido; Junghans, Miriam; Cavalcanti, Juliana Manzoni; de Muñoz, Pedro Felipe Neves
2014-01-01
Current and former students of the Casa de Oswaldo Cruz/Fiocruz interviewed German historian Stefan Rinke, of the Freie Universität Berlin, who specializes in examining the historical development of Latin America as it fits into the international context. Rinke's work uses dimensions such as economic and diplomatic relations, migratory flows, and ethnic conflict as tools in his analyses of the networks of interdependence that have tied Latin America to Europe and the USA. His lens goes beyond the Latin American continent to approach globalization as a historical process, with national and regional contexts placed within a general framework. In this interview, Rinke talks about his academic career, global and transnational history, and joint projects between Germany and Latin America.
Self-Organized Criticality Systems
NASA Astrophysics Data System (ADS)
Aschwanden, M. J.
2013-07-01
Contents: (1) Introduction - Norma B. Crosby --- (2) Theoretical Models of SOC Systems - Markus J. Aschwanden --- (3) SOC and Fractal Geometry - R. T. James McAteer --- (4) Percolation Models of Self-Organized Critical Phenomena - Alexander V. Milovanov --- (5) Criticality and Self-Organization in Branching Processes: Application to Natural Hazards - Álvaro Corral, Francesc Font-Clos --- (6) Power Laws of Recurrence Networks - Yong Zou, Jobst Heitzig, Jürgen Kurths --- (7) SOC computer simolations - Gunnar Pruessner --- (8) SOC Laboratory Experiments - Gunnar Pruessner --- (9) Self-Organizing Complex Earthquakes: Scaling in Data, Models, and Forecasting - Michael K. Sachs et al. --- (10) Wildfires and the Forest-Fire Model - Stefan Hergarten --- (11) SOC in Landslides - Stefan Hergarten --- (12) SOC and Solar Flares - Paul Charbonneau --- (13) SOC Systems in Astrophysics - Markus J. Aschwanden ---
Inception of supraglacial channelization under turbulent flow conditions
NASA Astrophysics Data System (ADS)
Mantelli, E.; Camporeale, C.; Ridolfi, L.
2013-12-01
Glacier surfaces exhibit an amazing variety of meltwater-induced morphologies, ranging from small scale ripples and dunes on the bed of supraglacial channels to meandering patterns, till to large scale drainage networks. Even though the structure and geometry of these morphologies play a key role in the glacier melting processes, the physical-based modeling of such spatial patterns have attracted less attention than englacial and subglacial channels. In order to partially fill this gap, our work concerns the large scale channelization occurring on the ice slopes and focuses on the role of turbulence on the wavelength selection processes during the channelization inception. In a recent study[1], two of us showed that the morphological instability induced by a laminar film flowing over an ice bed is characterized by transversal length scales of order of centimeters. Being these scales much smaller than the spacing observed in the channelization of supraglacial drainage networks (that are of order of meters) and considering that the water films flowing on glaciers can exhibit Reynolds numbers larger than 104, we investigated the role of turbulence in the inception of channelization. The flow-field is modeled by means of two-dimensional shallow water equations, where Reynolds stresses are also considered. In the depth-averaged heat balance equation an incoming heat flux from air is assumed and forced convection heat exchange with the wall is taken into account, in addition to convection and diffusion in the liquid. The temperature profile in the ice is finally coupled to the liquid through Stefan equation. We then perform a linear stability analysis and, under the assumption of small Stefan number, we solve the differential eigenvalue problem analytically. As main outcome of such an analysis, the morphological instability of the ice-water interface is detected and investigated in a wide range of the independent parameters: longitudinal and transversal wavenumbers, glacier surface slope, and Froude number and temperature of the water stream. The most remarkable result is that critical transversal wavelengths of order of meters are obtained, which are in general agreement with the patterns observed on glaciers during the melting season. Moreover, the key role played by the free surface of the water film, turbulent heat transfer and Reynolds stresses on the inception of channelization is highlighted and discussed. [1] Camporeale, C. & Ridolfi, L. (2012) Ice ripple formation at large Reynolds number. J. Fluid Mech. 694, 225-251.
Getting in shape: molten wax drop deformation and solidification at an immiscible liquid interface.
Beesabathuni, Shilpa N; Lindberg, Seth E; Caggioni, Marco; Wesner, Chris; Shen, Amy Q
2015-05-01
The controlled production of non-spherical shaped particles is important for many applications such as food processing, consumer goods, adsorbents, drug delivery, and optical sensing. In this paper, we investigated the deformation and simultaneous solidification of millimeter size molten wax drops as they impacted an immiscible liquid interface of higher density. By varying initial temperature and viscoelasticity of the molten drop, drop size, impact velocity, viscosity and temperature of the bath fluid, and the interfacial tension between the molten wax and bath fluid, spherical molten wax drops impinged on a cooling water bath and were arrested into non-spherical solidified particles in the form of ellipsoid, mushroom, disc, and flake-like shapes. We constructed cursory phase diagrams for the various particle shapes generated over a range of Weber, Capillary, Reynolds, and Stefan numbers, governed by the interfacial, inertial, viscous, and thermal effects. We solved a simplified heat transfer problem to estimate the time required to initiate the solidification at the interface of a spherical molten wax droplet and cooling aqueous bath after impact. By correlating this time with the molten wax drop deformation history captured from high speed imaging experiments, we elucidate the delicate balance of interfacial, inertial, viscous, and thermal forces that determine the final morphology of wax particles. Copyright © 2015 Elsevier Inc. All rights reserved.
Thermal and Dynamic Properties of Volcanic Lava Inferred from Measurements on its Surface
NASA Astrophysics Data System (ADS)
Ismail-Zadeh, A.; Korotkii, A.; Kovtunov, D.; Tsepelev, I.; Melnik, O. E.
2015-12-01
Modern remote sensing technologies allow for detecting the absolute temperature at the surface of volcanic lava, and the heat flow could be then inferred from the Stefan-Boltzmann law. Is it possible to use these surface thermal data to constrain the thermal and dynamic conditions inside the lava? We propose a quantitative approach to reconstruct temperature and velocity in the steady-state volcanic lava flow from thermal observations at its surface. This problem is reduced to a combination of the direct and inverse problems of mass- and heat transport. Namely, using known conditions at the lava surface we determine the missing condition at the bottom of lava (the inverse problem) and then search for the physical properties of lava - temperature and flow velocity - inside the lava (the direct problem). Assuming that the lava rheology and the thermal conductivity are temperature-dependent, we determine the flow characteristics in the model domain using an adjoint method. We show that in the case of smooth input data (observations) the lava temperature and the flow velocity can be reconstructed with a high accuracy. The noise imposed on the smooth input data results in a less accurate solution, but still acceptable below some noise level.
Thermal-mechanical modeling of laser ablation hybrid machining
NASA Astrophysics Data System (ADS)
Matin, Mohammad Kaiser
2001-08-01
Hard, brittle and wear-resistant materials like ceramics pose a problem when being machined using conventional machining processes. Machining ceramics even with a diamond cutting tool is very difficult and costly. Near net-shape processes, like laser evaporation, produce micro-cracks that require extra finishing. Thus it is anticipated that ceramic machining will have to continue to be explored with new-sprung techniques before ceramic materials become commonplace. This numerical investigation results from the numerical simulations of the thermal and mechanical modeling of simultaneous material removal from hard-to-machine materials using both laser ablation and conventional tool cutting utilizing the finite element method. The model is formulated using a two dimensional, planar, computational domain. The process simulation acronymed, LAHM (Laser Ablation Hybrid Machining), uses laser energy for two purposes. The first purpose is to remove the material by ablation. The second purpose is to heat the unremoved material that lies below the ablated material in order to ``soften'' it. The softened material is then simultaneously removed by conventional machining processes. The complete solution determines the temperature distribution and stress contours within the material and tracks the moving boundary that occurs due to material ablation. The temperature distribution is used to determine the distance below the phase change surface where sufficient ``softening'' has occurred, so that a cutting tool may be used to remove additional material. The model incorporated for tracking the ablative surface does not assume an isothermal melt phase (e.g. Stefan problem) for laser ablation. Both surface absorption and volume absorption of laser energy as function of depth have been considered in the models. LAHM, from the thermal and mechanical point of view is a complex machining process involving large deformations at high strain rates, thermal effects of the laser, removal of materials and contact between workpiece and tool. The theoretical formulation associated with LAHM for solving the thermal-mechanical problem using the finite element method is presented. The thermal formulation is incorporated in the user defined subroutines called by ABAQUS/Standard. The mechanical portion is modeled using ABAQUS/Explicit's general capabilities of modeling interactions involving contact and separation. The results obtained from the FEA simulations showed that the cutting force decrease considerably in both LAEM Surface Absorption (LARM-SA) and LAHM volume absorption (LAHM-VA) models relative to LAM model. It was observed that the HAZ can be expanded or narrowed depending on the laser speed and power. The cutting force is minimal at the last extent of the HAZ. In both the models the laser ablates material thus reducing material stiffness as well as relaxing the thermal stress. The stress values obtained showed compressive yield stress just below the ablated surface and chip. The failure occurs by conventional cutting where tensile stress exceeds the tensile strength of the material at that temperature. In this hybrid machining process the advantages of both the individual machining processes were realized.
Diffusion of Charged Species in Liquids
NASA Astrophysics Data System (ADS)
Del Río, J. A.; Whitaker, S.
2016-11-01
In this study the laws of mechanics for multi-component systems are used to develop a theory for the diffusion of ions in the presence of an electrostatic field. The analysis begins with the governing equation for the species velocity and it leads to the governing equation for the species diffusion velocity. Simplification of this latter result provides a momentum equation containing three dominant forces: (a) the gradient of the partial pressure, (b) the electrostatic force, and (c) the diffusive drag force that is a central feature of the Maxwell-Stefan equations. For ideal gas mixtures we derive the classic Nernst-Planck equation. For liquid-phase diffusion we encounter a situation in which the Nernst-Planck contribution to diffusion differs by several orders of magnitude from that obtained for ideal gases.
Diffusion of Charged Species in Liquids.
Del Río, J A; Whitaker, S
2016-11-04
In this study the laws of mechanics for multi-component systems are used to develop a theory for the diffusion of ions in the presence of an electrostatic field. The analysis begins with the governing equation for the species velocity and it leads to the governing equation for the species diffusion velocity. Simplification of this latter result provides a momentum equation containing three dominant forces: (a) the gradient of the partial pressure, (b) the electrostatic force, and (c) the diffusive drag force that is a central feature of the Maxwell-Stefan equations. For ideal gas mixtures we derive the classic Nernst-Planck equation. For liquid-phase diffusion we encounter a situation in which the Nernst-Planck contribution to diffusion differs by several orders of magnitude from that obtained for ideal gases.
Diffusion of Charged Species in Liquids
del Río, J. A.; Whitaker, S.
2016-01-01
In this study the laws of mechanics for multi-component systems are used to develop a theory for the diffusion of ions in the presence of an electrostatic field. The analysis begins with the governing equation for the species velocity and it leads to the governing equation for the species diffusion velocity. Simplification of this latter result provides a momentum equation containing three dominant forces: (a) the gradient of the partial pressure, (b) the electrostatic force, and (c) the diffusive drag force that is a central feature of the Maxwell-Stefan equations. For ideal gas mixtures we derive the classic Nernst-Planck equation. For liquid-phase diffusion we encounter a situation in which the Nernst-Planck contribution to diffusion differs by several orders of magnitude from that obtained for ideal gases. PMID:27811959
NASA Technical Reports Server (NTRS)
Dietrich, D. L.; Ross, H. D.; Tien, J. S.
1995-01-01
The candle flame in both normal and microgravity is non-propagating. In microgravity, however, the candle flame is also non-convective where (excepting Stefan flow) pure diffusion is the only transport mode. It also shares many characteristics with another classical problem, that of isolated droplet combustion. Given their qualitatively similar flame shapes and the required heat feedback to condensed-phase fuels, the gas-phase flow and temperature fields should be relatively similar for a droplet and a candle in reduced gravity. Unless the droplet diameter is maintained somehow through non-intrusive replenishment of fuel, the quasi-steady burning characteristics of a droplet can be maintained for only a few seconds. In contrast, the candle flame in microgravity may achieve a nearly steady state over a much longer time and is therefore ideal for examining a number of combustion-related phenomena. In this paper, we examine candle flame behavior in both short-duration and long-duration, quiescent, microgravity environments. Interest in this type of flame, especially 'candle flames in weightlessness', is demonstrated by very frequent public inquiries. The question is usually posed as 'will a candle flame burn in zero gravity', or, 'will a candle burn indefinitely (or steadily) in zero gravity in a large volume of quiescent air'. Intuitive speculation suggests to some that, in the absence of buoyancy, the accumulation of products in the vicinity of the flame will cause flame extinction. The classical theory for droplet combustion with its spherically-shaped diffusion flame, however, shows that steady combustion is possible in the absence of buoyancy if the chemical kinetics are fast enough. Previous experimental studies of candle flames in reduced and microgravity environments showed the flame could survive for at least 5 seconds, but did not reach a steady state in the available test time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefan, Vladislav Alexander
Contents: H. Berk: Frequency Sweeping Due to Phase Space Structure Formation in Plasmas M. Campbell : The Legacy of Marshall Rosenbluth in the Development of the Laser Fusion Program in the United States J. Candy: Gyrokinetic Simulations of Fusion Plasmas P. Diamond: The Legacy of Marshall Rosenbluth in Magnetic Confinement Theory G-Y. Fu: Nonlinear Hybrid Simulations of Multiple Energetic Particle Driven Alfven Modes in Toroidal Plasmas O. Gurcan: Theory of Intrinsic Rotation and Momentum Transport V. L. Jacobs: Kinetic and Spectral Descriptions for Atomic Processes in Astrophysical and Laboratory Plasmas C. F. Kennel: Marshall Rosenbluth and Roald Sagdeev in Trieste:Themore » Birth of Modern Space Plasma N. A. Krall: The Contribution of Marshall Rosenbluth in the Development of Plasma Drift Wave and Universal Instability Theories C. S. Liu: The Legacy of Marshall Rosenbluth in Laser-Plasma Interaction Research N. Rostoker: Plasma Physics Research With Marshall Rosenbluth - My Teacher R. Z. Sagdeev: The Legacy of Marshall Rosenbluth in Plasma Physics V. Alexander Stefan A Note on the Rosenbluth Paper: Phys. Rev. Letters, 29, 565 (1972), and the Research in Parametric Plasma Theory Thereupon J. W. Van Dam: The Role of Marshall Rosenbluth in the Development of the Thermonuclear Fusion Program in the U.S.A. E. P. Velikhov: Problems in Plasma Astrophysics R. White: The Role of Marshall Rosenbluth in the Development of the Particle and MHD Interaction in Plasmas X. Xu: Edge Gyrokinetic Theory and Continuum Simulations Marshall Nicholas ROSENBLUTH (A Brief Biography) b. February 5,1927 - Albany, New York. d. September 28, 2003 - San Diego, California. M. N. Rosenbluth, a world-acclaimed scientist, is one of the ultimate authorities in plasma and thermonuclear fusion research, often indicated by the sobriquet the "Pope of Plasma Physics." His theoretical contributions have been central to the development of controlled thermonuclear fusion. In the 1950s his pioneering work in plasma instabilities, together with pioneering works of A. Sakharov, I. Tamm, L. Spitzer, Jr., L. A. Artsimovich, and others, led to the design of the TOKAMAK, the principal configuration used for contemporary magnetic fusion experiments. In addition to his research achievements, he has made significant administrative contributions as a scientific advisor in the fields of energy policy and national defense. He is the founder and the first director of The Institute for Fusion Studies at Austin, Texas. M. N. Rosenbluth has been the recipient of the E. O. Lawrence Memorial Award (1964),the Albert Einstein Award (1967),the James Clerk Maxwell prize in Plasma Physics(1976),and the Enrico Fermi Award (1986). M. N. Rosenbluth had been Science Advisor for the INSTITUTE for ADVANCED PHYSICS STUDIES (presently a division of The Stefan University) since 1989. He is the editor-in-chief of the FSRC, (Frontier Science Research Conferences) Book: "NEW IDEAS in TOKAMAK CONFINEMENT" Published by the American Institute of Physics (August 1994) in the Research Trends in Physics Series founded and edited by V. Alexander Stefan in 1989. M. N. Rosenbluth was a member of the American Academy of Arts and Sciences and the National Academy of Sciences of the USA, a Professor Emeritus at the University of California, San Diego, and a Senior Scientist at General Atomics, San Diego.« less
Drying in porous media with gravity-stabilized fronts: experimental results.
Yiotis, A G; Salin, D; Tajer, E S; Yortsos, Y C
2012-08-01
In a recent paper [Yiotis et al., Phys. Rev. E 85, 046308 (2012)] we developed a model for the drying of porous media in the presence of gravity. It incorporated effects of corner film flow, internal and external mass transfer, and the effect of gravity. Analytical results were derived when gravity opposes drying and hence leads to a stable percolation drying front. In this paper, we test the theory using laboratory experiments. A series of isothermal drying experiments in glass bead packings saturated with volatile hydrocarbons is conducted. The transparent glass cells containing the packing allow for the visual monitoring of the phase distribution patterns below the surface, including the formation of liquid films, as the gaseous phase invades the pore space, and for the control of the thickness of the diffusive mass boundary layer over the packing. The experimental results agree very well with theory, provided that the latter is generalized to account for the effects of corner roundness in the film region (which was neglected in the theoretical part). We demonstrate the existence of an early constant rate period (CRP), which lasts as long as the films saturate the surface of the packing, and of a subsequent falling rate period (FRP), which begins practically after the detachment of the film tips from the external surface. During the CRP, the process is controlled by diffusion within the stagnant gaseous phase in the upper part of the cells, yielding a Stefan tube problem solution. During the FRP, the process is controlled by diffusion within the packing, with a drying rate inversely proportional to the observed position of the film tips in the cell. Theoretical and experimental results compare favorably for a specific value of the roundness of the films, which is found to be constant and equal to 0.2 for various conditions, and verify the theoretical dependence on the capillary Ca(f), Bond Bo, and Sherwood Sh numbers.
Predicting the Kinetics of Ice Recrystallization in Aqueous Sugar Solutions
2018-01-01
The quality of stored frozen products such as foods and biomaterials generally degrades in time due to the growth of large ice crystals by recrystallization. While there is ample experimental evidence that recrystallization within such products (or model systems thereof) is often dominated by diffusion-limited Ostwald ripening, the application of Ostwald-ripening theories to predict measured recrystallization rates has only met with limited success. For a model system of polycrystalline ice within an aqueous solution of sugars, we here show recrystallization rates can be predicted on the basis of Ostwald ripening theory, provided (1) the theory accounts for the fact the solution can be nonideal, nondilute and of different density than the crystals, (2) the effect of ice-phase volume fraction on the diffusional flux of water between crystals is accurately described, and (3) all relevant material properties (involving binary Fick diffusion coefficients, the thermodynamic factor of the solution, and the surface energy of ice) are carefully estimated. To enable calculation of material properties, we derive an alternative formulation of Ostwald ripening in terms of the Maxwell–Stefan instead of the Fick approach to diffusion. First, this leads to a cancellation of the thermodynamic factor (a measure for the nonideality of a solution), which is a notoriously difficult property to obtain. Second, we show that Maxwell–Stefan diffusion coefficients can to a reasonable approximation be related to self-diffusion coefficients, which are relatively easy to measure or predict in comparison to Fick diffusion coefficients. Our approach is validated for a binary system of water and sucrose, for which we show predicted recrystallization rates of ice compare well to experimental results, with relative deviations of at most a factor of 2. PMID:29651228
Predicting the Kinetics of Ice Recrystallization in Aqueous Sugar Solutions.
van Westen, Thijs; Groot, Robert D
2018-04-04
The quality of stored frozen products such as foods and biomaterials generally degrades in time due to the growth of large ice crystals by recrystallization. While there is ample experimental evidence that recrystallization within such products (or model systems thereof) is often dominated by diffusion-limited Ostwald ripening, the application of Ostwald-ripening theories to predict measured recrystallization rates has only met with limited success. For a model system of polycrystalline ice within an aqueous solution of sugars, we here show recrystallization rates can be predicted on the basis of Ostwald ripening theory, provided (1) the theory accounts for the fact the solution can be nonideal, nondilute and of different density than the crystals, (2) the effect of ice-phase volume fraction on the diffusional flux of water between crystals is accurately described, and (3) all relevant material properties (involving binary Fick diffusion coefficients, the thermodynamic factor of the solution, and the surface energy of ice) are carefully estimated. To enable calculation of material properties, we derive an alternative formulation of Ostwald ripening in terms of the Maxwell-Stefan instead of the Fick approach to diffusion. First, this leads to a cancellation of the thermodynamic factor (a measure for the nonideality of a solution), which is a notoriously difficult property to obtain. Second, we show that Maxwell-Stefan diffusion coefficients can to a reasonable approximation be related to self-diffusion coefficients, which are relatively easy to measure or predict in comparison to Fick diffusion coefficients. Our approach is validated for a binary system of water and sucrose, for which we show predicted recrystallization rates of ice compare well to experimental results, with relative deviations of at most a factor of 2.
Two-phase framework for near-optimal multi-target Lambert rendezvous
NASA Astrophysics Data System (ADS)
Bang, Jun; Ahn, Jaemyung
2018-03-01
This paper proposes a two-phase framework to obtain a near-optimal solution of multi-target Lambert rendezvous problem. The objective of the problem is to determine the minimum-cost rendezvous sequence and trajectories to visit a given set of targets within a maximum mission duration. The first phase solves a series of single-target rendezvous problems for all departure-arrival object pairs to generate the elementary solutions, which provides candidate rendezvous trajectories. The second phase formulates a variant of traveling salesman problem (TSP) using the elementary solutions prepared in the first phase and determines the final rendezvous sequence and trajectories of the multi-target rendezvous problem. The validity of the proposed optimization framework is demonstrated through an asteroid exploration case study.
NASA Astrophysics Data System (ADS)
Wu, Yingchun; Crua, Cyril; Li, Haipeng; Saengkaew, Sawitree; Mädler, Lutz; Wu, Xuecheng; Gréhan, Gérard
2018-07-01
The accurate measurements of droplet temperature, size and evaporation rate are of great importance to characterize the heat and mass transfer during evaporation/condensation processes. The nanoscale size change of a micron-sized droplet exactly describes its transient mass transfer, but is difficult to measure because it is smaller than the resolutions of current size measurement techniques. The Phase Rainbow Refractometry (PRR) technique is developed and applied to measure droplet temperature, size and transient size changes and thereafter evaporation rate simultaneously. The measurement principle of PRR is theoretically derived, and it reveals that the phase shift of the time-resolved ripple structures linearly depends on, and can directly yield, nano-scale size changes of droplets. The PRR technique is first verified through the simulation of rainbows of droplets with changing size, and results show that PRR can precisely measure droplet refractive index, absolute size, as well as size change with absolute and relative errors within several nanometers and 0.6%, respectively, and thus PRR permits accurate measurements of transient droplet evaporation rates. The evaporations of flowing single n-nonane droplet and mono-dispersed n-heptane droplet stream are investigated by two PRR systems with a high speed linear CCD and a low speed array CCD, respectively. Their transient evaporation rates are experimentally determined and quantitatively agree well with the theoretical values predicted by classical Maxwell and Stefan-Fuchs models. With the demonstration of evaporation rate measurement of monocomponent droplet in this work, PRR is an ideal tool for measurements of transient droplet evaporation/condensation processes, and can be extended to multicomponent droplets in a wide range of industrially-relevant applications.
Fundamental aspects of the phase retrieval problem
NASA Astrophysics Data System (ADS)
Ferwerda, H. A.
1980-12-01
A review is given of the fundamental aspects of the phase retrieval problem in optical imaging for one dimension. The phase problem is treated using the fact that the wavefunction in the image-plane is a band-limited entire function of order 1. The ambiguity of the phase reconstruction is formulated in terms of the complex zeros of entire functions. Procedures are given how the relevant zeros might be determined. When the zeros are known one can derive dispersion relations which relate the phase of the wavefunction to the intensity distribution. The phase problem of coherence theory is similar to the previously discussed problem and is briefly touched upon. The extension of the phase problem to two dimensions is not straight-forward and still remains to be solved.
Compressible-Incompressible Two-Phase Flows with Phase Transition: Model Problem
NASA Astrophysics Data System (ADS)
Watanabe, Keiichi
2017-12-01
We study the compressible and incompressible two-phase flows separated by a sharp interface with a phase transition and a surface tension. In particular, we consider the problem in R^N , and the Navier-Stokes-Korteweg equations is used in the upper domain and the Navier-Stokes equations is used in the lower domain. We prove the existence of R -bounded solution operator families for a resolvent problem arising from its model problem. According to Göts and Shibata (Asymptot Anal 90(3-4):207-236, 2014), the regularity of ρ _+ is W^1_q in space, but to solve the kinetic equation: u_Γ \\cdot n_t = [[ρ u
NASA Astrophysics Data System (ADS)
Baig, Mohammad Saad; Chakraborty, Brahmananda; Ramaniah, Lavanya M.
2016-05-01
NaF-ZrF4 is used as a waste incinerator and as a coolant in Generation IV reactors.Structural and dynamical properties of molten NaF-ZrF4 system were studied along with Onsagercoefficients and Maxwell-Stefan (MS) Diffusivities applying Green-Kubo formalism and molecular dynamics (MD) simulations. The zirconium ions are found to be 8 fold coordinated with fluoride ions for all temperatures and concentrations. All the diffusive flux correlations show back-scattering. Even though the MS diffusivities are expected to depend very lightly on the composition because of decoupling of thermodynamic factor, the diffusivity ĐNa-F shows interesting behavior with the increase in concentration of ZrF4. This is because of network formation in NaF-ZrF4. Positive entropy constraints have been plotted to authenticate negative diffusivities observed.
On Riemann solvers and kinetic relations for isothermal two-phase flows with surface tension
NASA Astrophysics Data System (ADS)
Rohde, Christian; Zeiler, Christoph
2018-06-01
We consider a sharp interface approach for the inviscid isothermal dynamics of compressible two-phase flow that accounts for phase transition and surface tension effects. Kinetic relations are frequently used to fix the mass exchange and entropy dissipation rate across the interface. The complete unidirectional dynamics can then be understood by solving generalized two-phase Riemann problems. We present new well-posedness theorems for the Riemann problem and corresponding computable Riemann solvers that cover quite general equations of state, metastable input data and curvature effects. The new Riemann solver is used to validate different kinetic relations on physically relevant problems including a comparison with experimental data. Riemann solvers are building blocks for many numerical schemes that are used to track interfaces in two-phase flow. It is shown that the new Riemann solver enables reliable and efficient computations for physical situations that could not be treated before.
A constraint optimization based virtual network mapping method
NASA Astrophysics Data System (ADS)
Li, Xiaoling; Guo, Changguo; Wang, Huaimin; Li, Zhendong; Yang, Zhiwen
2013-03-01
Virtual network mapping problem, maps different virtual networks onto the substrate network is an extremely challenging work. This paper proposes a constraint optimization based mapping method for solving virtual network mapping problem. This method divides the problem into two phases, node mapping phase and link mapping phase, which are all NP-hard problems. Node mapping algorithm and link mapping algorithm are proposed for solving node mapping phase and link mapping phase, respectively. Node mapping algorithm adopts the thinking of greedy algorithm, mainly considers two factors, available resources which are supplied by the nodes and distance between the nodes. Link mapping algorithm is based on the result of node mapping phase, adopts the thinking of distributed constraint optimization method, which can guarantee to obtain the optimal mapping with the minimum network cost. Finally, simulation experiments are used to validate the method, and results show that the method performs very well.
Moving your eyes to solution: effects of movements on the perception of a problem-solving task.
Werner, K; Raab, M
2014-01-01
There is ample evidence suggesting a bidirectional connection between bodily movements and cognitive processes, such as problem solving. Current research suggests that previous movements can influence the problem-solving process, but it is unclear what phase of this process is affected. Therefore, we investigated participants' gaze behaviour in the first phase of arithmetic problem solving with two groups (plus group, minus group) to explore a spatial bias toward the left or the right while perceiving a problem-solving task (the water-jar problem) after two different movements-that is, for the plus group, sorting marbles from two outer bowls into one in the middle, and for the minus group, sorting marbles from the middle bowl to the outer ones. We showed a right shift of spatial bias for the plus and to the left for the minus group in the perception and problem tasks. Although movements affected gaze, the groups did not differ in their overall problem-solving strategies; however, the first correct solutions did differ. This study provides further evidence of sensorimotor effects on problem solving and spatial bias and offers insight into how a two-phase problem-solving process is guided by sensorimotor information.
Senior Research Fellow Wins Major International Science Award | News | NREL
generation (MEG) in semiconductor nanocrystals, also called quantum dots, and recently found efficient MEG in silicon quantum dots. He shares the award with Stefan W. Glunz of the Fraunhofer Institute in Germany
Some issues in the simulation of two-phase flows: The relative velocity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gräbel, J.; Hensel, S.; Ueberholz, P.
In this paper we compare numerical approximations for solving the Riemann problem for a hyperbolic two-phase flow model in two-dimensional space. The model is based on mixture parameters of state where the relative velocity between the two-phase systems is taken into account. This relative velocity appears as a main discontinuous flow variable through the complete wave structure and cannot be recovered correctly by some numerical techniques when simulating the associated Riemann problem. Simulations are validated by comparing the results of the numerical calculation qualitatively with OpenFOAM software. Simulations also indicate that OpenFOAM is unable to resolve the relative velocity associatedmore » with the Riemann problem.« less
New analytical solutions to the two-phase water faucet problem
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-06-17
Here, the one-dimensional water faucet problem is one of the classical benchmark problems originally proposed by Ransom to study the two-fluid two-phase flow model. With certain simplifications, such as massless gas phase and no wall and interfacial frictions, analytical solutions had been previously obtained for the transient liquid velocity and void fraction distribution. The water faucet problem and its analytical solutions have been widely used for the purposes of code assessment, benchmark and numerical verifications. In our previous study, the Ransom’s solutions were used for the mesh convergence study of a high-resolution spatial discretization scheme. It was found that, atmore » the steady state, an anticipated second-order spatial accuracy could not be achieved, when compared to the existing Ransom’s analytical solutions. A further investigation showed that the existing analytical solutions do not actually satisfy the commonly used two-fluid single-pressure two-phase flow equations. In this work, we present a new set of analytical solutions of the water faucet problem at the steady state, considering the gas phase density’s effect on pressure distribution. This new set of analytical solutions are used for mesh convergence studies, from which anticipated second-order of accuracy is achieved for the 2nd order spatial discretization scheme. In addition, extended Ransom’s transient solutions for the gas phase velocity and pressure are derived, with the assumption of decoupled liquid and gas pressures. Numerical verifications on the extended Ransom’s solutions are also presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saitoh, T.S.; Hoshi, Akira
1997-12-31
Melting and solidification of a phase change material (PCM) in a capsule is of practical importance in latent heat thermal energy storage (LHTES) systems which are considered to be very promising to reduce a peak demand of electricity in the summer season. Two melting modes are involved in melting in capsules. One is close-contact melting between the solid bulk and the capsule wall, and another is natural convection melting in the liquid region. In recent years, close-contact melting processes for a single enclosure have been solved using several numerical methods (e.g., Saitoh and Kato (1994)). However, there is no theoreticalmore » solution considering the inner wall temperature variation within cylindrical or spherical capsules. In this report close-contact melting heat transfer characteristics including melt flow in the liquid film under inner wall temperature distribution were analyzed and simple approximate equations are presented, which facilitates designing of the practical capsule bed LHTES systems. The effects of Stefan number and variable temperature profile etc. were clarified in detail. And the melting velocity of the solid bulk under various conditions was also studied theoretically. In addition, the effects of variable inner wall temperature on molten mass fraction were investigated.« less
Shape-tunable wax microparticle synthesis via microfluidics and droplet impact
Lee, Doojin; Beesabathuni, Shilpa N.; Shen, Amy Q.
2015-01-01
Spherical and non-spherical wax microparticles are generated by employing a facile two-step droplet microfluidic process which consists of the formation of molten wax microdroplets in a flow-focusing microchannel and their subsequent off-chip crystallization and deformation via microdroplet impingement on an immiscible liquid interface. Key parameters on the formation of molten wax microdroplets in a microfluidic channel are the viscosity of the molten wax and the interfacial tension between the dispersed and continuous fluids. A cursory phase diagram of wax morphology transition is depicted depending on the Capillary number and the Stefan number during the impact process. A combination of numerical simulation and analytical modeling is carried out to understand the physics underlying the deformation and crystallization process of the molten wax. The deformation of wax microdroplets is dominated by the viscous and thermal effects rather than the gravitational and buoyancy effects. Non-isothermal crystallization kinetics of the wax illustrates the time dependent thermal effects on the droplet deformation and crystallization. The work presented here will benefit those interested in the design and production criteria of soft non-spherical particles (i.e., alginate gels, wax, and polymer particles) with the aid of time and temperature mediated solidification and off-chip crosslinking. PMID:26697124
Optimal dynamic remapping of parallel computations
NASA Technical Reports Server (NTRS)
Nicol, David M.; Reynolds, Paul F., Jr.
1987-01-01
A large class of computations are characterized by a sequence of phases, with phase changes occurring unpredictably. The decision problem was considered regarding the remapping of workload to processors in a parallel computation when the utility of remapping and the future behavior of the workload is uncertain, and phases exhibit stable execution requirements during a given phase, but requirements may change radically between phases. For these problems a workload assignment generated for one phase may hinder performance during the next phase. This problem is treated formally for a probabilistic model of computation with at most two phases. The fundamental problem of balancing the expected remapping performance gain against the delay cost was addressed. Stochastic dynamic programming is used to show that the remapping decision policy minimizing the expected running time of the computation has an extremely simple structure. Because the gain may not be predictable, the performance of a heuristic policy that does not require estimnation of the gain is examined. The heuristic method's feasibility is demonstrated by its use on an adaptive fluid dynamics code on a multiprocessor. The results suggest that except in extreme cases, the remapping decision problem is essentially that of dynamically determining whether gain can be achieved by remapping after a phase change. The results also suggest that this heuristic is applicable to computations with more than two phases.
Benchmark problems for numerical implementations of phase field models
Jokisaari, A. M.; Voorhees, P. W.; Guyer, J. E.; ...
2016-10-01
Here, we present the first set of benchmark problems for phase field models that are being developed by the Center for Hierarchical Materials Design (CHiMaD) and the National Institute of Standards and Technology (NIST). While many scientific research areas use a limited set of well-established software, the growing phase field community continues to develop a wide variety of codes and lacks benchmark problems to consistently evaluate the numerical performance of new implementations. Phase field modeling has become significantly more popular as computational power has increased and is now becoming mainstream, driving the need for benchmark problems to validate and verifymore » new implementations. We follow the example set by the micromagnetics community to develop an evolving set of benchmark problems that test the usability, computational resources, numerical capabilities and physical scope of phase field simulation codes. In this paper, we propose two benchmark problems that cover the physics of solute diffusion and growth and coarsening of a second phase via a simple spinodal decomposition model and a more complex Ostwald ripening model. We demonstrate the utility of benchmark problems by comparing the results of simulations performed with two different adaptive time stepping techniques, and we discuss the needs of future benchmark problems. The development of benchmark problems will enable the results of quantitative phase field models to be confidently incorporated into integrated computational materials science and engineering (ICME), an important goal of the Materials Genome Initiative.« less
Defect-phase-dynamics approach to statistical domain-growth problem of clock models
NASA Technical Reports Server (NTRS)
Kawasaki, K.
1985-01-01
The growth of statistical domains in quenched Ising-like p-state clock models with p = 3 or more is investigated theoretically, reformulating the analysis of Ohta et al. (1982) in terms of a phase variable and studying the dynamics of defects introduced into the phase field when the phase variable becomes multivalued. The resulting defect/phase domain-growth equation is applied to the interpretation of Monte Carlo simulations in two dimensions (Kaski and Gunton, 1983; Grest and Srolovitz, 1984), and problems encountered in the analysis of related Potts models are discussed. In the two-dimensional case, the problem is essentially that of a purely dissipative Coulomb gas, with a sq rt t growth law complicated by vertex-pinning effects at small t.
Quantum adiabatic machine learning
NASA Astrophysics Data System (ADS)
Pudenz, Kristen L.; Lidar, Daniel A.
2013-05-01
We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. This approach consists of two quantum phases, with some amount of classical preprocessing to set up the quantum problems. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. All quantum processing is strictly limited to two-qubit interactions so as to ensure physical feasibility. We apply and illustrate this approach in detail to the problem of software verification and validation, with a specific example of the learning phase applied to a problem of interest in flight control systems. Beyond this example, the algorithm can be used to attack a broad class of anomaly detection problems.
Hidri, Lotfi; Gharbi, Anis; Louly, Mohamed Aly
2014-01-01
We focus on the two-center hybrid flow shop scheduling problem with identical parallel machines and removal times. The job removal time is the required duration to remove it from a machine after its processing. The objective is to minimize the maximum completion time (makespan). A heuristic and a lower bound are proposed for this NP-Hard problem. These procedures are based on the optimal solution of the parallel machine scheduling problem with release dates and delivery times. The heuristic is composed of two phases. The first one is a constructive phase in which an initial feasible solution is provided, while the second phase is an improvement one. Intensive computational experiments have been conducted to confirm the good performance of the proposed procedures.
Efficient Bounding Schemes for the Two-Center Hybrid Flow Shop Scheduling Problem with Removal Times
2014-01-01
We focus on the two-center hybrid flow shop scheduling problem with identical parallel machines and removal times. The job removal time is the required duration to remove it from a machine after its processing. The objective is to minimize the maximum completion time (makespan). A heuristic and a lower bound are proposed for this NP-Hard problem. These procedures are based on the optimal solution of the parallel machine scheduling problem with release dates and delivery times. The heuristic is composed of two phases. The first one is a constructive phase in which an initial feasible solution is provided, while the second phase is an improvement one. Intensive computational experiments have been conducted to confirm the good performance of the proposed procedures. PMID:25610911
The black hole quantum atmosphere
NASA Astrophysics Data System (ADS)
Dey, Ramit; Liberati, Stefano; Pranzetti, Daniele
2017-11-01
Ever since the discovery of black hole evaporation, the region of origin of the radiated quanta has been a topic of debate. Recently it was argued by Giddings that the Hawking quanta originate from a region well outside the black hole horizon by calculating the effective radius of a radiating body via the Stefan-Boltzmann law. In this paper we try to further explore this issue and end up corroborating this claim, using both a heuristic argument and a detailed study of the stress energy tensor. We show that the Hawking quanta originate from what might be called a quantum atmosphere around the black hole with energy density and fluxes of particles peaked at about 4 MG, running contrary to the popular belief that these originate from the ultra high energy excitations very close to the horizon. This long distance origin of Hawking radiation could have a profound impact on our understanding of the information and transplanckian problems.
NASA Astrophysics Data System (ADS)
Hoover, Wm. G.; Hoover, Carol G.
2012-02-01
We compare the Gram-Schmidt and covariant phase-space-basis-vector descriptions for three time-reversible harmonic oscillator problems, in two, three, and four phase-space dimensions respectively. The two-dimensional problem can be solved analytically. The three-dimensional and four-dimensional problems studied here are simultaneously chaotic, time-reversible, and dissipative. Our treatment is intended to be pedagogical, for use in an updated version of our book on Time Reversibility, Computer Simulation, and Chaos. Comments are very welcome.
NASA Astrophysics Data System (ADS)
Strom, K. B.; Bhattacharya, J.
2012-12-01
River discharges with very high sediment loads have the potential to develop into plunging hyperpycnal flows that transition from a river jet to a turbidity current at some location basinward of the river mouth due to the density difference between the turbid river and the receiving water body. However, even if the bulk density of the turbid river is greater than that of the receiving lake or ocean, some distance is needed for the forward inertia of the river to dissipate so that the downward gravitational pull can cause the system to collapse into a subaqueous turbidity current. This collapsing at the plunge point has been found to occur when the densimetric Froude number decreases to a value between 0.3 < Frd < 0.7 (Fang and Stefan 2000, Parker and Toniolo 2007, Dai and Garcia 2010, Lamb et al. 2010). In 2D channel flow analysis at the plunge point, this has led to the concept of a two-fold criterion for plunging. The first is simply for the need of high enough suspended sediment concentration to overcome the density difference between the river fluid and the fluid of the receiving water. The second is the need for sufficiently deep water to reduce the densimetric Froude below the critical value for plunging, which leads to dependence of plunging on the receiving water basin topography (Lamb et al. 2010). In this analysis, we expand on past work by solving a system of ODE river jet equations to account for bottom friction, lateral entrainment of ambient fluid, and particle settling between the river mouth and the plunge location. Typical entrainment and bottom friction coefficients are used and the model is tested against the laboratory density current data of Fang and Stefan (1991). A suite of conditions is solved with variable river discharge velocity, aspect ratio, suspended sediment concentration, and particle size; a range of salinity values and bottom slopes are used for the receiving water body. The plunge location is then expressed as a function of the boundary conditions at the river mouth and those of the receiving water. The relationships can be used for modern systems, but can also help to put reasonable bounds on paleo-hydraulic setting. References Dai, A. & Garcia, M. H. (2010). Energy Dissipative Plunging Flows. Journal of Hydraulic Engineering, 136(8), 519-523. Fang, X. & Stefan, H. G. (1991). Integral Jet Model for Flow from an Open Channel into a Shallow Lake or Reservoir. St. Anthony Falls Hydraulic Laboratory. Fang, X. & Stefan, H. G. (2000). Dependence of dilution of a plunging discharge over a sloping bottom on inflow conditions and bottom friction. Journal of Hydraulic Research, 38(1), 15-25. Lamb, M. P., McElroy, B., Kopriva, B., Shaw, J., & Mohrig, D. (2010). Linking river-flood dynamics to hyperpycnal-plume deposits: Experiments, theory, and geological implications. Geological Society of America Bulletin, 122(9/10), 1389-1400. Parker, G. & Toniolo, H. (2007). Note on the Analysis of Plunging of Density Flows. Journal of Hydraulic Engineering, 133(6), 690-694.
Algebraic multigrid preconditioners for two-phase flow in porous media with phase transitions
NASA Astrophysics Data System (ADS)
Bui, Quan M.; Wang, Lu; Osei-Kuffuor, Daniel
2018-04-01
Multiphase flow is a critical process in a wide range of applications, including oil and gas recovery, carbon sequestration, and contaminant remediation. Numerical simulation of multiphase flow requires solving of a large, sparse linear system resulting from the discretization of the partial differential equations modeling the flow. In the case of multiphase multicomponent flow with miscible effect, this is a very challenging task. The problem becomes even more difficult if phase transitions are taken into account. A new approach to handle phase transitions is to formulate the system as a nonlinear complementarity problem (NCP). Unlike in the primary variable switching technique, the set of primary variables in this approach is fixed even when there is phase transition. Not only does this improve the robustness of the nonlinear solver, it opens up the possibility to use multigrid methods to solve the resulting linear system. The disadvantage of the complementarity approach, however, is that when a phase disappears, the linear system has the structure of a saddle point problem and becomes indefinite, and current algebraic multigrid (AMG) algorithms cannot be applied directly. In this study, we explore the effectiveness of a new multilevel strategy, based on the multigrid reduction technique, to deal with problems of this type. We demonstrate the effectiveness of the method through numerical results for the case of two-phase, two-component flow with phase appearance/disappearance. We also show that the strategy is efficient and scales optimally with problem size.
Aporias, Politics of Ontology, Ethics, and "We"?
ERIC Educational Resources Information Center
Bengtsson, Stefan Lars
2016-01-01
The different responses, interpretations, and consequent critiques of Stefan Lars Bengtsson's "Hegemony and the Politics of Policy Making for Education for Sustainable Development" highlight how the various critical outlooks are framed by, seemingly, incommensurable positions, or figures of reasoning, that inform their thinking.…
Ice-Ocean Thermodynamic Interface and Small-Scale Issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Adrian K.
2012-07-02
This presentation discusses: (1) Stefan condition, (2) lower boundary condition of mushy layers, (3) salt flux to ocean from gravity drainage, (4) distribution of salt flux in the ocean, (5) under ice melt ponds and false bottoms, and (6) basal ablation.
ERIC Educational Resources Information Center
Schuyler, Stanley TenEyck
2008-01-01
Problem solving can be thought of in two phases: the first phase is problem formulation and the second solution development. Problem formulation is the process of identifying a problem or opportunity in a situation. Problem Formulation Ability, or PFA, is the ability to perform this process. This research investigated a method to assess PFA and…
Han, Lei; Shi, Lu; Yang, Yiling; Song, Dalei
2014-01-01
Geostationary meteorological satellite infrared (IR) channel data contain important spectral information for meteorological research and applications, but their spatial resolution is relatively low. The objective of this study is to obtain higher-resolution IR images. One common method of increasing resolution fuses the IR data with high-resolution visible (VIS) channel data. However, most existing image fusion methods focus only on visual performance, and often fail to take into account the thermal physical properties of the IR images. As a result, spectral distortion occurs frequently. To tackle this problem, we propose a thermal physical properties-based correction method for fusing geostationary meteorological satellite IR and VIS images. In our two-step process, the high-resolution structural features of the VIS image are first extracted and incorporated into the IR image using regular multi-resolution fusion approach, such as the multiwavelet analysis. This step significantly increases the visual details in the IR image, but fake thermal information may be included. Next, the Stefan-Boltzmann Law is applied to correct the distortion, to retain or recover the thermal infrared nature of the fused image. The results of both the qualitative and quantitative evaluation demonstrate that the proposed physical correction method both improves the spatial resolution and preserves the infrared thermal properties. PMID:24919017
Han, Lei; Shi, Lu; Yang, Yiling; Song, Dalei
2014-06-10
Geostationary meteorological satellite infrared (IR) channel data contain important spectral information for meteorological research and applications, but their spatial resolution is relatively low. The objective of this study is to obtain higher-resolution IR images. One common method of increasing resolution fuses the IR data with high-resolution visible (VIS) channel data. However, most existing image fusion methods focus only on visual performance, and often fail to take into account the thermal physical properties of the IR images. As a result, spectral distortion occurs frequently. To tackle this problem, we propose a thermal physical properties-based correction method for fusing geostationary meteorological satellite IR and VIS images. In our two-step process, the high-resolution structural features of the VIS image are first extracted and incorporated into the IR image using regular multi-resolution fusion approach, such as the multiwavelet analysis. This step significantly increases the visual details in the IR image, but fake thermal information may be included. Next, the Stefan-Boltzmann Law is applied to correct the distortion, to retain or recover the thermal infrared nature of the fused image. The results of both the qualitative and quantitative evaluation demonstrate that the proposed physical correction method both improves the spatial resolution and preserves the infrared thermal properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bui, Quan M.; Wang, Lu; Osei-Kuffuor, Daniel
Multiphase flow is a critical process in a wide range of applications, including oil and gas recovery, carbon sequestration, and contaminant remediation. Numerical simulation of multiphase flow requires solving of a large, sparse linear system resulting from the discretization of the partial differential equations modeling the flow. In the case of multiphase multicomponent flow with miscible effect, this is a very challenging task. The problem becomes even more difficult if phase transitions are taken into account. A new approach to handle phase transitions is to formulate the system as a nonlinear complementarity problem (NCP). Unlike in the primary variable switchingmore » technique, the set of primary variables in this approach is fixed even when there is phase transition. Not only does this improve the robustness of the nonlinear solver, it opens up the possibility to use multigrid methods to solve the resulting linear system. The disadvantage of the complementarity approach, however, is that when a phase disappears, the linear system has the structure of a saddle point problem and becomes indefinite, and current algebraic multigrid (AMG) algorithms cannot be applied directly. In this study, we explore the effectiveness of a new multilevel strategy, based on the multigrid reduction technique, to deal with problems of this type. We demonstrate the effectiveness of the method through numerical results for the case of two-phase, two-component flow with phase appearance/disappearance. In conclusion, we also show that the strategy is efficient and scales optimally with problem size.« less
Bui, Quan M.; Wang, Lu; Osei-Kuffuor, Daniel
2018-02-06
Multiphase flow is a critical process in a wide range of applications, including oil and gas recovery, carbon sequestration, and contaminant remediation. Numerical simulation of multiphase flow requires solving of a large, sparse linear system resulting from the discretization of the partial differential equations modeling the flow. In the case of multiphase multicomponent flow with miscible effect, this is a very challenging task. The problem becomes even more difficult if phase transitions are taken into account. A new approach to handle phase transitions is to formulate the system as a nonlinear complementarity problem (NCP). Unlike in the primary variable switchingmore » technique, the set of primary variables in this approach is fixed even when there is phase transition. Not only does this improve the robustness of the nonlinear solver, it opens up the possibility to use multigrid methods to solve the resulting linear system. The disadvantage of the complementarity approach, however, is that when a phase disappears, the linear system has the structure of a saddle point problem and becomes indefinite, and current algebraic multigrid (AMG) algorithms cannot be applied directly. In this study, we explore the effectiveness of a new multilevel strategy, based on the multigrid reduction technique, to deal with problems of this type. We demonstrate the effectiveness of the method through numerical results for the case of two-phase, two-component flow with phase appearance/disappearance. In conclusion, we also show that the strategy is efficient and scales optimally with problem size.« less
NASA Astrophysics Data System (ADS)
Regis, Rommel G.
2014-02-01
This article develops two new algorithms for constrained expensive black-box optimization that use radial basis function surrogates for the objective and constraint functions. These algorithms are called COBRA and Extended ConstrLMSRBF and, unlike previous surrogate-based approaches, they can be used for high-dimensional problems where all initial points are infeasible. They both follow a two-phase approach where the first phase finds a feasible point while the second phase improves this feasible point. COBRA and Extended ConstrLMSRBF are compared with alternative methods on 20 test problems and on the MOPTA08 benchmark automotive problem (D.R. Jones, Presented at MOPTA 2008), which has 124 decision variables and 68 black-box inequality constraints. The alternatives include a sequential penalty derivative-free algorithm, a direct search method with kriging surrogates, and two multistart methods. Numerical results show that COBRA algorithms are competitive with Extended ConstrLMSRBF and they generally outperform the alternatives on the MOPTA08 problem and most of the test problems.
A World Where All Worlds Cohabit
ERIC Educational Resources Information Center
Teamey, Kelly; Mandel, Udi
2016-01-01
In response to Stefan Bengtsson's search for alternatives to Education for Sustainable Development practices outside the mainstream of the state and its policy formulations, this response outlines how our journey, experiences, and approaches reflect a de-professionalizing encounter with autonomous places of learning emerging from indigenous…
Kinetics Modeling of Hypergolic Propellants
2013-07-01
comprehensive preconditioning and employs the line Gauss Seidel algorithm for the solution of the linear system. A multi-block unstructured mesh is...Explosives, Pyrotechnics, 33(3):209–212, 2008. 24Wei-Guang Liu, Shiqing Wang, Siddharth Dasgupta, Stefan T Thynell, William A Goddard III, Sergey Zybin
NASA Astrophysics Data System (ADS)
Chakraborty, Brahmananda; Ramaniah, Lavanya M.
2015-06-01
Applying Green-Kubo formalism and equilibrium molecular dynamics (MD) simulations, we have studied the dynamic correlation, Onsager coeeficients and Maxwell-Stefan (MS) Diffusivities of molten salt LiF-BeF2, which is used as coolant in high temperature reactor. All the diffusive flux correlations show back-scattering or cage dynamics which becomes pronouced at higher temperature. Although the MS diffusivities are expected to depend very lightly on the composition due to decoupling of thermodynamic factor, the diffusivity ĐLi-F and ĐBe-F decreases sharply for higher concentration of LiF and BeF2 respectively. Interestingly, all three MS diffusivities have highest magnitude for eutectic mixture at 1000K (except ĐBe-F at lower LiF mole fraction) which is desirable from coolant point of view. Although the diffusivity for positive-positive ion pair is negative it is not in violation of the second law of thermodynamics as it satisfies the non-negative entropic constraints.
An Interactive Tool for Discrete Phase Analysis in Two-Phase Flows
NASA Technical Reports Server (NTRS)
Dejong, Frederik J.; Thoren, Stephen J.
1993-01-01
Under a NASA MSFC SBIR Phase 1 effort an interactive software package has been developed for the analysis of discrete (particulate) phase dynamics in two-phase flows in which the discrete phase does not significantly affect the continuous phase. This package contains a Graphical User Interface (based on the X Window system and the Motif tool kit) coupled to a particle tracing program, which allows the user to interactively set up and run a case for which a continuous phase grid and flow field are available. The software has been applied to a solid rocket motor problem, to demonstrate its ease of use and its suitability for problems of engineering interest, and has been delivered to NASA Marshall Space Flight Center.
NASA Astrophysics Data System (ADS)
Sandrik, Suzannah
Optimal solutions to the impulsive circular phasing problem, a special class of orbital maneuver in which impulsive thrusts shift a vehicle's orbital position by a specified angle, are found using primer vector theory. The complexities of optimal circular phasing are identified and illustrated using specifically designed Matlab software tools. Information from these new visualizations is applied to explain discrepancies in locally optimal solutions found by previous researchers. Two non-phasing circle-to-circle impulsive rendezvous problems are also examined to show the applicability of the tools developed here to a broader class of problems and to show how optimizing these rendezvous problems differs from the circular phasing case.
Pulsed electric field processing for fruit and vegetables
USDA-ARS?s Scientific Manuscript database
This month’s column reviews the theory and current applications of pulsed electric field (PEF) processing for fruits and vegetables to improve their safety and quality. This month’s column coauthor, Stefan Toepfl, is advanced research manager at the German Institute of Food Technologies and professo...
Phase unwrapping in three dimensions with application to InSAR time series.
Hooper, Andrew; Zebker, Howard A
2007-09-01
The problem of phase unwrapping in two dimensions has been studied extensively in the past two decades, but the three-dimensional (3D) problem has so far received relatively little attention. We develop here a theoretical framework for 3D phase unwrapping and also describe two algorithms for implementation, both of which can be applied to synthetic aperture radar interferometry (InSAR) time series. We test the algorithms on simulated data and find both give more accurate results than a two-dimensional algorithm. When applied to actual InSAR time series, we find good agreement both between the algorithms and with ground truth.
High-Performing Primary Care Teams: Creating The Air Force Medical Home Advantage
2015-02-17
Geneau, Claudio Del Grande, Jean-Louis Denis, Eveline Hudon, Jeannie Haggerty, Lucie Bonin, Rejean Duplain, Johanne Goudrea and William Hogg . "Providing...Eisen, Stefan. Practical Guide to Negotiating in the Military. 2nd. Montgomery, AL: USAF Negotiation Center of Excellence, 2013. Green, Charles B. "The
Ruling Relationships in Sustainable Development and Education for Sustainable Development
ERIC Educational Resources Information Center
Berryman, Tom; Sauvé, Lucie
2016-01-01
It is from historical perspectives on more than 40 years of environment related education theories, practices, and policies that we revisit what might otherwise become a tired conversation about environmental education and sustainable development. Our contemporary critical analysis of Stefan Bengtsson's research about policy making leads us to…
ERIC Educational Resources Information Center
Jain, Pushpendra K.
1991-01-01
The interrelationship between the various forms of the Planck radiation equation is discussed. A differential equation that gives intensity or energy density of radiation per unit wavelength or per unit frequency is emphasized. The Stefan-Boltzmann Law and the change in the glow of a hot body with temperature are also discussed. (KR)
ERIC Educational Resources Information Center
LoPresto, Michael C.
2013-01-01
In a previous article in this journal, we reported on a laboratory activity in which students used a derivation from the Stefan-Boltzmann law to calculate planetary temperatures and compare them to measured values from various (mostly online) sources. The calculated temperatures matched observed values very well with the exceptions of Venus and…
Bayesian Authentication: Quantifying Security of the Hancke-Kuhn Protocol
2010-01-01
Conference on Advances in Cryptology, pages 169–177, London, UK, 1991. Springer-Verlag. [6] Stefan Brands and David Chaum . Distance-bounding protocols. In...Lecture Notes in Computer Science, pages 371–388. Springer, 2004. [30] Patrick Schaller, Benedikt Schmidt, David Basin, and Srdjan Capkun. Modeling and
Graphic Novels in the Classroom
ERIC Educational Resources Information Center
Martin, Adam
2009-01-01
Today many authors and artists adapt works of classic literature into a medium more "user friendly" to the increasingly visual student population. Stefan Petrucha and Kody Chamberlain's version of "Beowulf" is one example. The graphic novel captures the entire epic in arresting images and contrasts the darkness of the setting and characters with…
ERIC Educational Resources Information Center
Bonnet, I.; Gabelli, J.
2010-01-01
We report on the physics around an incandescent lamp. Using a consumer-grade digital camera, we combine electrical and optical measurements to explore Planck's law of black-body radiation. This simple teaching experiment is successfully used to measure both Stefan's and Planck's constants. Our measurements lead to a strikingly accurate value for…
Language Crossings: Negotiating the Self in a Multicultural World. Language and Literacy Series.
ERIC Educational Resources Information Center
Ogulnick, Karen, Ed.
This book includes 25 papers in 5 parts. Part 1, "Dislocations," includes (1) "Puzzle" (Myrna Nieves); (2) "No Language To Die In" (Greta Hofmann Nemiroff); (3) "Here's Your Change 'N Enjoy the Show" (Verena Stefan); (4) "The Vagabond Years" (Elizabeth Dykman); (5) "From Bayamon to…
Strengthening US DoD Cyber Security with the Vulnerability Market
2013-06-01
is with their constant assurance that I find strength. I would also like to acknowledge my cyber- colleagues, Maj Ronald “Rusty” Clark, Maj Vanessa ...Michel J.G. van Eeten, Delft University of Technology; Michael Levi, Cardiff University; Tyler Moore, Southern Methodist University; and Stefan Savage
Properties of Fluorinated Graphene Films
2010-04-01
Properties of Fluorinated Graphene Films Jeremy T. Robinson,* James S. Burgess, Chad E. Junkermeier, Stefan C. Badescu, Thomas L. Reinecke, F. Keith...G. S.; Graham, A. P.; Kreupl, F.; Seidel , R.; Hoenlein, W. Chem. Phys. Lett. 2004, 399 (1-3), 280– 283. (19) Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J
Translations on Eastern Europe Political, Sociological, and Military Affairs No. 1572.
1978-08-01
they are subordinated. Stefan Leskovjansky, a member of management of the construction group at the Unified Agricultural Cooperative Klatov, gained...German relations. The first step was not easy for Honecker. Only a short time ago the SED chief had asked Karl Seidel , department head in the GDR
ms 2: A molecular simulation tool for thermodynamic properties, release 3.0
NASA Astrophysics Data System (ADS)
Rutkai, Gábor; Köster, Andreas; Guevara-Carrion, Gabriela; Janzen, Tatjana; Schappals, Michael; Glass, Colin W.; Bernreuther, Martin; Wafai, Amer; Stephan, Simon; Kohns, Maximilian; Reiser, Steffen; Deublein, Stephan; Horsch, Martin; Hasse, Hans; Vrabec, Jadran
2017-12-01
A new version release (3.0) of the molecular simulation tool ms 2 (Deublein et al., 2011; Glass et al. 2014) is presented. Version 3.0 of ms 2 features two additional ensembles, i.e. microcanonical (NVE) and isobaric-isoenthalpic (NpH), various Helmholtz energy derivatives in the NVE ensemble, thermodynamic integration as a method for calculating the chemical potential, the osmotic pressure for calculating the activity of solvents, the six Maxwell-Stefan diffusion coefficients of quaternary mixtures, statistics for sampling hydrogen bonds, smooth-particle mesh Ewald summation as well as the ability to carry out molecular dynamics runs for an arbitrary number of state points in a single program execution.
Theory of the amplitude-phase retrieval in any linear-transform system and its applications
NASA Astrophysics Data System (ADS)
Yang, Guozhen; Gu, Ben-Yuan; Dong, Bi-Zhen
1992-12-01
This paper is a summary of the theory of the amplitude-phase retrieval problem in any linear transform system and its applications based on our previous works in the past decade. We describe the general statement on the amplitude-phase retrieval problem in an imaging system and derive a set of equations governing the amplitude-phase distribution in terms of the rigorous mathematical derivation. We then show that, by using these equations and an iterative algorithm, a variety of amplitude-phase problems can be successfully handled. We carry out the systematic investigations and comprehensive numerical calculations to demonstrate the utilization of this new algorithm in various transform systems. For instance, we have achieved the phase retrieval from two intensity measurements in an imaging system with diffraction loss (non-unitary transform), both theoretically and experimentally, and the recovery of model real image from its Hartley-transform modulus only in one and two dimensional cases. We discuss the achievement of the phase retrieval problem from a single intensity only based on the sampling theorem and our algorithm. We also apply this algorithm to provide an optimal design of the phase-adjusted plate for a phase-adjustment focusing laser accelerator and a design approach of single phase-only element for implementing optical interconnect. In order to closely simulate the really measured data, we examine the reconstruction of image from its spectral modulus corrupted by a random noise in detail. The results show that the convergent solution can always be obtained and the quality of the recovered image is satisfactory. We also indicated the relationship and distinction between our algorithm and the original Gerchberg- Saxton algorithm. From these studies, we conclude that our algorithm shows great capability to deal with the comprehensive phase-retrieval problems in the imaging system and the inverse problem in solid state physics. It may open a new way to solve important inverse source problems extensively appearing in physics.
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-03-09
This work represents a first-of-its-kind successful application to employ advanced numerical methods in solving realistic two-phase flow problems with two-fluid six-equation two-phase flow model. These advanced numerical methods include high-resolution spatial discretization scheme with staggered grids (high-order) fully implicit time integration schemes, and Jacobian-free Newton–Krylov (JFNK) method as the nonlinear solver. The computer code developed in this work has been extensively validated with existing experimental flow boiling data in vertical pipes and rod bundles, which cover wide ranges of experimental conditions, such as pressure, inlet mass flux, wall heat flux and exit void fraction. Additional code-to-code benchmark with the RELAP5-3Dmore » code further verifies the correct code implementation. The combined methods employed in this work exhibit strong robustness in solving two-phase flow problems even when phase appearance (boiling) and realistic discrete flow regimes are considered. Transitional flow regimes used in existing system analysis codes, normally introduced to overcome numerical difficulty, were completely removed in this work. As a result, this in turn provides the possibility to utilize more sophisticated flow regime maps in the future to further improve simulation accuracy.« less
NASA Astrophysics Data System (ADS)
Joshi, Vaibhav; Jaiman, Rajeev K.
2018-05-01
We present a positivity preserving variational scheme for the phase-field modeling of incompressible two-phase flows with high density ratio. The variational finite element technique relies on the Allen-Cahn phase-field equation for capturing the phase interface on a fixed Eulerian mesh with mass conservative and energy-stable discretization. The mass conservation is achieved by enforcing a Lagrange multiplier which has both temporal and spatial dependence on the underlying solution of the phase-field equation. To make the scheme energy-stable in a variational sense, we discretize the spatial part of the Lagrange multiplier in the phase-field equation by the mid-point approximation. The proposed variational technique is designed to reduce the spurious and unphysical oscillations in the solution while maintaining the second-order accuracy of both spatial and temporal discretizations. We integrate the Allen-Cahn phase-field equation with the incompressible Navier-Stokes equations for modeling a broad range of two-phase flow and fluid-fluid interface problems. The coupling of the implicit discretizations corresponding to the phase-field and the incompressible flow equations is achieved via nonlinear partitioned iterative procedure. Comparison of results between the standard linear stabilized finite element method and the present variational formulation shows a remarkable reduction of oscillations in the solution while retaining the boundedness of the phase-indicator field. We perform a standalone test to verify the accuracy and stability of the Allen-Cahn two-phase solver. We examine the convergence and accuracy properties of the coupled phase-field solver through the standard benchmarks of the Laplace-Young law and a sloshing tank problem. Two- and three-dimensional dam break problems are simulated to assess the capability of the phase-field solver for complex air-water interfaces involving topological changes on unstructured meshes. Finally, we demonstrate the phase-field solver for a practical offshore engineering application of wave-structure interaction.
NASA Astrophysics Data System (ADS)
2008-01-01
Using ESO's Very Large Telescope Interferometer, astronomers have probed the inner parts of the disc of material surrounding a young stellar object, witnessing how it gains its mass before becoming an adult. ESO PR Photo 03/08 ESO PR Photo 03a/08 The disc around MWC 147 (Artist's Impression) The astronomers had a close look at the object known as MWC 147, lying about 2,600 light years away towards the constellation of Monoceros ('the Unicorn'). MWC 147 belongs to the family of Herbig Ae/Be objects. These have a few times the mass of our Sun and are still forming, increasing in mass by swallowing material present in a surrounding disc. MWC 147 is less than half a million years old. If one associated the middle-aged, 4.6 billion year old Sun with a person in his early forties, MWC 147 would be a 1-day-old baby [1]. The morphology of the inner environment of these young stars is however a matter of debate and knowledge of it is important to better understand how stars and their cortège of planets form. The astronomers Stefan Kraus, Thomas Preibisch, and Keiichi Ohnaka have used the four 8.2-m Unit Telescopes of ESO's Very Large Telescope to this purpose, combining the light from two or three telescopes with the MIDI and AMBER instruments. "With our VLTI/MIDI and VLTI/AMBER observations of MWC147, we combine, for the first time, near- and mid-infrared interferometric observations of a Herbig Ae/Be star, providing a measurement of the disc size over a wide wavelength range [2]," said Stefan Kraus, lead-author of the paper reporting the results. "Different wavelength regimes trace different temperatures, allowing us to probe the disc's geometry on the smaller scale, but also to constrain how the temperature changes with the distance from the star." The near-infrared observations probe hot material with temperatures of up to a few thousand degrees in the innermost disc regions, while the mid-infrared observations trace cooler dust further out in the disc. The observations show that the temperature changes with radius are much steeper than predicted by the currently favoured models, indicating that most of the near-infrared emission emerges from hot material located very close to the star, that is, within one or two times the Earth-Sun distance (1-2 AU). This also implies that dust cannot exist so close to the star, since the strong energy radiated by the star heats and ultimately destroys the dust grains. ESO PR Photo 03/08 ESO PR Photo 03b/08 The Region Around MWC 147 "We have performed detailed numerical simulations to understand these observations and reached the conclusion that we observe not only the outer dust disc, but also measure strong emission from a hot inner gaseous disc. This suggests that the disc is not a passive one, simply reprocessing the light from the star," explained Kraus. "Instead, the disc is active, and we see the material, which is just transported from the outer disc parts towards the forming star." ESO PR Photo 03/08 ESO PR Photo 03c/08 Close-up on MWC 147 The best-fit model is that of a disc extending out to 100 AU, with the star increasing in mass at a rate of seven millionths of a solar mass per year. "Our study demonstrates the power of ESO's VLTI to probe the inner structure of discs around young stars and to reveal how stars reach their final mass," said Stefan Kraus. More Information The authors report their results in a paper in the Astrophysical Journal ("Detection of an inner gaseous component in a Herbig Be star accretion disk: Near- and mid-infrared spectro-interferometry and radiative transfer modeling of MWC 147", by Stefan Kraus, Thomas Preibisch, Keichii Ohnaka").
NASA Astrophysics Data System (ADS)
2008-01-01
Using ESO's Very Large Telescope Interferometer, astronomers have probed the inner parts of the disc of material surrounding a young stellar object, witnessing how it gains its mass before becoming an adult. ESO PR Photo 03/08 ESO PR Photo 03a/08 The disc around MWC 147 (Artist's Impression) The astronomers had a close look at the object known as MWC 147, lying about 2,600 light years away towards the constellation of Monoceros ('the Unicorn'). MWC 147 belongs to the family of Herbig Ae/Be objects. These have a few times the mass of our Sun and are still forming, increasing in mass by swallowing material present in a surrounding disc. MWC 147 is less than half a million years old. If one associated the middle-aged, 4.6 billion year old Sun with a person in his early forties, MWC 147 would be a 1-day-old baby [1]. The morphology of the inner environment of these young stars is however a matter of debate and knowledge of it is important to better understand how stars and their cortège of planets form. The astronomers Stefan Kraus, Thomas Preibisch, and Keiichi Ohnaka have used the four 8.2-m Unit Telescopes of ESO's Very Large Telescope to this purpose, combining the light from two or three telescopes with the MIDI and AMBER instruments. "With our VLTI/MIDI and VLTI/AMBER observations of MWC147, we combine, for the first time, near- and mid-infrared interferometric observations of a Herbig Ae/Be star, providing a measurement of the disc size over a wide wavelength range [2]," said Stefan Kraus, lead-author of the paper reporting the results. "Different wavelength regimes trace different temperatures, allowing us to probe the disc's geometry on the smaller scale, but also to constrain how the temperature changes with the distance from the star." The near-infrared observations probe hot material with temperatures of up to a few thousand degrees in the innermost disc regions, while the mid-infrared observations trace cooler dust further out in the disc. The observations show that the temperature changes with radius are much steeper than predicted by the currently favoured models, indicating that most of the near-infrared emission emerges from hot material located very close to the star, that is, within one or two times the Earth-Sun distance (1-2 AU). This also implies that dust cannot exist so close to the star, since the strong energy radiated by the star heats and ultimately destroys the dust grains. ESO PR Photo 03/08 ESO PR Photo 03b/08 The Region Around MWC 147 "We have performed detailed numerical simulations to understand these observations and reached the conclusion that we observe not only the outer dust disc, but also measure strong emission from a hot inner gaseous disc. This suggests that the disc is not a passive one, simply reprocessing the light from the star," explained Kraus. "Instead, the disc is active, and we see the material, which is just transported from the outer disc parts towards the forming star." ESO PR Photo 03/08 ESO PR Photo 03c/08 Close-up on MWC 147 The best-fit model is that of a disc extending out to 100 AU, with the star increasing in mass at a rate of seven millionths of a solar mass per year. "Our study demonstrates the power of ESO's VLTI to probe the inner structure of discs around young stars and to reveal how stars reach their final mass," said Stefan Kraus. More Information The authors report their results in a paper in the Astrophysical Journal ("Detection of an inner gaseous component in a Herbig Be star accretion disk: Near- and mid-infrared spectro-interferometry and radiative transfer modeling of MWC 147", by Stefan Kraus, Thomas Preibisch, Keichii Ohnaka").
Cloud Computing for Complex Performance Codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appel, Gordon John; Hadgu, Teklu; Klein, Brandon Thorin
This report describes the use of cloud computing services for running complex public domain performance assessment problems. The work consisted of two phases: Phase 1 was to demonstrate complex codes, on several differently configured servers, could run and compute trivial small scale problems in a commercial cloud infrastructure. Phase 2 focused on proving non-trivial large scale problems could be computed in the commercial cloud environment. The cloud computing effort was successfully applied using codes of interest to the geohydrology and nuclear waste disposal modeling community.
Experiments versus modeling of buoyant drying of porous media
NASA Astrophysics Data System (ADS)
Salin, D.; Yiotis, A.; Tajer, E.; Yortsos, Y. C.
2012-12-01
Experiments versus modeling of buoyant drying of porous media D. Salin and A.G. Yiotis, Laboratoire FAST, Univ Pierre & Marie Curie, Univ. Paris-Sud, CNRS, Orsay 91405, France and E.S. Tajer and Y.C. Yortsos, Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1450 A series of isothermal drying experiments in packed glass beads saturated with volatile hydrocarbons (hexane or pentane) are conducted. The transparent glass cells containing the packing allow for the visual monitoring of the phase distribution patterns below the surface, including the formation of liquid films, as the gaseous phase invades the pore space, and for the control of the thickness of the diffusive mass boundary layer over the packing. We demonstrate the existence of an early Constant Rate Period, CRP, that lasts as long as the films saturate the surface of the packing, and of a subsequent Falling Rate Period, FRP, that begins practically after the detachment of the film tips from the external surface. During the CRP, the process is controlled by diffusion within the stagnant gaseous phase in the upper part of the cells, yielding a Stefan tube problem solution. During the FRP, the process is controlled by diffusion within the packing, with a drying rate inversely proportional to the observed position of the film tips in the cell. The critical residual liquid saturation that marks the transition between these two regimes is found to be a function of the average bead size in our packs and the incline of the cells with respect to the flat vertical, with larger beads and angles closer to the vertical position leading to earlier film detachment times and higher critical saturations. We developed a model for the drying of porous media in the presence of gravity. It incorporated effects of corner film flow, internal and external mass transfer and the effect of gravity. Analytical results were derived when gravity opposes drying and hence leads to a stable percolation drying front. We are thus able to obtain results for the drying rates, the critical saturation and the extent of the film region with respect to the various dimensionless numbers that describe the process; the Bond (Bo)number, a film-based Capillary (Ca) number and the dimensionless extent of the mass boundary layer (Sh). The experimental results agree very well with the theory, provided that the latter is generalized to account for the effects of corner roundness in the film region which were neglected in our analytical approach. The agreement is achieved for a specific value of the roundness of the films, which is found to be constant and equal to 0.2 for various conditions, and verify the theoretical dependence on Ca, Bo and Sh numbers.
Assessment: Monitoring & Evaluation in a Stabilisation Context
2010-09-15
http://www.oecd.org/dataoecd/23/27/35281194.pdf b. SIDA (2004), The Logical Framework Approach. A summary of the theory behind the LFA method...en_21571361_34047972_39774574 _1_1_1_1,00.pdf 3. SIDA (2004), Stefan Molund and Göran Schill, Looking Back, Moving Forward, Sida Evaluation Manual. Available at
ERIC Educational Resources Information Center
Westbury, Ian, Ed.; Hopmann, Stefan, Ed.; Riquarts, Kurt, Ed.
This collection of papers presents essays by German scholars and practitioners writing from within the German Didaktik tradition and interpretive essays by U.S. scholars. After an introduction, "Starting a Dialogue: A Beginning Conversation between Didaktik and the Curriculum Traditions" (Stefan Hopmann and Kurt Riquarts), there are 18…
Reconstructing Deweyan Pragmatism: A Review Essay
ERIC Educational Resources Information Center
Neubert, Stefan
2009-01-01
In this essay Stefan Neubert argues that John Dewey was a philosopher of reconstruction and that the best use we can make of him today is to reconstruct his work in and for our own contexts. Neubert distinguishes three necessary and equally important components of the overall project of reconstructing Deweyan pragmatism: first, to make strong and…
The drop heard round the world
NASA Astrophysics Data System (ADS)
Bergin, Shane D.; Hutzler, Stefan; Weaire
2014-05-01
When physicists at Trinity College Dublin began looking after an antique funnel full of pitch, they had no idea their humble experiment would spawn one of 2013's most “viral” news stories. Shane D Bergin, Stefan Hutzler and Denis Weaire reflect on the value of “slow science” to a hyper-connected, social-media world.
ERIC Educational Resources Information Center
Jickling, Bob
2016-01-01
This response problematizes Stefan Bengtsson's (2016) defense of education for sustainable development. He argues that sustainable development and education for sustainable development are not globalizing and hegemonic discourses, as some have claimed, and uses case-study analysis of Vietnamese policy documents to support his claims. He observes…
Finding Truth in "Lies": Nietzsche's Perspectivism and Its Relation to Education
ERIC Educational Resources Information Center
Jonas, Mark E.; Nakazawa, Yoshiaki M.
2008-01-01
In his 2001 article "Teaching to Lie and Obey: Nietzsche on Education", Stefan Ramaekers defends Nietzsche's concept of perspectivism against the charge that it is relativistic. He argues that perspectivism is not relativistic because it denies the dichotomy between the "true" world and the "seeming" world, a dichotomy central to claims to…
Directory of Czechoslovak Officials; a Reference Aid
1988-07-14
Jaroslav; KSS Barilla , Jan KSS Horvath, Stefan: A’SS Bartak, Stel’an KSS Horvathova, Marta: KSC Barton, Jaroslav Hricko, Peter: KSS Benyo, Matus: KSS...61 Bilek. Jin 78 Banarova. Eva is Bilek, /denck 4’) Barak, Ladislav 71 Biro~s, Branislav 10.40.41, Barilla , Jan .11 Bisko. fir,, Harlot’s, Paulina 6
USDA-ARS?s Scientific Manuscript database
Researchers from the University of Queensland of New South Wales provided guidance to designers regarding the hydraulic performance of embankment dam stepped spillways. Their research compares a number of high-quality physical model data sets from multiple laboratories, emphasizing the variability ...
Blackbody Radiation from an Incandescent Lamp
ERIC Educational Resources Information Center
Ribeiro, C. I.
2014-01-01
In this article we propose an activity aimed at introductory students to help them understand the Stefan-Boltzmann and Wien's displacement laws. It only requires simple materials that are available at any school: an incandescent lamp, a variable dc energy supply, and a computer to run an interactive simulation of the blackbody spectrum.…
Homosexuality, Manliness and the United States
2010-03-25
LIMITATION OF ABSTRACT 18 . NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Stefan A. Banach, U.S. Army a. REPORT b. ABSTRACT c. THIS PAGE... 18 Australia...cause is masculine in its origin and subjugates women for fear that their “ erotic power threatens to infect him with feminine softness.” It is
Homosexuality, Manliness, and the United States Army
2010-05-01
LIMITATION OF ABSTRACT 18 . NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Stefan A. Banach, U.S. Army a. REPORT b. ABSTRACT c. THIS PAGE... 18 Australia...cause is masculine in its origin and subjugates women for fear that their “ erotic power threatens to infect him with feminine softness.” It is
Time to Reframe Politics and Practices in Correctional Education
ERIC Educational Resources Information Center
LoBuglio, Stefan
2001-01-01
In this chapter, Stefan LoBuglio discusses the politics and practices of educational programs for adults in correctional facilities. To begin, LoBuglio provides an overview of the field of corrections, including various types of facilities and correctional programs, as well as demographic and educational data on the U.S. incarcerated population…
Entropy density of an adiabatic relativistic Bose-Einstein condensate star
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaidir, Ahmad Firdaus; Kassim, Hasan Abu; Yusof, Norhasliza
Inspired by recent works, we investigate how the thermodynamics parameters (entropy, temperature, number density, energy density, etc) of Bose-Einstein Condensate star scale with the structure of the star. Below the critical temperature in which the condensation starts to occur, we study how the entropy behaves with varying temperature till it reaches its own stability against gravitational collapse and singularity. Compared to photon gases (pressure is described by radiation) where the chemical potential, μ is zero, entropy of photon gases obeys the Stefan-Boltzmann Law for a small values of T while forming a spiral structure for a large values of Tmore » due to general relativity. The entropy density of Bose-Einstein Condensate is obtained following the similar sequence but limited under critical temperature condition. We adopt the scalar field equation of state in Thomas-Fermi limit to study the characteristics of relativistic Bose-Einstein condensate under varying temperature and entropy. Finally, we obtain the entropy density proportional to (σT{sup 3}-3T) which obeys the Stefan-Boltzmann Law in ultra-relativistic condition.« less
Featured Image: Experimental Simulation of Melting Meteoroids
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-03-01
Ever wonder what experimental astronomy looks like? Some days, it looks like this piece of rock in a wind tunnel (click for a betterlook!). In this photo, a piece of agrillite (a terrestrial rock) is exposed to conditions in a plasma wind tunnel as a team of scientists led by Stefan Loehle (Stuttgart University) simulate what happens to a meteoroid as it hurtles through Earths atmosphere. With these experiments, the scientists hope to better understand meteoroid ablation the process by which meteoroids are heated, melt, and evaporateas they pass through our atmosphere so that we can learn more from the meteorite fragments that make it to the ground. In the scientists experiment, the rock samples were exposed to plasma flow until they disintegrated, and this process was simultaneously studied via photography, video, high-speed imaging, thermography, and Echelle emission spectroscopy. To find out what the team learned from these experiments, you can check out the original article below.CitationStefan Loehle et al 2017 ApJ 837 112. doi:10.3847/1538-4357/aa5cb5
Multimodal pediatric pain management (part 2).
Friedrichsdorf, Stefan J
2017-05-01
Dr Stefan Friedrichsdorf speaks to Commissioning Editor Jade Parker: Stefan Friedrichsdorf, MD, is medical director of the Department of Pain Medicine, Palliative Care and Integrative Medicine at Children's Hospitals and Clinics of Minnesota in Minneapolis/St Paul, MN, USA, home to one of the largest and most comprehensive programs of its kind in the country. The pain and palliative care program is devoted to control acute, chronic/complex and procedural pain for inpatients and outpatients in close collaboration with all pediatric subspecialties at Children's Minnesota. The team also provides holistic, interdisciplinary care for children and teens with life limiting or terminal diseases and their families. Integrative medicine provides and teaches integrative, nonpharmacological therapies (such as massage, acupuncture/acupressure, biofeedback, aromatherapy and self-hypnosis) to provide care that promotes optimal health and supports the highest level of functioning in all individual children's activities. In this second part of the interview they discuss multimodal (opioid-sparing) analgesia for hospitalized children in pain and how analgesics and adjuvant medications, interventions, rehabilitation, psychological and integrative therapies act synergistically for more effective pediatric pain control with fewer side effects than a single analgesic or modality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Brahmananda, E-mail: brahma@barc.gov.in; Ramaniah, Lavanya M.
2015-06-24
Applying Green–Kubo formalism and equilibrium molecular dynamics (MD) simulations, we have studied the dynamic correlation, Onsager coeeficients and Maxwell–Stefan (MS) Diffusivities of molten salt LiF-BeF{sub 2}, which is used as coolant in high temperature reactor. All the diffusive flux correlations show back-scattering or cage dynamics which becomes pronouced at higher temperature. Although the MS diffusivities are expected to depend very lightly on the composition due to decoupling of thermodynamic factor, the diffusivity Đ{sub Li-F} and Đ{sub Be-F} decreases sharply for higher concentration of LiF and BeF{sub 2} respectively. Interestingly, all three MS diffusivities have highest magnitude for eutectic mixture atmore » 1000K (except Đ{sub Be-F} at lower LiF mole fraction) which is desirable from coolant point of view. Although the diffusivity for positive-positive ion pair is negative it is not in violation of the second law of thermodynamics as it satisfies the non-negative entropic constraints.« less
Modeling gas displacement kinetics in coal with Maxwell-Stefan diffusion theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, X.R.; Wang, G.X.; Massarotto, P.
2007-12-15
The kinetics of binary gas counter-diffusion and Darcy flow in a large coal sample were modeled, and the results compared with data from experimental laboratory investigations. The study aimed for a better understanding of the CO{sub 2}-sequestration enhanced coalbed methane (ECBM) recovery process. The transport model used was based on the bidisperse diffusion mechanism and Maxwell-Stefan (MS) diffusion theory. This provides an alternative approach to simulate multicomponent gas diffusion and flow in bulk coals. A series of high-stress core flush tests were performed on a large coal sample sourced from a Bowen Basin coal mine in Queensland, Australia to investigatemore » the kinetics of one gas displacing another. These experimental results were used to derive gas diffusivities, and to examine the predictive capability of the diffusion model. The simulations show good agreements with the displacement experiments revealing that MS diffusion theory is superior for describing diffusion of mixed gases in coals compared with the constant Fick diffusivity model. The optimized effective micropore and macropore diffusivities are comparable with experimental measurements achieved by other researchers.« less
Rice, Brian; Boulle, Andrew; Baral, Stefan; Egger, Matthias; Mee, Paul; Fearon, Elizabeth; Reniers, Georges; Todd, Jim; Schwarcz, Sandra; Weir, Sharon; Rutherford, George; Hargreaves, James
2018-04-03
The global HIV response has entered a new phase with the recommendation of treating all persons living with HIV with antiretroviral therapy, and with the goals of reducing new infections and AIDS-related deaths to fewer than 500,000 by 2020. This new phase has intensive data requirements that will need to utilize routine data collected through service delivery platforms to monitor progress toward these goals. With a focus on sub-Saharan African, we present the following priorities to improve the demand, supply, and use of routine HIV data: (1) strengthening patient-level HIV data systems that support continuity of clinical care and document sentinel events; (2) leveraging data from HIV testing programs; (3) using targeting data collection in communities and among clients; and (4) building capacity and promoting a culture of HIV data quality assessment and use. When fully leveraged, routine data can efficiently provide timely information at a local level to inform action, as well as provide information at scale with wide geographic coverage to strengthen estimation efforts. ©Brian Rice, Andrew Boulle, Stefan Baral, Matthias Egger, Paul Mee, Elizabeth Fearon, Georges Reniers, Jim Todd, Sandra Schwarcz, Sharon Weir, George Rutherford, James Hargreaves. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 03.04.2018.
Analysis of models for two solution crystal growth problems
NASA Technical Reports Server (NTRS)
Fehribach, Joseph D.; Rosenberger, Franz
1989-01-01
Two diffusive solution crystal growth models are considered which are characterized by two phases separated by an interface, a lack of convective mixing in either phase, and the presence of diffusion components differing widely in diffusivity. The first model describes precipitant-driven solution crystal growth and the second model describes a hanging drop evaporation problem. It is shown that for certain proteins sharp concentration gradients may develop in the drop during evaporation, while under the same conditions the concentrations of other proteins remain uniform.
Phase retrieval for crystalline specimens
NASA Astrophysics Data System (ADS)
Arnal, Romain A.; Millane, Rick P.
2017-09-01
The recent availability of ultra-bright and ultra-short X-rays pulses from new sources called x-ray free-electron lasers (XFELs) has introduced a new paradigm in X-ray crystallography. Called "diffraction-before-destruction," this paradigm addresses the main problems that plague crystallography using synchrotron sources. However, the phase problem of coherent diffraction imaging remains: one has to retrieve the phase of the measured diffraction amplitude in order to reconstruct the object. Fibrous and membrane proteins that crystallize in 1D and 2D crystals can now potentially be used for data collection with free-electron lasers. The crystallographic phase problem with such crystalline specimens is eased as the Fourier amplitude can be sampled more finely than at the Bragg sampling along one or two directions. Here we characterise uniqueness of the phase problem for different types of crystalline specimen. Simulated ab initio phase retrieval using iterative projection algorithms for 2D crystals is presented.
NASA Astrophysics Data System (ADS)
Didier, Delaunay; Baptiste, Pignon; Nicolas, Boyard; Vincent, Sobotka
2018-05-01
Heat transfer during the cooling of a thermoplastic injected part directly affects the solidification of the polymer and consequently the quality of the part in term of mechanical properties, geometric tolerance and surface aspect. This paper proposes to mold designers a methodology based on analytical models to provide quickly the time to reach the ejection temperature depending of the temperature and the position of cooling channels. The obtained cooling time is the first step of the thermal conception of the mold. The presented methodology is dedicated to the determination of solidification time of a semi-crystalline polymer slab. It allows the calculation of the crystallization time of the part and is based on the analytical solution of the Stefan problem in a semi-infinite medium. The crystallization is then considered as a phase change with an effective crystallization temperature, which is obtained from Fast Scanning Calorimetry (FSC) results. The crystallization time is then corrected to take the finite thickness of the part into account. To check the accuracy of such approach, the solidification time is calculated by solving the heat conduction equation coupled to the crystallization kinetics of the polymer. The impact of the nature of the contact between the polymer and the mold is evaluated. The thermal contact resistance (TCR) appears as significant parameter that needs to be taken into account in the cooling time calculation. The results of the simplified model including or not TCR are compared in the case of a polypropylene (PP) with experiments carried out with an instrumented mold. Then, the methodology is applied for a part made with PolyEtherEtherKetone (PEEK).
ERIC Educational Resources Information Center
McLinden, Mike; McCall, Steve; Hinton, Danielle; Weston, Annette; Douglas, Graeme
2006-01-01
This article presents a summary of the results from phase 1 of a two-phase research project. Drawing on the principles of problem-based learning (PBL), the aims of phase 1 were to design, develop and evaluate a set of flexible online teaching resources for use within a virtual learning environment. Participants in the project (n = 10) were…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
Here, the one-dimensional water faucet problem is one of the classical benchmark problems originally proposed by Ransom to study the two-fluid two-phase flow model. With certain simplifications, such as massless gas phase and no wall and interfacial frictions, analytical solutions had been previously obtained for the transient liquid velocity and void fraction distribution. The water faucet problem and its analytical solutions have been widely used for the purposes of code assessment, benchmark and numerical verifications. In our previous study, the Ransom’s solutions were used for the mesh convergence study of a high-resolution spatial discretization scheme. It was found that, atmore » the steady state, an anticipated second-order spatial accuracy could not be achieved, when compared to the existing Ransom’s analytical solutions. A further investigation showed that the existing analytical solutions do not actually satisfy the commonly used two-fluid single-pressure two-phase flow equations. In this work, we present a new set of analytical solutions of the water faucet problem at the steady state, considering the gas phase density’s effect on pressure distribution. This new set of analytical solutions are used for mesh convergence studies, from which anticipated second-order of accuracy is achieved for the 2nd order spatial discretization scheme. In addition, extended Ransom’s transient solutions for the gas phase velocity and pressure are derived, with the assumption of decoupled liquid and gas pressures. Numerical verifications on the extended Ransom’s solutions are also presented.« less
[Between the European past and the American future: two papers about Brazil in the 1930s].
Lisboa, Karen Macknow
2014-01-01
The article examines the idea of Europe conceived by Stefan Zweig and Hermann Ullmann in the similarly titled books about Brazil written in the late 1930s and early 1940s. In the political context between the great wars marked by the rise of Nazism, the question is posed regarding to what extent Europe continues to serve as a model of civilization and what the critical dimension is that is expressed in concepts reversing the roles of Europe and Brazil. One detects a partial rupture with dichotomous and hierarchical viewpoints about the relationship between the Old World and the New World, and new forms of relationship between these regions within the worldwide context are suggested.
A high brightness proton injector for the Tandetron accelerator at Jožef Stefan Institute
NASA Astrophysics Data System (ADS)
Pelicon, Primož; Podaru, Nicolae C.; Vavpetič, Primož; Jeromel, Luka; Ogrinc Potocnik, Nina; Ondračka, Simon; Gottdang, Andreas; Mous, Dirk J. M.
2014-08-01
Jožef Stefan Institute recently commissioned a high brightness H- ion beam injection system for its existing tandem accelerator facility. Custom developed by High Voltage Engineering Europa, the multicusp ion source has been tuned to deliver at the entrance of the Tandetron™ accelerator H- ion beams with a measured brightness of 17.1 A m-2 rad-2 eV-1 at 170 μA, equivalent to an energy normalized beam emittance of 0.767 π mm mrad MeV1/2. Upgrading the accelerator facility with the new injection system provides two main advantages. First, the high brightness of the new ion source enables the reduction of object slit aperture and the reduction of acceptance angle at the nuclear microprobe, resulting in a reduced beam size at selected beam intensity, which significantly improves the probe resolution for micro-PIXE applications. Secondly, the upgrade strongly enhances the accelerator up-time since H and He beams are produced by independent ion sources, introducing a constant availability of 3He beam for fusion-related research with NRA. The ion beam particle losses and ion beam emittance growth imply that the aforementioned beam brightness is reduced by transport through the ion optical system. To obtain quantitative information on the available brightness at the high-energy side of the accelerator, the proton beam brightness is determined in the nuclear microprobe beamline. Based on the experience obtained during the first months of operation for micro-PIXE applications, further necessary steps are indicated to obtain optimal coupling of the new ion source with the accelerator to increase the normalized high-energy proton beam brightness at the JSI microprobe, currently at 14 A m-2 rad-2 eV-1, with the output current at 18% of its available maximum.
REVIEWS OF TOPICAL PROBLEMS: Global phase-stable radiointerferometric systems
NASA Astrophysics Data System (ADS)
Dravskikh, A. F.; Korol'kov, Dimitrii V.; Pariĭskiĭ, Yu N.; Stotskiĭ, A. A.; Finkel'steĭn, A. M.; Fridman, P. A.
1981-12-01
We discuss from a unitary standpoint the possibility of building a phase-stable interferometric system with very long baselines that operate around the clock with real-time data processing. The various problems involved in the realization of this idea are discussed: the methods of suppression of instrumental and tropospheric phase fluctuations, the methods for constructing two-dimensional images and determining the coordinates of radio sources with high angular resolution, and the problem of the optimal structure of the interferometric system. We review in detail the scientific problems from the various branches of natural science (astrophysics, cosmology, geophysics, geodynamics, astrometry, etc.) whose solution requires superhigh angular resolution.
2016 Emerging Technology Domains Risk Survey
2016-04-05
2016 Emerging Technology Domains Risk Survey Christopher King Dan Klinedinst Todd Lewellen Garret Wassermann April 2016 TECHNICAL REPORT...Unlimited [Checkoway 2011] Checkoway, Stephen; McCoy, Damon; Kantor, Brian; Anderson, Danny; Shacham, Hovav; Savage, Stefan. Comprehensive Experimental ...Koscher 2010] Koscher, Karl et al. “ Experimental Security Analysis of a Modern Automobile,” 447-462. IEEE Symposium on Security and Privacy
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-02
............ GRIMM KATJA GROENEN FRANK GRONER ELIYAHU DAVID GRONING MARC E GUNNARSSON GUNNAR-THOR....... BJORNSSON... ARTHUR HANSSON KARL STEFAN HARPER-VANDAMME BRENDA CHRISTIAN HARVEY BRUCE E HARVEY RALPH DIETER HASLER... HILLIARD ELAINE GARDINER WELCH HO LESLIE SAI KIT HOCHHEIMER SUZANNE TRUDY HOLUB BARBARA RENE HRYNIUK LYNN E...
ERIC Educational Resources Information Center
Gouglas, Sean; Sinclair, Stefan; Ellefson, Olaf; Sharplin, Scott
2006-01-01
Most humanities courses rarely require students to create the kinds of work they are studying. Sean Gouglas, Stefan Sinclair, Olaf Ellefson, and Scott Sharplin outline the value of this rare experience by describing an assignment in their graduate humanities computing course in which students examined hypermedia narratives by authoring a…
Rao, Amrita; Stahlman, Shauna; Hargreaves, James; Weir, Sharon; Edwards, Jessie; Rice, Brian; Kochelani, Duncan; Mavimbela, Mpumelelo; Baral, Stefan
2018-01-15
[This corrects the article DOI: 10.2196/publichealth.8116.]. ©Amrita Rao, Shauna Stahlman, James Hargreaves, Sharon Weir, Jessie Edwards, Brian Rice, Duncan Kochelani, Mpumelelo Mavimbela, Stefan Baral. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 15.01.2018.
Eruption rate, area, and length relationships for some Hawaiian lava flows
NASA Technical Reports Server (NTRS)
Pieri, David C.; Baloga, Stephen M.
1986-01-01
The relationships between the morphological parameters of lava flows and the process parameters of lava composition, eruption rate, and eruption temperature were investigated using literature data on Hawaiian lava flows. Two simple models for lava flow heat loss by Stefan-Boltzmann radiation were employed to derive eruption rate versus planimetric area relationship. For the Hawaiian basaltic flows, the eruption rate is highly correlated with the planimetric area. Moreover, this observed correlation is superior to those from other obvious combinations of eruption rate and flow dimensions. The correlations obtained on the basis of the two theoretical models, suggest that the surface of the Hawaiian flows radiates at an effective temperature much less than the inner parts of the flowing lava, which is in agreement with field observations. The data also indicate that the eruption rate versus planimetric area correlations can be markedly degraded when data from different vents, volcanoes, and epochs are combined.
Application of high-order numerical schemes and Newton-Krylov method to two-phase drift-flux model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
This study concerns the application and solver robustness of the Newton-Krylov method in solving two-phase flow drift-flux model problems using high-order numerical schemes. In our previous studies, the Newton-Krylov method has been proven as a promising solver for two-phase flow drift-flux model problems. However, these studies were limited to use first-order numerical schemes only. Moreover, the previous approach to treating the drift-flux closure correlations was later revealed to cause deteriorated solver convergence performance, when the mesh was highly refined, and also when higher-order numerical schemes were employed. In this study, a second-order spatial discretization scheme that has been tested withmore » two-fluid two-phase flow model was extended to solve drift-flux model problems. In order to improve solver robustness, and therefore efficiency, a new approach was proposed to treating the mean drift velocity of the gas phase as a primary nonlinear variable to the equation system. With this new approach, significant improvement in solver robustness was achieved. With highly refined mesh, the proposed treatment along with the Newton-Krylov solver were extensively tested with two-phase flow problems that cover a wide range of thermal-hydraulics conditions. Satisfactory convergence performances were observed for all test cases. Numerical verification was then performed in the form of mesh convergence studies, from which expected orders of accuracy were obtained for both the first-order and the second-order spatial discretization schemes. Finally, the drift-flux model, along with numerical methods presented, were validated with three sets of flow boiling experiments that cover different flow channel geometries (round tube, rectangular tube, and rod bundle), and a wide range of test conditions (pressure, mass flux, wall heat flux, inlet subcooling and outlet void fraction).« less
Application of high-order numerical schemes and Newton-Krylov method to two-phase drift-flux model
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2017-08-07
This study concerns the application and solver robustness of the Newton-Krylov method in solving two-phase flow drift-flux model problems using high-order numerical schemes. In our previous studies, the Newton-Krylov method has been proven as a promising solver for two-phase flow drift-flux model problems. However, these studies were limited to use first-order numerical schemes only. Moreover, the previous approach to treating the drift-flux closure correlations was later revealed to cause deteriorated solver convergence performance, when the mesh was highly refined, and also when higher-order numerical schemes were employed. In this study, a second-order spatial discretization scheme that has been tested withmore » two-fluid two-phase flow model was extended to solve drift-flux model problems. In order to improve solver robustness, and therefore efficiency, a new approach was proposed to treating the mean drift velocity of the gas phase as a primary nonlinear variable to the equation system. With this new approach, significant improvement in solver robustness was achieved. With highly refined mesh, the proposed treatment along with the Newton-Krylov solver were extensively tested with two-phase flow problems that cover a wide range of thermal-hydraulics conditions. Satisfactory convergence performances were observed for all test cases. Numerical verification was then performed in the form of mesh convergence studies, from which expected orders of accuracy were obtained for both the first-order and the second-order spatial discretization schemes. Finally, the drift-flux model, along with numerical methods presented, were validated with three sets of flow boiling experiments that cover different flow channel geometries (round tube, rectangular tube, and rod bundle), and a wide range of test conditions (pressure, mass flux, wall heat flux, inlet subcooling and outlet void fraction).« less
NASA Astrophysics Data System (ADS)
Moiseyev, V. A.; Nazarov, V. P.; Zhuravlev, V. Y.; Zhuykov, D. A.; Kubrikov, M. V.; Klokotov, Y. N.
2016-12-01
The development of new technological equipment for the implementation of highly effective methods of recovering highly viscous oil from deep reservoirs is an important scientific and technical challenge. Thermal recovery methods are promising approaches to solving the problem. It is necessary to carry out theoretical and experimental research aimed at developing oil-well tubing (OWT) with composite heatinsulating coatings on the basis of basalt and glass fibers. We used the method of finite element analysis in Nastran software, which implements complex scientific and engineering calculations, including the calculation of the stress-strain state of mechanical systems, the solution of problems of heat transfer, the study of nonlinear static, the dynamic transient analysis of frequency characteristics, etc. As a result, we obtained a mathematical model of thermal conductivity which describes the steady-state temperature and changes in the fibrous highly porous material with the heat loss by Stefan-Boltzmann's radiation. It has been performed for the first time using the method of computer modeling in Nastran software environments. The results give grounds for further implementation of the real design of the OWT when implementing thermal methods for increasing the rates of oil production and mitigating environmental impacts.
NASA Technical Reports Server (NTRS)
Hen, Itay; Rieffel, Eleanor G.; Do, Minh; Venturelli, Davide
2014-01-01
There are two common ways to evaluate algorithms: performance on benchmark problems derived from real applications and analysis of performance on parametrized families of problems. The two approaches complement each other, each having its advantages and disadvantages. The planning community has concentrated on the first approach, with few ways of generating parametrized families of hard problems known prior to this work. Our group's main interest is in comparing approaches to solving planning problems using a novel type of computational device - a quantum annealer - to existing state-of-the-art planning algorithms. Because only small-scale quantum annealers are available, we must compare on small problem sizes. Small problems are primarily useful for comparison only if they are instances of parametrized families of problems for which scaling analysis can be done. In this technical report, we discuss our approach to the generation of hard planning problems from classes of well-studied NP-complete problems that map naturally to planning problems or to aspects of planning problems that many practical planning problems share. These problem classes exhibit a phase transition between easy-to-solve and easy-to-show-unsolvable planning problems. The parametrized families of hard planning problems lie at the phase transition. The exponential scaling of hardness with problem size is apparent in these families even at very small problem sizes, thus enabling us to characterize even very small problems as hard. The families we developed will prove generally useful to the planning community in analyzing the performance of planning algorithms, providing a complementary approach to existing evaluation methods. We illustrate the hardness of these problems and their scaling with results on four state-of-the-art planners, observing significant differences between these planners on these problem families. Finally, we describe two general, and quite different, mappings of planning problems to QUBOs, the form of input required for a quantum annealing machine such as the D-Wave II.
Grid-Independent Compressive Imaging and Fourier Phase Retrieval
ERIC Educational Resources Information Center
Liao, Wenjing
2013-01-01
This dissertation is composed of two parts. In the first part techniques of band exclusion(BE) and local optimization(LO) are proposed to solve linear continuum inverse problems independently of the grid spacing. The second part is devoted to the Fourier phase retrieval problem. Many situations in optics, medical imaging and signal processing call…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de; Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de; Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de
The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevantmore » physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.« less
Problem solving of student with visual impairment related to mathematical literacy problem
NASA Astrophysics Data System (ADS)
Pratama, A. R.; Saputro, D. R. S.; Riyadi
2018-04-01
The student with visual impairment, total blind category depends on the sense of touch and hearing in obtaining information. In fact, the two senses can receive information less than 20%. Thus, students with visual impairment of the total blind categories in the learning process must have difficulty, including learning mathematics. This study aims to describe the problem-solving process of the student with visual impairment, total blind category on mathematical literacy issues based on Polya phase. This research using test method similar problems mathematical literacy in PISA and in-depth interviews. The subject of this study was a student with visual impairment, total blind category. Based on the result of the research, problem-solving related to mathematical literacy based on Polya phase is quite good. In the phase of understanding the problem, the student read about twice by brushing the text and assisted with information through hearing three times. The student with visual impairment in problem-solving based on the Polya phase, devising a plan by summoning knowledge and experience gained previously. At the phase of carrying out the plan, students with visual impairment implement the plan in accordance with pre-made. In the looking back phase, students with visual impairment need to check the answers three times but have not been able to find a way.
Rate-independent dissipation in phase-field modelling of displacive transformations
NASA Astrophysics Data System (ADS)
Tůma, K.; Stupkiewicz, S.; Petryk, H.
2018-05-01
In this paper, rate-independent dissipation is introduced into the phase-field framework for modelling of displacive transformations, such as martensitic phase transformation and twinning. The finite-strain phase-field model developed recently by the present authors is here extended beyond the limitations of purely viscous dissipation. The variational formulation, in which the evolution problem is formulated as a constrained minimization problem for a global rate-potential, is enhanced by including a mixed-type dissipation potential that combines viscous and rate-independent contributions. Effective computational treatment of the resulting incremental problem of non-smooth optimization is developed by employing the augmented Lagrangian method. It is demonstrated that a single Lagrange multiplier field suffices to handle the dissipation potential vertex and simultaneously to enforce physical constraints on the order parameter. In this way, the initially non-smooth problem of evolution is converted into a smooth stationarity problem. The model is implemented in a finite-element code and applied to solve two- and three-dimensional boundary value problems representative for shape memory alloys.
Democracy and Education in the Twenty-First Century: Deweyan Pragmatism and the Question of Racism
ERIC Educational Resources Information Center
Neubert, Stefan
2010-01-01
Why is John Dewey still such an important philosopher today? Writing from the perspective of the Cologne Program of Interactive Constructivism, Stefan Neubert tries in what follows to give one possible answer to this question. Neubert notes that Cologne constructivism considers Dewey in many respects as one of the most important predecessors of…
Figures of Disengagement: Charles Taylor, Scientific Parenting, and the Paradox of Late Modernity
ERIC Educational Resources Information Center
Van den Berge, Luc; Ramaekers, Stefan
2014-01-01
In this essay Luc Van den Berge and Stefan Ramaekers take the idea(l) of "scientific parenting" as an example of ambiguities that are typical of our late-modern condition. On the one hand, parenting seems like a natural thing to do, which makes "scientific parenting" sound like an oxymoron; on the other hand, a disengaged…
Evidence of high-elevation amplification versus Arctic amplification
NASA Astrophysics Data System (ADS)
Wang, Qixiang; Fan, Xiaohui; Wang, Mengben
2016-01-01
Elevation-dependent warming in high-elevation regions and Arctic amplification are of tremendous interest to many scientists who are engaged in studies in climate change. Here, using annual mean temperatures from 2781 global stations for the 1961-2010 period, we find that the warming for the world’s high-elevation stations (>500 m above sea level) is clearly stronger than their low-elevation counterparts; and the high-elevation amplification consists of not only an altitudinal amplification but also a latitudinal amplification. The warming for the high-elevation stations is linearly proportional to the temperature lapse rates along altitudinal and latitudinal gradients, as a result of the functional shape of Stefan-Boltzmann law in both vertical and latitudinal directions. In contrast, neither altitudinal amplification nor latitudinal amplification is found within the Arctic region despite its greater warming than lower latitudes. Further analysis shows that the Arctic amplification is an integrated part of the latitudinal amplification trend for the low-elevation stations (≤500 m above sea level) across the entire low- to high-latitude Northern Hemisphere, also a result of the mathematical shape of Stefan-Boltzmann law but only in latitudinal direction.
Evidence of high-elevation amplification versus Arctic amplification
Wang, Qixiang; Fan, Xiaohui; Wang, Mengben
2016-01-01
Elevation-dependent warming in high-elevation regions and Arctic amplification are of tremendous interest to many scientists who are engaged in studies in climate change. Here, using annual mean temperatures from 2781 global stations for the 1961–2010 period, we find that the warming for the world’s high-elevation stations (>500 m above sea level) is clearly stronger than their low-elevation counterparts; and the high-elevation amplification consists of not only an altitudinal amplification but also a latitudinal amplification. The warming for the high-elevation stations is linearly proportional to the temperature lapse rates along altitudinal and latitudinal gradients, as a result of the functional shape of Stefan-Boltzmann law in both vertical and latitudinal directions. In contrast, neither altitudinal amplification nor latitudinal amplification is found within the Arctic region despite its greater warming than lower latitudes. Further analysis shows that the Arctic amplification is an integrated part of the latitudinal amplification trend for the low-elevation stations (≤500 m above sea level) across the entire low- to high-latitude Northern Hemisphere, also a result of the mathematical shape of Stefan-Boltzmann law but only in latitudinal direction. PMID:26753547
Nonlinear Interaction of the Beat-Photon Beams with the Brain Neurocenters: Laser Neurophysics
NASA Astrophysics Data System (ADS)
Stefan, V. Alexander
2010-03-01
I propose a novel mechanism for laser-brain interaction: Nonlinear interaction of ultrashort pulses of beat-photon, (φ1-- φ2), or double-photon, (φ1+φ2), footnotetextMaria Goeppert-Mayer, "Uber Elementarakte mit zwei Quantenspr"ungen, Ann Phys 9, 273, 95. (1931). beams with the corrupted brain neurocenters, causing a particular neurological disease. The open-scull cerebral tissue can be irradiated with the beat-photon pulses in the range of several 100s fs, with the laser irradiances in the range of a few mW/cm^2, repetition rate of a few 100s Hz, and in the frequency range of 700-1300nm generated in the beat-wave driven free electron laser.footnotetextV. Alexander Stefan, The Interaction of Photon Beams with the DNA Molecules: Genomic Medical Physics. American Physical Society, 2009 APS March Meeting, March 16-20, 2009, abstract #K1.276; V. Stefan, B. I. Cohen, and C. Joshi, Nonlinear Mixing of Electromagnetic Waves in Plasmas Science 27 January 1989:Vol. 243. no. 4890, pp. 494 -- 500 (January 1989). This method may prove to be an effective mechanism in the treatment of neurological diseases: Parkinson's, Lou Gehrig's, and others.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casana, Rodolfo; Ferreira, Manoel M. Jr; Rodrigues, Josberg S.
2009-10-15
In this work, we examine the finite temperature properties of the CPT-even and Lorentz-invariance-violating (LIV) electrodynamics of the standard model extension, represented by the term W{sub {alpha}}{sub {nu}}{sub {rho}}{sub {phi}}F{sup {alpha}}{sup {nu}}F{sup {rho}}{sup {phi}}. We begin analyzing the Hamiltonian structure following the Dirac's procedure for constrained systems and construct a well-defined and gauge invariant partition function in the functional integral formalism. Next, we specialize for the nonbirefringent coefficients of the tensor W{sub {alpha}}{sub {nu}}{sub {rho}}{sub {phi}}. In the sequel, the partition function is explicitly carried out for the parity-even sector of the tensor W{sub {alpha}}{sub {nu}}{sub {rho}}{sub {phi}}. The modifiedmore » partition function is a power of the Maxwell's partition function. It is observed that the LIV coefficients induce an anisotropy in the black body angular energy density distribution. The Planck's radiation law, however, retains its frequency dependence and the Stefan-Boltzmann law keeps the usual form, except for a change in the Stefan-Boltzmann constant by a factor containing the LIV contributions.« less
Developing Open-Ended Questions for Surface Area and Volume of Beam
ERIC Educational Resources Information Center
Kurniawan, Henry; Putri, Ratu Ilma Indra; Hartono, Yusuf
2018-01-01
The purpose of this research was to show open-ended questions about surface area and beam volume which valid and practice, have potential effect. This research is research development which consists of two main phases: preliminary phase (preparation phase and problem design) and formative evaluation phase (evaluation and revision phases). The…
ERIC Educational Resources Information Center
Jones, Brett D.; Epler, Cory M.; Mokri, Parastou; Bryant, Lauren H.; Paretti, Marie C.
2013-01-01
We identified and examined how the instructional elements of problem-based learning capstone engineering courses affected students' motivation to engage in the courses. We employed a two-phase, sequential, explanatory, mixed methods research design. For the quantitative phase, 47 undergraduate students at a large public university completed a…
Matter wave coupling of spatially separated and unequally pumped polariton condensates
NASA Astrophysics Data System (ADS)
Kalinin, Kirill P.; Lagoudakis, Pavlos G.; Berloff, Natalia G.
2018-03-01
Spatial quantum coherence between two separated driven-dissipative polariton condensates created nonresonantly and with a different occupation is studied. We identify the regions where the condensates remain coherent with the phase difference continuously changing with the pumping imbalance and the regions where each condensate acquires its own chemical potential with phase differences exhibiting time-dependent oscillations. We show that in the mutual coherence limit the coupling consists of two competing contributions: a symmetric Heisenberg exchange and the Dzyloshinskii-Moriya asymmetric interactions that enable a continuous tuning of the phase relation across the dyad and derive analytic expressions for these types of interactions. The introduction of nonequal pumping increases the complexity of the type of problems that can be solved by polariton condensates arranged in a graph configuration. If equally pumped polaritons condensates arrange their phases to solve the constrained quadratic minimisation problem with a real symmetric matrix, the nonequally pumped condensates solve that problem for a general Hermitian matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertola, Marco, E-mail: Marco.Bertola@concordia.ca; Centre de Recherches Mathématiques, Université de Montréal, Montréal, Québec H3C 3J7; SISSA/ISAS, via Bonomea 265, Trieste
2015-06-15
Two-phase solutions of focusing NLS equation are classically constructed out of an appropriate Riemann surface of genus two and expressed in terms of the corresponding theta-function. We show here that in a certain limiting regime, such solutions reduce to some elementary ones called “Solitons on unstable condensate.” This degeneration turns out to be conveniently studied by means of basic tools from the theory of Riemann-Hilbert problems. In particular, no acquaintance with Riemann surfaces and theta-function is required for such analysis.
Multicomponent Diffusion of Penetrant Mixtures in Rubbery Polymers: A Molecular Dynamics Study
NASA Astrophysics Data System (ADS)
Bringuier, Stefan; Varady, Mark; Knox, Craig; Cabalo, Jerry; Pearl, Thomas; Mantooth, Brent
The importance of understanding transport of chemical species across liquid-solid boundaries is of particular interest in the decontamination of harmful chemicals absorbed within polymeric materials. To characterize processes associated with liquid-phase extraction of absorbed species from polymers, it is necessary to determine an appropriate physical description of species transport in multicomponent systems. The Maxwell-Stefan (M-S) formulation is a rigorous description of mass transport in multicomponent solutions, in which, mutual diffusivities determine the degree of relative motion between interacting molecules in response to a chemical potential gradient. The work presented focuses on the determination of M-S diffusivities from molecular dynamics (MD) simulations of nerve agent O-ethyl S-[2(diisopropylamino)ethyl] methylphosphonothioate (VX), water, and methanol mixtures within a poly(dimethylsiloxane) matrix. We investigate the composition dependence of M-S diffusivities and compare the results to values predicted using empirical relations for binary and ternary mixtures. Finally, we highlight the pertinent differences in molecular mechanisms associated with species transport and employ non-equilibrium MD to probe transport across the mixture-polymer interface.
Fluid Dynamics and Thermodynamics of Vapor Phase Crystal Growth
NASA Technical Reports Server (NTRS)
Wiedemeier, H.
1985-01-01
The ground-based research effort under this program is concerned with systematic studies of the effects of variations: (1) of the relative importance of buoyancy-driven convection, and (2) of diffusion and viscosity conditions on crystal properties. These experimental studies are supported by thermodynamic characterizations of the systems, based on which fluid dynamic parameters can be determined. The specific materials under investigation include: the GeSe-GeI4, Ge-GeI4, HgTe-HgI2, and Hg sub (1-x)Cd sub (x) Te-HgI2 systems. Mass transport rate studies of the GeSe-GeI system as a function of orientation of the density gradient relative to the gravity vector demonstrated the validity of flux anomalies observed in earlier space experiments. The investigation of the effects of inert gases on mass flux yielded the first experimental evidence for the existence of a boundary layer in closed ampoules. Combined with a thorough thermodynamic analysis, a transport model for diffusive flow including chemical vapor transport, sublimation, and Stefan flow was developed.
NASA Astrophysics Data System (ADS)
Radulović, Vladimir; Kolšek, Aljaž; Fauré, Anne-Laure; Pottin, Anne-Claire; Pointurier, Fabien; Snoj, Luka
2018-03-01
The Fission Track Thermal Ionization Mass Spectrometry (FT-TIMS) method is considered as the reference method for particle analysis in the field of nuclear Safeguards for measurements of isotopic compositions (fissile material enrichment levels) in micrometer-sized uranium particles collected in nuclear facilities. An integral phase in the method is the irradiation of samples in a very well thermalized neutron spectrum. A bilateral collaboration project was carried out between the Jožef Stefan Institute (JSI, Slovenia) and the Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA, France) to determine whether the JSI TRIGA reactor could be used for irradiations of samples for the FT-TIMS method. This paper describes Monte Carlo simulations, experimental activation measurements and test irradiations performed in the JSI TRIGA reactor, firstly to determine the feasibility, and secondly to design and qualify a purpose-built heavy water based irradiation device for FT-TIMS samples. The final device design has been shown experimentally to meet all the required performance specifications.
Time-dependent interaction between a two-level atom and a su(1,1) Lie algebra quantum system
NASA Astrophysics Data System (ADS)
Abdalla, M. Sebaweh; Khalil, E. M.; Obada, A.-S. F.
2017-06-01
The problem of the interaction between a two-level atom and a two-mode field in the parametric amplifier-type is considered. A similar problem appears in an ion trapped in a two-dimensional trap. The problem is transformed into an interaction governed by su(1,1) Lie algebraic operators with phase and coupling parameter depending on time. Under an integrability condition, that relates phase and coupling, a solution to the wavefunction is obtained using the Schrödinger equation. The effects of the functional dependence of the coupling and the initial state of the two-level atom on atomic inversion, the degree of entanglement, the fidelity and the Glauber second-order correlation function are investigated. It is shown that the acceleration term plays an important role in controlling the function behavior of the considered quantities.
Coupled discrete element and finite volume solution of two classical soil mechanics problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Feng; Drumm, Eric; Guiochon, Georges A
One dimensional solutions for the classic critical upward seepage gradient/quick condition and the time rate of consolidation problems are obtained using coupled routines for the finite volume method (FVM) and discrete element method (DEM), and the results compared with the analytical solutions. The two phase flow in a system composed of fluid and solid is simulated with the fluid phase modeled by solving the averaged Navier-Stokes equation using the FVM and the solid phase is modeled using the DEM. A framework is described for the coupling of two open source computer codes: YADE-OpenDEM for the discrete element method and OpenFOAMmore » for the computational fluid dynamics. The particle-fluid interaction is quantified using a semi-empirical relationship proposed by Ergun [12]. The two classical verification problems are used to explore issues encountered when using coupled flow DEM codes, namely, the appropriate time step size for both the fluid and mechanical solution processes, the choice of the viscous damping coefficient, and the number of solid particles per finite fluid volume.« less
NUMERICAL ANALYSES FOR TREATING DIFFUSION IN SINGLE-, TWO-, AND THREE-PHASE BINARY ALLOY SYSTEMS
NASA Technical Reports Server (NTRS)
Tenney, D. R.
1994-01-01
This package consists of a series of three computer programs for treating one-dimensional transient diffusion problems in single and multiple phase binary alloy systems. An accurate understanding of the diffusion process is important in the development and production of binary alloys. Previous solutions of the diffusion equations were highly restricted in their scope and application. The finite-difference solutions developed for this package are applicable for planar, cylindrical, and spherical geometries with any diffusion-zone size and any continuous variation of the diffusion coefficient with concentration. Special techniques were included to account for differences in modal volumes, initiation and growth of an intermediate phase, disappearance of a phase, and the presence of an initial composition profile in the specimen. In each analysis, an effort was made to achieve good accuracy while minimizing computation time. The solutions to the diffusion equations for single-, two-, and threephase binary alloy systems are numerically calculated by the three programs NAD1, NAD2, and NAD3. NAD1 treats the diffusion between pure metals which belong to a single-phase system. Diffusion in this system is described by a one-dimensional Fick's second law and will result in a continuous composition variation. For computational purposes, Fick's second law is expressed as an explicit second-order finite difference equation. Finite difference calculations are made by choosing the grid spacing small enough to give convergent solutions of acceptable accuracy. NAD2 treats diffusion between pure metals which form a two-phase system. Diffusion in the twophase system is described by two partial differential equations (a Fick's second law for each phase) and an interface-flux-balance equation which describes the location of the interface. Actual interface motion is obtained by a mass conservation procedure. To account for changes in the thicknesses of the two phases as diffusion progresses, a variable grid technique developed by Murray and Landis is employed. These equations are expressed in finite difference form and solved numerically. Program NAD3 treats diffusion between pure metals which form a two-phase system with an intermediate third phase. Diffusion in the three-phase system is described by three partial differential expressions of Fick's second law and two interface-flux-balance equations. As with the two-phase case, a variable grid finite difference is used to numerically solve the diffusion equations. Computation time is minimized without sacrificing solution accuracy by treating the three-phase problem as a two-phase problem when the thickness of the intermediate phase is less than a preset value. Comparisons between these programs and other solutions have shown excellent agreement. The programs are written in FORTRAN IV for batch execution on the CDC 6600 with a central memory requirement of approximately 51K (octal) 60 bit words.
A numerical analysis of phase-change problems including natural convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Y.; Faghri, A.
1990-08-01
Fixed grid solutions for phase-change problems remove the need to satisfy conditions at the phase-change front and can be easily extended to multidimensional problems. The two most important and widely used methods are enthalpy methods and temperature-based equivalent heat capacity methods. Both methods in this group have advantages and disadvantages. Enthalpy methods (Shamsundar and Sparrow, 1975; Voller and Prakash, 1987; Cao et al., 1989) are flexible and can handle phase-change problems occurring both at a single temperature and over a temperature range. The drawback of this method is that although the predicted temperature distributions and melting fronts are reasonable, themore » predicted time history of the temperature at a typical grid point may have some oscillations. The temperature-based fixed grid methods (Morgan, 1981; Hsiao and Chung, 1984) have no such time history problems and are more convenient with conjugate problems involving an adjacent wall, but have to deal with the severe nonlinearity of the governing equations when the phase-change temperature range is small. In this paper, a new temperature-based fixed-grid formulation is proposed, and the reason that the original equivalent heat capacity model is subject to such restrictions on the time step, mesh size, and the phase-change temperature range will also be discussed.« less
ERIC Educational Resources Information Center
Bird, R. Byron
1980-01-01
Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)
Referenceless Phase Holography for 3D Imaging
NASA Astrophysics Data System (ADS)
Kreis, Thomas
2017-12-01
Referenceless phase holography generates the full (amplitude and phase) optical field if intensity and phase of this field are given as numerical data. It is based on the interference of two pure phase fields which are produced by reflection of two mutually coherent plane waves at two phase modulating spatial light modulators of the liquid crystal on silicon type. Thus any optical field of any real or artificial 3D scene can be displayed. This means that referenceless phase holography is a promising method for future 3D imaging, e. g. in 3D television. The paper introduces the theory of the method and presents three possible interferometer arrangements, for the first time the Mach-Zehnder and the grating interferometer adapted to this application. The possibilities and problems in calculating the diffraction fields of given 3D scenes are worked out, the best choice and modifications of the algorithms are given. Several novelty experimental examples are given proving the 3D cues depth of field, occlusion and parallax. The benefits and advantages over other holographic approaches are pointed out, open problems and necessary technological developments as well as possibilities and future prospects are discussed.
Clarification process: Resolution of decision-problem conditions
NASA Technical Reports Server (NTRS)
Dieterly, D. L.
1980-01-01
A model of a general process which occurs in both decisionmaking and problem-solving tasks is presented. It is called the clarification model and is highly dependent on information flow. The model addresses the possible constraints of individual indifferences and experience in achieving success in resolving decision-problem conditions. As indicated, the application of the clarification process model is only necessary for certain classes of the basic decision-problem condition. With less complex decision problem conditions, certain phases of the model may be omitted. The model may be applied across a wide range of decision problem conditions. The model consists of two major components: (1) the five-phase prescriptive sequence (based on previous approaches to both concepts) and (2) the information manipulation function (which draws upon current ideas in the areas of information processing, computer programming, memory, and thinking). The two components are linked together to provide a structure that assists in understanding the process of resolving problems and making decisions.
A second-order accurate kinetic-theory-based method for inviscid compressible flows
NASA Technical Reports Server (NTRS)
Deshpande, Suresh M.
1986-01-01
An upwind method for the numerical solution of the Euler equations is presented. This method, called the kinetic numerical method (KNM), is based on the fact that the Euler equations are moments of the Boltzmann equation of the kinetic theory of gases when the distribution function is Maxwellian. The KNM consists of two phases, the convection phase and the collision phase. The method is unconditionally stable and explicit. It is highly vectorizable and can be easily made total variation diminishing for the distribution function by a suitable choice of the interpolation strategy. The method is applied to a one-dimensional shock-propagation problem and to a two-dimensional shock-reflection problem.
Mobile Number Portability in Europe
2005-08-01
Anmerkungen zum Balassa - Samuelson -Effekt, Nr. 3/2002, erschienen in: Stefan Reitz (Hg.): Theoretische und wirtschaftspolitische Aspekte der internatio- nalen...However, the argument is slightly more complex. Using a simple model with differentiated networks, Buehler and Haucap (2004) show that the incumbent’s...Elasticities The above arguments suggest that it is more difficult to gain market share in the presence of switching costs, as undercutting needs to be
Symbolic Dynamics and Grammatical Complexity
NASA Astrophysics Data System (ADS)
Hao, Bai-Lin; Zheng, Wei-Mou
The following sections are included: * Formal Languages and Their Complexity * Formal Language * Chomsky Hierarchy of Grammatical Complexity * The L-System * Regular Language and Finite Automaton * Finite Automaton * Regular Language * Stefan Matrix as Transfer Function for Automaton * Beyond Regular Languages * Feigenbaum and Generalized Feigenbaum Limiting Sets * Even and Odd Fibonacci Sequences * Odd Maximal Primitive Prefixes and Kneading Map * Even Maximal Primitive Prefixes and Distinct Excluded Blocks * Summary of Results
Service Level Agreements in Service-Oriented Architecture Environments
2008-09-01
the WS-Agreement [ Seidel 2007]. Indeed, core concepts of the WSLA were brought into the WS-Agreement, which also contains ideas from the Service...A Categorization Scheme for SLA Metrics. http://ibis.in.tum.de/staff/paschke/docs/MKWI2006_SLA_Paschke.pdf (2006). [ Seidel 2007] Seidel , Jan...addr-metadata-20070731/(2007). [Wohlstadter 2004] Wohlstadter, Eric; Tai, Stefan ; Mikalsen, Thomas; Rouvellou, Isabelle; & Devanbu, Premkumar
Two-phase flows within systems with ambient pressure
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Braun, M. J.; Wheeler, R. L., III; Mullen, R. L.
1985-01-01
In systems where the design inlet and outlet pressures are maintained above the thermodynamic critical pressure, it is often assumed that two phase flows within the system cannot occur. Designers rely on this simple rule of thumb to circumvent problems associated with a highly compressible two phase flow occurring within the supercritical pressure system along with the uncertainties in rotordynamics, load capacity, heat transfer, fluid mechanics, and thermophysical property variations. The simple rule of thumb is adequate in many low power designs but is inadequate for high performance turbomachines and linear systems, where two phase regions can exist even though outlet pressure is greater than critical pressure. Rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two phase zone can differ significantly from those for a single-phase zone. Using the Reynolds equation the angular velocity, eccentricity, geometry, and ambient conditions are varied to determine the point of two phase flow incipience.
Gas-Liquid Flows and Phase Separation
NASA Technical Reports Server (NTRS)
McQuillen, John
2004-01-01
Common issues for space system designers include:Ability to Verify Performance in Normal Gravity prior to Deployment; System Stability; Phase Accumulation & Shedding; Phase Separation; Flow Distribution through Tees & Manifolds Boiling Crisis; Heat Transfer Coefficient; and Pressure Drop.The report concludes:Guidance similar to "A design that operates in a single phase is less complex than a design that has two-phase flow" is not always true considering the amount of effort spent on pressurizing, subcooling and phase separators to ensure single phase operation. While there is still much to learn about two-phase flow in reduced gravity, we have a good start. Focus now needs to be directed more towards system level problems .
NASA Technical Reports Server (NTRS)
Fabris, Gracio
1992-01-01
Two-phase energy conversion systems could be liquid metal magnetohydrodynamic (LMMHD) with no moving parts or two-phase turbines. Both of them are inherently simple and reliable devices which can operate in a wide range of temperatures. Their thermal efficiency is significantly higher than for conventional cycles due to reheat of vapor by liquid phase during the energy converting expansion. Often they can be more easily coupled to heat sources. These features make two-phase systems particularly promising for space application. Insufficient research has been done in the past. So far achieved LMMHD generator and two-phase turbine efficiencies are in the 40 to 45 percent range. However if certain fluid dynamic and design problems are resolved these efficiencies could be brought into the range of 70 percent. This would make two-phase systems extremely competitive as compared to present or other proposed conversion system for space. Accordingly, well directed research effort on potential space applications of two-phase conversion systems would be a wise investment.
ADMIT: a toolbox for guaranteed model invalidation, estimation and qualitative–quantitative modeling
Streif, Stefan; Savchenko, Anton; Rumschinski, Philipp; Borchers, Steffen; Findeisen, Rolf
2012-01-01
Summary: Often competing hypotheses for biochemical networks exist in the form of different mathematical models with unknown parameters. Considering available experimental data, it is then desired to reject model hypotheses that are inconsistent with the data, or to estimate the unknown parameters. However, these tasks are complicated because experimental data are typically sparse, uncertain, and are frequently only available in form of qualitative if–then observations. ADMIT (Analysis, Design and Model Invalidation Toolbox) is a MatLabTM-based tool for guaranteed model invalidation, state and parameter estimation. The toolbox allows the integration of quantitative measurement data, a priori knowledge of parameters and states, and qualitative information on the dynamic or steady-state behavior. A constraint satisfaction problem is automatically generated and algorithms are implemented for solving the desired estimation, invalidation or analysis tasks. The implemented methods built on convex relaxation and optimization and therefore provide guaranteed estimation results and certificates for invalidity. Availability: ADMIT, tutorials and illustrative examples are available free of charge for non-commercial use at http://ifatwww.et.uni-magdeburg.de/syst/ADMIT/ Contact: stefan.streif@ovgu.de PMID:22451270
NASA Technical Reports Server (NTRS)
1973-01-01
The results are reported of the NASA/Drexel research effort which was conducted in two separate phases. The initial phase stressed exploration of the problem from the point of view of three primary research areas and the building of a multidisciplinary team. The final phase consisted of a clinical demonstration program in which the research associates consulted with the County Executive of New Castle County, Delaware, to aid in solving actual problems confronting the County Government. The three primary research areas of the initial phase are identified as technology, management science, and behavioral science. Five specific projects which made up the research effort are treated separately. A final section contains the conclusions drawn from total research effort as well as from the specific projects.
NASA Technical Reports Server (NTRS)
White, Warren B.; Cayan, Daniel R.; Dettinger, Michael; Sharber, James (Technical Monitor)
2001-01-01
Earlier, we found time sequences of basin- and global-average upper ocean temperature (that is, diabatic heat storage above the main pycnocline) for 40 years from 1955-1994 and of sea surface temperature for 95 years from 1900-1994 associated with changes in the Sun's radiative forcing on decadal and interdecadal timescales, lagging by 10 deg.- 30 deg. of phase and confined to the upper 60-120 m. Yet, the observed changes in upper ocean temperature (approx. 0.1 K) were approximately twice those expected from the Stefan-Boltzmann black-body radiation law for the Earth's surface, with phase lags (0 deg. to 30 deg. of phase) much shorter than the 90 deg. phase shift expected as well. Moreover, White et al. (1997, 1998) found the Earth's global decadal mode in covarying SST and SLP anomalies phase locked to the decadal signal in the Sun's irradiance. Yet, Allan (2000) found this decadal signal also characterized by patterns similar to those observed on biennial and interannual time scales; that is, the Troposphere Biennial Oscillation (TBO) and the El Nino and the Southern Oscillation (ENSO). This suggested that small changes in the Sun's total irradiance could excite this global decadal mode in the Earth's ocean-atmosphere-terrestrial system similar to those excited internally on biennial and interannual period scales. This is a significant finding, proving that energy budget models (that is, models based on globally-averaged radiation balances) yield unrealistic responses. Thus, the true response must include positive and negative feedbacks in the Earth's ocean-atmosphere-terrestrial system as its internal mode (that is, the natural mode of the system) respond in damped resonance to quasi-periodic decadal changes in the Sun's irradiance. Moreover, these responses are not much different from those occurring internally on biennial and interannual period scales.
NASA Astrophysics Data System (ADS)
Baniamerian, Ali; Bashiri, Mahdi; Zabihi, Fahime
2018-03-01
Cross-docking is a new warehousing policy in logistics which is widely used all over the world and attracts many researchers attention to study about in last decade. In the literature, economic aspects has been often studied, while one of the most significant factors for being successful in the competitive global market is improving quality of customer servicing and focusing on customer satisfaction. In this paper, we introduce a vehicle routing and scheduling problem with cross-docking and time windows in a three-echelon supply chain that considers customer satisfaction. A set of homogeneous vehicles collect products from suppliers and after consolidation process in the cross-dock, immediately deliver them to customers. A mixed integer linear programming model is presented for this problem to minimize transportation cost and early/tardy deliveries with scheduling of inbound and outbound vehicles to increase customer satisfaction. A two phase genetic algorithm (GA) is developed for the problem. For investigating the performance of the algorithm, it was compared with exact and lower bound solutions in small and large-size instances, respectively. Results show that there are at least 86.6% customer satisfaction by the proposed method, whereas customer satisfaction in the classical model is at most 33.3%. Numerical examples results show that the proposed two phase algorithm could achieve optimal solutions in small-size instances. Also in large-size instances, the proposed two phase algorithm could achieve better solutions with less gap from the lower bound in less computational time in comparison with the classic GA.
NASA Astrophysics Data System (ADS)
Shao, H.; Huang, Y.; Kolditz, O.
2015-12-01
Multiphase flow problems are numerically difficult to solve, as it often contains nonlinear Phase transition phenomena A conventional technique is to introduce the complementarity constraints where fluid properties such as liquid saturations are confined within a physically reasonable range. Based on such constraints, the mathematical model can be reformulated into a system of nonlinear partial differential equations coupled with variational inequalities. They can be then numerically handled by optimization algorithms. In this work, two different approaches utilizing the complementarity constraints based on persistent primary variables formulation[4] are implemented and investigated. The first approach proposed by Marchand et.al[1] is using "local complementary constraints", i.e. coupling the constraints with the local constitutive equations. The second approach[2],[3] , namely the "global complementary constrains", applies the constraints globally with the mass conservation equation. We will discuss how these two approaches are applied to solve non-isothermal componential multiphase flow problem with the phase change phenomenon. Several benchmarks will be presented for investigating the overall numerical performance of different approaches. The advantages and disadvantages of different models will also be concluded. References[1] E.Marchand, T.Mueller and P.Knabner. Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model, Computational Geosciences 17(2): 431-442, (2013). [2] A. Lauser, C. Hager, R. Helmig, B. Wohlmuth. A new approach for phase transitions in miscible multi-phase flow in porous media. Water Resour., 34,(2011), 957-966. [3] J. Jaffré, and A. Sboui. Henry's Law and Gas Phase Disappearance. Transp. Porous Media. 82, (2010), 521-526. [4] A. Bourgeat, M. Jurak and F. Smaï. Two-phase partially miscible flow and transport modeling in porous media : application to gas migration in a nuclear waste repository, Comp.Geosciences. (2009), Volume 13, Number 1, 29-42.
NASA Astrophysics Data System (ADS)
Hao, Yudong; Zhao, Yang; Li, Dacheng
1999-11-01
Grating projection 3D profilometry has three major problems that have to be handled with great care. They are local shadows, phase discontinuities and surface isolations. Carrying no information, shadow areas give us no clue about the profile there. Phase discontinuities often baffle phase unwrappers because they may be generated for several reasons difficult to distinguish. Spatial phase unwrapping will inevitably fail if the object under teste have surface isolations. In this paper, a complementary grating projection profilometry is reported, which attempts to tackle the three aforementioned problems simultaneously. This technique involves projecting two grating patterns form both sides of the CCD camera. Phase unwrapping is carried out pixel by pixel using the two phase maps based on the excess fraction method, which is immune to phase discontinuities or surface isolations. Complementary projection makes sure that no area in the visible volume of CCD is devoid of fringe information, although in some cases a small area of the reconstructed profile is of low accuracy compared with others. The system calibration procedures and measurement results are presented in detail, and possible improvement is discussed.
NASA Astrophysics Data System (ADS)
Sharifzadeh, M.; Hashemabadi, S. H.; Afarideh, H.; Khalafi, H.
2018-02-01
The problem of how to accurately measure multiphase flow in the oil/gas industry remains as an important issue since the early 80 s. Meanwhile, oil-water two-phase flow rate measurement has been regarded as an important issue. Gamma-ray attenuation is one of the most commonly used methods for phase fraction measurement which is entirely dependent on the flow regime variations. The peripheral strategy applied for removing the regime dependency problem, is using a homogenization system as a preconditioning tool, as this research work demonstrates. Here, at first, TPFHL as a two-phase flow homogenizer loop has been introduced and verified by a quantitative assessment. In the wake of this procedure, SEMPF as a static-equivalent multiphase flow with an additional capability for preparing a uniform mixture has been explained. The proposed idea in this system was verified by Monte Carlo simulations. Finally, the different water-gas oil two-phase volume fractions fed to the homogenizer loop and injected into the static-equivalent system. A comparison between performance of these two systems by using gamma-ray attenuation technique, showed not only an extra ability to prepare a homogenized mixture but a remarkably increased measurement accuracy for the static-equivalent system.
Classification of symmetry-protected phases for interacting fermions in two dimensions
NASA Astrophysics Data System (ADS)
Cheng, Meng; Bi, Zhen; You, Yi-Zhuang; Gu, Zheng-Cheng
2018-05-01
Recently, it has been established that two-dimensional bosonic symmetry-protected topological (SPT) phases with on-site unitary symmetry G can be completely classified by the group cohomology H3( G ,U (1 ) ) . Later, group supercohomology was proposed as a partial classification for SPT phases of interacting fermions. In this work, we revisit this problem based on the algebraic theory of symmetry and defects in two-dimensional topological phases. We reproduce the partial classifications given by group supercohomology, and we also show that with an additional H1(G ,Z2) structure, a complete classification of SPT phases for two-dimensional interacting fermion systems with a total symmetry group G ×Z2f is obtained. We also discuss the classification of interacting fermionic SPT phases protected by time-reversal symmetry.
Hydrogen sulfide emission in sewer networks: a two-phase modeling approach to the sulfur cycle.
Yongsiri, C; Vollertsen, J; Hvitved-Jacobsen, T
2004-01-01
Wherever transport of anaerobic wastewater occurs, potential problems associated with hydrogen sulfide in relation to odor nuisance, health risk and corrosion exist. Improved understanding of prediction of hydrogen sulfide emission into the sewer atmosphere is needed for better evaluation of such problems in sewer networks. A two-phase model for emission of hydrogen sulfide along stretches of gravity sewers is presented to estimate the occurrence of both sulfide in the water phase and hydrogen sulfide in the sewer atmosphere. The model takes into account air-water mass transfer of hydrogen sulfide and interactions with other processes in the sulfur cycle. Various emission scenarios are simulated to illustrate the release characteristics of hydrogen sulfide.
Multicasting for all-optical multifiber networks
NASA Astrophysics Data System (ADS)
Kã¶Ksal, Fatih; Ersoy, Cem
2007-02-01
All-optical wavelength-routed WDM WANs can support the high bandwidth and the long session duration requirements of the application scenarios such as interactive distance learning or on-line diagnosis of patients simultaneously in different hospitals. However, multifiber and limited sparse light splitting and wavelength conversion capabilities of switches result in a difficult optimization problem. We attack this problem using a layered graph model. The problem is defined as a k-edge-disjoint degree-constrained Steiner tree problem for routing and fiber and wavelength assignment of k multicasts. A mixed integer linear programming formulation for the problem is given, and a solution using CPLEX is provided. However, the complexity of the problem grows quickly with respect to the number of edges in the layered graph, which depends on the number of nodes, fibers, wavelengths, and multicast sessions. Hence, we propose two heuristics layered all-optical multicast algorithm [(LAMA) and conservative fiber and wavelength assignment (C-FWA)] to compare with CPLEX, existing work, and unicasting. Extensive computational experiments show that LAMA's performance is very close to CPLEX, and it is significantly better than existing work and C-FWA for nearly all metrics, since LAMA jointly optimizes routing and fiber-wavelength assignment phases compared with the other candidates, which attack the problem by decomposing two phases. Experiments also show that important metrics (e.g., session and group blocking probability, transmitter wavelength, and fiber conversion resources) are adversely affected by the separation of two phases. Finally, the fiber-wavelength assignment strategy of C-FWA (Ex-Fit) uses wavelength and fiber conversion resources more effectively than the First Fit.
The Federal Republic of Germany and Left Wing Terrorism
2003-12-01
Stoll, Peter Jurgen Boock, Susan Albrecht, Rolf Clemens Wagner, and Stefan Wisniewski. 49 Merkl , p. 199. 50 Ibid, p. 192. 51 Hans-Joachim Klein...during each 2 Peter H. Merkl , “Rollerball or Neo-Nazi Violence?,” in Peter H. Merkl (ed...commitment to non-violence is hypocritical.”28 Peter Merkl described the situation best when he said, “Terrorism, of course is not the logical result of
Election Verifiability: Cryptographic Definitions and an Analysis of Helios and JCJ
2015-04-01
anonymous credentials. In CSF’14: 27th Computer Security Foundations Symposium. IEEE Computer Society, 2014. To appear. [22] David Chaum . Untraceable...electronic mail, return addresses, and digital pseudonyms. Communications of the ACM, 24(2):84–88, 1981. [23] David Chaum . Secret-ballot receipts...True voter-verifiable elections. IEEE Security and Privacy, 2(1):38–47, 2004. [24] David Chaum , Richard Carback, Jeremy Clark, Aleksander Essex, Stefan
Middle-Class Consensus, Social Capital and the Mechanics of Economic Development
2005-01-01
Michael, Social Capital and Regional Mobility, Nr. 4/2002. "* Schdfer, Wolf, EU-Erweiterung: Anmerkungen zum Balassa - Samuelson -Effekt, Nr. 3/2002...variations, while the argument of both the present paper and most of the previous literature on inequality and growth refers to long-run growth effects of...Diskussionsbeitriige zur Finanzwissenschaft " Josten, Stefan, Crime, Inequality, and Economic Growth. A Classical Argument for Distributional Equality
Processor Capacity Reserves for Multimedia Operating Systems
1993-05-01
Stefan Savage, and -ideyuki Tokuda May 1993 CMU-CS-93-157 School of Computer Science Camegie Mellon University Pittsburgh, PA 15213 Abstract Multimedia...and provide feedback so that the estimate can be adjusted if necessaty . For non-periodic activities that are to be limited by a processor percentage...comments and suggestions: Brian Bershad, Ragunathan Rajkumar, and the members of the ART group and Mach group at CMU. 13 References [1] D. P
Religious Accommodation for Military Members in the Twenty-First Century
2012-02-01
order and discipline is speculative. He presented a scenario where a female Airman had permission to wear her hijab indoors. When she transferred to the...Lieutenant Colonel, USAF A Research Report Submitted to the Faculty In Partial Fulfillment of the Graduation Requirements Advisor: Dr. Stefan Eisen, Jr...Colonel, USAF (Retired) Maxwell Air Force Base, Alabama February 2012 DISTRIBUTION A . Approved for public release: distribution unlimited 2
Multidisciplinary Thermal Analysis of Hot Aerospace Structures
2010-05-02
Seidel iteration. Such a strategy simplifies explicit/implicit treatment , subcycling, load balancing, software modularity, and replacements as better... Stefan -Boltzmann constant , E is the emissivity of the surface, f is the form factor from the surface to the reference surface, Br is the temperature of...Stokes equations using Gauss- Seidel line Relaxation, Computers and Fluids, 17, pp.l35-150, 1989. [22] Hung C.M. and MacCormack R.W., Numerical
Development of a Novel Hybrid Multi-Junction Architecture for Silicon Solar Cells
2015-03-26
W Watts KOH Potassium Hydroxide xj Junction depth k Thermal conductivity z Normal distance l Conductor length σ Stefan...outermost orbit [9]. A material conducts electricity when its valence electrons move into the conduction band and become conductor electrons. Conductor ...become a conductor , it must absorb enough energy to overcome the band gap, which is the energy difference between the valence band and the conduction
Maxwell-Stefan diffusion and dynamical correlation in molten LiF-KF: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Jain, Richa Naja; Chakraborty, Brahmananda; Ramaniah, Lavanya M.
2016-05-01
In this work our main objective is to compute Dynamical correlations, Onsager coefficients and Maxwell-Stefan (MS) diffusivities for molten salt LiF-KF mixture at various thermodynamic states through Green-Kubo formalism for the first time. The equilibrium molecular dynamics (MD) simulations were performed using BHM potential for LiF-KF mixture. The velocity autocorrelations functions involving Li ions reflect the endurance of cage dynamics or backscattering with temperature. The magnitude of Onsager coefficients for all pairs increases with increase in temperature. Interestingly most of the Onsager coefficients has almost maximum magnitude at the eutectic composition indicating the most dynamic character of the eutectic mixture. MS diffusivity hence diffusion for all ion pairs increases in the system with increasing temperature. Smooth variation of the diffusivity values denies any network formation in the mixture. Also, the striking feature is the noticeable concentration dependence of MS diffusivity between cation-cation pair, ĐLi-K which remains negative for most of the concentration range but changes sign to become positive for higher LiF concentration. The negative MS diffusivity is acceptable as it satisfies the non-negative entropy constraint governed by 2nd law of thermodynamics. This high diffusivity also vouches the candidature of molten salt as a coolant.
Four steps to eliminate or reduce pain in children caused by needles (part 1).
Friedrichsdorf, Stefan J
2017-03-01
Dr Stefan Friedrichsdorf speaks to Jade Parker, Commissioning Editor: Stefan J Friedrichsdorf, MD, is medical director of the Department of Pain Medicine, Palliative Care and Integrative Medicine at Children's Hospitals and Clinics of Minnesota, Minneapolis/St Paul, MN, USA, home to one of the largest and most comprehensive programs of its kind in the country. The interdisciplinary pain team is devoted to prevent and treat acute, procedural, neuropathic, psycho-social-spiritual, visceral, and chronic/complex pain for all inpatients and outpatients in close collaboration with all pediatric subspecialties at Children's Minnesota. The palliative care team also provides holistic care for pediatric patients with life-threatening diseases and adds an extra layer of support to the care of children with serious illness and their families. Integrative medicine provides and teaches integrative ('non-pharmacological') therapies, such as massage, acupuncture/acupressure, biofeedback, aromatherapy and self-hypnosis, to provide care that promotes optimal health and supports the highest level of functioning in all individual children's activities. Children's Minnesota became the first children's hospital to system-wide implement a "Children's Comfort Promise: We promise to do everything to prevent and treat pain," resulting in decrease or elimination of needle pain caused by vaccinations, blood draws, intravenous access, and injections in more than 200,000 children annually.
Crystallization of glass-forming liquids: Specific surface energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmelzer, Jürn W. P., E-mail: juern-w.schmelzer@uni-rostock.de; Abyzov, Alexander S.
2016-08-14
A generalization of the Stefan-Skapski-Turnbull relation for the melt-crystal specific interfacial energy is developed in terms of the generalized Gibbs approach extending its standard formulation to thermodynamic non-equilibrium states. With respect to crystal nucleation, this relation is required in order to determine the parameters of the critical crystal clusters being a prerequisite for the computation of the work of critical cluster formation. As one of its consequences, a relation for the dependence of the specific surface energy of critical clusters on temperature and pressure is derived applicable for small and moderate deviations from liquid-crystal macroscopic equilibrium states. Employing the Stefan-Skapski-Turnbullmore » relation, general expressions for the size and the work of formation of critical crystal clusters are formulated. The resulting expressions are much more complex as compared to the respective relations obtained via the classical Gibbs theory. Latter relations are retained as limiting cases of these more general expressions for moderate undercoolings. By this reason, the formulated, here, general relations for the specification of the critical cluster size and the work of critical cluster formation give a key for an appropriate interpretation of a variety of crystallization phenomena occurring at large undercoolings which cannot be understood in terms of the Gibbs’ classical treatment.« less
Dynamic Confinement of ITER Plasma by O-Mode Driver at Electron Cyclotron Frequency Range
NASA Astrophysics Data System (ADS)
Stefan, V. Alexander
2009-05-01
A low B-field side launched electron cyclotron O-Mode driver leads to the dynamic rf confinement, in addition to rf turbulent heating, of ITER plasma. The scaling law for the local energy confinement time τE is evaluated (τE ˜ 3neTe/2Q, where (3/2) neTe is the local plasma thermal energy density and Q is the local rf turbulent heating rate). The dynamics of unstable dissipative trapped particle modes (DTPM) strongly coupled to Trivelpiece-Gould (T-G) modes is studied for gyrotron frequency 170GHz; power˜24 MW CW; and on-axis B-field ˜ 10T. In the case of dynamic stabilization of DTPM turbulence and for the heavily damped T-G modes, the energy confinement time scales as τE˜(I0)-2, whereby I0(W/m^2) is the O-Mode driver irradiance. R. Prater et. al., Nucl. Fusion 48, No 3 (March 2008). E. P. Velikhov, History of the Russian Tokamak and the Tokamak Thermonuclear Fusion Research Worldwide That Led to ITER (Documentary movie; Stefan Studios Int'l, La Jolla, CA, 2008; E. P. Velikhov, V. Stefan.) M N Rosenbluth, Phys. Scr. T2A 104-109 1982 B. B. Kadomtsev and O. P. Pogutse, Nucl. Fusion 11, 67 (1971).
On the Critical Behaviour, Crossover Point and Complexity of the Exact Cover Problem
NASA Technical Reports Server (NTRS)
Morris, Robin D.; Smelyanskiy, Vadim N.; Shumow, Daniel; Koga, Dennis (Technical Monitor)
2003-01-01
Research into quantum algorithms for NP-complete problems has rekindled interest in the detailed study a broad class of combinatorial problems. A recent paper applied the quantum adiabatic evolution algorithm to the Exact Cover problem for 3-sets (EC3), and provided an empirical evidence that the algorithm was polynomial. In this paper we provide a detailed study of the characteristics of the exact cover problem. We present the annealing approximation applied to EC3, which gives an over-estimate of the phase transition point. We also identify empirically the phase transition point. We also study the complexity of two classical algorithms on this problem: Davis-Putnam and Simulated Annealing. For these algorithms, EC3 is significantly easier than 3-SAT.
Statistical mechanics of budget-constrained auctions
NASA Astrophysics Data System (ADS)
Altarelli, F.; Braunstein, A.; Realpe-Gomez, J.; Zecchina, R.
2009-07-01
Finding the optimal assignment in budget-constrained auctions is a combinatorial optimization problem with many important applications, a notable example being in the sale of advertisement space by search engines (in this context the problem is often referred to as the off-line AdWords problem). On the basis of the cavity method of statistical mechanics, we introduce a message-passing algorithm that is capable of solving efficiently random instances of the problem extracted from a natural distribution, and we derive from its properties the phase diagram of the problem. As the control parameter (average value of the budgets) is varied, we find two phase transitions delimiting a region in which long-range correlations arise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Touma, Rony; Zeidan, Dia
In this paper we extend a central finite volume method on nonuniform grids to the case of drift-flux two-phase flow problems. The numerical base scheme is an unstaggered, non oscillatory, second-order accurate finite volume scheme that evolves a piecewise linear numerical solution on a single grid and uses dual cells intermediately while updating the numerical solution to avoid the resolution of the Riemann problems arising at the cell interfaces. We then apply the numerical scheme and solve a classical drift-flux problem. The obtained results are in good agreement with corresponding ones appearing in the recent literature, thus confirming the potentialmore » of the proposed scheme.« less
Efficient algorithms for polyploid haplotype phasing.
He, Dan; Saha, Subrata; Finkers, Richard; Parida, Laxmi
2018-05-09
Inference of haplotypes, or the sequence of alleles along the same chromosomes, is a fundamental problem in genetics and is a key component for many analyses including admixture mapping, identifying regions of identity by descent and imputation. Haplotype phasing based on sequencing reads has attracted lots of attentions. Diploid haplotype phasing where the two haplotypes are complimentary have been studied extensively. In this work, we focused on Polyploid haplotype phasing where we aim to phase more than two haplotypes at the same time from sequencing data. The problem is much more complicated as the search space becomes much larger and the haplotypes do not need to be complimentary any more. We proposed two algorithms, (1) Poly-Harsh, a Gibbs Sampling based algorithm which alternatively samples haplotypes and the read assignments to minimize the mismatches between the reads and the phased haplotypes, (2) An efficient algorithm to concatenate haplotype blocks into contiguous haplotypes. Our experiments showed that our method is able to improve the quality of the phased haplotypes over the state-of-the-art methods. To our knowledge, our algorithm for haplotype blocks concatenation is the first algorithm that leverages the shared information across multiple individuals to construct contiguous haplotypes. Our experiments showed that it is both efficient and effective.
On a two-phase Hele-Shaw problem with a time-dependent gap and distributions of sinks and sources
NASA Astrophysics Data System (ADS)
Savina, Tatiana; Akinyemi, Lanre; Savin, Avital
2018-01-01
A two-phase Hele-Shaw problem with a time-dependent gap describes the evolution of the interface, which separates two fluids sandwiched between two plates. The fluids have different viscosities. In addition to the change in the gap width of the Hele-Shaw cell, the interface is driven by the presence of some special distributions of sinks and sources located in both the interior and exterior domains. The effect of surface tension is neglected. Using the Schwarz function approach, we give examples of exact solutions when the interface belongs to a certain family of algebraic curves and the curves do not form cusps. The family of curves are defined by the initial shape of the free boundary.
Two-Wavelength Multi-Gigahertz Frequency Comb-Based Interferometry for Full-Field Profilometry
NASA Astrophysics Data System (ADS)
Choi, Samuel; Kashiwagi, Ken; Kojima, Shuto; Kasuya, Yosuke; Kurokawa, Takashi
2013-10-01
The multi-gigahertz frequency comb-based interferometer exhibits only the interference amplitude peak without the phase fringes, which can produce a rapid axial scan for full-field profilometry and tomography. Despite huge technical advantages, there remain problems that the interference intensity undulations occurred depending on the interference phase. To avoid such problems, we propose a compensation technique of the interference signals using two frequency combs with slightly varied center wavelengths. The compensated full-field surface profile measurements of cover glass and onion skin were demonstrated experimentally to verify the advantages of the proposed method.
Human factors in aviation maintenance, phase two : progress report.
DOT National Transportation Integrated Search
1993-04-01
In this second phase of research on Human Factors in Aviation Maintenance, the emphasis has evolved from problem definition to development of demonstrations and prototypes. These demonstrations include a computer-based training simulation for trouble...
Direct single-shot phase retrieval from the diffraction pattern of separated objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leshem, Ben; Xu, Rui; Dallal, Yehonatan
The non-crystallographic phase problem arises in numerous scientific and technological fields. An important application is coherent diffractive imaging. Recent advances in X-ray free-electron lasers allow capturing of the diffraction pattern from a single nanoparticle before it disintegrates, in so-called ‘diffraction before destruction’ experiments. Presently, the phase is reconstructed by iterative algorithms, imposing a non-convex computational challenge, or by Fourier holography, requiring a well-characterized reference field. Here we present a convex scheme for single-shot phase retrieval for two (or more) sufficiently separated objects, demonstrated in two dimensions. In our approach, the objects serve as unknown references to one another, reducing themore » phase problem to a solvable set of linear equations. We establish our method numerically and experimentally in the optical domain and demonstrate a proof-of-principle single-shot coherent diffractive imaging using X-ray free-electron lasers pulses. Lastly, our scheme alleviates several limitations of current methods, offering a new pathway towards direct reconstruction of complex objects.« less
Direct single-shot phase retrieval from the diffraction pattern of separated objects
Leshem, Ben; Xu, Rui; Dallal, Yehonatan; ...
2016-02-22
The non-crystallographic phase problem arises in numerous scientific and technological fields. An important application is coherent diffractive imaging. Recent advances in X-ray free-electron lasers allow capturing of the diffraction pattern from a single nanoparticle before it disintegrates, in so-called ‘diffraction before destruction’ experiments. Presently, the phase is reconstructed by iterative algorithms, imposing a non-convex computational challenge, or by Fourier holography, requiring a well-characterized reference field. Here we present a convex scheme for single-shot phase retrieval for two (or more) sufficiently separated objects, demonstrated in two dimensions. In our approach, the objects serve as unknown references to one another, reducing themore » phase problem to a solvable set of linear equations. We establish our method numerically and experimentally in the optical domain and demonstrate a proof-of-principle single-shot coherent diffractive imaging using X-ray free-electron lasers pulses. Lastly, our scheme alleviates several limitations of current methods, offering a new pathway towards direct reconstruction of complex objects.« less
Inverse problem for multispecies ferromagneticlike mean-field models in phase space with many states
NASA Astrophysics Data System (ADS)
Fedele, Micaela; Vernia, Cecilia
2017-10-01
In this paper we solve the inverse problem for the Curie-Weiss model and its multispecies version when multiple thermodynamic states are present as in the low temperature phase where the phase space is clustered. The inverse problem consists of reconstructing the model parameters starting from configuration data generated according to the distribution of the model. We demonstrate that, without taking into account the presence of many states, the application of the inversion procedure produces very poor inference results. To overcome this problem, we use the clustering algorithm. When the system has two symmetric states of positive and negative magnetizations, the parameter reconstruction can also be obtained with smaller computational effort simply by flipping the sign of the magnetizations from positive to negative (or vice versa). The parameter reconstruction fails when the system undergoes a phase transition: In that case we give the correct inversion formulas for the Curie-Weiss model and we show that they can be used to measure how close the system gets to being critical.
Nembhard, Ingrid M.; Cherian, Praseetha; Bradley, Elizabeth H.
2015-01-01
This article examines the effect on quality improvement of two common but distinct approaches to organizational learning: importing best practices (an externally oriented approach rooted in learning by imitating others’ best practices) and internal creative problem solving (an internally oriented approach rooted in learning by experimenting with self-generated solutions). We propose that independent and interaction effects of these approaches depend on where organizations are in their improvement journey – initial push or later phase. We examine this contingency in hospitals focused on improving treatment time for patients with heart attacks. Our results show that importing best practices helps hospitals achieve initial phase but not later phase improvement. Once hospitals enter the later phase of their efforts, however, significant improvement requires creative problem solving as well. Together, our results suggest that importing best practices delivers greater short-term improvement, but continued improvement depends on creative problem solving. PMID:24876100
Numerical formulation for the prediction of solid/liquid change of a binary alloy
NASA Technical Reports Server (NTRS)
Schneider, G. E.; Tiwari, S. N.
1990-01-01
A computational model is presented for the prediction of solid/liquid phase change energy transport including the influence of free convection fluid flow in the liquid phase region. The computational model considers the velocity components of all non-liquid phase change material control volumes to be zero but fully solves the coupled mass-momentum problem within the liquid region. The thermal energy model includes the entire domain and uses an enthalpy like model and a recently developed method for handling the phase change interface nonlinearity. Convergence studies are performed and comparisons made with experimental data for two different problem specifications. The convergence studies indicate that grid independence was achieved and the comparison with experimental data indicates excellent quantitative prediction of the melt fraction evolution. Qualitative data is also provided in the form of velocity vector diagrams and isotherm plots for selected times in the evolution of both problems. The computational costs incurred are quite low by comparison with previous efforts on solving these problems.
General phase transition models for vehicular traffic with point constraints on the flow
NASA Astrophysics Data System (ADS)
Dal Santo, E.; Rosini, M. D.; Dymski, N.; Benyahia, M.
2017-12-01
We generalize the phase transition model studied in [R. Colombo. Hyperbolic phase transition in traffic flow.\\ SIAM J.\\ Appl.\\ Math., 63(2):708-721, 2002], that describes the evolution of vehicular traffic along a one-lane road. Two different phases are taken into account, according to whether the traffic is low or heavy. The model is given by a scalar conservation law in the \\emph{free-flow} phase and by a system of two conservation laws in the \\emph{congested} phase. In particular, we study the resulting Riemann problems in the case a local point constraint on the flux of the solutions is enforced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, Thomas C.; Davies, James F.; Wilson, Kevin R.
A new method for measuring diffusion in the condensed phase of single aerosol particles is proposed and demonstrated. The technique is based on the frequency-dependent response of a binary particle to oscillations in the vapour phase of one of its chemical components. Here, we discuss how this physical situation allows for what would typically be a non-linear boundary value problem to be approximately reduced to a linear boundary value problem. For the case of aqueous aerosol particles, we investigate the accuracy of the closed-form analytical solution to this linear problem through a comparison with the numerical solution of the fullmore » problem. Then, using experimentally measured whispering gallery modes to track the frequency-dependent response of aqueous particles to relative humidity oscillations, we determine diffusion coefficients as a function of water activity. The measured diffusion coefficients are compared to previously reported values found using the two common experiments: (i) the analysis of the sorption/desorption of water from a particle after a step-wise change to the surrounding relative humidity and (ii) the isotopic exchange of water between a particle and the vapour phase. The technique presented here has two main strengths: first, when compared to the sorption/desorption experiment, it does not require the numerical evaluation of a boundary value problem during the fitting process as a closed-form expression is available. Second, when compared to the isotope exchange experiment, it does not require the use of labeled molecules. Therefore, the frequency-dependent experiment retains the advantages of these two commonly used methods but does not suffer from their drawbacks.« less
Preston, Thomas C.; Davies, James F.; Wilson, Kevin R.
2017-01-13
A new method for measuring diffusion in the condensed phase of single aerosol particles is proposed and demonstrated. The technique is based on the frequency-dependent response of a binary particle to oscillations in the vapour phase of one of its chemical components. Here, we discuss how this physical situation allows for what would typically be a non-linear boundary value problem to be approximately reduced to a linear boundary value problem. For the case of aqueous aerosol particles, we investigate the accuracy of the closed-form analytical solution to this linear problem through a comparison with the numerical solution of the fullmore » problem. Then, using experimentally measured whispering gallery modes to track the frequency-dependent response of aqueous particles to relative humidity oscillations, we determine diffusion coefficients as a function of water activity. The measured diffusion coefficients are compared to previously reported values found using the two common experiments: (i) the analysis of the sorption/desorption of water from a particle after a step-wise change to the surrounding relative humidity and (ii) the isotopic exchange of water between a particle and the vapour phase. The technique presented here has two main strengths: first, when compared to the sorption/desorption experiment, it does not require the numerical evaluation of a boundary value problem during the fitting process as a closed-form expression is available. Second, when compared to the isotope exchange experiment, it does not require the use of labeled molecules. Therefore, the frequency-dependent experiment retains the advantages of these two commonly used methods but does not suffer from their drawbacks.« less
1993-08-01
2-1 + 273.15]’.(A.A"•1 ) (Eq. 5) h. = 23.4.v,.ŗ" (Eq. 6) in which a is the Stefan -Boltzmann constant (20.4-10-8 UNCLASSIFIED 8 UNCLASSIFIED kJ-m-’-h...Vallerand AL, Limmer R, Schmegner IF (1989) Computer acquisition and analysis of skin temperature and heat flow data from heat flux transducers. Computer
Engage the Media: The Coast Guard’s Public Affairs Posture during the Response to Hurricane Katrina
2007-03-01
21 Stefan Lovgren, “CSI Effect’ Is Mixed Blessing for Real Crime Labs,” National Geographic News (Washington...media market in western Kentucky and dominated the news for three days. The stakeholders (e.g., the investigators, the relatives, the townspeople and...Gather as much video as you can Market those visuals to the media Try to get media embedded with you—offer opportunities to media as
Effect of Convection on Weld Pool Shape and Microstructure.
1986-07-01
latent heat of fusion 11 u dynamic viscosity Iwo V kinematic viscosity P density a Stefan -Boltzman constant stress tensor 0, functions defined the...and temperature. The convections for velocities and temperature are based on a mixed Gauss- -* Seidel and Jacobi schemes, proceeding from line-to...line according to the Gauss- Seidel scheme, updating values as each line is completed. With each line, however, the point-by-point iteration is based on
Advanced numerical methods for three dimensional two-phase flow calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toumi, I.; Caruge, D.
1997-07-01
This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses anmore » extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.« less
Optimal lunar soft landing trajectories using taboo evolutionary programming
NASA Astrophysics Data System (ADS)
Mutyalarao, M.; Raj, M. Xavier James
A safe lunar landing is a key factor to undertake an effective lunar exploration. Lunar lander consists of four phases such as launch phase, the earth-moon transfer phase, circumlunar phase and landing phase. The landing phase can be either hard landing or soft landing. Hard landing means the vehicle lands under the influence of gravity without any deceleration measures. However, soft landing reduces the vertical velocity of the vehicle before landing. Therefore, for the safety of the astronauts as well as the vehicle lunar soft landing with an acceptable velocity is very much essential. So it is important to design the optimal lunar soft landing trajectory with minimum fuel consumption. Optimization of Lunar Soft landing is a complex optimal control problem. In this paper, an analysis related to lunar soft landing from a parking orbit around Moon has been carried out. A two-dimensional trajectory optimization problem is attempted. The problem is complex due to the presence of system constraints. To solve the time-history of control parameters, the problem is converted into two point boundary value problem by using the maximum principle of Pontrygen. Taboo Evolutionary Programming (TEP) technique is a stochastic method developed in recent years and successfully implemented in several fields of research. It combines the features of taboo search and single-point mutation evolutionary programming. Identifying the best unknown parameters of the problem under consideration is the central idea for many space trajectory optimization problems. The TEP technique is used in the present methodology for the best estimation of initial unknown parameters by minimizing objective function interms of fuel requirements. The optimal estimation subsequently results into an optimal trajectory design of a module for soft landing on the Moon from a lunar parking orbit. Numerical simulations demonstrate that the proposed approach is highly efficient and it reduces the minimum fuel consumption. The results are compared with the available results in literature shows that the solution of present algorithm is better than some of the existing algorithms. Keywords: soft landing, trajectory optimization, evolutionary programming, control parameters, Pontrygen principle.
Munoz, F. D.; Hobbs, B. F.; Watson, J. -P.
2016-02-01
A novel two-phase bounding and decomposition approach to compute optimal and near-optimal solutions to large-scale mixed-integer investment planning problems is proposed and it considers a large number of operating subproblems, each of which is a convex optimization. Our motivating application is the planning of power transmission and generation in which policy constraints are designed to incentivize high amounts of intermittent generation in electric power systems. The bounding phase exploits Jensen’s inequality to define a lower bound, which we extend to stochastic programs that use expected-value constraints to enforce policy objectives. The decomposition phase, in which the bounds are tightened, improvesmore » upon the standard Benders’ algorithm by accelerating the convergence of the bounds. The lower bound is tightened by using a Jensen’s inequality-based approach to introduce an auxiliary lower bound into the Benders master problem. Upper bounds for both phases are computed using a sub-sampling approach executed on a parallel computer system. Numerical results show that only the bounding phase is necessary if loose optimality gaps are acceptable. But, the decomposition phase is required to attain optimality gaps. Moreover, use of both phases performs better, in terms of convergence speed, than attempting to solve the problem using just the bounding phase or regular Benders decomposition separately.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munoz, F. D.; Hobbs, B. F.; Watson, J. -P.
A novel two-phase bounding and decomposition approach to compute optimal and near-optimal solutions to large-scale mixed-integer investment planning problems is proposed and it considers a large number of operating subproblems, each of which is a convex optimization. Our motivating application is the planning of power transmission and generation in which policy constraints are designed to incentivize high amounts of intermittent generation in electric power systems. The bounding phase exploits Jensen’s inequality to define a lower bound, which we extend to stochastic programs that use expected-value constraints to enforce policy objectives. The decomposition phase, in which the bounds are tightened, improvesmore » upon the standard Benders’ algorithm by accelerating the convergence of the bounds. The lower bound is tightened by using a Jensen’s inequality-based approach to introduce an auxiliary lower bound into the Benders master problem. Upper bounds for both phases are computed using a sub-sampling approach executed on a parallel computer system. Numerical results show that only the bounding phase is necessary if loose optimality gaps are acceptable. But, the decomposition phase is required to attain optimality gaps. Moreover, use of both phases performs better, in terms of convergence speed, than attempting to solve the problem using just the bounding phase or regular Benders decomposition separately.« less
On the co-existence of maximal and whiskered tori in the planetary three-body problem
NASA Astrophysics Data System (ADS)
Pinzari, Gabriella
2018-05-01
In this paper, we discuss about the possibility of the coexistence of stable and unstable quasi-periodic Kolmogorov-Arnold-Moser (kam) tori in a region of the phase space of the three-body problem. The argument of proof goes along kam theory and, especially, the production of two non-smoothly related systems of canonical coordinates in the same region of the phase space, the possibility of which is foreseen, for "properly degenerate" systems, by a theorem of Nekhoroshev and Miščenko and Fomenko. The two coordinate systems are alternative to the classical reduction of the nodes by Jacobi, described, e.g., in Arnold ["Small denominators and problems of stability of motion in classical and celestial mechanics," 18, 85-191 (1963)].
Ab initio nanostructure determination
NASA Astrophysics Data System (ADS)
Gujarathi, Saurabh
Reconstruction of complex structures is an inverse problem arising in virtually all areas of science and technology, from protein structure determination to bulk heterostructure solar cells and the structure of nanoparticles. This problem is cast as a complex network problem where the edges in a network have weights equal to the Euclidean distance between their endpoints. A method, called Tribond, for the reconstruction of the locations of the nodes of the network given only the edge weights of the Euclidean network is presented. The timing results indicate that the algorithm is a low order polynomial in the number of nodes in the network in two dimensions. Reconstruction of Euclidean networks in two dimensions of about one thousand nodes in approximately twenty four hours on a desktop computer using this implementation is done. In three dimensions, the computational cost for the reconstruction is a higher order polynomial in the number of nodes and reconstruction of small Euclidean networks in three dimensions is shown. If a starting network of size five is assumed to be given, then for a network of size 100, the remaining reconstruction can be done in about two hours on a desktop computer. In situations when we have less precise data, modifications of the method may be necessary and are discussed. A related problem in one dimension known as the Optimal Golomb ruler (OGR) is also studied. A statistical physics Hamiltonian to describe the OGR problem is introduced and the first order phase transition from a symmetric low constraint phase to a complex symmetry broken phase at high constraint is studied. Despite the fact that the Hamiltonian is not disordered, the asymmetric phase is highly irregular with geometric frustration. The phase diagram is obtained and it is seen that even at a very low temperature T there is a phase transition at finite and non-zero value of the constraint parameter gamma/mu. Analytic calculations for the scaling of the density and free energy of the ruler are done and they are compared with those from the mean field approach. A scaling law is also derived for the length of OGR, which is consistent with Erdos conjecture and with numerical results.
NASA Astrophysics Data System (ADS)
Rasthofer, U.; Wall, W. A.; Gravemeier, V.
2018-04-01
A novel and comprehensive computational method, referred to as the eXtended Algebraic Variational Multiscale-Multigrid-Multifractal Method (XAVM4), is proposed for large-eddy simulation of the particularly challenging problem of turbulent two-phase flow. The XAVM4 involves multifractal subgrid-scale modeling as well as a Nitsche-type extended finite element method as an approach for two-phase flow. The application of an advanced structural subgrid-scale modeling approach in conjunction with a sharp representation of the discontinuities at the interface between two bulk fluids promise high-fidelity large-eddy simulation of turbulent two-phase flow. The high potential of the XAVM4 is demonstrated for large-eddy simulation of turbulent two-phase bubbly channel flow, that is, turbulent channel flow carrying a single large bubble of the size of the channel half-width in this particular application.
NASA Astrophysics Data System (ADS)
Kumar, Ravi; Singh, Surya Prakash
2017-11-01
The dynamic cellular facility layout problem (DCFLP) is a well-known NP-hard problem. It has been estimated that the efficient design of DCFLP reduces the manufacturing cost of products by maintaining the minimum material flow among all machines in all cells, as the material flow contributes around 10-30% of the total product cost. However, being NP hard, solving the DCFLP optimally is very difficult in reasonable time. Therefore, this article proposes a novel similarity score-based two-phase heuristic approach to solve the DCFLP optimally considering multiple products in multiple times to be manufactured in the manufacturing layout. In the first phase of the proposed heuristic, a machine-cell cluster is created based on similarity scores between machines. This is provided as an input to the second phase to minimize inter/intracell material handling costs and rearrangement costs over the entire planning period. The solution methodology of the proposed approach is demonstrated. To show the efficiency of the two-phase heuristic approach, 21 instances are generated and solved using the optimization software package LINGO. The results show that the proposed approach can optimally solve the DCFLP in reasonable time.
Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks
NASA Technical Reports Server (NTRS)
Lee, Charles H.; Cheung, Kar-Ming
2012-01-01
In this paper, we propose to solve the constrained optimization problem in two phases. The first phase uses heuristic methods such as the ant colony method, particle swarming optimization, and genetic algorithm to seek a near optimal solution among a list of feasible initial populations. The final optimal solution can be found by using the solution of the first phase as the initial condition to the SQP algorithm. We demonstrate the above problem formulation and optimization schemes with a large-scale network that includes the DSN ground stations and a number of spacecraft of deep space missions.
NASA Astrophysics Data System (ADS)
Avetisyan, A. R.; Lazarev, L. Ya.
2017-07-01
This article is a brief overview of some scientific and engineering ideas in the sphere of two-phase gas dynamics that were developed by the team of the Problem Laboratory of Turbomachines, Department of Steam and Gas Turbines, Moscow Power Engineering Institute (NRU MPEI, National Research University), under the leadership of Mikhail Efimovich Deich since 1963 and the analysis of their development and influence on the current state of the problem. At the early stages of the studies on two-phase media, the problem of the measurement of physical parameters of phases was especially urgent. The characteristics of probes for the measurement of one-phase flows in the presence of drops were studied, and the corrections for the influence of the second phase were obtained. However, the main focus was the development of new methods, and the optical method using a laser light source that is currently used at the leading laboratories of the world was chosen as the main method. The study of the wet-steam flow in nozzles is one of the first stages of the research on the problem. In these studies, the wave structure of supersonic wet-steam flows (condensation jumps and shock waves, Mach waves, turbulent condensation, periodic condensation nonstationarity, etc.) was investigated in detail. At present, like in the earlier studies, much attention is paid to the study of the influence of the addition of surface-active substance (SASs) on the wet-steam flow. The study of the wet-steam motion in steam-turbine stages was performed simultaneously with physical studies as the practical application of the obtained results. The development of computer technology in the 21st century contributed to the elaboration of the theoretical methods for the calculation of wet-steam flows in elements of power devices.
Generalized gradient algorithm for trajectory optimization
NASA Technical Reports Server (NTRS)
Zhao, Yiyuan; Bryson, A. E.; Slattery, R.
1990-01-01
The generalized gradient algorithm presented and verified as a basis for the solution of trajectory optimization problems improves the performance index while reducing path equality constraints, and terminal equality constraints. The algorithm is conveniently divided into two phases, of which the first, 'feasibility' phase yields a solution satisfying both path and terminal constraints, while the second, 'optimization' phase uses the results of the first phase as initial guesses.
ERIC Educational Resources Information Center
Rebello, Carina M.
2012-01-01
This study explored the effects of alternative forms of argumentation on undergraduates' physics solutions in introductory calculus-based physics. A two-phase concurrent mixed methods design was employed to investigate relationships between undergraduates' written argumentation abilities, conceptual quality of problem solutions, as well…
NASA Astrophysics Data System (ADS)
Liang, Zhi; Keblinski, Pawel
2018-02-01
Using molecular dynamics simulations, we study evaporation and condensation of fluid Ar in the presence of a non-condensable Ne gas in a nanochannel. The evaporation and condensation are driven by the temperature difference, ΔTL, between the evaporating and condensing liquid surfaces. The steady-state evaporation and condensation fluxes (JMD) are also affected by the Ne concentration, ρNe, and the nanochannel length. We find that across a wide range of ΔTL and ρNe, JMD is in good agreement with the prediction from Stefan's law and from Schrage relationships. Furthermore, for ΔTL less than ˜20% of the absolute average temperature, we find that both steady-state heat and mass fluxes are proportional to ΔTL. This allows us to determine the interfacial resistance to the heat and mass transfer and compare it with the corresponding resistances in the gas phase. In this context, we derive an analytical expression for the effective thermal conductivity of the gas region in the nanochannel and the mass transport interfacial resistance equivalent length, i.e., the length of the nanochannel for which the resistance to the mass flow is the same as the interfacial resistance to the mass flow.
Equilibrium properties of blackbody radiation with an ultraviolet energy cut-off
NASA Astrophysics Data System (ADS)
Mishra, Dheeraj Kumar; Chandra, Nitin; Vaibhav, Vinay
2017-10-01
We study various equilibrium thermodynamic properties of blackbody radiation (i.e. a photon gas) with an ultraviolet energy cut-off. We find that the energy density, specific heat etc. follow usual acoustic phonon dynamics as have been well studied by Debye. Other thermodynamic quantities like pressure, entropy etc. have also been calculated. The usual Stefan-Boltzmann law gets modified. We observe that the values of the thermodynamic quantities with the energy cut-off is lower than the corresponding values in the theory without any such scale. The phase-space measure is also expected to get modified for an exotic spacetime appearing at Planck scale, which in turn leads to the modification of Planck energy density distribution and the Wien's displacement law. We found that the non-perturbative nature of the thermodynamic quantities in the SR limit (for both unmodified and modified cases), due to nonanalyticity of the leading term, is a general feature of the theory accompanied with an ultraviolet energy cut-off. We have also discussed the possible modification in the case of Big Bang and the Stellar objects and have suggested a table top experiment for verification in effective low energy case.
NASA Technical Reports Server (NTRS)
Karimi, Amir
1991-01-01
NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.
Parents of two-phase flow and theory of "gas-lift"
NASA Astrophysics Data System (ADS)
Zitek, Pavel; Valenta, Vaclav
2014-03-01
This paper gives a brief overview of types of two-phase flow. Subsequently, it deals with their mutual division and problems with accuracy boundaries among particular types. It also shows the case of water flow through a pipe with external heating and the gradual origination of all kinds of flow. We have met it in solution of safety condition of various stages in pressurized and boiling water reactors. In the MSR there is a problem in the solution of gas-lift using helium as a gas and its secondary usage for clearing of the fuel mixture from gaseous fission products. Theory of gas-lift is described.
NASA Astrophysics Data System (ADS)
Daude, F.; Galon, P.
2018-06-01
A Finite-Volume scheme for the numerical computations of compressible single- and two-phase flows in flexible pipelines is proposed based on an approximate Godunov-type approach. The spatial discretization is here obtained using the HLLC scheme. In addition, the numerical treatment of abrupt changes in area and network including several pipelines connected at junctions is also considered. The proposed approach is based on the integral form of the governing equations making it possible to tackle general equations of state. A coupled approach for the resolution of fluid-structure interaction of compressible fluid flowing in flexible pipes is considered. The structural problem is solved using Euler-Bernoulli beam finite elements. The present Finite-Volume method is applied to ideal gas and two-phase steam-water based on the Homogeneous Equilibrium Model (HEM) in conjunction with a tabulated equation of state in order to demonstrate its ability to tackle general equations of state. The extensive application of the scheme for both shock tube and other transient flow problems demonstrates its capability to resolve such problems accurately and robustly. Finally, the proposed 1-D fluid-structure interaction model appears to be computationally efficient.
Automatic programming for critical applications
NASA Technical Reports Server (NTRS)
Loganantharaj, Raj L.
1988-01-01
The important phases of a software life cycle include verification and maintenance. Usually, the execution performance is an expected requirement in a software development process. Unfortunately, the verification and the maintenance of programs are the time consuming and the frustrating aspects of software engineering. The verification cannot be waived for the programs used for critical applications such as, military, space, and nuclear plants. As a consequence, synthesis of programs from specifications, an alternative way of developing correct programs, is becoming popular. The definition, or what is understood by automatic programming, has been changed with our expectations. At present, the goal of automatic programming is the automation of programming process. Specifically, it means the application of artificial intelligence to software engineering in order to define techniques and create environments that help in the creation of high level programs. The automatic programming process may be divided into two phases: the problem acquisition phase and the program synthesis phase. In the problem acquisition phase, an informal specification of the problem is transformed into an unambiguous specification while in the program synthesis phase such a specification is further transformed into a concrete, executable program.
Phase retrieval from local measurements in two dimensions
NASA Astrophysics Data System (ADS)
Iwen, Mark; Preskitt, Brian; Saab, Rayan; Viswanathan, Aditya
2017-08-01
The phase retrieval problem has appeared in a multitude of applications for decades. While ad hoc solutions have existed since the early 1970s, recent developments have provided algorithms that offer promising theoretical guarantees under increasingly realistic assumptions. Motivated by ptychographic imaging, we generalize a recent result on phase retrieval of a one dimensional objective vector x ∈ ℂd to recover a two dimensional sample Q ∈ ℂd x d from phaseless measurements, using a tensor product formulation to extend the previous work.
Critical thinking: a two-phase framework.
Edwards, Sharon L
2007-09-01
This article provides a comprehensive review of how a two-phase framework can promote and engage nurses in the concepts of critical thinking. Nurse education is required to integrate critical thinking in their teaching strategies, as it is widely recognised as an important part of student nurses becoming analytical qualified practitioners. The two-phase framework can be incorporated in the classroom using enquiry-based scenarios or used to investigate situations that arise from practice, for reflection, analysis, theorising or to explore issues. This paper proposes a two-phase framework for incorporation in the classroom and practice to promote critical thinking. Phase 1 attempts to make it easier for nurses to organise and expound often complex and abstract ideas that arise when using critical thinking, identify more than one solution to the problem by using a variety of cues to facilitate action. Phase 2 encourages nurses to be accountable and responsible, to justify a decision, be creative and innovative in implementing change.
Enhancing radiative energy transfer through thermal extraction
NASA Astrophysics Data System (ADS)
Tan, Yixuan; Liu, Baoan; Shen, Sheng; Yu, Zongfu
2016-06-01
Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a). In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics. Thermal extraction works by using a specially designed thermal extractor to convert and guide the near-field energy to the far field, as shown in Fig. 1b. The same blackbody as shown in Fig. 1a is placed closely below the thermal extractor with a spacing smaller than the thermal wavelength. The near-field coupling transfers radiative energy with a density greater than σT4. The thermal extractor, made from transparent and high-index or structured materials, does not emit or absorb any radiation. It transforms the near-field energy and sends it toward the far field. As a result, the total amount of far-field radiative heat dissipated by the same blackbody is greatly enhanced above SσT4, where S is the area of the emitter. This paper will review the progress in thermal extraction. It is organized as follows. In Section 1, we will discuss the theory of thermal extraction [8]. In Section 2, we review an experimental implementation based on natural materials as the thermal extractor [8]. Lastly, in Section 3, we review the experiment that uses structured metamaterials as thermal extractors to enhance optical density of states and far-field emission [9].
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-10-01
Growing a planet from a dust grain is hard work! A new study explores how vortices in protoplanetary disks can assist this process.When Dust Growth FailsTop: ALMA image of the protoplanetary disk of V1247 Orionis, with different emission components labeled. Bottom: Synthetic image constructed from the best-fit model. [Kraus et al. 2017]Gradual accretion onto a seed particle seems like a reasonable way to grow a planet from a grain of dust; after all, planetary embryos orbit within dusty protoplanetary disks, which provides them with plenty of fuel to accrete so they can grow. Theres a challenge to this picture, though: the radial drift problem.The radial drift problem acknowledges that, as growing dust grains orbit within the disk, the drag force on them continues to grow as well. For large enough dust grains perhaps around 1 millimeter the drag force will cause the grains orbits to decay, and the particles drift into the star before they are able to grow into planetesimals and planets.A Close-Up Look with ALMASo how do we overcome the radial drift problem in order to form planets? A commonly proposed mechanism is dust trapping, in which long-lived vortices in the disk trap the dust particles, preventing them from falling inwards. This allows the particles to persist for millions of years long enough to grow beyond the radial drift barrier.Observationally, these dust-trapping vortices should have signatures: we would expect to see, at millimeter wavelengths, specific bright, asymmetric structures where the trapping occurs in protoplanetary disks. Such disk structures have been difficult to spot with past instrumentation, but the Atacama Large Millimeter/submillimeter Array (ALMA) has made some new observations of the disk V1247 Orionis that might be just what were looking for.Schematic of the authors model for the disk of V1247 Orionis. [Kraus et al. 2017]Trapped in a Vortex?ALMAs observations of V1247 Orionis are reported by a team of scientists led by Stefan Kraus (University of Exeter) in a recent publication. Kraus and collaborators show that the protoplanetary disk of V1247 Orionis contains a ring-shaped, asymmetric inner disk component, as well as a sharply confined crescent structure. These structures are consistent with the morphologies expected from theoretical models of vortex formation in disks.Kraus and collaborators propose the following picture: an early planet is orbiting at 100 AU within the disk, generating a one-armed spiral arm as material feeds the protoplanet. As the protoplanet orbits, it clears a gap between the ring and the crescent, and it simultaneously triggers two vortices, visible as the crescent and the bright asymmetry in the ring. These vortices are then able to trap millimeter-sized particles.Gas column density of the authors radiation-hydrodynamic simulation of V1247 Orioniss disk. [Kraus et al. 2017]The authors run detailed hydrodynamics simulations of this scenario and compare them (as well as alternative theories) to the ALMA observations of V1247 Orionis. The simulations support their model, producing sample scattered-light images thatmatchwell the one-armed spiral observed in previous scattered-light images of the disk.How can we confirm V1247 Orionis providesan example of dust-trapping vortices? One piece of supporting evidence would be the discovery of the protoplanet that Kraus and collaborators theorize triggered the potential vortices in this disk. Future deeper ALMA imaging may make this possible, helping to confirm our picture of how dust builds into planets.CitationStefan Kraus et al 2017 ApJL 848 L11. doi:10.3847/2041-8213/aa8edc
Multi-GPU hybrid programming accelerated three-dimensional phase-field model in binary alloy
NASA Astrophysics Data System (ADS)
Zhu, Changsheng; Liu, Jieqiong; Zhu, Mingfang; Feng, Li
2018-03-01
In the process of dendritic growth simulation, the computational efficiency and the problem scales have extremely important influence on simulation efficiency of three-dimensional phase-field model. Thus, seeking for high performance calculation method to improve the computational efficiency and to expand the problem scales has a great significance to the research of microstructure of the material. A high performance calculation method based on MPI+CUDA hybrid programming model is introduced. Multi-GPU is used to implement quantitative numerical simulations of three-dimensional phase-field model in binary alloy under the condition of multi-physical processes coupling. The acceleration effect of different GPU nodes on different calculation scales is explored. On the foundation of multi-GPU calculation model that has been introduced, two optimization schemes, Non-blocking communication optimization and overlap of MPI and GPU computing optimization, are proposed. The results of two optimization schemes and basic multi-GPU model are compared. The calculation results show that the use of multi-GPU calculation model can improve the computational efficiency of three-dimensional phase-field obviously, which is 13 times to single GPU, and the problem scales have been expanded to 8193. The feasibility of two optimization schemes is shown, and the overlap of MPI and GPU computing optimization has better performance, which is 1.7 times to basic multi-GPU model, when 21 GPUs are used.
Approach to Mathematical Problem Solving and Students' Belief Systems: Two Case Studies
ERIC Educational Resources Information Center
Callejo, Maria Luz; Vila, Antoni
2009-01-01
The goal of the study reported here is to gain a better understanding of the role of belief systems in the approach phase to mathematical problem solving. Two students of high academic performance were selected based on a previous exploratory study of 61 students 12-13 years old. In this study we identified different types of approaches to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Cheng-Hsien; Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City 25137, Taiwan; Low, Ying Min, E-mail: ceelowym@nus.edu.sg
2016-05-15
Sediment transport is fundamentally a two-phase phenomenon involving fluid and sediments; however, many existing numerical models are one-phase approaches, which are unable to capture the complex fluid-particle and inter-particle interactions. In the last decade, two-phase models have gained traction; however, there are still many limitations in these models. For example, several existing two-phase models are confined to one-dimensional problems; in addition, the existing two-dimensional models simulate only the region outside the sand bed. This paper develops a new three-dimensional two-phase model for simulating sediment transport in the sheet flow condition, incorporating recently published rheological characteristics of sediments. The enduring-contact, inertial,more » and fluid viscosity effects are considered in determining sediment pressure and stresses, enabling the model to be applicable to a wide range of particle Reynolds number. A k − ε turbulence model is adopted to compute the Reynolds stresses. In addition, a novel numerical scheme is proposed, thus avoiding numerical instability caused by high sediment concentration and allowing the sediment dynamics to be computed both within and outside the sand bed. The present model is applied to two classical problems, namely, sheet flow and scour under a pipeline with favorable results. For sheet flow, the computed velocity is consistent with measured data reported in the literature. For pipeline scour, the computed scour rate beneath the pipeline agrees with previous experimental observations. However, the present model is unable to capture vortex shedding; consequently, the sediment deposition behind the pipeline is overestimated. Sensitivity analyses reveal that model parameters associated with turbulence have strong influence on the computed results.« less
NASA Astrophysics Data System (ADS)
Zhang, Tao; Kamlah, Marc
2018-01-01
A nonlocal species concentration theory for diffusion and phase changes is introduced from a nonlocal free energy density. It can be applied, say, to electrode materials of lithium ion batteries. This theory incorporates two second-order partial differential equations involving second-order spatial derivatives of species concentration and an additional variable called nonlocal species concentration. Nonlocal species concentration theory can be interpreted as an extension of the Cahn-Hilliard theory. In principle, nonlocal effects beyond an infinitesimal neighborhood are taken into account. In this theory, the nonlocal free energy density is split into the penalty energy density and the variance energy density. The thickness of the interface between two phases in phase segregated states of a material is controlled by a normalized penalty energy coefficient and a characteristic interface length scale. We implemented the theory in COMSOL Multiphysics^{circledR } for a spherically symmetric boundary value problem of lithium insertion into a Li_xMn_2O_4 cathode material particle of a lithium ion battery. The two above-mentioned material parameters controlling the interface are determined for Li_xMn_2O_4 , and the interface evolution is studied. Comparison to the Cahn-Hilliard theory shows that nonlocal species concentration theory is superior when simulating problems where the dimensions of the microstructure such as phase boundaries are of the same order of magnitude as the problem size. This is typically the case in nanosized particles of phase-separating electrode materials. For example, the nonlocality of nonlocal species concentration theory turns out to make the interface of the local concentration field thinner than in Cahn-Hilliard theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, R.D.; Lekia, S.D.L.
This paper presents the results of parametric studies of two naturally fractured lenticular tight gas reservoirs, Fluvial E-1 and Puludal Zones 3 and 4, of the U.S. Department of Energy Multi-Well Experiment (MWX) site of Northwestern Colorado. The three-dimensional, two-phase, black oil reservoir simulator that was developed in a previous phase of this research program is also discussed and the capabilities further explored by applying it to several example problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krein, Gastao; Leme, Rafael R.; Woitek, Marcio
Traditional Monte Carlo simulations of QCD in the presence of a baryon chemical potential are plagued by the complex phase problem and new numerical approaches are necessary for studying the phase diagram of the theory. In this work we consider a Z{sub 3} Polyakov loop model for the deconfining phase transition in QCD and discuss how a flux representation of the model in terms of dimer and monomer variable solves the complex action problem. We present results of numerical simulations using a worm algorithm for the specific heat and two-point correlation function of Polyakov loops. Evidences of a first ordermore » deconfinement phase transition are discussed.« less
Phases of learning: How skill acquisition impacts cognitive processing.
Tenison, Caitlin; Fincham, Jon M; Anderson, John R
2016-06-01
This fMRI study examines the changes in participants' information processing as they repeatedly solve the same mathematical problem. We show that the majority of practice-related speedup is produced by discrete changes in cognitive processing. Because the points at which these changes take place vary from problem to problem, and the underlying information processing steps vary in duration, the existence of such discrete changes can be hard to detect. Using two converging approaches, we establish the existence of three learning phases. When solving a problem in one of these learning phases, participants can go through three cognitive stages: Encoding, Solving, and Responding. Each cognitive stage is associated with a unique brain signature. Using a bottom-up approach combining multi-voxel pattern analysis and hidden semi-Markov modeling, we identify the duration of that stage on any particular trial from participants brain activation patterns. For our top-down approach we developed an ACT-R model of these cognitive stages and simulated how they change over the course of learning. The Solving stage of the first learning phase is long and involves a sequence of arithmetic computations. Participants transition to the second learning phase when they can retrieve the answer, thereby drastically reducing the duration of the Solving stage. With continued practice, participants then transition to the third learning phase when they recognize the problem as a single unit and produce the answer as an automatic response. The duration of this third learning phase is dominated by the Responding stage. Copyright © 2016 Elsevier Inc. All rights reserved.
Methods for calculating conjugate problems of heat transfer
NASA Astrophysics Data System (ADS)
Kalinin, E. K.; Dreitser, G. A.; Kostiuk, V. V.; Berlin, I. I.
Methods are examined for calculating various conjugate problems of heat transfer in channels and closed vessels in cases of single-phase and two-phase flow in steady and unsteady conditions. The single-phase-flow studies involve the investigation of gaseous and liquid heat-carriers in pipes, annular and plane channels, and pipe bundles in cases of cooling and heating. General relationships are presented for heat transfer in cases of film, transition, and nucleate boiling, as well as for boiling crises. Attention is given to methods for analyzing the filling and cooling of conduits and tanks by cryogenic liquids; and ways to intensify heat transfer in these conditions are examined.
Privacy and equality in diagnostic genetic testing.
Nyrhinen, Tarja; Hietala, Marja; Puukka, Pauli; Leino-Kilpi, Helena
2007-05-01
This study aimed to determine the extent to which the principles of privacy and equality were observed during diagnostic genetic testing according to views held by patients or child patients' parents (n = 106) and by staff (n = 162) from three Finnish university hospitals. The data were collected through a structured questionnaire and analysed using the SAS 8.1 statistical software. In general, the two principles were observed relatively satisfactorily in clinical practice. According to patients/parents, equality in the post-analytic phase and, according to staff, privacy in the pre-analytic phase, involved the greatest ethical problems. The two groups differed in their views concerning pre-analytic privacy. Although there were no major problems regarding the two principles, the differences between the testing phases require further clarification. To enhance privacy protection and equality, professionals need to be given more genetics/ethics training, and patients individual counselling by genetics units staff, giving more consideration to patients' world-view, the purpose of the test and the test result.
General Relativity and Gravitation
NASA Astrophysics Data System (ADS)
Ashtekar, Abhay; Berger, Beverly; Isenberg, James; MacCallum, Malcolm
2015-07-01
Part I. Einstein's Triumph: 1. 100 years of general relativity George F. R. Ellis; 2. Was Einstein right? Clifford M. Will; 3. Cosmology David Wands, Misao Sasaki, Eiichiro Komatsu, Roy Maartens and Malcolm A. H. MacCallum; 4. Relativistic astrophysics Peter Schneider, Ramesh Narayan, Jeffrey E. McClintock, Peter Mészáros and Martin J. Rees; Part II. New Window on the Universe: 5. Receiving gravitational waves Beverly K. Berger, Karsten Danzmann, Gabriela Gonzalez, Andrea Lommen, Guido Mueller, Albrecht Rüdiger and William Joseph Weber; 6. Sources of gravitational waves. Theory and observations Alessandra Buonanno and B. S. Sathyaprakash; Part III. Gravity is Geometry, After All: 7. Probing strong field gravity through numerical simulations Frans Pretorius, Matthew W. Choptuik and Luis Lehner; 8. The initial value problem of general relativity and its implications Gregory J. Galloway, Pengzi Miao and Richard Schoen; 9. Global behavior of solutions to Einstein's equations Stefanos Aretakis, James Isenberg, Vincent Moncrief and Igor Rodnianski; Part IV. Beyond Einstein: 10. Quantum fields in curved space-times Stefan Hollands and Robert M. Wald; 11. From general relativity to quantum gravity Abhay Ashtekar, Martin Reuter and Carlo Rovelli; 12. Quantum gravity via unification Henriette Elvang and Gary T. Horowitz.
A Study of Attitudes Toward Child Abuse and Child Rearing Among Mexican American Migrants in Texas.
ERIC Educational Resources Information Center
Texas Migrant Council, Inc., Laredo.
Divided into two phases, the study investigated the attitudes toward child abuse and neglect and child rearing practices held by Mexican American migrant farmworkers. The first phase involved a brief literature review and an assessment of the problem. During this phase also, the study's broad general goals were divided into 6 categories which led…
An Extremal Eigenvalue Problem for a Two-Phase Conductor in a Ball
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conca, Carlos; Mahadevan, Rajesh; Sanz, Leon
2009-10-15
The pioneering works of Murat and Tartar (Topics in the mathematical modeling of composite materials. PNLDE 31. Birkhaeuser, Basel, 1997) go a long way in showing, in general, that problems of optimal design may not admit solutions if microstructural designs are excluded from consideration. Therefore, assuming, tactilely, that the problem of minimizing the first eigenvalue of a two-phase conducting material with the conducting phases to be distributed in a fixed proportion in a given domain has no true solution in general domains, Cox and Lipton only study conditions for an optimal microstructural design (Cox and Lipton in Arch. Ration. Mech.more » Anal. 136:101-117, 1996). Although, the problem in one dimension has a solution (cf. Krein in AMS Transl. Ser. 2(1):163-187, 1955) and, in higher dimensions, the problem set in a ball can be deduced to have a radially symmetric solution (cf. Alvino et al. in Nonlinear Anal. TMA 13(2):185-220, 1989), these existence results have been regarded so far as being exceptional owing to complete symmetry. It is still not clear why the same problem in domains with partial symmetry should fail to have a solution which does not develop microstructure and respecting the symmetry of the domain. We hope to revive interest in this question by giving a new proof of the result in a ball using a simpler symmetrization result from Alvino and Trombetti (J. Math. Anal. Appl. 94:328-337, 1983)« less
Slobodskaya, Helena R; Semenova, Nadezhda B
2016-04-01
High rates of child mental health problems in the Russian Federation have recently been documented; the rates of youth suicide are among the highest in the world. Across the Russian regions, Republic of Tyva has one of the highest rates of child and adolescent suicide and the lowest life expectancy at birth. The aim of this study was to investigate the prevalence and associations of mental health problems in Native Tyvinian children and adolescents using internationally recognised measures and diagnoses. A two-stage, two-phase design involved selection of schools in five rural settlements in Western Tyva and two schools in the capital city followed by selection of Native Tyvinian children in grades 3-4 (ages 9-10) and 6-7 (ages 14-15). In the first phase, a screening measure of psychopathology, the Rutter Teacher Questionnaire, was obtained on 1048 children with a 97% participation rate. In the second phase, more detailed psychiatric assessments were carried out for subgroups of screen-positive and screen-negative children. The prevalence of mental health problems was about 25%, ranging from 40% in adolescent boys from rural areas to 9% in adolescent girls from the city. The patterning of disorders and risk factors were similar to those in other countries, rural areas were associated with an increased risk of psychopathology. The findings indicate that there is an urgent need for interventions to reduce risk in this population and provide effective help for Tyvinian children and adolescents with mental health problems.
NASA Astrophysics Data System (ADS)
Zhong, Shenlu; Li, Mengjiao; Tang, Xiajie; He, Weiqing; Wang, Xiaogang
2017-01-01
A novel optical information verification and encryption method is proposed based on inference principle and phase retrieval with sparsity constraints. In this method, a target image is encrypted into two phase-only masks (POMs), which comprise sparse phase data used for verification. Both of the two POMs need to be authenticated before being applied for decrypting. The target image can be optically reconstructed when the two authenticated POMs are Fourier transformed and convolved by the correct decryption key, which is also generated in encryption process. No holographic scheme is involved in the proposed optical verification and encryption system and there is also no problem of information disclosure in the two authenticable POMs. Numerical simulation results demonstrate the validity and good performance of this new proposed method.
Line of magnetic monopoles and an extension of the Aharonov–Bohm effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chee, J.; Lu, W.
2016-10-15
In the Landau problem on the two-dimensional plane, physical displacement of a charged particle (i.e., magnetic translation) can be induced by an in-plane electric field. The geometric phase accompanying such magnetic translation around a closed path differs from the topological phase of Aharonov and Bohm in two essential aspects: The particle is in direct contact with the magnetic field and the geometric phase has an opposite sign from the Aharonov–Bohm phase. We show that magnetic translation on the two-dimensional cylinder implemented by the Schrödinger time evolution truly leads to the Aharonov–Bohm effect. The magnetic field normal to the cylinder’s surfacemore » corresponds to a line of magnetic monopoles of uniform density whose simulation is currently under investigation in cold atom physics. In order to characterize the quantum problem, one needs to specify the value of the magnetic flux (modulo the flux unit) that threads but not in touch with the cylinder. A general closed path on the cylinder may enclose both the Aharonov–Bohm flux and the local magnetic field that is in direct contact with the charged particle. This suggests an extension of the Aharonov–Bohm experiment that naturally takes into account both the geometric phase due to local interaction with the magnetic field and the topological phase of Aharonov and Bohm.« less
Alternative Technology for Transit Bus Air Conditioning : The Rotary Screw Compressor
DOT National Transportation Integrated Search
1984-11-01
This report summarizes the results of the test and evaluation of a prototype rotary screw compressor design. The UMTA-funded R&D program consisted of two phases. The objectives of the first phase were to ascertain the extent of the problems with curr...
A combined Eulerian-volume of fraction-Lagrangian method for atomization simulation
NASA Technical Reports Server (NTRS)
Seung, S. P.; Chen, C. P.; Ziebarth, John P.
1994-01-01
The tracking of free surfaces between liquid and gas phases and analysis of the interfacial phenomena between the two during the atomization and breakup process of a liquid fuel jet is modeled. Numerical modeling of liquid-jet atomization requires the resolution of different conservation equations. Detailed formulation and validation are presented for the confined dam broken problem, the water surface problem, the single droplet problem, a jet breakup problem, and the liquid column instability problem.
Classical impurities and boundary Majorana zero modes in quantum chains
NASA Astrophysics Data System (ADS)
Müller, Markus; Nersesyan, Alexander A.
2016-09-01
We study the response of classical impurities in quantum Ising chains. The Z2 degeneracy they entail renders the existence of two decoupled Majorana modes at zero energy, an exact property of a finite system at arbitrary values of its bulk parameters. We trace the evolution of these modes across the transition from the disordered phase to the ordered one and analyze the concomitant qualitative changes of local magnetic properties of an isolated impurity. In the disordered phase, the two ground states differ only close to the impurity, and they are related by the action of an explicitly constructed quasi-local operator. In this phase the local transverse spin susceptibility follows a Curie law. The critical response of a boundary impurity is logarithmically divergent and maps to the two-channel Kondo problem, while it saturates for critical bulk impurities, as well as in the ordered phase. The results for the Ising chain translate to the related problem of a resonant level coupled to a 1d p-wave superconductor or a Peierls chain, whereby the magnetic order is mapped to topological order. We find that the topological phase always exhibits a continuous impurity response to local fields as a result of the level repulsion of local levels from the boundary Majorana zero mode. In contrast, the disordered phase generically features a discontinuous magnetization or charging response. This difference constitutes a general thermodynamic fingerprint of topological order in phases with a bulk gap.
CrowdPhase: crowdsourcing the phase problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorda, Julien; Sawaya, Michael R.; Yeates, Todd O., E-mail: yeates@mbi.ucla.edu
The idea of attacking the phase problem by crowdsourcing is introduced. Using an interactive, multi-player, web-based system, participants work simultaneously to select phase sets that correspond to better electron-density maps in order to solve low-resolution phasing problems. The human mind innately excels at some complex tasks that are difficult to solve using computers alone. For complex problems amenable to parallelization, strategies can be developed to exploit human intelligence in a collective form: such approaches are sometimes referred to as ‘crowdsourcing’. Here, a first attempt at a crowdsourced approach for low-resolution ab initio phasing in macromolecular crystallography is proposed. A collaborativemore » online game named CrowdPhase was designed, which relies on a human-powered genetic algorithm, where players control the selection mechanism during the evolutionary process. The algorithm starts from a population of ‘individuals’, each with a random genetic makeup, in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals. A user-friendly interface, a training stage and a competitive scoring system foster a network of well trained players who can guide the genetic algorithm towards better solutions from generation to generation via gameplay. CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30° phase error range and corresponding molecular envelopes showing agreement with the low-resolution models. The successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it possible to extract meaningful information in cases where limited resolution might otherwise prevent initial phasing.« less
Influence of Embedded Optical Fibers on Compressive Strength of Advanced Composites
1993-12-01
Aeronautial Engineering Accesion For NTIS CRA&,j DTIC TAB 13 Unawlou:,ced Justification Stefan B. Dosedel, B.S.M.E. By _i l b i...aircraft weight can yield an increase in specific excess power of 1%, an increase in subsonic sustained turn rate of 1%, and an increase in supersonic... sustained turn rate of .5% [2]. Composite materials can achieve mass savings on the order of 9-30 percent [2]. It is expected that composite materials will
Symposium KK: Structure-Property Relationships in Biomineralized and Bio-mimetic Composites
2010-04-06
Preventive and Restorative Dental Sciences, UCSF, San Francisco, California. 4:45 PM KK2.8 Damage and Crack Evolution in Mammalian Enamel James Jin...Technology, Graz, Austria. 9:45AMKK6.S AFM and PFM measurements of Enamel in order to Determine the Crack Tip Toughness and Cohesive Zone of Enamel Gerold...11:00 AM KK9.7 Enamel Matrix Guided Growth of Apatite Vuk Uskokovic1. Li Zhu2, Wu Li2 and Stefan Habelitz1; ’Department of Preventive and
WIS Implementation Study Report. Volume 1. Main Report.
1983-10-01
Luenberger, Prof. David G. * Stanford University Ries, Dr. Daniel R. * Computer Corporation of America Schill, John Naval Ocean Systems Center Shrier , Dr...Robert E. 43 Kaczmarek, Dr. Thomas S. 45 Klein, Dr. Stanely A. 47 Kramer, Dr. John F. 49 Larsen, Dr. Robert E. 55 Luenberger, Prof. David G. 58...Riddle, Dr. William E. 76 Ries, Dr. Daniel R. 82 Sapp, Mr. John W. 88 Shelley, Mr. Stephen H. 89 Shrier , Dr. Stefan 94 Slusarczuk, Dr. Marko M.G. 96
Sustainability Gaps in Municipal Solid Waste Management: The Case of Landfills
2006-02-01
Regional Mobility, Nr. 4/2002. "* Schafer, Wolf, EU-Erweiterung: Anmerkungen zum Balassa - Samuelson -Effekt, Nr. 3/2002, erschienen in: Stefan Reitz (Hg...generations with high long-term external costs as it is the case in the dry tomb technology. Besides the efficiency aspect an argument of justice is... argument of time- consistency according to Strotz does not play any role because the assumed "rational" way of planning cannot be realized due to the non
Functionalization and Passivation of Boron Nanoparticles with a Hypergolic Ionic Liquid (Pre-Print)
2012-04-01
Department of Chemistry , University of Utah, 315 S 1400 E, Salt Lake City, UT 84112, USA Stefan Schneider3, Jerry Boatz4 and Tom Hawkins5 Propellants...USA Parker D. McCrary6, Preston A. Beasley6, Steven P. Kelley6 and Robin D. Rogers7 Center for Green Manufacturing and Department of Chemistry ... Chemistry , The University of Utah, 315 S. 1400 E., Rm. b107, Salt Lake City, UT 84112, USA. 2 Principal Investigator and Professor, Department of
2013-09-30
unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 Co-PI: Christopher K. R. T. Jones ...Co-PI: Stefan Llewellyn Smith Department of Mechanical and Aerospace Engineering University of California, San Diego 9500 Gilman Drive La...systems but looking a weakly 3D systems for long time intervals. ( Llewellyn Smith) Figure 10. We are exploring the effects of submesoscale motions
Akimenko, Vitalii; Anguelov, Roumen
2017-12-01
In this paper we study the nonlinear age-structured model of a polycyclic two-phase population dynamics including delayed effect of population density growth on the mortality. Both phases are modelled as a system of initial boundary values problem for semi-linear transport equation with delay and initial problem for nonlinear delay ODE. The obtained system is studied both theoretically and numerically. Three different regimes of population dynamics for asymptotically stable states of autonomous systems are obtained in numerical experiments for the different initial values of population density. The quasi-periodical travelling wave solutions are studied numerically for the autonomous system with the different values of time delays and for the system with oscillating death rate and birth modulus. In both cases it is observed three types of travelling wave solutions: harmonic oscillations, pulse sequence and single pulse.
Zhu, Lizhi
2007-11-13
A power converter architecture interleaves full bridge converters to alleviate thermal management problems in high current applications, and may, for example, double the output power capability while reducing parts count and costs. For example, one phase of a three phase inverter is shared between two transformers, which provide power to a rectifier such as a current doubler rectifier to provide two full bridge DC/DC converters with three rather than four high voltage inverter legs.
DOT National Transportation Integrated Search
1986-01-01
This report contains the initial Problem Identification for the Comprehensive Community-Based Traffic Safety Program (CCBP). Two DMV districts, District 2 and District 7, have been selected as the pilot areas for the CCBP, and because both districts ...
NASA Astrophysics Data System (ADS)
Meng, X. F.; Peng, X.; Cai, L. Z.; Li, A. M.; Gao, Z.; Wang, Y. R.
2009-08-01
A hybrid cryptosystem is proposed, in which one image is encrypted to two interferograms with the aid of double random-phase encoding (DRPE) and two-step phase-shifting interferometry (2-PSI), then three pairs of public-private keys are utilized to encode and decode the session keys (geometrical parameters, the second random-phase mask) and interferograms. In the stage of decryption, the ciphered image can be decrypted by wavefront reconstruction, inverse Fresnel diffraction, and real amplitude normalization. This approach can successfully solve the problem of key management and dispatch, resulting in increased security strength. The feasibility of the proposed cryptosystem and its robustness against some types of attack are verified and analyzed by computer simulations.
Nowakowski, Andrzej; Rapała, Kazimierz
2008-01-01
Figures of two outstanding orthopaedists Professor Stefan Malawski and Professor Jerzy Król rewarded with the medal of the name of Wiktor Degi were described. The medal is being granted by the Chapter of the Medal as regarding for outstanding achievements for the Polish and world orthopaedics and rehabilitation. Profesor Stefan Kazimierz Malawski was born 26. 12. 1920 in the Vilnius area. In Vilnius he stated his medical studies, which he continued in Lwow and graduated in 1946 at the Marie Curie Skłodowska in Lublin. Professor Malawski's main field of interest were related to the problems related to tuberculosis of bones and joints and trauma of the lumbar and cervical spine. In the problems of bone tuberculosis he remains an unquestioned authority in Poland. His deep understanding of these clinical problems can be found in his text-book "Tuberculosis of bones and joints", which was printed in 1976. The information pertaining diagnosis and surgical treatment remain extremely valuable today. Another field of interest of Professor Malawski are pathologies of the spine. Disc disease, neoplasms of the spine, spinal stenosis and infections of the spine, spondylolisthesis are among many of his interests. This very wide field of interest can be dound in his 3 tome publication Spondyloorthopedics. His 166 papars printed in Poland and abroad bear proof of the Professors wide field of interest and deep knowledge. Professor Malawski was the first surgeon in Poland to perform surgery on the front elements of the spine in tuberculotic paraplegia. In 1958 he implemented surgical treatment of spine tumor--both primary and metastatic, by resecting them and stabilizing the spine with grafts. In the early 70's he focused on spinal stenosis. In the years 1982-1986 he was the Chairman of the Board of the Polish Orthopedic and Trauma Society. Professor Malawski introdued a modern set of Rules and Regulations, greatly simplifying the decision making process during General assemblies of the Society. Professor Malawski is undoubtedly a great successor to the active way of surgical thinking introduced by professor Adam Gruca. Professor Jerzy Król is among the greatest Polish orthopedic surgeons. He was born on 21st February 1926 in Baranowice (Nowogródek woiwodship). He graduated from high school in the underground schooling system during the Second World War, receiving his maturity exam in 1945 from the Konarski High Scool School of the Western Lands in Czestochowa. In 1945 the professor started his medical studies at Adam Mickiewicz University of Poznan, where he graduated in 1949. In 1950 he started his medical career in in Orthopedic Department of Poznan head by professor Wiktor Dega. Professor Król is the author of over 100 medical papers printed in national and international journals. His key fields of interest are congenital dislocation of the hip, hip arthroplasty, scoliosis and rehabilitaton and prosthesis problems. In 1968 he performed the first scoliosis correction with the Harrington rod in Poland as well as the implantation of the first McKee-Ferara hip prosthesis. He is the co-author of the text-book Orthopedics and Rehabilitation, Medical Rehabilitation and a number of WHO text books: Community Health Worker and Guide for prevention of Deformities in Poliomyelitis. He also took part in the publishing of the WHO text-book Rehabilitation Surgery, for which he received the Ministry of Health Award. He overlooked 7 Ph.D thesis and 4 papers qualifying for assistant professor. Between 1972 and 1995 professor Król worked as a WHO expert, as member of the Expert Committee for Rehabilitation. Between 1986-1987 head was the director of the Orthopedics and Rehabilitation Institute in Poznan. He resigned from this function due to his work with WHO in Madagaskar. After his return he was the head of the Orthopedic Department in Poznan University of Medical Sciennces until October 1996 when he retired.
NASA Astrophysics Data System (ADS)
Wang, Wenyun; Guo, Yingfu
2008-12-01
Phase-shifting methods for 3-D shape measurement have long been employed in optical metrology for their speed and accuracy. For real-time, accurate, 3-D shape measurement, a four-step phase-shifting algorithm which has the advantage of its symmetry is a good choice; however, its measurement error is sensitive to any fringe image errors caused by various sources such as motion blur. To alleviate this problem, a fast two-plus-one phase-shifting algorithm is proposed in this paper. This kind of technology will benefit many applications such as medical imaging, gaming, animation, computer vision, computer graphics, etc.
Education and Work Councils: Progress and Problems.
ERIC Educational Resources Information Center
Prager, Audrey; And Others
This report presents the findings and conclusions from the first phase of a two-phase study of education and work councils (community organizations of business leaders, school officials, and representatives of other institutions, formed to ease the transition of youths from school to work). The report describes the education and work councils…
On the adaptive function of children's and adults' false memories.
Howe, Mark L; Wilkinson, Samantha; Garner, Sarah R; Ball, Linden J
2016-09-01
Recent research has shown that memory illusions can successfully prime both children's and adults' performance on complex, insight-based problems (compound remote associates tasks or CRATs). The current research aimed to clarify the locus of these priming effects. Like before, Deese-Roediger-McDermott (DRM) lists were selected to prime subsequent CRATs such that the critical lures were also the solution words to a subset of the CRATs participants attempted to solve. Unique to the present research, recognition memory tests were used and participants were either primed during the list study phase, during the memory test phase, or both. Across two experiments, primed problems were solved more frequently and significantly faster than unprimed problems. Moreover, when participants were primed during the list study phase, subsequent solution times and rates were considerably superior to those produced by those participants who were simply primed at test. Together, these are the first results to show that false-memory priming during encoding facilitates problem-solving in both children and adults.
On the adaptive function of children's and adults’ false memories
Howe, Mark L.; Wilkinson, Samantha; Garner, Sarah R.; Ball, Linden J.
2016-01-01
ABSTRACT Recent research has shown that memory illusions can successfully prime both children's and adults' performance on complex, insight-based problems (compound remote associates tasks or CRATs). The current research aimed to clarify the locus of these priming effects. Like before, Deese–Roediger–McDermott (DRM) lists were selected to prime subsequent CRATs such that the critical lures were also the solution words to a subset of the CRATs participants attempted to solve. Unique to the present research, recognition memory tests were used and participants were either primed during the list study phase, during the memory test phase, or both. Across two experiments, primed problems were solved more frequently and significantly faster than unprimed problems. Moreover, when participants were primed during the list study phase, subsequent solution times and rates were considerably superior to those produced by those participants who were simply primed at test. Together, these are the first results to show that false-memory priming during encoding facilitates problem-solving in both children and adults. PMID:26230151
NASA Astrophysics Data System (ADS)
Frommer, Joshua B.
This work develops and implements a solution framework that allows for an integrated solution to a resource allocation system-of-systems problem associated with designing vehicles for integration into an existing fleet to extend that fleet's capability while improving efficiency. Typically, aircraft design focuses on using a specific design mission while a fleet perspective would provide a broader capability. Aspects of design for both the vehicles and missions may be, for simplicity, deterministic in nature or, in a model that reflects actual conditions, uncertain. Toward this end, the set of tasks or goals for the to-be-planned system-of-systems will be modeled more accurately with non-deterministic values, and the designed platforms will be evaluated using reliability analysis. The reliability, defined as the probability of a platform or set of platforms to complete possible missions, will contribute to the fitness of the overall system. The framework includes building surrogate models for metrics such as capability and cost, and includes the ideas of reliability in the overall system-level design space. The concurrent design and allocation system-of-systems problem is a multi-objective mixed integer nonlinear programming (MINLP) problem. This study considered two system-of-systems problems that seek to simultaneously design new aircraft and allocate these aircraft into a fleet to provide a desired capability. The Coast Guard's Integrated Deepwater System program inspired the first problem, which consists of a suite of search-and-find missions for aircraft based on descriptions from the National Search and Rescue Manual. The second represents suppression of enemy air defense operations similar to those carried out by the U.S. Air Force, proposed as part of the Department of Defense Network Centric Warfare structure, and depicted in MILSTD-3013. The two problems seem similar, with long surveillance segments, but because of the complex nature of aircraft design, the analysis of the vehicle for high-speed attack combined with a long loiter period is considerably different from that for quick cruise to an area combined with a low speed search. However, the framework developed to solve this class of system-of-systems problem handles both scenarios and leads to a solution type for this kind of problem. On the vehicle-level of the problem, different technology can have an impact on the fleet-level. One such technology is Morphing, the ability to change shape, which is an ideal candidate technology for missions with dissimilar segments, such as the aforementioned two. A framework, using surrogate models based on optimally-sized aircraft, and using probabilistic parameters to define a concept of operations, is investigated; this has provided insight into the setup of the optimization problem, the use of the reliability metric, and the measurement of fleet level impacts of morphing aircraft. The research consisted of four phases. The two initial phases built and defined the framework to solve system-of-systems problem; these investigations used the search-and-find scenario as the example application. The first phase included the design of fixed-geometry and morphing aircraft for a range of missions and evaluated the aircraft capability using non-deterministic mission parameters. The second phase introduced the idea of multiple aircraft in a fleet, but only considered a fleet consisting of one aircraft type. The third phase incorporated the simultaneous design of a new vehicle and allocation into a fleet for the search-and-find scenario; in this phase, multiple types of aircraft are considered. The fourth phase repeated the simultaneous new aircraft design and fleet allocation for the SEAD scenario to show that the approach is not specific to the search-and-find scenario. The framework presented in this work appears to be a viable approach for concurrently designing and allocating constituents in a system, specifically aircraft in a fleet. The research also shows that new technology impact can be assessed at the fleet level using conceptual design principles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saitoh, T.S.; Hoshi, A.
1998-07-01
Melting and solidification of a phase change material (PCM) in a capsule is of practical importance in latent heat thermal energy storage (LHTES) systems which are considered to be very promising to reduce a peak demand of electricity in the summer season and carbon dioxide (CO{sub 2}) emissions. Two melting modes are involved in melting of capsules. One is close-contact melting between the solid bulk and the capsule wall, and another is natural convection melting in the liquid region. Close-contact melting processes for a single enclosure have been solved using several numerical methods (e.g., Saitoh and Kato (1994)). In additionmore » close-contact melting heat transfer characteristics including melt flow in the liquid film under inner wall temperature distribution were analyzed and simple approximate equations were already presented by Saitoh and Hoshi (1997). The effects of Stefan number and variable temperature profile etc. were clarified in detail. And the melting velocity of the solid bulk under various conditions was also studied theoretically. In addition the effects of variable inner wall temperature on molten mass fraction were investigated. The present paper reports analytical solutions for combined close-contact and natural convection melting in horizontal cylindrical capsule. Moreover, natural convection melting in the liquid region were analyzed in this report. The upper interface shape of the solid bulk is approximated by a circular arc throughout the melting process. For the sake of verification, close-contact melting heat-transfer characteristics including natural convection in the liquid region were studied experimentally. Apparent shift of upper solid-liquid interface is good agreement with the experiment. The present simple approximate solutions will be useful to facilitate designing of the practical capsule bed LHTES systems.« less
Shahrami, Ali; Rahmati, Farhad; Kariman, Hamid; Hashemi, Behrooz; Rahmati, Majid; Baratloo, Alireza; Forouzanfar, Mohammad Mehdi; Safari, Saeed
2013-01-01
The balance between revenue and cost of an organization/system is essential to maintain its survival and quality of services. Emergency departments (ED) are one of the most important parts of health care delivery system. Financial discipline of EDs, by increasing the efficiency and profitability, can directly affect the quality of care and subsequently patient satisfaction. Accordingly, the present study attempts to investigate failure mode and effects analysis (FMEA) method in identifying the problems leading to the loss of ED revenue and offer solutions to help fix these problems. This prospective cohort study investigated the financial records of ED patients and evaluated the effective errors in reducing the revenue in ED of Imam Hossein hospital, Tehran, Iran, from October 2007 to November 2009. The whole department was divided into one main system and six subsystems, based on FMEA. The study was divided into two phases. In the first phase, the problems leading to the loss of revenue in each subsystem were identified and weighted into four groups using risk priority number (RPN), and the solutions for fixing them were planned. Then, in the second phase, discovered defects in the first phase were fixed according to their priority. Finally, the impact of each solution was compared before and after intervention using the repeated measure ANOVA test. 100 financial records of ED patients were evaluated during the first phase of the study. The average of ED revenue in the six months of the first phase was 73.1±3.65 thousand US dollars/month. 12 types of errors were detected in the predefined subsystems. ED revenue rose from 73.1 to 153.1, 207.06, 240, and 320 thousand US dollars/month after solving first, second, third, and fourth priority problems, respectively (337.75% increase in two years) (p<0.001). 111.0% increase in the ED revenue after solving of first priority problems revealed that they were extremely indispensable in decreasing the revenue (p<0.0001). The findings of the present study revealed that FMEA could be considered as an efficient model for increasing the revenue of emergency department. According to this model, not recording the services by the nursing unit, and lack of specific identifying code for the patients moving from ED to any other department, were the two first priority problems in decreasing our ED revenue.
Shahrami, Ali; Rahmati, Farhad; Kariman, Hamid; Hashemi, Behrooz; Rahmati, Majid; Baratloo, Alireza; Forouzanfar, Mohammad Mehdi; Safari, Saeed
2013-01-01
Introduction: The balance between revenue and cost of an organization/system is essential to maintain its survival and quality of services. Emergency departments (ED) are one of the most important parts of health care delivery system. Financial discipline of EDs, by increasing the efficiency and profitability, can directly affect the quality of care and subsequently patient satisfaction. Accordingly, the present study attempts to investigate failure mode and effects analysis (FMEA) method in identifying the problems leading to the loss of ED revenue and offer solutions to help fix these problems. Methods: This prospective cohort study investigated the financial records of ED patients and evaluated the effective errors in reducing the revenue in ED of Imam Hossein hospital, Tehran, Iran, from October 2007 to November 2009. The whole department was divided into one main system and six subsystems, based on FMEA. The study was divided into two phases. In the first phase, the problems leading to the loss of revenue in each subsystem were identified and weighted into four groups using risk priority number (RPN), and the solutions for fixing them were planned. Then, in the second phase, discovered defects in the first phase were fixed according to their priority. Finally, the impact of each solution was compared before and after intervention using the repeated measure ANOVA test. Results: 100 financial records of ED patients were evaluated during the first phase of the study. The average of ED revenue in the six months of the first phase was 73.1±3.65 thousand US dollars/month. 12 types of errors were detected in the predefined subsystems. ED revenue rose from 73.1 to 153.1, 207.06, 240, and 320 thousand US dollars/month after solving first, second, third, and fourth priority problems, respectively (337.75% increase in two years) (p<0.001). 111.0% increase in the ED revenue after solving of first priority problems revealed that they were extremely indispensable in decreasing the revenue (p<0.0001). Conclusion: The findings of the present study revealed that FMEA could be considered as an efficient model for increasing the revenue of emergency department. According to this model, not recording the services by the nursing unit, and lack of specific identifying code for the patients moving from ED to any other department, were the two first priority problems in decreasing our ED revenue. PMID:26495327
Herlin, Antoine; Jacquemet, Vincent
2012-05-01
Phase singularity analysis provides a quantitative description of spiral wave patterns observed in chemical or biological excitable media. The configuration of phase singularities (locations and directions of rotation) is easily derived from phase maps in two-dimensional manifolds. The question arises whether one can construct a phase map with a given configuration of phase singularities. The existence of such a phase map is guaranteed provided that the phase singularity configuration satisfies a certain constraint associated with the topology of the supporting medium. This paper presents a constructive mathematical approach to numerically solve this problem in the plane and on the sphere as well as in more general geometries relevant to atrial anatomy including holes and a septal wall. This tool can notably be used to create initial conditions with a controllable spiral wave configuration for cardiac propagation models and thus help in the design of computer experiments in atrial electrophysiology.
Guidelines for the use of protected/permissive left-turn phasing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agent, K.R.
1987-07-01
Turning left across opposing traffic at a signalized intersection could result in a traffic accident, as well as create motorist delay. A solution to the left-turn problem may be the addition of a left-turn phase when certain guidelines are met. After a decision has been made to add a left-turn phase, one of two basic alternative phasing methods is . In a previous research study, the results of replacing protected-only (exclusive) with protected/permissive (permissive) phasing at four trial intersections were studied. The permissive phasing provided a substantial reduction in delay and was popular with local drivers. However, several left-turn relatedmore » accidents occurred at those locations. Since those initial trial installations, permissive phasing has been used at several intersections across the state. This created a larger data base that could be used to determine when permissive phasing could be used without causing an accident problem. The objective of this study was to develop guidelines to aid traffic engineers in deciding whether permissive left-turn phasing is appropriate for use at a given location.« less
Espey, Huston & Associates Technical Library. A Proposal.
ERIC Educational Resources Information Center
Fortine, Suellen
This proposal for the establishment of a library or information center for an environmental and engineering consulting firm in Texas is divided into two phases--current problems, and future expansion of library service. Major considerations include informational problems of the existing small library facility, i.e., locational and subject access,…
Acoustic emission data assisted process monitoring.
Yen, Gary G; Lu, Haiming
2002-07-01
Gas-liquid two-phase flows are widely used in the chemical industry. Accurate measurements of flow parameters, such as flow regimes, are the key of operating efficiency. Due to the interface complexity of a two-phase flow, it is very difficult to monitor and distinguish flow regimes on-line and real time. In this paper we propose a cost-effective and computation-efficient acoustic emission (AE) detection system combined with artificial neural network technology to recognize four major patterns in an air-water vertical two-phase flow column. Several crucial AE parameters are explored and validated, and we found that the density of acoustic emission events and ring-down counts are two excellent indicators for the flow pattern recognition problems. Instead of the traditional Fair map, a hit-count map is developed and a multilayer Perceptron neural network is designed as a decision maker to describe an approximate transmission stage of a given two-phase flow system.
Detection of antibodies to proteases used in laundry detergents by the radioallergosorbent test.
Dor, P J; Agarwal, M K; Gleich, M C; Welsh, P W; Dunnette, S L; Adolphson, C R; Gleich, G J
1986-11-01
Two proteases, Esperase and Alcalase, derived from Bacillus licheniformis and B. subtilis, respectively, are used in laundry products. In testing for the prevalence of IgE antibodies to these enzymes in sera among 300 laundry product workers, we experienced two problems in the establishment of a reliable RAST for these antigens. The first problem was the propensity of the allergen, Esperase, to undergo autolysis, suggesting that solid-phase Esperase might also lose reactivity through degradation. Treatment of Esperase with phenylmethylsulfonyl fluoride stabilized the enzyme and permitted the synthesis of a stable solid-phase antigen. The second problem was the finding that sera reactive with Esperase in the RAST were also reactive with Savinase, an enzyme from B. licheniformis to which the workers were not exposed. Immunochemical analyses of the three enzymes with specific rabbit antisera by gel diffusion and by two-site immunoradiometric assay demonstrated that they were not cross contaminated to any appreciable extent. RAST inhibition demonstrated that solid-phase Esperase possessed unique allergenic determinants in that the reactivity of IgE antibodies was inhibited by low concentrations of Esperase and only by very high concentrations of Alcalase and Savinase. In contrast, the reactivity of solid-phase Alcalase was occasionally inhibited equally well by Esperase and Alcalase. Most strikingly, the reaction of IgE antibodies with solid-phase Savinase was always inhibited by comparable quantities of Esperase, Alcalase, and Savinase. Thus, the establishment of the RAST for these proteases appears to require the use of phenylmethylsulfonyl fluoride to retard autolysis, and the results must be interpreted with caution because IgE antibodies in certain sera demonstrate cross-reactivity with Alcalase and Savinase.
Heliocentric phasing performance of electric sail spacecraft
NASA Astrophysics Data System (ADS)
Mengali, Giovanni; Quarta, Alessandro A.; Aliasi, Generoso
2016-10-01
We investigate the heliocentric in-orbit repositioning problem of a spacecraft propelled by an Electric Solar Wind Sail. Given an initial circular parking orbit, we look for the heliocentric trajectory that minimizes the time required for the spacecraft to change its azimuthal position, along the initial orbit, of a (prescribed) phasing angle. The in-orbit repositioning problem can be solved using either a drift ahead or a drift behind maneuver and, in general, the flight times for the two cases are different for a given value of the phasing angle. However, there exists a critical azimuthal position, whose value is numerically found, which univocally establishes whether a drift ahead or behind trajectory is superior in terms of flight time it requires for the maneuver to be completed. We solve the optimization problem using an indirect approach for different values of both the spacecraft maximum propulsive acceleration and the phasing angle, and the solution is then specialized to a repositioning problem along the Earth's heliocentric orbit. Finally, we use the simulation results to obtain a first order estimate of the minimum flight times for a scientific mission towards triangular Lagrangian points of the Sun-[Earth+Moon] system.
NASA Astrophysics Data System (ADS)
Lee, Hyunki; Kim, Min Young; Moon, Jeon Il
2017-12-01
Phase measuring profilometry and moiré methodology have been widely applied to the three-dimensional shape measurement of target objects, because of their high measuring speed and accuracy. However, these methods suffer from inherent limitations called a correspondence problem, or 2π-ambiguity problem. Although a kind of sensing method to combine well-known stereo vision and phase measuring profilometry (PMP) technique simultaneously has been developed to overcome this problem, it still requires definite improvement for sensing speed and measurement accuracy. We propose a dynamic programming-based stereo PMP method to acquire more reliable depth information and in a relatively small time period. The proposed method efficiently fuses information from two stereo sensors in terms of phase and intensity simultaneously based on a newly defined cost function of dynamic programming. In addition, the important parameters are analyzed at the view point of the 2π-ambiguity problem and measurement accuracy. To analyze the influence of important hardware and software parameters related to the measurement performance and to verify its efficiency, accuracy, and sensing speed, a series of experimental tests were performed with various objects and sensor configurations.
Design and operation of a 1000 C lithium-cesium test system
NASA Technical Reports Server (NTRS)
Hays, L. G.; Haskins, G. M.; Oconnor, D. E.; Torola, J., Jr.
1973-01-01
A 100 kWt cesium-lithium test loop fabricated of niobium-1% zirconium for experiments on erosion and two-phase system operation at temperatures of 980 C and velocities of 150 m/s. Although operated at design temperature for 100 hours, flow instabilities in the two-phase separator interfered with the achievement of the desired mass flow rates. A modified separator was fabricated and installed in the loop to alleviate this problem.
Acceleration methods for multi-physics compressible flow
NASA Astrophysics Data System (ADS)
Peles, Oren; Turkel, Eli
2018-04-01
In this work we investigate the Runge-Kutta (RK)/Implicit smoother scheme as a convergence accelerator for complex multi-physics flow problems including turbulent, reactive and also two-phase flows. The flows considered are subsonic, transonic and supersonic flows in complex geometries, and also can be either steady or unsteady flows. All of these problems are considered to be a very stiff. We then introduce an acceleration method for the compressible Navier-Stokes equations. We start with the multigrid method for pure subsonic flow, including reactive flows. We then add the Rossow-Swanson-Turkel RK/Implicit smoother that enables performing all these complex flow simulations with a reasonable CFL number. We next discuss the RK/Implicit smoother for time dependent problem and also for low Mach numbers. The preconditioner includes an intrinsic low Mach number treatment inside the smoother operator. We also develop a modified Roe scheme with a corresponding flux Jacobian matrix. We then give the extension of the method for real gas and reactive flow. Reactive flows are governed by a system of inhomogeneous Navier-Stokes equations with very stiff source terms. The extension of the RK/Implicit smoother requires an approximation of the source term Jacobian. The properties of the Jacobian are very important for the stability of the method. We discuss what the chemical physics theory of chemical kinetics tells about the mathematical properties of the Jacobian matrix. We focus on the implication of the Le-Chatelier's principle on the sign of the diagonal entries of the Jacobian. We present the implementation of the method for turbulent flow. We use a two RANS turbulent model - one equation model - Spalart-Allmaras and a two-equation model - k-ω SST model. The last extension is for two-phase flows with a gas as a main phase and Eulerian representation of a dispersed particles phase (EDP). We present some examples for such flow computations inside a ballistic evaluation rocket motor. The numerical examples in this work include transonic flow about a RAE2822 airfoil, about a M6 Onera wing, NACA0012 airfoil at very low Mach number, two-phase flow inside a Ballistic evaluation motor (BEM), a turbulent reactive shear layer and a time dependent Sod's tube problem.
Phase quality map based on local multi-unwrapped results for two-dimensional phase unwrapping.
Zhong, Heping; Tang, Jinsong; Zhang, Sen
2015-02-01
The efficiency of a phase unwrapping algorithm and the reliability of the corresponding unwrapped result are two key problems in reconstructing the digital elevation model of a scene from its interferometric synthetic aperture radar (InSAR) or interferometric synthetic aperture sonar (InSAS) data. In this paper, a new phase quality map is designed and implemented in a graphic processing unit (GPU) environment, which greatly accelerates the unwrapping process of the quality-guided algorithm and enhances the correctness of the unwrapped result. In a local wrapped phase window, the center point is selected as the reference point, and then two unwrapped results are computed by integrating in two different simple ways. After the two local unwrapped results are computed, the total difference of the two unwrapped results is regarded as the phase quality value of the center point. In order to accelerate the computing process of the new proposed quality map, we have implemented it in a GPU environment. The wrapped phase data are first uploaded to the memory of a device, and then the kernel function is called in the device to compute the phase quality in parallel by blocks of threads. Unwrapping tests performed on the simulated and real InSAS data confirm the accuracy and efficiency of the proposed method.
1985-03-20
Finally, the (linear) .response of a Fabry - Perot cavity to a phase modulated light wave is considered because of its relevance to phase locking a laser...prepared and therefore doesn’t contribute. This effect provides the remaining factor of two. IV. FABRY - PEROT We now calculate the response of a plane...mirror Fabry - Perot cavity to a phase-modulated laser beam. This linear problem, which contrasts with the nonlinear atomic case, is the basis of an
AURORA: The Next Generation Space Weather Sensor for NPOESS
NASA Astrophysics Data System (ADS)
Paxton, L.; Morrison, D.; Santo, A.; Ogorzalek, B.; Goldsten, J.; Boldt, J.; Kil, H.; Zhang, Y.; Demajistre, R.; Wolven, B.; Meng, C.
2005-12-01
The AURORA sensor slated for flight on the NPOESS satellites represents the culmination of over 20 years of experience at JHU/APL in the design, manufacture, flight, operation and analysis of compact, cost-effective far ultraviolet sensors for space weather data collection. The far ultraviolet covers the spectral range from about 115 to 185 nm. This region is ideal for observations of the upper atmosphere because, at these wavelengths, the lower atmosphere and Earth's surface are black. AURORA will observe the mid- and low-latitude F-region ionosphere, the auroral E-region ionosphere, the day thermosphere composition, auroral energy deposition and map ionospheric irregularities. AURORA implements the flight-proven design derived from SSUSI on the DMSP Block 5D spacecraft and GUVI on the NASA TIMED spacecraft. These instruments have provided the instrument and algorithm heritage for NPOESS/AURORA. In this talk the performance capabilities of the AURORA instrument will be summarized along with the design of the instrument and algorithms. Example products will be shown for each of the measurement regimes. We acknowldge support from DMSP and NASA and the collaboration with our science colleagues at the Aerospace Corporation (Paul Straus, Jim Hecht, Dave McKenzie, and Andy Christensen) and Computational Physics (Doug Strickland, Hal Knight, and Scott Evans) and Naval Research Laboratory (Robert Meier, Mike Picone, Stefan Thonnard, Pat Dandenault, and Andy Stefan) and our colleagues at APL (Michele Weiss, Doug Holland, Bill Wood, and Jim Eichert) among others.
A computer code for multiphase all-speed transient flows in complex geometries. MAST version 1.0
NASA Technical Reports Server (NTRS)
Chen, C. P.; Jiang, Y.; Kim, Y. M.; Shang, H. M.
1991-01-01
The operation of the MAST code, which computes transient solutions to the multiphase flow equations applicable to all-speed flows, is described. Two-phase flows are formulated based on the Eulerian-Lagrange scheme in which the continuous phase is described by the Navier-Stokes equation (or Reynolds equations for turbulent flows). Dispersed phase is formulated by a Lagrangian tracking scheme. The numerical solution algorithms utilized for fluid flows is a newly developed pressure-implicit algorithm based on the operator-splitting technique in generalized nonorthogonal coordinates. This operator split allows separate operation on each of the variable fields to handle pressure-velocity coupling. The obtained pressure correction equation has the hyperbolic nature and is effective for Mach numbers ranging from the incompressible limit to supersonic flow regimes. The present code adopts a nonstaggered grid arrangement; thus, the velocity components and other dependent variables are collocated at the same grid. A sequence of benchmark-quality problems, including incompressible, subsonic, transonic, supersonic, gas-droplet two-phase flows, as well as spray-combustion problems, were performed to demonstrate the robustness and accuracy of the present code.
Jang, Jinbeum; Yoo, Yoonjong; Kim, Jongheon; Paik, Joonki
2015-03-10
This paper presents a novel auto-focusing system based on a CMOS sensor containing pixels with different phases. Robust extraction of features in a severely defocused image is the fundamental problem of a phase-difference auto-focusing system. In order to solve this problem, a multi-resolution feature extraction algorithm is proposed. Given the extracted features, the proposed auto-focusing system can provide the ideal focusing position using phase correlation matching. The proposed auto-focusing (AF) algorithm consists of four steps: (i) acquisition of left and right images using AF points in the region-of-interest; (ii) feature extraction in the left image under low illumination and out-of-focus blur; (iii) the generation of two feature images using the phase difference between the left and right images; and (iv) estimation of the phase shifting vector using phase correlation matching. Since the proposed system accurately estimates the phase difference in the out-of-focus blurred image under low illumination, it can provide faster, more robust auto focusing than existing systems.
Jang, Jinbeum; Yoo, Yoonjong; Kim, Jongheon; Paik, Joonki
2015-01-01
This paper presents a novel auto-focusing system based on a CMOS sensor containing pixels with different phases. Robust extraction of features in a severely defocused image is the fundamental problem of a phase-difference auto-focusing system. In order to solve this problem, a multi-resolution feature extraction algorithm is proposed. Given the extracted features, the proposed auto-focusing system can provide the ideal focusing position using phase correlation matching. The proposed auto-focusing (AF) algorithm consists of four steps: (i) acquisition of left and right images using AF points in the region-of-interest; (ii) feature extraction in the left image under low illumination and out-of-focus blur; (iii) the generation of two feature images using the phase difference between the left and right images; and (iv) estimation of the phase shifting vector using phase correlation matching. Since the proposed system accurately estimates the phase difference in the out-of-focus blurred image under low illumination, it can provide faster, more robust auto focusing than existing systems. PMID:25763645
Deviation from Standard Inflationary Cosmology and the Problems in Ekpyrosis
NASA Astrophysics Data System (ADS)
Tseng, Chien-Yao
There are two competing models of our universe right now. One is Big Bang with inflation cosmology. The other is the cyclic model with ekpyrotic phase in each cycle. This paper is divided into two main parts according to these two models. In the first part, we quantify the potentially observable effects of a small violation of translational invariance during inflation, as characterized by the presence of a preferred point, line, or plane. We explore the imprint such a violation would leave on the cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes ( alma*l'm') of the spherical-harmonic coefficients. We then provide a model and study the two-point correlation of a massless scalar (the inflaton) when the stress tensor contains the energy density from an infinitely long straight cosmic string in addition to a cosmological constant. Finally, we discuss if inflation can reconcile with the Liouville's theorem as far as the fine-tuning problem is concerned. In the second part, we find several problems in the cyclic/ekpyrotic cosmology. First of all, quantum to classical transition would not happen during an ekpyrotic phase even for superhorizon modes, and therefore the fluctuations cannot be interpreted as classical. This implies the prediction of scale-free power spectrum in ekpyrotic/cyclic universe model requires more inspection. Secondly, we find that the usual mechanism to solve fine-tuning problems is not compatible with eternal universe which contains infinitely many cycles in both direction of time. Therefore, all fine-tuning problems including the flatness problem still asks for an explanation in any generic cyclic models.
NASA Astrophysics Data System (ADS)
Siripatana, Chairat; Thongpan, Hathaikarn; Promraksa, Arwut
2017-03-01
This article explores a volumetric approach in formulating differential equations for a class of engineering flow problems involving component transfer within or between two phases. In contrast to conventional formulation which is based on linear velocities, this work proposed a slightly different approach based on volumetric flow-rate which is essentially constant in many industrial processes. In effect, many multi-dimensional flow problems found industrially can be simplified into multi-component or multi-phase but one-dimensional flow problems. The formulation is largely generic, covering counter-current, concurrent or batch, fixed and fluidized bed arrangement. It was also intended to use for start-up, shut-down, control and steady state simulation. Since many realistic and industrial operation are dynamic with variable velocity and porosity in relation to position, analytical solutions are rare and limited to only very simple cases. Thus we also provide a numerical solution using Crank-Nicolson finite difference scheme. This solution is inherently stable as tested against a few cases published in the literature. However, it is anticipated that, for unconfined flow or non-constant flow-rate, traditional formulation should be applied.
Lattice Boltzmann Methods to Address Fundamental Boiling and Two-Phase Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uddin, Rizwan
2012-01-01
This report presents the progress made during the fourth (no cost extension) year of this three-year grant aimed at the development of a consistent Lattice Boltzmann formulation for boiling and two-phase flows. During the first year, a consistent LBM formulation for the simulation of a two-phase water-steam system was developed. Results of initial model validation in a range of thermo-dynamic conditions typical for Boiling Water Reactors (BWRs) were shown. Progress was made on several fronts during the second year. Most important of these included the simulation of the coalescence of two bubbles including the surface tension effects. Work during themore » third year focused on the development of a new lattice Boltzmann model, called the artificial interface lattice Boltzmann model (AILB model) for the 3 simulation of two-phase dynamics. The model is based on the principle of free energy minimization and invokes the Gibbs-Duhem equation in the formulation of non-ideal forcing function. This was reported in detail in the last progress report. Part of the efforts during the last (no-cost extension) year were focused on developing a parallel capability for the 2D as well as for the 3D codes developed in this project. This will be reported in the final report. Here we report the work carried out on testing the AILB model for conditions including the thermal effects. A simplified thermal LB model, based on the thermal energy distribution approach, was developed. The simplifications are made after neglecting the viscous heat dissipation and the work done by pressure in the original thermal energy distribution model. Details of the model are presented here, followed by a discussion of the boundary conditions, and then results for some two-phase thermal problems.« less
NASA Astrophysics Data System (ADS)
Geber, Thomas; Oshima, Chuhei
2012-08-01
Since ancient times, pure carbon materials have been familiar in human society—not only diamonds in jewellery and graphite in pencils, but also charcoal and coal which have been used for centuries as fuel for living and industry. Carbon fibers are stronger, tougher and lighter than steel and increase material efficiency because of their lower weight. Today, carbon fibers and related composite materials are used to make the frames of bicycles, cars and even airplane parts. The two-dimensional allotrope, now called graphene, is just a single layer of carbon atoms, locked together in a strongly bonded honeycomb lattice. In plane, graphene is stiffer than diamond, but out-of-plane it is soft, like rubber. It is virtually invisible, may conduct electricity (heat) better than copper and weighs next to nothing. Carbon compounds with two carbon atoms as a base, such as graphene, graphite or diamond, have isoelectronic sister compounds made of boron-nitrogen pairs: hexagonal and cubic boron nitride, with almost the same lattice constant. Although the two 2D sisters, graphene and h-BN, have the same number of valence electrons, their electronic properties are very different: freestanding h-BN is an insulator, while charge carriers in graphene are highly mobile. The past ten years have seen a great expansion in studies of single-layer and few-layer graphene. This activity has been concerned with the π electron transport in graphene, in electric and magnetic fields. More than 30 years ago, however, single-layer graphene and h-BN on solid surfaces were widely investigated. It was noted that they drastically changed the chemical reactivity of surfaces, and they were known to 'poison' heterogeneous catalysts, to passivate surfaces, to prevent oxidation of surfaces and to act as surfactants. Also, it was realized that the controlled growth of h-BN and graphene on substrates yields the formation of mismatch driven superstructures with peculiar template functionality on the nanometer scale. This special section contains interesting papers on graphene, h-BN and related 'honeycomb' compounds on solid surfaces, which are currently in development. Interfacial interaction strongly modifies the electronic and atomic structures of these overlayer systems and substrate surfaces. In addition, one can recognize a variety of growth phenomena by changing the surface and growth conditions, which are promising as regards fabricating those noble nanosystems. We have great pleasure in acknowledging the enthusiastic response and participation of our invited authors and their diligent preparation of the manuscripts. Ultrathin layers of graphene, h-BN and other honeycomb structures contents Ultrathin layers of graphene, h-BN and other honeycomb structuresThomas Geber and Chuhei Oshima Templating of arrays of Ru nanoclusters by monolayer graphene/Ru Moirés with different periodicitiesEli Sutter, Bin Wang, Peter Albrecht, Jayeeta Lahiri, Marie-Laure Bocquet and Peter Sutter Controllable p-doping of graphene on Ir(111) by chlorination with FeCl3N A Vinogradov, K A Simonov, A V Generalov, A S Vinogradov, D V Vyalikh, C Laubschat, N Mårtensson and A B Preobrajenski Optimizing long-range order, band gap, and group velocities for graphene on close-packed metal surfacesF D Natterer, S Rusponi, M Papagno, C Carbone and H Brune Epitaxial growth of graphene on transition metal surfaces: chemical vapor deposition versus liquid phase depositionSamuel Grandthyll, Stefan Gsell, Michael Weinl, Matthias Schreck, Stefan Hüfner and Frank Müller High-yield boron nitride nanosheets from 'chemical blowing': towards practical applications in polymer compositesXuebin Wang, Amir Pakdel, Chunyi Zhi, Kentaro Watanabe, Takashi Sekiguchi, Dmitri Golberg and Yoshio Bando BCx layers with honeycomb lattices on an NbB2(0001) surfaceChuhei Oshima Epitaxial growth of boron-doped graphene by thermal decomposition of B4CWataru Norimatsu, Koichiro Hirata, Yuta Yamamoto, Shigeo Arai and Michiko Kusunoki Mechanical exfoliation of epitaxial graphene on Ir(111) enabled by Br2 intercalationCharlotte Herbig, Markus Kaiser, Nedjma Bendiab, Stefan Schumacher, Daniel F Förster, Johann Coraux, Klaus Meerholz, Thomas Michely and Carsten Busse Low energy electron microscopy and photoemission electron microscopy investigation of grapheneK L Man and M S Altman Periodic overlayers and moiré patterns: theoretical studies of geometric propertiesKlaus Hermann Silicene structures on silver surfacesHanna Enriquez, Sébastien Vizzini, Abdelkader Kara, Boubekeur Lalmi and Hamid Oughaddou Contrast inversion of the h-BN nanomesh investigated by nc-AFM and Kelvin probe force microscopyS Koch, M Langer, S Kawai, E Meyer and Th Glatzel Probing the electronic structure and optical response of a graphene quantum disk supported on monolayer grapheneWu Zhou, Stephen J Pennycook and Juan-Carlos Idrobo Multi-oriented moiré superstructures of graphene on Ir(111): experimental observations and theoretical modelsLei Meng, Rongting Wu, Lizhi Zhang, Linfei Li, Shixuan Du, Yeliang Wang and H-J Gao The physics of epitaxial graphene on SiC(0001)H Kageshima, H Hibino and S Tanabe
On the peculiarities of LDA method in two-phase flows with high concentrations of particles
NASA Astrophysics Data System (ADS)
Poplavski, S. V.; Boiko, V. M.; Nesterov, A. U.
2016-10-01
Popular applications of laser Doppler anemometry (LDA) in gas dynamics are reviewed. It is shown that the most popular method cannot be used in supersonic flows and two-phase flows with high concentrations of particles. A new approach to implementation of the known LDA method based on direct spectral analysis, which offers better prospects for such problems, is presented. It is demonstrated that the method is suitable for gas-liquid jets. Owing to the progress in laser engineering, digital recording of spectra, and computer processing of data, the method is implemented at a higher technical level and provides new prospects of diagnostics of high-velocity dense two-phase flows.
NASA Technical Reports Server (NTRS)
Ukanwa, A. O.; Stermole, F. J.; Golden, J. O.
1972-01-01
Natural convection effects in phase change thermal control devices were studied. A mathematical model was developed to evaluate natural convection effects in a phase change test cell undergoing solidification. Although natural convection effects are minimized in flight spacecraft, all phase change devices are ground tested. The mathematical approach to the problem was to first develop a transient two-dimensional conduction heat transfer model for the solidification of a normal paraffin of finite geometry. Next, a transient two-dimensional model was developed for the solidification of the same paraffin by a combined conduction-natural-convection heat transfer model. Throughout the study, n-hexadecane (n-C16H34) was used as the phase-change material in both the theoretical and the experimental work. The models were based on the transient two-dimensional finite difference solutions of the energy, continuity, and momentum equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesneau, H.L.; Passman, F.J.; Daniels, D.
1995-05-01
Responding to feed-back from its retail outlet network, a major, vertically integrated petroleum company undertook to diagnose and remediate diesel and gasoline performance problems. Analysis of samples from tanks at refinery, distribution terminal and retail outlet sites established that uncontrolled microbial contamination was rampant throughout the distribution system. The company then developed and instituted a two-phase action plan. During Phase I, all tanks received corrective (shock) biocide treatment preceding mechanical tank cleaning and fuel polishing. An ongoing Phase II program currently includes routine sampling and analysis combined with periodic preventive biocide treatment. This paper describes the initial problem diagnosis, correctivemore » action plan and preventive program; recommending the Phase II program as a model for all companies involved with refining, distribution or retailing gasoline.« less
A novel approach to model the transient behavior of solid-oxide fuel cell stacks
NASA Astrophysics Data System (ADS)
Menon, Vikram; Janardhanan, Vinod M.; Tischer, Steffen; Deutschmann, Olaf
2012-09-01
This paper presents a novel approach to model the transient behavior of solid-oxide fuel cell (SOFC) stacks in two and three dimensions. A hierarchical model is developed by decoupling the temperature of the solid phase from the fluid phase. The solution of the temperature field is considered as an elliptic problem, while each channel within the stack is modeled as a marching problem. This paper presents the numerical model and cluster algorithm for coupling between the solid phase and fluid phase. For demonstration purposes, results are presented for a stack operated on pre-reformed hydrocarbon fuel. Transient response to load changes is studied by introducing step changes in cell potential and current. Furthermore, the effect of boundary conditions and stack materials on response time and internal temperature distribution is investigated.
Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids
NASA Astrophysics Data System (ADS)
Santos, J. E.; Savioli, G. B.
2018-04-01
Seismic waves traveling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency dependent P-wave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The P-wave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyze their effect on the mesoscopic-loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.
Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids
NASA Astrophysics Data System (ADS)
Santos, J. E.; Savioli, G. B.
2018-07-01
Seismic waves travelling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency-dependent Pwave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The Pwave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyse their effect on the mesoscopic loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.
Edgelist phase unwrapping algorithm for time series InSAR analysis.
Shanker, A Piyush; Zebker, Howard
2010-03-01
We present here a new integer programming formulation for phase unwrapping of multidimensional data. Phase unwrapping is a key problem in many coherent imaging systems, including time series synthetic aperture radar interferometry (InSAR), with two spatial and one temporal data dimensions. The minimum cost flow (MCF) [IEEE Trans. Geosci. Remote Sens. 36, 813 (1998)] phase unwrapping algorithm describes a global cost minimization problem involving flow between phase residues computed over closed loops. Here we replace closed loops by reliable edges as the basic construct, thus leading to the name "edgelist." Our algorithm has several advantages over current methods-it simplifies the representation of multidimensional phase unwrapping, it incorporates data from external sources, such as GPS, where available to better constrain the unwrapped solution, and it treats regularly sampled or sparsely sampled data alike. It thus is particularly applicable to time series InSAR, where data are often irregularly spaced in time and individual interferograms can be corrupted with large decorrelated regions. We show that, similar to the MCF network problem, the edgelist formulation also exhibits total unimodularity, which enables us to solve the integer program problem by using efficient linear programming tools. We apply our method to a persistent scatterer-InSAR data set from the creeping section of the Central San Andreas Fault and find that the average creep rate of 22 mm/Yr is constant within 3 mm/Yr over 1992-2004 but varies systematically with ground location, with a slightly higher rate in 1992-1998 than in 1999-2003.
Problem of the thermodynamic status of the mixed-layer minerals
Zen, E.-A.
1962-01-01
Minerals that show mixed layering, particularly with the component layers in random sequence, pose problems because they may behave thermodynamically as single phases or as polyphase aggregates. Two operational criteria are proposed for their distinction. The first scheme requires two samples of mixed-layer material which differ only in the proportions of the layers. If each of these two samples are allowed to equilibrate with the same suitably chosen monitoring solution, then the intensive parameters of the solution will be invariant if the mixed-layer sample is a polyphase aggregate, but not otherwise. The second scheme makes use of the fact that portions of many titration curves of clay minerals show constancy of the chemical activities of the components in the equilibrating solutions, suggesting phase separation. If such phase separation occurs for a mixed-layer material, then, knowing the number of independent components in the system, it should be possible to decide on the number of phases the mixed-layer material represents. Knowledge of the phase status of mixed-layer material is essential to the study of the equilibrium relations of mineral assemblages involving such material, because a given mixed-layer mineral will be plotted and treated differently on a phase diagram, depending on whether it is a single phase or a polyphase aggregate. Extension of the titration technique to minerals other than the mixed-layer type is possible. In particular, this method may be used to determine if cryptoperthites and peristerites are polyphase aggregates. In general, for any high-order phase separation, the method may be used to decide just at what point in this continuous process the system must be regarded operationally as a polyphase aggregate. ?? 1962.
The Photovolatic Manufacturing Technology project (PVMaT) after three years
NASA Astrophysics Data System (ADS)
Witt, C. Edwin; Mitchell, Richard L.; Thomas, Holly; Herwig, Lloyd O.
1994-08-01
The Photovoltaic Manufacturing Technology project (PVMaT) is a government/industry research and development (R&D) partnership involving joint efforts between the federal government (through the US Department of Energy (DOE)) and members of the US photovoltaic (PV) industry. The project's goal is to assist US industry in retaining and extending its world leadership role in the manufacture and commercial development of PV components and systems. PVMaT is being carried out in three separate phases, each designed to address separate R&D requirements for achieving PVMaT goals. Phase 1 was a problem identification phase of about 3 months duration. In Phase 1, the status and needs of the US PV manufacturing industry were identified, and the development of a Phase 2 procurement responsive to the industry's needs was begun. Phase 1 was completed in 1991. Problem solution began in 1992, under Phase 2A, when DOE awarded multiyear subcontracts. Technical accomplishments for PVMaT 2A are presented in this paper. Subcontracts were recently awarded for a second, overlapping, and similar process-specific solicitation (PVMaT 2B). The activities of these new subcontracts are also described. Two subcontracts presently comprise the Phase 3 effort. Phase 3 addresses R&D problems that are relatively common to a number of PV companies or the PV industry as a whole. A teamed research approach is being used to improve automated module manufacturing lines and encapsulation materials used in module manufacturing. The first year's work on these subcontracts is also described in this paper.
Heat transfer in condensing and evaporating two-component, two-phase flow inside a horizontal tube
NASA Astrophysics Data System (ADS)
Duval, W. M. B.
The effect of adding a small amount of oil to condensing and evaporation refrigerant R-12 following inside a horizontal tube is investigated both experimentally and analytically. Analytically, the problem is addressed assuming annular flow inside the tube. The analysis is based on the momentum and energy equations with the heat transfer in the liquid film determined using the Reynolds analogy between turbulent heat and momentum transfer. Two separate methods are developed for extending this model to include the effects of the two-component nature of the flow. Experimentally, two-phase local heat transfer measurements and flow pattern visualization are made for both condensation and evaporation. From the measurements, correlations are developed to predict two-phase heat transfer for the range of 0%, 2% and 5% oil fraction by mass flow.
An adaptive method for a model of two-phase reactive flow on overlapping grids
NASA Astrophysics Data System (ADS)
Schwendeman, D. W.
2008-11-01
A two-phase model of heterogeneous explosives is handled computationally by a new numerical approach that is a modification of the standard Godunov scheme. The approach generates well-resolved and accurate solutions using adaptive mesh refinement on overlapping grids, and treats rationally the nozzling terms that render the otherwise hyperbolic model incapable of a conservative representation. The evolution and structure of detonation waves for a variety of one and two-dimensional configurations will be discussed with a focus given to problems of detonation diffraction and failure.
Correct numerical simulation of a two-phase coolant
NASA Astrophysics Data System (ADS)
Kroshilin, A. E.; Kroshilin, V. E.
2016-02-01
Different models used in calculating flows of a two-phase coolant are analyzed. A system of differential equations describing the flow is presented; the hyperbolicity and stability of stationary solutions of the system is studied. The correctness of the Cauchy problem is considered. The models' ability to describe the following flows is analyzed: stable bubble and gas-droplet flows; stable flow with a level such that the bubble and gas-droplet flows are observed under and above it, respectively; and propagation of a perturbation of the phase concentration for the bubble and gas-droplet media. The solution of the problem about the breakdown of an arbitrary discontinuity has been constructed. Characteristic times of the development of an instability at different parameters of the flow are presented. Conditions at which the instability does not make it possible to perform the calculation are determined. The Riemann invariants for the nonlinear problem under consideration have been constructed. Numerical calculations have been performed for different conditions. The influence of viscosity on the structure of the discontinuity front is studied. Advantages of divergent equations are demonstrated. It is proven that a model used in almost all known investigating thermohydraulic programs, both in Russia and abroad, has significant disadvantages; in particular, it can lead to unstable solutions, which makes it necessary to introduce smoothing mechanisms and a very small step for describing regimes with a level. This does not allow one to use efficient numerical schemes for calculating the flow of two-phase currents. A possible model free from the abovementioned disadvantages is proposed.
NASA Astrophysics Data System (ADS)
Thienel, Lee; Stouffer, Chuck
1995-09-01
This paper presents an overview of the Cryogenic Test Bed (CTB) experiments including experiment results, integration techniques used, and lessons learned during integration, test and flight phases of the Cryogenic Heat Pipe Flight Experiment (STS-53) and the Cryogenic Two Phase Flight Experiment (OAST-2, STS-62). We will also discuss the Cryogenic Flexible Diode Heat Pipe (CRYOFD) experiment which will fly in the 1996/97 time frame and the fourth flight of the CTB which will fly in the 1997/98 time frame. The two missions tested two oxygen axially grooved heat pipes, a nitrogen fibrous wick heat pipe and a 2-methylpentane phase change material thermal storage unit. Techniques were found for solving problems with vibration from the cryo-collers transmitted through the compressors and the cold heads, and mounting the heat pipe without introducing parasitic heat leaks. A thermally conductive interface material was selected that would meet the requirements and perform over the temperature range of 55 to 300 K. Problems are discussed with the bi-metallic thermostats used for heater circuit protection and the S-Glass suspension straps originally used to secure the BETSU PCM in the CRYOTP mission. Flight results will be compared to 1-g test results and differences will be discussed.
NASA Technical Reports Server (NTRS)
Thienel, Lee; Stouffer, Chuck
1995-01-01
This paper presents an overview of the Cryogenic Test Bed (CTB) experiments including experiment results, integration techniques used, and lessons learned during integration, test and flight phases of the Cryogenic Heat Pipe Flight Experiment (STS-53) and the Cryogenic Two Phase Flight Experiment (OAST-2, STS-62). We will also discuss the Cryogenic Flexible Diode Heat Pipe (CRYOFD) experiment which will fly in the 1996/97 time frame and the fourth flight of the CTB which will fly in the 1997/98 time frame. The two missions tested two oxygen axially grooved heat pipes, a nitrogen fibrous wick heat pipe and a 2-methylpentane phase change material thermal storage unit. Techniques were found for solving problems with vibration from the cryo-collers transmitted through the compressors and the cold heads, and mounting the heat pipe without introducing parasitic heat leaks. A thermally conductive interface material was selected that would meet the requirements and perform over the temperature range of 55 to 300 K. Problems are discussed with the bi-metallic thermostats used for heater circuit protection and the S-Glass suspension straps originally used to secure the BETSU PCM in the CRYOTP mission. Flight results will be compared to 1-g test results and differences will be discussed.
1984-10-01
8 iii "i t-. Table of Contents (cont.) Section Title Page -APPENDIX A Acronyms, Definitions, Nomenclature and Units of Measure B Scope of Work, Task...Identification/Records Search Phase II - Problem Confirmation and Quantification Phase III - Technology Base Development Phase IV - Corrective Action Only...Problem Identification/Records Search Phase II - Problem Confirmation and Quantification Phase III - Technology Base Development Phase IV - Corrective
Fast metabolite identification with Input Output Kernel Regression.
Brouard, Céline; Shen, Huibin; Dührkop, Kai; d'Alché-Buc, Florence; Böcker, Sebastian; Rousu, Juho
2016-06-15
An important problematic of metabolomics is to identify metabolites using tandem mass spectrometry data. Machine learning methods have been proposed recently to solve this problem by predicting molecular fingerprint vectors and matching these fingerprints against existing molecular structure databases. In this work we propose to address the metabolite identification problem using a structured output prediction approach. This type of approach is not limited to vector output space and can handle structured output space such as the molecule space. We use the Input Output Kernel Regression method to learn the mapping between tandem mass spectra and molecular structures. The principle of this method is to encode the similarities in the input (spectra) space and the similarities in the output (molecule) space using two kernel functions. This method approximates the spectra-molecule mapping in two phases. The first phase corresponds to a regression problem from the input space to the feature space associated to the output kernel. The second phase is a preimage problem, consisting in mapping back the predicted output feature vectors to the molecule space. We show that our approach achieves state-of-the-art accuracy in metabolite identification. Moreover, our method has the advantage of decreasing the running times for the training step and the test step by several orders of magnitude over the preceding methods. celine.brouard@aalto.fi Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Fast metabolite identification with Input Output Kernel Regression
Brouard, Céline; Shen, Huibin; Dührkop, Kai; d'Alché-Buc, Florence; Böcker, Sebastian; Rousu, Juho
2016-01-01
Motivation: An important problematic of metabolomics is to identify metabolites using tandem mass spectrometry data. Machine learning methods have been proposed recently to solve this problem by predicting molecular fingerprint vectors and matching these fingerprints against existing molecular structure databases. In this work we propose to address the metabolite identification problem using a structured output prediction approach. This type of approach is not limited to vector output space and can handle structured output space such as the molecule space. Results: We use the Input Output Kernel Regression method to learn the mapping between tandem mass spectra and molecular structures. The principle of this method is to encode the similarities in the input (spectra) space and the similarities in the output (molecule) space using two kernel functions. This method approximates the spectra-molecule mapping in two phases. The first phase corresponds to a regression problem from the input space to the feature space associated to the output kernel. The second phase is a preimage problem, consisting in mapping back the predicted output feature vectors to the molecule space. We show that our approach achieves state-of-the-art accuracy in metabolite identification. Moreover, our method has the advantage of decreasing the running times for the training step and the test step by several orders of magnitude over the preceding methods. Availability and implementation: Contact: celine.brouard@aalto.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307628
Advancing RF pulse design using an open-competition format: Report from the 2015 ISMRM challenge.
Grissom, William A; Setsompop, Kawin; Hurley, Samuel A; Tsao, Jeffrey; Velikina, Julia V; Samsonov, Alexey A
2017-10-01
To advance the best solutions to two important RF pulse design problems with an open head-to-head competition. Two sub-challenges were formulated in which contestants competed to design the shortest simultaneous multislice (SMS) refocusing pulses and slice-selective parallel transmission (pTx) excitation pulses, subject to realistic hardware and safety constraints. Short refocusing pulses are needed for spin echo SMS imaging at high multiband factors, and short slice-selective pTx pulses are needed for multislice imaging in ultra-high field MRI. Each sub-challenge comprised two phases, in which the first phase posed problems with a low barrier of entry, and the second phase encouraged solutions that performed well in general. The Challenge ran from October 2015 to May 2016. The pTx Challenge winners developed a spokes pulse design method that combined variable-rate selective excitation with an efficient method to enforce SAR constraints, which achieved 10.6 times shorter pulse durations than conventional approaches. The SMS Challenge winners developed a time-optimal control multiband pulse design algorithm that achieved 5.1 times shorter pulse durations than conventional approaches. The Challenge led to rapid step improvements in solutions to significant problems in RF excitation for SMS imaging and ultra-high field MRI. Magn Reson Med 78:1352-1361, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Zhao, Yingfeng; Liu, Sanyang
2016-01-01
We present a practical branch and bound algorithm for globally solving generalized linear multiplicative programming problem with multiplicative constraints. To solve the problem, a relaxation programming problem which is equivalent to a linear programming is proposed by utilizing a new two-phase relaxation technique. In the algorithm, lower and upper bounds are simultaneously obtained by solving some linear relaxation programming problems. Global convergence has been proved and results of some sample examples and a small random experiment show that the proposed algorithm is feasible and efficient.
Improvement in social-interpersonal functioning after cognitive therapy for recurrent depression
VITTENGL, J. R.; CLARK, L. A.; JARRETT, R. B.
2005-01-01
Background. Cognitive therapy reduces depressive symptoms of major depressive disorder, but little is known about concomitant reduction in social-interpersonal dysfunction. Method. We evaluated social-interpersonal functioning (self-reported social adjustment, interpersonal problems and dyadic adjustment) and depressive symptoms (two self-report and two clinician scales) in adult outpatients (n=156) with recurrent major depressive disorder at several points during a 20-session course of acute phase cognitive therapy. Consenting acute phase responders (n=84) entered a 2-year follow-up phase, which included an 8-month experimental trial comparing continuation phase cognitive therapy to assessment-only control. Results. Social-interpersonal functioning improved after acute phase cognitive therapy (dyadic adjustment d=0.47; interpersonal problems d=0.91; social adjustment d=1.19), but less so than depressive symptoms (d=1.55). Improvement in depressive symptoms and social-interpersonal functioning were moderately to highly correlated (r=0.39–0.72). Improvement in depressive symptoms was partly independent of social-interpersonal functioning (r=0.55–0.81), but improvement in social-interpersonal functioning independent of change in depressive symptoms was not significant (r=0.01–0.06). In acute phase responders, continuation phase therapy did not further enhance social-interpersonal functioning, but improvements in social-interpersonal functioning were maintained through the follow-up. Conclusions. Social-interpersonal functioning is improved after acute phase cognitive therapy and maintained in responders over 2 years. Improvement in social-interpersonal functioning is largely accounted for by decreases in depressive symptoms. PMID:15099419
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller, Florian, E-mail: florian.mueller@sam.math.ethz.ch; Jenny, Patrick, E-mail: jenny@ifd.mavt.ethz.ch; Meyer, Daniel W., E-mail: meyerda@ethz.ch
2013-10-01
Monte Carlo (MC) is a well known method for quantifying uncertainty arising for example in subsurface flow problems. Although robust and easy to implement, MC suffers from slow convergence. Extending MC by means of multigrid techniques yields the multilevel Monte Carlo (MLMC) method. MLMC has proven to greatly accelerate MC for several applications including stochastic ordinary differential equations in finance, elliptic stochastic partial differential equations and also hyperbolic problems. In this study, MLMC is combined with a streamline-based solver to assess uncertain two phase flow and Buckley–Leverett transport in random heterogeneous porous media. The performance of MLMC is compared tomore » MC for a two dimensional reservoir with a multi-point Gaussian logarithmic permeability field. The influence of the variance and the correlation length of the logarithmic permeability on the MLMC performance is studied.« less
Yoshida, Hiroaki; Kobayashi, Takayuki; Hayashi, Hidemitsu; Kinjo, Tomoyuki; Washizu, Hitoshi; Fukuzawa, Kenji
2014-07-01
A boundary scheme in the lattice Boltzmann method (LBM) for the convection-diffusion equation, which correctly realizes the internal boundary condition at the interface between two phases with different transport properties, is presented. The difficulty in satisfying the continuity of flux at the interface in a transient analysis, which is inherent in the conventional LBM, is overcome by modifying the collision operator and the streaming process of the LBM. An asymptotic analysis of the scheme is carried out in order to clarify the role played by the adjustable parameters involved in the scheme. As a result, the internal boundary condition is shown to be satisfied with second-order accuracy with respect to the lattice interval, if we assign appropriate values to the adjustable parameters. In addition, two specific problems are numerically analyzed, and comparison with the analytical solutions of the problems numerically validates the proposed scheme.
NASA Astrophysics Data System (ADS)
Parker, Robert L.; Booker, John R.
1996-12-01
The properties of the log of the admittance in the complex frequency plane lead to an integral representation for one-dimensional magnetotelluric (MT) apparent resistivity and impedance phase similar to that found previously for complex admittance. The inverse problem of finding a one-dimensional model for MT data can then be solved using the same techniques as for complex admittance, with similar results. For instance, the one-dimensional conductivity model that minimizes the χ2 misfit statistic for noisy apparent resistivity and phase is a series of delta functions. One of the most important applications of the delta function solution to the inverse problem for complex admittance has been answering the question of whether or not a given set of measurements is consistent with the modeling assumption of one-dimensionality. The new solution allows this test to be performed directly on standard MT data. Recently, it has been shown that induction data must pass the same one-dimensional consistency test if they correspond to the polarization in which the electric field is perpendicular to the strike of two-dimensional structure. This greatly magnifies the utility of the consistency test. The new solution also allows one to compute the upper and lower bounds permitted on phase or apparent resistivity at any frequency given a collection of MT data. Applications include testing the mutual consistency of apparent resistivity and phase data and placing bounds on missing phase or resistivity data. Examples presented demonstrate detection and correction of equipment and processing problems and verification of compatibility with two-dimensional B-polarization for MT data after impedance tensor decomposition and for continuous electromagnetic profiling data.
SPACE PROPULSION SYSTEM PHASED-MISSION PROBABILITY ANALYSIS USING CONVENTIONAL PRA METHODS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis Smith; James Knudsen
As part of a series of papers on the topic of advance probabilistic methods, a benchmark phased-mission problem has been suggested. This problem consists of modeling a space mission using an ion propulsion system, where the mission consists of seven mission phases. The mission requires that the propulsion operate for several phases, where the configuration changes as a function of phase. The ion propulsion system itself consists of five thruster assemblies and a single propellant supply, where each thruster assembly has one propulsion power unit and two ion engines. In this paper, we evaluate the probability of mission failure usingmore » the conventional methodology of event tree/fault tree analysis. The event tree and fault trees are developed and analyzed using Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE). While the benchmark problem is nominally a "dynamic" problem, in our analysis the mission phases are modeled in a single event tree to show the progression from one phase to the next. The propulsion system is modeled in fault trees to account for the operation; or in this case, the failure of the system. Specifically, the propulsion system is decomposed into each of the five thruster assemblies and fed into the appropriate N-out-of-M gate to evaluate mission failure. A separate fault tree for the propulsion system is developed to account for the different success criteria of each mission phase. Common-cause failure modeling is treated using traditional (i.e., parametrically) methods. As part of this paper, we discuss the overall results in addition to the positive and negative aspects of modeling dynamic situations with non-dynamic modeling techniques. One insight from the use of this conventional method for analyzing the benchmark problem is that it requires significant manual manipulation to the fault trees and how they are linked into the event tree. The conventional method also requires editing the resultant cut sets to obtain the correct results. While conventional methods may be used to evaluate a dynamic system like that in the benchmark, the level of effort required may preclude its use on real-world problems.« less
A simple and versatile phase detector for heterodyne interferometers
NASA Astrophysics Data System (ADS)
Mlynek, A.; Faugel, H.; Eixenberger, H.; Pautasso, G.; Sellmair, G.
2017-02-01
The measurement of the relative phase of two sinusoidal electrical signals is a frequently encountered task in heterodyne interferometry, but also occurs in many other applications. Especially in interferometry, multi-radian detectors are often required, which track the temporal evolution of the phase difference and are able to register phase changes that exceed 2π. While a large variety of solutions to this problem is already known, we present an alternative approach, which pre-processes the signals with simple analog circuitry and digitizes two resulting voltages with an analog-to-digital converter (ADC), whose sampling frequency can be far below the frequency of the sinusoidal signals. Phase reconstruction is finally carried out by software. The main advantage of this approach is its simplicity, using only few low-cost hardware components and a standard 2-channel ADC with low performance requirements. We present an application on the two-color interferometer of the ASDEX Upgrade tokamak, where the relative phase of 40 MHz sinusoids is measured.
Experimental determination of pore shapes using phase retrieval from q -space NMR diffraction
NASA Astrophysics Data System (ADS)
Demberg, Kerstin; Laun, Frederik Bernd; Bertleff, Marco; Bachert, Peter; Kuder, Tristan Anselm
2018-05-01
This paper presents an approach to solving the phase problem in nuclear magnetic resonance (NMR) diffusion pore imaging, a method that allows imaging the shape of arbitrary closed pores filled with an NMR-detectable medium for investigation of the microstructure of biological tissue and porous materials. Classical q -space imaging composed of two short diffusion-encoding gradient pulses yields, analogously to diffraction experiments, the modulus squared of the Fourier transform of the pore image which entails an inversion problem: An unambiguous reconstruction of the pore image requires both magnitude and phase. Here the phase information is recovered from the Fourier modulus by applying a phase retrieval algorithm. This allows omitting experimentally challenging phase measurements using specialized temporal gradient profiles. A combination of the hybrid input-output algorithm and the error reduction algorithm was used with dynamically adapting support (shrinkwrap extension). No a priori knowledge on the pore shape was fed to the algorithm except for a finite pore extent. The phase retrieval approach proved successful for simulated data with and without noise and was validated in phantom experiments with well-defined pores using hyperpolarized xenon gas.
Experimental determination of pore shapes using phase retrieval from q-space NMR diffraction.
Demberg, Kerstin; Laun, Frederik Bernd; Bertleff, Marco; Bachert, Peter; Kuder, Tristan Anselm
2018-05-01
This paper presents an approach to solving the phase problem in nuclear magnetic resonance (NMR) diffusion pore imaging, a method that allows imaging the shape of arbitrary closed pores filled with an NMR-detectable medium for investigation of the microstructure of biological tissue and porous materials. Classical q-space imaging composed of two short diffusion-encoding gradient pulses yields, analogously to diffraction experiments, the modulus squared of the Fourier transform of the pore image which entails an inversion problem: An unambiguous reconstruction of the pore image requires both magnitude and phase. Here the phase information is recovered from the Fourier modulus by applying a phase retrieval algorithm. This allows omitting experimentally challenging phase measurements using specialized temporal gradient profiles. A combination of the hybrid input-output algorithm and the error reduction algorithm was used with dynamically adapting support (shrinkwrap extension). No a priori knowledge on the pore shape was fed to the algorithm except for a finite pore extent. The phase retrieval approach proved successful for simulated data with and without noise and was validated in phantom experiments with well-defined pores using hyperpolarized xenon gas.
The Brain Physics: Multi Laser Beam Interaction with the Brain Topions (the Brain Neurocenters)
NASA Astrophysics Data System (ADS)
Stefan, V. Alexander
2015-03-01
A novel method for the treatment of the neurological diseases is proposed. The multiple-energy laser photons (the blue scanning photons and ultraviolet focusing photons) interact with the specific DNA molecules within the topion (such as Parkinson's and Alzheimer's brain topion) via the matching of laser frequency with the oscillation eigen-frequency of a particular molecule within the DNA. In this way, the corrupt molecules (the structure of molecules) can be manipulated so as to treat (eliminate) the neurological disease. Supported by Nikola Tesla Labs, Stefan University.
2015 Laser Diagnostics in Combustion Gordon Research Conference and Gordon Research Seminar
2015-10-20
34Ultra-Short Nonlinear Sensors : Exploiting Electronic Resonances" 9:50 am - 10:00 am Discussion 10:00 am - 10:30 am Coffee Break 10:30 am - 11:10 am...Chair 7:30 pm - 9:30 pm Advances in Sources and Sensors Discussion Leader: Jacqueline O’Connor (Pennsylvania State University, USA) 7:30 pm - 7:40...Cameras" 9:15 pm - 9:30 pm Discussion Thursday 7:30 am - 8:30 am Breakfast 9:00 am - 12:30 pm Soot Particle Detection Discussion Leader: Stefan Will
Coupled Structural, Thermal, Phase-change and Electromagnetic Analysis for Superconductors, Volume 2
NASA Technical Reports Server (NTRS)
Felippa, C. A.; Farhat, C.; Park, K. C.; Militello, C.; Schuler, J. J.
1996-01-01
Described are the theoretical development and computer implementation of reliable and efficient methods for the analysis of coupled mechanical problems that involve the interaction of mechanical, thermal, phase-change and electromag subproblems. The focus application has been the modeling of superconductivity and associated quantum-state phase change phenomena. In support of this objective the work has addressed the following issues: (1) development of variational principles for finite elements, (2) finite element modeling of the electromagnetic problem, (3) coupling of thermel and mechanical effects, and (4) computer implementation and solution of the superconductivity transition problem. The main accomplishments have been: (1) the development of the theory of parametrized and gauged variational principles, (2) the application of those principled to the construction of electromagnetic, thermal and mechanical finite elements, and (3) the coupling of electromagnetic finite elements with thermal and superconducting effects, and (4) the first detailed finite element simulations of bulk superconductors, in particular the Meissner effect and the nature of the normal conducting boundary layer. The theoretical development is described in two volumes. Volume 1 describes mostly formulation specific problems. Volume 2 describes generalization of those formulations.
Quantitative hard x-ray phase contrast imaging of micropipes in SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohn, V. G.; Argunova, T. S.; Je, J. H., E-mail: jhje@postech.ac.kr
2013-12-15
Peculiarities of quantitative hard x-ray phase contrast imaging of micropipes in SiC are discussed. The micropipe is assumed as a hollow cylinder with an elliptical cross section. The major and minor diameters can be restored using the least square fitting procedure by comparing the experimental data, i.e. the profile across the micropipe axis, with those calculated based on phase contrast theory. It is shown that one projection image gives an information which does not allow a complete determination of the elliptical cross section, if an orientation of micropipe is not known. Another problem is a weak accuracy in estimating themore » diameters, partly because of using pink synchrotron radiation, which is necessary because a monochromatic beam intensity is not sufficient to reveal the weak contrast from a very small object. The general problems of accuracy in estimating the two diameters using the least square procedure are discussed. Two experimental examples are considered to demonstrate small as well as modest accuracies in estimating the diameters.« less
Dynamic remapping decisions in multi-phase parallel computations
NASA Technical Reports Server (NTRS)
Nicol, D. M.; Reynolds, P. F., Jr.
1986-01-01
The effectiveness of any given mapping of workload to processors in a parallel system is dependent on the stochastic behavior of the workload. Program behavior is often characterized by a sequence of phases, with phase changes occurring unpredictably. During a phase, the behavior is fairly stable, but may become quite different during the next phase. Thus a workload assignment generated for one phase may hinder performance during the next phase. We consider the problem of deciding whether to remap a paralled computation in the face of uncertainty in remapping's utility. Fundamentally, it is necessary to balance the expected remapping performance gain against the delay cost of remapping. This paper treats this problem formally by constructing a probabilistic model of a computation with at most two phases. We use stochastic dynamic programming to show that the remapping decision policy which minimizes the expected running time of the computation has an extremely simple structure: the optimal decision at any step is followed by comparing the probability of remapping gain against a threshold. This theoretical result stresses the importance of detecting a phase change, and assessing the possibility of gain from remapping. We also empirically study the sensitivity of optimal performance to imprecise decision threshold. Under a wide range of model parameter values, we find nearly optimal performance if remapping is chosen simply when the gain probability is high. These results strongly suggest that except in extreme cases, the remapping decision problem is essentially that of dynamically determining whether gain can be achieved by remapping after a phase change; precise quantification of the decision model parameters is not necessary.
An acoustic-convective splitting-based approach for the Kapila two-phase flow model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eikelder, M.F.P. ten, E-mail: m.f.p.teneikelder@tudelft.nl; Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven; Daude, F.
In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splittingmore » approach. The results are in good agreement with reference results and exact solutions.« less
Athari, Zeinab-Sadat; Sharif, Sayyed-Mostafa; Nasr, Ahmad Reza; Nematbakhsh, Mehdi
2013-01-01
Critical thinking is an important outcome criterion of higher education in any discipline. Medical and paramedical students always encounter with many new problems in clinical settings and medicinal laboratory, and critical thinking is an essential skill in obtaining a better approach for problem solving. We performed a pre-and post-test to evaluate the change of critical thinking skills in medical sciences students who enrolled in Isfahan University of Medical Sciences in Iran during the academic years 2008-2010. In a longitudinal design study, the critical thinking skills were compared in medical sciences students in two sequential semesters using the California Critical Thinking Skills Test. The test is divided into two parts (parts 1 and 2), including 17 items in each part. Based on proportional stratified sampling, a groups of students (group 1, n=159) were selected from the university population, who enrolled in medicine, pharmacy, nursing, and rehabilitation colleges. The students in group 1 were asked to complete the part 1 of the test (phase I). After one semester, another group (group 2, n=138) from the same population was randomly selected, and they were asked to complete the part two (phase II). The students' demographic data also were recorded. The California critical thinking skills test was translated and it validity and reliability were approved before. No significant difference was observed between the two groups in the demographic data. The students critical thinking scores in phase II significantly reduced in comparison with phase 1 (p<0.05). The phase II scores in subdivisions of analysis, inference, inductive reasoning, and deductive reasoning also failed to demonstrate improvement. It seems curriculum reform is necessary to improve the students' critical thinking.
[Diagnostic difficulties in encephalitis: two case reports].
Garlicki, A; Dereszak-Kozanecka, E; Pietruszewski, K; Krukowiecki, J
1997-01-01
The differential diagnosis of psychiatric symptoms in encephalitis, especially in the early phase of the disease may be very difficult. It is particularly hard to distinguish it from the classic psychosis. The diagnostic problems have been presented on the basis of analysis of two case reports of the acute encephalitis in young persons. The presence of fever and pathological changes in the CSF were the most important indicators that helped to establish the diagnosis of encephalitis during the phase of acute psychopathological disorders.
Reduced Gravity Gas and Liquid Flows: Simple Data for Complex Problems
NASA Technical Reports Server (NTRS)
McQuillen, John; Motil, Brian
2001-01-01
While there have been many studies for two-phase flow through straight cylindrical tubes, more recently, a new group of studies have emerged that examine two-phase flow through non-straight, non-cylindrical geometries, including expansions, contractions, tees, packed beds and cyclonic separation devices. Although these studies are still, relatively speaking, in their infancy, they have provided valuable information regarding the importance of the flow momentum, and the existence of liquid dryout due to sharp comers in microgravity.
Traveling salesman problem with a center.
Lipowski, Adam; Lipowska, Dorota
2005-06-01
We study a traveling salesman problem where the path is optimized with a cost function that includes its length L as well as a certain measure C of its distance from the geometrical center of the graph. Using simulated annealing (SA) we show that such a problem has a transition point that separates two phases differing in the scaling behavior of L and C, in efficiency of SA, and in the shape of minimal paths.
Theoretical Studies of the Kinetics of First-Order Phase Transitions.
NASA Astrophysics Data System (ADS)
Zheng, Qiang
This thesis involves theoretical studies of the kinetics of orderings in three classes of systems. The first class involves problems of phase separation in which the order parameter is conserved, such as occurs in the binary alloy Al-Zn. A theory is developed for the late stages of phase separation in the droplet regime for two -dimensional systems, namely, Ostwald ripening in two dimensions. The theory considers droplet correlations, which was neglected before, by a proper treatment of the screening effect of the correlations. This correlation effect is found that it does not alert the scaling features of phase separation, but significantly changes the shape of droplet-size distribution function. Further experiments and computer simulations are needed before this long-time subject may be closed. A second class of problem involves a study of the finite-size effects on domain growth described by the Allen-Cahn dynamics. Based on a theoretical approach of Ohta, Jasnow, and Kawasaki the explicit scaling functions for the scattering intensity for hypercubes and films are obtained. These results are for the cases in which the order-parameter is not conserved, such as in an order-disorder transition in alloys. These studies will be relevant to the experimental and computer simulation research projects currently being carried out in the United States and Europe. The last class of problems involves orderings in strong correlated systems, namely, the growth of Breath Figures. A special feature of this class of problems is that the coalescence effect. A theoretical model is proposed which can handle the two growth mechanisms, the individual droplet growth and coalescence simultaneously. Under certain approximations, the droplet-size distribution function is obtained analytically, and is in qualitative agreement with computer simulations. Our model also suggests that there may be an interesting relationship between the growth of Breath Figures and a geometric structure (ultrametricity) of general complex systems.
Phase-space finite elements in a least-squares solution of the transport equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drumm, C.; Fan, W.; Pautz, S.
2013-07-01
The linear Boltzmann transport equation is solved using a least-squares finite element approximation in the space, angular and energy phase-space variables. The method is applied to both neutral particle transport and also to charged particle transport in the presence of an electric field, where the angular and energy derivative terms are handled with the energy/angular finite elements approximation, in a manner analogous to the way the spatial streaming term is handled. For multi-dimensional problems, a novel approach is used for the angular finite elements: mapping the surface of a unit sphere to a two-dimensional planar region and using a meshingmore » tool to generate a mesh. In this manner, much of the spatial finite-elements machinery can be easily adapted to handle the angular variable. The energy variable and the angular variable for one-dimensional problems make use of edge/beam elements, also building upon the spatial finite elements capabilities. The methods described here can make use of either continuous or discontinuous finite elements in space, angle and/or energy, with the use of continuous finite elements resulting in a smaller problem size and the use of discontinuous finite elements resulting in more accurate solutions for certain types of problems. The work described in this paper makes use of continuous finite elements, so that the resulting linear system is symmetric positive definite and can be solved with a highly efficient parallel preconditioned conjugate gradients algorithm. The phase-space finite elements capability has been built into the Sceptre code and applied to several test problems, including a simple one-dimensional problem with an analytic solution available, a two-dimensional problem with an isolated source term, showing how the method essentially eliminates ray effects encountered with discrete ordinates, and a simple one-dimensional charged-particle transport problem in the presence of an electric field. (authors)« less
NASA Astrophysics Data System (ADS)
Reza, M.; Ibrahim, M.; Rahayu, Y. S.
2018-01-01
This research aims to develop problem-based learning oriented teaching materials to improve students’ mastery of concept and critical thinking skill. Its procedure was divided into two phases; developmental phase and experimental phase. This developmental research used Four-D Model. However, within this research, the process of development would not involve the last stages, which is disseminate. The teaching learning materials which were developed consist of lesson plan, student handbook, student worksheet, achievement test and critical thinking skill test. The experimental phase employs a research design called one group pretest-posttest design. Results show that the validity of the teaching materials which were developed was good and revealed the enhancement of students’ activities with positive response to the teaching learning process. Furthermore, the learning materials improve the students’ mastery of concept and critical thinking skill.
The quantum-field renormalization group in the problem of a growing phase boundary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonov, N.V.; Vasil`ev, A.N.
1995-09-01
Within the quantum-field renormalization-group approach we examine the stochastic equation discussed by S.I. Pavlik in describing a randomly growing phase boundary. We show that, in contrast to Pavlik`s assertion, the model is not multiplicatively renormalizable and that its consistent renormalization-group analysis requires introducing an infinite number of counterterms and the respective coupling constants ({open_quotes}charge{close_quotes}). An explicit calculation in the one-loop approximation shows that a two-dimensional surface of renormalization-group points exits in the infinite-dimensional charge space. If the surface contains an infrared stability region, the problem allows for scaling with the nonuniversal critical dimensionalities of the height of the phase boundarymore » and time, {delta}{sub h} and {delta}{sub t}, which satisfy the exact relationship 2 {delta}{sub h}= {delta}{sub t} + d, where d is the dimensionality of the phase boundary. 23 refs., 1 tab.« less
Zero-temperature quantum annealing bottlenecks in the spin-glass phase.
Knysh, Sergey
2016-08-05
A promising approach to solving hard binary optimization problems is quantum adiabatic annealing in a transverse magnetic field. An instantaneous ground state-initially a symmetric superposition of all possible assignments of N qubits-is closely tracked as it becomes more and more localized near the global minimum of the classical energy. Regions where the energy gap to excited states is small (for instance at the phase transition) are the algorithm's bottlenecks. Here I show how for large problems the complexity becomes dominated by O(log N) bottlenecks inside the spin-glass phase, where the gap scales as a stretched exponential. For smaller N, only the gap at the critical point is relevant, where it scales polynomially, as long as the phase transition is second order. This phenomenon is demonstrated rigorously for the two-pattern Gaussian Hopfield model. Qualitative comparison with the Sherrington-Kirkpatrick model leads to similar conclusions.
DNS study of speed of sound in two-phase flows with phase change
NASA Astrophysics Data System (ADS)
Fu, Kai; Deng, Xiaolong
2017-11-01
Heat transfer through pipe flow is important for the safety of thermal power plants. Normally it is considered incompressible. However, in some conditions compressibility effects could deteriorate the heat transfer efficiency and even result in pipe rupture, especially when there is obvious phase change, due to the much lower sound speed in liquid-gas mixture flows. Based on the stratified multiphase flow model (Chang and Liou, JCP 2007), we present a new approach to simulate the sound speed in 3-D compressible two-phase dispersed flows, in which each face is divided into gas-gas, gas-liquid, and liquid-liquid parts via reconstruction by volume fraction, and fluxes are calculated correspondingly. Applying it to well-distributed air-water bubbly flows, comparing with the experiment measurements in air water mixture (Karplus, JASA 1957), the effects of adiabaticity, viscosity, and isothermality are examined. Under viscous and isothermal condition, the simulation results match the experimental ones very well, showing the DNS study with current method is an effective way for the sound speed of complex two-phase dispersed flows. Including the two-phase Riemann solver with phase change (Fechter et al., JCP 2017), more complex problems can be numerically studied.
CTH Implementation of a Two-Phase Material Model With Strength: Application to Porous Materials
2012-07-01
he worked in the Lavrentyev Institute of Hydrodynamics (Russian Academy of Science) in the area of constitutive modelling for problems of high...velocity impact. Anatoly obtained a PhD in Physics and Mathematics from the Institute of Hydrodynamics in 1985. In 1996-1998 he worked in a private...silica in the present consideration. Further work is planned to account for a phase transition using the three-phase modelling approach [1]. In the
Heat transfer of phase-change materials in two-dimensional cylindrical coordinates
NASA Technical Reports Server (NTRS)
Labdon, M. B.; Guceri, S. I.
1981-01-01
Two-dimensional phase-change problem is numerically solved in cylindrical coordinates (r and z) by utilizing two Taylor series expansions for the temperature distributions in the neighborhood of the interface location. These two expansions form two polynomials in r and z directions. For the regions sufficiently away from the interface the temperature field equations are numerically solved in the usual way and the results are coupled with the polynomials. The main advantages of this efficient approach include ability to accept arbitrarily time dependent boundary conditions of all types and arbitrarily specified initial temperature distributions. A modified approach using a single Taylor series expansion in two variables is also suggested.
Learning with incomplete information and the mathematical structure behind it.
Kühn, Reimer; Stamatescu, Ion-Olimpiu
2007-07-01
We investigate the problem of learning with incomplete information as exemplified by learning with delayed reinforcement. We study a two phase learning scenario in which a phase of Hebbian associative learning based on momentary internal representations is supplemented by an 'unlearning' phase depending on a graded reinforcement signal. The reinforcement signal quantifies the success-rate globally for a number of learning steps in phase one, and 'unlearning' is indiscriminate with respect to associations learnt in that phase. Learning according to this model is studied via simulations and analytically within a student-teacher scenario for both single layer networks and, for a committee machine. Success and speed of learning depend on the ratio lambda of the learning rates used for the associative Hebbian learning phase and for the unlearning-correction in response to the reinforcement signal, respectively. Asymptotically perfect generalization is possible only, if this ratio exceeds a critical value lambda( c ), in which case the generalization error exhibits a power law decay with the number of examples seen by the student, with an exponent that depends in a non-universal manner on the parameter lambda. We find these features to be robust against a wide spectrum of modifications of microscopic modelling details. Two illustrative applications-one of a robot learning to navigate a field containing obstacles, and the problem of identifying a specific component in a collection of stimuli-are also provided.
Structure Analyses of Highly Symmetric Superstructures Formed by Rodlike Mesogen
NASA Astrophysics Data System (ADS)
Saito, Kazuya; Kutsumizu, Shoichi
Process of structure determination of liquid-crystalline superstructures formed in a mesogenic series, bis(n-alkoxybenzoyl)hydrazine[BABH(n) ; n, the number of carbon atoms in the alkoxy group], is described. The chain-length (n) dependence of relative diffraction intensities from the Ia3d phase resolves the phase problem, leading to the structural description that the molecular centers are on the rods forming two interpenetrating jungle gyms. Theoretical consideration on the stability of superstructures and systematic MEM analysis reveal the coexistence of two aggregation modes (rods forming an extending jungle gym and closed sheets forming spherical shells) for the Im3m phase.
Decay of the 3D inviscid liquid-gas two-phase flow model
NASA Astrophysics Data System (ADS)
Zhang, Yinghui
2016-06-01
We establish the optimal {Lp-L2(1 ≤ p < 6/5)} time decay rates of the solution to the Cauchy problem for the 3D inviscid liquid-gas two-phase flow model and analyze the influences of the damping on the qualitative behaviors of solution. Compared with the viscous liquid-gas two-phase flow model (Zhang and Zhu in J Differ Equ 258:2315-2338, 2015), our results imply that the friction effect of the damping is stronger than the dissipation effect of the viscosities and enhances the decay rate of the velocity. Our proof is based on Hodge decomposition technique, the {Lp-L2} estimates for the linearized equations and an elaborate energy method.
Numerical Simulation of Two Phase Flows
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing
2001-01-01
Two phase flows can be found in broad situations in nature, biology, and industry devices and can involve diverse and complex mechanisms. While the physical models may be specific for certain situations, the mathematical formulation and numerical treatment for solving the governing equations can be general. Hence, we will require information concerning each individual phase as needed in a single phase. but also the interactions between them. These interaction terms, however, pose additional numerical challenges because they are beyond the basis that we use to construct modern numerical schemes, namely the hyperbolicity of equations. Moreover, due to disparate differences in time scales, fluid compressibility and nonlinearity become acute, further complicating the numerical procedures. In this paper, we will show the ideas and procedure how the AUSM-family schemes are extended for solving two phase flows problems. Specifically, both phases are assumed in thermodynamic equilibrium, namely, the time scales involved in phase interactions are extremely short in comparison with those in fluid speeds and pressure fluctuations. Details of the numerical formulation and issues involved are discussed and the effectiveness of the method are demonstrated for several industrial examples.
Probabilistically Perfect Cloning of Two Pure States: Geometric Approach.
Yerokhin, V; Shehu, A; Feldman, E; Bagan, E; Bergou, J A
2016-05-20
We solve the long-standing problem of making n perfect clones from m copies of one of two known pure states with minimum failure probability in the general case where the known states have arbitrary a priori probabilities. The solution emerges from a geometric formulation of the problem. This formulation reveals that cloning converges to state discrimination followed by state preparation as the number of clones goes to infinity. The convergence exhibits a phenomenon analogous to a second-order symmetry-breaking phase transition.
Measuring optical phase digitally in coherent metrology systems
NASA Astrophysics Data System (ADS)
Kelly, Damien P.; Ryle, James; Zhao, Liang; Sheridan, John T.
2017-05-01
The accurate measurement of optical phase has many applications in metrology. For biological samples, which appear transparent, the phase data provides information about the refractive index of the sample. In speckle metrology, the phase can be used to estimate stress and strains of a rough surface with high sensitivity. In this theoretical manuscript we compare and contrast the properties of two techniques for estimating the phase distribution of a wave field under the paraxial approximation: (I) A digital holographic system, and (II) An idealized phase retrieval system. Both systems use a CCD or CMOS array to measure the intensities of the wave fields that are reflected from or transmitted through the sample of interest. This introduces a numerical aspect to the problem. For the two systems above we examine how numerical calculations can limit the performance of these systems leading to a near-infinite number of possible solutions.
NASA Astrophysics Data System (ADS)
Mishmash, Ryan V.
Experiments on strongly correlated quasi-two-dimensional electronic materials---for example, the high-temperature cuprate superconductors and the putative quantum spin liquids kappa-(BEDT-TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2---routinely reveal highly mysterious quantum behavior which cannot be explained in terms of weakly interacting degrees of freedom. Theoretical progress thus requires the introduction of completely new concepts and machinery beyond the traditional framework of the band theory of solids and its interacting counterpart, Landau's Fermi liquid theory. In full two dimensions, controlled and reliable analytical approaches to such problems are severely lacking, as are numerical simulations of even the simplest of model Hamiltonians due to the infamous fermionic sign problem. Here, we attempt to circumvent some of these difficulties by studying analogous problems in quasi-one dimension. In this lower dimensional setting, theoretical and numerical tractability are on much stronger footing due to the methods of bosonization and the density matrix renormalization group, respectively. Using these techniques, we attack two problems: (1) the Mott transition between a Fermi liquid metal and a quantum spin liquid as potentially directly relevant to the organic compounds kappa-(BEDT-TTF)2Cu 2(CN)3 and EtMe3Sb[Pd(dmit)2] 2 and (2) non-Fermi liquid metals as strongly motivated by the strange metal phase observed in the cuprates. In both cases, we are able to realize highly exotic quantum phases as ground states of reasonable microscopic models. This lends strong credence to respective underlying slave-particle descriptions of the low-energy physics, which are inherently strongly interacting and also unconventional in comparison to weakly interacting alternatives. Finally, working in two dimensions directly, we propose a new slave-particle theory which explains in a universal way many of the intriguing experimental results of the triangular lattice organic spin liquid candidates kappa-(BEDT-TTF) 2Cu2(CN)3 and EtMe3Sb[Pd(dmit) 2]2. With use of large-scale variational Monte Carlo calculations, we show that this new state has very competitive trial energy in an effective spin model thought to describe the essential features of the real materials.
NASA Astrophysics Data System (ADS)
Çakır, Süleyman
2017-10-01
In this study, a two-phase methodology for resource allocation problems under a fuzzy environment is proposed. In the first phase, the imprecise Shannon's entropy method and the acceptability index are suggested, for the first time in the literature, to select input and output variables to be used in the data envelopment analysis (DEA) application. In the second step, an interval inverse DEA model is executed for resource allocation in a short run. In an effort to exemplify the practicality of the proposed fuzzy model, a real case application has been conducted involving 16 cement firms listed in Borsa Istanbul. The results of the case application indicated that the proposed hybrid model is a viable procedure to handle input-output selection and resource allocation problems under fuzzy conditions. The presented methodology can also lend itself to different applications such as multi-criteria decision-making problems.
Active phase compensation system for fiber optic holography
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Beheim, Glenn
1988-01-01
Fiber optic delivery systems promise to extend the application of holography to severe environments by simplifying test configurations and permitting the laser to be remotely placed in a more benign location. However, the introduction of optical fiber leads to phase stability problems. Environmental effects cause the pathlengths of the fibers to change randomly, preventing the formation of stationary interference patterns which are required for holography. An active phase control system has been designed and used with an all-fiber optical system to stabilize the phase difference between light emitted from two fibers, and to step the phase difference by 90 deg without applying any constraints on the placement of the fibers. The accuracy of the phase steps is shown to be better than 0.02 deg., and a stable phase difference can be maintained for 30 min. This system can be applied to both conventional and electro-optic holography, as well as to any system where the maintenance of an accurate phase difference between two coherent beams is required.
Active phase compensation system for fiber optic holography
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Beheim, Glenn
1989-01-01
Fiber optic delivery systems promise to extend the application of holography to severe environments by simplifying test configurations and permitting the laser to be remotely placed in a more benign location. However, the introduction of optical fiber leads to phase stability problems. Environmental effects cause the pathlengths of the fibers to change randomly, preventing the formation of stationary interference patterns which are required for holography. An active phase control system has been designed and used with an all-fiber optical system to stabilize the phase difference between light emitted from two fibers, and to step the phase difference by 90 deg without applying any constraints on the placement of the fibers. The accuracy of the phase steps is shown to be better than 0.02 deg., and a stable phase difference can be maintained for 30 min. This system can be applied to both conventional and electro-optic holography, as well as to any system where the maintenance of an accurate phase difference between two coherent beams is required.
Embedding Game-Based Problem-Solving Phase into Problem-Posing System for Mathematics Learning
ERIC Educational Resources Information Center
Chang, Kuo-En; Wu, Lin-Jung; Weng, Sheng-En; Sung, Yao-Ting
2012-01-01
A problem-posing system is developed with four phases including posing problem, planning, solving problem, and looking back, in which the "solving problem" phase is implemented by game-scenarios. The system supports elementary students in the process of problem-posing, allowing them to fully engage in mathematical activities. In total, 92 fifth…
Low velocity opposed-flow frame spread in a transport-controlled environment DARTFire
NASA Technical Reports Server (NTRS)
West, Jeff; Thomas, Pete; Chao, Ruian; Bhattacharjee, Subrata; Tang, TI; Altenkirch, Robert A.; Olson, Sandra L.
1995-01-01
The overall objectives of the DARTFire project are to uncover the underlying physics and increase understanding of the mechanisms that cause flames to propagate over solid fuels against a low velocity of oxidizer flow in a low-gravity environment. Specific objectives are (1) to analyze experimentally observed flame shapes, measured gas-phase field variables, spread rates, radiative characteristics, and solid-phase regression rates for comparison with previously developed model prediction capability that will be continually extended, and (2) to investigate the transition from ignition to either flame propagation or extinction in order to determine the characteristics of those environments that lead to flame evolution. To meet the objectives, a series of sounding rocket experiments has been designed to exercise several of the dimensional, controllable variables that affect the flame spread process over PMMA in microgravity, i.e., the opposing flow velocity (1-20 cm/s), the external radiant flux directed to the fuel surface (0-2 W/cm(exp 2)), and the oxygen concentration of the environment (35-70%). Because radiative heat transfer is critical to these microgravity flame spread experiments, radiant heating is imposed, and radiant heat loss will be measured. These are the first attempts at such an experimental control and measurement in microgravity. Other firsts associated with the experiment are (1) the control of the low velocity, opposed flow, which is of the same order as diffusive velocities and Stefan flows; (2) state-of-the-art quantitative flame imaging for species-specific emissions (both infrared and ultraviolet) in addition to novel intensified array imaging to obtain a color image of the very dim, low-gravity flames.
Phase space simulation of collisionless stellar systems on the massively parallel processor
NASA Technical Reports Server (NTRS)
White, Richard L.
1987-01-01
A numerical technique for solving the collisionless Boltzmann equation describing the time evolution of a self gravitating fluid in phase space was implemented on the Massively Parallel Processor (MPP). The code performs calculations for a two dimensional phase space grid (with one space and one velocity dimension). Some results from calculations are presented. The execution speed of the code is comparable to the speed of a single processor of a Cray-XMP. Advantages and disadvantages of the MPP architecture for this type of problem are discussed. The nearest neighbor connectivity of the MPP array does not pose a significant obstacle. Future MPP-like machines should have much more local memory and easier access to staging memory and disks in order to be effective for this type of problem.
NASA Astrophysics Data System (ADS)
Fisenko, Anatoliy I.; Lemberg, Vladimir
2014-07-01
Using the explicit form of the functions to describe the monopole and dipole spectra of the Cosmic Microwave Background (CMB) radiation, the exact expressions for the temperature dependences of the radiative and thermodynamic functions, such as the total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, and pressure in the finite range of frequencies v 1≤ v≤ v 2 are obtained. Since the dependence of temperature upon the redshift z is known, the obtained expressions can be simply presented in z representation. Utilizing experimental data for the monopole and dipole spectra measured by the COBE FIRAS instrument in the 60-600 GHz frequency interval at the temperature T=2.72548 K, the values of the radiative and thermodynamic functions, as well as the radiation density constant a and the Stefan-Boltzmann constant σ are calculated. In the case of the dipole spectrum, the constants a and σ, and the radiative and thermodynamic properties of the CMB radiation are obtained using the mean amplitude T amp=3.358 mK. It is shown that the Doppler shift leads to a renormalization of the radiation density constant a, the Stefan-Boltzmann constant σ, and the corresponding constants for the thermodynamic functions. The expressions for new astrophysical parameters, such as the entropy density/Boltzmann constant, and number density of CMB photons are obtained. The radiative and thermodynamic properties of the Cosmic Microwave Background radiation for the monopole and dipole spectra at redshift z≈1089 are calculated.
Dynamic Model and Experimental Validation of a PEM Fuel Cell System
NASA Astrophysics Data System (ADS)
Nassif, Younane; Godoy, Emmanuel; Bethoux, Olivier; Roche, Ivan
Fuel cells are expected to become a challenging technology in terms of efficiency, and fitting the emission reduction schedules [Lemons, J. Power Sources, 29:251,
You Can Be a Skilled Group Helper
ERIC Educational Resources Information Center
Tamminen, Armas W.; Smaby, Marlowe H.
1978-01-01
The authors propose a two-phase model of group counseling that is structured and involves simultaneously teaching and applying counseling skills to real-life problems of the members of the group. (Author)
Construction of Hamiltonians by supervised learning of energy and entanglement spectra
NASA Astrophysics Data System (ADS)
Fujita, Hiroyuki; Nakagawa, Yuya O.; Sugiura, Sho; Oshikawa, Masaki
2018-02-01
Correlated many-body problems ubiquitously appear in various fields of physics such as condensed matter, nuclear, and statistical physics. However, due to the interplay of the large number of degrees of freedom, it is generically impossible to treat these problems from first principles. Thus the construction of a proper model, namely, effective Hamiltonian, is essential. Here, we propose a simple supervised learning algorithm for constructing Hamiltonians from given energy or entanglement spectra. We apply the proposed scheme to the Hubbard model at the half-filling, and compare the obtained effective low-energy spin model with several analytic results based on the high-order perturbation theory, which have been inconsistent with each other. We also show that our approach can be used to construct the entanglement Hamiltonian of a quantum many-body state from its entanglement spectrum as well. We exemplify this using the ground states of the S =1 /2 two-leg Heisenberg ladders. We observe a qualitative difference between the entanglement Hamiltonians of the two phases (the Haldane and the rung singlet phase) of the model due to the different origin of the entanglement. In the Haldane phase, we find that the entanglement Hamiltonian is nonlocal by nature, and the locality can be restored by introducing the anisotropy and turning the ground state into the large-D phase. Possible applications to the model construction from experimental data and to various problems of strongly correlated systems are discussed.
Analysis of geometric phase effects in the quantum-classical Liouville formalism.
Ryabinkin, Ilya G; Hsieh, Chang-Yu; Kapral, Raymond; Izmaylov, Artur F
2014-02-28
We analyze two approaches to the quantum-classical Liouville (QCL) formalism that differ in the order of two operations: Wigner transformation and projection onto adiabatic electronic states. The analysis is carried out on a two-dimensional linear vibronic model where geometric phase (GP) effects arising from a conical intersection profoundly affect nuclear dynamics. We find that the Wigner-then-Adiabatic (WA) QCL approach captures GP effects, whereas the Adiabatic-then-Wigner (AW) QCL approach does not. Moreover, the Wigner transform in AW-QCL leads to an ill-defined Fourier transform of double-valued functions. The double-valued character of these functions stems from the nontrivial GP of adiabatic electronic states in the presence of a conical intersection. In contrast, WA-QCL avoids this issue by starting with the Wigner transform of single-valued quantities of the full problem. As a consequence, GP effects in WA-QCL can be associated with a dynamical term in the corresponding equation of motion. Since the WA-QCL approach uses solely the adiabatic potentials and non-adiabatic derivative couplings as an input, our results indicate that WA-QCL can capture GP effects in two-state crossing problems using first-principles electronic structure calculations without prior diabatization or introduction of explicit phase factors.
Velocity sensitivity of seismic body waves to the anisotropic parameters of a TTI-medium
NASA Astrophysics Data System (ADS)
Zhou, Bing; Greenhalgh, Stewart
2008-09-01
We formulate the derivatives of the phase and group velocities for each of the anisotropic parameters in a tilted transversely isotropic medium (TTI-medium). This is a common geological model in seismic exploration and has five elastic moduli or related Thomsen parameters and two orientation angles defining the axis of symmetry of the rock. We present two independent methods to compute the derivatives and examine the formulae with real anisotropic rocks. The formulations and numerical computations do not encounter any singularity problem when applied to the two quasi shear waves, which is a problem with other approaches. The two methods yield the same results, which show in a quantitative way the sensitivity behaviour of the phase and the group velocities to all of the elastic moduli or Thomsen's anisotropic parameters as well as the orientation angles in the 2D and 3D cases. One can recognize the dominant (strong effect) and weak (or 'dummy') parameters for the three seismic body-wave modes (qP, qSV, qSH) and their effective domains over the whole range of phase-slowness directions. These sensitivity patterns indicate the possibility of nonlinear kinematic inversion with the three wave modes for determining the anisotropic parameters and imaging an anisotropic medium.
Analysis of geometric phase effects in the quantum-classical Liouville formalism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryabinkin, Ilya G.; Izmaylov, Artur F.; Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6
2014-02-28
We analyze two approaches to the quantum-classical Liouville (QCL) formalism that differ in the order of two operations: Wigner transformation and projection onto adiabatic electronic states. The analysis is carried out on a two-dimensional linear vibronic model where geometric phase (GP) effects arising from a conical intersection profoundly affect nuclear dynamics. We find that the Wigner-then-Adiabatic (WA) QCL approach captures GP effects, whereas the Adiabatic-then-Wigner (AW) QCL approach does not. Moreover, the Wigner transform in AW-QCL leads to an ill-defined Fourier transform of double-valued functions. The double-valued character of these functions stems from the nontrivial GP of adiabatic electronic statesmore » in the presence of a conical intersection. In contrast, WA-QCL avoids this issue by starting with the Wigner transform of single-valued quantities of the full problem. As a consequence, GP effects in WA-QCL can be associated with a dynamical term in the corresponding equation of motion. Since the WA-QCL approach uses solely the adiabatic potentials and non-adiabatic derivative couplings as an input, our results indicate that WA-QCL can capture GP effects in two-state crossing problems using first-principles electronic structure calculations without prior diabatization or introduction of explicit phase factors.« less
Iterative Nonlinear Tikhonov Algorithm with Constraints for Electromagnetic Tomography
NASA Technical Reports Server (NTRS)
Xu, Feng; Deshpande, Manohar
2012-01-01
Low frequency electromagnetic tomography such as the capacitance tomography (ECT) has been proposed for monitoring and mass-gauging of gas-liquid two-phase system under microgravity condition in NASA's future long-term space missions. Due to the ill-posed inverse problem of ECT, images reconstructed using conventional linear algorithms often suffer from limitations such as low resolution and blurred edges. Hence, new efficient high resolution nonlinear imaging algorithms are needed for accurate two-phase imaging. The proposed Iterative Nonlinear Tikhonov Regularized Algorithm with Constraints (INTAC) is based on an efficient finite element method (FEM) forward model of quasi-static electromagnetic problem. It iteratively minimizes the discrepancy between FEM simulated and actual measured capacitances by adjusting the reconstructed image using the Tikhonov regularized method. More importantly, it enforces the known permittivity of two phases to the unknown pixels which exceed the reasonable range of permittivity in each iteration. This strategy does not only stabilize the converging process, but also produces sharper images. Simulations show that resolution improvement of over 2 times can be achieved by INTAC with respect to conventional approaches. Strategies to further improve spatial imaging resolution are suggested, as well as techniques to accelerate nonlinear forward model and thus increase the temporal resolution.
Sidani, Souraya; Ibrahim, Sarah; Lok, Jana; Fan, Lifeng; Fox, Mary
2018-01-01
Background Persons' cultural beliefs about a health problem can affect their perceived acceptability of evidence-based interventions, undermining evidence-based interventions' adherence, and uptake to manage the problem. Cultural adaptation has the potential to enhance the acceptability, uptake, and adherence to evidence-based interventions. Purpose To illustrate the implementation of the first two phases of the integrated strategy for cultural adaptation by examining Chinese Canadians' perceptions of chronic insomnia and evidence-based behavioral therapies for insomnia. Methods Chinese Canadians ( n = 14) with chronic insomnia attended a group session during which they completed established instruments measuring beliefs about sleep and insomnia, and their perceptions of factors that contribute to chronic insomnia. Participants rated the acceptability of evidence-based behavioral therapies and discussed their cultural perspectives regarding chronic insomnia and its treatment. Results Participants actively engaged in the activities planned for the first two phases of the integrated strategy and identified the most significant factor contributing to chronic insomnia and the evidence-based intervention most acceptable for their cultural group. Conclusions The protocol for implementing the two phases of the integrated strategy for cultural adaptation of evidence-based interventions was feasible, acceptable, and useful in identifying culturally relevant evidence-based interventions.
Jolivet, Frédéric; Momey, Fabien; Denis, Loïc; Méès, Loïc; Faure, Nicolas; Grosjean, Nathalie; Pinston, Frédéric; Marié, Jean-Louis; Fournier, Corinne
2018-04-02
Reconstruction of phase objects is a central problem in digital holography, whose various applications include microscopy, biomedical imaging, and fluid mechanics. Starting from a single in-line hologram, there is no direct way to recover the phase of the diffracted wave in the hologram plane. The reconstruction of absorbing and phase objects therefore requires the inversion of the non-linear hologram formation model. We propose a regularized reconstruction method that includes several physically-grounded constraints such as bounds on transmittance values, maximum/minimum phase, spatial smoothness or the absence of any object in parts of the field of view. To solve the non-convex and non-smooth optimization problem induced by our modeling, a variable splitting strategy is applied and the closed-form solution of the sub-problem (the so-called proximal operator) is derived. The resulting algorithm is efficient and is shown to lead to quantitative phase estimation on reconstructions of accurate simulations of in-line holograms based on the Mie theory. As our approach is adaptable to several in-line digital holography configurations, we present and discuss the promising results of reconstructions from experimental in-line holograms obtained in two different applications: the tracking of an evaporating droplet (size ∼ 100μm) and the microscopic imaging of bacteria (size ∼ 1μm).
NASA Astrophysics Data System (ADS)
Liu, Cheng-Wei
Phase transitions and their associated critical phenomena are of fundamental importance and play a crucial role in the development of statistical physics for both classical and quantum systems. Phase transitions embody diverse aspects of physics and also have numerous applications outside physics, e.g., in chemistry, biology, and combinatorial optimization problems in computer science. Many problems can be reduced to a system consisting of a large number of interacting agents, which under some circumstances (e.g., changes of external parameters) exhibit collective behavior; this type of scenario also underlies phase transitions. The theoretical understanding of equilibrium phase transitions was put on a solid footing with the establishment of the renormalization group. In contrast, non-equilibrium phase transition are relatively less understood and currently a very active research topic. One important milestone here is the Kibble-Zurek (KZ) mechanism, which provides a useful framework for describing a system with a transition point approached through a non-equilibrium quench process. I developed two efficient Monte Carlo techniques for studying phase transitions, one is for classical phase transition and the other is for quantum phase transitions, both are under the framework of KZ scaling. For classical phase transition, I develop a non-equilibrium quench (NEQ) simulation that can completely avoid the critical slowing down problem. For quantum phase transitions, I develop a new algorithm, named quasi-adiabatic quantum Monte Carlo (QAQMC) algorithm for studying quantum quenches. I demonstrate the utility of QAQMC quantum Ising model and obtain high-precision results at the transition point, in particular showing generalized dynamic scaling in the quantum system. To further extend the methods, I study more complex systems such as spin-glasses and random graphs. The techniques allow us to investigate the problems efficiently. From the classical perspective, using the NEQ approach I verify the universality class of the 3D Ising spin-glasses. I also investigate the random 3-regular graphs in terms of both classical and quantum phase transitions. I demonstrate that under this simulation scheme, one can extract information associated with the classical and quantum spin-glass transitions without any knowledge prior to the simulation.
Analyzing phase diagrams and phase transitions in networked competing populations
NASA Astrophysics Data System (ADS)
Ni, Y.-C.; Yin, H. P.; Xu, C.; Hui, P. M.
2011-03-01
Phase diagrams exhibiting the extent of cooperation in an evolutionary snowdrift game implemented in different networks are studied in detail. We invoke two independent payoff parameters, unlike a single payoff often used in most previous works that restricts the two payoffs to vary in a correlated way. In addition to the phase transition points when a single payoff parameter is used, phase boundaries separating homogeneous phases consisting of agents using the same strategy and a mixed phase consisting of agents using different strategies are found. Analytic expressions of the phase boundaries are obtained by invoking the ideas of the last surviving patterns and the relative alignments of the spectra of payoff values to agents using different strategies. In a Watts-Strogatz regular network, there exists a re-entrant phenomenon in which the system goes from a homogeneous phase into a mixed phase and re-enters the homogeneous phase as one of the two payoff parameters is varied. The non-trivial phase diagram accompanying this re-entrant phenomenon is quantitatively analyzed. The effects of noise and cooperation in randomly rewired Watts-Strogatz networks are also studied. The transition between a mixed phase and a homogeneous phase is identify to belong to the directed percolation universality class. The methods used in the present work are applicable to a wide range of problems in competing populations of networked agents.
Li, Jia-Fu; Fang, Hua; Yan, Xia; Chang, Fang-Rong; Wu, Zhen; Wu, Yun-Long; Qiu, Ying-Kun
2016-07-22
An on-line comprehensive preparative two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography (2D NPLC×RPLC) system was constructed with a newly developed vacuum evaporation assisted adsorption (VEAA) interface, allowing fast removal of NPLC solvent in the vacuum condition and successfully solving the solvent incompatibility problem between NPLC and RPLC. The system achieved on-line solvent exchange within the two dimensions and its performance was illustrated by gram-scale isolation of crude extract from the venom of Bufo bufo gargarizans. Within separation time of ∼20h, 19 compounds were obtained with high purity in a single run. With the VEAA interface, the 2D system exhibited apparent advantages in separation efficiency and automation compared with conventional methods, indicating its promising application in the routine separation process for complicated natural products. Copyright © 2016 Elsevier B.V. All rights reserved.
A finite-element model for moving contact line problems in immiscible two-phase flow
NASA Astrophysics Data System (ADS)
Kucala, Alec
2017-11-01
Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). The macroscale movement of the contact line is dependent on the molecular interactions occurring at the three-phase interface, however most MCL problems require resolution at the meso- and macro-scale. A phenomenological model must be developed to account for the microscale interactions, as resolving both the macro- and micro-scale would render most problems computationally intractable. Here, a model for the moving contact line is presented as a weak forcing term in the Navier-Stokes equation and applied directly at the location of the three-phase interface point. The moving interface is tracked with the level set method and discretized using the conformal decomposition finite element method (CDFEM), allowing for the surface tension and the wetting model to be computed at the exact interface location. A variety of verification test cases for simple two- and three-dimensional geometries are presented to validate the current MCL model, which can exhibit grid independence when a proper scaling for the slip length is chosen. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.
Well-posed Euler model of shock-induced two-phase flow in bubbly liquid
NASA Astrophysics Data System (ADS)
Tukhvatullina, R. R.; Frolov, S. M.
2018-03-01
A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.
System testing of a production Ada (trademark) project: The GRODY study
NASA Technical Reports Server (NTRS)
Seigle, Jeffrey; Esker, Linda; Shi, Ying-Liang
1990-01-01
The use of the Ada language and design methodologies that utilize its features has a strong impact on all phases of the software development project lifecycle. At the National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC), the Software Engineering Laboratory (SEL) conducted an experiment in parallel development of two flight dynamics systems in FORTRAN and Ada. The teams found some qualitative differences between the system test phases of the two projects. Although planning for system testing and conducting of tests were not generally affected by the use of Ada, the solving of problems found in system testing was generally facilitated by Ada constructs and design methodology. Most problems found in system testing were not due to difficulty with the language or methodology but to lack of experience with the application.
Appendange deployment mechanism for the Hubble Space Telescope program
NASA Technical Reports Server (NTRS)
Greenfield, H. T.
1985-01-01
The key requirements, a design overview, development testing (qualification levels), and two problems and their solutions resolved during the mechanism development testing phase are presented. The mechanism described herein has demonstrated its capability to deploy/restow two large Hubble Space Telescope deployable appendages in a varying but controlled manner.
Effect of a crystal-melt interface on Taylor-vortex flow
NASA Technical Reports Server (NTRS)
Mcfadden, G. B.; Coriell, S. R.; Murray, B. T.; Glicksman, M. E.; Selleck, M. E.
1990-01-01
The linear stability of circular Couette flow between concentric infinite cylinders is considered for the case that the stationary outer cylinder is a crystal-melt interface rather than a rigid surface. A radial temperature difference is maintained across the liquid gap, and equations for heat transport in the crystal and melt phases are included to extend the ordinary formulation of this problem. The stability of this two-phase system depends on the Prandtl number. For small Prandtl number the linear stability of the two-phase system is given by the classical results for a rigid-walled system. For increasing values of the Prandtl number, convective heat transport becomes significant and the system becomes increasingly less stable. Previous results in a narrow-gap approximation are extended to the case of a finite gap, and both axisymmetric and nonaxisymmetric disturbance modes are considered. The two-phase system becomes less stable as the finite gap tends to the narrow-gap limit. The two-phase system is more stable to nonaxisymmetric modes with azimuthal wavenumber n = 1; the stability of these n = 1 modes is sensitive to the latent heat of fusion.
A Two-Phase Model for Trade Matching and Price Setting in Double Auction Water Markets
NASA Astrophysics Data System (ADS)
Xu, Tingting; Zheng, Hang; Zhao, Jianshi; Liu, Yicheng; Tang, Pingzhong; Yang, Y. C. Ethan; Wang, Zhongjing
2018-04-01
Delivery in water markets is generally operated by agencies through channel systems, which imposes physical and institutional market constraints. Many water markets allow water users to post selling and buying requests on a board. However, water users may not be able to choose efficiently when the information (including the constraints) becomes complex. This study proposes an innovative two-phase model to address this problem based on practical experience in China. The first phase seeks and determines the optimal assignment that maximizes the incremental improvement of the system's social welfare according to the bids and asks in the water market. The second phase sets appropriate prices under constraints. Applying this model to China's Xiying Irrigation District shows that it can improve social welfare more than the current "pool exchange" method can. Within the second phase, we evaluate three objective functions (minimum variance, threshold-based balance, and two-sided balance), which represent different managerial goals. The threshold-based balance function should be preferred by most users, while the two-sided balance should be preferred by players who post extreme prices.
Reentrant behaviors in the phase diagram of spin-1 planar ferromagnet with single-ion anisotropy
NASA Astrophysics Data System (ADS)
Rabuffo, I.; De Cesare, L.; Caramico D'Auria, A.; Mercaldo, M. T.
2018-05-01
We used the two-time Green function framework to investigate the role played by the easy-axis single-ion anisotropy on the phase diagram of (d > 2)-dimensional spin-1planar ferromagnets, which exhibit a magnetic field induced quantum phase transition. We tackled the problem using two different kind of approximations: the Anderson-Callen decoupling scheme and the Devlin approach. In the latter scheme, the exchange anisotropy terms in the equations of motion are treated at the Tyablikov decoupling level while the crystal field anisotropy contribution is handled exactly. The emerging key result is a reentrant structure of the phase diagram close to the quantum critical point, for certain values of the single-ion anisotropy parameter. We compare the results obtained within the two approximation schemes. In particular, we recover the same qualitative behavior. We show the phase diagram, close to the field-induced quantum critical point and the behavior of the susceptibility for different values of the single-ion anisotropy parameter, enhancing the differences between the two different scenarios (i.e. with and without reentrant behavior).
2014-11-01
Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): Phase 1 Challenge Problem Walkthrough Kevin Burns...4. TITLE AND SUBTITLE Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): Phase 1 Challenge Problem Walkthrough...Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS) Phase 1 challenge problem. The pages include screen shots
Mather, Harriet; Guo, Ping; Firth, Alice; Davies, Joanna M; Sykes, Nigel; Landon, Alison; Murtagh, Fliss Em
2018-02-01
Phase of Illness describes stages of advanced illness according to care needs of the individual, family and suitability of care plan. There is limited evidence on its association with other measures of symptoms, and health-related needs, in palliative care. The aims of the study are as follows. (1) Describe function, pain, other physical problems, psycho-spiritual problems and family and carer support needs by Phase of Illness. (2) Consider strength of associations between these measures and Phase of Illness. Secondary analysis of patient-level data; a total of 1317 patients in three settings. Function measured using Australia-modified Karnofsky Performance Scale. Pain, other physical problems, psycho-spiritual problems and family and carer support needs measured using items on Palliative Care Problem Severity Scale. Australia-modified Karnofsky Performance Scale and Palliative Care Problem Severity Scale items varied significantly by Phase of Illness. Mean function was highest in stable phase (65.9, 95% confidence interval = 63.4-68.3) and lowest in dying phase (16.6, 95% confidence interval = 15.3-17.8). Mean pain was highest in unstable phase (1.43, 95% confidence interval = 1.36-1.51). Multinomial regression: psycho-spiritual problems were not associated with Phase of Illness ( χ 2 = 2.940, df = 3, p = 0.401). Family and carer support needs were greater in deteriorating phase than unstable phase (odds ratio (deteriorating vs unstable) = 1.23, 95% confidence interval = 1.01-1.49). Forty-nine percent of the variance in Phase of Illness is explained by Australia-modified Karnofsky Performance Scale and Palliative Care Problem Severity Scale. Phase of Illness has value as a clinical measure of overall palliative need, capturing additional information beyond Australia-modified Karnofsky Performance Scale and Palliative Care Problem Severity Scale. Lack of significant association between psycho-spiritual problems and Phase of Illness warrants further investigation.
Anisotropic phase diagram of the rare-earth hyperkagome system Gd3Ga5O12 (GGG)
NASA Astrophysics Data System (ADS)
Quilliam, Jeffrey; Rousseau, Alexandre; Parent, Jean-Michel
An understanding of the low-temperature properties of the hyperkagome system Gd3Ga5O12 or GGG is a long-standing problem in the field of frustrated magnetism. The origins of spin liquid and exotic spin-glass phases in this material remain mysterious and even its precise magnetic phase diagram is still not firmly established. We have investigated the field-induced phase diagram of this material using the ultrasound velocity and attenuation technique at temperatures as low as 40 mK. Two different field orientations are tested, and give rise to significant quantitative and qualitative differences. Notably, two distinct field-induced antiferromagnetic phases are observed for field parallel to 110, consistent with recent results, whereas only one ordered phase is observed for a 100 orientation. The field dependence of the sound velocity and attenuation is also found to be anisotropic within the low-field spin liquid phase. Research supported by NSERC, FQRNT.
Probing topological order with Rényi entropy
NASA Astrophysics Data System (ADS)
Halász, Gábor B.; Hamma, Alioscia
2012-12-01
We present an analytical study of the quantum phase transition between the topologically ordered toric-code-model ground state and the disordered spin-polarized state. The phase transition is induced by applying an external magnetic field, and the variation in topological order is detected via two nonlocal quantities: the Wilson loop and the topological Rényi entropy of order 2. By exploiting an equivalence with the transverse-field Ising model and considering two different variants of the problem, we investigate the field dependence of these quantities by means of an exact treatment in the exactly solvable variant and complementary perturbation theories around the limits of zero and infinite fields in both variants. We find strong evidence that the phase transition point between topological order and disorder is marked by a discontinuity in the topological Rényi entropy and that the two phases around the phase transition point are characterized by its different constant values. Our results therefore indicate that the topological Rényi entropy is a proper topological invariant: its allowed values are discrete and can be used to distinguish between different phases of matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stubos, A.K.; Caseiras, C.P.; Buchlin, J.M.
The transient two-phase flow and phase change heat transfer processes in porous media are investigated. Based on an enthalpic approach, a one-domain formulation of the problem is developed, avoiding explicit internal boundary tracking between single- and two-phase regions. An efficient numerical scheme is applied to obtain the solution on a fixed two-dimensional grid. The transient response of a liquid-saturated, self-heated porous bed is examined in detail. A physical interpretation of a liquid-saturated, self-heated porous bed is examined in detail. A physical interpretation of the computed response to fast power transients is attempted. Comparisons with experimental data are made regarding themore » average void fraction and the limiting dryout heat flux. The numerical approach is extended, keeping the one-domain formulation, to include the surrounding wall structure in the calculation.« less
Coupled Structural, Thermal, Phase-Change and Electromagnetic Analysis for Superconductors. Volume 1
NASA Technical Reports Server (NTRS)
Felippa, C. A.; Farhat, C.; Park, K. C.; Militello, C.; Schuler, J. J.
1996-01-01
Described are the theoretical development and computer implementation of reliable and efficient methods for the analysis of coupled mechanical problems that involve the interaction of mechanical, thermal, phase-change and electromagnetic subproblems. The focus application has been the modeling of superconductivity and associated quantum-state phase-change phenomena. In support of this objective the work has addressed the following issues: (1) development of variational principles for finite elements, (2) finite element modeling of the electromagnetic problem, (3) coupling of thermal and mechanical effects, and (4) computer implementation and solution of the superconductivity transition problem. The main accomplishments have been: (1) the development of the theory of parametrized and gauged variational principles, (2) the application of those principled to the construction of electromagnetic, thermal and mechanical finite elements, and (3) the coupling of electromagnetic finite elements with thermal and superconducting effects, and (4) the first detailed finite element simulations of bulk superconductors, in particular the Meissner effect and the nature of the normal conducting boundary layer. The theoretical development is described in two volumes. This volume, Volume 1, describes mostly formulations for specific problems. Volume 2 describes generalization of those formulations.
NASA Astrophysics Data System (ADS)
Pata, Kai; Sarapuu, Tago
2006-09-01
This study investigated the possible activation of different types of model-based reasoning processes in two learning settings, and the influence of various terms of reasoning on the learners’ problem representation development. Changes in 53 students’ problem representations about genetic issue were analysed while they worked with different modelling tools in a synchronous network-based environment. The discussion log-files were used for the “microgenetic” analysis of reasoning types. For studying the stages of students’ problem representation development, individual pre-essays and post-essays and their utterances during two reasoning phases were used. An approach for mapping problem representations was developed. Characterizing the elements of mental models and their reasoning level enabled the description of five hierarchical categories of problem representations. Learning in exploratory and experimental settings was registered as the shift towards more complex stages of problem representations in genetics. The effect of different types of reasoning could be observed as the divergent development of problem representations within hierarchical categories.
Prediction of gas-liquid two-phase flow regime in microgravity
NASA Technical Reports Server (NTRS)
Lee, Jinho; Platt, Jonathan A.
1993-01-01
An attempt is made to predict gas-liquid two-phase flow regime in a pipe in a microgravity environment through scaling analysis based on dominant physical mechanisms. Simple inlet geometry is adopted in the analysis to see the effect of inlet configuration on flow regime transitions. Comparison of the prediction with the existing experimental data shows good agreement, though more work is required to better define some physical parameters. The analysis clarifies much of the physics involved in this problem and can be applied to other configurations.
Stem Cell Physics. Multiple-Laser-Beam Treatment of Parkinson's Disease
NASA Astrophysics Data System (ADS)
Stefan, V.
2013-03-01
A novel method for the treatment of Parkinson's disease is proposed. Pluripotent stem cells are laser cultured, using ultrashort wavelength, (around 0.1 micron-ultraviolet radiation-with intensities of a few mW/cm2) , multiple laser beams.[2] The multiple-energy laser photons[3] interact with the neuron DNA molecules to be cloned. The laser created dopaminergic substantia nigra neurons can be, (theoretically), laser transplanted, (a higher focusing precision as compared to a syringe method), into the striatum or substantia nigra regions of the brain, or both. Supported by Nikola Tesla Labs, Stefan University.
Moll, F H; Krischel, M; Zajaczkowski, T; Rathert, P
2010-10-01
A source in the archives of the German Society of Urology gives us a vivid insight into the situation in Berlin during the 1930s from the perspective of a young Polish doctor, and presents the situation at one of the leading urology institutions of the time in Germany. Furthermore, we learn about the social situation in hospitals as well as the discourse and networking taking place in the scientific community at that time.
Liquid part of the phase diagram and percolation line for two-dimensional Mercedes-Benz water.
Urbic, T
2017-09-01
Monte Carlo simulations and Wertheim's thermodynamic perturbation theory (TPT) are used to predict the phase diagram and percolation curve for the simple two-dimensional Mercedes-Benz (MB) model of water. The MB model of water is quite popular for explaining water properties, but the phase diagram has not been reported till now. In the MB model, water molecules are modeled as two-dimensional Lennard-Jones disks, with three orientation-dependent hydrogen-bonding arms, arranged as in the MB logo. The liquid part of the phase space is explored using grand canonical Monte Carlo simulations and two versions of Wertheim's TPT for associative fluids, which have been used before to predict the properties of the simple MB model. We find that the theory reproduces well the physical properties of hot water but is less successful at capturing the more structured hydrogen bonding that occurs in cold water. In addition to reporting the phase diagram and percolation curve of the model, it is shown that the improved TPT predicts the phase diagram rather well, while the standard one predicts a phase transition at lower temperatures. For the percolation line, both versions have problems predicting the correct position of the line at high temperatures.
Liquid part of the phase diagram and percolation line for two-dimensional Mercedes-Benz water
NASA Astrophysics Data System (ADS)
Urbic, T.
2017-09-01
Monte Carlo simulations and Wertheim's thermodynamic perturbation theory (TPT) are used to predict the phase diagram and percolation curve for the simple two-dimensional Mercedes-Benz (MB) model of water. The MB model of water is quite popular for explaining water properties, but the phase diagram has not been reported till now. In the MB model, water molecules are modeled as two-dimensional Lennard-Jones disks, with three orientation-dependent hydrogen-bonding arms, arranged as in the MB logo. The liquid part of the phase space is explored using grand canonical Monte Carlo simulations and two versions of Wertheim's TPT for associative fluids, which have been used before to predict the properties of the simple MB model. We find that the theory reproduces well the physical properties of hot water but is less successful at capturing the more structured hydrogen bonding that occurs in cold water. In addition to reporting the phase diagram and percolation curve of the model, it is shown that the improved TPT predicts the phase diagram rather well, while the standard one predicts a phase transition at lower temperatures. For the percolation line, both versions have problems predicting the correct position of the line at high temperatures.
A modeling framework for optimal long-term care insurance purchase decisions in retirement planning.
Gupta, Aparna; Li, Lepeng
2004-05-01
The level of need and costs of obtaining long-term care (LTC) during retired life require that planning for it is an integral part of retirement planning. In this paper, we divide retirement planning into two phases, pre-retirement and post-retirement. On the basis of four interrelated models for health evolution, wealth evolution, LTC insurance premium and coverage, and LTC cost structure, a framework for optimal LTC insurance purchase decisions in the pre-retirement phase is developed. Optimal decisions are obtained by developing a trade-off between post-retirement LTC costs and LTC insurance premiums and coverage. Two-way branching models are used to model stochastic health events and asset returns. The resulting optimization problem is formulated as a dynamic programming problem. We compare the optimal decision under two insurance purchase scenarios: one assumes that insurance is purchased for good and other assumes it may be purchased, relinquished and re-purchased. Sensitivity analysis is performed for the retirement age.
An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.
1997-06-01
A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles,more » with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.« less
Capturing and Understanding Experiment Provenance using NiNaC
NASA Astrophysics Data System (ADS)
Rosati, C.
2017-12-01
A problem the model development team faces at the GFDL is determining climate model experiment provenance. Each experiment is configured with at least one configuration file which may reference other files. The experiment then passes through three phases before completion. Configuration files or other input files may be modified between phases. Finding the modifications later is tedious due to the expanse of the experiment input and duplication across phases. Determining provenance may be impossible if any file has been changed or deleted. To reduce these efforts and address these problems, we propose a new toolset, NiNaC, for archiving experiment provenance from the beginning of the experiment to the end and every phase in-between. Each of the three phases, check-out, build, and run, of the experiment depends on the previous phase. We use a graph to model the phase dependencies. Let each phase be represented by a node. Let each edge correspond to a dependency between phases where the node incident with the tail depends on the node incident with the head. It follows that the dependency graph is a tree. We reduce the problem to finding the lowest common ancestor and diffing the successor nodes. All files related to input for a phase are assigned a checksum. A new file is created to aggregate the checksums. Then each phase is assigned a checksum of aforementioned file as an identifier. Any change to part of a phase configuration will create unique checksums in all subsequent phases. Finding differences between experiments with this toolset is as simple as diffing two files containing checksums found by traversing the tree. One new benefit is that this toolset now allows differences in source code to be found after experiments are run, which was previously impossible for executables that cannot be linked to a known version controlled source code. Knowing that these changes exist allows us to give priority to help desk tickets concerning unmodified supported experiment releases, and minimize effort spent on unsupported experiments. It is also possible that a change is made, either by mistake or by system error. NiNaC would find the exact file in the precise phase with the change. In this way, NiNaC makes provenance tracking less tedious and solves problems where tracking provenance may previously have been impossible to do.
Novel multireceiver communication systems configurations based on optimal estimation theory
NASA Technical Reports Server (NTRS)
Kumar, Rajendra
1992-01-01
A novel multireceiver configuration for carrier arraying and/or signal arraying is presented. The proposed configuration is obtained by formulating the carrier and/or signal arraying problem as an optimal estimation problem, and it consists of two stages. The first stage optimally estimates various phase processes received at different receivers with coupled phase-locked loops wherein the individual loops acquire and track their respective receivers' phase processes but are aided by each other in an optimal manner via LF error signals. The proposed configuration results in the minimization of the the effective radio loss at the combiner output, and thus maximization of energy per bit to noise power spectral density ratio is achieved. A novel adaptive algorithm for the estimator of the signal model parameters when these are not known a priori is also presented.
NASA Astrophysics Data System (ADS)
Ullah Manzoor, Habib; Manzoor, Tareq; Hussain, Masroor; Manzoor, Sanaullah; Nazar, Kashif
2018-04-01
Surface electromagnetic waves are the solution of Maxwell’s frequency domain equations at the interface of two dissimilar materials. In this article, two canonical boundary-value problems have been formulated to analyze the multiplicity of electromagnetic surface waves at the interface between two dissimilar materials in the visible region of light. In the first problem, the interface between two semi-infinite rugate filters having symmetric refractive index profiles is considered and in the second problem, to enhance the multiplicity of surface electromagnetic waves, a homogeneous dielectric slab of 400 nm is included between two semi-infinite symmetric rugate filters. Numerical results show that multiple Bloch surface waves of different phase speeds, different polarization states, different degrees of localization and different field profiles are propagated at the interface between two semi-infinite rugate filters. Having two interfaces when a homogeneous dielectric layer is placed between two semi-infinite rugate filters has increased the multiplicity of electromagnetic surface waves.
Planetary Data Workshop, Part 1
NASA Technical Reports Server (NTRS)
1984-01-01
The community of planetary scientists addresses two general problems regarding planetary science data: (1) important data sets are being permanently lost; and (2) utilization is constrainted by difficulties in locating and accessing science data and supporting information necessary for its use. A means to correct the problems, provide science and functional requirements for a systematic and phased approach, and suggest technologies and standards appropriate to the solution were explored.
Numerical two-dimensional calculations of the formation of the solar nebula
NASA Technical Reports Server (NTRS)
Bodenheimer, Peter H.
1991-01-01
Numerical two dimensional calculations of the formation of the solar nebula are presented. The following subject areas are covered: (1) observational constraints of the properties of the initial solar nebula; (2) the physical problem; (3) review if two dimensional calculations of the formation phase; (4) recent models with hydrodynamics and radiative transport; and (5) further evolution of the system.
Bounds on complex polarizabilities and a new perspective on scattering by a lossy inclusion
NASA Astrophysics Data System (ADS)
Milton, Graeme W.
2017-09-01
Here, we obtain explicit formulas for bounds on the complex electrical polarizability at a given frequency of an inclusion with known volume that follow directly from the quasistatic bounds of Bergman and Milton on the effective complex dielectric constant of a two-phase medium. We also describe how analogous bounds on the orientationally averaged bulk and shear polarizabilities at a given frequency can be obtained from bounds on the effective complex bulk and shear moduli of a two-phase medium obtained by Milton, Gibiansky, and Berryman, using the quasistatic variational principles of Cherkaev and Gibiansky. We also show how the polarizability problem and the acoustic scattering problem can both be reformulated in an abstract setting as "Y problems." In the acoustic scattering context, to avoid explicit introduction of the Sommerfeld radiation condition, we introduce auxiliary fields at infinity and an appropriate "constitutive law" there, which forces the Sommerfeld radiation condition to hold. As a consequence, we obtain minimization variational principles for acoustic scattering that can be used to obtain bounds on the complex backwards scattering amplitude. Some explicit elementary bounds are given.
Cascade flutter analysis with transient response aerodynamics
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Mahajan, Aparajit J.; Keith, Theo G., Jr.; Stefko, George L.
1991-01-01
Two methods for calculating linear frequency domain aerodynamic coefficients from a time marching Full Potential cascade solver are developed and verified. In the first method, the Influence Coefficient, solutions to elemental problems are superposed to obtain the solutions for a cascade in which all blades are vibrating with a constant interblade phase angle. The elemental problem consists of a single blade in the cascade oscillating while the other blades remain stationary. In the second method, the Pulse Response, the response to the transient motion of a blade is used to calculate influence coefficients. This is done by calculating the Fourier Transforms of the blade motion and the response. Both methods are validated by comparison with the Harmonic Oscillation method and give accurate results. The aerodynamic coefficients obtained from these methods are used for frequency domain flutter calculations involving a typical section blade structural model. An eigenvalue problem is solved for each interblade phase angle mode and the eigenvalues are used to determine aeroelastic stability. Flutter calculations are performed for two examples over a range of subsonic Mach numbers.
Organizational justice and sleeping problems: The Whitehall II study.
Elovainio, Marko; Ferrie, Jane E; Gimeno, David; De Vogli, Roberto; Shipley, Martin; Brunner, Eric J; Kumari, Meena; Vahtera, Jussi; Marmot, Michael G; Kivimäki, Mika
2009-04-01
To test the hypothesis that organizational injustice contributes to sleeping problems. Poor sleep quality can be a marker of prolonged emotional stress and has been shown to have serious effects on the immune system and metabolism. Data were from the prospective Whitehall II study of white-collar British civil servants (3143 women and 6895 men, aged 35-55 years at baseline). Age, employment grade, health behaviors, and depressive symptoms were measured at Phase 1 (1985-1988) and baseline sleeping problems were assessed at Phase 2 (1989-1990). Organizational justice was assessed twice, at Phases 1 and 2. The outcome was mean of sleeping problems during Phases 5 (1997-1999) and 7 (2003-2004). In men, low organizational justice at Phase 1 and Phase 2 were associated with overall sleeping problems, sleep maintenance problems, sleep onset problems, and nonrefreshing sleep at Phases 5 and 7. In women, a significant association was observed between low organizational justice and overall sleeping problems and sleep onset problems. These associations were robust to adjustments for age, employment grade, health behaviors, job strain, depressive symptoms, and sleeping problems at baseline. This study shows that perceived unfair treatment at workplace is associated with increased risk of poor sleep quality in men and women, one potential mechanism through which justice at work may affect health.
Selection of Two-Phase Flow Patterns at a Simple Junction in Microfluidic Devices
NASA Astrophysics Data System (ADS)
Engl, W.; Ohata, K.; Guillot, P.; Colin, A.; Panizza, P.
2006-04-01
We study the behavior of a confined stream made of two immiscible fluids when it reaches a T junction. Two flow patterns are witnessed: the stream is either directed in only one sidearm, yielding a preferential flow pathway for the dispersed phase, or splits between both. We show that the selection of these patterns is not triggered by the shape of the junction nor by capillary effects, but results from confinement. It can be anticipated in terms of the hydrodynamic properties of the flow. A simple model yielding universal behavior in terms of the relevant adimensional parameters of the problem is presented and discussed.
When holography meets coherent diffraction imaging.
Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Fink, Hans-Werner
2012-12-17
The phase problem is inherent to crystallographic, astronomical and optical imaging where only the intensity of the scattered signal is detected and the phase information is lost and must somehow be recovered to reconstruct the object's structure. Modern imaging techniques at the molecular scale rely on utilizing novel coherent light sources like X-ray free electron lasers for the ultimate goal of visualizing such objects as individual biomolecules rather than crystals. Here, unlike in the case of crystals where structures can be solved by model building and phase refinement, the phase distribution of the wave scattered by an individual molecule must directly be recovered. There are two well-known solutions to the phase problem: holography and coherent diffraction imaging (CDI). Both techniques have their pros and cons. In holography, the reconstruction of the scattered complex-valued object wave is directly provided by a well-defined reference wave that must cover the entire detector area which often is an experimental challenge. CDI provides the highest possible, only wavelength limited, resolution, but the phase recovery is an iterative process which requires some pre-defined information about the object and whose outcome is not always uniquely-defined. Moreover, the diffraction patterns must be recorded under oversampling conditions, a pre-requisite to be able to solve the phase problem. Here, we report how holography and CDI can be merged into one superior technique: holographic coherent diffraction imaging (HCDI). An inline hologram can be recorded by employing a modified CDI experimental scheme. We demonstrate that the amplitude of the Fourier transform of an inline hologram is related to the complex-valued visibility, thus providing information on both, the amplitude and the phase of the scattered wave in the plane of the diffraction pattern. With the phase information available, the condition of oversampling the diffraction patterns can be relaxed, and the phase problem can be solved in a fast and unambiguous manner. We demonstrate the reconstruction of various diffraction patterns of objects recorded with visible light as well as with low-energy electrons. Although we have demonstrated our HCDI method using laser light and low-energy electrons, it can also be applied to any other coherent radiation such as X-rays or high-energy electrons.
Using certification trails to achieve software fault tolerance
NASA Technical Reports Server (NTRS)
Sullivan, Gregory F.; Masson, Gerald M.
1993-01-01
A conceptually novel and powerful technique to achieve fault tolerance in hardware and software systems is introduced. When used for software fault tolerance, this new technique uses time and software redundancy and can be outlined as follows. In the initial phase, a program is run to solve a problem and store the result. In addition, this program leaves behind a trail of data called a certification trail. In the second phase, another program is run which solves the original problem again. This program, however, has access to the certification trail left by the first program. Because of the availability of the certification trail, the second phase can be performed by a less complex program and can execute more quickly. In the final phase, the two results are accepted as correct; otherwise an error is indicated. An essential aspect of this approach is that the second program must always generate either an error indication or a correct output even when the certification trail it receives from the first program is incorrect. The certification trail approach to fault tolerance was formalized and it was illustrated by applying it to the fundamental problem of finding a minimum spanning tree. Cases in which the second phase can be run concorrectly with the first and act as a monitor are discussed. The certification trail approach was compared to other approaches to fault tolerance. Because of space limitations we have omitted examples of our technique applied to the Huffman tree, and convex hull problems. These can be found in the full version of this paper.
TOUGH Simulations of the Updegraff's Set of Fluid and Heat Flow Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moridis, G.J.; Pruess
1992-11-01
The TOUGH code [Pruess, 1987] for two-phase flow of water, air, and heat in penneable media has been exercised on a suite of test problems originally selected and simulated by C. D. Updegraff [1989]. These include five 'verification' problems for which analytical or numerical solutions are available, and three 'validation' problems that model laboratory fluid and heat flow experiments. All problems could be run without any code modifications (*). Good and efficient numerical performance, as well as accurate results were obtained throughout. Additional code verification and validation problems from the literature are briefly summarized, and suggestions are given for propermore » applications of TOUGH and related codes.« less
Bare-Bones Teaching-Learning-Based Optimization
Zou, Feng; Wang, Lei; Hei, Xinhong; Chen, Debao; Jiang, Qiaoyong; Li, Hongye
2014-01-01
Teaching-learning-based optimization (TLBO) algorithm which simulates the teaching-learning process of the class room is one of the recently proposed swarm intelligent (SI) algorithms. In this paper, a new TLBO variant called bare-bones teaching-learning-based optimization (BBTLBO) is presented to solve the global optimization problems. In this method, each learner of teacher phase employs an interactive learning strategy, which is the hybridization of the learning strategy of teacher phase in the standard TLBO and Gaussian sampling learning based on neighborhood search, and each learner of learner phase employs the learning strategy of learner phase in the standard TLBO or the new neighborhood search strategy. To verify the performance of our approaches, 20 benchmark functions and two real-world problems are utilized. Conducted experiments can been observed that the BBTLBO performs significantly better than, or at least comparable to, TLBO and some existing bare-bones algorithms. The results indicate that the proposed algorithm is competitive to some other optimization algorithms. PMID:25013844
Bare-bones teaching-learning-based optimization.
Zou, Feng; Wang, Lei; Hei, Xinhong; Chen, Debao; Jiang, Qiaoyong; Li, Hongye
2014-01-01
Teaching-learning-based optimization (TLBO) algorithm which simulates the teaching-learning process of the class room is one of the recently proposed swarm intelligent (SI) algorithms. In this paper, a new TLBO variant called bare-bones teaching-learning-based optimization (BBTLBO) is presented to solve the global optimization problems. In this method, each learner of teacher phase employs an interactive learning strategy, which is the hybridization of the learning strategy of teacher phase in the standard TLBO and Gaussian sampling learning based on neighborhood search, and each learner of learner phase employs the learning strategy of learner phase in the standard TLBO or the new neighborhood search strategy. To verify the performance of our approaches, 20 benchmark functions and two real-world problems are utilized. Conducted experiments can been observed that the BBTLBO performs significantly better than, or at least comparable to, TLBO and some existing bare-bones algorithms. The results indicate that the proposed algorithm is competitive to some other optimization algorithms.
Receive Mode Analysis and Design of Microstrip Reflectarrays
NASA Technical Reports Server (NTRS)
Rengarajan, Sembiam
2011-01-01
Traditionally microstrip or printed reflectarrays are designed using the transmit mode technique. In this method, the size of each printed element is chosen so as to provide the required value of the reflection phase such that a collimated beam results along a given direction. The reflection phase of each printed element is approximated using an infinite array model. The infinite array model is an excellent engineering approximation for a large microstrip array since the size or orientation of elements exhibits a slow spatial variation. In this model, the reflection phase from a given printed element is approximated by that of an infinite array of elements of the same size and orientation when illuminated by a local plane wave. Thus the reflection phase is a function of the size (or orientation) of the element, the elevation and azimuth angles of incidence of a local plane wave, and polarization. Typically, one computes the reflection phase of the infinite array as a function of several parameters such as size/orientation, elevation and azimuth angles of incidence, and in some cases for vertical and horizontal polarization. The design requires the selection of the size/orientation of the printed element to realize the required phase by interpolating or curve fitting all the computed data. This is a substantially complicated problem, especially in applications requiring a computationally intensive commercial code to determine the reflection phase. In dual polarization applications requiring rectangular patches, one needs to determine the reflection phase as a function of five parameters (dimensions of the rectangular patch, elevation and azimuth angles of incidence, and polarization). This is an extremely complex problem. The new method employs the reciprocity principle and reaction concept, two well-known concepts in electromagnetics to derive the receive mode analysis and design techniques. In the "receive mode design" technique, the reflection phase is computed for a plane wave incident on the reflectarray from the direction of the beam peak. In antenna applications with a single collimated beam, this method is extremely simple since all printed elements see the same angles of incidence. Thus the number of parameters is reduced by two when compared to the transmit mode design. The reflection phase computation as a function of five parameters in the rectangular patch array discussed previously is reduced to a computational problem with three parameters in the receive mode. Furthermore, if the beam peak is in the broadside direction, the receive mode design is polarization independent and the reflection phase computation is a function of two parameters only. For a square patch array, it is a function of the size, one parameter only, thus making it extremely simple.
Mather, Harriet; Guo, Ping; Firth, Alice; Davies, Joanna M; Sykes, Nigel; Landon, Alison; Murtagh, Fliss EM
2017-01-01
Background: Phase of Illness describes stages of advanced illness according to care needs of the individual, family and suitability of care plan. There is limited evidence on its association with other measures of symptoms, and health-related needs, in palliative care. Aims: The aims of the study are as follows. (1) Describe function, pain, other physical problems, psycho-spiritual problems and family and carer support needs by Phase of Illness. (2) Consider strength of associations between these measures and Phase of Illness. Design and setting: Secondary analysis of patient-level data; a total of 1317 patients in three settings. Function measured using Australia-modified Karnofsky Performance Scale. Pain, other physical problems, psycho-spiritual problems and family and carer support needs measured using items on Palliative Care Problem Severity Scale. Results: Australia-modified Karnofsky Performance Scale and Palliative Care Problem Severity Scale items varied significantly by Phase of Illness. Mean function was highest in stable phase (65.9, 95% confidence interval = 63.4–68.3) and lowest in dying phase (16.6, 95% confidence interval = 15.3–17.8). Mean pain was highest in unstable phase (1.43, 95% confidence interval = 1.36–1.51). Multinomial regression: psycho-spiritual problems were not associated with Phase of Illness (χ2 = 2.940, df = 3, p = 0.401). Family and carer support needs were greater in deteriorating phase than unstable phase (odds ratio (deteriorating vs unstable) = 1.23, 95% confidence interval = 1.01–1.49). Forty-nine percent of the variance in Phase of Illness is explained by Australia-modified Karnofsky Performance Scale and Palliative Care Problem Severity Scale. Conclusion: Phase of Illness has value as a clinical measure of overall palliative need, capturing additional information beyond Australia-modified Karnofsky Performance Scale and Palliative Care Problem Severity Scale. Lack of significant association between psycho-spiritual problems and Phase of Illness warrants further investigation. PMID:28812945
NASA Astrophysics Data System (ADS)
Shariati, M.; Talon, L.; Martin, J.; Rakotomalala, N.; Salin, D.; Yortsos, Y. C.
2004-11-01
We consider miscible displacement between parallel plates in the absence of diffusion, with a concentration-dependent viscosity. By selecting a piecewise viscosity function, this can also be considered as ‘three-fluid’ flow in the same geometry. Assuming symmetry across the gap and based on the lubrication (‘equilibrium’) approximation, a description in terms of two quasi-linear hyperbolic equations is obtained. We find that the system is hyperbolic and can be solved analytically, when the mobility profile is monotonic, or when the mobility of the middle phase is smaller than its neighbours. When the mobility of the middle phase is larger, a change of type is displayed, an elliptic region developing in the composition space. Numerical solutions of Riemann problems of the hyperbolic system spanning the elliptic region, with small diffusion added, show good agreement with the analytical outside, but an unstable behaviour inside the elliptic region. In these problems, the elliptic region arises precisely at the displacement front. Crossing the elliptic region requires the solution of essentially an eigenvalue problem of the full higher-dimensional model, obtained here using lattice BGK simulations. The hyperbolic-to-elliptic change-of-type reflects the failing of the lubrication approximation, underlying the quasi-linear hyperbolic formalism, to describe the problem uniformly. The obtained solution is analogous to non-classical shocks recently suggested in problems with change of type.
ERIC Educational Resources Information Center
Dowey, Ana Lucrecia
2013-01-01
The under participation of minority females in STEM fields has been a chronic problem in the United States, mainly when it is analyzed through the lens of their relative representation in the population. The results of the first or quantitative phase, of this two phase sequential, mixed method study, revealed academic achievement or performance in…
NASA Astrophysics Data System (ADS)
Zhirnov, A. A.; Pnev, A. B.; Svelto, C.; Norgia, M.; Pesatori, A.; Galzerano, G.; Laporta, P.; Shelestov, D. A.; Karasik, V. E.
2017-11-01
A novel laser for phase-sensitive optical time-domain reflectometry (Φ-OTDR) is presented. The advantages of a compact solid-state laser are listed, current problems are shown. Experiments with a microchip single-optical-element laser, from setup construction to usage in Φ-OTDR system, are presented. New laser scheme with two-photon intracavity absorber is suggested and its advantages are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ustinov, E. A., E-mail: eustinov@mail.wplus.net
This paper presents a refined technique to describe two-dimensional phase transitions in dense fluids adsorbed on a crystalline surface. Prediction of parameters of 2D liquid–solid equilibrium is known to be an extremely challenging problem, which is mainly due to a small difference in thermodynamic functions of coexisting phases and lack of accuracy of numerical experiments in case of their high density. This is a serious limitation of various attempts to circumvent this problem. To improve this situation, a new methodology based on the kinetic Monte Carlo method was applied. The methodology involves analysis of equilibrium gas–liquid and gas–solid systems undergoingmore » an external potential, which allows gradual shifting parameters of the phase coexistence. The interrelation of the chemical potential and tangential pressure for each system is then treated with the Gibbs–Duhem equation to obtain the point of intersection corresponding to the liquid/solid–solid equilibrium coexistence. The methodology is demonstrated on the krypton–graphite system below and above the 2D critical temperature. Using experimental data on the liquid–solid and the commensurate–incommensurate transitions in the krypton monolayer derived from adsorption isotherms, the Kr–graphite Lennard–Jones parameters have been corrected resulting in a higher periodic potential modulation.« less
Certification of computational results
NASA Technical Reports Server (NTRS)
Sullivan, Gregory F.; Wilson, Dwight S.; Masson, Gerald M.
1993-01-01
A conceptually novel and powerful technique to achieve fault detection and fault tolerance in hardware and software systems is described. When used for software fault detection, this new technique uses time and software redundancy and can be outlined as follows. In the initial phase, a program is run to solve a problem and store the result. In addition, this program leaves behind a trail of data called a certification trail. In the second phase, another program is run which solves the original problem again. This program, however, has access to the certification trail left by the first program. Because of the availability of the certification trail, the second phase can be performed by a less complex program and can execute more quickly. In the final phase, the two results are compared and if they agree the results are accepted as correct; otherwise an error is indicated. An essential aspect of this approach is that the second program must always generate either an error indication or a correct output even when the certification trail it receives from the first program is incorrect. The certification trail approach to fault tolerance is formalized and realizations of it are illustrated by considering algorithms for the following problems: convex hull, sorting, and shortest path. Cases in which the second phase can be run concurrently with the first and act as a monitor are discussed. The certification trail approach are compared to other approaches to fault tolerance.
NASA Astrophysics Data System (ADS)
Aksenov, Andrey; Malysheva, Anna
2018-03-01
The analytical solution of one of the urgent problems of modern hydromechanics and heat engineering about the distribution of gas and liquid phases along the channel cross-section, the thickness of the annular layer and their connection with the mass content of the gas phase in the gas-liquid flow is given in the paper.The analytical method is based on the fundamental laws of theoretical mechanics and thermophysics on the minimum of energy dissipation and the minimum rate of increase in the system entropy, which determine the stability of stationary states and processes. Obtained dependencies disclose the physical laws of the motion of two-phase media and can be used in hydraulic calculations during the design and operation of refrigeration and air conditioning systems.
Transient analysis of a thermal storage unit involving a phase change material
NASA Technical Reports Server (NTRS)
Griggs, E. I.; Pitts, D. R.; Humphries, W. R.
1974-01-01
The transient response of a single cell of a typical phase change material type thermal capacitor has been modeled using numerical conductive heat transfer techniques. The cell consists of a base plate, an insulated top, and two vertical walls (fins) forming a two-dimensional cavity filled with a phase change material. Both explicit and implicit numerical formulations are outlined. A mixed explicit-implicit scheme which treats the fin implicity while treating the phase change material explicitly is discussed. A band algorithmic scheme is used to reduce computer storage requirements for the implicit approach while retaining a relatively fine grid. All formulations are presented in dimensionless form thereby enabling application to geometrically similar problems. Typical parametric results are graphically presented for the case of melting with constant heat input to the base of the cell.
NASA Astrophysics Data System (ADS)
Pedesseau, Laurent; Jouanna, Paul
2004-12-01
The SASP (semianalytical stochastic perturbations) method is an original mixed macro-nano-approach dedicated to the mass equilibrium of multispecies phases, periphases, and interphases. This general method, applied here to the reflexive relation Ck⇔μk between the concentrations Ck and the chemical potentials μk of k species within a fluid in equilibrium, leads to the distribution of the particles at the atomic scale. The macroaspects of the method, based on analytical Taylor's developments of chemical potentials, are intimately mixed with the nanoaspects of molecular mechanics computations on stochastically perturbed states. This numerical approach, directly linked to definitions, is universal by comparison with current approaches, DLVO Derjaguin-Landau-Verwey-Overbeek, grand canonical Monte Carlo, etc., without any restriction on the number of species, concentrations, or boundary conditions. The determination of the relation Ck⇔μk implies in fact two problems: a direct problem Ck⇒μk and an inverse problem μk⇒Ck. Validation of the method is demonstrated in case studies A and B which treat, respectively, a direct problem and an inverse problem within a free saturated gypsum solution. The flexibility of the method is illustrated in case study C dealing with an inverse problem within a solution interphase, confined between two (120) gypsum faces, remaining in connection with a reference solution. This last inverse problem leads to the mass equilibrium of ions and water molecules within a 3 Å thick gypsum interface. The major unexpected observation is the repulsion of SO42- ions towards the reference solution and the attraction of Ca2+ ions from the reference solution, the concentration being 50 times higher within the interphase as compared to the free solution. The SASP method is today the unique approach able to tackle the simulation of the number and distribution of ions plus water molecules in such extreme confined conditions. This result is of prime importance for all coupled chemical-mechanical problems dealing with interfaces, and more generally for a wide variety of applications such as phase changes, osmotic equilibrium, surface energy, etc., in complex chemical-physics situations.
Gamma-Ray Burst Spectral Indices: Evidence for Deceleration of Synchrotron Shocks
NASA Technical Reports Server (NTRS)
Preece, R. D.; Briggs, M. S.; Giblin, T.; Mallozzi, R. S.; Pendleton, G. N.; Paciesas, W. S.; Band, D. L.
2000-01-01
The current scenario for gamma-ray bursts (GRBs) involves internal shocks for the prompt GRB emission phase and external shocks for the afterglow phase. Assuming synchrotron emission from energetic shocked electrons. GRB spectra observed with a low-energy power-law spectral index greater than -2/3 (for positive photon number indices E(sup alpha) indicate a problem with this model. The remaining spectra can test the synchrotron shock model prediction that the emission from a single distribution of electrons, cooling rapidly, is responsible for both the low-energy and high-energy power-low portions of the spectra. We find that the inferred relationship between the two spectral indices of observed GRB spectra is inconsistent with the constraints from the model, posing another problem for the synchrotron shock emission model. To overcome this problem, we describe a model where the average of -1, rather than the value of -3/2 predicted for cooling electrons. Situations where this might arise have been discussed in other contexts, and involve deceleration of the internal shocks during the GRB phase.
Direct numerical simulation of droplet-laden isotropic turbulence
NASA Astrophysics Data System (ADS)
Dodd, Michael S.
Interaction of liquid droplets with turbulence is important in numerous applications ranging from rain formation to oil spills to spray combustion. The physical mechanisms of droplet-turbulence interaction are largely unknown, especially when compared to that of solid particles. Compared to solid particles, droplets can deform, break up, coalesce and have internal fluid circulation. The main goal of this work is to investigate using direct numerical simulation (DNS) the physical mechanisms of droplet-turbulence interaction, both for non-evaporating and evaporating droplets. To achieve this objective, we develop and couple a new pressure-correction method with the volume-of-fluid (VoF) method for simulating incompressible two-fluid flows. The method's main advantage is that the variable coefficient Poisson equation that arises in solving the incompressible Navier-Stokes equations for two-fluid flows is reduced to a constant coefficient equation. This equation can then be solved directly using, e.g., the FFT-based parallel Poisson solver. For a 10243 mesh, our new pressure-correction method using a fast Poisson solver is ten to forty times faster than the standard pressure-correction method using multigrid. Using the coupled pressure-correction and VoF method, we perform direct numerical simulations (DNS) of 3130 finite-size, non-evaporating droplets of diameter approximately equal to the Taylor lengthscale and with 5% droplet volume fraction in decaying isotropic turbulence at initial Taylor-scale Reynolds number Relambda = 83. In the droplet-laden cases, we vary one of the following three parameters: the droplet Weber number based on the r.m.s. velocity of turbulence (0.1 ≤ Werms ≤ 5), the droplet- to carrier-fluid density ratio (1 ≤ rhod/rho c ≤ 100) or the droplet- to carrier-fluid viscosity ratio (1 ≤ mud/muc ≤ 100). We derive the turbulence kinetic energy (TKE) equations for the two-fluid, carrier-fluid and droplet-fluid flow. These equations allow us to explain the pathways for TKE exchange between the carrier turbulent flow and the flow inside the droplet. We also explain the role of the interfacial surface energy in the two-fluid TKE equation through work performed by surface tension. Furthermore, we derive the relationship between the power of surface tension and the rate of change of total droplet surface area. This link allows us to explain how droplet deformation, breakup and coalescence play roles in the temporal evolution of TKE. We then extend the code for non-evaporating droplets and develop a combined VoF method and low-Mach-number approach to simulate evaporating and condensing droplets. The two main novelties of the method are: (i) the VOF algorithm captures the motion of the liquid gas interface in the presence of mass transfer due to evaporation and condensation without requiring a projection step for the liquid velocity, and (ii) the low-Mach-number approach allows for local volume changes caused by phase change while the total volume of the liquid-gas system is constant. The method is verified against an analytical solution for a Stefan flow problem, and the D2 law is verified for a single droplet in quiescent gas. Finally, we perform DNS of an evaporating liquid droplet in forced isotropic turbulence. We show that the method accurately captures the temperature and vapor fields in the turbulent regime, and that the local evaporation rate can vary along the droplet surface depending on the structure of the surrounding vapor cloud. We also report the time evolution of the mean Sherwood number, which indicates that turbulence enhances the vaporization rate of liquid droplets.
First-order system least squares and the energetic variational approach for two-phase flow
NASA Astrophysics Data System (ADS)
Adler, J. H.; Brannick, J.; Liu, C.; Manteuffel, T.; Zikatanov, L.
2011-07-01
This paper develops a first-order system least-squares (FOSLS) formulation for equations of two-phase flow. The main goal is to show that this discretization, along with numerical techniques such as nested iteration, algebraic multigrid, and adaptive local refinement, can be used to solve these types of complex fluid flow problems. In addition, from an energetic variational approach, it can be shown that an important quantity to preserve in a given simulation is the energy law. We discuss the energy law and inherent structure for two-phase flow using the Allen-Cahn interface model and indicate how it is related to other complex fluid models, such as magnetohydrodynamics. Finally, we show that, using the FOSLS framework, one can still satisfy the appropriate energy law globally while using well-known numerical techniques.
Editorial: Focus on Dynamics and Thermalization in Isolated Quantum Many-Body Systems
NASA Astrophysics Data System (ADS)
Cazalilla, M. A.; Rigol, M.
2010-05-01
The dynamics and thermalization of classical systems have been extensively studied in the past. However, the corresponding quantum phenomena remain, to a large extent, uncharted territory. Recent experiments with ultracold quantum gases have at last allowed exploration of the coherent dynamics of isolated quantum systems, as well as observation of non-equilibrium phenomena that challenge our current understanding of the dynamics of quantum many-body systems. These experiments have also posed many new questions. How can we control the dynamics to engineer new states of matter? Given that quantum dynamics is unitary, under which conditions can we expect observables of the system to reach equilibrium values that can be predicted by conventional statistical mechanics? And, how do the observables dynamically approach their statistical equilibrium values? Could the approach to equilibrium be hampered if the system is trapped in long-lived metastable states characterized, for example, by a certain distribution of topological defects? How does the dynamics depend on the way the system is perturbed, such as changing, as a function of time and at a given rate, a parameter across a quantum critical point? What if, conversely, after relaxing to a steady state, the observables cannot be described by the standard equilibrium ensembles of statistical mechanics? How would they depend on the initial conditions in addition to the other properties of the system, such as the existence of conserved quantities? The search for answers to questions like these is fundamental to a new research field that is only beginning to be explored, and to which researchers with different backgrounds, such as nuclear, atomic, and condensed-matter physics, as well as quantum optics, can make, and are making, important contributions. This body of knowledge has an immediate application to experiments in the field of ultracold atomic gases, but can also fundamentally change the way we approach and understand many-body quantum systems. This focus issue of New Journal Physics brings together both experimentalists and theoreticians working on these problems to provide a comprehensive picture of the state of the field. Focus on Dynamics and Thermalization in Isolated Quantum Many-Body Systems Contents Spin squeezing of high-spin, spatially extended quantum fields Jay D Sau, Sabrina R Leslie, Marvin L Cohen and Dan M Stamper-Kurn Thermodynamic entropy of a many-body energy eigenstate J M Deutsch Ground states and dynamics of population-imbalanced Fermi condensates in one dimension Masaki Tezuka and Masahito Ueda Relaxation dynamics in the gapped XXZ spin-1/2 chain Jorn Mossel and Jean-Sébastien Caux Canonical thermalization Peter Reimann Minimally entangled typical thermal state algorithms E M Stoudenmire and Steven R White Manipulation of the dynamics of many-body systems via quantum control methods Julie Dinerman and Lea F Santos Multimode analysis of non-classical correlations in double-well Bose-Einstein condensates Andrew J Ferris and Matthew J Davis Thermalization in a quasi-one-dimensional ultracold bosonic gas I E Mazets and J Schmiedmayer Two simple systems with cold atoms: quantum chaos tests and non-equilibrium dynamics Cavan Stone, Yassine Ait El Aoud, Vladimir A Yurovsky and Maxim Olshanii On the speed of fluctuations around thermodynamic equilibrium Noah Linden, Sandu Popescu, Anthony J Short and Andreas Winter A quantum central limit theorem for non-equilibrium systems: exact local relaxation of correlated states M Cramer and J Eisert Quantum quench dynamics of the sine-Gordon model in some solvable limits A Iucci and M A Cazalilla Nonequilibrium quantum dynamics of atomic dark solitons A D Martin and J Ruostekoski Quantum quenches in the anisotropic spin-1⁄2 Heisenberg chain: different approaches to many-body dynamics far from equilibrium Peter Barmettler, Matthias Punk, Vladimir Gritsev, Eugene Demler and Ehud Altman Crossover from adiabatic to sudden interaction quenches in the Hubbard model: prethermalization and non-equilibrium dynamics Michael Moeckel and Stefan Kehrein Quantum quenches in integrable field theories Davide Fioretto and Giuseppe Mussardo Dynamical delocalization of Majorana edge states by sweeping across a quantum critical point A Bermudez, L Amico and M A Martin-Delgado Thermometry with spin-dependent lattices D McKay and B DeMarco Near-adiabatic parameter changes in correlated systems: influence of the ramp protocol on the excitation energy Martin Eckstein and Marcus Kollar Sudden change of the thermal contact between two quantum systems J Restrepo and S Camalet Reflection of a Lieb-Liniger wave packet from the hard-wall potential D Jukić and H Buljan Probing interaction-induced ferromagnetism in optical superlattices J von Stecher, E Demler, M D Lukin and A M Rey Sudden interaction quench in the quantum sine-Gordon model Javier Sabio and Stefan Kehrein Dynamics of an inhomogeneous quantum phase transition Jacek Dziarmaga and Marek M Rams
Steady-State Diffusion of Water through Soft-Contact LensMaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fornasiero, Francesco; Krull, Florian; Radke, Clayton J.
2005-01-31
Water transport through soft contact lenses (SCL) is important for acceptable performance on the human eye. Chemical-potential gradient-driven diffusion rates of water through soft-contact-lens materials are measured with an evaporation-cell technique. Water is evaporated from the bottom surface of a lens membrane by impinging air at controlled flow rate and humidity. The resulting weight loss of a water reservoir covering the top surface of the contact-lens material is recorded as a function of time. New results are reported for a conventional hydrogel material (SofLens{trademark} One Day, hilafilcon A, water content at saturation W{sub 10} = 70 weight %) and amore » silicone hydrogel material (PureVision{trademark}, balafilcon A, W{sub 10} = 36 %), with and without surface oxygen plasma treatment. Also, previously reported data for a conventional HEMA-SCL (W{sub 10} = 38 %) hydrogel are reexamined and compared with those for SofLens{trademark} One Day and PureVision{trademark} hydrogels. Measured steady-state water fluxes are largest for SofLens{trademark} One Day, followed by PureVision{trademark} and HEMA. In some cases, the measured steady-state water fluxes increase with rising relative air humidity. This increase, due to an apparent mass-transfer resistance at the surface (trapping skinning), is associated with formation of a glassy skin at the air/membrane interface when the relative humidity is below 55-75%. Steady-state water-fluxes are interpreted through an extended Maxwell-Stefan diffusion model for a mixture of species starkly different in size. Thermodynamic nonideality is considered through Flory-Rehner polymer-solution theory. Shrinking/swelling is self-consistently modeled by conservation of the total polymer mass. Fitted Maxwell-Stefan diffusivities increase significantly with water concentration in the contact lens.« less
Lg and Other Regional Phases in South America
1992-10-01
Facing that problem, two approaches are possible: - To make a preliminary study for the whole region. - To focus especial problems for a limited...America by the earthquakes of 1974-1989 (with some additions of especial interest of 1971-1974) recorded in the seismic staion La Paz-Bolivia (LPB) are...and intermediate earthquakes; on the contrary attenuation is large through the rest of the continent, especially for surface earthquakes. The
New developments in sampling and aggregation for remotely sensed surveys
NASA Technical Reports Server (NTRS)
Feiveson, A. H. (Principal Investigator)
1979-01-01
Sampling techniques used to construct large area crop estimates are briefly reviewed. Problem areas in sampling and aggregation are covered. The natural sampling strategy, two phase sampling, weighted aggregation, and multiyear estimation are among the topics discussed.
Frequency guided methods for demodulation of a single fringe pattern.
Wang, Haixia; Kemao, Qian
2009-08-17
Phase demodulation from a single fringe pattern is a challenging task but of interest. A frequency-guided regularized phase tracker and a frequency-guided sequential demodulation method with Levenberg-Marquardt optimization are proposed to demodulate a single fringe pattern. Demodulation path guided by the local frequency from the highest to the lowest is applied in both methods. Since critical points have low local frequency values, they are processed last so that the spurious sign problem caused by these points is avoided. These two methods can be considered as alternatives to the effective fringe follower regularized phase tracker. Demodulation results from one computer-simulated and two experimental fringe patterns using the proposed methods will be demonstrated. (c) 2009 Optical Society of America
Quantum sensing of the phase-space-displacement parameters using a single trapped ion
NASA Astrophysics Data System (ADS)
Ivanov, Peter A.; Vitanov, Nikolay V.
2018-03-01
We introduce a quantum sensing protocol for detecting the parameters characterizing the phase-space displacement by using a single trapped ion as a quantum probe. We show that, thanks to the laser-induced coupling between the ion's internal states and the motion mode, the estimation of the two conjugated parameters describing the displacement can be efficiently performed by a set of measurements of the atomic state populations. Furthermore, we introduce a three-parameter protocol capable of detecting the magnitude, the transverse direction, and the phase of the displacement. We characterize the uncertainty of the two- and three-parameter problems in terms of the Fisher information and show that state projective measurement saturates the fundamental quantum Cramér-Rao bound.
Smith, Amy E; Haney, Craig
2011-10-01
This research examined the effects of several versions of capital penalty phase instructions on juror comprehension. Study One documented the impact of California's recently implemented "plain language" instruction. It showed that although the new instruction has clear advantages over the previous version, significant comprehension problems remain. Study Two evaluated several modified instructions designed to enhance comprehension. Participants heard either a standard patterned instruction or one of two alternatives-a psycholinguistically improved instruction, or a "pinpoint" instruction using case-related facts to illustrate key terms-in a simulated death penalty sentencing phase. Persons who heard modified instructions demonstrated higher levels of comprehension on virtually every measure as compared to those in the standard instruction condition.
Navier-Stokes simulations of unsteady transonic flow phenomena
NASA Technical Reports Server (NTRS)
Atwood, C. A.
1992-01-01
Numerical simulations of two classes of unsteady flows are obtained via the Navier-Stokes equations: a blast-wave/target interaction problem class and a transonic cavity flow problem class. The method developed for the viscous blast-wave/target interaction problem assumes a laminar, perfect gas implemented in a structured finite-volume framework. The approximately factored implicit scheme uses Newton subiterations to obtain the spatially and temporally second-order accurate time history of the blast-waves with stationary targets. The inviscid flux is evaluated using either of two upwind techniques, while the full viscous terms are computed by central differencing. Comparisons of unsteady numerical, analytical, and experimental results are made in two- and three-dimensions for Couette flows, a starting shock-tunnel, and a shock-tube blockage study. The results show accurate wave speed resolution and nonoscillatory discontinuity capturing of the predominantly inviscid flows. Viscous effects were increasingly significant at large post-interaction times. While the blast-wave/target interaction problem benefits from high-resolution methods applied to the Euler terms, the transonic cavity flow problem requires the use of an efficient scheme implemented in a geometrically flexible overset mesh environment. Hence, the Reynolds averaged Navier-Stokes equations implemented in a diagonal form are applied to the cavity flow class of problems. Comparisons between numerical and experimental results are made in two-dimensions for free shear layers and both rectangular and quieted cavities, and in three-dimensions for Stratospheric Observatory For Infrared Astronomy (SOFIA) geometries. The acoustic behavior of the rectangular and three-dimensional cavity flows compare well with experiment in terms of frequency, magnitude, and quieting trends. However, there is a more rapid decrease in computed acoustic energy with frequency than observed experimentally owing to numerical dissipation. In addition, optical phase distortion due to the time-varying density field is modelled using geometrical constructs. The computed optical distortion trends compare with the experimentally inferred result, but underpredicts the fluctuating phase difference magnitude.