Sample records for two-phase void meter

  1. Note: Void effects on eddy current distortion in two-phase liquid metal.

    PubMed

    Kumar, M; Tordjeman, Ph; Bergez, W; Cavaro, M

    2015-10-01

    A model based on the first order perturbation expansion of magnetic flux in a two-phase liquid metal flow has been developed for low magnetic Reynolds number Rem. This model takes into account the distortion of the induced eddy currents due to the presence of void in the conducting medium. Specific experiments with an eddy current flow meter have been realized for two periodic void distributions. The results have shown, in agreement with the model, that the effects of velocity and void on the emf modulation are decoupled. The magnitude of the void fraction and the void spatial frequency can be determined from the spectral density of the demodulated emf.

  2. Two-phase flow characterization based on advanced instrumentation, neural networks, and mathematical modeling

    NASA Astrophysics Data System (ADS)

    Mi, Ye

    1998-12-01

    The major objective of this thesis is focused on theoretical and experimental investigations of identifying and characterizing vertical and horizontal flow regimes in two-phase flows. A methodology of flow regime identification with impedance-based neural network systems and a comprehensive model of vertical slug flow have been developed. Vertical slug flow has been extensively investigated and characterized with geometric, kinematic and hydrodynamic parameters. A multi-sensor impedance void-meter and a multi-sensor magnetic flowmeter were developed. The impedance void-meter was cross-calibrated with other reliable techniques for void fraction measurements. The performance of the impedance void-meter to measure the void propagation velocity was evaluated by the drift flux model. It was proved that the magnetic flowmeter was applicable to vertical slug flow measurements. Separable signals from these instruments allow us to unearth most characteristics of vertical slug flow. A methodology of vertical flow regime identification was developed. Supervised neural network and self-organizing neural network systems were employed. First, they were trained with results from an idealized simulation of impedance in a two-phase mixture. The simulation was mainly based on Mishima and Ishii's flow regime map, the drift flux model, and the newly developed model of slug flow. Then, these trained systems were tested with impedance signals. The results showed that the neural network systems were appropriate classifiers of vertical flow regimes. The theoretical models and experimental databases used in the simulation were reliable. Furthermore, this approach was applied successfully to horizontal flow identification. A comprehensive model was developed to predict important characteristics of vertical slug flow. It was realized that the void fraction of the liquid slug is determined by the relative liquid motion between the Taylor bubble tail and the Taylor bubble wake. Relying on this understanding and experimental results, a special relationship was built for the void fraction of the liquid slug. The prediction of the void fraction of the liquid slug was considerably improved. Experimental characterization of vertical slug flows was performed extensively with the impedance void-meter and the magnetic flowmeter. The theoretical predictions were compared with the experimental results. The agreements between them are very satisfactory.

  3. Two-phase flow measurements with advanced instrumented spool pieces and local conductivity probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turnage, K.G.; Davis, C.E.

    1979-01-01

    A series of two-phase, air-water and steam-water tests performed with instrumented spool pieces and with conductivity probes obtained from Atomic Energy of Canada, Ltd. is described. The behavior of the three-beam densitometer, turbine meter, and drag flowmeter is discussed in terms of two-phase models. Application of some two-phase mass flow models to the recorded spool piece data is made and preliminary results are shown. Velocity and void fraction information derived from the conductivity probes is presented and compared to velocities and void fractions obtained using the spool piece instrumentation.

  4. Mass flow rate measurements in gas-liquid flows by means of a venturi or orifice plate coupled to a void fraction sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, Jorge Luiz Goes; Passos, Julio Cesar; Verschaeren, Ruud

    Two-phase flow measurements were carried out using a resistive void fraction meter coupled to a venturi or orifice plate. The measurement system used to estimate the liquid and gas mass flow rates was evaluated using an air-water experimental facility. Experiments included upward vertical and horizontal flow, annular, bubbly, churn and slug patterns, void fraction ranging from 2% to 85%, water flow rate up to 4000 kg/h, air flow rate up to 50 kg/h, and quality up to almost 10%. The fractional root mean square (RMS) deviation of the two-phase mass flow rate in upward vertical flow through a venturi platemore » is 6.8% using the correlation of Chisholm (D. Chisholm, Pressure gradients during the flow of incompressible two-phase mixtures through pipes, venturis and orifice plates, British Chemical Engineering 12 (9) (1967) 454-457). For the orifice plate, the RMS deviation of the vertical flow is 5.5% using the correlation of Zhang et al. (H.J. Zhang, W.T. Yue, Z.Y. Huang, Investigation of oil-air two-phase mass flow rate measurement using venturi and void fraction sensor, Journal of Zhejiang University Science 6A (6) (2005) 601-606). The results show that the flow direction has no significant influence on the meters in relation to the pressure drop in the experimental operation range. Quality and slip ratio analyses were also performed. The results show a mean slip ratio lower than 1.1, when bubbly and slug flow patterns are encountered for mean void fractions lower than 70%. (author)« less

  5. Monitoring of multiphase flows for superconducting accelerators and others applications

    NASA Astrophysics Data System (ADS)

    Filippov, Yu. P.; Kakorin, I. D.; Kovrizhnykh, A. M.; Miklayev, V. M.

    2017-07-01

    This paper is a review on implementation of measuring systems for two-phase helium, hydrogen, liquefied natural gas (LNG), and oil-formation/salty water flows. Two types of such systems are presented. The first type is based on two-phase flow-meters combining void fraction radio-frequency (RF) sensors and narrowing devices. They can be applied for superconducting accelerators cooled with two-phase helium, refueling hydrogen system for space ships and some applications in oil production industry. The second one is based on combination of a gamma-densitometer and a narrowing device. These systems can be used to monitor large two-phase LNG and oil-formation water flows. An electronics system based on a modular industrial computer is described as well. The metrological characteristics for different flow-meters are presented and the obtained results are discussed. It is also shown that the experience gained allows separationless flow-meter for three-phase oil-gas-formation water flows to be produced.

  6. A novel method for flow pattern identification in unstable operational conditions using gamma ray and radial basis function.

    PubMed

    Roshani, G H; Nazemi, E; Roshani, M M

    2017-05-01

    Changes of fluid properties (especially density) strongly affect the performance of radiation-based multiphase flow meter and could cause error in recognizing the flow pattern and determining void fraction. In this work, we proposed a methodology based on combination of multi-beam gamma ray attenuation and dual modality densitometry techniques using RBF neural network in order to recognize the flow regime and determine the void fraction in gas-liquid two phase flows independent of the liquid phase changes. The proposed system is consisted of one 137 Cs source, two transmission detectors and one scattering detector. The registered counts in two transmission detectors were used as the inputs of one primary Radial Basis Function (RBF) neural network for recognizing the flow regime independent of liquid phase density. Then, after flow regime identification, three RBF neural networks were utilized for determining the void fraction independent of liquid phase density. Registered count in scattering detector and first transmission detector were used as the inputs of these three RBF neural networks. Using this simple methodology, all the flow patterns were correctly recognized and the void fraction was predicted independent of liquid phase density with mean relative error (MRE) of less than 3.28%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Venturi flow meter and Electrical Capacitance Probe in a horizontal two-phase flow

    NASA Astrophysics Data System (ADS)

    Monni, G.; Caramello, M.; De Salve, M.; Panella, B.

    2015-11-01

    The paper presents the results obtained with a spool piece (SP) made of a Venturi flow meter (VMF) and an Electrical Capacitance Probe (ECP) in stratified two-phase flow. The objective is to determine the relationship between the test measurements and the physical characteristics of the flow such as superficial velocities, density and void fraction. The outputs of the ECP are electrical signals proportional to the void fraction between the electrodes; the parameters measured by the VFM are the total and the irreversible pressure losses of the two- phase mixture. The fluids are air and demineralized water at ambient conditions. The flow rates are in the range of 0,065-0,099 kg/s for air and 0- 0,039 kg/s (0-140 l/h) for water. The flow patterns recognized during the experiments are stratified, dispersed and annular flow. The presence of the VFM plays an important role on the alteration of the flow pattern due to wall flow detachment phenomena. The signals of differential pressure of the VFM in horizontal configuration are strongly dependent on the superficial velocities and on the flow pattern because of a lower symmetry of the flow with respect to the vertical configuration.

  8. System for measuring multiphase flow using multiple pressure differentials

    DOEpatents

    Fincke, James R.

    2003-01-01

    An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.

  9. Oil field management system

    DOEpatents

    Fincke, James R.

    2003-09-23

    Oil field management systems and methods for managing operation of one or more wells producing a high void fraction multiphase flow. The system includes a differential pressure flow meter which samples pressure readings at various points of interest throughout the system and uses pressure differentials derived from the pressure readings to determine gas and liquid phase mass flow rates of the high void fraction multiphase flow. One or both of the gas and liquid phase mass flow rates are then compared with predetermined criteria. In the event such mass flow rates satisfy the predetermined criteria, a well control system implements a correlating adjustment action respecting the multiphase flow. In this way, various parameters regarding the high void fraction multiphase flow are used as control inputs to the well control system and thus facilitate management of well operations.

  10. Modeling quiescent phase transport of air bubbles induced by breaking waves

    NASA Astrophysics Data System (ADS)

    Shi, Fengyan; Kirby, James T.; Ma, Gangfeng

    Simultaneous modeling of both the acoustic phase and quiescent phase of breaking wave-induced air bubbles involves a large range of length scales from microns to meters and time scales from milliseconds to seconds, and thus is computational unaffordable in a surfzone-scale computational domain. In this study, we use an air bubble entrainment formula in a two-fluid model to predict air bubble evolution in the quiescent phase in a breaking wave event. The breaking wave-induced air bubble entrainment is formulated by connecting the shear production at the air-water interface and the bubble number intensity with a certain bubble size spectra observed in laboratory experiments. A two-fluid model is developed based on the partial differential equations of the gas-liquid mixture phase and the continuum bubble phase, which has multiple size bubble groups representing a polydisperse bubble population. An enhanced 2-DV VOF (Volume of Fluid) model with a k - ɛ turbulence closure is used to model the mixture phase. The bubble phase is governed by the advection-diffusion equations of the gas molar concentration and bubble intensity for groups of bubbles with different sizes. The model is used to simulate air bubble plumes measured in laboratory experiments. Numerical results indicate that, with an appropriate parameter in the air entrainment formula, the model is able to predict the main features of bubbly flows as evidenced by reasonable agreement with measured void fraction. Bubbles larger than an intermediate radius of O(1 mm) make a major contribution to void fraction in the near-crest region. Smaller bubbles tend to penetrate deeper and stay longer in the water column, resulting in significant contribution to the cross-sectional area of the bubble cloud. An underprediction of void fraction is found at the beginning of wave breaking when large air pockets take place. The core region of high void fraction predicted by the model is dislocated due to use of the shear production in the algorithm for initial bubble entrainment. The study demonstrates a potential use of an entrainment formula in simulations of air bubble population in a surfzone-scale domain. It also reveals some difficulties in use of the two-fluid model for predicting large air pockets induced by wave breaking, and suggests that it may be necessary to use a gas-liquid two-phase model as the basic model framework for the mixture phase and to develop an algorithm to allow for transfer of discrete air pockets to the continuum bubble phase. A more theoretically justifiable air entrainment formulation should be developed.

  11. Characterization of Near-Surface Geology and Possible Voids Using Resistivity and Electromagnetic Methods at the Gran Quivira Unit of Salinas Pueblo Missions National Monument, Central New Mexico, June 2005

    USGS Publications Warehouse

    Ball, Lyndsay B.; Lucius, Jeffrey E.; Land, Lewis A.; Teeple, Andrew

    2006-01-01

    At the Gran Quivira Unit of Salinas Pueblo Missions National Monument in central New Mexico, a partially excavated pueblo known as Mound 7 has recently become architecturally unstable. Historical National Park Service records indicate both natural caves and artificial tunnels may be present in the area. Knowledge of the local near-surface geology and possible locations of voids would aid in preservation of the ruins. Time-domain and frequency-domain electromagnetic as well as direct-current resistivity methods were used to characterize the electrical structure of the near-surface geology and to identify discrete electrical features that may be associated with voids. Time-domain electromagnetic soundings indicate three major electrical layers; however, correlation of these layers to geologic units was difficult because of the variability of lithologic data from existing test holes. Although resistivity forward modeling was unable to conclusively determine the presence or absence of voids in most cases, the high-resistivity values (greater than 5,000 ohm-meters) in the direct-current resistivity data indicate that voids may exist in the upper 50 meters. Underneath Mound 7, there is a possibility of large voids below a depth of 20 meters, but there is no indication of substantial voids in the upper 20 meters. Gridded lines and profiled inversions of frequency-domain electromagnetic data showed excellent correlation to resistivity features in the upper 5 meters of the direct-current resistivity data. This technique showed potential as a reconnaissance tool for detecting voids in the very near surface.

  12. Analysis of two-phase flow inter-subchannel mass and momentum exchanges by the two-fluid model approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ninokata, H.; Deguchi, A.; Kawahara, A.

    1995-09-01

    A new void drift model for the subchannel analysis method is presented for the thermohydraulics calculation of two-phase flows in rod bundles where the flow model uses a two-fluid formulation for the conservation of mass, momentum and energy. A void drift model is constructed based on the experimental data obtained in a geometrically simple inter-connected two circular channel test sections using air-water as working fluids. The void drift force is assumed to be an origin of void drift velocity components of the two-phase cross-flow in a gap area between two adjacent rods and to overcome the momentum exchanges at themore » phase interface and wall-fluid interface. This void drift force is implemented in the cross flow momentum equations. Computational results have been successfully compared to experimental data available including 3x3 rod bundle data.« less

  13. Recognition and measurement gas-liquid two-phase flow in a vertical concentric annulus at high pressures

    NASA Astrophysics Data System (ADS)

    Li, Hao; Sun, Baojiang; Guo, Yanli; Gao, Yonghai; Zhao, Xinxin

    2018-02-01

    The air-water flow characteristics under pressure in the range of 1-6 MPa in a vertical annulus were evaluated in this report. Time-resolved bubble rising velocity and void fraction were also measured using an electrical void fraction meter. The results showed that the pressure has remarkable effect on the density, bubble size and rise velocity of the gas. Four flow patterns (bubble, cap-bubble, cap-slug, and churn) were also observed instead of Taylor bubble at high pressure. Additionally, the transition process from bubble to cap-bubble was investigated at atmospheric and high pressures, respectively. The results revealed that the flow regime transition criteria for atmospheric pressure do not work at high pressure, hence a new flow regime transition model for annular flow channel geometry was developed to predict the flow regime transition, which thereafter exhibited high accuracy at high pressure condition.

  14. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    PubMed Central

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-01

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works. PMID:26828488

  15. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.

    PubMed

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-27

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.

  16. Modeling void growth and movement with phase change in thermal energy storage canisters

    NASA Technical Reports Server (NTRS)

    Darling, Douglas; Namkoong, David; Skarda, J. R. L.

    1993-01-01

    A scheme was developed to model the thermal hydrodynamic behavior of thermal energy storage salts. The model included buoyancy, surface tension, viscosity, phases change with density difference, and void growth and movement. The energy, momentum, and continuity equations were solved using a finite volume formulation. The momentum equation was divided into two pieces. The void growth and void movement are modeled between the two pieces of the momentum equations. Results showed this scheme was able to predict the behavior of thermal energy storage salts.

  17. Experimental study on the void fraction of air-water two-phase flow in a horizontal circular minichannel

    NASA Astrophysics Data System (ADS)

    Sudarja, Indarto, Deendarlianto, Haq, Aqli

    2016-06-01

    Void fraction is an important parameter in two-phase flow. In the present work, the adiabatic two-phase air-water flow void fraction in a horizontal minichannel has been studied experimentally. A transparent circular channel with 1.6 mm inner diameter was employed as the test section. Superficial gas and liquid velocities were varied in the range of 1.25 - 66.3 m/s and 0.033 - 4.935 m/s, respectively. Void fraction data were obtained by analyzing the flow images being captured by using a high-speed camera. Here, the homogeneous (β) and the measured void fractions (ɛ), respectively, were compared to the existing correlations. It was found that: (1) for the bubbly and slug flows, the void fractions increases with the increase of JG, (2) for churn, slug-annular, and annular flow patterns, there is no specific correlation between JG and void fraction was observed due to effect of the slip between gas and liquid, and (3) whilst for bubbly and slug flows the void fractions are close to homogeneous line, for churn, annular, and slug-annular flows are far below the homogeneous line. It indicates that the slip ratios for the second group of flow patterns are higher than unity.

  18. Air void analyzer for plastic concrete.

    DOT National Transportation Integrated Search

    2008-10-01

    The two main test methods that measure the air content in plastic concrete are the pressure method and the volumetric : or roll-a-meter method. Although these methods report the total air in the concrete, they do not distinguish between : entrained a...

  19. The wire-mesh sensor as a two-phase flow meter

    NASA Astrophysics Data System (ADS)

    Shaban, H.; Tavoularis, S.

    2015-01-01

    A novel gas and liquid flow rate measurement method is proposed for use in vertical upward and downward gas-liquid pipe flows. This method is based on the analysis of the time history of area-averaged void fraction that is measured using a conductivity wire-mesh sensor (WMS). WMS measurements were collected in vertical upward and downward air-water flows in a pipe with an internal diameter of 32.5 mm at nearly atmospheric pressure. The relative frequencies and the power spectral density of area-averaged void fraction were calculated and used as representative properties. Independent features, extracted from these properties using Principal Component Analysis and Independent Component Analysis, were used as inputs to artificial neural networks, which were trained to give the gas and liquid flow rates as outputs. The present method was shown to be accurate for all four encountered flow regimes and for a wide range of flow conditions. Besides providing accurate predictions for steady flows, the method was also tested successfully in three flows with transient liquid flow rates. The method was augmented by the use of the cross-correlation function of area-averaged void fraction determined from the output of a dual WMS unit as an additional representative property, which was found to improve the accuracy of flow rate prediction.

  20. Impedance probe to measure local void fraction profiles

    NASA Astrophysics Data System (ADS)

    Teyssedou, A.; Tapucu, A.; Lortie, M.

    1988-04-01

    A conductivity-type local void measurement system has been developed. The effects of the sensor tip geometry, the unbalance of the front-end bridge, the comparator threshold level, and the mass fluxes on the response of the instrument have been studied. The system has been calibrated under air-water two-phase flow conditions using the quick-closing-valve technique. Comparison of the void profiles obtained with the conductivity probe with those obtained using an optical probe confirms the applicability of this system for two-phase (air-water) flows.

  1. A connectivity-based modeling approach for representing hysteresis in macroscopic two-phase flow properties

    DOE PAGES

    Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; ...

    2014-12-31

    During CO 2 injection and storage in deep reservoirs, the injected CO 2 enters into an initially brine saturated porous medium, and after the injection stops, natural groundwater flow eventually displaces the injected mobile-phase CO 2, leaving behind residual non-wetting fluid. Accurate modeling of two-phase flow processes are needed for predicting fate and transport of injected CO 2, evaluating environmental risks and designing more effective storage schemes. The entrapped non-wetting fluid saturation is typically a function of the spatially varying maximum saturation at the end of injection. At the pore-scale, distribution of void sizes and connectivity of void space playmore » a major role for the macroscopic hysteresis behavior and capillary entrapment of wetting and non-wetting fluids. This paper presents development of an approach based on the connectivity of void space for modeling hysteretic capillary pressure-saturation-relative permeability relationships. The new approach uses void-size distribution and a measure of void space connectivity to compute the hysteretic constitutive functions and to predict entrapped fluid phase saturations. Two functions, the drainage connectivity function and the wetting connectivity function, are introduced to characterize connectivity of fluids in void space during drainage and wetting processes. These functions can be estimated through pore-scale simulations in computer-generated porous media or from traditional experimental measurements of primary drainage and main wetting curves. The hysteresis model for saturation-capillary pressure is tested successfully by comparing the model-predicted residual saturation and scanning curves with actual data sets obtained from column experiments found in the literature. A numerical two-phase model simulator with the new hysteresis functions is tested against laboratory experiments conducted in a quasi-two-dimensional flow cell (91.4cm×5.6cm×61cm), packed with homogeneous and heterogeneous sands. Initial results show that the model can predict spatial and temporal distribution of injected fluid during the experiments reasonably well. However, further analyses are needed for comprehensively testing the ability of the model to predict transient two-phase flow processes and capillary entrapment in geological reservoirs during geological carbon sequestration.« less

  2. Evaluation of the RapidAir 457 air void analyzer.

    DOT National Transportation Integrated Search

    2012-03-01

    An adequate air void system is imperative to produce concrete with freeze-thaw durability in a wet freeze environment such as found in Iowa. Specifications rely on a percentage of air obtained in the plastic state by the pressure meter. Actual, in pl...

  3. Detection of underground voids in Tahura Japan Cave Bandung using ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Azimmah, Azizatun; Widodo

    2017-07-01

    The detection of underground voids is important due to their effects on subsidence higher risk. Ground Penetrating Radar is one of geophysical electromagnetic methods that has been proven to be able to detect and locate any void beneath the surface effectively at a shallow depth. This method uses the contrasts of dielectric properties, resistivity and magnetic permeability to investigate and map what lies beneath the surface. Hence, this research focused on how GPR could be applied for detecting underground voids at the site of investigation, The Japan Cave in Taman Hutan Raya located in Dago, Bandung, Indonesia. A 100 MHz GPR shielded antenna frequency were used to measure three >80 meters long measurement lines. These three GPR profiles were positioned on the surface above the Japan Cave. The radargram results showed existences of different amplitude regions proven to be the air-filled cavities, at a depth of <10 meters, and interfaces between the underneath layers.

  4. Rayleigh-wave diffractions due to a void in the layered half space

    USGS Publications Warehouse

    Xia, J.; Xu, Y.; Miller, R.D.; Nyquist, Jonathan E.

    2006-01-01

    Void detection is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surface-wave techniques can provide reliable shear (S)-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the resolution of S-wave velocity profiles inverted from surface-wave phase velocities. Xia et al. (2006a) derived a Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space. Encouraging results of directly detecting a void from Rayleigh-wave diffractions were presented (Xia et al., 2006a). In this paper we used four two-dimensional square voids in the layered half space to demonstrate the feasibility of detecting a void with Rayleigh-wave diffractions. Rayleigh-wave diffractions were recognizable for all these models after removing direct surface waves by F-K filtering. We evaluate the feasibility of applying the Rayleigh-wave diffraction traveltime equation to a void in the layered earth model. The phase velocity of diffracted Rayleigh waves is predominately determined by surrounding materials of a void. The modeling results demonstrate that the Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space can be applied to the case of a void in the layered half space. In practice, only two diffraction times are necessary to define the depth to the top of a void and the average velocity of diffracted Rayleigh waves. ?? 2005 Society of Exploration Geophysicists.

  5. Deformation of periodic nanovoid structures in Mg single crystals

    NASA Astrophysics Data System (ADS)

    Xu, Shuozhi; Su, Yanqing; Zare Chavoshi, Saeed

    2018-01-01

    Large scale molecular dynamics (MD) simulations in Mg single crystal containing periodic cylindrical voids subject to uniaxial tension along the z direction are carried out. Models with different initial void sizes and crystallographic orientations are explored using two interatomic potentials. It is found that (i) a larger initial void always leads to a lower yield stress, in agreement with an analytic prediction; (ii) in the model with x[\\bar{1}100]-y[0001]-z[11\\bar{2}0] orientations, the two potentials predict different types of tension twins and phase transformation; (iii) in the model with x[0001]-y[11\\bar{2}0]-z[\\bar{1}100] orientations, the two potentials identically predict the nucleation of edge dislocations on the prismatic plane, which then glide away from the void, resulting in extrusions at the void surface; in the case of the smallest initial void, these surface extrusions pinch the void into two voids. Besides bringing new physical understanding of the nanovoid structures, our work highlights the variability and uncertainty in MD simulations arising from the interatomic potential, an issue relatively lightly addressed in the literature to date.

  6. Modelisation de l'instabilite fluidelastique d'un faisceau de tubes soumis a un ecoulement diphasique transverse

    NASA Astrophysics Data System (ADS)

    Sawadogo, Teguewinde

    This study focuses on the modeling of fluidelastic instability induced by two-phase cross-flow in tube bundles of steam generators. The steam generators in CANDU type nuclear power plants for e.g., designed in Canada by AECL and exploited worldwide, have thousands of tubes assembled in bundles that ensure the heat exchange between the internal circuit of heated heavy water coming from the reactor core and the external circuit of light water evaporated and directed toward the turbines. The main objective of this research project is to extend the theoretical models for fluidelastic instability to two-phase flow, validate the models and develop a computer program for simulating flow induced vibrations in tube bundles. The quasi-steady model has been investigated in scope of this research project. The time delay between the structure motion and the fluid forces generated thereby has been extensively studied in two-phase flow. The study was conducted for a rotated triangular tube array. Firstly, experimental measurements of unsteady and quasi-static fluid forces (in the lift direction) acting on a tube subject to two-phase flow were conducted. Quasi-static fluid force coefficients were measured at the same Reynolds number, Re = 2.8x104, for void fractions ranging from 0% to 80%. The derivative of the lift coefficient with respect to the quasi-static dimensionless displacement in the lift direction was deduced from the experimental measurements. This derivative is one of the most important parameters of the quasi-steady model because this parameter, in addition to the time delay, generates the fluid negative damping that causes the instability. This derivative was found to be positive in liquid flow and negative in two-phase flow. It seemed to vanish at 5% of void fraction, challenging the ability of the quasi-steady model to predict fluidelastic instability in this case. However, stability tests conducted at 5% void fraction clearly showed fluidelastic instability. Stability tests were conducted in the second stage of the project to validate the theoretical model. The two phase damping, the added mass and the critical velocity for fluidelastic instability were measured in two-phase flow. A viscoelastic damper was designed to vary the damping of the flexible tube and thus measure the critical velocity for a certain range of the mass-damping parameter. A new formulation of the added mass as a function of the void fraction was proposed. This formulation has a better agreement with the experimental results because it takes into account the reduction of the void fraction in the vicinity of the tubes in a rotated triangular tube array. The experimental data were used to validate the theoretical results of the quasi-steady model. The validity of the quasi-steady model for two-phase flow was confirmed by the good agreement between its results and the experimental data. The time delay parameter determined in the first stage of the project has improved significantly the theoretical results, especially for high void fractions (90%). However, the model could not be verified for void fractions lower or equal to 50% because of the limitation of the water pump capability. Further studies are consequently required to clarify this point. However, this model can be used to simulate the flow induced vibrations in steam generators' tube bundles as their most critical parts operate at high void fractions (≥ 60%). Having verified the quasi-steady model for high void fractions in two-phase flow, the third and final stage of the project was devoted to the development of a computer code for simulating flow induced vibrations of a steam generator tube subjected to fluidelastic and turbulence forces. This code was based on the ABAQUS finite elements code for solving the equation of motion of the fluid-structure system, and a development of a subroutine in which the fluid forces are calculated and applied to the tube. (Abstract shortened by UMI.)

  7. Gas-liquid Phase Distribution and Void Fraction Measurements Using the MRI

    NASA Technical Reports Server (NTRS)

    Daidzic, N. E.; Schmidt, E.; Hasan, M. M.; Altobelli, S.

    2004-01-01

    We used a permanent-magnet MRI system to estimate the integral and spatially- and/or temporally-resolved void-fraction distributions and flow patterns in gas-liquid two-phase flows. Air was introduced at the bottom of the stagnant liquid column using an accurate and programmable syringe pump. Air flow rates were varied between 1 and 200 ml/min. The cylindrical non-conducting test tube in which two-phase flow was measured was placed in a 2.67 kGauss MRI with MRT spectrometer/imager. Roughly linear relationship has been obtained for the integral void-fraction, obtained by volume-averaging of the spatially-resolved signals, and the air flow rate in upward direction. The time-averaged spatially-resolved void fraction has also been obtained for the quasi-steady flow of air in a stagnant liquid column. No great accuracy is claimed as this was an exploratory proof-of-concept type of experiment. Preliminary results show that MRI a non-invasive and non-intrusive experimental technique can indeed provide a wealth of different qualitative and quantitative data and is especially well suited for averaged transport processes in adiabatic and diabatic multi-phase and/or multi-component flows.

  8. Comparison of air void content measurements in fresh versus hardened concretes.

    DOT National Transportation Integrated Search

    1990-01-01

    This study compares the air content of freshly mixed and hardened concretes. At the fresh stage, pressure meters (Types A and B) and a volumetric meter were used to determine the air content. At the hardened stage, the air content was calculated usin...

  9. Multi-sourced, 3D geometric characterization of volcanogenic karst features: Integrating lidar, sonar, and geophysical datasets (Invited)

    NASA Astrophysics Data System (ADS)

    Sharp, J. M.; Gary, M. O.; Reyes, R.; Halihan, T.; Fairfield, N.; Stone, W. C.

    2009-12-01

    Karstic aquifers can form very complex hydrogeological systems and 3-D mapping has been difficult, but Lidar, phased array sonar, and improved earth resistivity techniques show promise in this and in linking metadata to models. Zacatón, perhaps the Earth’s deepest cenote, has a sub-aquatic void space exceeding 7.5 x 106 cubic m3. It is the focus of this study which has created detailed 3D maps of the system. These maps include data from above and beneath the the water table and within the rock matrix to document the extent of the immense karst features and to interpret the geologic processes that formed them. Phase 1 used high resolution (20 mm) Lidar scanning of surficial features of four large cenotes. Scan locations, selected to achieve full feature coverage once registered, were established atop surface benchmarks with UTM coordinates established using GPS and Total Stations. The combined datasets form a geo-registered mesh of surface features down to water level in the cenotes. Phase 2 conducted subsurface imaging using Earth Resistivity Imaging (ERI) geophysics. ERI identified void spaces isolated from open flow conduits. A unique travertine morphology exists in which some cenotes are dry or contain shallow lakes with flat travertine floors; some water-filled cenotes have flat floors without the cone of collapse material; and some have collapse cones. We hypothesize that the floors may have large water-filled voids beneath them. Three separate flat travertine caps were imaged: 1) La Pilita, which is partially open, exposing cap structure over a deep water-filled shaft; 2) Poza Seca, which is dry and vegetated; and 3) Tule, which contains a shallow (<1 m) lake. A fourth line was run adjacent to cenote Verde. La Pilita ERI, verified by SCUBA, documented the existence of large water-filled void zones ERI at Poza Seca showed a thin cap overlying a conductive zone extending to at least 25 m depth beneath the cap with no lower boundary of this zone evident. Verde ERI indicate a deep water-filled cavity below the 45 m deep floor. Phase 3 acquired high-resolution imagery of the underwater voids. Because of the great depths (In 1994, Bowden descended to a record 289 meters), unmanned exploration is required to explore these systems. Supported by NASA, the DEPTHX (DEep Phreatic THermal eXplorer) robotic mapper was designed. DEPTHX conducted 3-D underwater mapping missions of 4 cenotes. These found no lateral tunnels connecting the cenotes. The cenote, El Zacatón was shown to be 319 meters deep making it is the deepest underwater vertical shaft and second deepest underwater cave in the world. Spatial geochemical data collected during DEPTHX mapping indicate that water in the 3 of the cenotes is homogeneous, but the 4th (Verde) displays typical lacustrine chemoclines. The data collected by DEPTHX data are being combined with other geologic information to study the nature of the hypogenic karst processes that formed this system.

  10. Congestion-Responsive On-Ramp Metering : Before and After Studies - Phase 1

    DOT National Transportation Integrated Search

    2016-07-06

    The objective of this project was to develop recommendations toward a statewide policy of congestion responsive freeway ramp metering operation. The research is performed in two phases. In phase 1, alternative ramp metering activation strategies were...

  11. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.

    1991-01-01

    Using a continuous powder coating process, more than 1500 meters of T 300/LaRC-TPI prepreg were produced. Two different types of heating sections in the coating line, namely electrical resistance and convection heating, were utilized. These prepregs were used to fabricate unidirectional composites. During composite fabrication the cure time of the consolidation was varied, and composites samples were produced with and without vacuum. Under these specimens, the effects of the different heating sections and of the variation of the consolidation parameters on mechanical properties and void content were investigated. The void fractions of the various composites were determined from density measurements, and the mechanical properties were measured by tensile testing, short beam shear testing and dynamic mechanical analysis.

  12. Saturation meter

    DOEpatents

    Gregurech, S.

    1984-08-01

    A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.

  13. Application of Electromagnetic Induction Technique to Measure the Void Fraction in Oil/Gas Two Phase Flow

    NASA Astrophysics Data System (ADS)

    Wahhab, H. A. Abdul; Aziz, A. R. A.; Al-Kayiem, H. H.; Nasif, M. S.; Reda, M. N.

    2018-03-01

    In this work, electromagnetic induction technique of measuring void fraction in liquid/gas fuel flow was utilized. In order to improve the electric properties of liquid fuel, an iron oxide Fe3O4 nanoparticles at 3% was blended to enhance the liquid fuel magnetization. Experiments have been conducted for a wide range of liquid and gas superficial velocities. From the experimental results, it was realized that there is an existing linear relationship between the void fraction and the measured electromotive force, when induction coils were connected in series for excitation coils, regardless of increase or decrease CNG bubbles distribution in liquid fuel flow. Therefore, it was revealed that the utilized method yielded quite reasonable account for measuring the void fraction, showing good agreement with the other available measurement techniques in the two-phase flow, and also with the published literature of the bubbly flow pattern. From the results of the present investigation, it has been proven that the electromagnetic induction is a feasible technique for the actual measurement of void fraction in a Diesel/CNG fuel flow.

  14. Method and system for measuring multiphase flow using multiple pressure differentials

    DOEpatents

    Fincke, James R.

    2001-01-01

    An improved method and system for measuring a multiphase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multiphase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The method for determining the mass flow of the high void fraction fluid flow and the gas flow includes certain steps. The first step is calculating a gas density for the gas flow. The next two steps are finding a normalized gas mass flow rate through the venturi and computing a gas mass flow rate. The following step is estimating the gas velocity in the venturi tube throat. The next step is calculating the pressure drop experienced by the gas-phase due to work performed by the gas phase in accelerating the liquid phase between the upstream pressure measuring point and the pressure measuring point in the venturi throat. Another step is estimating the liquid velocity in the venturi throat using the calculated pressure drop experienced by the gas-phase due to work performed by the gas phase. Then the friction is computed between the liquid phase and a wall in the venturi tube. Finally, the total mass flow rate based on measured pressure in the venturi throat is calculated, and the mass flow rate of the liquid phase is calculated from the difference of the total mass flow rate and the gas mass flow rate.

  15. NASADEM Overview and First Results: Shuttle Radar Topography Mission (SRTM) Reprocessing and Improvements

    NASA Astrophysics Data System (ADS)

    Buckley, S.; Agram, P. S.; Belz, J. E.; Crippen, R. E.; Gurrola, E. M.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J. M.; Neumann, M.; Nguyen, Q.; Rosen, P. A.; Shimada, J.; Simard, M.; Tung, W.

    2015-12-01

    NASADEM is a significant modernization of SRTM digital elevation model (DEM) data supported by the NASA MEaSUREs program. We are reprocessing the raw radar signal data using improved algorithms and incorporating ICESat and ASTER-derived DEM data unavailable during the original processing. The NASADEM products will be freely-available through the Land Processes Distributed Active Archive Center (LPDAAC) at 1-arcsecond spacing. The most significant processing improvements involve void reduction through improved phase unwrapping and using ICESat data for control. The updated unwrapping strategy now includes the use of SNAPHU for data processing patches where the unwrapped coverage from the original residue-based unwrapper falls below a coverage threshold. In North America continental processing, first experiments show the strip void area is reduced by more than 50% and the number of strip void patches is reduced by 40%. Patch boundary voids are mitigated by reprocessing with a different starting burst and merging the unwrapping results. We also updated a low-resolution elevation database to aid with unwrapping bootstrapping, retaining isolated component of unwrapped phase, and assessing the quality of the strip DEMs. We introduce a height ripple error correction to reduce artifacts in the strip elevation data. These ripples are a few meters in size with along-track spatial scales of tens of kilometers and are due to uncompensated mast motion most pronounced after Shuttle roll angle adjustment maneuvers. We developed an along-track filter utilizing differences between the SRTM heights and ICESat lidar elevation data. For a test using all data over North America, the algorithm reduced the ICESat-SRTM bias from 80 cm to 3 cm and the RMS from 5m to 4m. After merging and regridding the SRTM strip DEMs into 1x1-degree tiles, remaining voids are primarily filled with the ASTER-derived Global DEM. We use a Delta Surface Fill method to rubbersheet fill data across the void for a seamless merger. We find this to provide a more accurate fill than cut-and-paste patching. A new post-processing module creates DEM-derived layers from the void-free elevation data. The slope/aspect & plan/profile curvatures are found by fitting a local quadratic surface to each DEM post and computing metrics from the fit coefficients.

  16. Two-dimensional model of a Space Station Freedom thermal energy storage canister

    NASA Astrophysics Data System (ADS)

    Kerslake, Thomas W.; Ibrahim, Mounir B.

    1990-08-01

    The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change salt contained in toroidal canisters for thermal energy storage. Results are presented from heat transfer analyses of the phase change salt containment canister. A 2-D, axisymmetric finite difference computer program which models the canister walls, salt, void, and heat engine working fluid coolant was developed. Analyses included effects of conduction in canister walls and solid salt, conduction and free convection in liquid salt, conduction and radiation across salt vapor filled void regions and forced convection in the heat engine working fluid. Void shape, location, growth or shrinkage (due to density difference between the solid and liquid salt phases) were prescribed based on engineering judgement. The salt phase change process was modeled using the enthalpy method. Discussion of results focuses on the role of free-convection in the liquid salt on canister heat transfer performance. This role is shown to be important for interpreting the relationship between ground based canister performance (in l-g) and expected on-orbit performance (in micro-g). Attention is also focused on the influence of void heat transfer on canister wall temperature distributions. The large thermal resistance of void regions is shown to accentuate canister hot spots and temperature gradients.

  17. Two-dimensional model of a Space Station Freedom thermal energy storage canister

    NASA Astrophysics Data System (ADS)

    Kerslake, Thomas W.; Ibrahim, Mounir B.

    The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change salt contained in toroidal canisters for thermal energy storage. Results are presented from heat transfer analyses of the phase-change salt containment canister. A 2-D, axisymmetric finite-difference computer program which models the canister walls, salt, void, and heat engine working fluid coolant was developed. Analyses included effects of conduction in canister walls and solid salt, conduction and free convection in liquid salt, conduction and radiation across salt vapor filled void regions, and forced convection in the heat engine working fluid. Void shape, location, and growth or shrinkage (due to density difference between the solid and liquid salt phases) were prescribed based on engineering judgement. The salt phase change process was modeled using the enthalpy method. Discussion of results focuses on the role of free-convection in the liquid salt on canister heat transfer performance. This role is shown to be important for interpreting the relationship between groundbased canister performance (in 1-g) and expected on-orbit performance (in micro-g). Attention is also focused on the influence of void heat transfer on canister wall temperature distributions. The large thermal resistance of void regions is shown to accentuate canister hot spots and temperature gradients.

  18. Two-dimensional model of a Space Station Freedom thermal energy storage canister

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Ibrahim, Mounir B.

    1990-01-01

    The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change salt contained in toroidal canisters for thermal energy storage. Results are presented from heat transfer analyses of the phase-change salt containment canister. A 2-D, axisymmetric finite-difference computer program which models the canister walls, salt, void, and heat engine working fluid coolant was developed. Analyses included effects of conduction in canister walls and solid salt, conduction and free convection in liquid salt, conduction and radiation across salt vapor filled void regions, and forced convection in the heat engine working fluid. Void shape, location, and growth or shrinkage (due to density difference between the solid and liquid salt phases) were prescribed based on engineering judgement. The salt phase change process was modeled using the enthalpy method. Discussion of results focuses on the role of free-convection in the liquid salt on canister heat transfer performance. This role is shown to be important for interpreting the relationship between groundbased canister performance (in 1-g) and expected on-orbit performance (in micro-g). Attention is also focused on the influence of void heat transfer on canister wall temperature distributions. The large thermal resistance of void regions is shown to accentuate canister hot spots and temperature gradients.

  19. Two-dimensional model of a Space Station Freedom thermal energy storage canister

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Ibrahim, Mounir B.

    1990-01-01

    The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change salt contained in toroidal canisters for thermal energy storage. Results are presented from heat transfer analyses of the phase change salt containment canister. A 2-D, axisymmetric finite difference computer program which models the canister walls, salt, void, and heat engine working fluid coolant was developed. Analyses included effects of conduction in canister walls and solid salt, conduction and free convection in liquid salt, conduction and radiation across salt vapor filled void regions and forced convection in the heat engine working fluid. Void shape, location, growth or shrinkage (due to density difference between the solid and liquid salt phases) were prescribed based on engineering judgement. The salt phase change process was modeled using the enthalpy method. Discussion of results focuses on the role of free-convection in the liquid salt on canister heat transfer performance. This role is shown to be important for interpreting the relationship between ground based canister performance (in l-g) and expected on-orbit performance (in micro-g). Attention is also focused on the influence of void heat transfer on canister wall temperature distributions. The large thermal resistance of void regions is shown to accentuate canister hot spots and temperature gradients.

  20. Molecular dynamics simulations of void defects in the energetic material HMX.

    PubMed

    Duan, Xiao Hui; Li, Wen Peng; Pei, Chong Hua; Zhou, Xiao Qing

    2013-09-01

    A molecular dynamics (MD) simulation was carried out to characterize the dynamic evolution of void defects in crystalline octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX). Different models were constructed with the same concentration of vacancies (10 %) to discuss the size effects of void. Energetic ground state properties were determined by annealing simulations. The void formation energy per molecule removed was found to be 55-63 kcal/mol(-1), and the average binding energy per molecule was between 32 and 34 kcal/mol(-1) according to the change in void size. Voids with larger size had lower formation energy. Local binding energies for molecules directly on the void surface decreased greatly compared to those in defect-free lattice, and then gradually increased until the distance away from the void surface was around 10 Å. Analysis of 1 ns MD simulations revealed that the larger the void size, the easier is void collapse. Mean square displacements (MSDs) showed that HMX molecules that had collapsed into void present liquid structure characteristics. Four unique low-energy conformers were found for HMX molecules in void: two whose conformational geometries corresponded closely to those found in HMX polymorphs and two, additional, lower energy conformers that were not seen in the crystalline phases. The ratio of different conformers changed with the simulated temperature, in that the ratio of α conformer increased with the increase in temperature.

  1. The effect of distribution of second phase on dynamic damage

    DOE PAGES

    Fensin, Saryu J.; Jones, David R.; Walker, Emily K.; ...

    2016-08-28

    For ductile metals, dynamic fracture occurs principally through void nucleation, growth, and coalescence at heterogeneities in the microstructure. Previous experimental research on high purity metals has shown that microstructural features, such as grain boundaries, inclusions, vacancies, and heterogeneities, can act as initial void nucleation sites. In addition, other research on two-phase materials has also highlighted the importance of the properties of a second phase itself in determining the dynamic response of the overall material. But, previous research has not investigated the effects of the distribution of a second phase on damage nucleation and evolution. To approach this problem in amore » systematic manner, two copper alloys with 1% lead materials, with the same Pb concentration but different Pb distributions, have been investigated. A new CuPb alloy was cast with a more homogeneous distribution of Pb as compared to a CuPb where the Pb congregated in large “stringer” type configurations. These materials were shock loaded at ~1.2 GPa and soft recovered. In-situ free surface velocity information, and post mortem metallography, reveals that even though the spall strength of both the materials were similar, the total extent and details of damage in the materials varied by 15%. This then suggests that altering the distribution of Pb in the Cu matrix leads to the creation of more void nucleation sites and also changed the rate of void growth.« less

  2. Ground Based Studies of Gas-Liquid Flows in Microgravity Using Learjet Trajectories

    NASA Technical Reports Server (NTRS)

    Bousman, W. S.; Dukler, A. E.

    1994-01-01

    A 1.27 cm diameter two phase gas-liquid flow experiment has been developed with the NASA Lewis Research Center to study two-phase flows in microgravity. The experiment allows for the measurement of void fraction, pressure drop, film thickness and bubble and wave velocities as well as for high speed photography. Three liquids were used to study the effects of liquid viscosity and surface tension, and flow pattern maps are presented for each. The experimental results are used to develop mechanistically based models to predict void fraction, bubble velocity, pressure drop and flow pattern transitions in microgravity.

  3. Modeling of the Edwards pipe experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiselj, I.; Petelin, S.

    1995-12-31

    The Edwards pipe experiment is used as one of the basic benchmarks for the two-phase flow codes due to its simple geometry and the wide range of phenomena that it covers. Edwards and O`Brien filled 4-m-long pipe with liquid water at 7 MPa and 502 K and ruptured one end of the tube. They measured pressure and void fraction during the blowdown. Important phenomena observed were pressure rarefaction wave, flashing onset, critical two-phase flow, and void fraction wave. Experimental data were used to analyze the capabilities of the RELAP5/MOD3.1 six-equation two-phase flow model and to examine two different numerical schemes:more » one from the RELAP5/MOD3.1 code and one from our own code, which was based on characteristic upwind discretization.« less

  4. Thermal analysis of void cavity for heat pipe receiver under microgravity

    NASA Astrophysics Data System (ADS)

    Gui, Xiaohong; Song, Xiange; Nie, Baisheng

    2017-04-01

    Based on theoretical analysis of PCM (Phase Change Material) solidification process, the model of improved void cavity distribution tending to high temperature region is established. Numerical results are compared with NASA (National Aeronautics and Space Administration) results. Analysis results show that the outer wall temperature, the melting ratio of PCM and the temperature gradient of PCM canister, have great difference in different void cavity distribution. The form of void distribution has a great effect on the process of phase change. Based on simulation results under the model of improved void cavity distribution, phase change heat transfer process in thermal storage container is analyzed. The main goal of the improved designing for PCM canister is to take measures in reducing the concentration distribution of void cavity by adding some foam metal into phase change material.

  5. Determination of void volume in normal phase liquid chromatography.

    PubMed

    Jiang, Ping; Wu, Di; Lucy, Charles A

    2014-01-10

    Void volume is an important fundamental parameter in chromatography. Little prior discussion has focused on the determination of void volume in normal phase liquid chromatography (NPLC). Various methods to estimate the total void volume are compared: pycnometry; minor disturbance method based on injection of weak solvent; tracer pulse method; hold-up volume based on unretained compounds; and accessible volume based on Martin's rule and its descendants. These are applied to NPLC on silica, RingSep and DNAP columns. Pycnometry provides a theoretically maximum value for the total void volume and should be performed at least once for each new column. However, pycnometry does not reflect the volume of adsorbed strong solvent on the stationary phase, and so only yields an accurate void volume for weaker mobile phase conditions. 1,3,5-Tri-t-butyl benzene (TTBB) results in hold-up volumes that are convenient measures of the void volume for all eluent conditions on charge-transfer columns (RingSep and DNAP), but is weakly retained under weak eluent conditions on silica. Injection of the weak mobile phase component (hexane) may be used to determine void volume, but care must be exercised to select the appropriate disturbance feature. Accessible volumes, that are determined using a homologous series, are always biased low, and are not recommended as a measure of the void volume. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Cluster-void degeneracy breaking: Modified gravity in the balance

    NASA Astrophysics Data System (ADS)

    Sahlén, Martin; Silk, Joseph

    2018-05-01

    Combining galaxy cluster and void abundances is a novel, powerful way to constrain deviations from general relativity and the Λ CDM model. For a flat w CDM model with growth of large-scale structure parametrized by the redshift-dependent growth index γ (z )=γ0+γ1z /(1 +z ) of linear matter perturbations, combining void and cluster abundances in future surveys with Euclid and the four-meter multiobject spectroscopic telescope could improve the figure of merit for (w ,γ0,γ1) by a factor of 20 compared to individual abundances. In an ideal case, improvement on current cosmological data is a figure of merit factor 600 or more.

  7. Neutron imaging of diabatic two-phase flows relevant to air conditioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geoghegan, Patrick J; Sharma, Vishaldeep

    The design of the evaporator of an air conditioning system relies heavily on heat transfer coefficients and pressure drop correlations that predominantly involve an estimate of the changing void fraction and the underlying two-phase flow regime. These correlations dictate whether the resulting heat exchanger is oversized or not and the amount of refrigerant charge necessary to operate. The latter is particularly important when dealing with flammable or high GWP refrigerants. Traditional techniques to measure the void fraction and visualize the flow are either invasive to the flow or occur downstream of the evaporator, where some of the flow distribution willmore » have changed. Neutron imaging has the potential to visualize two-phase flow in-situ where an aluminium heat exchanger structure becomes essentially transparent to the penetrating neutrons. The subatomic particles are attenuated by the passing refrigerant flow. The resulting image may be directly related to the void fraction and the overall picture provides a clear insight into the flow regime present. This work presents neutron images of the refrigerant Isopentane as it passes through the flow channels of an aluminium evaporator at flowrates relevant to air conditioning. The flow in a 4mm square macro channel is compared to that in a 250 m by 750 m rectangular microchannel in terms of void fraction and regime. All neutron imaging experiments were conducted at the High Flux Isotope Reactor, an Oak Ridge National Laboratory facility« less

  8. Subsidence and collapse sinkholes in soluble rock: a numerical perspective

    NASA Astrophysics Data System (ADS)

    Kaufmann, Georg; Romanov, Douchko; Hiller, Thomas

    2016-04-01

    Soluble rocks such as limestone, gypsum, anhydrite, and salt are prone to subsidence and the sudden creation of collapse sinkholes. The reason for this behaviour stems from the solubility of the rock: Water percolating through fissures and bedding partings can remove material from the rock walls and thus increase the permeability of the host rock by orders of magnitudes. This process occurs on time scales of 1,000-100,000 years, resulting in enlarged fractures, voids and cavities, which then carry flow efficiently through the rock. The enlargement of sub-surface voids to the meter-size within such short times creates mechanical conditions prone to collapse. The collapse initiates at depth, but then propagates to the surface. By means of numerical modelling, we discuss the long-term evolution of secondary porosity in gypsum rocks, resulting in zones of sub-surface voids, which then become mechanically unstable and collapse. We study two real-world case scenarios, in which we can relate field observations to our numerical model: (i) A dam-site scenario, where flow around the dam caused widespread dissolution of gypsum and subsequent subsidence of the dam and a nearby highway. (ii) A natural collapse sinkhole forming as a result of freshwater inflow into a shallow anhydrite formation with rapid evolution of voids in the sub-surface.

  9. Influence of Strain Rate, Microstructure and Chemical and Phase Composition on Mechanical Behavior of Different Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Markovsky, P. E.; Bondarchuk, V. I.

    2017-07-01

    Taking three titanium commercial alloys: commercial purity titanium (c.p.Ti), Ti-6-4 (Ti-6(wt.%)Al-4V) and TIMETAL-LCB (Ti-1.5Al-4.5Fe-6.8Mo) as program materials, the influence of phase composition, microstructure and strain rate (varied from 8 × 10-4 to 1.81 × 10-1) on the mechanical behavior was studied. The size of the matrix phase ( α- or β-grains) and size of α + β intragranular mixture were varied. Such parameter such as tensile toughness (TT) was used for analysis of the mechanical behavior of the materials on tension with different rates. It was found that the TT values monotonically decreased with strain rate, except Ti-6-4 alloy with a globular type of microstructure. In single-phase α-material (c.p.Ti), tensile deformation led to the formation of voids at the intragranular cell substructure, and merging of these voids caused the formation of main crack. In two-phase α + β materials, the deformation defects were localized upon tension predominantly near the α/ β interphase boundaries, and subsequent fracture had different characters: In Ti-6-4 globular condition fracture started by formation of voids at the α/ β interphase boundaries, whereas in all other conditions the voids nucleated at the tips of α-lamellae/needles.

  10. Quantitative void fraction detection with an eddy current flowmeter for generation IV Sodium cooled Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, M.; French Atomic Energy and Alternative Energies Commission; Tordjeman, Ph.

    2015-07-01

    This study was carried out to understand the response of an eddy current type flowmeter in two phase liquid-metal flow. We use the technique of ellipse fit and correlate the fluctuations in the angle of inclination of this ellipse with the void fraction. The effects of physical parameters such as coil excitation frequency and flow velocity have been studied. The results show the possibility of using an eddy current flowmeter as a gas detector for large void fractions. (authors)

  11. Quantitative void fraction measurement with an eddy current flowmeter for generation IV Sodium cooled Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, M.; CEA, DEN, Nuclear Technology Department, F-13108 Saint-Paul-lez-Durance; Tordjeman, Ph.

    2015-07-01

    This study was carried out to understand the response of an eddy current type flowmeter in two phase liquid-metal flow. We use the technique of ellipse fit and correlate the fluctuations in the angle of inclination of this ellipse with the void fraction. The effects of physical parameters such as coil excitation frequency and flow velocity have been studied. The results show the possibility of using an eddy current flowmeter as a gas detector for large void fractions. (authors)

  12. Digital Receiver Phase Meter

    NASA Technical Reports Server (NTRS)

    Marcin, Martin; Abramovici, Alexander

    2008-01-01

    The software of a commercially available digital radio receiver has been modified to make the receiver function as a two-channel low-noise phase meter. This phase meter is a prototype in the continuing development of a phase meter for a system in which radiofrequency (RF) signals in the two channels would be outputs of a spaceborne heterodyne laser interferometer for detecting gravitational waves. The frequencies of the signals could include a common Doppler-shift component of as much as 15 MHz. The phase meter is required to measure the relative phases of the signals in the two channels at a sampling rate of 10 Hz at a root power spectral density <5 microcycle/(Hz)1/2 and to be capable of determining the power spectral density of the phase difference over the frequency range from 1 mHz to 1 Hz. Such a phase meter could also be used on Earth to perform similar measurements in laser metrology of moving bodies. To illustrate part of the principle of operation of the phase meter, the figure includes a simplified block diagram of a basic singlechannel digital receiver. The input RF signal is first fed to the input terminal of an analog-to-digital converter (ADC). To prevent aliasing errors in the ADC, the sampling rate must be at least twice the input signal frequency. The sampling rate of the ADC is governed by a sampling clock, which also drives a digital local oscillator (DLO), which is a direct digital frequency synthesizer. The DLO produces samples of sine and cosine signals at a programmed tuning frequency. The sine and cosine samples are mixed with (that is, multiplied by) the samples from the ADC, then low-pass filtered to obtain in-phase (I) and quadrature (Q) signal components. A digital signal processor (DSP) computes the ratio between the Q and I components, computes the phase of the RF signal (relative to that of the DLO signal) as the arctangent of this ratio, and then averages successive such phase values over a time interval specified by the user.

  13. Lidar point density analysis: implications for identifying water bodies

    USGS Publications Warehouse

    Worstell, Bruce B.; Poppenga, Sandra K.; Evans, Gayla A.; Prince, Sandra

    2014-01-01

    Most airborne topographic light detection and ranging (lidar) systems operate within the near-infrared spectrum. Laser pulses from these systems frequently are absorbed by water and therefore do not generate reflected returns on water bodies in the resulting void regions within the lidar point cloud. Thus, an analysis of lidar voids has implications for identifying water bodies. Data analysis techniques to detect reduced lidar return densities were evaluated for test sites in Blackhawk County, Iowa, and Beltrami County, Minnesota, to delineate contiguous areas that have few or no lidar returns. Results from this study indicated a 5-meter radius moving window with fewer than 23 returns (28 percent of the moving window) was sufficient for delineating void regions. Techniques to provide elevation values for void regions to flatten water features and to force channel flow in the downstream direction also are presented.

  14. Velocity field measurement in gas-liquid metal two-phase flow with use of PIV and neutron radiography techniques.

    PubMed

    Saito, Y; Mishima, K; Tobita, Y; Suzuki, T; Matsubayashi, M

    2004-10-01

    To establish reasonable safety concepts for the realization of commercial liquid-metal fast breeder reactors, it is indispensable to demonstrate that the release of excessive energy due to re-criticality of molten core could be prevented even if a severe core damage accident took place. Two-phase flow due to the boiling of fuel-steel mixture in the molten core pool has a larger liquid-to-gas density ratio and higher surface tension in comparison with those of ordinary two-phase flows such as air-water flow. In this study, to investigate the effect of the recirculation flow on the bubble behavior, visualization and measurement of nitrogen gas-molten lead bismuth in a rectangular tank was performed by using neutron radiography and particle image velocimetry techniques. Measured flow parameters include flow regime, two-dimensional void distribution, and liquid velocity field in the tank. The present technique is applicable to the measurement of velocity fields and void fraction, and the basic characteristics of gas-liquid metal two-phase mixture were clarified.

  15. Obtaining of Analytical Relations for Hydraulic Parameters of Channels With Two Phase Flow Using Open CFD Toolbox

    NASA Astrophysics Data System (ADS)

    Varseev, E.

    2017-11-01

    The present work is dedicated to verification of numerical model in standard solver of open-source CFD code OpenFOAM for two-phase flow simulation and to determination of so-called “baseline” model parameters. Investigation of heterogeneous coolant flow parameters, which leads to abnormal friction increase of channel in two-phase adiabatic “water-gas” flows with low void fractions, presented.

  16. Tomographic Observation and Bedmapping of Glaciers in Western Greenland with IceBridge Sounding Radar

    NASA Technical Reports Server (NTRS)

    Wu, Xiaoqing; Paden, John; Jezek, Ken; Rignot, Eric; Gim, Young

    2013-01-01

    We produced the high resolution bedmaps of several glaciers in western Greenland from IceBridge Mission sounding radar data using tomographic sounding technique. The bedmaps cover 3 regions: Russell glaciers, Umanaq glaciers and Jakobshavn glaciers of western Greenland. The covered areas is about 20x40 km(sup 2) for Russell glaciers and 300x100 sq km, and 100x80 sq km for Jakobshavn glaciers. The ground resolution is 50 meters and the average ice thickness accuracy is 10 to 20 meters. There are some void areas within the swath of the tracks in the bedmaps where the ice thickness is not known. Tomographic observations of these void areas indicate that the surface and shallow sub-surface pockets, likely filled with water, are highly reflective and greatly weaken the radar signal and reduce the energy reaching and reflected from the ice sheet bottom.

  17. Phase-field modeling of void anisotropic growth behavior in irradiated zirconium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, G. M.; Wang, H.; Lin, De-Ye

    2017-06-01

    A three-dimensional (3D) phase field model was developed to study the effects of surface energy and diffusivity anisotropy on void growth behavior in irradiated Zr. The gamma surface energy function, which is used in the phase field model, was developed with the surface energy anisotropy calculated from the molecular dynamics (MD) simulations. It is assumed that vacancies have much larger mobility in c-axis than a- and b- axes while interstitials have much larger mobility in basal plane then that in c-axis. With the model, the equilibrium void morphology and the effect of defect concentrations and defect mobility anisotropy on voidmore » growth behavior were simulated. The simulations demonstrated that 1) The developed phase-field model can correctly reproduce the faceted void morphology predicted by the Wullf construction. 2) With isotropic diffusivity the void prefers to grow on the basal plane. 3) When the vacancy has large mobility along c-axis and interstitial has a large mobility on the basal plane of hexagonal closed packed (hcp) Zr alloys a platelet void grows in c-direction and shrinks on the basal plane, which is in agreement with the experimental observation of void growth behavior in irradiated Zr.« less

  18. Measuring peak expiratory flow in general practice: comparison of mini Wright peak flow meter and turbine spirometer.

    PubMed Central

    Jones, K P; Mullee, M A

    1990-01-01

    OBJECTIVE--To compare measurements of the peak expiratory flow rate taken by the mini Wright peak flow meter and the turbine spirometer. DESIGN--Pragmatic study with randomised order of use of recording instruments. Phase 1 compared a peak expiratory flow type expiration recorded by the mini Wright peak flow meter with an expiration to forced vital capacity recorded by the turbine spirometer. Phase 2 compared peak expiratory flow type expirations recorded by both meters. Reproducibility was assessed separately. SETTING--Routine surgeries at Aldermoor Health Centre, Southampton. SUBJECTS--212 Patients aged 4 to 78 presenting with asthma or obstructive airways disease. Each patient contributed only once to each phase (105 in phase 1, 107 in phase 2), but some entered both phases on separate occasions. Reproducibility was tested on a further 31 patients. MAIN OUTCOME MEASURE--95% Limits of agreement between measurements on the two meters. RESULTS--208 (98%) Of the readings taken by the mini Wright meter were higher than the corresponding readings taken by the turbine spirometer, but the 95% limits of agreement (mean difference (2 SD] were wide (1 to 173 l/min). Differences due to errors in reproducibility were not sufficient to predict this level of disagreement. Analysis by age, sex, order of use, and the type of expiration did not detect any significant differences. CONCLUSIONS--The two methods of measuring peak expiratory flow rate were not comparable. The mini Wright meter is likely to remain the preferred instrument in general practice. PMID:2142611

  19. Basic processes and factors determining the evolution of collapse sinkholes: a sensitivity study

    NASA Astrophysics Data System (ADS)

    Romanov, Douchko; Kaufmann, Georg

    2017-04-01

    Collapse sinkholes appear as closed depressions at the surface. The origin of these karst features is related to the continuous dissolution of the soluble rock caused by a focussed sub-surface flow. Water flowing along a preferential pathway through fissures and fractures within the phreatic part of a karst aquifer is able to dissolve the rock (limestone, gypsum, anhydrite). With time, the dissolved void volume increases and part of the ceiling above the stream can become unstable, collapses, and accumulates as debris in the flow path. The debris partially blocks the flow and thus activates new pathways. Because of the low compaction of the debris (high hydraulic conductivity), the flow and the dissolution rates within this crushed zone remain high. This allows a relatively fast dissolutional and erosional removal of the crushed material and the development of new empty voids. The void volume expands upwards towards the surface until a collapse sinkhole is formed. The collapse sinkholes exhibit a large variety of shapes (cylindrical, cone-, bowl-shaped), depths (from few to few hundred meters) and diameters (meters up to hundreds of meters). Two major processes are responsible for this diversity: a) the karst evolution of the aquifer - responsible for the dissolutional and erosional removal of material; b) the mechanical evolution of the host rock and the existence of structural features, faults for example, which determine the stability and the magnitude of the subsequent collapses. In this work we demonstrate the influence of the host rock type, the hydrological and geological boundary conditions, the chemical composition of the flowing water, and the geometry and the scale of the crushed zone, on the location and the evolution of the growing sinkhole. We demonstrate the ability of the karst evolution models to explain, at least qualitatively, the growth and the morphology of the collapse sinkholes and to roughly predict their shape and location. Implementing simple rules that describe the mechanical collapse, we come to the conclusion that a complete quantitative and qualitative description of a collapse sinkhole is possible, but for this it is necessary to take into account also the mechanical properties of the rock and the processes determining the mechanics of the collapses.

  20. Influence of regenerator void volume on performance of a precooled 4 K Stirling type pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Li, Zhuopei; Jiang, Yanlong; Gan, Zhihua; Qiu, Limin; Chen, Jie

    2015-09-01

    Stirling type pulse tube cryocoolers (SPTC), typically operating at 30-60 Hz, have the advantage of compact structure, light weight, and long life compared with Gifford-McMahon type (1-2 Hz) PTC (GMPTC). The behavior of flow and heat transfer in the regenerator of a 4 K SPTC deviates from that at warmer temperatures and low frequencies. In this paper the behavior of 4 K regenerator at high frequencies is investigated based on a single-stage 4 K SPTC precooled by a two-stage GMPTC. The 4 K SPTC and the GMPTC is thermally coupled with two thermal bridges. The 4 K SPTC uses a 10 K cold inertance tube as phase shifter to improve phase relationship between mass flow and pressure. The regenerator void volume is an important factor that significantly influences the heat transfer between regenerator matrix and working fluid helium, pressure drop along the regenerator, and phase shift between mass flow and pressure. In this paper, influence of regenerator void volume on the performance of the 4 K SPTC with different operating parameters including operating frequencies and average pressure is studied theoretically and experimentally. The first and second precooling powers provided by the GMPTC are obtained which are important parameters to evaluate the efficiency of the whole 4 K system with precooling. The results of the regenerator void volume are given and discussed in normalized form for general use.

  1. Numerical study of the influence of geometrical characteristics of a vertical helical coil on a bubbly flow

    NASA Astrophysics Data System (ADS)

    Saffari, H.; Moosavi, R.

    2014-11-01

    In this article, turbulent single-phase and two-phase (air-water) bubbly fluid flows in a vertical helical coil are analyzed by using computational fluid dynamics (CFD). The effects of the pipe diameter, coil diameter, coil pitch, Reynolds number, and void fraction on the pressure loss, friction coefficient, and flow characteristics are investigated. The Eulerian-Eulerian model is used in this work to simulate the two-phase fluid flow. Three-dimensional governing equations of continuity, momentum, and energy are solved by using the finite volume method. The k- ɛ turbulence model is used to calculate turbulence fluctuations. The SIMPLE algorithm is employed to solve the velocity and pressure fields. Due to the effect of a secondary force in helical pipes, the friction coefficient is found to be higher in helical pipes than in straight pipes. The friction coefficient increases with an increase in the curvature, pipe diameter, and coil pitch and decreases with an increase in the coil diameter and void fraction. The close correlation between the numerical results obtained in this study and the numerical and empirical results of other researchers confirm the accuracy of the applied method. For void fractions up to 0.1, the numerical results indicate that the friction coefficient increases with increasing the pipe diameter and keeping the coil pitch and diameter constant and decreases with increasing the coil diameter. Finally, with an increase in the Reynolds number, the friction coefficient decreases, while the void fraction increases.

  2. Application of the ultrasonic technique and high-speed filming for the study of the structure of air-water bubbly flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvalho, R.D.M.; Venturini, O.J.; Tanahashi, E.I.

    2009-10-15

    Multiphase flows are very common in industry, oftentimes involving very harsh environments and fluids. Accordingly, there is a need to determine the dispersed phase holdup using noninvasive fast responding techniques; besides, knowledge of the flow structure is essential for the assessment of the transport processes involved. The ultrasonic technique fulfills these requirements and could have the capability to provide the information required. In this paper, the potential of the ultrasonic technique for application to two-phase flows was investigated by checking acoustic attenuation data against experimental data on the void fraction and flow topology of vertical, upward, air-water bubbly flows inmore » the zero to 15% void fraction range. The ultrasonic apparatus consisted of one emitter/receiver transducer and three other receivers at different positions along the pipe circumference; simultaneous high-speed motion pictures of the flow patterns were made at 250 and 1000 fps. The attenuation data for all sensors exhibited a systematic interrelated behavior with void fraction, thereby testifying to the capability of the ultrasonic technique to measure the dispersed phase holdup. From the motion pictures, basic gas phase structures and different flows patterns were identified that corroborated several features of the acoustic attenuation data. Finally, the acoustic wave transit time was also investigated as a function of void fraction. (author)« less

  3. Adhesion of voids to bimetal interfaces with non-uniform energies

    DOE PAGES

    Zheng, Shijian; Shao, Shuai; Zhang, Jian; ...

    2015-10-21

    Interface engineering has become an important strategy for designing radiation-resistant materials. Critical to its success is fundamental understanding of the interactions between interfaces and radiation-induced defects, such as voids. Using transmission electron microscopy, here we report an interesting phenomenon in their interaction, wherein voids adhere to only one side of the bimetal interfaces rather than overlapping them. We show that this asymmetrical void-interface interaction is a consequence of differing surface energies of the two metals and non-uniformity in their interface formation energy. Specifically, voids grow within the phase of lower surface energy and wet only the high-interface energy regions. Furthermore,more » because this outcome cannot be accounted for by wetting of interfaces with uniform internal energy, our report provides experimental evidence that bimetal interfaces contain non-uniform internal energy distributions. Ultimately, this work also indicates that to design irradiation-resistant materials, we can avoid void-interface overlap via tuning the configurations of interfaces.« less

  4. Experimental and Computational Investigations of Phase Change Thermal Energy Storage Canisters

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Kerslake, Thomas; Sokolov, Pavel; Tolbert, Carol

    1996-01-01

    Two sets of experimental data are examined in this paper, ground and space experiments, for cylindrical canisters with thermal energy storage applications. A 2-D computational model was developed for unsteady heat transfer (conduction and radiation) with phase-change. The radiation heat transfer employed a finite volume method. The following was found in this study: (1) Ground Experiments: the convection heat transfer is equally important to that of the radiation heat transfer; radiation heat transfer in the liquid is found to be more significant than that in the void; including the radiation heat transfer in the liquid resulted in lower temperatures (about 15 K) and increased the melting time (about 10 min.); generally, most of the heat flow takes place in the radial direction. (2) Space Experiments: radiation heat transfer in the void is found to be more significant than that in the liquid (exactly the opposite to the Ground Experiments); accordingly, the location and size of the void affects the performance considerably; including the radiation heat transfer in the void resulted in lower temperatures (about 40 K).

  5. A sharp interface model for void growth in irradiated materials

    NASA Astrophysics Data System (ADS)

    Hochrainer, Thomas; El-Azab, Anter

    2015-03-01

    A thermodynamic formalism for the interaction of point defects with free surfaces in single-component solids has been developed and applied to the problem of void growth by absorption of point defects in irradiated metals. This formalism consists of two parts, a detailed description of the dynamics of defects within the non-equilibrium thermodynamic frame, and the application of the second law of thermodynamics to provide closure relations for all kinetic equations. Enforcing the principle of non-negative entropy production showed that the description of the problem of void evolution under irradiation must include a relationship between the normal fluxes of defects into the void surface and the driving thermodynamic forces for the void surface motion; these thermodynamic forces are identified for both vacancies and interstitials and the relationships between these forces and the normal point defect fluxes are established using the concepts of transition state theory. The latter theory implies that the defect accommodation into the surface is a thermally activated process. Numerical examples are given to illustrate void growth dynamics in this new formalism and to investigate the effect of the surface energy barriers on void growth. Consequences for phase field models of void growth are discussed.

  6. Time-resolved flowmetering of gas-liquid two-phase pipe flow by ultrasound pulse Doppler method

    NASA Astrophysics Data System (ADS)

    Murai, Yuichi; Tasaka, Yuji; Takeda, Yasushi

    2012-03-01

    Ultrasound pulse Doppler method is applied for componential volumetric flow rate measurement in multiphase pipe flow consisted of gas and liquid phases. The flowmetering is realized with integration of measured velocity profile over the cross section of the pipe within liquid phase. Spatio-temporal position of interface is detected also with the same ultrasound pulse, which further gives cross sectional void fraction. A series of experimental demonstration was shown by applying this principle of measurement to air-water two-phase flow in a horizontal tube of 40 mm in diameter, of which void fraction ranges from 0 to 90% at superficial velocity from 0 to 15 m/s. The measurement accuracy is verified with a volumetric type flowmeter. We also analyze the accuracy of area integration of liquid velocity distribution for many different patterns of ultrasound measurement lines assigned on the cross section of the tube. The present method is also identified to be pulsation sensor of flow rate that fluctuates with complex gas-liquid interface behavior.

  7. Sonic impedance technique detects flaws in polyurethane foam spray-on insulation

    NASA Technical Reports Server (NTRS)

    Haralson, H. S.; Haynes, J. L.

    1970-01-01

    Sonic impedance testing detects voids and unbonded regions as small as 1 inch in diameter by 0.03 inch thick. Measurements are made manually or by automatic scanning and the readout is made by meter or recorder.

  8. Radioisotope measurement of selected parameters of liquid-gas flow using single detector system

    NASA Astrophysics Data System (ADS)

    Zych, Marcin; Hanus, Robert; Jaszczur, Marek; Mosorov, Volodymyr; Świsulski, Dariusz

    2018-06-01

    To determine the parameters of two-phase flows using radioisotopes, usually two detectors are used. Knowing the distance between them, the velocity of the dispersed phase is calculated based on time delay estimation. Such a measurement system requires the use of two gamma-ray sealed sources. But in some situations it is also possible to determine velocity of dispersed phase using only one scintillation probe and one gamma-ray source. However, this requires proper signal analysis and prior calibration. This may also cause larger measurement errors. On the other hand, it allows measurements in hard to reach areas where there is often no place for the second detector. Additionally, by performing a previous calibration, it is possible to determine the void fraction or concentration of the selected phase. In this work an autocorrelation function was used to analyze the signal from the scintillation detector, which allowed for the determination of air velocities in slug and plug flows with an accuracy of 8.5%. Based on the analysis of the same signal, a void fraction with error of 15% was determined.

  9. A compact x-ray system for two-phase flow measurement

    NASA Astrophysics Data System (ADS)

    Song, Kyle; Liu, Yang

    2018-02-01

    In this paper, a compact x-ray densitometry system consisting of a 50 kV, 1 mA x-ray tube and several linear detector arrays is developed for two-phase flow measurement. The system is capable of measuring void fraction and velocity distributions with a spatial resolution of 0.4 mm per pixel and a frequency of 1000 Hz. A novel measurement model has been established for the system which takes account of the energy spectrum of x-ray photons and the beam hardening effect. An improved measurement accuracy has been achieved with this model compared with the conventional log model that has been widely used in the literature. Using this system, void fraction and velocity distributions are measured for a bubbly and a slug flow in a 25.4 mm I.D. air-water two-phase flow test loop. The measured superficial gas velocities show an error within  ±4% when compared with the gas flowmeter for both conditions.

  10. Comparison between wire mesh sensor and gamma densitometry void measurements in two-phase flows

    NASA Astrophysics Data System (ADS)

    Sharaf, S.; Da Silva, M.; Hampel, U.; Zippe, C.; Beyer, M.; Azzopardi, B.

    2011-10-01

    Wire mesh sensors (WMS) are fast imaging instruments that are used for gas-liquid and liquid-liquid two-phase flow measurements and experimental investigations. Experimental tests were conducted at Helmholtz-Zentrum Dresden-Rossendorf to test both the capacitance and conductance WMS against a gamma densitometer (GD). A small gas-liquid test facility was utilized. This consisted of a vertical round pipe approximately 1 m in length, and 50 mm internal diameter. A 16 × 16 WMS was used with high spatial and temporal resolutions. Air-deionized water was the two-phase mixture. The gas superficial velocity was varied between 0.05 m s-1 and 1.4 m s-1 at two liquid velocities of 0.2 and 0.7 m s-1. The GD consisted of a collimated source and a collimated detector. The GD was placed on a moving platform close to the plane of wires of the sensor, in order to align it accurately using a counter mechanism, with each of the wires of the WMS, and the platform could scan the full section of the pipe. The WMS was operated as a conductivity WMS for a half-plane with eight wires and as a capacitance WMS for the other half. For the cross-sectional void (time and space averaged), along each wire, there was good agreement between WMS and the GD chordal void fraction near the centre of the pipe.

  11. Nebular Metallicities in Two Isolated Local Void Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Nicholls, David C.; Jerjen, Helmut; Dopita, Michael A.; Basurah, Hassan

    2014-01-01

    Isolated dwarf galaxies, especially those situated in voids, may provide insight into primordial conditions in the universe and the physical processes that govern star formation in undisturbed stellar systems. The metallicity of H II regions in such galaxies is key to investigating this possibility. From the SIGRID sample of isolated dwarf galaxies, we have identified two exceptionally isolated objects, the Local Void galaxy [KK98]246 (ESO 461-G036) and another somewhat larger dwarf irregular on the edge of the Local Void, MCG-01-41-006 (HIPASS J1609-04). We report our measurements of the nebular metallicities in these objects. The first object has a single low luminosity H II region, while the second is in a more vigorous star forming phase with several bright H II regions. We find that the metallicities in both galaxies are typical for galaxies of this size, and do not indicate the presence of any primordial gas, despite (for [KK98]246) the known surrounding large reservoir of neutral hydrogen.

  12. Concrete pavement quality control testing requirements needed for the super air meter : final report.

    DOT National Transportation Integrated Search

    2016-10-01

    Concrete freeze-thaw durability is prominently linked to the air void system within the concrete. : Concrete pavements in Kansas undergo repetitive freeze-thaw cycles. Total air content measurements : currently used on fresh concrete do not provide a...

  13. Concrete pavement quality control testing requirements needed for the super air meter : technical summary.

    DOT National Transportation Integrated Search

    2016-10-01

    Concrete freeze-thaw durability is prominently linked to the air void system : within the concrete. Concrete pavements in Kansas undergo repetitive : freeze-thaw cycles. Total air content measurements currently used on fresh : concrete do not provide...

  14. Extended Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J; Bowman, Stephen M; Gauld, Ian C

    2015-01-01

    [Full Text] Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (k eff) calculations and depleted fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date, investigating some aspects of extended BUC, andmore » it also describes the plan to complete the evaluations. The technical basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper. Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC, including investigation of the axial void profile effect and the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of an operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. While a single cycle does not provide complete data, the data obtained are sufficient to use to determine the primary effects and identify conservative modeling approaches. Using data resulting from a single cycle, the axial void profile is studied by first determining the temporal fidelity necessary in depletion modeling, and then using multiple void profiles to examine the effect of the void profile on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied is control blade exposure. Control blades are inserted in various locations and at varying degrees during BWR operation based on the reload design. The presence of control blades during depletion hardens the neutron spectrum locally due to both moderator displacement and introduction of a thermal neutron absorber. The reactivity impact of control blade presence is investigated herein, as well as the effect of multiple (continuous and intermittent) exposure periods. The coupled effects of control blade presence on power density, void profile, or burnup profile have not been considered to date but will be addressed in future work.« less

  15. Experimental study on interfacial area transport in downward two-phase flow

    NASA Astrophysics Data System (ADS)

    Wang, Guanyi

    In view of the importance of two group interfacial area transport equations and lack of corresponding accurate downward flow database that can reveal two group interfacial area transport, a systematic database for adiabatic, air-water, vertically downward two-phase flow in a round pipe with inner diameter of 25.4 mm was collected to gain an insight of interfacial structure and provide benchmarking data for two-group interfacial area transport models. A four-sensor conductivity probe was used to measure the local two phase flow parameters and data was collected with data sampling frequency much higher than conventional data sampling frequency to ensure the accuracy. Axial development of local flow parameter profiles including void fraction, interfacial area concentration, and Sauter mean diameter were presented. Drastic inter-group transfer of void fraction and interfacial area was observed at bubbly to slug transition flow. And the wall peaked interfacial area concentration profiles were observed in churn-turbulent flow. The importance of local data about these phenomenon on flow structure prediction and interfacial area transport equation benchmark was analyzed. Bedsides, in order to investigate the effect of inlet conditions, all experiments were repeated after installing the flow straightening facility, and the results were briefly analyzed. In order to check the accuracy of current data, the experiment results were cross-checked with rotameter measurement as well as drift-flux model prediction, the averaged error is less than 15%. Current models for two-group interfacial area transport equation were evaluated using these data. The results show that two-group interfacial area transport equations with current models can predict most flow conditions with error less than 20%, except some bubbly to slug transition flow conditions and some churn-turbulent flow conditions. The disagreement between models and experiments could result from underestimate of inter-group void transfer.

  16. Balloon-borne three-meter telescope for far-infrared and submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Fazio, Giovanni G.; Hoffmann, William F.; Harper, Doyal A.

    1988-01-01

    The scientific objectives, engineering analysis and design, results of technology development, and focal-plane instrumentation for a two-meter balloon-borne telescope for far-infrared and submillimeter astronomy are presented. The unique capabilities of balloon-borne observations are discussed. A program summary emphasizes the development of the two-meter design. The relationship of the Large Deployable Reflector (LDR) is also discussed. Detailed treatment is given to scientific objectives, gondola design, the mirror development program, experiment accommodations, ground support equipment requirements, NSBF design drivers and payload support requirements, the implementation phase summary development plan, and a comparison of three-meter and two-meter gondola concepts.

  17. Phase-field Model for Interstitial Loop Growth Kinetics and Thermodynamic and Kinetic Models of Irradiated Fe-Cr Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yulan; Hu, Shenyang Y.; Sun, Xin

    2011-06-15

    Microstructure evolution kinetics in irradiated materials has strongly spatial correlation. For example, void and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of microstructure and thermo-mechanical properties. Therefore, the simulation capability for predicting three dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and performance is crucial for scientific design of advanced nuclear materials and optimal operation conditions in order to reduce uncertainty in operational and safety margins. Very recently the meso-scale phase-field (PF) method has been used to predict gas bubblemore » evolution, void swelling, void lattice formation and void migration in irradiated materials,. Although most results of phase-field simulations are qualitative due to the lake of accurate thermodynamic and kinetic properties of defects, possible missing of important kinetic properties and processes, and the capability of current codes and computers for large time and length scale modeling, the simulations demonstrate that PF method is a promising simulation tool for predicting 3-D heterogeneous microstructure and property evolution, and providing microstructure evolution kinetics for higher scale level simulations of microstructure and property evolution such as mean field methods. This report consists of two parts. In part I, we will present a new phase-field model for predicting interstitial loop growth kinetics in irradiated materials. The effect of defect (vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic interaction, inhomogeneous and anisotropic mobility on microstructure evolution kinetics is taken into account in the model. The model is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and sink strength of interstitial loop for interstitials. In part II, we present a generic phase field model and discuss the thermodynamic and kinetic properties in phase-field models including the reaction kinetics of radiation defects and local free energy of irradiated materials. In particular, a two-sublattice thermodynamic model is suggested to describe the local free energy of alloys with irradiated defects. Fe-Cr alloy is taken as an example to explain the required thermodynamic and kinetic properties for quantitative phase-field modeling. Finally the great challenges in phase-field modeling will be discussed.« less

  18. Local random configuration-tree theory for string repetition and facilitated dynamics of glass

    NASA Astrophysics Data System (ADS)

    Lam, Chi-Hang

    2018-02-01

    We derive a microscopic theory of glassy dynamics based on the transport of voids by micro-string motions, each of which involves particles arranged in a line hopping simultaneously displacing one another. Disorder is modeled by a random energy landscape quenched in the configuration space of distinguishable particles, but transient in the physical space as expected for glassy fluids. We study the evolution of local regions with m coupled voids. At a low temperature, energetically accessible local particle configurations can be organized into a random tree with nodes and edges denoting configurations and micro-string propagations respectively. Such trees defined in the configuration space naturally describe systems defined in two- or three-dimensional physical space. A micro-string propagation initiated by a void can facilitate similar motions by other voids via perturbing the random energy landscape, realizing path interactions between voids or equivalently string interactions. We obtain explicit expressions of the particle diffusion coefficient and a particle return probability. Under our approximation, as temperature decreases, random trees of energetically accessible configurations exhibit a sequence of percolation transitions in the configuration space, with local regions containing fewer coupled voids entering the non-percolating immobile phase first. Dynamics is dominated by coupled voids of an optimal group size, which increases as temperature decreases. Comparison with a distinguishable-particle lattice model (DPLM) of glass shows very good quantitative agreements using only two adjustable parameters related to typical energy fluctuations and the interaction range of the micro-strings.

  19. Studies of Two-Phase Gas-Liquid Flow in Microgravity. Ph.D. Thesis, Dec. 1994

    NASA Technical Reports Server (NTRS)

    Bousman, William Scott

    1995-01-01

    Two-phase gas-liquid flows are expected to occur in many future space operations. Due to a lack of buoyancy in the microgravity environment, two-phase flows are known to behave differently than those in earth gravity. Despite these concerns, little research has been conducted on microgravity two-phase flow and the current understanding is poor. This dissertation describes an experimental and modeling study of the characteristics of two-phase flows in microgravity. An experiment was operated onboard NASA aircraft capable of producing short periods of microgravity. In addition to high speed photographs of the flows, electronic measurements of void fraction, liquid film thickness, bubble and wave velocity, pressure drop and wall shear stress were made for a wide range of liquid and gas flow rates. The effects of liquid viscosity, surface tension and tube diameter on the behavior of these flows were also assessed. From the data collected, maps showing the occurrence of various flow patterns as a function of gas and liquid flow rates were constructed. Earth gravity two-phase flow models were compared to the results of the microgravity experiments and in some cases modified. Models were developed to predict the transitions on the flow pattern maps. Three flow patterns, bubble, slug and annular flow, were observed in microgravity. These patterns were found to occur in distinct regions of the gas-liquid flow rate parameter space. The effect of liquid viscosity, surface tension and tube diameter on the location of the boundaries of these regions was small. Void fraction and Weber number transition criteria both produced reasonable transition models. Void fraction and bubble velocity for bubble and slug flows were found to be well described by the Drift-Flux model used to describe such flows in earth gravity. Pressure drop modeling by the homogeneous flow model was inconclusive for bubble and slug flows. Annular flows were found to be complex systems of ring-like waves and a substrate film. Pressure drop was best fitted with the Lockhart- Martinelli model. Force balances suggest that droplet entrainment may be a large component of the total pressure drop.

  20. Phase-field study on geometry-dependent migration behavior of voids under temperature gradient in UO2 crystal matrix

    NASA Astrophysics Data System (ADS)

    Chen, Weijin; Peng, Yuyi; Li, Xu'an; Chen, Kelang; Ma, Jun; Wei, Lingfeng; Wang, Biao; Zheng, Yue

    2017-10-01

    In this work, a phase-field model is established to capture the void migration behavior under a temperature gradient within a crystal matrix, with an appropriate consideration of the surface diffusion mechanism and the vapor transport mechanism. The interfacial energy and the coupling between the vacancy concentration field and the crystal order parameter field are carefully modeled. Simulations are performed on UO2. The result shows that for small voids (with an area ≤ πμm2), the well-known characteristics of void migration, in consistence with the analytical model, can be recovered. The migration is manifested by a constant velocity and a minor change of the void shape. In contrast, for large voids (with an area of ˜10 μm2) initially in circular shapes, significant deformation of the void from a circular to cashew-like shape is observed. After long-time migration, the deformed void would split into smaller voids. The size-dependent behavior of void migration is due to the combined effect of the interfacial energy (which tends to keep the void in circular shape) and the surface diffusion flow (which tends to deform the void due to the nonuniform diffusion along the surface). Moreover, the initial shape of the void modifies the migration velocity and the time point when splitting occurs (for large voids) at the beginning of migration due to the shape relaxation of the void. However, it has a minor effect on the long-time migration. Our work reveals novel void migration behaviors in conditions where the surface-diffusion mechanism is dominant over the vapor transport mechanism; meanwhile, the size of the void lies at a mediate size range.

  1. Distribution, formation mechanisms, and significance of lunar pits

    NASA Astrophysics Data System (ADS)

    Wagner, Robert V.; Robinson, Mark S.

    2014-07-01

    Lunar Reconnaissance Orbiter Camera images reveal the presence of steep-walled pits in mare basalt (n = 8), impact melt deposits (n = 221), and highland terrain (n = 2). Pits represent evidence of subsurface voids of unknown extents. By analogy with terrestrial counterparts, the voids associated with mare pits may extend for hundreds of meters to kilometers in length, thereby providing extensive potential habitats and access to subsurface geology. Because of their small sizes relative to the local equilibrium crater diameters, the mare pits are likely to be post-flow features rather than volcanic skylights. The impact melt pits are indirect evidence both of extensive subsurface movement of impact melt and of exploitable sublunarean voids. Due to the small sizes of pits (mare, highland, and impact melt) and the absolute ages of their host materials, it is likely that most pits formed as secondary features.

  2. Multi-dimensional modeling of a thermal energy storage canister. M.S. Thesis - Cleveland State Univ., Dec. 1990

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.

    1991-01-01

    The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change material (PCM) contained in toroidal canisters for thermal energy storage. Presented are the results from heat transfer analyses of a PCM containment canister. One and two dimensional finite difference computer models are developed to analyze heat transfer in the canister walls, PCM, void, and heat engine working fluid coolant. The modes of heat transfer considered include conduction in canister walls and solid PCM, conduction and pseudo-free convection in liquid PCM, conduction and radiation across PCM vapor filled void regions, and forced convection in the heat engine working fluid. Void shape, location, growth or shrinkage (due to density difference between the solid and liquid PCM phases) are prescribed based on engineering judgment. The PCM phase change process is analyzed using the enthalpy method. The discussion of the results focuses on how canister thermal performance is affected by free convection in the liquid PCM and void heat transfer. Characterizing these effects is important for interpreting the relationship between ground-based canister performance (in 1-g) and expected on-orbit performance (in micro-g). Void regions accentuate canister hot spots and temperature gradients due to their large thermal resistance. Free convection reduces the extent of PCM superheating and lowers canister temperatures during a portion of the PCM thermal charge period. Surprisingly small differences in canister thermal performance result from operation on the ground and operation on-orbit. This lack of a strong gravity dependency is attributed to the large contribution of container walls in overall canister energy redistribution by conduction.

  3. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography.

    PubMed

    Saito, Y; Mishima, K; Matsubayashi, M

    2004-10-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile.

  4. Digital Phase Meter for a Laser Heterodyne Interferometer

    NASA Technical Reports Server (NTRS)

    Loya, Frank

    2008-01-01

    The Digital Phase Meter is based on a modified phase-locked loop. When phase alignment between the reference input and the phase-shifted metrological input is achieved, the loop locks and the phase shift of the digital phase shifter equals the phase difference that one seeks to measure. This digital phase meter is being developed for incorporation into a laser heterodyne interferometer in a metrological apparatus, but could also be adapted to other uses. Relative to prior phase meters of similar capability, including digital ones, this digital phase meter is smaller, less complex, and less expensive. The phase meter has been constructed and tested in the form of a field-programmable gate array (FPGA).

  5. Sonar imaging of flooded subsurface voids phase I : proof of concept.

    DOT National Transportation Integrated Search

    2011-04-15

    Damage to Ohio highways due to subsidence or collapse of subsurface voids is a serious problem : for the Office of Geotechnical Engineering (OGE) at the Ohio Department of Transportation : (ODOT). These voids have often resulted from past underground...

  6. Phase relationship in three-phase composites which include a void phase

    NASA Technical Reports Server (NTRS)

    Price, H. L.; Nelson, J. B.

    1976-01-01

    The paper shows the relationship among polymer, particles, and voids in a three-phase composite and how some of the properties of a composite may be changed by changing the proportions of the phases. The three-phase composite is an aggregate of microspheres bonded together with a small amount of polymer which may not form a continuous matrix. The void space (third phase) is obtained by limiting the amount of polymer which is mixed with the microspheres. A ternary phase diagram is used to show the proportional relationship among the three phases, with each apex representing a volume fraction of unity for a constituent while the side opposite the apex represents a volume fraction of zero for that constituent. The vertical dimension represents some composite property such as density or strength. The effect of composition on composite properties is shown by plotting them on a binary phase diagram which represents a perpendicular plane coincident with the 0.60 volume fraction microsphere line.

  7. Coolant Density and Control Blade History Effects in Extended BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J; Marshall, William BJ J; Bowman, Stephen M

    2015-01-01

    Oak Ridge National Laboratory and the US Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (k eff) calculations and predicted spent fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date investigating some aspects of extended BUC. (The technicalmore » basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper.) Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC: (1) the effect of axial void profile and (2) the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of a modern operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. Although a single cycle does not provide complete data, the data obtained are sufficient to determine the primary effects and to identify conservative modeling approaches. These data were used in a study of the effect of axial void profile. The first stage of the study was determination of the necessary moderator density temporal fidelity in depletion modeling. After the required temporal fidelity was established, multiple void profiles were used to examine the effect on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied was control blade history. Control blades are inserted in various locations and at varying degrees during BWR operation based on the core loading pattern. When present during depletion, control blades harden the neutron spectrum locally because they displace the moderator and absorb thermal neutrons. The investigation of the effect of control blades on post operational cask reactivity is documented herein, as is the effect of multiple (continuous and intermittent) exposure periods with control blades inserted. The coupled effects of control blade presence on power density, void profile, or burnup profile will be addressed in future work.« less

  8. Meso-Scale Modeling of Spall in a Heterogeneous Two-Phase Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, Harry Keo

    2008-07-11

    The influence of the heterogeneous second-phase particle structure and applied loading conditions on the ductile spall response of a model two-phase material was investigated. Quantitative metallography, three-dimensional (3D) meso-scale simulations (MSS), and small-scale spall experiments provided the foundation for this study. Nodular ductile iron (NDI) was selected as the model two-phase material for this study because it contains a large and readily identifiable second- phase particle population. Second-phase particles serve as the primary void nucleation sites in NDI and are, therefore, central to its ductile spall response. A mathematical model was developed for the NDI second-phase volume fraction that accountedmore » for the non-uniform particle size and spacing distributions within the framework of a length-scale dependent Gaussian probability distribution function (PDF). This model was based on novel multiscale sampling measurements. A methodology was also developed for the computer generation of representative particle structures based on their mathematical description, enabling 3D MSS. MSS were used to investigate the effects of second-phase particle volume fraction and particle size, loading conditions, and physical domain size of simulation on the ductile spall response of a model two-phase material. MSS results reinforce existing model predictions, where the spall strength metric (SSM) logarithmically decreases with increasing particle volume fraction. While SSM predictions are nearly independent of applied load conditions at lower loading rates, which is consistent with previous studies, loading dependencies are observed at higher loading rates. There is also a logarithmic decrease in SSM for increasing (initial) void size, as well. A model was developed to account for the effects of loading rate, particle size, matrix sound-speed, and, in the NDI-specific case, the probabilistic particle volume fraction model. Small-scale spall experiments were designed and executed for the purpose of validating closely-coupled 3D MSS. While the spall strength is nearly independent of specimen thickness, the fragment morphology varies widely. Detailed MSS demonstrate that the interactions between the tensile release waves are altered by specimen thickness and that these interactions are primarily responsible for fragment formation. MSS also provided insights on the regional amplification of damage, which enables the development of predictive void evolution models.« less

  9. Sonar imaging of flooded subsurface voids phase I : proof of concept : executive summary report.

    DOT National Transportation Integrated Search

    2011-04-15

    Damage to Ohio highways due to subsidence : or collapse of subsurface voids is a serious : problem for the Ohio Department of : Transportation (ODOT). These voids have : often resulted from past underground mining : activities for coal, clay, limesto...

  10. Stability limit of liquid water in metastable equilibrium with subsaturated vapors.

    PubMed

    Wheeler, Tobias D; Stroock, Abraham D

    2009-07-07

    A pure liquid can reach metastable equilibrium with its subsaturated vapor across an appropriate membrane. This situation is analogous to osmotic equilibrium: the reduced chemical potential of the dilute phase (the subsaturated vapor) is compensated by a difference in pressure between the phases. To equilibrate with subsaturated vapor, the liquid phase assumes a pressure that is lower than its standard vapor pressure, such that the liquid phase is metastable with respect to the vapor phase. For sufficiently subsaturated vapors, the liquid phase can even assume negative pressures. The appropriate membrane for this metastable equilibrium must provide the necessary mechanical support to sustain the difference in pressure between the two phases, limit nonhomogeneous mechanisms of cavitation, and resist the entry of the dilutant (gases) into the pure phase (liquid). In this article, we present a study of the limit of stability of liquid water--the degree of subsaturation at which the liquid cavitates--in this metastable state within microscale voids embedded in hydrogel membranes. We refer to these structures as vapor-coupled voids (VCVs). In these VCVs, we observed that liquid water cavitated when placed in equilibrium with vapors of activity aw,vapair

  11. Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, P., E-mail: peter.andersson@physics.uu.se; Andersson-Sunden, E.; Sjöstrand, H.

    2014-08-01

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantagemore » of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm{sup −1}, solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful indication on the flow mode, and a visualization of the radial material distribution can be obtained. A benefit of this system is its potential to be mounted at any axial height of a two-phase test section without requirements for pre-fabricated entrances or windows. This could mean a significant increase in flexibility of the void distribution assessment capability at many existing two-phase test loops.« less

  12. Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator.

    PubMed

    Andersson, P; Andersson-Sunden, E; Sjöstrand, H; Jacobsson-Svärd, S

    2014-08-01

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm(-1), solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful indication on the flow mode, and a visualization of the radial material distribution can be obtained. A benefit of this system is its potential to be mounted at any axial height of a two-phase test section without requirements for pre-fabricated entrances or windows. This could mean a significant increase in flexibility of the void distribution assessment capability at many existing two-phase test loops.

  13. Effect of Moisture Exchange on Interface Formation in the Repair System Studied by X-ray Absorption

    PubMed Central

    Lukovic, Mladena; Ye, Guang

    2015-01-01

    In concrete repair systems, material properties of the repair material and the interface are greatly influenced by the moisture exchange between the repair material and the substrate. If the substrate is dry, it can absorb water from the repair material and reduce its effective water-to-cement ratio (w/c). This further affects the hydration rate of cement based material. In addition to the change in hydration rate, void content at the interface between the two materials is also affected. In this research, the influence of moisture exchange on the void content in the repair system as a function of initial saturation level of the substrate is investigated. Repair systems with varying level of substrate saturation are made. Moisture exchange in these repair systems as a function of time is monitored by the X-ray absorption technique. After a specified curing age (3 d), the internal microstructure of the repair systems was captured by micro-computed X-ray tomography (CT-scanning). From reconstructed images, different phases in the repair system (repair material, substrate, voids) can be distinguished. In order to quantify the void content, voids were thresholded and their percentage was calculated. It was found that significantly more voids form when the substrate is dry prior to application of the repair material. Air, initially filling voids and pores of the dry substrate, is being released due to the moisture exchange. As a result, air voids remain entrapped in the repair material close to the interface. These voids are found to form as a continuation of pre-existing surface voids in the substrate. Knowledge about moisture exchange and its effects provides engineers with the basis for recommendations about substrate preconditioning in practice. PMID:28787801

  14. Deformation behaviour of Rheocast A356 Al alloy at microlevel considering approximated RVEs

    NASA Astrophysics Data System (ADS)

    Islam, Sk. Tanbir; Das, Prosenjit; Das, Santanu

    2015-03-01

    A micromechanical approach is considered here to predict the deformation behaviour of Rheocast A356 (Al-Si-Mg) alloy. Two representative volume elements (RVEs) are modelled in the finite element (FE) framework. Two dimensional approximated microstructures are generated assuming elliptic grains, based on the grain size, shape factor and area fraction of the primary Al phase of the said alloy at different processing condition. Plastic instability is shown using stress and strain distribution between the Al rich primary and Si rich eutectic phases under different boundary conditions. Boundary conditions are applied on the approximated RVEs in such a manner, so that they represent the real life situation depending on their position on a cylindrical tensile test sample. FE analysis is carried out using commercial finite element code ABAQUS without specifying any damage or failure criteria. Micro-level in-homogeneity leads to incompatible deformation between the constituent phases of the rheocast alloy and steers plastic strain localisation. Plastic stain localised regions within the RVEs are predicted as the favourable sites for void nucleation. Subsequent growth of nucleated voids leads to final failure of the materials under investigation.

  15. Analysis of the Hydrodynamics and Heat Transfer Aspects of Microgravity Two-Phase Flows

    NASA Technical Reports Server (NTRS)

    Rezkallah, Kamiel S.

    1996-01-01

    Experimental results for void fractions, flow regimes, and heat transfer rates in two-phase, liquid-gas flows are summarized in this paper. The data was collected on-board NASA's KC-135 reduced gravity aircraft in a 9.525 mm circular tube (i.d.), uniformly heated at the outer surface. Water and air flows were examined as well as three glycerol/water solutions and air. Results are reported for the water-air data.

  16. Imaging of voids by means of a physical-optics-based shape-reconstruction algorithm.

    PubMed

    Liseno, Angelo; Pierri, Rocco

    2004-06-01

    We analyze the performance of a shape-reconstruction algorithm for the retrieval of voids starting from the electromagnetic scattered field. Such an algorithm exploits the physical optics (PO) approximation to obtain a linear unknown-data relationship and performs inversions by means of the singular-value-decomposition approach. In the case of voids, in addition to a geometrical optics reflection, the presence of the lateral wave phenomenon must be considered. We analyze the effect of the presence of lateral waves on the reconstructions. For the sake of shape reconstruction, we can regard the PO algorithm as one of assuming the electric and magnetic field on the illuminated side as constant in amplitude and linear in phase, as far as the dependence on the frequency is concerned. Therefore we analyze how much the lateral wave phenomenon impairs such an assumption, and we show inversions for both one single and two circular voids, for different values of the background permittivity.

  17. Feasibility of detecting near-surface feature with Rayleigh-wave diffraction

    USGS Publications Warehouse

    Xia, J.; Nyquist, Jonathan E.; Xu, Y.; Roth, M.J.S.; Miller, R.D.

    2007-01-01

    Detection of near-surfaces features such as voids and faults is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surface-wave techniques can provide reliable shear (S)-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the resolution of S-wave velocity profiles inverted from surface-wave phase velocities. Therefore, we studied the feasibility of directly detecting near-surfaces features with surface-wave diffractions. Based on the properties of surface waves, we have derived a Rayleigh-wave diffraction traveltime equation. We also have solved the equation for the depth to the top of a void and an average velocity of Rayleigh waves. Using these equations, the depth to the top of a void/fault can be determined based on traveltime data from a diffraction curve. In practice, only two diffraction times are necessary to define the depth to the top of a void/fault and the average Rayleigh-wave velocity that generates the diffraction curve. We used four two-dimensional square voids to demonstrate the feasibility of detecting a void with Rayleigh-wave diffractions: a 2??m by 2??m with a depth to the top of the void of 2??m, 4??m by 4??m with a depth to the top of the void of 7??m, and 6??m by 6??m with depths to the top of the void 12??m and 17??m. We also modeled surface waves due to a vertical fault. Rayleigh-wave diffractions were recognizable for all these models after FK filtering was applied to the synthetic data. The Rayleigh-wave diffraction traveltime equation was verified by the modeled data. Modeling results suggested that FK filtering is critical to enhance diffracted surface waves. A real-world example is presented to show how to utilize the derived equation of surface-wave diffractions. ?? 2006 Elsevier B.V. All rights reserved.

  18. Liquid Metering Centrifuge Sticks (LMCS): A Centrifugal Approach to Metering Known Sample Volumes for Colorimetric Solid Phase Extraction (C-SPE)

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Schultz, John R.; Clarke, Mark S.

    2007-01-01

    Phase separation is one of the most significant obstacles encountered during the development of analytical methods for water quality monitoring in spacecraft environments. Removing air bubbles from water samples prior to analysis is a routine task on earth; however, in the absence of gravity, this routine task becomes extremely difficult. This paper details the development and initial ground testing of liquid metering centrifuge sticks (LMCS), devices designed to collect and meter a known volume of bubble-free water in microgravity. The LMCS uses centrifugal force to eliminate entrapped air and reproducibly meter liquid sample volumes for analysis with Colorimetric Solid Phase Extraction (C-SPE). C-SPE is a sorption-spectrophotometric platform that is being developed as a potential spacecraft water quality monitoring system. C-SPE utilizes solid phase extraction membranes impregnated with analyte-specific colorimetric reagents to concentrate and complex target analytes in spacecraft water samples. The mass of analyte extracted from the water sample is determined using diffuse reflectance (DR) data collected from the membrane surface and an analyte-specific calibration curve. The analyte concentration can then be calculated from the mass of extracted analyte and the volume of the sample analyzed. Previous flight experiments conducted in microgravity conditions aboard the NASA KC-135 aircraft demonstrated that the inability to collect and meter a known volume of water using a syringe was a limiting factor in the accuracy of C-SPE measurements. Herein, results obtained from ground based C-SPE experiments using ionic silver as a test analyte and either the LMCS or syringes for sample metering are compared to evaluate the performance of the LMCS. These results indicate very good agreement between the two sample metering methods and clearly illustrate the potential of utilizing centrifugal forces to achieve phase separation and metering of water samples in microgravity.

  19. Free-Volume Nanostructurization in Ga-Modified As2Se3 Glass.

    PubMed

    Shpotyuk, Ya; Ingram, A; Shpotyuk, O; Dziedzic, A; Boussard-Pledel, C; Bureau, B

    2016-12-01

    Different stages of intrinsic nanostructurization related to evolution of free-volume voids, including phase separation, crystalline nuclei precipitation, and growth, were studied in glassy As2Se3 doped with Ga up to 5 at. %, using complementary techniques of positron annihilation lifetime spectroscopy, X-ray powder diffraction, and scanning electron microscopy with energy-dispersive X-ray analysis. Positron lifetime spectra reconstructed in terms of a two-state trapping model testified in favor of a native void structure of g-As2Se3 modified by Ga additions. Under small Ga content (below 3 at. %), the positron trapping in glassy alloys was dominated by voids associated with bond-free solid angles of bridging As2Se4/2 units. This void agglomeration trend was changed on fragmentation with further Ga doping due to crystalline Ga2Se3 nuclei precipitation and growth, these changes being activated by employing free volume from just attached As-rich glassy matrix with higher content of As2Se4/2 clusters. Respectively, the positron trapping on free-volume voids related to pyramidal AsSe3/2 units (like in parent As2Se3 glass) was in obvious preference in such glassy crystalline alloys.

  20. Two reference time scales for studying the dynamic cavitation of liquid films

    NASA Technical Reports Server (NTRS)

    Sun, D. C.; Brewe, D. E.

    1992-01-01

    Two formulas, one for the characteristic time of filling a void with the vapor of the surrounding liquid, and one of filling the void by diffusion of the dissolved gas in the liquid, are derived. By comparing these time scales with that of the dynamic operation of oil film bearings, it is concluded that the evaporation process is usually fast enough to fill the cavitation bubble with oil vapor; whereas the diffusion process is much too slow for the dissolved air to liberate itself and enter the cavitation bubble. These results imply that the formation of a two phase fluid in dynamically loaded bearings, as often reported in the literature, is caused by air entrainment. They further indicate a way to simplify the treatment of the dynamic problem of bubble evolution.

  1. Experimental and numerical investigation of one and two phase natural convection in storage tanks

    NASA Astrophysics Data System (ADS)

    Aszodi, A.; Krepper, E.; Prasser, H.-M.

    Experiments were performed to investigate heating up processes of fluids in storage tanks under the influence of an external heat source. As a consequence of an external fire, the heat-up of the inventory may lead to the evaporation of the liquid and to release of significant quantities of dangerous gases into the environment. Several tests were performed both with heating from the bottom and with heating from the side walls. In recent tests in addition to thermocouples, the tank was equipped with needle probes for measuring of the local void fraction. The paper presents experimental and numerical investigations of single and two phase heating up processes of tanks with side wall heating. The measurement of the temperature and of the void fraction makes interesting phenomena evident, which could be explained by an own 2D model. The gained experimental results may be used for the validation of boiling models in 3D CFD codes.

  2. In situ visualization of metallurgical reactions in nanoscale Cu/Sn diffusion couples

    NASA Astrophysics Data System (ADS)

    Yin, Qiyue; Gao, Fan; Gu, Zhiyong; Stach, Eric A.; Zhou, Guangwen

    2015-03-01

    The Cu-Sn metallurgical soldering reaction in two-segmented Cu-Sn nanowires is studied by in situ transmission electron microscopy. By varying the relative lengths of Cu and Sn segments, we show that the metallurgical reaction results in a Cu-Sn solid solution for small Sn/Cu length ratio while Cu-Sn intermetallic compounds (IMCs) for larger Sn/Cu length ratios. Upon heating the nanowires to ~500 °C, two phase transformation pathways occur, η-Cu6Sn5 --> ε-Cu3Sn --> δ-Cu41Sn11 for nanowires with a long Cu segment and η-Cu6Sn5 --> ε-Cu3Sn --> γ-Cu3Sn with a short Cu segment. The evolution of Kirkendall voids in the nanowires demonstrates that Cu diffuses faster than Sn in IMCs. Void growth results in the nanowire breakage that shuts off the inter-diffusion of Cu and Sn and thus leads to changes in the phase transformation pathway in the IMCs.

  3. Developpement d'un systeme pour la mesure du taux de vide dans un ecoulement diphasique par une methode utilisant des micro-ondes

    NASA Astrophysics Data System (ADS)

    Pochet, Steven

    The measurement of the void fraction is an important parameter in many industrial fields. Whether it is to prevent the phenomenon of critical heat flux in heat tube of thermal power plants, the explosion of gas pockets in oil rigs’ pipes or to detect bubbles in medical catheters, the knowledge of the void fraction can be a key parameter in many diverse applications. Several invasive and non-invasive measurements techniques have been developed these last decades and are based on the difference between the physical properties of liquid and gas. Some of these techniques are not always possible to implement due to restrictions in the geometry of tubes or regulatory standards limiting their use. Throughout this work we propose a new non-invasive void fraction measurement technique based on the reflection of electromagnetic waves on the water-air interface of the mixture. The reflection of electromagnetic wave is induced by a change in the impedance of the propagation medium. The impedance is function of the dielectric properties of the medium. The characteristics of air and water being distinct, it is possible to calculate the complex reflection coefficient at the interface of a double phase mixture. To this end, mathematical modeling of the response of an electromagnetic wave in a tube containing a two phase mixture was made using the model of transmission lines, applicable to microwave frequencies we use. The effects of the amount of air in water and the position of the bubbles in the section of the tube were simulated. It was shown that the phase of the reflected wave was sensitive to the position of bubbles in the tube’s section and that the magnitude of the reflection coefficient varied with the mixture’s void fraction. Subsequently, we designed and built a six-ports reflectometer operating at 2.45 GHz. This system allows the processing and calculation of the reflected wave from the incident wave. A six-ports network, a patch antenna, a wave generator and an amplifier were simulated using HFSS and ADS software. They were then built using the technology of micro-strips on dielectric laminates and the entire system was then calibrated at 6 different frequencies near 2.45 GHz. To this end, we used 4 and 5 loads calibration algorithms that gave us calibrated results with less than 2 % errors. Afterwards, the system was implemented: the antenna was placed tangent to the wall of a vertical tube and connected to the six-ports which was connected to a computer recording and displaying the results in real time. A valve positioned under the tube allows air into the tube and to vary the flow rate. The results showed that the system was sensitive to changes in void fraction from 1% and followed the predictions of the simulated model to a void fraction of about 10%. Possibly du to a change in the structure of the flow for a void fraction of 10%, the signal no longer varies monotonically with respect to the increasing void fraction possibly because of a change in the flow’s configuration. It was shown that the Rayleigh scattering phenomena of air bubbles was involved in the reflection coefficient response. Pictures of the stream at various void fraction state were taken and confirmed a change in the flow’s configuration. By placing a Plexiglas rod to simulate a flow geometry located in the section of the tube, it was noted that the change in phase of the reflected wave was the same as the model when the rod was placed in an empty tube (very few attenuation loss environment). Hence, it is possible to determine the distance of an object in a section of tube from the measurement of the reflected wave’s phase. When the rod is in a very absorbent medium such as water, it is possible to detect a moving rod when it is sufficiently close to the antenna (less than two wavelengths) thanks again to the phase variation. However, detection is still much more difficult due to the absorption of water and can not function effectively for tubes with high diameters compared with the electromagnetic wavelength used.

  4. The co-evolution of microstructure features in self-ion irradiated HT9 at very high damage levels

    NASA Astrophysics Data System (ADS)

    Getto, E.; Vancoevering, G.; Was, G. S.

    2017-02-01

    Understanding the void swelling and phase evolution of reactor structural materials at very high damage levels is essential to maintaining safety and longevity of components in Gen IV fast reactors. A combination of ion irradiation and modeling was utilized to understand the microstructure evolution of ferritic-martensitic alloy HT9 at high dpa. Self-ion irradiation experiments were performed on alloy HT9 to determine the co-evolution of voids, dislocations and precipitates up to 650 dpa at 460 °C. Modeling of microstructure evolution was conducted using the modified Radiation Induced Microstructure Evolution (RIME) model, which utilizes a mean field rate theory approach with grouped cluster dynamics. Irradiations were performed with 5 MeV raster-scanned Fe2+ ions on samples pre-implanted with 10 atom parts per million He. The swelling, dislocation and precipitate evolution at very high dpa was determined using Analytical Electron Microscopy in Scanning Transmission Electron Microscopy (STEM) mode. Experimental results were then interpreted using the RIME model. A microstructure consisting only of dislocations and voids is insufficient to account for the swelling evolution observed experimentally at high damage levels in a complicated microstructure such as irradiated alloy HT9. G phase was found to have a minimal effect on either void or dislocation evolution. M2X played two roles; a variable biased sink for defects, and as a vehicle for removal of carbon from solution, thus promoting void growth. When accounting for all microstructure interactions, swelling at high damage levels is a dynamic process that continues to respond to other changes in the microstructure as long as they occur.

  5. Solid-state dewetting of Au-Ni bi-layer films mediated through individual layer thickness and stacking sequence

    NASA Astrophysics Data System (ADS)

    Herz, Andreas; Theska, Felix; Rossberg, Diana; Kups, Thomas; Wang, Dong; Schaaf, Peter

    2018-06-01

    In the present work, the solid-state dewetting of Au-Ni bi-layer thin films deposited on SiO2/Si is systematically studied with respect to individual layer thickness and stacking sequence. For this purpose, a rapid heat treatment at medium temperatures is applied in order to examine void formation at the early stages of the dewetting. Compositional variations are realized by changing the thickness ratio of the bi-layer films, while the total thickness is maintained at 20 nm throughout the study. In the event of Au/Ni films annealed at 500 °C, crystal voids exposing the substrate are missing regardless of chemical composition. In reverse order, the number of voids per unit area in two-phase Au-Ni thin films is found to be governed by the amount of Au-rich material. At higher temperatures up to 650 °C, a decreased probability of nucleation comes at the expense of a major portion of cavities, resulting in the formation of bubbles in 15 nm Ni/5 nm Au bi-layers. Film buckling predominantly occurred at phase boundaries crossing the bubbles.

  6. Two-phase flow measurements with advanced instrumented spool pieces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turnage, K.C.

    1980-09-01

    A series of two-phase, air-water and steam-water tests performed with instrumented piping spool pieces is described. The behavior of the three-beam densitometer, turbine meter, and drag flowmeter is discussed in terms of two-phase models. Results from application of some two-phase mass flow models to the recorded spool piece data are shown. Results of the study are used to make recommendations regarding spool piece design, instrument selection, and data reduction methods to obtain more accurate measurements of two-phase flow parameters. 13 refs., 23 figs., 1 tab.

  7. Methodology Development of a Gas-Liquid Dynamic Flow Regime Transition Model

    NASA Astrophysics Data System (ADS)

    Doup, Benjamin Casey

    Current reactor safety analysis codes, such as RELAP5, TRACE, and CATHARE, use flow regime maps or flow regime transition criteria that were developed for static fully-developed two-phase flows to choose interfacial transfer models that are necessary to solve the two-fluid model. The flow regime is therefore difficult to identify near the flow regime transitions, in developing two-phase flows, and in transient two-phase flows. Interfacial area transport equations were developed to more accurately predict the dynamic nature of two-phase flows. However, other model coefficients are still flow regime dependent. Therefore, an accurate prediction of the flow regime is still important. In the current work, the methodology for the development of a dynamic flow regime transition model that uses the void fraction and interfacial area concentration obtained by solving three-field the two-fluid model and two-group interfacial area transport equation is investigated. To develop this model, detailed local experimental data are obtained, the two-group interfacial area transport equations are revised, and a dynamic flow regime transition model is evaluated using a computational fluid dynamics model. Local experimental data is acquired for 63 different flow conditions in bubbly, cap-bubbly, slug, and churn-turbulent flow regimes. The measured parameters are the group-1 and group-2 bubble number frequency, void fraction, interfacial area concentration, and interfacial bubble velocities. The measurements are benchmarked by comparing the prediction of the superficial gas velocities, determined using the local measurements with those determined from volumetric flow rate measurements and the agreement is generally within +/-20%. The repeatability four-sensor probe construction process is within +/-10%. The repeatability of the measurement process is within +/-7%. The symmetry of the test section is examined and the average agreement is within +/-5.3% at z/D = 10 and +/-3.4% at z/D = 32. Revised source/sink terms for the two-group interfacial area transport equations are derived and fit to area-averaged experimental data to determine new model coefficients. The average agreement between this model and the experiment data for the void fraction and interfacial area concentration is 10.6% and 15.7%, respectively. This revised two-group interfacial area transport equation and the three-field two-fluid model are used to solve for the group-1 and group-2 interfacial area concentration and void fraction. These values and a dynamic flow regime transition model are used to classify the flow regimes. The flow regimes determined using this model are compared with the flow regimes based on the experimental data and on a flow regime map using Mishima and Ishii's (1984) transition criteria. The dynamic flow regime transition model is shown to predict the flow regimes dynamically and has improved the prediction of the flow regime over that using a flow regime map. Safety codes often employ the one-dimensional two-fluid model to model two-phase flows. The area-averaged relative velocity correlation necessary to close this model is derived from the drift flux model. The effects of the necessary assumptions used to derive this correlation are investigated using local measurements and these effects are found to have a limited impact on the prediction of the area-averaged relative velocity.

  8. Thermal analysis of heat storage canisters for a solar dynamic, space power system

    NASA Technical Reports Server (NTRS)

    Wichner, R. P.; Solomon, A. D.; Drake, J. B.; Williams, P. T.

    1988-01-01

    A thermal analysis was performed of a thermal energy storage canister of a type suggested for use in a solar receiver for an orbiting Brayton cycle power system. Energy storage for the eclipse portion of the cycle is provided by the latent heat of a eutectic mixture of LiF and CaF2 contained in the canister. The chief motivation for the study is the prediction of vapor void effects on temperature profiles and the identification of possible differences between ground test data and projected behavior in microgravity. The first phase of this study is based on a two-dimensional, cylindrical coordinates model using an interim procedure for describing void behavor in 1-g and microgravity. The thermal analysis includes the effects of solidification front behavior, conduction in liquid/solid salt and canister materials, void growth and shrinkage, radiant heat transfer across the void, and convection in the melt due to Marangoni-induced flow and, in 1-g, flow due to density gradients. A number of significant differences between 1-g and o-g behavior were found. This resulted from differences in void location relative to the maximum heat flux and a significantly smaller effective conductance in 0-g due to the absence of gravity-induced convection.

  9. Characterization of Convective Boiling in Branching Channel Heat Sinks

    DTIC Science & Technology

    2009-05-06

    pressure drop was well predicted using the void fraction correlation of Zivi [11] and the phase interaction parameter of Qu and Mudawar [16]. Model...paper number HT2008-56253, ASME Heat Transfer Summer Conference, August 10-14, 2008, Jacksonville, FL. 16. W. Qu, I. Mudawar , Measurement and...level. The Zivi [11] correlation is also recommended, with the two-phase interaction parameter of Qu and Mudawar [16] for use in the one-dimensional

  10. Monitoring and modeling of sinkhole-related subsidence in west-central Florida mapped from InSAR and surface observations

    NASA Astrophysics Data System (ADS)

    Kiflu, H.; Oliver-Cabrera, T.; Robinson, T.; Wdowinski, S.; Kruse, S.

    2017-12-01

    Sinkholes in Florida cause millions of dollars in damage to infrastructure each year. Methods of early detection of sinkhole-related subsidence are clearly desirable. We have completed two years of monitoring of selected sinkhole-prone areas in west central Florida with XXX data and analysis with XXX algorithms. Filters for selecting targets with high signal-to-noise ratio and subsidence over this time window (XX-2015-XX-2017) are being used to select sites for ground study. A subset of the buildings with InSAR-detected subsidence indicated show clear structural indications of subsidence in the form of cracks in walls and roofs. Comsol Multiphysics models have been developed to describe subsidence at the rates identified from the InSAR analysis (a few mm/year) and on spatial scales observed from surface observations, including structural deformation of buildings and ground penetrating radar images of subsurface deformation (length scales of meters to tens of meters). These models assume cylindrical symmetry and deformation of elastic and poroelastic layers over a growing sphering void.

  11. Anomalous behavior of cristobalite in helium under high pressure

    NASA Astrophysics Data System (ADS)

    Sato, Tomoko; Takada, Hiroto; Yagi, Takehiko; Gotou, Hirotada; Okada, Taku; Wakabayashi, Daisuke; Funamori, Nobumasa

    2013-01-01

    We have investigated the high-pressure behavior of cristobalite in helium by powder X-ray diffraction. Cristobalite transformed to a new phase at about 8 GPa. This phase is supposed to have a molar volume of about 30 % larger than cristobalite, suggesting the dissolution of helium atoms in its interstitial voids. On further compression, the new phase transformed to a different phase which showed an X-ray diffraction pattern similar to cristobalite X-I at about 21 GPa. On the other hand, when the new phase was decompressed, it transformed to another new phase at about 7 GPa, which is also supposed to have a molar volume of about 25 % larger than cristobalite. On further decompression, the second new phase transformed to cristobalite II at about 2 GPa. In contrast to cristobalite, quartz did not show anomalous behavior in helium. The behavior of cristobalite in helium was also consistent with that in other mediums up to about 8 GPa, where the volume of cristobalite became close to that of quartz. These results suggest that dissolution of helium may be controlled not only by the density (amount of voids) but also by the network structure of SiO4 tetrahedra (topology of voids).

  12. Co-Phasing the Large Binocular Telescope:. [Status and Performance of LBTI-PHASECam

    NASA Technical Reports Server (NTRS)

    Defrere, D.; Hinz, P.; Downey, E.; Ashby, D.; Bailey, V.; Brusa, G.; Christou, J.; Danchi, W. C.; Grenz, P.; Hill, J. M.; hide

    2014-01-01

    The Large Binocular Telescope Interferometer is a NASA-funded nulling and imaging instrument designed to coherently combine the two 8.4-m primary mirrors of the LBT for high-sensitivity, high-contrast, and high-resolution infrared imaging (1.5-13 micrometer). PHASECam is LBTI's near-infrared camera used to measure tip-tilt and phase variations between the two AO-corrected apertures and provide high-angular resolution observations. We report on the status of the system and describe its on-sky performance measured during the first semester of 2014. With a spatial resolution equivalent to that of a 22.8-meter telescope and the light-gathering power of single 11.8-meter mirror, the co-phased LBT can be considered to be a forerunner of the next-generation extremely large telescopes (ELT).

  13. A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yulan; Hu, Shenyang; Sun, Xin

    Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less

  14. A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials

    DOE PAGES

    Li, Yulan; Hu, Shenyang; Sun, Xin; ...

    2017-04-14

    Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less

  15. MSE wall void repair effect on corrosion of reinforcement - phase 2 : specialty fill materials.

    DOT National Transportation Integrated Search

    2015-08-01

    This project provided information and recommendations for material selection for best : corrosion control of reinforcement in mechanically stabilized earth (MSE) walls with void repairs. The : investigation consisted of small- and large-scale experim...

  16. The void nucleation mechanism within lead phase during spallation of leaded brass

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Wang, Can; Chen, Xingzhi; Chen, Kaiguo; Hu, Haibo; Fu, Yanan

    2018-07-01

    The incipient spall behaviours of Cu-34%Zn-3%Pb leaded brass samples with annealed and cryogenic-treated conditions were loaded using one-stage light gas gun experiments. The effect of Pb-phase on dynamic damage nucleation in leaded brass specimens was investigated by means of optical microscopy, scanning electron microscopy and x-ray computer tomography. It was found that the voids of incipient spall were mainly nucleated in the interior of the lead (no tensile stress would be produced within lead according to the impact theory) instead of nucleated at the phase interface as expected by quasi-static damage fracture theory. A nucleation model is proposed in the present work that is the asymmetry high compression zones in the centre of the lead-phase were formed by the rarefaction wave convergence effects of matrix/quasi-spherical lead interface, which caused adiabatic temperature rise that exceeded melting point of lead due to severe plastic deformation, finally led to local melting and void nucleation. In addition, the spall strength and damage rate increased with the increase in the Pb-phase number.

  17. A Dual Conductance Sensor for Simultaneous Measurement of Void Fraction and Structure Velocity of Downward Two-Phase Flow in a Slightly Inclined Pipe

    PubMed Central

    Lee, Yeon-Gun; Won, Woo-Youn; Lee, Bo-An; Kim, Sin

    2017-01-01

    In this study, a new and improved electrical conductance sensor is proposed for application not only to a horizontal pipe, but also an inclined one. The conductance sensor was designed to have a dual layer, each consisting of a three-electrode set to obtain two instantaneous conductance signals in turns, so that the area-averaged void fraction and structure velocity could be measured simultaneously. The optimum configuration of the electrodes was determined through numerical analysis, and the calibration curves for stratified and annular flow were obtained through a series of static experiments. The fabricated conductance sensor was applied to a 45 mm inner diameter U-shaped downward inclined pipe with an inclination angle of 3° under adiabatic air-water flow conditions. In the tests, the superficial velocities ranged from 0.1 to 3.0 m/s for water and from 0.1 to 18 m/s for air. The obtained mean void fraction and the structure velocity from the conductance sensor were validated against the measurement by the wire-mesh sensor and the cross-correlation technique for the visualized images, respectively. The results of the flow regime classification and the corresponding time series of the void fraction at a variety of flow velocities were also discussed. PMID:28481308

  18. How to bridge the gap between "unresolved" model and "resolved" model in CFD-DEM coupled method for sediment transport?

    NASA Astrophysics Data System (ADS)

    Liu, D.; Fu, X.; Liu, X.

    2016-12-01

    In nature, granular materials exist widely in water bodies. Understanding the fundamentals of solid-liquid two-phase flow, such as turbulent sediment-laden flow, is of importance for a wide range of applications. A coupling method combining computational fluid dynamics (CFD) and discrete element method (DEM) is now widely used for modeling such flows. In this method, when particles are significantly larger than the CFD cells, the fluid field around each particle should be fully resolved. On the other hand, the "unresolved" model is designed for the situation where particles are significantly smaller than the mesh cells. Using "unresolved" model, large amount of particles can be simulated simultaneously. However, there is a gap between these two situations when the size of DEM particles and CFD cell is in the same order of magnitude. In this work, the most commonly used void fraction models are tested with numerical sedimentation experiments. The range of applicability for each model is presented. Based on this, a new void fraction model, i.e., a modified version of "tri-linear" model, is proposed. Particular attention is paid to the smooth function of void fraction in order to avoid numerical instability. The results show good agreement with the experimental data and analytical solution for both single-particle motion and also group-particle motion, indicating great potential of the new void fraction model.

  19. Electromigration and Deposition of Micro-Scale Calcium Carbonate Structures with Controlled Morphology and Polymorphism

    DTIC Science & Technology

    2013-04-01

    precipitation of calcium carbonate in structured templates including microporous polycarbonate membranes and polyethylene foams. Para- meters...polyethylene foam). Microporous polycarbonate membranes and Medium-Density PolyEthylene (MDPE) foam specimens were used as the porous organic...voids in hardened concrete. DOI:10.1520/C624-06. West Conshohocken, PA: ASTM International . www.astm.org. Bersa, L., and M. Liu. 2007. A review on

  20. Cavitation transition in the energy landscape: Distinct tensile yielding behavior in strongly and weakly attractive systems.

    PubMed

    Altabet, Y Elia; Fenley, Andreia L; Stillinger, Frank H; Debenedetti, Pablo G

    2018-03-21

    Particles with cohesive interactions display a tensile instability in the energy landscape at the Sastry density ρ S . The signature of this tensile limit is a minimum in the landscape equation of state, the pressure-density relationship of inherent structures sampled along a liquid isotherm. Our previous work [Y. E. Altabet, F. H. Stillinger, and P. G. Debenedetti, J. Chem. Phys. 145, 211905 (2016)] revisited the phenomenology of Sastry behavior and found that the evolution of the landscape equation of state with system size for particles with interactions typical of molecular liquids indicates the presence of an athermal first-order phase transition between homogeneous and fractured inherent structures, the latter containing several large voids. Here, we study how this tensile limit manifests itself for different interparticle cohesive strengths and identify two distinct regimes. Particles with sufficiently strong cohesion display an athermal first-order phase transition, consistent with our prior characterization. Weak cohesion also displays a tensile instability. However, the landscape equation of state for this regime is independent of system size, suggesting the absence of a first-order phase transition. An analysis of the voids suggests that yielding in the energy landscape of weakly cohesive systems is associated with the emergence of a highly interconnected network of small voids. While strongly cohesive systems transition from exclusively homogeneous to exclusively fractured configurations at ρ S in the thermodynamic limit, this interconnected network develops gradually, starting at ρ S , even at infinite system size.

  1. Cavitation transition in the energy landscape: Distinct tensile yielding behavior in strongly and weakly attractive systems

    NASA Astrophysics Data System (ADS)

    Altabet, Y. Elia; Fenley, Andreia L.; Stillinger, Frank H.; Debenedetti, Pablo G.

    2018-03-01

    Particles with cohesive interactions display a tensile instability in the energy landscape at the Sastry density ρS. The signature of this tensile limit is a minimum in the landscape equation of state, the pressure-density relationship of inherent structures sampled along a liquid isotherm. Our previous work [Y. E. Altabet, F. H. Stillinger, and P. G. Debenedetti, J. Chem. Phys. 145, 211905 (2016)] revisited the phenomenology of Sastry behavior and found that the evolution of the landscape equation of state with system size for particles with interactions typical of molecular liquids indicates the presence of an athermal first-order phase transition between homogeneous and fractured inherent structures, the latter containing several large voids. Here, we study how this tensile limit manifests itself for different interparticle cohesive strengths and identify two distinct regimes. Particles with sufficiently strong cohesion display an athermal first-order phase transition, consistent with our prior characterization. Weak cohesion also displays a tensile instability. However, the landscape equation of state for this regime is independent of system size, suggesting the absence of a first-order phase transition. An analysis of the voids suggests that yielding in the energy landscape of weakly cohesive systems is associated with the emergence of a highly interconnected network of small voids. While strongly cohesive systems transition from exclusively homogeneous to exclusively fractured configurations at ρS in the thermodynamic limit, this interconnected network develops gradually, starting at ρS, even at infinite system size.

  2. Ground-Based Gas-Liquid Flow Research in Microgravity Conditions: State of Knowledge

    NASA Technical Reports Server (NTRS)

    McQuillen, J.; Colin, C.; Fabre, J.

    1999-01-01

    During the last decade, ground-based microgravity facilities have been utilized in order to obtain predictions for spacecraft system designers and further the fundamental understanding of two-phase flow. Although flow regime, pressure drop and heat transfer coefficient data has been obtained for straight tubes and a limited number of fittings, measurements of the void fraction, film thickness, wall shear stress, local velocity and void information are also required in order to develop general mechanistic models that can be utilized to ascertain the effects of fluid properties, tube geometry and acceleration levels. A review of this research is presented and includes both empirical data and mechanistic models of the flow behavior.

  3. The sparkling Universe: clustering of voids and void clumps

    NASA Astrophysics Data System (ADS)

    Lares, Marcelo; Ruiz, Andrés N.; Luparello, Heliana E.; Ceccarelli, Laura; Garcia Lambas, Diego; Paz, Dante J.

    2017-07-01

    We analyse the clustering of cosmic voids using a numerical simulation and the main galaxy sample from the Sloan Digital Sky Survey. We take into account the classification of voids into two types that resemble different evolutionary modes: those with a rising integrated density profile (void-in-void mode or R-type) and voids with shells (void-in-cloud mode or S-type). The results show that voids of the same type have stronger clustering than the full sample. We use the correlation analysis to define void clumps, associations with at least two voids separated by a distance of at most the mean void separation. In order to study the spatial configuration of void clumps, we compute the minimal spanning tree and analyse their multiplicity, maximum length and elongation parameter. We further study the dynamics of the smaller sphere that enclose all the voids in each clump. Although the global densities of void clumps are different according to their member-void types, the bulk motions of these spheres are remarkably lower than those of randomly placed spheres with the same radius distribution. In addition, the coherence of pairwise void motions does not strongly depend on whether voids belong to the same clump. Void clumps are useful to analyse the large-scale flows around voids, since voids embedded in large underdense regions are mostly in the void-in-void regime, where the expansion of the larger region produces the separation of voids. Similarly, voids around overdense regions form clumps that are in collapse, as reflected in the relative velocities of voids that are mostly approaching.

  4. Analysis, design, and experimental results for lightweight space heat receiver canisters, phase 1

    NASA Technical Reports Server (NTRS)

    Schneider, Michael G.; Brege, Mark A.; Heidenreich, Gary R.

    1991-01-01

    Critical technology experiments have been performed on thermal energy storage modules in support of the Brayton Advanced Heat Receiver program. The modules are wedge-shaped canisters designed to minimize the mechanical stresses that occur during the phase change of the lithium fluoride phase change material. Nickel foam inserts were used in some of the canisters to provide thermal conductivity enhancement and to distribute the void volume. Two canisters, one with a nickel foam insert, and one without, were thermally cycled in various orientations in a fluidized bed furnace. The only measurable impact of the nickel foam was seen when the back and short sides of the canister were insulated to simulate operation in the advanced receiver design. In tests with insulation, the furnace to back side delta T was larger in the canister with the nickel foam insert, probably due to the radiant absorptivity of the nickel. However, the differences in the temperature profiles of the two canisters were small, and in many cases the profiles matched fairly well. Computed Tomography (CT) was successfully used to nondestructively demarcate void locations in the canisters. Finally, canister dimensional stability, which was measured throughout the thermal cycling test program with an inspection fixture was satisfactory with a maximum change of 0.635 mm (0.025 in.).

  5. Characterization of meter-scale spatial variability of riverbed hydraulic conductivity in a lowland river (Aa River, Belgium)

    NASA Astrophysics Data System (ADS)

    Ghysels, Gert; Benoit, Sien; Awol, Henock; Jensen, Evan Patrick; Debele Tolche, Abebe; Anibas, Christian; Huysmans, Marijke

    2018-04-01

    An improved general understanding of riverbed heterogeneity is of importance for all groundwater modeling studies that include river-aquifer interaction processes. Riverbed hydraulic conductivity (K) is one of the main factors controlling river-aquifer exchange fluxes. However, the meter-scale spatial variability of riverbed K has not been adequately mapped as of yet. This study aims to fill this void by combining an extensive field measurement campaign focusing on both horizontal and vertical riverbed K with a detailed geostatistical analysis of the meter-scale spatial variability of riverbed K . In total, 220 slug tests and 45 standpipe tests were performed at two test sites along the Belgian Aa River. Omnidirectional and directional variograms (along and across the river) were calculated. Both horizontal and vertical riverbed K vary over several orders of magnitude and show significant meter-scale spatial variation. Horizontal K shows a bimodal distribution. Elongated zones of high horizontal K along the river course are observed at both sections, indicating a link between riverbed structures, depositional environment and flow regime. Vertical K is lognormally distributed and its spatial variability is mainly governed by the presence and thickness of a low permeable organic layer at the top of the riverbed. The absence of this layer in the center of the river leads to high vertical K and is related to scouring of the riverbed by high discharge events. Variograms of both horizontal and vertical K show a clear directional anisotropy with ranges along the river being twice as large as those across the river.

  6. Quantifying voids effecting delamination in carbon/epoxy composites: static and fatigue fracture behavior

    NASA Astrophysics Data System (ADS)

    Hakim, I.; May, D.; Abo Ras, M.; Meyendorf, N.; Donaldson, S.

    2016-04-01

    On the present work, samples of carbon fiber/epoxy composites with different void levels were fabricated using hand layup vacuum bagging process by varying the pressure. Thermal nondestructive methods: thermal conductivity measurement, pulse thermography, pulse phase thermography and lock-in-thermography, and mechanical testing: modes I and II interlaminar fracture toughness were conducted. Comparing the parameters resulted from the thermal nondestructive testing revealed that voids lead to reductions in thermal properties in all directions of composites. The results of mode I and mode II interlaminar fracture toughness showed that voids lead to reductions in interlaminar fracture toughness. The parameters resulted from thermal nondestructive testing were correlated to the results of mode I and mode II interlaminar fracture toughness and voids were quantified.

  7. Fabrication of Cu-Ni mixed phase layer using DC electroplating and suppression of Kirkendall voids in Sn-Ag-Cu solder joints

    NASA Astrophysics Data System (ADS)

    Chee, Sang-Soo; Lee, Jong-Hyun

    2014-05-01

    A solderable layer concurrently containing Cu-rich and Ni-rich phases (mixed-phase layer, MPL) was fabricated by direct current electroplating under varying process conditions. Current density was considered as the main parameter to adjust the microstructure and composition of MPL during the electroplating process, and deposit thickness were evaluated as functions of plating time. As a result, it was observed that the coral-like structure that consisted of Cu-rich and Ni-rich phases grew in the thickness direction. The most desirable microstructure was obtained at a relatively low current density of 0.4 mA/cm2. In other words, the surface was the smoothest and defect-free at this current density. The electroplating rate was slightly enhanced with an increase in current density. Investigations of its solid-state reaction properties, including the formation of Kirkendall voids, were also carried out after reflow soldering with Sn-3.0 Ag-0.5 Cu solder balls. In the solid-state aging experiment at 125°C, Kirkendall voids at the normal Sn-3.0 Ag-0.5 Cu solder/Cu interface were easily formed after just 240 h. Meanwhile, the presence of an intermetallic compound (IMC) layer created in the solder/MPL interface indicated a slightly lower growth rate, and no Kirkendall voids were observed in the IMC layer even after 720 h.

  8. Mathematical Model of Two Phase Flow in Natural Draft Wet-Cooling Tower Including Flue Gas Injection

    NASA Astrophysics Data System (ADS)

    Hyhlík, Tomáš

    2016-03-01

    The previously developed model of natural draft wet-cooling tower flow, heat and mass transfer is extended to be able to take into account the flow of supersaturated moist air. The two phase flow model is based on void fraction of gas phase which is included in the governing equations. Homogeneous equilibrium model, where the two phases are well mixed and have the same velocity, is used. The effect of flue gas injection is included into the developed mathematical model by using source terms in governing equations and by using momentum flux coefficient and kinetic energy flux coefficient. Heat and mass transfer in the fill zone is described by the system of ordinary differential equations, where the mass transfer is represented by measured fill Merkel number and heat transfer is calculated using prescribed Lewis factor.

  9. First-void urine: A potential biomarker source for triage of high-risk human papillomavirus infected women.

    PubMed

    Van Keer, Severien; Pattyn, Jade; Tjalma, Wiebren A A; Van Ostade, Xaveer; Ieven, Margareta; Van Damme, Pierre; Vorsters, Alex

    2017-09-01

    Great interest has been directed towards the use of first-void urine as a liquid biopsy for high-risk human papillomavirus DNA testing. Despite the high correlations established between urinary and cervical infections, human papillomavirus testing is unable to distinguish between productive and transforming high-risk infections that have the tendency to progress to cervical cancer. Thus far, investigations have been primarily confined to the identification of biomarkers for triage of high-risk human papillomavirus-positive women in cervicovaginal specimens and tissue biopsies. This paper reviews urinary biomarkers for cervical cancer and triage of high-risk human papillomavirus infections and elaborates on the opportunities and challenges that have emerged regarding the use of first-void urine as a liquid biopsy for the analysis of both morphological- (conventional cytology and novel immunohistochemical techniques) and molecular-based (HPV16/18 genotyping, host/viral gene methylation, RNA, and proteins) biomarkers. A literature search was performed in PubMed and Web of Science for studies investigating the use of urine as a biomarker source for cervical cancer screening. Five studies were identified reporting on biomarkers that are still in preclinical exploratory or clinical assay development phases and on assessments of non-invasive (urine) samples. Although large-scale validation studies are still needed, we conclude that methylation of both host and viral genes in urine has been proven feasible for use as a molecular cervical cancer triage and screening biomarker in phase two studies. This is especially promising and underscores our hypothesis that human papillomavirus DNA and candidate human and viral biomarkers are washed away with the initial, first-void urine, together with exfoliated cells, debris and impurities that line the urethra opening. Similar to the limitations of self-collected cervicovaginal samples, first-void urine will likely not fulfil the high-quality cellularity standards required for morphological biomarkers. Molecular biomarkers will likely overcome this issue to yield high-throughput, objective, and reproducible results. When using proper sampling, transport, storage, preanalytical biomarker concentration techniques, and clinically validated assays, first-void urine is expected to be a valuable source of molecular biomarkers for cervical cancer screening. Furthermore, as first-void urine can be easily and non-invasively collected, it is a highly preferred technique among women and offers the ability to test both primary high-risk human papillomavirus and biomarkers in the same sample. In addition, the use of first-void urine confers opportunities to reduce loss-to follow-up and non-adherence to screening subjects. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  10. Studies on sodium boiling phenomena in out of pile rod bundles for various accidental situations in Liquid Metal Fast Breeder Reactors (LMFBR) experiments and interpretations

    NASA Astrophysics Data System (ADS)

    Seiler, J. M.; Rameau, B.

    Bundle sodium boiling in nominal geometry for different accident conditions is reviewed. Voiding of a subassembly is controlled by not only hydrodynamic effects but mainly by thermal effects. There is a strong influence of the thermal inertia of the bundle material compared to the sodium thermal inertia. Flow instability, during a slow transient, can be analyzed with numerical tools and estimated using simplified approximations. Stable boiling operational conditions under bundle mixed convection (natural convection in the reactor) can be predicted. Voiding during a fast transient can be approximated from single channel calculations. The phenomenology of boiling behavior for a subassembly with inlet completely blocked, submitted to decay heat and lateral cooling; two-phase sodium flow pressure drop in a tube of large hydraulic diameter under adiabatic conditions; critical flow phenomena and voiding rate under high power, slow transient conditions; and onset of dry out under local boiling remains problematical.

  11. Diagenetic Features in Yellowknife Bay, Gale Crater, Mars: Implications for Substrate Rheology and Potential Gas Release

    NASA Technical Reports Server (NTRS)

    Kah, L. C.; Stack, K; Siebach, K.; Grotzinger, J.; Summer, D.; Farien, A.; Oehler, D.; Schieber, J.; Leville, R.; Edgar, L; hide

    2014-01-01

    Multiple diagenetic features have been observed in clay­-bearing mudstone exposed within Yellowknife Bay, Gale Crater, Mars. These features occurred during at least two separate episodes: an early generation of spheroidal concretions that co-­occur with a dense networks of mineralized fractures, and a later generation of mineralized veins. Concretions consist of mm-sized spheroids (0.4 to 8.0 mm, mean diameter of 1.2 mm) that are distinctly more resistant than the encompassing mudstone. Dissected spheroids suggest an origin via compaction and incipient lithification of the substrate at the perimeter of syndepositional void space. Concretions are generally patchy in their distribution within clay--bearing mudstone, but in places can be the dominant fabric element. Locally dense networks of mineralized fractures occur in regions of low concretion abundance. These consist of short (< 50 cm), curvilinear to planar mineralized voids that occur across a range of orientations from vertical to subhorizontal. Fractures are filled by multi-phase cement consisting of two isopachous, erosionally resistant outer bands, and a central less resistant fill. Physical relationships suggests that original fractures may have formed as both interconnected voids and as discrete cross--cutting features. Co--occurrence of early diagenetic concretions and fracture networks suggests a common origin via gas release within a subaqueous, shallow substrate. We suggest that gas release within weakly cohesive subsurface sediments resulted in substrate dewatering and an increase in the cohesive strength of the substrate. Local differences in substrate strength and rate of gas production would have result in formation of either discrete voids or fracture networks. A second generation of mineralized veins is characterized by a regionally low spatial density, predominantly vertical or horizontal orientations, and a single phase of Ca--sulfate mineral fill. These veins cross-cut the early diagenetic elements and intersect a greater thickness of stratigraphy within Yellowknife Bay, suggesting a later--diagenetic origin via hydraulic fracturing.

  12. Voiding diary might serve as a useful tool to understand differences between bladder pain syndrome/interstitial cystitis and overactive bladder.

    PubMed

    Kim, Sung Han; Oh, Shin Ah; Oh, Seung-June

    2014-02-01

    To identify the voiding characteristics of bladder pain syndrome/interstitial cystitis and overactive bladder. Between September 2005 and June 2010, 3-day voiding diaries of 49 consecutive bladder pain syndrome/interstitial cystitis patients and 301 overactive bladder patients were prospectively collected at an outpatient clinic and retrospectively analyzed. The characteristics of the two groups were not significantly different. However, all voiding variables including volume and frequency were significantly different except for the total voided volume: patients with bladder pain syndrome/interstitial cystitis showed significantly higher voiding frequencies, smaller maximal and mean voided volume, and more constant and narrower ranges of voided volume compared with overactive bladder patients (P < 0.005). Furthermore, mean intervals between voiding in bladder pain syndrome/interstitial cystitis were shorter and more consistent during the day and night (P < 0.001), although mean night-time variances were greater than daytime variances. Logistic regression analysis showed that total night-time frequency, maximal night-time voided volume and mean variance of daytime voiding intervals most significantly differentiated the two groups. Some voiding characteristics of bladder pain syndrome/interstitial cystitis and overactive bladder patients differ significantly according to 3-day voiding diary records. These findings provide additional information regarding the differences between these two diseases in the outpatient clinical setting. © 2013 The Japanese Urological Association.

  13. Heterogeneous fuel for hybrid rocket

    NASA Technical Reports Server (NTRS)

    Stickler, David B. (Inventor)

    1996-01-01

    Heterogeneous fuel compositions suitable for use in hybrid rocket engines and solid-fuel ramjet engines, The compositions include mixtures of a continuous phase, which forms a solid matrix, and a dispersed phase permanently distributed therein. The dispersed phase or the matrix vaporizes (or melts) and disperses into the gas flow much more rapidly than the other, creating depressions, voids and bumps within and on the surface of the remaining bulk material that continuously roughen its surface, This effect substantially enhances heat transfer from the combusting gas flow to the fuel surface, producing a correspondingly high burning rate, The dispersed phase may include solid particles, entrained liquid droplets, or gas-phase voids having dimensions roughly similar to the displacement scale height of the gas-flow boundary layer generated during combustion.

  14. Void fraction, bubble size and interfacial area measurements in co-current downflow bubble column reactor with microbubble dispersion

    DOE PAGES

    Hernandez-Alvarado, Freddy; Kalaga, Dinesh V.; Turney, Damon; ...

    2017-05-06

    Micro-bubbles dispersed in bubble column reactors have received great interest in recent years, due to their small size, stability, high gas-liquid interfacial area concentrations and longer residence times. The high gas-liquid interfacial area concentrations lead to high mass transfer rates compared to conventional bubble column reactors. In the present work, experiments have been performed in a down-flow bubble column reactor with micro-bubbles generated and dispersed by a novel mechanism to determine the gas-liquid interfacial area concentrations by measuring the void fraction and bubble size distributions. Gamma-ray densitometry has been employed to determine the axial and radial distributions of void fractionmore » and a high speed camera equipped with a borescope is used to measure the axial and radial variations of bubble sizes. Also, the effects of superficial gas and liquid velocities on the two-phase flow characteristics have been investigated. Further, reconstruction techniques of the radial void fraction profiles from the gamma densitometry's chordal measurements are discussed and compared for a bubble column reactor with dispersed micro-bubbles. The results demonstrate that the new bubble generation technique offers high interfacial area concentrations (1,000 to 4,500 m 2/m 3) with sub-millimeter bubbles (500 to 900 µm) and high overall void fractions (10% – 60%) in comparison with previous bubble column reactor designs. The void fraction data was analyzed using slip velocity model and empirical correlation has been proposed to predict the Sauter mean bubble diameter.« less

  15. Void fraction, bubble size and interfacial area measurements in co-current downflow bubble column reactor with microbubble dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Alvarado, Freddy; Kalaga, Dinesh V.; Turney, Damon

    Micro-bubbles dispersed in bubble column reactors have received great interest in recent years, due to their small size, stability, high gas-liquid interfacial area concentrations and longer residence times. The high gas-liquid interfacial area concentrations lead to high mass transfer rates compared to conventional bubble column reactors. In the present work, experiments have been performed in a down-flow bubble column reactor with micro-bubbles generated and dispersed by a novel mechanism to determine the gas-liquid interfacial area concentrations by measuring the void fraction and bubble size distributions. Gamma-ray densitometry has been employed to determine the axial and radial distributions of void fractionmore » and a high speed camera equipped with a borescope is used to measure the axial and radial variations of bubble sizes. Also, the effects of superficial gas and liquid velocities on the two-phase flow characteristics have been investigated. Further, reconstruction techniques of the radial void fraction profiles from the gamma densitometry's chordal measurements are discussed and compared for a bubble column reactor with dispersed micro-bubbles. The results demonstrate that the new bubble generation technique offers high interfacial area concentrations (1,000 to 4,500 m 2/m 3) with sub-millimeter bubbles (500 to 900 µm) and high overall void fractions (10% – 60%) in comparison with previous bubble column reactor designs. The void fraction data was analyzed using slip velocity model and empirical correlation has been proposed to predict the Sauter mean bubble diameter.« less

  16. Microstructure of RERTR DU-alloys irradiated with krypton ions up to 100 dpa

    NASA Astrophysics Data System (ADS)

    Gan, J.; Keiser, D. D., Jr.; Miller, B. D.; Wachs, D. M.; Allen, T. R.; Kirk, M.; Rest, J.

    2011-04-01

    The radiation stability of the interaction product formed at the fuel-matrix interface of research reactor dispersion fuels, under fission-product bombardment, has a strong impact on fuel performance. Three depleted uranium alloys were cast that consisted of the following five phases to be investigated: U(Si, Al) 3, (U, Mo)(Si, Al) 3, UMo 2Al 20, U 6Mo 4Al 43, and UAl 4. Irradiation of transmission electron microscopy (TEM) disc samples with 500-keV Kr ions at 200 °C to doses up to ˜100 displacements per atom (dpa) were conducted using a 300-keV electron microscope equipped with an ion accelerator. TEM results show that the U(Si, Al) 3 and UAl 4 phases remain crystalline at 100 dpa without forming voids. The (U, Mo)(Si, Al) 3 and UMo 2Al 20 phases become amorphous at 1 and ˜2 dpa, respectively, and show no evidence of voids at 100 dpa. The U 6Mo 4Al 43 phase goes to amorphous at less than 1 dpa and reveals high density voids at 100 dpa.

  17. Phase Velocity and Full-Waveform Analysis of Co-located Distributed Acoustic Sensing (DAS) Channels and Geophone Sensor

    NASA Astrophysics Data System (ADS)

    Parker, L.; Mellors, R. J.; Thurber, C. H.; Wang, H. F.; Zeng, X.

    2015-12-01

    A 762-meter Distributed Acoustic Sensing (DAS) array with a channel spacing of one meter was deployed at the Garner Valley Downhole Array in Southern California. The array was approximately rectangular with dimensions of 180 meters by 80 meters. The array also included two subdiagonals within the rectangle along which three-component geophones were co-located. Several active sources were deployed, including a 45-kN, swept-frequency, shear-mass shaker, which produced strong Rayleigh waves across the array. Both DAS and geophone traces were filtered in 2-Hz steps between 4 and 20 Hz to obtain phase velocities as a function of frequency from fitting the moveout of travel times over distances of 35 meters or longer. As an alternative to this traditional means of finding phase velocity, it is theoretically possible to find the Rayleigh-wave phase velocity at each point of co-location as the ratio of DAS and geophone responses, because DAS is sensitive to ground strain and geophones are sensitive to ground velocity, after suitable corrections for instrument response (Mikumo & Aki, 1964). The concept was tested in WPP, a seismic wave propagation program, by first validating and then using a 3D synthetic, full-waveform seismic model to simulate the effect of increased levels of noise and uncertainty as data go from ideal to more realistic. The results obtained from this study provide a better understanding of the DAS response and its potential for being combined with traditional seismometers for obtaining phase velocity at a single location. This analysis is part of the PoroTomo project (Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology, http://geoscience.wisc.edu/feigl/porotomo).

  18. The effects of the distribution pattern of multiple voids within LDPE on partial discharge characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, D.S.; Han, M.K.; Lee, J.H.

    1996-12-31

    In this paper, the authors have investigated effects of the arrangement of the voids in LDPE samples on PD characteristics, such as phase-related magnitude of PD, number of discharges. The differences of the PD patterns may be attributed to the arrangements of the voids. They have also employed available statistical operators, such as discharge factor and cross correlation factor in order to analyze the PD characteristics. The authors could conclude that partial discharge characteristics show quite different patterns due to the arrangements of voids in spite of the same size. The experimental results suggest that it is important to knowmore » the arrangements of the multiple voids as well as to obtain the information about the number of defects in the insulators.« less

  19. Serial Sectioning Methods for Generating 3D Characterization Data of Grain- and Precipitate-Scale Microstructures (Preprint)

    DTIC Science & Technology

    2010-04-01

    Nielsen SF, Gundlach C, Margulies L, Huang X, Juul Jensen D (2004) Watch- ing the Growth of Bulk Grains During Recrystallization of Deformed Metals. Science...solid-solution dendrites, while the voids in the reconstruction correspond to the Pb-Sn eutectic phase (B) 3D reconstruction of an Al-Cu alloy after...a 3 week coarsening experiment. The solid corresponds to Al dendrites, while the voids in the reconstruction correspond to the Al-Cu eutectic phase

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubos, A.K.; Caseiras, C.P.; Buchlin, J.M.

    The transient two-phase flow and phase change heat transfer processes in porous media are investigated. Based on an enthalpic approach, a one-domain formulation of the problem is developed, avoiding explicit internal boundary tracking between single- and two-phase regions. An efficient numerical scheme is applied to obtain the solution on a fixed two-dimensional grid. The transient response of a liquid-saturated, self-heated porous bed is examined in detail. A physical interpretation of a liquid-saturated, self-heated porous bed is examined in detail. A physical interpretation of the computed response to fast power transients is attempted. Comparisons with experimental data are made regarding themore » average void fraction and the limiting dryout heat flux. The numerical approach is extended, keeping the one-domain formulation, to include the surrounding wall structure in the calculation.« less

  1. Theory of Dust Voids in Plasmas

    NASA Technical Reports Server (NTRS)

    Goree, J.; Morfill, G. E.; Tsytovich, V. N.; Vladimirov, S. V.

    1999-01-01

    Dusty plasmas in a gas discharge often feature a stable void, i.e., a dust-free region inside the dust cloud. This occurs under conditions relevant to both plasma processing discharges and plasma crystal experiments. The void results from a balance of the electrostatic and ion drag forces on a dust particle. The ion drag force is driven by a flow of ions outward from an ionization source and toward the surrounding dust cloud, which has a negative space charge. In equilibrium the force balance for dust particles requires that the boundary with the dust cloud be sharp, provided that the particles are cold and monodispersive. Numerical solutions of the one-dimensional nonlinear fluid equations are carried out including dust charging and dust-neutral collisions, but not ion-neutral collisions. The regions of parameter space that allow stable void equilibria are identified. There is a minimum ionization rate that can sustain a void. Spatial profiles of plasma parameters in the void are reported. In the absence of ion-neutral collisions, the ion flow enters the dust cloud's edge at Mach number M = 1. Phase diagrams for expanding or contracting voids reveal a stationary point corresponding to a single stable equilibrium void size, provided the ionization rate is constant. Large voids contract and small voids expand until they attain this stationary void size. On the other hand, if the ionization rate is not constant, the void size can oscillate. Results are compared to recent laboratory and microgravity experiments.

  2. Optimization of radioactive sources to achieve the highest precision in three-phase flow meters using Jaya algorithm.

    PubMed

    Roshani, G H; Karami, A; Khazaei, A; Olfateh, A; Nazemi, E; Omidi, M

    2018-05-17

    Gamma ray source has very important role in precision of multi-phase flow metering. In this study, different combination of gamma ray sources (( 133 Ba- 137 Cs), ( 133 Ba- 60 Co), ( 241 Am- 137 Cs), ( 241 Am- 60 Co), ( 133 Ba- 241 Am) and ( 60 Co- 137 Cs)) were investigated in order to optimize the three-phase flow meter. Three phases were water, oil and gas and the regime was considered annular. The required data was numerically generated using MCNP-X code which is a Monte-Carlo code. Indeed, the present study devotes to forecast the volume fractions in the annular three-phase flow, based on a multi energy metering system including various radiation sources and also one NaI detector, using a hybrid model of artificial neural network and Jaya Optimization algorithm. Since the summation of volume fractions is constant, a constraint modeling problem exists, meaning that the hybrid model must forecast only two volume fractions. Six hybrid models associated with the number of used radiation sources are designed. The models are employed to forecast the gas and water volume fractions. The next step is to train the hybrid models based on numerically obtained data. The results show that, the best forecast results are obtained for the gas and water volume fractions of the system including the ( 241 Am- 137 Cs) as the radiation source. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Simulation of Intergranular Ductile Cracking in β Titanium Alloys Based on a Micro-Mechanical Damage Model

    PubMed Central

    Li, Huan; Li, Jinshan; Tang, Bin; Fan, Jiangkun; Yuan, Huang

    2017-01-01

    The intergranular crack propagation of the lamellar structure β titanium alloys is investigated by using a modified Gurson-type damage model. The representative microstructure of the lamellar alloy, which consists of the soft α phase layer surrounding the hard grain interiors, is generated based on an advanced Voronoi algorithm. Both the normal fracture due to void growth and the shear fracture associated with void shearing are considered for the grain boundary α layer. The individual phase properties are determined according to the experimental nanoindentation result and the macroscopic stress–strain curve from a uni-axial tensile test. The effects of the strain hardening exponent of the grain interiors and the void shearing mechanism of the grain boundary α layer on fracture toughness and the intergranular crack growth behavior are emphatically studied. The computational predictions indicate that fracture toughness can be increased with increasing the strain hardening ability of the grain interiors and void shearing can be deleterious to fracture toughness. Based on the current simulation technique, qualitative understanding of relationships between the individual phase features and the fracture toughness of the lamellar alloys can be obtained, which provides useful suggestions to the heat treatment process of the β titanium alloys. PMID:29084171

  4. Simulation of Intergranular Ductile Cracking in β Titanium Alloys Based on a Micro-Mechanical Damage Model.

    PubMed

    Li, Huan; Li, Jinshan; Tang, Bin; Fan, Jiangkun; Yuan, Huang

    2017-10-30

    The intergranular crack propagation of the lamellar structure β titanium alloys is investigated by using a modified Gurson-type damage model. The representative microstructure of the lamellar alloy, which consists of the soft α phase layer surrounding the hard grain interiors, is generated based on an advanced Voronoi algorithm. Both the normal fracture due to void growth and the shear fracture associated with void shearing are considered for the grain boundary α layer. The individual phase properties are determined according to the experimental nanoindentation result and the macroscopic stress-strain curve from a uni-axial tensile test. The effects of the strain hardening exponent of the grain interiors and the void shearing mechanism of the grain boundary α layer on fracture toughness and the intergranular crack growth behavior are emphatically studied. The computational predictions indicate that fracture toughness can be increased with increasing the strain hardening ability of the grain interiors and void shearing can be deleterious to fracture toughness. Based on the current simulation technique, qualitative understanding of relationships between the individual phase features and the fracture toughness of the lamellar alloys can be obtained, which provides useful suggestions to the heat treatment process of the β titanium alloys.

  5. 30 CFR 203.35 - What administrative steps must I take to use the RSV earned by a qualified phase 2 or phase 3...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... is located entirely or partly in water less than 200 meters deep, or before May 3, 2013, on a lease that is located entirely in water more than 200 meters but less than 400 meters deep, the MMS Regional... entirely in water more than 200 meters but less than 400 meters deep. You must provide a credible activity...

  6. A two-fluid model for avalanche and debris flows.

    PubMed

    Pitman, E Bruce; Le, Long

    2005-07-15

    Geophysical mass flows--debris flows, avalanches, landslides--can contain O(10(6)-10(10)) m(3) or more of material, often a mixture of soil and rocks with a significant quantity of interstitial fluid. These flows can be tens of meters in depth and hundreds of meters in length. The range of scales and the rheology of this mixture presents significant modelling and computational challenges. This paper describes a depth-averaged 'thin layer' model of geophysical mass flows containing a mixture of solid material and fluid. The model is derived from a 'two-phase' or 'two-fluid' system of equations commonly used in engineering research. Phenomenological modelling and depth averaging combine to yield a tractable set of equations, a hyperbolic system that describes the motion of the two constituent phases. If the fluid inertia is small, a reduced model system that is easier to solve may be derived.

  7. Advanced Concept

    NASA Image and Video Library

    2000-06-22

    The photograph depicts the X-37 neutral buoyancy simulator mockup at Dryden Flight Research Center. The X-37 experimental launch vehicle is roughly 27.5 feet (8.3 meters) long and 15 feet (4.5 meters) in wingspan. Its experiment bay is 7 feet (2.1 meters) long and 4 feet (1.2 meters) in diameter. Designed to operate in both the orbital and reentry phases of flight, the X-37 will increase both safety and reliabiltiy, while reducing launch costs from $10,000 per pound to $1000 per pound. Managed by Marshall Space Flight Center and built by the boeing Company, the X-37 is scheduled to fly two orbital missions in 2002/2003 to test the reusable launch vehicle technologies.

  8. Extragalactic magnetic fields unlikely generated at the electroweak phase transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagstaff, Jacques M.; Banerjee, Robi, E-mail: jwagstaff@hs.uni-hamburg.de, E-mail: banerjee@hs.uni-hamburg.de

    2016-01-01

    In this paper we show that magnetic fields generated at the electroweak phase transition are most likely too weak to explain the void magnetic fields apparently observed today unless they have considerable helicity. We show that, in the simplest estimates, the helicity naturally produced in conjunction with the baryon asymmetry is too small to explain observations, which require a helicity fraction at least of order 10{sup −14}–10{sup −10} depending on the void fields constraint used. Therefore new mechanisms to generate primordial helicity are required if magnetic fields generated during the electroweak phase transition should explain the extragalactic fields.

  9. Two-phase flow patterns in adiabatic and diabatic corrugated plate gaps

    NASA Astrophysics Data System (ADS)

    Polzin, A.-E.; Kabelac, S.; de Vries, B.

    2016-09-01

    Correlations for two-phase heat transfer and pressure drop can be improved considerably, when they are adapted to specific flow patterns. As plate heat exchangers find increasing application as evaporators and condensers, there is a need for flow pattern maps for corrugated plate gaps. This contribution presents experimental results on flow pattern investigations for such a plate heat exchanger background, using an adiabatic visualisation setup as well as a diabatic setup. Three characteristic flow patterns were observed in the considered range of two-phase flow: bubbly flow, film flow and slug flow. The occurrence of these flow patterns is a function of mass flux, void fraction, fluid properties and plate geometry. Two different plate geometries having a corrugation angle of 27° and 63°, respectively and two different fluids (water/air and R365mfc liquid/vapor) have been analysed. A flow pattern map using the momentum flux is presented.

  10. Asymmetric bubble collapse

    NASA Astrophysics Data System (ADS)

    Lai, Lipeng; Turitsyn, Konstantin S.; Zhang, Wendy W.

    2008-11-01

    Recent studies reveal that an inertial implosion, analogous to the collapse of a large cavity in water, governs how a submerged air bubble disconnects from a nozzle. For the bubble, slight asymmetries in the initial neck shape give rise to vibrations that grow pronounced over time. These results motivate our study of the final stage of asymmetric cavity collapse. We are particularly interested in the generic situation where the initial condition is sufficiently well-focused that a cavity can implode inwards energetically. Yet, because the initial condition is not perfectly symmetric, the implosion fails to condense all the energy. We consider cavity shapes in the slender-body limit, for which the collapse dynamics is quasi two-dimensional. In this limit, each cross-section of the cavity evolves as if it were a distorted void immersed in an inviscid and irrotational fluid. Simulations of a circular void distorted by an elongation-compression vibrational mode reveal that a variety of outcomes are possible in the 2D problem. Opposing sides of the void surface can curve inwards and contact smoothly in a finite amount of time. Depending on the phase of the vibration excited, the contact can be either north-south or east-west. Phase values that lie in the transition zone from one orientation to the other give rise to final shapes with large lengthscale separation. We show also that the final outcome varies non-monotonically with the initial amplitude of the vibrational mode.

  11. Investigation of heat transfer of tube line of staggered tube bank in two-phase flow

    NASA Astrophysics Data System (ADS)

    Jakubcionis, Mindaugas

    2015-06-01

    This article presents the results of experimental investigation of heat transfer process, carried out using the model of heat exchanger. Two-phase statically stable foam flow was used as a heat transfer fluid. Heat exchanger model consisted of staggered tube bank. Experimental results are presented with the focus on influence of tube position in the line of the bank, volumetric void component and velocity of gas component of the foam. The phenomena of liquid draining in cellular foam flow and its influence on heat transfer rate has also been discussed. The experimental results have been generalized by relationship between Nusselt, Reynolds and Prandtl numbers.

  12. On localization and void coalescence as a precursor to ductile fracture.

    PubMed

    Tekoğlu, C; Hutchinson, J W; Pardoen, T

    2015-03-28

    Two modes of plastic flow localization commonly occur in the ductile fracture of structural metals undergoing damage and failure by the mechanism involving void nucleation, growth and coalescence. The first mode consists of a macroscopic localization, usually linked to the softening effect of void nucleation and growth, in either a normal band or a shear band where the thickness of the band is comparable to void spacing. The second mode is coalescence with plastic strain localizing to the ligaments between voids by an internal necking process. The ductility of a material is tied to the strain at macroscopic localization, as this marks the limit of uniform straining at the macroscopic scale. The question addressed is whether macroscopic localization occurs prior to void coalescence or whether the two occur simultaneously. The relation between these two modes of localization is studied quantitatively in this paper using a three-dimensional elastic-plastic computational model representing a doubly periodic array of voids within a band confined between two semi-infinite outer blocks of the same material but without voids. At sufficiently high stress triaxiality, a clear separation exists between the two modes of localization. At lower stress triaxialities, the model predicts that the onset of macroscopic localization and coalescence occur simultaneously. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. Computing the complex : Dusty plasmas in the presence of magnetic fields and UV radiation

    NASA Astrophysics Data System (ADS)

    Land, V.

    2007-12-01

    About 90% of the visible universe is plasma. Interstellar clouds, stellar cores and atmospheres, the Solar wind, the Earth's ionosphere, polar lights, and lightning are all plasma; ionized gases, consisting of electrons, ions, and neutrals. Not only many industries, like the microchip and solar cell industry, but also future fusion power stations, rely heavily on the use of plasma. More and more, home appliances include plasma technologies, like compact fluorescent light sources, and plasma screens. Dust particles, which can disrupt plasma processes, enter these plasmas, through chemical reactions in the plasma, or through interactions between plasma and walls. For instance, during microchip fabrication, dust particles can destroy the tiny, nanometre-sized structures on the surface of these chips. On the other hand, dust particles orbiting Young Stellar Objects coagulate and form the seeds of planets. In order to understand fundamental processes, such as planet formation, or to optimize industrial plasma processes, a thorough description of dusty plasma is necessary. Dust particles immersed in plasma collect ions and electrons from the plasma and charge up electrically. Therefore, the presence of dust changes plasma, while at the same time many forces start acting on the dust. Therefore, the dust and plasma become coupled, making dusty plasma a very complex medium to describe, in which many length and time scales play a role, from the Debye length to the length of the electrodes, and from the inverse plasma frequencies to the dust transport times. Using a self-consistent fluid model, we simulate these multi-scale dusty plasmas in radio frequency discharges under micro-gravity. We show that moderate non-linear scattering of ions by the dust particles is the most important aspect in the calculation of the ion drag force. This force is also responsible for the formation of a dust-free 'void' in dusty plasma under micro-gravity, caused by ions moving from the centre of the void towards the outside of the discharge. The void thus requires electron-impact ionizations inside the void. The electrons gain the energy for these ionizations inside the dust cloud surrounding the void, however. We show that a growing electron temperature gradient is responsible for the transport of electron energy from the surrounding dust cloud into the void. An axial magnetic field in the discharge magnetizes the electrons. This changes the ambipolar flux of ions through the bulk of the discharge. The ion drag force changes, resulting in a differently shaped void and faster void formation. Experiments in a direct current discharge, show a response of both dust and plasma in the E?B direction, when a magnetic field is applied. The dust response consists of two phases: an initial fast phase, and a later, slow phase. Using a Particle-In-Cell plus Monte Carlo model, we show that the dust charge can be reduced by adding a flux of ultraviolet radiation. A source of ultraviolet light can thus serve as a tool to manipulate dusty plasmas, but might also be important for the coagulation of dust particles around young stars and planet formation in general.

  14. Optical beams with embedded vortices: building blocks for atom optics and quantum information

    NASA Astrophysics Data System (ADS)

    Chattrapiban, N.; Arakelyan, I.; Mitra, S.; Hill, W. T., III

    2006-05-01

    Laser beams with embedded vortices, Bessel or Laguerre-Gaussian modes, provide a unique opportunity for creating elements for atom optics, entangling photons and, potentially, mediating novel quantum interconnects between photons and matter. High-order Bessel modes, for example, contain intensity voids and propagate nearly diffraction-free for tens of meters. These vortices can be exploited to produce dark channels oriented longitudinally (hollow beams) or transversely to the laser propagation direction. Such channels are ideal for generating networks or circuits to guide and manipulate cold neutral atoms, an essential requirement for realizing future applications associated with atom interferometry, atom lithography and even some neutral atom-based quantum computing architectures. Recently, we divided a thermal cloud of neutral atoms moving within a blue-detuned beam into two clouds with two different momenta by crossing two hollow beams. In this presentation, we will describe these results and discuss the prospects for extending the process to coherent ensembles of matter.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D.B.

    This paper reports on experiments to examine gas migration rates in drilling muds that were performed in a 15-m-long, 200-mm-ID inclinable flow loop where air injection simulates gas entry during a kick. These tests were conducted using a xanthum gum (a common polymer used in drilling fluids) solution to simulate drilling muds as the liquid phase and air as the gas phase. This work represents a significant extension of existing correlations for gas/liquid flows in large pipe diameters with non- Newtonian fluids. Bubbles rise faster in drilling muds than in water despite the increased viscosity. This surprising result is causedmore » by the change in the flow regime, with large slug-type bubbles forming at lower void fractions. The gas velocity is independent of void fraction, thus simplifying flow modeling. Results show that a gas influx will rise faster in a well than previously believed. This has major implications for kick simulation, with gas arriving at the surface earlier than would be expected and the gas outflow rate being higher than would have been predicted. A model of the two-phase gas flow in drilling mud, including the results of this work, has been incorporated into the joint Schlumberger Cambridge Research (SCR)/BP Intl. kick model.« less

  16. Models and numerical methods for the simulation of loss-of-coolant accidents in nuclear reactors

    NASA Astrophysics Data System (ADS)

    Seguin, Nicolas

    2014-05-01

    In view of the simulation of the water flows in pressurized water reactors (PWR), many models are available in the literature and their complexity deeply depends on the required accuracy, see for instance [1]. The loss-of-coolant accident (LOCA) may appear when a pipe is broken through. The coolant is composed by light water in its liquid form at very high temperature and pressure (around 300 °C and 155 bar), it then flashes and becomes instantaneously vapor in case of LOCA. A front of liquid/vapor phase transition appears in the pipes and may propagate towards the critical parts of the PWR. It is crucial to propose accurate models for the whole phenomenon, but also sufficiently robust to obtain relevant numerical results. Due to the application we have in mind, a complete description of the two-phase flow (with all the bubbles, droplets, interfaces…) is out of reach and irrelevant. We investigate averaged models, based on the use of void fractions for each phase, which represent the probability of presence of a phase at a given position and at a given time. The most accurate averaged model, based on the so-called Baer-Nunziato model, describes separately each phase by its own density, velocity and pressure. The two phases are coupled by non-conservative terms due to gradients of the void fractions and by source terms for mechanical relaxation, drag force and mass transfer. With appropriate closure laws, it has been proved [2] that this model complies with all the expected physical requirements: positivity of densities and temperatures, maximum principle for the void fraction, conservation of the mixture quantities, decrease of the global entropy… On the basis of this model, it is possible to derive simpler models, which can be used where the flow is still, see [3]. From the numerical point of view, we develop new Finite Volume schemes in [4], which also satisfy the requirements mentioned above. Since they are based on a partial linearization of the physical model, this numerical scheme is also efficient in terms of CPU time. Eventually, simpler models can locally replace the more complex model in order to simplify the overall computation, using some appropriate local error indicators developed in [5], without reducing the accuracy. References 1. Ishii, M., Hibiki, T., Thermo-fluid dynamics of two-phase flow, Springer, New-York, 2006. 2. Gallouët, T. and Hérard, J.-M., Seguin, N., Numerical modeling of two-phase flows using the two-fluid two-pressure approach, Math. Models Methods Appl. Sci., Vol. 14, 2004. 3. Seguin, N., Étude d'équations aux dérivées partielles hyperboliques en mécanique des fluides, Habilitation à diriger des recherches, UPMC-Paris 6, 2011. 4. Coquel, F., Hérard, J-M., Saleh, K., Seguin, N., A Robust Entropy-Satisfying Finite Volume Scheme for the Isentropic Baer-Nunziato Model, ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 48, 2013. 5. Mathis, H., Cancès, C., Godlewski, E., Seguin, N., Dynamic model adaptation for multiscale simulation of hyperbolic systems with relaxation, preprint, 2013.

  17. Investigation of voids/cracking on the I-275 twin bridges over the Ohio River in Kenton County : Phase I : final report.

    DOT National Transportation Integrated Search

    2008-03-01

    An evaluation of the northbound bridge approach and the abutment wall of (Combs-Hehl) bridge on I-275 in Kenton County was conducted in September 2007. The inspection consisted of using ground penetrating radar to look for potential voids beneath the...

  18. Terahertz Computed Tomography of NASA Thermal Protection System Materials

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.

    2011-01-01

    A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.

  19. Phase diagrams of vortex matter with multi-scale inter-vortex interactions in layered superconductors.

    PubMed

    Meng, Qingyou; Varney, Christopher N; Fangohr, Hans; Babaev, Egor

    2017-01-25

    It was recently proposed to use the stray magnetic fields of superconducting vortex lattices to trap ultracold atoms for building quantum emulators. This calls for new methods for engineering and manipulating of the vortex states. One of the possible routes utilizes type-1.5 superconducting layered systems with multi-scale inter-vortex interactions. In order to explore the possible vortex states that can be engineered, we present two phase diagrams of phenomenological vortex matter models with multi-scale inter-vortex interactions featuring several attractive and repulsive length scales. The phase diagrams exhibit a plethora of phases, including conventional 2D lattice phases, five stripe phases, dimer, trimer, and tetramer phases, void phases, and stable low-temperature disordered phases. The transitions between these states can be controlled by the value of an applied external field.

  20. Non-invasive characterization of real-time bladder sensation using accelerated hydration and a novel sensation meter: An initial experience

    PubMed Central

    Nagle, Anna S.; Speich, John E.; De Wachter, Stefan G.; Ghamarian, Peter P.; Le, David M.; Colhoun, Andrew F.; Ratz, Paul H.; Barbee, Robert W.; Klausner, Adam P.

    2016-01-01

    AIMS The purpose of this investigation was to develop a non-invasive, objective, and unprompted method to characterize real-time bladder sensation. METHODS Volunteers with and without overactive bladder (OAB) were prospectively enrolled in a preliminary accelerated hydration study. Participants drank 2L Gatorade-G2® and recorded real-time sensation (0–100% scale) and standardized verbal sensory thresholds using a novel, touch-screen “sensation meter.” 3D bladder ultrasound images were recorded throughout fillings for a subset of participants. Sensation data were recorded for two consecutive complete fill-void cycles. RESULTS Data from 14 normal and 12 OAB participants were obtained (ICIq-OAB-5a = 0 vs. ≥3). Filling duration decreased in fill2 compared to fill1, but volume did not significantly change. In normals, adjacent verbal sensory thresholds (within fill) showed no overlap, and identical thresholds (between fill) were similar, demonstrating effective differentiation between degrees of %bladder capacity. In OAB, within-fill overlaps and between-fill differences were identified. Real-time %capacity-sensation curves left shifted from fill1 to fill2 in normals, consistent with expected viscoelastic behavior, but unexpectedly right shifted in OAB. 3D ultrasound volume data showed that fill rates started slowly and ramped up with variable end points. CONCLUSIONS This study establishes a non-invasive means to evaluate real-time bladder sensation using a two-fill accelerated hydration protocol and a sensation meter. Verbal thresholds were inconsistent in OAB, and the right shift in OAB %capacity–sensation curve suggests potential biomechanical and/or sensitization changes. This methodology could be used to gain valuable information on different forms of OAB in a completely non-invasive way. PMID:27654469

  1. Non-invasive characterization of real-time bladder sensation using accelerated hydration and a novel sensation meter: An initial experience.

    PubMed

    Nagle, Anna S; Speich, John E; De Wachter, Stefan G; Ghamarian, Peter P; Le, David M; Colhoun, Andrew F; Ratz, Paul H; Barbee, Robert W; Klausner, Adam P

    2017-06-01

    The purpose of this investigation was to develop a non-invasive, objective, and unprompted method to characterize real-time bladder sensation. Volunteers with and without overactive bladder (OAB) were prospectively enrolled in a preliminary accelerated hydration study. Participants drank 2L Gatorade-G2® and recorded real-time sensation (0-100% scale) and standardized verbal sensory thresholds using a novel, touch-screen "sensation meter." 3D bladder ultrasound images were recorded throughout fillings for a subset of participants. Sensation data were recorded for two consecutive complete fill-void cycles. Data from 14 normal and 12 OAB participants were obtained (ICIq-OAB-5a = 0 vs. ≥3). Filling duration decreased in fill2 compared to fill1, but volume did not significantly change. In normals, adjacent verbal sensory thresholds (within fill) showed no overlap, and identical thresholds (between fill) were similar, demonstrating effective differentiation between degrees of %bladder capacity. In OAB, within-fill overlaps and between-fill differences were identified. Real-time %capacity-sensation curves left shifted from fill1 to fill2 in normals, consistent with expected viscoelastic behavior, but unexpectedly right shifted in OAB. 3D ultrasound volume data showed that fill rates started slowly and ramped up with variable end points. This study establishes a non-invasive means to evaluate real-time bladder sensation using a two-fill accelerated hydration protocol and a sensation meter. Verbal thresholds were inconsistent in OAB, and the right shift in OAB %capacity-sensation curve suggests potential biomechanical and/or sensitization changes. This methodology could be used to gain valuable information on different forms of OAB in a completely non-invasive way. © 2016 Wiley Periodicals, Inc.

  2. The Nucleus of Comet 67P/Churyumov-Gerasimenko: Lots of Surprises

    NASA Astrophysics Data System (ADS)

    Weissman, Paul R.; Rosetta Science Working Team

    2016-10-01

    ESA's Rosetta mission has made many new and unexpected discoveries since its arrival at comet 67P/Churyumov-Gerasimenko in August 2014. The first of these was the unusual shape of the cometary nucleus. Although bilobate nuclei had been seen before, the extreme concavities on 67P were unexpected. Evidence gathered during the mission suggests that two independent bodies came together to form 67P, rather than the nucleus being a single body that was sculpted by sublimation and/or other processes. Although not a surprise, early observations showed that the nucleus rotation period had decreased by ~22 minutes since the previous aphelion passage. A similar rotation period decrease was seen post-perihelion during the encounter. These changes likely arise from asymmetric jetting forces from the irregular nucleus. Initially, Rosetta's instruments found little evidence for water ice on the surface; the presence of surface water ice increased substantially as the nucleus approached perihelion. The nucleus bulk density, 533 ± 6 kg/m3, was measured with Radio Science and OSIRIS imaging of the nucleus volume. This confirmed previous estimates based on indirect methods that the bulk density of cometary nuclei was on the order of 500-600 kg/m3 and on measurement of the density of 9P/Tempel 1's nucleus by Deep Impact. Nucleus topography proved to be highly varied, from smooth dust-covered plains to shallow circular basins, to the very rough terrain where the Philae lander came to rest. Evidence of thermal cracking is everywhere. The discovery of cylindrical pits on the surface, typically 100-200m in diameter with similar depths was a major surprise and has been interpreted as sinkholes. "Goose-bump" terrain consisting of apparently random piles of boulders 2-3 m in diameter was another unexpected discovery. Apparent layering with scales of meters to many tens of meters was seen but there was little or no evidence for impact features. Radar tomography of the interior of the "head" of the nucleus showed no evidence of large voids, > 100's of meters, in the interior and the RSI experiment also ruled out large voids > 600m in size. This work was supported by the U.S. Rosetta Project, funded by NASA.

  3. In vitro and in vivo evaluation of diamond-coated strips.

    PubMed

    Lione, Roberta; Gazzani, Francesca; Pavoni, Chiara; Guarino, Stefano; Tagliaferri, Vincenzo; Cozza, Paola

    2017-05-01

    To test in vitro and in vivo the wear performance of diamond-coated strips by means of tribological testing and scanning electronic microscope (SEM). To evaluate the in vitro wear performance, a tribological test was performed by a standard tribometer. The abrasive strips slid against stationary, freshly extracted premolars fixed in resin blocks, at a 2-newton load. At the end of the tribological test, the residual surface of the strip was observed by means of SEM analysis, which was performed every 50 meters until reaching 300 meters. For the in vivo analysis, the strip was used for 300 seconds, corresponding to 250 meters. The strips presented a fenestrated structure characterized by diamond granules alternating with voids. After the first 50 meters, it was possible to observe tooth material deposited on the surface of the strips and a certain number of abrasive grains detached. The surface of the strip after 250 meters appeared smoother and therefore less effective in its abrasive power. After 300 seconds of in vivo utilization of the strip, it was possible to observe the detachment of diamond abrasive grains, the near absence of the grains and, therefore, loss of abrasive power. Under ideal conditions, after 5 minutes (30 meters) of use, the strip loses its abrasive capacity by about 60%. In vivo, a more rapid loss of abrasive power was observed due to the greater load applied by the clinician in forcing the strip into the contact point.

  4. Molecular dynamics modeling and simulation of void growth in two dimensions

    NASA Astrophysics Data System (ADS)

    Chang, H.-J.; Segurado, J.; Rodríguez de la Fuente, O.; Pabón, B. M.; LLorca, J.

    2013-10-01

    The mechanisms of growth of a circular void by plastic deformation were studied by means of molecular dynamics in two dimensions (2D). While previous molecular dynamics (MD) simulations in three dimensions (3D) have been limited to small voids (up to ≈10 nm in radius), this strategy allows us to study the behavior of voids of up to 100 nm in radius. MD simulations showed that plastic deformation was triggered by the nucleation of dislocations at the atomic steps of the void surface in the whole range of void sizes studied. The yield stress, defined as stress necessary to nucleate stable dislocations, decreased with temperature, but the void growth rate was not very sensitive to this parameter. Simulations under uniaxial tension, uniaxial deformation and biaxial deformation showed that the void growth rate increased very rapidly with multiaxiality but it did not depend on the initial void radius. These results were compared with previous 3D MD and 2D dislocation dynamics simulations to establish a map of mechanisms and size effects for plastic void growth in crystalline solids.

  5. Prospects for the application of radiometric methods in the measurement of two-phase flows

    NASA Astrophysics Data System (ADS)

    Zych, Marcin

    2018-06-01

    The article constitutes an overview of the application of radiometric methods in the research of two-phase flows: liquid-solid particles and liquid-gas flows. The methods which were used were described on the basis of the experiments which were conducted in the Water Laboratory of the Wrocław University of Environmental and Life Sciences and in the Sedimentological Laboratory of the Faculty of Geology, Geophysics and Environmental Protection, AGH-UST in Kraków. The advanced mathematical methods for the analysis of signals from scintillation probes that were applied enable the acquisition of a number of parameters associated with the flowing two-phase mixture, such as: average velocities of the particular phases, concentration of the solid phase, and void fraction for a liquid-gas mixture. Despite the fact that the application of radioactive sources requires considerable carefulness and a number of state permits, in many cases these sources become useful in the experiments which are presented.

  6. Method of simulating spherical voids for use as a radiographic standard

    DOEpatents

    Foster, Billy E.

    1977-01-01

    A method of simulating small spherical voids in metal is provided. The method entails drilling or etching a hemispherical depression of the desired diameter in each of two sections of metal, the sections being flat plates or different diameter cylinders. A carbon bead is placed in one of the hemispherical voids and is used as a guide to align the second hemispherical void with that in the other plate. The plates are then bonded together with epoxy, tape or similar material and the two aligned hemispheres form a sphere within the material; thus a void of a known size has been created. This type of void can be used to simulate a pore in the development of radiographic techniques of actual voids (porosity) in welds and serve as a radiographic standard.

  7. Planetary Radar Imaging with the Deep-Space Network's 34 Meter Uplink Array

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor; Tsao, P.; Lee, D.; Cornish, T.; Jao, J.; Slade, M.

    2011-01-01

    A coherent Uplink Array consisting of two or three 34-meter antennas of NASA's Deep Space Network has been developed for the primary purpose of increasing EIRP at the spacecraft. Greater EIRP ensures greater reach, higher uplink data rates for command and configuration control, as well as improved search and recovery capabilities during spacecraft emergencies. It has been conjectured that Doppler-delay radar imaging of lunar targets can be extended to planetary imaging, where the long baseline of the uplink array can provide greater resolution than a single antenna, as well as potentially higher EIRP. However, due to the well known R4 loss in radar links, imaging of distant planets is a very challenging endeavor, requiring accurate phasing of the Uplink Array antennas, cryogenically cooled low-noise receiver amplifiers, and sophisticated processing of the received data to extract the weak echoes characteristic of planetary radar. This article describes experiments currently under way to image the planets Mercury and Venus, highlights improvements in equipment and techniques, and presents planetary images obtained to date with two 34 meter antennas configured as a coherently phased Uplink Array.

  8. Bubble Generation in a Flowing Liquid Medium and Resulting Two-Phase Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Pais, S. C.; Kamotani, Y.; Bhunia, A.; Ostrach, S.

    1999-01-01

    The present investigation reports a study of bubble generation under reduced gravity conditions, using both a co-flow and a cross-flow configuration. This study may be used in the conceptual design of a space-based thermal management system. Ensuing two-phase flow void fraction can be accurately monitored using a single nozzle gas injection system within a continuous liquid flow conduit, as utilized in the present investigation. Accurate monitoring of void fraction leads to precise control of heat and mass transfer coefficients related to a thermal management system; hence providing an efficient and highly effective means of removing heat aboard spacecraft or space stations. Our experiments are performed in parabolic flight aboard the modified DC-9 Reduced Gravity Research Aircraft at NASA Lewis Research Center, using an air-water system. For the purpose of bubble dispersion in a flowing liquid, we use both a co-flow and a cross-flow configuration. In the co-flow geometry, air is introduced through a nozzle in the same direction with the liquid flow. On the other hand, in the cross-flow configuration, air is injected perpendicular to the direction of water flow, via a nozzle protruding inside the two-phase flow conduit. Three different flow conduit (pipe) diameters are used, namely, 1.27 cm, 1.9 cm and 2.54 cm. Two different ratios of nozzle to pipe diameter (D(sub N))sup * are considered, namely (D(sub N))sup * = 0.1 and 0.2, while superficial liquid velocities are varied from 8 to 70 cm/s depending on flow conduit diameter. It is experimentally observed that by holding all other flow conditions and geometry constant, generated bubbles decrease in size with increase in superficial liquid velocity. Detached bubble diameter is shown to increase with air injection nozzle diameter. Likewise, generated bubbles grow in size with increasing pipe diameter. Along the same lines, it is shown that bubble frequency of formation increases and hence the time to detachment of a forming bubble decreases, as the superficial liquid velocity is in-creased. Furthermore, it is shown that the void fraction of the resulting two-phase flow increases with volumetric gas flow rate Q(sub d), pipe diameter and gas injection nozzle diameter, while they decrease with surrounding liquid flow. The important role played by flowing liquid in detaching bubbles in a reduced gravity environment is thus emphasized. We observe that the void fraction can be accurately controlled by using single nozzle gas injection, rather than by employing multiple port injection, since the later system gives rise to unpredictable coalescence of adjacent bubbles. It is of interest to note that empirical bubble size and corresponding void fraction are somewhat smaller for the co-flow geometry than the cross-flow configuration at similar flow conditions with similar pipe and nozzle diameters. In order to supplement the empirical data, a theoretical model is employed to study single bubble generation in the dynamic (Q(sub d) = 1 - 1000 cu cm/s) and bubbly flow regime within the framework of the co-flow configuration. This theoretical model is based on an overall force balance acting on the bubble during the two stages of generation, namely the expansion and the detachment stage. Two sets of forces, one aiding and the other inhibiting bubble detachment are identified. Under conditions of reduced gravity, gas momentum flux enhances, while the surface tension force at the air injection nozzle tip inhibits bubble detachment. In parallel, liquid drag and inertia can act as both attaching and detaching forces, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with our experimental results. However, at higher superficial liquid velocities, as the bubble loses its spherical form, empirical bubble size no longer matches the theoretical predictions. In summary, we have developed a combined experimental and theoretical work, which describes the complex process of bubble generation and resulting two-phase flow in a microgravity environment. Results of the present study can be used in a wide range of space-based applications, such as thermal energy and power generation, propulsion, cryogenic storage and long duration life support systems, necessary for programs such as NASA's Human Exploration for the Development of Space (HEDS).

  9. Solutocapillary Convection Effects on Polymeric Membrane Morphology

    NASA Technical Reports Server (NTRS)

    Krantz, William B.; Todd, Paul W.; Kinagurthu, Sanjay

    1996-01-01

    Macro voids are undesirable large pores in membranes used for purification. They form when membranes are cast as thin films on a smooth surface by evaporating solvent (acetone) from a polymer solution. There are two un-tested hypotheses explaining the growth of macro voids. One states that diffusion of the non-solvent (water) is solely responsible, while the other states that solutocapillary convection is the primary cause of macro void growth. Solutocapillary convection is flow-caused by a concentration induced surface-tension gradient. Macrovoid growth in the former hypothesis is gravity independent, while in the latter it is opposed by gravity. To distinguish between these two hypotheses, experiments were designed to cast membranes in zero-gravity. A semi-automated apparatus was designed and built for casting membranes during the 20 secs of zero-g time available in parabolic aircraft flight such as NASA's KC-135. The phase changes were monitored optically, and membrane morphology was evaluated by scanning electron microscopy (SEM). These studies appear to be the first quantitative studies of membrane casting in micro-gravity which incorporate real-time data acquisition. Morphological studies of membranes cast at 0, 1, and 1.8 g revealed the presence of numerous, sparse and no macrovoids respectively. These results are consistent with the predictions of the solutocapillary hypothesis of macrovoid growth.

  10. Development of an impact- and solvent-resistant thermoplastic composite matrix, phase 3

    NASA Technical Reports Server (NTRS)

    Delano, C. B.; Kiskiras, C. J.

    1985-01-01

    The polyimide from BTDA 1,6-hexanediamine and m-phenylenediamine was selected from a prior study for the present study. Methods to prepare prepreg which would provide low void composites at low molding pressures from the thermoplastic polyimide were studied. Cresol solutions of the polyimide were applied to a balanced weave carbon fabric and the cresol removed prior to composite molding. Low void composites were prepared from smoothed prepregs at high pressures (34.5 MPa) and temperatures as low as 260 C. Lower molding pressures lead to higher void composites. Need for a lower melt viscosity in the neat resin is suggested as a requirement to achieve low void composites at low pressures. Some mechanical properties are included.

  11. Phase field study of surface-induced melting and solidification from a nanovoid: Effect of dimensionless width of void surface and void size

    NASA Astrophysics Data System (ADS)

    Basak, Anup; Levitas, Valery I.

    2018-05-01

    The size effect and the effects of a finite-width surface on barrierless transformations between the solid (S), surface melt (SM), and melt (M) from a spherical nanovoid are studied using a phase field approach. Melting (SM → M and S → M) from the nanovoid occurs at temperatures which are significantly greater than the solid-melt equilibrium temperature θe but well below the critical temperature for solid instability. The relationships between the SM and M temperatures and the ratio of the void surface width and width of the solid-melt interface, Δ ¯ , are found for the nanovoids of different sizes. Below a critical ratio Δ¯ * , the melting occurs via SM and the melting temperature slightly reduces with an increase in Δ ¯ . Both S → SM and SM → M transformations have a jump-like character (excluding the case with the sharp void surface), causing small temperature hysteresis. However, the solid melts without SM for Δ ¯>Δ¯ * , and the melting temperature significantly increases with increasing Δ ¯ . The results for a nanovoid are compared with the melting/solidification of a nanoparticle, for which the melting temperatures, in contrast, are much lower than θe. A linear dependency of the melting temperatures with the inverse of the void radius is shown. The present study shows an unexplored way to control the melting from nanovoids by controlling the void size and the width and energy of the surface.

  12. Suitable RF spectrum in ISM band for 2-way advanced metering network in India

    NASA Astrophysics Data System (ADS)

    Mishra, A.; Khan, M. A.; Gaur, M. S.

    2013-01-01

    The ISM (Industrial Scientific and Medical) bands in the radio frequency space in India offer two alternative spectra to implement wireless network for advanced metering infrastructure (AMI). These bands lie in the range of 2.4GHz and sub-GHz frequencies 865 to 867 MHz This paper aims to examine the suitability of both options by designing and executing experiments in laboratory as well as carrying out field trials on electricity meters to validate the selected option. A parameter, communication effectiveness index (CEI2) is defined to measure the effectiveness of 2 way data communication (packet exchange) between two points under different scenarios of buildings and free space. Both 2.4 GHz and Sub-GHz designs were implemented to compare the results. The experiments were conducted across 3 floors of a building. Validation of the selected option was carried out by conducting a field trial by integrating the selected radio frequency (RF) modem into the single phase electricity meters and installing these meters across three floors of the building. The methodology, implementation details, observations and resulting analytical conclusion are described in the paper.

  13. Anatomic and functional properties of bulboglandularis striated muscle support its contribution as sphincter in female rabbit micturition.

    PubMed

    Corona-Quintanilla, Dora Luz; López-Juárez, Rhode; Zempoalteca, René; Cuevas, Estela; Castelán, Francisco; Martínez-Gómez, Margarita

    2016-08-01

    To determine anatomic and functional properties of the bulboglandularis muscle (Bgm) for clarifying its role in micturition in female rabbits. Virgin female rabbits were used to describe the gross anatomy and innervation of the Bgm, to determine the effect of the Bgm contraction on urethral pressure, and to evaluate the Bgm activity during the induced-micturition. Both electromyogram and cystometrogram activity were simultaneously recorded in urethane-anesthetized rabbits. Bladder function was assessed measuring standard urodynamic variables before and after blocking the Bgm activity for approaching its contribution to micturition. The relevance of the Bgm activation for micturition was approached applying lidocaine injections. The Bgm was composed of circularly oriented striated fibers enveloping distal urethra and pelvic vagina. Both the venous plexus and urethra were comprised by the Bgm contraction induced by electrical stimulation. The Bgm showed bursts of tonic activity at the storage phase of micturition that gradually decreased until turning off as the onset of the voiding phase. The voided volume, the voiding efficiency, the threshold pressure, and the maximal pressure were decreased after lidocaine injection. Contrastingly, the threshold volume, the residual volume, the voiding duration, and the urethral resistance at voiding were increased. Present anatomical and physiological findings support that the Bgm acts as a sphincter during micturition of female rabbits. Neurourol. Urodynam. 35:689-695, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  14. Emergence of cracks by mass transport in elastic crystals stressed at high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, B.; Suo, Z.; Evans, A.G.

    1995-12-31

    Single crystals are used under high temperature and high stresses in hostile environments (usually gases). A void produced in the fabrication process can change shape and volume, as atoms migrate under various thermodynamic forces. A small void under low stress remains rounded in shape, but a large void under high stress evolves to a crack. The material fractures catastrophically when the crack becomes sufficiently large. In this article three kinetic processes are analyzed: diffusion along the void surface, diffusion in a low melting point second phase inside the void, and surface reaction with the gases. An approximate evolution path ismore » simulated, with the void evolving as a sequence of spheroids, from a sphere to a penny-shaped crack. The free energy is calculated as a functional of void shape, from which the instability conditions are determined. The evolution rate is calculated by using variational principles derived from the valance of the reduction in the free energy and the dissipation is the kinetic processes. Crystalline anisotropy and surface heterogeneity can be readily incorporated in this energetic framework. Comparisons are made with experimental strength date for sapphire fibers measured at various strain rates.« less

  15. Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9°45-52'N: direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991

    USGS Publications Warehouse

    Haymon, R.M.; Fornari, D.J.; Von Damm, Karen L.; Lilley, M.D.; Perfit, M.R.; Edmond, J.M.; Shanks, Wayne C.; Lutz, R.A.; Grebmeier, J.M.; Carbotte, S.; Wright, D.; McLaughlin, E.; Smith, M.; Beedle, N.; Olson, E.

    1993-01-01

    We suggest that, in April, 1991, intrusion of dikes in the eruption area to < 200 m beneath the ASC floor resulted in phase separation of fluids near the tops of the dikes and a large flux of vapor-rich hydrothermal fluids through the overlying rubbly, cavernous lavas. Low salinities and gas-rich compositions of hydrothermal fluids sampled in the eruption area are appropriate for a vapor phase in a seawater system undergoing subcritical liquid-vapor phase separation (boiling) and phase segregation. Hydrothermal fluids streamed directly from fissures and pits that may have been loci of lava drainback and/or hydrovolcanic explosions. These fissures and pits were lined with white mats of a unique fast-growing bacteria that was the only life associated with the brand-new vents. The prolific bacteria, which covered thousands of square meters on the ridge crest and were also abundant in subseafloor voids, may thrive on high levels of gases in the vapor-rich hydrothermal fluids initially escaping the hydrothermal system. White bacterial particulates swept from the seafloor by hydrothermal vents swirled in an unprecedented biogenic ‘blizzard’ up to 50 m above the bottom. The bacterial proliferation of April, 1991 is likely to be a transient bloom that will be checked quickly either by decline of dissolved gas concentrations in the fluids as rapid heat loss brings about cessation of boiling, and/or by grazing as other organisms are re-established in the biologically devastated area.

  16. Amplitude and Wavelength Measurement of Sound Waves in Free Space using a Sound Wave Phase Meter

    NASA Astrophysics Data System (ADS)

    Ham, Sounggil; Lee, Kiwon

    2018-05-01

    We developed a sound wave phase meter (SWPM) and measured the amplitude and wavelength of sound waves in free space. The SWPM consists of two parallel metal plates, where the front plate was operated as a diaphragm. An aluminum perforated plate was additionally installed in front of the diaphragm, and the same signal as that applied to the sound source was applied to the perforated plate. The SWPM measures both the sound wave signal due to the diaphragm vibration and the induction signal due to the electric field of the aluminum perforated plate. Therefore, the two measurement signals interfere with each other due to the phase difference according to the distance between the sound source and the SWPM, and the amplitude of the composite signal that is output as a result is periodically changed. We obtained the wavelength of the sound wave from this periodic amplitude change measured in the free space and compared it with the theoretically calculated values.

  17. Impact of posterior urethral diameter/external urethral sphincter diameter as a new tool to predict detrusor pressure in the voiding phase.

    PubMed

    Kon, Masafumi; Mitsui, Takahiko; Kitta, Takeya; Moriya, Kimihiko; Shinohara, Nobuo; Takeda, Masayuki; Nonomura, Katsuya

    2018-02-01

    We measured posterior urethra diameter (PUD) and external urethral sphincter diameter (EUSD), which can also be measured by voiding cystourethrography (VCUG) and investigated the relationship between PUD/EUSD and detrusor pressure (Pdet) during voiding by videourodynamics (VUDS). Sixty-three children, who were 3 years old or less and underwent VUDS, were enrolled in the present study. We measured PUD and EUSD in addition to detrusor pressure at the time of the widest EUS during voiding (Pdet-voiding) by VUDS, and PUD/EUSD was investigated compared to Pdet-voiding. Seventy-eight VUDS were performed in 63 patients, and the median age at VUDS was 10.2 months. These studies revealed a significant correlation between PUD/EUSD and Pdet-voiding (r = 0.641, p < 0.001). However, a significant correlation was not observed between PUD/EUSD and age (r = 0.180). We defined Pdet-voiding of more than 80 cmH 2 O as a high voiding pressure, and a PUD/EUSD of 2.4 was a good predictor for the cutoff value for high voiding pressure. Pdet-voiding was significantly higher in children with a PUD/EUSD of ≥ 2.4 (p < 0.001). In 19 children who had neurological diseases, a significant correlation was found between PUD/EUSD and Pdet-voiding (r = 0.842, p < 0.001), and a PUD/EUSD of 2.4 was a useful cutoff value for high voiding pressure. PUD/EUSD is a valuable tool to predict high voiding pressure in pediatric patients. A PUD/EUSD of ≥ 2.4 in VCUG indicates the need to perform more invasive tests, such as VUDS, in pediatric patients aged 3 and under with neuropathic diseases.

  18. Does instruction to eliminate coffee, tea, alcohol, carbonated, and artificially sweetened beverages improve lower urinary tract symptoms: A Prospective Trial

    PubMed Central

    Miller, Janis M.; Garcia, Caroline E.; Hortsch, Sarah Becker; Guo, Ying; Schimpf, Megan O.

    2016-01-01

    Purpose Common advice for lower urinary tract symptoms (LUTS) of frequency, urgency and related bother includes elimination of potentially irritating beverages (coffee, tea, alcohol, and carbonated and/or artificially sweetened beverages). The purpose of this study was to determine compliance with standardized instruction to eliminate these potentially irritating beverages, whether LUTS improved after instruction, and if symptoms worsened with partial reintroduction. Design The three-phase fixed sequence design was: 1) baseline, 2) eliminate potentially irritating beverages listed above, and 3) reintroduce at 50% of baseline volume, with a washout period between each 3-day phase. We asked participants to maintain total intake volume by swapping in equal amounts of non-potentially irritating beverages (primarily water). Subjects and Setting The study sample comprised 30 community-dwelling women recruited through newspaper advertisement. Methods Quantification measures included 3-day voiding diaries and detailed beverage intake, and LUTS questionnaires completed during each phase. Results During Phase 2, we found significant reduction in potentially irritating beverages but complete elimination was rare. Despite the protocol demands, total beverage intake was not stable; mean (± standard deviation) daily total intake volume dropped by 6.2±14.9oz (p=0.03) during Phase 2. In Phase 3, the volume of total beverage intake returned to baseline, but intake of potentially irritating beverages also returned to near baseline rather than 50% as requested by protocol. Despite this incomplete adherence to study protocols, women reported reduction in symptoms of urge, inability to delay voiding, and bother during both phases (p≤0.01). The number of voids per day decreased on average by 1.3 and 0.9 voids during phases 2 and 3 respectively (p=0.002 and p=0.035). Conclusions Education to reduce potentially irritating beverages resulted in improvement in LUTS. However, eliminating potentially irritating beverages was difficult to achieve and maintain. Study findings do not allow us to determine if LUTS improvement was attributable to intake of fewer potentially irritating beverages, reduced intake of all beverages, the effect of self-monitoring, or some combination of these factors. PMID:26727685

  19. Does Instruction to Eliminate Coffee, Tea, Alcohol, Carbonated, and Artificially Sweetened Beverages Improve Lower Urinary Tract Symptoms?: A Prospective Trial.

    PubMed

    Miller, Janis M; Garcia, Caroline E; Hortsch, Sarah Becker; Guo, Ying; Schimpf, Megan O

    2016-01-01

    Common advice for lower urinary tract symptoms (LUTS) such as frequency, urgency, and related bother includes elimination of potentially irritating beverages (coffee, tea, alcohol, and carbonated and/or artificially sweetened beverages). The purpose of this study was to determine compliance with standardized instruction to eliminate these potentially irritating beverages, whether LUTS improved after instruction, and whether symptoms worsened with partial reintroduction. The 3-phase fixed sequence design was (1) baseline, (2) eliminate potentially irritating beverages listed above, and (3) reintroduce at 50% of baseline volume, with a washout period between each 3-day phase. We asked participants to maintain total intake volume by swapping in equal amounts of nonpotentially irritating beverages (primarily water). The study sample comprised 30 community-dwelling women recruited through newspaper advertisement. Quantification measures included 3-day voiding diaries and detailed beverage intake, and LUTS questionnaires completed during each phase. During Phase 2, we found significant reduction in potentially irritating beverages but complete elimination was rare. Despite protocol demands, total beverage intake was not stable; mean (± standard deviation) daily total intake volume dropped by 6.2 ± 14.9 oz (P = .03) during Phase 2. In Phase 3, the volume of total beverage intake returned to baseline, but the intake of potentially irritating beverages also returned to near baseline rather than 50% as requested by protocol. Despite this incomplete adherence to study protocols, women reported reduction in symptoms of urge, inability to delay voiding, and bother during both phases (P ≤ .01). The number of voids per day decreased on average by 1.3 and 0.9 voids during Phases 2 and 3, respectively (P = .002 and P = .035). Education to reduce potentially irritating beverages resulted in improvement in LUTS. However, eliminating potentially irritating beverages was difficult to achieve and maintain. Study findings do not allow us to determine whether LUTS improvement was attributable to intake of fewer potentially irritating beverages, reduced intake of all beverages, the effect of self-monitoring, or some combination of these factors.

  20. Velocity and void distribution in a counter-current two-phase flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabriel, S.; Schulenberg, T.; Laurien, E.

    2012-07-01

    Different flow regimes were investigated in a horizontal channel. Simulating a hot leg injection in case of a loss of coolant accident or flow conditions in reflux condenser mode, the hydraulic jump and partially reversed flow were identified as major constraints for a high amount of entrained water. Trying to simulate the reflux condenser mode, the test section now includes an inclined section connected to a horizontal channel. The channel is 90 mm high and 110 mm wide. Tests were carried out for water and air at ambient pressure and temperature. High speed video-metry was applied to obtain velocities frommore » flow pattern maps of the rising and falling fluid. In the horizontal part of the channel with partially reversed flow the fluid velocities were measured by planar particle image velocimetry. To obtain reliable results for the gaseous phase, this analysis was extended by endoscope measurements. Additionally, a new method based on the optical refraction at the interface between air and water in a back-light was used to obtain time-averaged void fraction. (authors)« less

  1. An Assessment of Helium Evolution from Helium-Saturated Propellant Depressurization in Space

    NASA Technical Reports Server (NTRS)

    Nguyen, Bich N.; Best, Frederick; Wong, Tony; Kurwitz, Cable; McConnaughey, H. (Technical Monitor)

    2001-01-01

    Helium evolution from the transfer of helium-saturated propellant in space is quantified to assess its impacts from creating two-phase gas/liquid flow from the supply tank, gas injection into the receiving tank, and liquid discharge from the receiving tank. Propellant transfer takes place between two similar tanks whose maximum storage capacity is approximately 2.55 cubic meters each. The maximum on-orbit propellants transfer capability is 9000 lbm (fuel and oxidizer). The transfer line is approximately 1.27 cm in diameter and 6096 cm in length and comprised of the fluid interconnect system (FICS), the orbiter propellant transfer system (OPTS), and the International Space Station (ISS) propulsion module (ISSPM). The propellant transfer rate begins at approximately 11 liter per minute (lpm) and subsequently drops to approximately 0.5 lpm. The tank nominal operating pressure is approximately 1827 kPa (absolute). The line pressure drops for Monomethy1hydrazine (MMH) and Nitrogen tetroxide (NTO) at 11.3 lpm are approximately 202 kPa and 302 kPa, respectively. The pressure-drop results are based on a single-phase flow. The receiving tank is required to vent from approximately 1827 kPa to a lower pressure to affect propellant transfer. These pressure-drop scenarios cause the helium-saturated propellants to release excess helium. For tank ullage venting, the maximum volumes of helium evolved at tank pressure are approximately 0.5 ft3 for MMH and 2 ft3 for NTO. In microgravity environment, due to lack of body force, the helium evolution from a liquid body acts to propel it, which influences its fluid dynamics. For propellant transfer, the volume fractions of helium evolved at line pressure are 0.1% by volume for MMH and 0.6 % by volume for NTO at 11.3 lpm. The void fraction of helium evolved varies as an approximate second order power function of flow rate.

  2. Dual-energy-X-ray imaging to measure phase volume fractions in a transient multiphase flow

    NASA Astrophysics Data System (ADS)

    Loewen, Eric Paul

    1999-12-01

    The objective of this research was to visualize the pre-mixing phase of a fuel-coolant interaction (FCI) by using combinations of high-speed cinematography and dual energy X-ray imaging to identify and quantify the spatial and temporal characteristics of the three FCI phases---metal (fuel), liquid (coolant water), and voids (generated steam). (1) The high-speed cinematography imaging subsystem and the low-energy X-ray imaging subsystem provided visual photographs and distinguished generated voids from water. (2) The high-energy X-Ray imaging subsystem provided additional discernment of metal from water and vapor. This is the first time that dynamic dual X-ray images have been provided with quantitative results. The data provide new information concerning the melt fractions, melt jet configuration, melt jet velocity, and qualitative spatial and temporal quantification of the pre-mixing event. This information provides new insight into the FCI phenomenon that could not have been deduced from visible-light imaging or other instrumentation such as thermocouples, void sensors, or pressure transmitters. Significant findings include: (1) the fuel column (molten Pb jet) penetrated deeply (<7 cm) into the coolant (water) while maintaining its columnar shape. (2) Energetic FCIs occurred (and were imaged) below the melt-coolant interface temperature equal to the homogenous nucleation temperature (310°C). (3) The molten jet breakup was observed to be caused by hydrodynamic forces. (4) The Pb/water thermal interaction zone was imaged over melt temperatures from 330°C to 640°C and coolant subcooling of 4°C to 80°C. (5) The interface regions between the molten Pb and coolant was observed to grow with decreasing coolant subcooling. This imaging process can be applied to further study of the FCI phenomena at other test facilities. It can also be applied for observation of other two- or three-phase flow phenomena previously opaque to conventional imaging systems.

  3. Prevalence and characteristics of voiding difficulties in women: are subjective symptoms substantiated by objective urodynamic data?

    PubMed

    Groutz, A; Gordon, D; Lessing, J B; Wolman, I; Jaffa, A; David, M P

    1999-08-01

    To examine the prevalence and characteristics of voiding difficulties in women. Two hundred six consecutive female patients who attended a urogynecology clinic were recruited. Patients were interviewed regarding the presence and severity of symptoms that would suggest voiding difficulties (ie, hesitancy, straining to void, weak or prolonged stream, intermittent stream, double voiding, incomplete emptying, reduction, and positional changes to start or complete voiding). Urodynamic evidence of voiding difficulty was considered as a peak flow rate less than 12 mL/s (voided volume greater than 100 mL), or residual urine volume greater than 150 mL, on two or more readings. Residual urinary volume, flow patterns, and pressure-flow parameters were analyzed and compared between symptomatic and asymptomatic patients who had urodynamic parameters of voiding difficulties. One hundred twenty-seven (61.7%) women reported having voiding difficulty symptoms; 79 others (38.3%) were free of such symptoms. Urodynamic diagnosis of voiding difficulty was made in 40 women (19.4% of the study population): 27 in the symptomatic group and 13 in the asymptomatic group (21.2% and 16.5%, respectively). Only 1 patient had voiding difficulty due to bladder outlet obstruction. All other cases of low flow rate were due to impaired detrusor contractility. Objective evidence of voiding difficulty may be found in both symptomatic and asymptomatic patients and is usually due to impaired detrusor contractility. The clinical significance of the abnormal flow parameters in asymptomatic patients is unclear.

  4. Multiphase flow calculation software

    DOEpatents

    Fincke, James R.

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  5. Hypothyroidism impairs somatovisceral reflexes involved in micturition of female rabbits.

    PubMed

    Sánchez-García, Octavio; López-Juárez, Rhode; Rodríguez-Castelán, Julia; Corona-Quintanilla, Dora L; Martínez-Gómez, Margarita; Cuevas-Romero, Estela; Castelán, Francisco

    2018-04-17

    To determine the impact of hypothyroidism on the bladder and urethral functions as well as in the activation of the pubococcygeous (Pcm) and bulbospongiosus (Bsm) during micturition. Age-matched control and methimazole-induced hypothyroid female rabbits were used to simultaneously record cystometrograms, urethral pressure, and the reflex activation of Pcm and Bsm during the induced micturition. Urodynamic and urethral variables were measured. Activation or no activation of the Pcm and Bsm during the storage and voiding phases of micturition were categorized as 1 or 0. Significant differences (P ≤ 0.05) between control and hypothyroid groups were determined with unpaired Student-t or Mann-Whitney tests. One-month induced hypothyroidism increased the residual volume and threshold pressure while the opposite was true for the voided volume, maximal pressure, and voiding efficiency. Urethral pressure was also affected as supported by a notorious augmentation of the urethral resistance, among other changes in the rest of measured variables. Hypothyroidism also affected the reflex activation of the Pcm in the voiding phase of micturition. Our findings demonstrate hypothyroidism impairs the bladder and, urethral functions, and reflex activation of Pcm and Bsm affecting the micturition in female rabbits. © 2018 Wiley Periodicals, Inc.

  6. Passive monitoring for near surface void detection using traffic as a seismic source

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Kuzma, H. A.; Rector, J.; Nazari, S.

    2009-12-01

    In this poster we present preliminary results based on our several field experiments in which we study seismic detection of voids using a passive array of surface geophones. The source of seismic excitation is vehicle traffic on nearby roads, which we model as a continuous line source of seismic energy. Our passive seismic technique is based on cross-correlation of surface wave fields and studying the resulting power spectra, looking for "shadows" caused by the scattering effect of a void. High frequency noise masks this effect in the time domain, so it is difficult to see on conventional traces. Our technique does not rely on phase distortions caused by small voids because they are generally too tiny to measure. Unlike traditional impulsive seismic sources which generate highly coherent broadband signals, perfect for resolving phase but too weak for resolving amplitude, vehicle traffic affords a high power signal a frequency range which is optimal for finding shallow structures. Our technique results in clear detections of an abandoned railroad tunnel and a septic tank. The ultimate goal of this project is to develop a technology for the simultaneous imaging of shallow underground structures and traffic monitoring near these structures.

  7. CFD analysis of the two-phase bubbly flow characteristics in helically coiled rectangular and circular tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Hussain, Alamin; Fsadni, Andrew M.

    2016-03-01

    Due to their ease of manufacture, high heat transfer efficiency and compact design, helically coiled heat exchangers are increasingly being adopted in a number of industries. The higher heat transfer efficiency over straight pipes is due to the secondary flow that develops as a result of the centrifugal force. In spite of the widespread use of helically coiled heat exchangers, and the presence of bubbly two-phase flow in a number of systems, very few studies have investigated the resultant flow characteristics. This paper will therefore present the results of CFD simulations for the two-phase bubbly flow in helically coiled heat exchangers as a function of the volumetric void fraction and the tube cross-section design. The CFD results are compared to the scarce flow visualisation experimental results available in the open literature.

  8. A urine volume measurement system

    NASA Technical Reports Server (NTRS)

    Poppendiek, H. F.; Mouritzen, G.; Sabin, C. M.

    1972-01-01

    An improved urine volume measurement system for use in the unusual environment of manned space flight is reported. The system utilizes a low time-constant thermal flowmeter. The time integral of the transient response of the flowmeter gives the urine volume during a void as it occurs. In addition, the two phase flows through the flowmeter present no problem. Developments of the thermal flowmeter and a verification of the predicted performance characteristics are summarized.

  9. On the structure of nonlinear waves in liquids with gas bubbles

    NASA Astrophysics Data System (ADS)

    Beylich, Alfred E.; Gülhan, Ali

    1990-08-01

    Transient wave phenomena in two-phase mixtures with a liquid as the matrix and gas bubbles as the dispersed phase have been studied in a shock tube using glycerine as the liquid and He, N2, and SF6 as gases having a large variation in the ratio of specific heats and the thermal diffusivity. Two different sizes of bubble radii have been produced , R0=1.15 and 1.6 mm, with a dispersion in size of less than 5%. The void fraction was varied over one order of magnitude, φ0=0.2%-2%. The measured pressure profiles were averaged by superimposing many shots, typically 20. Speeds and profiles were measured for shock waves and for wave packets. Investigation of the wave structure allows one to approach the fundamental question of how the physics on the level of the microstructure influences the behavior on the macroscale. In the theoretical work, modeling on the basis of a hierarchy of characteristic length scales is developed. Bubble interactions, transient heat transfer, and dissipation due to molecular and bulk viscosities are included. Solutions for small void fractions and moderate amplitudes are obtained for the steady cases of shock waves and solitons and are compared with the experimental results.

  10. Three-dimensional gas exchange pathways in pome fruit characterized by synchrotron x-ray computed tomography.

    PubMed

    Verboven, Pieter; Kerckhofs, Greet; Mebatsion, Hibru Kelemu; Ho, Quang Tri; Temst, Kristiaan; Wevers, Martine; Cloetens, Peter; Nicolaï, Bart M

    2008-06-01

    Our understanding of the gas exchange mechanisms in plant organs critically depends on insights in the three-dimensional (3-D) structural arrangement of cells and voids. Using synchrotron radiation x-ray tomography, we obtained for the first time high-contrast 3-D absorption images of in vivo fruit tissues of high moisture content at 1.4-microm resolution and 3-D phase contrast images of cell assemblies at a resolution as low as 0.7 microm, enabling visualization of individual cell morphology, cell walls, and entire void networks that were previously unknown. Intercellular spaces were always clear of water. The apple (Malus domestica) cortex contains considerably larger parenchyma cells and voids than pear (Pyrus communis) parenchyma. Voids in apple often are larger than the surrounding cells and some cells are not connected to void spaces. The main voids in apple stretch hundreds of micrometers but are disconnected. Voids in pear cortex tissue are always smaller than parenchyma cells, but each cell is surrounded by a tight and continuous network of voids, except near brachyssclereid groups. Vascular and dermal tissues were also measured. The visualized network architecture was consistent over different picking dates and shelf life. The differences in void fraction (5.1% for pear cortex and 23.0% for apple cortex) and in gas network architecture helps explain the ability of tissues to facilitate or impede gas exchange. Structural changes and anisotropy of tissues may eventually lead to physiological disorders. A combined tomography and internal gas analysis during growth are needed to make progress on the understanding of void formation in fruit.

  11. Mesoscale evolution of voids and microstructural changes in HMX-based explosives during heating through the β-δ phase transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willey, Trevor M., E-mail: willey1@llnl.gov; Lauderbach, Lisa; Gagliardi, Franco

    HMX-based explosives LX-10 and PBX-9501 were heated through the β-δ phase transition. Ultra-small angle x-ray scattering (USAXS) and molecular diffraction were simultaneously recorded as the HMX was heated. Mesoscale voids and structure dramatically change promptly with the β-δ phase transition, rather than with other thermal effects. Also, x-ray induced damage, observed in the USAXS, occurs more readily at elevated temperatures; as such, the dose was reduced to mitigate this effect. Optical microscopy performed during a similar heating cycle gives an indication of changes on longer length scales, while x-ray microtomography, performed before and after heating, shows the character of extensivemore » microstructural damage resulting from the temperature cycle and solid-state phase transition.« less

  12. Mesoscale evolution of voids and microstructural changes in HMX-based explosives during heating through the β-δ phase transition

    DOE PAGES

    Willey, Trevor M.; Lauderbach, Lisa; Gagliardi, Franco; ...

    2015-08-07

    HMX-based explosives LX-10 and PBX-9501 were heated through the β-δ phase transition. Ultra-small angle x-ray scattering (USAXS) and molecular diffraction were simultaneously recorded as the HMX was heated. Mesoscale voids and structure dramatically change promptly with the β-δ phase transition, rather than with other thermal effects. Also, x-ray induced damage, observed in the USAXS, occurs more readily at elevated temperatures; as such, the dose was reduced to mitigate this effect. Optical microscopy performed during a similar heating cycle gives an indication of changes on longer length scales, while x-ray microtomography, performed before and after heating, shows the character of extensivemore » microstructural damage resulting from the temperature cycle and solid-state phase transition.« less

  13. The Kirkendall and Frenkel effects during 2D diffusion process

    NASA Astrophysics Data System (ADS)

    Wierzba, Bartek

    2014-11-01

    The two-dimensional approach for inter-diffusion and voids generation is presented. The voids evolution and growth is discussed. This approach is based on the bi-velocity (Darken) method which combines the Darken and Brenner concepts that the volume velocity is essential in defining the local material velocity in multi-component mixture at non-equilibrium. The model is formulated for arbitrary multi-component two-dimensional systems. It is shown that the voids growth is due to the drift velocity and vacancy migration. The radius of the void can be easily estimated. The distributions of (1) components, (2) vacancy and (3) voids radius over the distance is presented.

  14. Summary of the Validation of the Second Version of the Aster Gdem

    NASA Astrophysics Data System (ADS)

    Meyer, D. J.; Tachikawa, T.; Abrams, M.; Crippen, R.; Krieger, T.; Gesch, D.; Carabajal, C.

    2012-07-01

    On October 17, 2011, NASA and the Ministry of Economy, Trade and Industry (METI) of Japan released the second version of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) to users worldwide at no charge as a contribution to the Global Earth Observing System of Systems (GEOSS). The first version of the ASTER GDEM, released on June 29, 2009, was compiled from over 1.2 million scene-based DEMs covering land surfaces between 83°N and 83°S latitudes. The second version (GDEM2) incorporates 260,000 additional scenes to improve coverage, a smaller correlation kernel to yield higher spatial resolution, and improved water masking. As with GDEM1, US and Japanese partners collaborated to validate GDEM2. Its absolute accuracy was within -0.20 meters on average when compared against 18,000 geodetic control points over the conterminous US (CONUS), with an accuracy of 17 meters at the 95% confidence level. The Japan study noted the GDEM2 differed from the 10-meter national elevation grid by -0.7 meters over bare areas, and by 7.4 meters over forested areas. The CONUS study noted a similar result, with the GDEM2 determined to be about 8 meters above the 1 arc-second US National Elevation Database (NED) over most forested areas, and more than a meter below NED over bare areas. A global ICESat study found the GDEM2 to be on average within 3 meters of altimeter-derived control. The Japan study noted a horizontal displacement of 0.23 pixels in GDEM2. A study from the US National Geospatial Intelligence Agency also determined horizontal displacement and vertical accuracy as compared to the 1 arc-second Shuttle Radar Topography Mission DEM. US and Japanese studies estimated the horizontal resolution of the GDEM2 to be between 71 and 82 meters. Finally, the number of voids and artifacts noted in GDEM1 were substantially reduced in GDEM2.

  15. Critical technology experiment results for lightweight space heat receiver

    NASA Technical Reports Server (NTRS)

    Schneider, Michael G.; Brege, Mark A.; Heidenreich, Gary R.

    1991-01-01

    Critical technology experiments have been performed on thermal energy storage modules in support of the NASA Advanced Solar Dynamic Brayton Heat Receiver Program. The modules, wedge-shaped canisters containing lithium fluoride (LiF), were designed to minimize the mechanical stresses that occur during the phase change of the LiF. Nickel foam inserts were placed in two of the test canisters to provide thermal conductivity enhancement and to distribute the void volume throughout the canister. A procedure was developed for reducing the nickel oxides on the nickel foam to enhance the wicking ability of the foam. The canisters were filled with LiF and closure-welded at the NASA Lewis Research Center. Two canisters, one with a nickel foam insert, the other without an insert, were thermally cycled in various orientations in a fluidized bed furnace. Computer-aided tomography was successfully used to nondestructively determine void locations in the canisters. Finally, canister dimensional stability was measured after thermal cycling with an inspection fixture.

  16. Prediction of friction pressure drop for low pressure two-phase flows on the basis of approximate analytical models

    NASA Astrophysics Data System (ADS)

    Zubov, N. O.; Kaban'kov, O. N.; Yagov, V. V.; Sukomel, L. A.

    2017-12-01

    Wide use of natural circulation loops operating at low redused pressures generates the real need to develop reliable methods for predicting flow regimes and friction pressure drop for two-phase flows in this region of parameters. Although water-air flows at close-to-atmospheric pressures are the most widely studied subject in the field of two-phase hydrodynamics, the problem of reliably calculating friction pressure drop can hardly be regarded to have been fully solved. The specific volumes of liquid differ very much from those of steam (gas) under such conditions, due to which even a small change in flow quality may cause the flow pattern to alter very significantly. Frequently made attempts to use some or another universal approach to calculating friction pressure drop in a wide range of steam quality values do not seem to be justified and yield predicted values that are poorly consistent with experimentally measured data. The article analyzes the existing methods used to calculate friction pressure drop for two-phase flows at low pressures by comparing their results with the experimentally obtained data. The advisability of elaborating calculation procedures for determining the friction pressure drop and void fraction for two-phase flows taking their pattern (flow regime) into account is demonstrated. It is shown that, for flows characterized by low reduced pressures, satisfactory results are obtained from using a homogeneous model for quasi-homogeneous flows, whereas satisfactory results are obtained from using an annular flow model for flows characterized by high values of void fraction. Recommendations for making a shift from one model to another in carrying out engineering calculations are formulated and tested. By using the modified annular flow model, it is possible to obtain reliable predictions for not only the pressure gradient but also for the liquid film thickness; the consideration of droplet entrainment and deposition phenomena allows reasonable corrections to be introduced into calculations. To the best of the authors' knowledge, it is for the first time that the entrainment of droplets from the film surface is taken into consideration in the dispersed-annular flow model.

  17. In situ imaging of the soldering reactions in nanoscale Cu/Sn/Cu and Sn/Cu/Sn diffusion couples

    NASA Astrophysics Data System (ADS)

    Yin, Qiyue; Gao, Fan; Gu, Zhiyong; Wang, Jirui; Stach, Eric A.; Zhou, Guangwen

    2018-01-01

    The soldering reactions of three-segmented Sn/Cu/Sn and Cu/Sn/Cu diffusion couples are monitored by in-situ transmission electron microscopy to reveal the metallurgical reaction mechanism and the associated phase transformation pathway. For Sn/Cu/Sn diffusion couples, there is no ɛ-Cu3Sn formation due to the relatively insufficient Cu as compared to Sn. Kirkendall voids form initially in the Cu segment and then disappear due to the volume expansion associated with the continued intermetallic compound (IMC) formation as the reaction progresses. The incoming Sn atoms react with Cu to form η-Cu6Sn5, and the continuous reaction then transforms the entire nanowire to η-Cu6Sn5 grains with remaining Sn. With continued heating slightly above the melting point of Sn, an Sn-rich liquid phase forms between η-Cu6Sn5 grains. By contrast, the reaction in the Cu/Sn/Cu diffusion couples results in the intermetallic phases of both Cu3Sn and Cu6Sn5 and the development of Cu6Sn5 bulges on Cu3Sn grains. Kirkendall voids form in the two Cu segments, which grow and eventually break the nanowire into multiple segments.

  18. Optical Spectroscopy of New Materials

    NASA Technical Reports Server (NTRS)

    White, Susan M.; Arnold, James O. (Technical Monitor)

    1993-01-01

    Composites are currently used for a rapidly expanding number of applications including aircraft structures, rocket nozzles, thermal protection of spacecraft, high performance ablative surfaces, sports equipment including skis, tennis rackets and bicycles, lightweight automobile components, cutting tools, and optical-grade mirrors. Composites are formed from two or more insoluble materials to produce a material with superior properties to either component. Composites range from dispersion-hardened alloys to advanced fiber-reinforced composites. UV/VIS and FTIR spectroscopy currently is used to evaluate the bonding between the matrix and the fibers, monitor the curing process of a polymer, measure surface contamination, characterize the interphase material, monitor anion transport in polymer phases, characterize the void formation (voids must be minimized because, like cracks in a bulk material, they lead to failure), characterize the surface of the fiber component, and measure the overall optical properties for energy balances.

  19. Log-Normal Distribution of Cosmic Voids in Simulations and Mocks

    NASA Astrophysics Data System (ADS)

    Russell, E.; Pycke, J.-R.

    2017-01-01

    Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies. Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to answer these questions, we find here that all void size distributions of these data samples satisfy the three-parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition, the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment, particularly existing substructures. Therefore, we show two quantitative relations given by linear equations between the skewness and the maximum tree depth, and between the variance of the void size distribution and the maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central density reaches ≥3.84% in a simulation/mock sample, then a second population is observed in the void size distributions. This second population emerges as a second peak in the log-normal void size distribution at larger radius.

  20. Innovative Soft-Sided Waste Packaging System Implementation at a Small Department of Energy Environmental Restoration/Waste Management (ER/WM) Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, J.

    2002-02-28

    Weiss Associates (WA) performs a broad range of environmental restoration/waste management (ER/WM) activities for the U.S. Department of Energy (DOE) at the former Laboratory for Energy-Related Health Research (LEHR), University of California, Davis (UC Davis). Over the last three years, the LEHR ER/WM program transitioned from a baseline packaging system of steel, 2.7 cubic meter (3.5-cubic yard) B-25 boxes to a 7.0 cubic meter (9.1-cubic yard) soft-sided container (Lift Liner) system. The transition increased efficiencies in processing, packaging, and storage, and when combined with decreased procurement costs, achieved a $402,000 cost savings (Table I). Additional disposal costs between $128,600 andmore » $182,600 were avoided by minimizing void space. Future cost savings by the end of fiscal year 2003 are projected between $250,640 and $1,003,360.« less

  1. Simulation of interdiffusion and voids growth based on cellular automata

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Zhang, Boyan; Zhang, Nan; Du, Haishun; Zhang, Xinhong

    2017-02-01

    In the interdiffusion of two solid-state materials, if the diffusion coefficients of the two materials are not the same, the interface of the two materials will shift to the material with the lower diffusion coefficient. This effect is known as the Kirkendall effect. The Kirkendall effect leads to Kirkendall porosity. The pores act as sinks for vacancies and become voids. In this paper, the movement of the Kirkendall plane at interdiffusion is simulated based on cellular automata. The number of vacancies, the critical radius of voids nucleation and the nucleation rate are analysed. The vacancies diffusion, vacancies aggregation and voids growth are also simulated based on cellular automata.

  2. Touching the void - First and third person perspectives in two cases of autobiographical amnesia linked to temporal lobe epilepsy.

    PubMed

    Zeman, Adam; Byruck, Marcus; Tallis, Peter; Vossel, Keith; Tranel, Daniel

    2018-02-01

    Temporal lobe epilepsy (TLE) can be associated with a marked impairment of autobiographical memory. This is occasionally its presenting feature. We describe two individuals with severe epilepsy-associated autobiographical memory loss. Both MB and PT were reassured initially that their memory was intact on the basis of standard neuropsychological tests. Both have written detailed accounts of their symptoms. The key neuropsychological features of their cases are the relative normality of performance on standard memory tests, with preservation of semantic memory for impersonal information, in contrast to a profound amnesia for salient autobiographical episodes and an impoverishment of imaginative scene construction. First person accounts from these individuals illustrate the importance of autobiographical memory in sustaining a coherent sense of self, informing interpersonal relationships and supporting future thinking and problem-solving. These cases contribute to the growing evidence for a distinctive pattern of autobiographical memory loss associated with TLE, and indicate that it can take a severe form affecting both personal semantics and episodic recollection. Defining the phase of memory processing most relevant to this form of amnesia, and the roles of physiological and structural pathology, requires further research. The paper's title refers to the introspective 'void' highlighted by both MB and PT in their reports - in PT's words: 'My primary symptom is the void that is my past'. Copyright © 2017. Published by Elsevier Ltd.

  3. Pulsed Photothermal Radiometry for Noncontact Spectroscopy, Material Testing and Inspection Measurement.

    DTIC Science & Technology

    1984-08-08

    transmission PTR signal changes whenever the transmitted thermal wave crosses a void. This provides a means of nondestructive subsurface imaging of defects...and Busse and Renk( 2 2 ) have demonstrated a new stereoscopic subsurface imaging technique involving two adjacent modulated PT source for...modulation frequencies. In all cases of subsurface imaging , the authors preferred to use the shape or the phase of the PTR signal rather than the amplitude

  4. Origami: Delineating Cosmic Structures with Phase-Space Folds

    NASA Astrophysics Data System (ADS)

    Neyrinck, Mark C.; Falck, Bridget L.; Szalay, Alex S.

    2015-01-01

    Structures like galaxies and filaments of galaxies in the Universe come about from the origami-like folding of an initially flat three-dimensional manifold in 6D phase space. The ORIGAMI method identifies these structures in a cosmological simulation, delineating the structures according to their outer folds. Structure identification is a crucial step in comparing cosmological simulations to observed maps of the Universe. The ORIGAMI definition is objective, dynamical and geometric: filament, wall and void particles are classified according to the number of orthogonal axes along which dark-matter streams have crossed. Here, we briefly review these ideas, and speculate on how ORIGAMI might be useful to find cosmic voids.

  5. Advanced Concept

    NASA Image and Video Library

    1999-08-13

    This photograph is an artist's cutaway view of the X-37 flight demonstrator showing its components. The X-37 experimental launch vehicle is roughly 27.5 feet (8.3 meters) long and 15 feet (4.5 meters) in wingspan. Its experiment bay is 7 feet (2.1 meters) long and 4 feet (1.2 meters) in diameter. Designed to operate in both the orbital and reentry phases of flight, the X-37 will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1000 per pound. The X-37 can be carried into orbit by the Space Shuttle or be launched by an expendable rocket. Managed by Marshall Space Flight Center and built by the Boeing Company, the X-37 is scheduled to fly two orbital missions in 2002/2003 to test the reusable launch vehicle technologies.

  6. Distributed gas sensing with optical fibre photothermal interferometry.

    PubMed

    Lin, Yuechuan; Liu, Fei; He, Xiangge; Jin, Wei; Zhang, Min; Yang, Fan; Ho, Hoi Lut; Tan, Yanzhen; Gu, Lijuan

    2017-12-11

    We report the first distributed optical fibre trace-gas detection system based on photothermal interferometry (PTI) in a hollow-core photonic bandgap fibre (HC-PBF). Absorption of a modulated pump propagating in the gas-filled HC-PBF generates distributed phase modulation along the fibre, which is detected by a dual-pulse heterodyne phase-sensitive optical time-domain reflectometry (OTDR) system. Quasi-distributed sensing experiment with two 28-meter-long HC-PBF sensing sections connected by single-mode transmission fibres demonstrated a limit of detection (LOD) of ∼10 ppb acetylene with a pump power level of 55 mW and an effective noise bandwidth (ENBW) of 0.01 Hz, corresponding to a normalized detection limit of 5.5ppb⋅W/Hz. Distributed sensing experiment over a 200-meter-long sensing cable made of serially connected HC-PBFs demonstrated a LOD of ∼ 5 ppm with 62.5 mW peak pump power and 11.8 Hz ENBW, or a normalized detection limit of 312ppb⋅W/Hz. The spatial resolution of the current distributed detection system is limited to ∼ 30 m, but it is possible to reduce down to 1 meter or smaller by optimizing the phase detection system.

  7. Three-Dimensional Gas Exchange Pathways in Pome Fruit Characterized by Synchrotron X-Ray Computed Tomography1[C][W][OA

    PubMed Central

    Verboven, Pieter; Kerckhofs, Greet; Mebatsion, Hibru Kelemu; Ho, Quang Tri; Temst, Kristiaan; Wevers, Martine; Cloetens, Peter; Nicolaï, Bart M.

    2008-01-01

    Our understanding of the gas exchange mechanisms in plant organs critically depends on insights in the three-dimensional (3-D) structural arrangement of cells and voids. Using synchrotron radiation x-ray tomography, we obtained for the first time high-contrast 3-D absorption images of in vivo fruit tissues of high moisture content at 1.4-μm resolution and 3-D phase contrast images of cell assemblies at a resolution as low as 0.7 μm, enabling visualization of individual cell morphology, cell walls, and entire void networks that were previously unknown. Intercellular spaces were always clear of water. The apple (Malus domestica) cortex contains considerably larger parenchyma cells and voids than pear (Pyrus communis) parenchyma. Voids in apple often are larger than the surrounding cells and some cells are not connected to void spaces. The main voids in apple stretch hundreds of micrometers but are disconnected. Voids in pear cortex tissue are always smaller than parenchyma cells, but each cell is surrounded by a tight and continuous network of voids, except near brachyssclereid groups. Vascular and dermal tissues were also measured. The visualized network architecture was consistent over different picking dates and shelf life. The differences in void fraction (5.1% for pear cortex and 23.0% for apple cortex) and in gas network architecture helps explain the ability of tissues to facilitate or impede gas exchange. Structural changes and anisotropy of tissues may eventually lead to physiological disorders. A combined tomography and internal gas analysis during growth are needed to make progress on the understanding of void formation in fruit. PMID:18417636

  8. Void Growth and Coalescence in Dynamic Fracture of FCC and BCC Metals - Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Seppälä, Eira

    2004-03-01

    In dynamic fracture of ductile metals, the state of tension causes the nucleation of voids, typically from inclusions or grain boundary junctions, which grow and ultimately coalesce to form the fracture surface. Significant plastic deformation occurs in the process, including dislocations emitted to accommodate the growing voids. We have studied at the atomistic scale growth and coalescence processes of voids with concomitant dislocation formation. Classical molecular dynamics (MD) simulations of one and two pre-existing spherical voids initially a few nanometers in radius have been performed in single-crystal face-centered-cubic (FCC) and body-centered-cubic (BCC) lattices under dilational strain with high strain-rates. Million atom simulations of single void growth have been done to study the effect of stress triaxiality,^1 along with strain rate and lattice-structure dependence. An interesting prolate-to-oblate transition in the void shape in uniaxial expansion has been observed and quantitatively analyzed. The simulations also confirm that the plastic strain results directly from the void growth. Interaction and coalescence between two voids have been studied utilizing a parallel MD code in a seven million atom system. In particular, the movement of centers of the voids, linking of the voids, and the shape changes in vicinity of the other void are studied. Also the critical intervoid ligament distance after which the voids can be treated independently has been searched. ^1 E. T. Seppälä, J. Belak, and R. E. Rudd, cond-mat/0310541, submitted to Phys. Rev. B. Acknowledgment: This work was done in collaboration with Dr. James Belak and Dr. Robert E. Rudd, LLNL. It was performed under the auspices of the US Dept. of Energy at the Univ. of Cal./Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48.

  9. LOG-NORMAL DISTRIBUTION OF COSMIC VOIDS IN SIMULATIONS AND MOCKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, E.; Pycke, J.-R., E-mail: er111@nyu.edu, E-mail: jrp15@nyu.edu

    2017-01-20

    Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies. Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to answer these questions, we find here that all void size distributions of thesemore » data samples satisfy the three-parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition, the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment, particularly existing substructures. Therefore, we show two quantitative relations given by linear equations between the skewness and the maximum tree depth, and between the variance of the void size distribution and the maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central density reaches ≥3.84% in a simulation/mock sample, then a second population is observed in the void size distributions. This second population emerges as a second peak in the log-normal void size distribution at larger radius.« less

  10. The Metallicity of Void Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Kreckel, K.; Croxall, K.; Groves, B.; van de Weygaert, R.; Pogge, R. W.

    2015-01-01

    The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the assumption that void galaxies are more pristine, we compare the evolutionary properties of a sample of dwarf galaxies selected specifically to lie in voids with a sample of similar isolated dwarf galaxies in average density environments. We measure gas-phase oxygen abundances and gas fractions for eight dwarf galaxies (Mr > -16.2), carefully selected to reside within the lowest density environments of seven voids, and apply the same calibrations to existing samples of isolated dwarf galaxies. We find no significant difference between these void dwarf galaxies and the isolated dwarf galaxies, suggesting that dwarf galaxy chemical evolution proceeds independent of the large-scale environment. While this sample is too small to draw strong conclusions, it suggests that external gas accretion is playing a limited role in the chemical evolution of these systems, and that this evolution is instead dominated mainly by the internal secular processes that are linking the simultaneous growth and enrichment of these galaxies.

  11. Electromigration of intergranular voids in metal films for microelectronic interconnects

    NASA Astrophysics Data System (ADS)

    Averbuch, Amir; Israeli, Moshe; Ravve, Igor

    2003-04-01

    Voids and cracks often occur in the interconnect lines of microelectronic devices. They increase the resistance of the circuits and may even lead to a fatal failure. Voids may occur inside a single grain, but often they appear on the boundary between two grains. In this work, we model and analyze numerically the migration and evolution of an intergranular void subjected to surface diffusion forces and external voltage applied to the interconnect. The grain-void interface is considered one-dimensional, and the physical formulation of the electromigration and diffusion model results in two coupled fourth-order one-dimensional time-dependent PDEs. The boundary conditions are specified at the triple points, which are common to both neighboring grains and the void. The solution of these equations uses a finite difference scheme in space and a Runge-Kutta integration scheme in time, and is also coupled to the solution of a static Laplace equation describing the voltage distribution throughout the grain. Since the voltage distribution is required only along the interface line, the two-dimensional discretization of the grain interior is not needed, and the static problem is solved by the boundary element method at each time step. The motion of the intergranular void was studied for different ratios between the diffusion and the electric field forces, and for different initial configurations of the void.

  12. Thermal modeling using enthalpy methods to aid in the study of microstructural changes of multilayered phase change optical memories

    NASA Astrophysics Data System (ADS)

    Nagpal, Swati; Aurora, Aradhna

    1999-11-01

    In DOW type of phase change optical memories the focus has been mainly on gestate based systems due to their good overwriting capability and very high order cyclability. To avoid the material deterioration problems such as material flow, high melting point, high viscosity or high-density components such as CrTe, (which have the same refractive index) can be added to the active layer. This has led to an improved performance of overwrite cycles from 105 to 106. Material flow occurs due to void formation. Voids and sinks are formed due to porosity of the active layer because the active layer has a density lower than that of the bulk material. One of the reasons for the formation and coalescence of voids is the way in which the film is deposited viz. Sputtering which makes Ar atoms accumulate in the films during deposition. Also the mechanical strength of the protective layer effects the repeatability of the active layer. All the above mentioned processes occur during melting and re- solidification of the nano-sized spots which are laser irradiated. Since the structure of the protective layers is very important in controlling the void formation, it is very important to study the thermal modeling of the full layer structure.

  13. Active traffic management case study: phase 1 : final report.

    DOT National Transportation Integrated Search

    2016-03-01

    This study developed a systematic approach for using data from multiple sources to provide active traffic management : solutions. The feasibility of two active traffic management solutions is analyzed in this report: ramp-metering and real-time : cra...

  14. Characterization of two-phase flow regimes in horizontal tubes using 81mKr tracer experiments.

    PubMed

    Oriol, Jean; Leclerc, Jean Pierre; Berne, Philippe; Gousseau, Georges; Jallut, Christian; Tochon, Patrice; Clement, Patrice

    2008-10-01

    The diagnosis of heat exchangers on duty with respect to flow mal-distributions needs the development of non-intrusive inlet-outlet experimental techniques in order to perform an online fault diagnosis. Tracer experiments are an example of such techniques. They can be applied to mono-phase heat exchangers but also to multi-phase ones. In this case, the tracer experiments are more difficult to perform. In order to check for the capabilities of tracer experiments to be used for the flow mal-distribution diagnosis in the case of multi-phase heat exchangers, we present here a preliminary study on the simplest possible system: two-phase flows in a horizontal tube. (81m)Kr is used as gas tracer and properly collimated NaI (TI) crystal scintillators as detectors. The specific shape of the tracer response allows two-phase flow regimes to be characterized. Signal analysis allows the estimation of the gas phase real average velocity and consequently of the liquid phase real average velocity as well as of the volumetric void fraction. These results are compared successfully to those obtained with liquid phase tracer experiments previously presented by Oriol et al. 2007. Characterization of the two-phase flow regimes and liquid dispersion in horizontal and vertical tubes using coloured tracer and no intrusive optical detector. Chem. Eng. Sci. 63(1), 24-34, as well as to those given by correlations from literature.

  15. An initial study of void formation during solidification of aluminum in normal and reduced-gravity

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis P.; Foerster, George; Gotti, Daniel J.; Neumann, Eric S.; Johnston, J. C.; De Witt, Kenneth J.

    1992-01-01

    Void formation due to volumetric shrinkage during aluminum solidification was observed in real time using a radiographic viewing system in normal and reduced gravity. An end chill directional solidification furnace with water quench was developed to solidify aluminum samples during the approximately 16 seconds of reduced gravity (+/- 0.02g) achieved by flying an aircraft through a parabolic trajectory. Void formation was recorded for two cases: first a nonwetting system; and second, a wetting system where wetting occurs between the aluminum and crucible lid. The void formation in the nonwetting case is similar in normal and reduced gravity, with a single vapor cavity forming at the top of the crucible. In the wetting case in reduced gravity, surface tension causes two voids to form in the top corners of the crucible, but in normal gravity only one large voids forms across the top.

  16. Arne - Exploring the Mare Tranquillitatis Pit

    NASA Astrophysics Data System (ADS)

    Robinson, M. S.; Thangavelautham, J.; Wagner, R.; Hernandez, V. A.; Finch, J.

    2014-12-01

    Lunar mare "pits" are key science and exploration targets. The first three pits were discovered within Selene observations [1,2] and were proposed to represent collapses into lava tubes. Subsequent LROC images revealed 5 new mare pits and showed that the Mare Tranquillitatis pit (MTP; 8.335°N, 33.222°E) opens into a sublunarean void at least 20-meters in extent [3,4]. A key remaining task is determining pit subsurface extents, and thus fully understanding their exploration and scientific value. We propose a simple and cost effective reconnaissance of the MTP using a small lander (<130 kg) named Arne, that carries three flying microbots (or pit-bots) [5,6,7]. Key measurement objectives include decimeter scale characterization of the pit walls, 5-cm scale imaging of the eastern floor, determination of the extent of sublunarean void(s), and measurement of the magnetic and thermal environment. After landing and initial surface systems check Arne will transmit full resolution descent and surface images. Within two hours the first pit-bot will launch and fly into the eastern void. Depending on results from the first pit-bot the second and third will launch and perform follow-up observations. The primary mission is expected to last 48-hours; before the Sun sets on the lander there should be enough time to execute ten flights with each pit-bot. The pit-bots are 30-cm diameter spherical flying robots [5,6,7] equipped with stereo cameras, temperature sensors, sensors for obstacle avoidance and a laser rangefinder. Lithium hydride [5,6] and water/hydrogen peroxide power three micro-thrusters and achieve a specific impulse of 350-400 s. Each pit-bot can fly for 2 min at 2 m/s for more than 100 cycles; recharge time is 20 min. Arne will carry a magnetometer, thermometer, 2 high resolution cameras, and 6 wide angle cameras and obstacle avoidance infrared sensors enabling detailed characterization of extant sublunarean voids. [1] Haruyama et al. (2010) 41st LPSC, #1285. [2] Haruyama et al. (2010) GRL, 36, dx.doi.org/ 10.1029/2009GL0406355. [3] Robinson et al (2012) PSS, 69, dx.doi.org/ 10.1016/j.pss.2012.05.008 [4] Wagner and Robinson (2014) Icarus, dx.doi.org/10.1016/j.icarus.2014.04.002. [5] Thangavelautham et al. (2012) IEEE ICRA [6] Strawser et al. (2014) J. Hydrogen Energy. [7] Dubowsky et al. (2007) Proc. CLAWAR.

  17. Multi-Shell Hollow Nanogels with Responsive Shell Permeability

    PubMed Central

    Schmid, Andreas J.; Dubbert, Janine; Rudov, Andrey A.; Pedersen, Jan Skov; Lindner, Peter; Karg, Matthias; Potemkin, Igor I.; Richtering, Walter

    2016-01-01

    We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C < T < 42 °C, the hollow nanocontainers provide a significant void, which is even larger than the initial core size of the template, and they possess a high colloidal stability due to the steric stabilization of the swollen outer shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity. PMID:26984478

  18. Changes in Contaminant Mass Discharge from DNAPL Source Mass Depletion: Evaluation at Two Field Sites

    EPA Science Inventory

    Changes in contaminant fluxes resulting from aggressive remediation of dense nonaqueous phase liquid (DNAPL) source zone were investigated at two sites, one at Hill Air Force Base (AFB), Utah, and the other at Ft. Lewis Military Reservation, WA. Passive Flux Meters (PFM) and a va...

  19. Vapordynamic thermosyphon - heat transfer two-phase device for wide applications

    NASA Astrophysics Data System (ADS)

    Vasiliev, Leonard; Vasiliev, Leonid; Zhuravlyov, Alexander; Shapovalov, Aleksander; Rodin, Aleksei

    2015-12-01

    Vapordynamic thermosyphon (VDT) is an efficient heat transfer device. The two-phase flow generation and dynamic interaction between the liquid slugs and vapor bubbles in the annular minichannel of the VDT condenser are the main features of such thermosyphon, which allowed to increase its thermodynamic efficiency. VDT can transfer heat in horizontal position over a long distance. The condenser is nearly isothermal with the length of tens of meters. The VDT evaporators may have different forms. Some practical applications of VDT are considered.

  20. The effect of injected interstitials on void formation in self-ion irradiated nickel containing concentrated solid solution alloys

    DOE PAGES

    Yang, Tai-ni; Lu, Chenyang; Jin, Ke; ...

    2017-02-21

    Pure nickel and three nickel containing single-phase concentrated solid solution alloys (SP-CSAs) have been irradiated using 3 MeV Ni 2+ ions at 500 C to fluences of 1.5 x 10 16 and 5.0 x 10 16 cm 2. We characterized the radiation-induced voids using cross sectional transmission electron microscopy that distributions of voids and dislocation loops were presented as a function of depth. We also observed a various degree of void suppression on the tested samples and a defect clusters migration mechanism was proposed for NiCo. Furthermore, in order to sufficiently understand the defect dynamics in these SP-CSAs, the injectedmore » interstitial effect has been taken into account along with the 1-dimentional (1-D) and 3-dimentional (3-D) interstitial movement mechanisms.« less

  1. LM-research opportunities and activities at Beer-Sheva

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesin, S.

    1996-06-01

    Energy conversion concepts based on liquid metal (LM) magnetohydrodynamic (MHD) technology was intensively investigated at the Center for MHD Studies (CMHDS), in the Ben-Gurion University of the Negev in Israel. LMMHD energy conversion systems operate in a closed cycle as follows: heat intended for conversion into electricity is added to a liquid metal contained in a closed loop of pipes. The liquid metal is mixed with vapor or gas introduced from outside so that a two-phase mixture is formed. The gaseous phase performs a thermodynamic cycle, converting a certain amount of heat into mechanical energy of the liquid metal. Thismore » energy is converted into electrical power as the metal flows across a magnetic field in the MHD channel. Those systems where the expanding thermodynamic fluid performs work against gravitational forces (natural circulation loops) and using heavy liquid metals are named ETGAR systems. A number of different heavy-metal facilities have been specially constructed and tested with fluid combinations of mercury and steam, mercury and nitrogen, mercury and freon, lead-bismuth and steam, and lead and steam. Since the experimental investigation of such flows is a very difficult task and all the known measurment methods are incomplete and not fully reliable, a variety of experimental approaches have been developed. In most experiments, instantaneous pressure distribution along the height of the upcomer were measured and the average void fraction was calculated numerically using the one-dimensional equation for the two-phase flow. The research carried out at the CMHDS led to significant improvements in the characterization of the two-phase phenomena expected in the riser of ETGAR systems. One of the most important outcomes is the development of a new empirical correlation which enables the reliable prediction of the velocity ratio between the LM and the steam (slip), the friction factor, as well as of the steam void fraction distribution along the riser.« less

  2. Sorption of small molecules in polymeric media

    NASA Astrophysics Data System (ADS)

    Camboni, Federico; Sokolov, Igor M.

    2016-12-01

    We discuss the sorption of penetrant molecules from the gas phase by a polymeric medium within a model which is very close in spirit to the dual sorption mode model: the penetrant molecules are partly dissolved within the polymeric matrix, partly fill the preexisting voids. The only difference with the initial dual sorption mode situation is the assumption that the two populations of molecules are in equilibrium with each other. Applying basic thermodynamics principles we obtain the dependence of the penetrant concentration on the pressure in the gas phase and find that this is expressed via the Lambert W-function, a different functional form than the one proposed by dual sorption mode model. The Lambert-like isotherms appear universally at low and moderate pressures and originate from the assumption that the internal energy in a polymer-penetrant-void ternary mixture is (in the lowest order) a bilinear form in the concentrations of the three components. Fitting the existing data shows that in the domain of parameters where the dual sorption mode model is typically applied, the Lambert function, which describes the same behavior as the one proposed by the gas-polymer matrix model, fits the data equally well.

  3. The Santiago-Harvard-Edinburgh-Durham void comparison - I. SHEDding light on chameleon gravity tests

    NASA Astrophysics Data System (ADS)

    Cautun, Marius; Paillas, Enrique; Cai, Yan-Chuan; Bose, Sownak; Armijo, Joaquin; Li, Baojiu; Padilla, Nelson

    2018-05-01

    We present a systematic comparison of several existing and new void-finding algorithms, focusing on their potential power to test a particular class of modified gravity models - chameleon f(R) gravity. These models deviate from standard general relativity (GR) more strongly in low-density regions and thus voids are a promising venue to test them. We use halo occupation distribution (HOD) prescriptions to populate haloes with galaxies, and tune the HOD parameters such that the galaxy two-point correlation functions are the same in both f(R) and GR models. We identify both three-dimensional (3D) voids and two-dimensional (2D) underdensities in the plane of the sky to find the same void abundance and void galaxy number density profiles across all models, which suggests that they do not contain much information beyond galaxy clustering. However, the underlying void dark matter density profiles are significantly different, with f(R) voids being more underdense than GR ones, which leads to f(R) voids having a larger tangential shear signal than their GR analogues. We investigate the potential of each void finder to test f(R) models with near-future lensing surveys such as EUCLID and LSST. The 2D voids have the largest power to probe f(R) gravity, with an LSST analysis of tunnel (which is a new type of 2D underdensity introduced here) lensing distinguishing at 80 and 11σ (statistical error) f(R) models with parameters, |fR0| = 10-5 and 10-6, from GR.

  4. Comparisons of sodium void and Doppler reactivities in large oxide and carbide LMFBRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, S F

    Sodium void and Doppler reactivities in two full scale (3000 MWth) LMFBRs are analyzed; one is fueled with UO/sub 2/ - PuO/sub 2/ and the other is fueled with UC - PuC. These two reactors are analyzed for beginning of life as well as for beginning and end of equilibrium cycle conditions, and the variations of these two safety parameters with burnup are explained. A series of comperative analyses of these two and several hypothetical reactors are carried out to determine how differences in fuel type, sodium content, and heavy metal concentration between an oxide and a carbide reactor affectmore » their sodium void and Doppler reactivities. The effect of the presence of conrol poison on sodium void reactivity is also addressed.« less

  5. Application of Jacobian-free Newton–Krylov method in implicitly solving two-fluid six-equation two-phase flow problems: Implementation, validation and benchmark

    DOE PAGES

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2016-03-09

    This work represents a first-of-its-kind successful application to employ advanced numerical methods in solving realistic two-phase flow problems with two-fluid six-equation two-phase flow model. These advanced numerical methods include high-resolution spatial discretization scheme with staggered grids (high-order) fully implicit time integration schemes, and Jacobian-free Newton–Krylov (JFNK) method as the nonlinear solver. The computer code developed in this work has been extensively validated with existing experimental flow boiling data in vertical pipes and rod bundles, which cover wide ranges of experimental conditions, such as pressure, inlet mass flux, wall heat flux and exit void fraction. Additional code-to-code benchmark with the RELAP5-3Dmore » code further verifies the correct code implementation. The combined methods employed in this work exhibit strong robustness in solving two-phase flow problems even when phase appearance (boiling) and realistic discrete flow regimes are considered. Transitional flow regimes used in existing system analysis codes, normally introduced to overcome numerical difficulty, were completely removed in this work. As a result, this in turn provides the possibility to utilize more sophisticated flow regime maps in the future to further improve simulation accuracy.« less

  6. Integrated Field Scale, Lab Scale, and Modeling Studies for Improving Our Ability to Assess the Groundwater to Indoor Air Pathway at Chlorinated Solvent Impacted Groundwater Sites

    DTIC Science & Technology

    2016-01-07

    clays . The Emean/Estatic values were greater for loam than the other two types of soil – indicating greater amplification of emissions relative to a...ɸT): 0.35 m3-voids/m3- soil Soil permeability to soil gas flow (Kg): 1E-7 cm2 Soil gas phase dynamic viscosity : 1.8E-4 g/cm/s Soil domain

  7. Preparation of hybrid thiol-acrylate emulsion-templated porous polymers by interfacial copolymerization of high internal phase emulsions.

    PubMed

    Langford, Caitlin R; Johnson, David W; Cameron, Neil R

    2015-05-01

    Emulsion-templated highly porous polymers (polyHIPEs), containing distinct regions differing in composition, morphology, and/or properties, are prepared by the simultaneous polymerization of two high internal phase emulsions (HIPEs) contained within the same mould. The HIPEs are placed together in the mould and subjected to thiol-acrylate photopolymerization. The resulting polyHIPE material is found to contain two distinct semicircular regions, reflecting the composition of each HIPE. The original interface between the two emulsions becomes a copolymerized band between 100 and 300 μm wide, which is found to be mechanically robust. The separate polyHIPE layers are distinguished from one another by their differing average void diameter, chemical composition, and extent of contraction upon drying. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Solving phase appearance/disappearance two-phase flow problems with high resolution staggered grid and fully implicit schemes by the Jacobian-free Newton–Krylov Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2016-04-01

    The phase appearance/disappearance issue presents serious numerical challenges in two-phase flow simulations. Many existing reactor safety analysis codes use different kinds of treatments for the phase appearance/disappearance problem. However, to our best knowledge, there are no fully satisfactory solutions. Additionally, the majority of the existing reactor system analysis codes were developed using low-order numerical schemes in both space and time. In many situations, it is desirable to use high-resolution spatial discretization and fully implicit time integration schemes to reduce numerical errors. In this work, we adapted a high-resolution spatial discretization scheme on staggered grid mesh and fully implicit time integrationmore » methods (such as BDF1 and BDF2) to solve the two-phase flow problems. The discretized nonlinear system was solved by the Jacobian-free Newton Krylov (JFNK) method, which does not require the derivation and implementation of analytical Jacobian matrix. These methods were tested with a few two-phase flow problems with phase appearance/disappearance phenomena considered, such as a linear advection problem, an oscillating manometer problem, and a sedimentation problem. The JFNK method demonstrated extremely robust and stable behaviors in solving the two-phase flow problems with phase appearance/disappearance. No special treatments such as water level tracking or void fraction limiting were used. High-resolution spatial discretization and second- order fully implicit method also demonstrated their capabilities in significantly reducing numerical errors.« less

  9. Real Time Phase Noise Meter Based on a Digital Signal Processor

    NASA Technical Reports Server (NTRS)

    Angrisani, Leopoldo; D'Arco, Mauro; Greenhall, Charles A.; Schiano Lo Morille, Rosario

    2006-01-01

    A digital signal-processing meter for phase noise measurement on sinusoidal signals is dealt with. It enlists a special hardware architecture, made up of a core digital signal processor connected to a data acquisition board, and takes advantage of a quadrature demodulation-based measurement scheme, already proposed by the authors. Thanks to an efficient measurement process and an optimized implementation of its fundamental stages, the proposed meter succeeds in exploiting all hardware resources in such an effective way as to gain high performance and real-time operation. For input frequencies up to some hundreds of kilohertz, the meter is capable both of updating phase noise power spectrum while seamlessly capturing the analyzed signal into its memory, and granting as good frequency resolution as few units of hertz.

  10. Correction to the gas phase pressure term in the continuum model for partially saturated granular media presented by Pietruszczak and co-workers

    NASA Astrophysics Data System (ADS)

    Iveson, Simon M.

    2003-06-01

    Pietruszczak and coworkers (Internat. J. Numer. Anal. Methods Geomech. 1994; 18(2):93-105; Comput. Geotech. 1991; 12( ):55-71) have presented a continuum-based model for predicting the dynamic mechanical response of partially saturated granular media with viscous interstitial liquids. In their model they assume that the gas phase is distributed uniformly throughout the medium as discrete spherical air bubbles occupying the voids between the particles. However, their derivation of the air pressure inside these gas bubbles is inconsistent with their stated assumptions. In addition the resultant dependence of gas pressure on liquid saturation lies outside of the plausible range of possible values for discrete air bubbles. This results in an over-prediction of the average bulk modulus of the void phase. Corrected equations are presented.

  11. Critical Void Volume Fraction fc at Void Coalescence for S235JR Steel at Low Initial Stress Triaxiality

    NASA Astrophysics Data System (ADS)

    Grzegorz Kossakowski, Paweł; Wciślik, Wiktor

    2017-10-01

    The paper is concerned with the nucleation, growth and coalescence of microdefects in the form of voids in S235JR steel. The material is known to be one of the basic steel grades commonly used in the construction industry. The theory and methods of damage mechanics were applied to determine and describe the failure mechanisms that occur when the material undergoes deformation. Until now, engineers have generally employed the Gurson-Tvergaard- Needleman model. This material model based on damage mechanics is well suited to define and analyze failure processes taking place in the microstructure of S235JR steel. It is particularly important to determine the critical void volume fraction fc , which is one of the basic parameters of the Gurson-Tvergaard-Needleman material model. As the critical void volume fraction fc refers to the failure stage, it is determined from the data collected for the void coalescence phase. A case of multi-axial stresses is considered taking into account the effects of spatial stress state. In this study, the parameter of stress triaxiality η was used to describe the failure phenomena. Cylindrical tensile specimens with a circumferential notch were analysed to obtain low values of initial stress triaxiality (η = 0.556 of the range) in order to determine the critical void volume fraction fc . It is essential to emphasize how unique the method applied is and how different it is from the other more common methods involving parameter calibration, i.e. curve-fitting methods. The critical void volume fraction fc at void coalescence was established through digital image analysis of surfaces of S235JR steel, which involved studying real, physical results obtained directly from the material tested.

  12. Effect of Marangoni Convection Generated by Voids on Segregation During Low-G and 1-G Solidification

    NASA Technical Reports Server (NTRS)

    Kassemi, M.; Fripp, A.; Rashidnia, N.; deGroh, H.

    1999-01-01

    Solidification experiments, especially microgravity solidification experiments are often hampered by the evolution of unwanted voids or bubbles in the melt. Although these voids and/or bubbles are highly undesirable, there are currently no effective means of preventing their formation or eliminating their adverse effects, particularly, during low-g experiments. Marangoni Convection caused by these voids can drastically change the transport processes in the melt and, therefore, introduce enormous difficulties in interpreting the results of the space investigations. Recent microgravity experiments by Matthiesen, Andrews, and Fripp are all good examples of how the presence of voids and bubbles affect the outcome of costly space experiments and significantly increase the level of difficulty in interpreting their results. In this work we examine mixing caused by Marangoni convection generated by voids and bubbles in the melt during both 1-g and low-g solidification experiments. The objective of the research is to perform a detailed and comprehensive combined numerical-experimental study of Marangoni convection caused by voids during the solidification process and to show how it can affect segregation and growth conditions by modifying the flow, temperature, and species concentration fields in the melt. While Marangoni convection generated by bubbles and voids in the melt can lead to rapid mixing that would negate the benefits of microgravity processing, it could be exploited in some terrestrial processing to ensure effective communication between a melt/solid interface and a gas phase stoichiometry control zone. Thus we hope that this study will not only aid us in interpreting the results of microgravity solidification experiments hampered by voids and bubbles but to guide us in devising possible means of minimizing the adverse effects of Marangoni convection in future space experiments or of exploiting its beneficial mixing features in ground-based solidification.

  13. Accuracy of the Generalized Self-Consistent Method in Modelling the Elastic Behaviour of Periodic Composites

    NASA Technical Reports Server (NTRS)

    Walker, Kevin P.; Freed, Alan D.; Jordan, Eric H.

    1993-01-01

    Local stress and strain fields in the unit cell of an infinite, two-dimensional, periodic fibrous lattice have been determined by an integral equation approach. The effect of the fibres is assimilated to an infinite two-dimensional array of fictitious body forces in the matrix constituent phase of the unit cell. By subtracting a volume averaged strain polarization term from the integral equation we effectively embed a finite number of unit cells in a homogenized medium in which the overall stress and strain correspond to the volume averaged stress and strain of the constrained unit cell. This paper demonstrates that the zeroth term in the governing integral equation expansion, which embeds one unit cell in the homogenized medium, corresponds to the generalized self-consistent approximation. By comparing the zeroth term approximation with higher order approximations to the integral equation summation, both the accuracy of the generalized self-consistent composite model and the rate of convergence of the integral summation can be assessed. Two example composites are studied. For a tungsten/copper elastic fibrous composite the generalized self-consistent model is shown to provide accurate, effective, elastic moduli and local field representations. The local elastic transverse stress field within the representative volume element of the generalized self-consistent method is shown to be in error by much larger amounts for a composite with periodically distributed voids, but homogenization leads to a cancelling of errors, and the effective transverse Young's modulus of the voided composite is shown to be in error by only 23% at a void volume fraction of 75%.

  14. Hubble Peers Into the Center of a Spiral

    NASA Image and Video Library

    2017-12-08

    This Hubble image shows the central region of a spiral galaxy known as NGC 247. NGC 247 is a relatively small spiral galaxy in the southern constellation of Cetus (The Whale). Lying at a distance of around 11 million light-years from us, it forms part of the Sculptor Group, a loose collection of galaxies that also contains the more famous NGC 253 (otherwise known as the Sculptor Galaxy). NGC 247’s nucleus is visible here as a bright, whitish patch, surrounded by a mixture of stars, gas and dust. The dust forms dark patches and filaments that are silhouetted against the background of stars, while the gas has formed into bright knots known as H II regions, mostly scattered throughout the galaxy’s arms and outer areas. This galaxy displays one particularly unusual and mysterious feature — it is not visible in this image, but can be seen clearly in wider views of the galaxy, such as a picture from ESO’s MPG/ESO 2.2-meter telescope. The northern part of NGC 247’s disc hosts an apparent void, a gap in the usual swarm of stars and H II regions that spans almost a third of the galaxy’s total length. There are stars within this void, but they are quite different from those around it. They are significantly older, and as a result much fainter and redder. This indicates that the star formation taking place across most of the galaxy’s disk has somehow been arrested in the void region, and has not taken place for around one billion years. Although astronomers are still unsure how the void formed, recent studies suggest it might have been caused by gravitational interactions with part of another galaxy. Image Credit: NASA/ESA

  15. Defect-enhanced void filling and novel filled phases of open-structure skutterudites

    DOE PAGES

    Xi, Lili; Qiu, Yuting; Shi, Xun; ...

    2015-05-14

    Here, we report the design of novel filled CoSb 3 skutterudite phases based on a combination of filling and Sb-substituted Ga/In defects. Ga/In doped skutterudite phases with Li-, Nd-, and Sm-fillings can be formed via this strategy, which can have relatively wider ranges of carrier concentration than other conventional filled skutterudite phases.

  16. Integrating an embedded system in a microwave moisture meter

    USDA-ARS?s Scientific Manuscript database

    The conversion of a PC- or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter measures the attenuation and phase shift of low power microwaves traversing the sample, from which the dielectric properties are calculated. T...

  17. Integrating an Embedded System within a Microwave Moisture Meter

    USDA-ARS?s Scientific Manuscript database

    In this paper, the conversion of a PC or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter uses low-power microwaves to measure the attenuation and phase shift of the sample, from which the dielectric properties are cal...

  18. Quantitative analysis of voids in percolating structures in two-dimensional N-body simulations

    NASA Technical Reports Server (NTRS)

    Harrington, Patrick M.; Melott, Adrian L.; Shandarin, Sergei F.

    1993-01-01

    We present in this paper a quantitative method for defining void size in large-scale structure based on percolation threshold density. Beginning with two-dimensional gravitational clustering simulations smoothed to the threshold of nonlinearity, we perform percolation analysis to determine the large scale structure. The resulting objective definition of voids has a natural scaling property, is topologically interesting, and can be applied immediately to redshift surveys.

  19. Two-phase SLIPI for instantaneous LIF and Mie imaging of transient fuel sprays.

    PubMed

    Storch, Michael; Mishra, Yogeshwar Nath; Koegl, Matthias; Kristensson, Elias; Will, Stefan; Zigan, Lars; Berrocal, Edouard

    2016-12-01

    We report in this Letter a two-phase structured laser illumination planar imaging [two-pulse SLIPI (2p-SLIPI)] optical setup where the "lines structure" is spatially shifted by exploiting the birefringence property of a calcite crystal. By using this optical component and two cross-polarized laser pulses, the shift of the modulated pattern is not "time-limited" anymore. Consequently, two sub-images with spatially mismatched phases can be recorded within a few hundred of nanoseconds only, freezing the motion of the illuminated transient flow. In comparison with previous setups for instantaneous imaging based on structured illumination, the current optical design presents the advantage of having a single optical path, greatly simplifying its complexity. Due to its virtue of suppressing the effects from multiple light scattering, the 2p-SLIPI technique is applied here in an optically dense multi-jet direct-injection spark-ignition (DISI) ethanol spray. The fast formation of polydispersed droplets and appearance of voids after fuel injection are investigated by simultaneous detection of Mie scattering and liquid laser-induced fluorescence. The results allow for significantly improved analysis of the spray structure.

  20. In situ observations of a high-pressure phase of H2O ice

    USGS Publications Warehouse

    Chou, I.-Ming; Blank, J.G.; Goncharov, A.F.; Mao, Ho-kwang; Hemley, R.J.

    1998-01-01

    A previously unknown solid phase of H2O has been identified by its peculiar growth patterns, distinct pressure-temperature melting relations, and vibrational Raman spectra. Morphologies of ice crystals and their pressure-temperature melting relations were directly observed in a hydrothermal diamond-anvil cell for H2O bulk densities between 1203 and 1257 kilograms per cubic meter at temperatures between -10??and 50??C. Under these conditions, four different ice forms were observed to melt: two stable phases, ice V and ice VI, and two metastable phases, ice IV and the new ice phase. The Raman spectra and crystal morphology are consistent with a disordered anisotropic structure with some similarities to ice VI.

  1. Void collapse under distributed dynamic loading near material interfaces

    NASA Astrophysics Data System (ADS)

    Shpuntova, Galina; Austin, Joanna

    2012-11-01

    Collapsing voids cause significant damage in diverse applications from biomedicine to underwater propulsion to explosives. While shock-induced void collapse has been studied extensively, less attention has been devoted to stress wave loading, which will occur instead if there are mechanisms for wave attenuation or if the impact velocity is relatively low. A set of dynamic experiments was carried out in a model experimental setup to investigate the effect of acoustic heterogeneities in the surrounding medium on void collapse. Two tissue-surrogate polymer materials of varying acoustic properties were used to create flowfield geometries involving a boundary and a void. A stress wave, generated by projectile impact, triggered void collapse in the gelatinous polymer medium. When the length scales of features in the flow field were on the same order of magnitude as the stress wave length scale, the presence of the boundary was found to affect the void collapse process relative to collapse in the absence of a boundary. This effect was quantified for a range of geometries and impact conditions using a two-color, single-frame particle image velocimetry technique. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading'' with Prof. Henning Winter as Program Manager.

  2. The void spectrum in two-dimensional numerical simulations of gravitational clustering

    NASA Technical Reports Server (NTRS)

    Kauffmann, Guinevere; Melott, Adrian L.

    1992-01-01

    An algorithm for deriving a spectrum of void sizes from two-dimensional high-resolution numerical simulations of gravitational clustering is tested, and it is verified that it produces the correct results where those results can be anticipated. The method is used to study the growth of voids as clustering proceeds. It is found that the most stable indicator of the characteristic void 'size' in the simulations is the mean fractional area covered by voids of diameter d, in a density field smoothed at its correlation length. Very accurate scaling behavior is found in power-law numerical models as they evolve. Eventually, this scaling breaks down as the nonlinearity reaches larger scales. It is shown that this breakdown is a manifestation of the undesirable effect of boundary conditions on simulations, even with the very large dynamic range possible here. A simple criterion is suggested for deciding when simulations with modest large-scale power may systematically underestimate the frequency of larger voids.

  3. Dynamics of bubble collapse under vessel confinement in 2D hydrodynamic experiments

    NASA Astrophysics Data System (ADS)

    Shpuntova, Galina; Austin, Joanna

    2013-11-01

    One trauma mechanism in biomedical treatment techniques based on the application of cumulative pressure pulses generated either externally (as in shock-wave lithotripsy) or internally (by laser-induced plasma) is the collapse of voids. However, prediction of void-collapse driven tissue damage is a challenging problem, involving complex and dynamic thermomechanical processes in a heterogeneous material. We carry out a series of model experiments to investigate the hydrodynamic processes of voids collapsing under dynamic loading in configurations designed to model cavitation with vessel confinement. The baseline case of void collapse near a single interface is also examined. Thin sheets of tissue-surrogate polymer materials with varying acoustic impedance are used to create one or two parallel material interfaces near the void. Shadowgraph photography and two-color, single-frame particle image velocimetry quantify bubble collapse dynamics including jetting, interface dynamics and penetration, and the response of the surrounding material. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading.''

  4. Effect of Preoperative Low Maximal Flow Rate on Postoperative Voiding Trials after the Midurethral Sling Procedure in Women with Stress Urinary Incontinence.

    PubMed

    Chae, Ji Y; Bae, Jae H; Lee, Jeong G; Park, Hong S; Moon, Du G; Oh, Mi M

    2017-06-02

    To evaluate the effects of preoperative low maximal flow rate (Qmax) on voiding trials after the midurethral sling (MUS) procedure in women with stress urinary incontinence (SUI). One hundred and sixty-eight women who underwent MUS procedure were enrolled. Preoperative free uroflowmetry was performed and patients were divided by Qmax. Low Qmax was defined as a Qmax under 15 mL/sec with voided volume at least 150 mL. Surgical results, failure of voiding trial, and postoperative uroflowmetry parameters were compared between the groups. Failure of voiding trial was defined by a PVR more than 100 mL on postoperative uroflowmetry. At the discharge day, there were 42 cases showing failure of voiding trial and 33 cases requiring CIC, but only one patient showed failure of voiding trial at 12 months postoperatively. Overall, 48 patients had preoperative low Qmax. Low Qmax group showed lower Qmax in all of postoperative uroflowmetry, but there were no significant differences in the rate of postoperative voiding trial failure or CIC. The low Qmax group was then divided into two groups according to the preoperative detrusor pressure at Qmax over and under 20 cmH 2 O in pressure flow study. Comparing the two groups, no significant differences were observed in the cure rate, voiding trial failure or CIC. Our results suggest that women with preoperative low Qmax experienced no definite unfavorable voiding problem from the MUS procedure compared to those with normal voiding function. MUS procedure may be regarded as a safe and successful procedure in SUI women with low Qmax. © 2017 John Wiley & Sons Australia, Ltd.

  5. Mechanism of Void Prediction in Flip Chip Packages with Molded Underfill

    NASA Astrophysics Data System (ADS)

    Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang

    2017-08-01

    Voids have always been present using the molded underfill (MUF) package process, which is a problem that needs further investigation. In this study, the process was studied using the Moldex3D numerical analysis software. The effects of gas (air vent effect) on the overall melt front were also considered. In this isothermal process containing two fluids, the gas and melt colloid interact in the mold cavity. Simulation enabled an appropriate understanding of the actual situation to be gained, and, through analysis, the void region and exact location of voids were predicted. First, the global flow end area was observed to predict the void movement trend, and then the local flow ends were observed to predict the location and size of voids. In the MUF 518 case study, simulations predicted the void region as well as the location and size of the voids. The void phenomenon in a flip chip ball grid array underfill is discussed as part of the study.

  6. Three-dimensional simulations of void collapse in energetic materials

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal Kumar; Udaykumar, H. S.

    2018-03-01

    The collapse of voids in porous energetic materials leads to hot-spot formation and reaction initiation. This work advances the current knowledge of the dynamics of void collapse and hot-spot formation using 3D reactive void collapse simulations in HMX. Four different void shapes, i.e., sphere, cylinder, plate, and ellipsoid, are studied. For all four shapes, collapse generates complex three-dimensional (3D) baroclinic vortical structures. The hot spots are collocated with regions of intense vorticity. The differences in the vortical structures for the different void shapes are shown to significantly impact the relative sensitivity of the voids. Voids of high surface area generate hot spots of greater intensity; intricate, highly contorted vortical structures lead to hot spots of corresponding tortuosity and therefore enhanced growth rates of reaction fronts. In addition, all 3D voids are shown to be more sensitive than their two-dimensional (2D) counterparts. The results provide physical insights into hot-spot formation and growth and point to the limitations of 2D analyses of hot-spot formation.

  7. Bubble Augmented Propulsor Mixture Flow Simulation near Choked Flow Condition

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Keun; Hsiao, Chao-Tsung; Chahine, Georges

    2013-03-01

    The concept of waterjet thrust augmentation through bubble injection has been the subject of many patents and publications over the past several decades, and computational and experimental evidences of the augmentation of the jet thrust through bubble growth in the jet stream have been reported. Through our experimental studies, we have demonstrated net thrust augmentation as high as 70%for air volume fractions as high as 50%. However, in order to enable practical designs, an adequately validated modeling tool is required. In our previous numerical studies, we developed and validated a numerical code to simulate and predict the performance of a two-phase flow water jet propulsion system for low void fractions. In the present work, we extend the numerical method to handle higher void fractions to enable simulations for the high thrust augmentation conditions. At high void fractions, the speed of sound in the bubbly mixture decreases substantially and could be as low as 20 m/s, and the mixture velocity can approach the speed of sound in the medium. In this numerical study, we extend our numerical model, which is based on the two-way coupling between the mixture flow field and Lagrangian tracking of a large number of bubbles, to accommodate compressible flow regimes. Numerical methods used and the validation studies for various flow conditions in the bubble augmented propulsor will be presented. This work is supported by Office of Naval Research through contract N00014-11-C-0482 monitored by Dr. Ki-Han Kim.

  8. 30 CFR 203.30 - Which leases are eligible for royalty relief as a result of drilling a phase 2 or phase 3 ultra...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 400 meters deep. (b) The lease has not produced gas or oil from a deep well or an ultra-deep well, except as provided in § 203.31(b). (c) If the lease is located entirely in more than 200 meters and entirely less than 400 meters of water, it must either: (1) Have been issued before November 28, 1995, and...

  9. 30 CFR 203.31 - If I have a qualified phase 2 or qualified phase 3 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... water less than 400 meters deep (see § 203.30(a)), has no existing deep or ultra-deep wells and that the... depths partly or entirely less than 200 meters and has not previously produced from a deep well (§ 203.30... which is 16,000 feet TVD SS and your lease is located in water 100 meters deep. Then in 2008, you drill...

  10. Two Hop Adaptive Vector Based Quality Forwarding for Void Hole Avoidance in Underwater WSNs

    PubMed Central

    Javaid, Nadeem; Ahmed, Farwa; Wadud, Zahid; Alrajeh, Nabil; Alabed, Mohamad Souheil; Ilahi, Manzoor

    2017-01-01

    Underwater wireless sensor networks (UWSNs) facilitate a wide range of aquatic applications in various domains. However, the harsh underwater environment poses challenges like low bandwidth, long propagation delay, high bit error rate, high deployment cost, irregular topological structure, etc. Node mobility and the uneven distribution of sensor nodes create void holes in UWSNs. Void hole creation has become a critical issue in UWSNs, as it severely affects the network performance. Avoiding void hole creation benefits better coverage over an area, less energy consumption in the network and high throughput. For this purpose, minimization of void hole probability particularly in local sparse regions is focused on in this paper. The two-hop adaptive hop by hop vector-based forwarding (2hop-AHH-VBF) protocol aims to avoid the void hole with the help of two-hop neighbor node information. The other protocol, quality forwarding adaptive hop by hop vector-based forwarding (QF-AHH-VBF), selects an optimal forwarder based on the composite priority function. QF-AHH-VBF improves network good-put because of optimal forwarder selection. QF-AHH-VBF aims to reduce void hole probability by optimally selecting next hop forwarders. To attain better network performance, mathematical problem formulation based on linear programming is performed. Simulation results show that by opting these mechanisms, significant reduction in end-to-end delay and better throughput are achieved in the network. PMID:28763014

  11. Two Hop Adaptive Vector Based Quality Forwarding for Void Hole Avoidance in Underwater WSNs.

    PubMed

    Javaid, Nadeem; Ahmed, Farwa; Wadud, Zahid; Alrajeh, Nabil; Alabed, Mohamad Souheil; Ilahi, Manzoor

    2017-08-01

    Underwater wireless sensor networks (UWSNs) facilitate a wide range of aquatic applications in various domains. However, the harsh underwater environment poses challenges like low bandwidth, long propagation delay, high bit error rate, high deployment cost, irregular topological structure, etc. Node mobility and the uneven distribution of sensor nodes create void holes in UWSNs. Void hole creation has become a critical issue in UWSNs, as it severely affects the network performance. Avoiding void hole creation benefits better coverage over an area, less energy consumption in the network and high throughput. For this purpose, minimization of void hole probability particularly in local sparse regions is focused on in this paper. The two-hop adaptive hop by hop vector-based forwarding (2hop-AHH-VBF) protocol aims to avoid the void hole with the help of two-hop neighbor node information. The other protocol, quality forwarding adaptive hop by hop vector-based forwarding (QF-AHH-VBF), selects an optimal forwarder based on the composite priority function. QF-AHH-VBF improves network good-put because of optimal forwarder selection. QF-AHH-VBF aims to reduce void hole probability by optimally selecting next hop forwarders. To attain better network performance, mathematical problem formulation based on linear programming is performed. Simulation results show that by opting these mechanisms, significant reduction in end-to-end delay and better throughput are achieved in the network.

  12. Void initiation from interfacial debonding of spherical silicon particles inside a silicon-copper nanocomposite: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Cui, Yi; Chen, Zengtao

    2017-02-01

    Silicon particles with diameters from 1.9 nm to 30 nm are embedded in a face-centered-cubic copper matrix to form nanocomposite specimens for simulation. The interfacial debonding of silicon particles from the copper matrix and the subsequent growth of nucleated voids are studied via molecular dynamics (MD). The MD results are examined from several different perspectives. The overall mechanical performance is monitored by the average stress-strain response and the accumulated porosity. The ‘relatively farthest-traveled’ atoms are identified to characterize the onset of interfacial debonding. The relative displacement field is plotted to illustrate both subsequent interfacial debonding and the growth of a nucleated void facilitated by a dislocation network. Our results indicate that the initiation of interfacial debonding is due to the accumulated surface stress if the matrix is initially dislocation-free. However, pre-existing dislocations can make a considerable difference. In either case, the dislocation emission also contributes to the subsequent debonding process. As for the size effect, the debonding of relatively larger particles causes a drop in the stress-strain curve. The volume fraction of second-phase particles is found to be more influential than the size of the simulation box on the onset of interfacial debonding. The volume fraction of second-phase particles also affects the shape of the nucleated void and, therefore, influences the stress response of the composite.

  13. Nanovoid growth in BCC α-Fe: influences of initial void geometry

    NASA Astrophysics Data System (ADS)

    Xu, Shuozhi; Su, Yanqing

    2016-12-01

    The growth of voids has a great impact on the mechanical properties of ductile materials by altering their microstructures. Exploring the process of void growth at the nanoscale helps in understanding the dynamic fracture of metals. While some very recent studies looked into the effects of the initial geometry of an elliptic void on the plastic deformation of face-centered cubic metals, a systematic study of the initial void ellipticity and orientation angle in body-centered cubic (BCC) metals is still lacking. In this paper, large scale molecular dynamics simulations with millions of atoms are conducted, investigating the void growth process during tensile loading of metallic thin films in BCC α-Fe. Our simulations elucidate the intertwined influences on void growth of the initial ellipticity and initial orientation angle of the void. It is shown that these two geometric parameters play an important role in the stress-strain response, the nucleation and evolution of defects, as well as the void size/outline evolution in α-Fe thin films. Results suggest that, together with void size, different initial void geometries should be taken into account if a continuum model is to be applied to nanoscale damage progression.

  14. Planetary Radar Imaging with the Deep-Space Network's 34 Meter Uplink Array

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V.; Tsao, P.; Lee, D.; Cornish, T.; Jao, J.; Slade, M.

    2011-01-01

    A coherent uplink array consisting of up to three 34-meter antennas of NASA's Deep Space Network has been developed for the primary purpose of increasing EIRP at the spacecraft. Greater EIRP ensures greater reach, higher uplink data rates for command and configuration control, as well as improved search and recovery capabilities during spacecraft emergencies. It has been conjectured that Doppler-delay radar imaging of lunar targets can be extended to planetary imaging, where the long baseline of the uplink array can provide greater resolution than a single antenna, as well as potentially higher EIRP. However, due to the well known R-4 loss in radar links, imaging of distant planets is a very challenging endeavor, requiring accurate phasing of the Uplink Array antennas, cryogenically cooled low-noise receiver amplifiers, and sophisticated processing of the received data to extract the weak echoes characteristic of planetary radar. This article describes experiments currently under way to image the planets Mercury and Venus, highlights improvements in equipment and techniques, and presents planetary images obtained to date with two 34 meter antennas configured as a coherently phased Uplink Array.

  15. Physical properties of sediments from Keathley Canyon and Atwater Valley, JIP Gulf of Mexico gas hydrate drilling program

    USGS Publications Warehouse

    Winters, W.J.; Dugan, Brandon; Collett, T.S.

    2008-01-01

    Physical property measurements and consolidation behavior are different between sediments from Atwater Valley and Keathley Canyon in the northern Gulf of Mexico. Void ratio and bulk density of Atwater Valley sediment from a seafloor mound (holes ATM1 and ATM2) show little effective stress (or depth) dependence to 27 meters below seafloor (mbsf), perhaps owing to fluidized transport through the mound itself with subsequent settling onto the seafloor or mound flanks. Off-mound sediments (hole AT13-2) have bulk physical properties that are similar to mound sediments above 27 mbsf, but void ratio and porosity decrease below that depth. Properties of shallow (<50 mbsf) Keathley Canyon sediments (KC151-3) change with increasing effective stress (or depth) compared to Atwater Valley, but vary little below that depth. Organic carbon is present in concentrations between typical near-shore and deep-sea sediments. Organic carbon-to-nitrogen ratios suggest that the organic matter contained in Atwater Valley off-mound and mound sites came from somewhat different sources. The difference in organic carbon-to-nitrogen ratios between Atwater Valley and Keathley Canyon is more pronounced. At Keathley Canyon a more terrigenous source of the organic matter is indicated. Grain sizes are typically silty clay or clay within the two basins reflecting similar transport energy. However, the range in most shallow sediment properties is significantly different between the two basins. Bulk density profiles agree with logging results in Atwater Valley and Keathley Canyon. Agreement between lab-derived and logging-derived properties supports using logging data to constrain bulk physical properties where cores were not collected.

  16. Theoretical Models of Optical Transients. I. A Broad Exploration of the Duration-Luminosity Phase Space

    NASA Astrophysics Data System (ADS)

    Villar, V. Ashley; Berger, Edo; Metzger, Brian D.; Guillochon, James

    2017-11-01

    The duration-luminosity phase space (DLPS) of optical transients is used, mostly heuristically, to compare various classes of transient events, to explore the origin of new transients, and to influence optical survey observing strategies. For example, several observational searches have been guided by intriguing voids and gaps in this phase space. However, we should ask, do we expect to find transients in these voids given our understanding of the various heating sources operating in astrophysical transients? In this work, we explore a broad range of theoretical models and empirical relations to generate optical light curves and to populate the DLPS. We explore transients powered by adiabatic expansion, radioactive decay, magnetar spin-down, and circumstellar interaction. For each heating source, we provide a concise summary of the basic physical processes, a physically motivated choice of model parameter ranges, an overall summary of the resulting light curves and their occupied range in the DLPS, and how the various model input parameters affect the light curves. We specifically explore the key voids discussed in the literature: the intermediate-luminosity gap between classical novae and supernovae, and short-duration transients (≲ 10 days). We find that few physical models lead to transients that occupy these voids. Moreover, we find that only relativistic expansion can produce fast and luminous transients, while for all other heating sources events with durations ≲ 10 days are dim ({M}{{R}}≳ -15 mag). Finally, we explore the detection potential of optical surveys (e.g., Large Synoptic Survey Telescope) in the DLPS and quantify the notion that short-duration and dim transients are exponentially more difficult to discover in untargeted surveys.

  17. Preliminary evaluation of cryogenic two-phase flow imaging using electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Xie, Huangjun; Yu, Liu; Zhou, Rui; Qiu, Limin; Zhang, Xiaobin

    2017-09-01

    The potential application of the 2-D eight-electrode electrical capacitance tomography (ECT) to the inversion imaging of the liquid nitrogen-vaporous nitrogen (LN2-VN2) flow in the tube is theoretically evaluated. The phase distribution of the computational domain is obtained using the simultaneous iterative reconstruction technique with variable iterative step size. The detailed mathematical derivations for the calculations are presented. The calculated phase distribution for the two detached LN2 column case shows the comparable results with the water-air case, regardless of the much reduced dielectric permittivity of LN2 compared with water. The inversion images of total eight different LN2-VN2 flow patterns are presented and quantitatively evaluated by calculating the relative void fraction error and the correlation coefficient. The results demonstrate that the developed reconstruction technique for ECT has the capacity to reconstruct the phase distribution of the complex LN2-VN2 flow, while the accuracy of the inversion images is significantly influenced by the size of the discrete phase. The influence of the measurement noise on the image quality is also considered in the calculations.

  18. Housatonic River Basin, Danbury, Connecticut. Lower Kohanza Dam (CT 00064). National Dam Inspection Program. Phase I Inspection Report.

    DTIC Science & Technology

    1981-05-01

    CONNECTICUT PHASE I INSPECTION REPORT’ I NATIONAL DAM INSPECTION PRGRAM 1 NATIONAL DAM INSPECTION PROGRAM PHASE I INSPECTION REPORT Identification No...of the toe of the aam and backtill the resulting voids with a suitable compacted material. Grass shoula be planted over the repairea areas to prevent

  19. Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching.

    PubMed

    Pathak, Nikky; Butcher, Cliff; Worswick, Michael James; Bellhouse, Erika; Gao, Jeff

    2017-03-27

    The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP) and Dual-Phase (DP) steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition) or drilled and then reamed (reamed edge condition). The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM) analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures.

  20. Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching

    PubMed Central

    Pathak, Nikky; Butcher, Cliff; Worswick, Michael James; Bellhouse, Erika; Gao, Jeff

    2017-01-01

    The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP) and Dual-Phase (DP) steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition) or drilled and then reamed (reamed edge condition). The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM) analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures. PMID:28772707

  1. Self-assembled titanium phosphonate nanomaterial having a mesoscopic void space and its optoelectronic application.

    PubMed

    Pramanik, Malay; Patra, Astam K; Bhaumik, Asim

    2013-04-14

    Here we report the synthesis of a new crystalline titanium phosphonate material (HTiP-7) having a self-assembled nanostructure and a mesoscopic void space without the aid of any surfactant or templating agent. The material has been synthesized hydrothermally through the reaction between benzene-1,3,5-triphosphonic acid (BTPA) and titanium(iv) isopropoxide at neutral pH at 453 K for 24 h. This hybrid phosphonate material has been thoroughly characterized by powder X-ray diffraction, N2 sorption, HR TEM, FE SEM, TG-DTA, FT IR and UV-Vis diffuse reflectance spectroscopic studies. Two very well-known software packages, REFLEX and CELSIZ unit cell refinement programs, are employed to establish the triclinic crystal phase of this hybrid material (HTiP-7). Very tiny nanocrystals of HTiP-7 self-aggregated to form spherical nanoparticles of dimension ca. 25 nm together with a mesoscopic void space and good BET surface area (255 m(2) g(-1)). The framework is thermally stable up to 650 K. The material showed excellent carrier mobility for photocurrent generation in the presence of a photosensitizer molecule (Rose Bengal). To the best of our knowledge this is the first report of a photon-to-electron energy transfer process over a dye doped titanium phosphonate nanomaterial.

  2. Three new 5-fold interpenetrating diamondoid frameworks constructed by rigid diimidazole and dicarboxylate ligands

    NASA Astrophysics Data System (ADS)

    Huo, Jianqiang; Yan, Shuai; Li, Haiqiang; Yu, Donghui; Arulsamy, Navamoney

    2018-03-01

    A series of three-dimensional coordination polymers, namely, [Cd(BIMB)(SCA)]n (1), [M(BIMB)(trans-CHDC)]n (2, M = Cd2+; 3, M = Co2+), where BIMB = 1,4-di(1H-imidazol-1-yl)benzene, SCA2- = succinate dianion, CHDC2- = cyclohexane-1,4-dicarboxylate dianion) are synthesized hydro/solvatothermal methods. The products are characterized by elemental analysis and single-crystal X-ray diffraction data. Both the dianion and BIMB bridge different pairs of the metal ions, the three complexes are polymeric and their three-dimensional topology feature a diamond-like metal-organic framework (MOF). Owing to the length of the two bridging ligands, moderate size voids are formed in the diamondoid networks. However, the voids are filled by mutual interpenetration of four independent equivalent frameworks in a 5-fold interpenetrating architecture, and there is no sufficient void volume available for any guest molecules. The phase purity and thermal stability of the compounds are verified by powder X-ray diffraction (PXRD) and thermogravimetric (TG) data. The solid-state fluorescence spectra for the 3d10 Cd2+ MOF's 1 and 2 reveal significant enhancement in their emission intensities in comparison to the non-metallated BIMB. The enhanced emission is attributed to perturbation of intra-ligand emission states due to Cd2+ coordination.

  3. Sacral neuromodulation for the treatment of neurogenic lower urinary tract dysfunction caused by multiple sclerosis: a single-centre prospective series.

    PubMed

    Engeler, Daniel S; Meyer, Daniel; Abt, Dominik; Müller, Stefanie; Schmid, Hans-Peter

    2015-10-23

    Sacral neuromodulation is well established in the treatment of refractory, non-neurogenic lower urinary tract dysfunction, but its efficacy and safety in patients with lower urinary tract dysfunction of neurological origin is unclear. Only few case series have been reported for multiple sclerosis. We prospectively evaluated the efficacy and safety of sacral neuromodulation in patients with multiple sclerosis. Seventeen patients (13 women, 4 men) treated with sacral neuromodulation for refractory neurogenic lower urinary tract dysfunction caused by multiple sclerosis were prospectively enrolled (2007-2011). Patients had to have stable disease and confirmed neurogenic lower urinary tract dysfunction. Voiding variables, adverse events, and subjective satisfaction were assessed. Sixteen (94 %) patients had a positive test phase with a >70 % improvement. After implantation of the pulse generator (InterStim II), the improvement in voiding variables persisted. At 3 years, the median voided volume had improved significantly from 125 (range 0 to 350) to 265 ml (range 200 to 350) (p < 0.001), the post void residual from 170 (range 0 to 730) to 25 ml (range 0 to 300) (p = 0.01), micturition frequency from 12 (range 6 to 20) to 7 (range 4 to 12) (p = 0.003), and number of incontinence episodes from 3 (range 0 to 10) to 0 (range 0 to 1) (p = 0.006). The median subjective degree of satisfaction was 80 %. Only two patients developed lack of benefit. No major complications occurred. Chronic sacral neuromodulation promises to be an effective and safe treatment of refractory neurogenic lower urinary tract dysfunction in selected patients with multiple sclerosis.

  4. Analysis of thermal energy storage material with change-of-phase volumetric effects

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Ibrahim, Mounir B.

    1990-01-01

    NASA's Space Station Freedom proposed hybrid power system includes photovoltaic arrays with nickel hydrogen batteries for energy storage and solar dynamic collectors driving Brayton heat engines with change-of-phase Thermal Energy Storage (TES) devices. A TES device is comprised of multiple metallic, annular canisters which contain a eutectic composition LiF-CaF2 Phase Change Material (PCM) that melts at 1040 K. A moderately sophisticated LiF-CaF2 PCM computer model is being developed in three stages considering 1-D, 2-D, and 3-D canister geometries, respectively. The 1-D model results indicate that the void has a marked effect on the phase change process due to PCM displacement and dynamic void heat transfer resistance. Equally influential are the effects of different boundary conditions and liquid PCM natural convection. For the second stage, successful numerical techniques used in the 1-D phase change model are extended to a 2-D (r,z) PCM containment canister model. A prototypical PCM containment canister is analyzed and the results are discussed.

  5. Investigation of the plastic fracture of high-strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Van Stone, R. H.; Merchant, R. H.; Low, J. R., Jr.

    1974-01-01

    In a study of plastic fracture in five high-strength aluminum alloys (2014, 2024, 2124, 7075, and 7079), it has been shown that fracture toughness is affected primarily by the size and volume fraction of the larger (2 to 10 microms) second-phase particles. Certain of these particles crack at small plastic strains, nucleating voids which, with further plastic strain, coalesce to cause fracture. Not all second-phase particles crack at small plastic strains, and qualitative analysis of those which are primarily responsible for void nucleation shows that they contain iron or silicon or both. This result suggests that a reduction in the iron and silicon impurity content of the alloys should improve fracture toughness without loss of strength.

  6. Nanoparticle coating of a microchannel surface is an effective method for increasing the critical heat flux

    NASA Astrophysics Data System (ADS)

    Shustov, M. V.; Kuzma-Kichta, Yu. A.; Lavrikov, A. V.

    2017-04-01

    Results are presented of an investigation into water boiling in a single microchannel 0.2 mm high, 3 mm wide, and 13.7 mm long with a smooth heating surface or with a coating from aluminum oxide nanoparticles. The experimental procedure and the test setup are described. The top wall of the microchannel is made of glass so that video recording in the reflected light of the process can be made. A coating of Al2O3 particles is applied onto the heating surface before the experiments using a method developed by the authors of the paper. The experiments yielded data on heat transfer and void fraction and its fluctuations for the bubble and transient boiling in the microchannel. The dependence was established of the heat flux on the temperature of the microchannel wall with a smooth surface or a surface with Al2O3 nanoparticle coating for various mass flows in the microchannel. The boiling crisis has been found to occur in the microchannel with a nanoparticle coating at a considerably higher heat flux than that in the channel without coating. The experimental data also suggest that the nanoparticle coating improves heat transfer in the transition boiling region. Processing of the data obtained using a high-speed video revealed void fraction fluctuations enabling us to describe two-phase flow regimes with the flow boiling in a microchannel. It has been found that a return flow occurs in the microchannel under certain conditions. A hypothesis for its causes is proposed. The dependence of the void fraction on the steam quality in the microchannel with or without a nanoparticle coating was determined from the video records. The experimental data on void fraction for boiling in the microchannel without coating are approximated by an empirical correlation. The experiments demonstrate that the void fraction during boiling in the microchannel with a nanoparticle coating is higher than during boiling in the channel without coating (where φ and x are the void fraction and the steam quality, respectively) in the region of a sharp increase in the φ( x) curve.

  7. Pores and Void in Asclepiades’ Physical Theory

    PubMed Central

    Leith, David

    2012-01-01

    This paper examines a fundamental, though relatively understudied, aspect of the physical theory of the physician Asclepiades of Bithynia, namely his doctrine of pores. My principal thesis is that this doctrine is dependent on a conception of void taken directly from Epicurean physics. The paper falls into two parts: the first half addresses the evidence for the presence of void in Asclepiades’ theory, and concludes that his conception of void was basically that of Epicurus; the second half focuses on the precise nature of Asclepiadean pores, and seeks to show that they represent void interstices between the primary particles of matter which are the constituents of the human body, and are thus exactly analogous to the void interstices between atoms within solid objects in Epicurus’ theory. PMID:22984299

  8. Abdominal strength in voiding cystometry: a risk factor for recurrent urinary tract infections in women.

    PubMed

    Salinas, Jesus; Virseda, Miguel; Méndez, Santiago; Menéndez, Pablo; Esteban, Manuel; Moreno, Jesus

    2015-12-01

    Recurrent urinary tract infections are a common condition in women. The aim of this study is the evaluation of lower urinary tract dysfunctions that are risk factors for recurrent urinary tract infections in women. We conducted a case-control study in 49 women with recurrent urinary tract infections (rUTIs) and 49 control women without rUTIs, comparing the urinary symptoms and urodynamic data of both groups. The main significant differences between these groups were age (the women were older in the control group) and the value of abdominal pressure during voiding cystometry (this was higher in the group with rUTIs). After controlling age as a confounding factor, it was confirmed that the value of maximum abdominal pressure during voiding was the only factor to facilitate the rUTIs and the ideal cut-off was 28 cm H(2)O. Abdominal strength in the voiding phase constitutes a risk factor for recurrent urinary tract infections in women.

  9. Sub-pm{{\\sqrt{Hz}^{-1}}} non-reciprocal noise in the LISA backlink fiber

    NASA Astrophysics Data System (ADS)

    Fleddermann, Roland; Diekmann, Christian; Steier, Frank; Tröbs, Michael; Heinzel, Gerhard; Danzmann, Karsten

    2018-04-01

    The future space-based gravitational wave detector laser interferometer space antenna (LISA) requires bidirectional exchange of light between its two optical benches on board of each of its three satellites. The current baseline foresees a polarization-maintaining single-mode fiber for this backlink connection. Phase changes which are common in both directions do not enter the science measurement, but differential (‘non-reciprocal’) phase fluctuations directly do and must thus be guaranteed to be small enough. We have built a setup consisting of a Zerodur baseplate with fused silica components attached to it using hydroxide-catalysis bonding and demonstrated the reciprocity of a polarization-maintaining single-mode fiber at the 1 pm \\sqrt{Hz}-1 level as is required for LISA. We used balanced detection to reduce the influence of parasitic optical beams on the reciprocity measurement and a fiber length stabilization to avoid nonlinear effects in our phase measurement system (phase meter). For LISA, a different phase meter is planned to be used that does not show this nonlinearity. We corrected the influence of beam angle changes and temperature changes on the reciprocity measurement in post-processing.

  10. Tapping to a Slow Tempo in the Presence of Simple and Complex Meters Reveals Experience-Specific Biases for Processing Music

    PubMed Central

    Ullal-Gupta, Sangeeta; Hannon, Erin E.; Snyder, Joel S.

    2014-01-01

    Musical meters vary considerably across cultures, yet relatively little is known about how culture-specific experience influences metrical processing. In Experiment 1, we compared American and Indian listeners' synchronous tapping to slow sequences. Inter-tone intervals contained silence or to-be-ignored rhythms that were designed to induce a simple meter (familiar to Americans and Indians) or a complex meter (familiar only to Indians). A subset of trials contained an abrupt switch from one rhythm to another to assess the disruptive effects of contradicting the initially implied meter. In the unfilled condition, both groups tapped earlier than the target and showed large tap-tone asynchronies (measured in relative phase). When inter-tone intervals were filled with simple-meter rhythms, American listeners tapped later than targets, but their asynchronies were smaller and declined more rapidly. Likewise, asynchronies rose sharply following a switch away from simple-meter but not from complex-meter rhythm. By contrast, Indian listeners performed similarly across all rhythm types, with asynchronies rapidly declining over the course of complex- and simple-meter trials. For these listeners, a switch from either simple or complex meter increased asynchronies. Experiment 2 tested American listeners but doubled the duration of the synchronization phase prior to (and after) the switch. Here, compared with simple meters, complex-meter rhythms elicited larger asynchronies that declined at a slower rate, however, asynchronies increased after the switch for all conditions. Our results provide evidence that ease of meter processing depends to a great extent on the amount of experience with specific meters. PMID:25075514

  11. Acid-Base Electronic Properties in the Gas Phase: Permanent Electric Dipole Moments of a Photoacidic Substrate.

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Morgan, Philip J.; Pratt, David W.

    2009-06-01

    The permanent electric dipole moments of two conformers of 2-naphthol (2HN) in their ground and electronically excited states have been experimentally determined by Stark-effect measurements in a molecular beam. When in solution, 2HN is a weak base in the S{_0} state and a strong acid in the S{_1} state. Using sequential solvation of the cis-2HN photoacid with the base ammonia, we have begun to approach condensed phase acid-base interactions with gas phase rotational resolution. Our study, void of bulk solvent perturbations, is of importance to the larger community currently describing aromatic biomolecule and "super" photoacid behavior via theoretical modeling and condensed phase solvatochromism. [2] A. Weller. Prog. React. Kinet. 5, 273 (1970). [3] D. F. Plusquellic, X. -Q. Tan, and D. W. Pratt. J. Chem. Phys. 96, 8026 (1992).

  12. Basic study on hot-wire flow meter in forced flow of liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Oura, Y.; Shirai, Y.; Shiotsu, M.; Murakami, K.; Tatsumoto, H.; Naruo, Y.; Nonaka, S.; Kobayashi, H.; Inatani, Y.; Narita, N.

    2014-01-01

    Liquid hydrogen (LH2) is a key issue in a carbon-free energy infrastructure at the energy storage and transportation stage. The typical features of LH2 are low viscosity, large latent heat and small density, compared with other general liquids. It is necessary to measure a mass flow of liquid hydrogen with a simple and compact method, especially in a two phase separate flow condition. We have proposed applying a hot-wire type flow meter, which is usually used a for gas flow meter, to LH2 flow due to the quite low viscosity and density. A test model of a compact LH2 hot-wire flow meter to measure local flow velocities near and around an inside perimeter of a horizontal tube by resistance thermometry was designed and made. The model flow meter consists of two thin heater wires made of manganin fixed in a 10 mm-diameter and 40 mm-length tube flow path made of GFRP. Each rigid heater wire was set twisted by 90 degrees from the inlet to the outlet along the inner wall. In other words, the wires were aslant with regard to the LH2 stream line. The heated wire was cooled by flowing LH2, and the flow velocity was obtained by means of the difference of the cooling characteristic in response to the flow velocity. In this report, we show results on the basic experiments with the model LH2 hot-wire flow meter. First, the heat transfer characteristics of the two heater wires for several LH2 flow velocities were measured. Second, the heating current was controlled to keep the wire temperature constant for various flow velocities. The relations between the flow velocity and the heating current were measured. The feasibility of the proposed model was confirmed.

  13. Aging and recurrent urinary tract infections are associated with bladder dysfunction in type 2 diabetes.

    PubMed

    Lin, Tzu-Li; Chen, Gin-Den; Chen, Yi-Ching; Huang, Chien-Ning; Ng, Soo-Cheen

    2012-09-01

    The objective of this study was to demonstrate the diversity of urodynamic findings and temporal effects on bladder dysfunction in diabetes as well as to evaluate the predisposing factors that attenuate the storage and voiding function of diabetic women. In this prospective study, 181 women with type 2 diabetes mellitus (DM) and lower urinary tract dysfunction underwent complete urogynecological evaluations and urodynamic studies. The patients' histories of DM and the treatment agents used were documented from chart records and interviews. The urodynamic diagnoses were recategorized into two groups for comparison, namely overactive detrusor (detrusor overactivity and/or increased bladder sensation as well as mixed incontinence) and voiding dysfunction (detrusor hyperactivity with insufficient contractility and detrusor underactivity with poor voiding efficiency) in order to evaluate the temporal effect of DM on diabetic bladder dysfunction. The development of bladder dysfunction showed a trend involving time-dependent progression, beginning with storage problems (i.e. advancing from urodynamic stress incontinence to detrusor overactivity and/or increased bladder sensation) and eventually led to impaired voiding function. The duration of DM relative to the urodynamic diagnoses of these women was longer in women with voiding dysfunction (6.8 ± 2.8 years with urodynamic stress incontinence, 7.3 ± 6.5 years with detrusor overactivity and/or increased bladder sensation, and 10.4 ± 8.3 years with women with voiding dysfunction). Notwithstanding these findings, stepwise logistic regression analysis indicated that age and recurrent urinary tract infections were the two independent factors associated with developing voiding dysfunction. The urodynamic study revealed a temporal effect on bladder function, and women with diabetic voiding dysfunction were found to have had a longer duration of DM than women with an overactive detrusor. However, aging and recurrent urinary tract infections are the two independent factors that contribute to impaired voiding function and diabetic bladder dysfunction. Copyright © 2012. Published by Elsevier B.V.

  14. Phase information contained in meter-scale SAR images

    NASA Astrophysics Data System (ADS)

    Datcu, Mihai; Schwarz, Gottfried; Soccorsi, Matteo; Chaabouni, Houda

    2007-10-01

    The properties of single look complex SAR satellite images have already been analyzed by many investigators. A common belief is that, apart from inverse SAR methods or polarimetric applications, no information can be gained from the phase of each pixel. This belief is based on the assumption that we obtain uniformly distributed random phases when a sufficient number of small-scale scatterers are mixed in each image pixel. However, the random phase assumption does no longer hold for typical high resolution urban remote sensing scenes, when a limited number of prominent human-made scatterers with near-regular shape and sub-meter size lead to correlated phase patterns. If the pixel size shrinks to a critical threshold of about 1 meter, the reflectance of built-up urban scenes becomes dominated by typical metal reflectors, corner-like structures, and multiple scattering. The resulting phases are hard to model, but one can try to classify a scene based on the phase characteristics of neighboring image pixels. We provide a "cooking recipe" of how to analyze existing phase patterns that extend over neighboring pixels.

  15. 3D investigation on polystyrene colloidal crystals by floatage self-assembly with mixed solvent via synchrotron radiation x-ray phase-contrast computed tomography

    NASA Astrophysics Data System (ADS)

    Fu, Yanan; Xie, Honglan; Deng, Biao; Du, Guohao; Xiao, Tiqiao

    2017-06-01

    The floatage self-assembly method was introduced with mixed solvent as the medium of polystyrene sphere suspension to fabricate the colloidal crystal. The three dimensional (3D) void system of the colloidal crystal was noninvasively characterized by synchrotron radiation phase-contrast computed tomography, and the quantitative image analysis was implemented aiming to the polystyrene sphere colloidal crystal. Comparing with gravity sedimentation method, the three samples fabricated from floatage self-assembly with mixed solvents have the lowest porosity, and when ethylene glycol and water were mixed with ratio of 1:1, the lowest porosity of 27.49% could be achieved, that has been very close to the minimum porosity of ordered 3D monodisperse sphere array (26%). In single slices, the porosities and fractal dimension for the voids were calculated. The results showed that two factors would significantly influence the porosity of the whole colloidal crystal: the first deposited sphere layer's orderliness and the sedimentation speed of the spheres. The floatage self-assembly could induce a stable close-packing process, resulted from the powerful nucleation force-lateral capillary force coupled with the mixed solvent to regulate the floating upward speed for purpose of matching the assembly rate.

  16. Finite Element Analysis of Transverse Compressive Loads on Superconducting Nb3Sn Wires Containing Voids

    NASA Astrophysics Data System (ADS)

    D'Hauthuille, Luc; Zhai, Yuhu; Princeton Plasma Physics Lab Collaboration; University of Geneva Collaboration

    2015-11-01

    High field superconductors play an important role in many large-scale physics experiments, particularly particle colliders and fusion devices such as the LHC and ITER. The two most common superconductors used are NbTi and Nb3Sn. Nb3Sn wires are favored because of their significantly higher Jc, allowing them to produce much higher magnetic fields. The main disadvantage is that the superconducting performance of Nb3Sn is highly strain-sensitive and it is very brittle. The strain-sensitivity is strongly influenced by two factors: plasticity and cracked filaments. Cracks are induced by large stress concentrators due to the presence of voids. We will attempt to understand the correlation between Nb3Sn's irreversible strain limit and the void-induced stress concentrations around the voids. We will develop accurate 2D and 3D finite element models containing detailed filaments and possible distributions of voids in a bronze-route Nb3Sn wire. We will apply a compressive transverse load for the various cases to simulate the stress response of a Nb3Sn wire from the Lorentz force. Doing this will further improve our understanding of the effect voids have on the wire's mechanical properties, and thus, the connection between the shape & distribution of voids and performance degradation.

  17. Three-Dimensional Analysis of Voids in AM60B Magnesium Tensile Bars Using Computed Tomography Imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, A M

    2001-05-01

    In an effort to increase automobile fuel efficiency as well as decrease the output of harmful greenhouse gases, the automotive industry has recently shown increased interest in cast light metals such as magnesium alloys in an effort to increase weight savings. Currently several magnesium alloys such as AZ91 and AM60B are being used in structural applications for automobiles. However, these magnesium alloys are not as well characterized as other commonly used structural metals such as aluminum. This dissertation presents a methodology to nondestructively quantify damage accumulation due to void behavior in three dimensions in die-cast magnesium AM60B tensile bars asmore » a function of mechanical load. Computed tomography data was acquired after tensile bars were loaded up to and including failure, and analyzed to characterize void behavior as it relates to damage accumulation. Signal and image processing techniques were used along with a cluster labeling routine to nondestructively quantify damage parameters in three dimensions. Void analyses were performed including void volume distribution characterization, nearest neighbor distance calculations, shape parameters, and volumetric renderings of voids in the alloy. The processed CT data was used to generate input files for use in finite element simulations, both two- and three-dimensional. The void analyses revealed that the overwhelming source of failure in each tensile bar was a ring of porosity within each bar, possibly due to a solidification front inherent to the casting process. The measured damage parameters related to void nucleation, growth, and coalescence were shown to contribute significantly to total damage accumulation. Void volume distributions were characterized using a Weibull function, and the spatial distributions of voids were shown to be clustered. Two-dimensional finite element analyses of the tensile bars were used to fine-tune material damage models and a three-dimensional mesh of an extracted portion of one tensile bar including voids was generated from CT data and used as input to a finite element analysis.« less

  18. The effect of void creation prior to vertebroplasty on intravertebral pressure and cement distribution in cadaveric spines with simulated metastases.

    PubMed

    Li, Ka; Yan, Jun; Yang, Qiang; Li, Zhenfeng; Li, Jianmin

    2015-01-28

    For osteoporosis or spinal metastases, percutaneous vertebroplasty is effective in pain relief and improvement of mobility. However, the complication rate (cement extravasation and fat embolisms) is relatively higher in the treatment of spinal metastases. The presence of tumor tissue plays a significant role in intravertebral pressure and cement distribution and thereby affects the occurrence of complications. We investigated the effect of void creation prior to vertebroplasty on intravertebral pressure and cement distribution in spinal metastases. Eighteen vertebrae (T8-L4) from five cadaveric spines were randomly allocated for two groups (group with and without void) of nine vertebrae each. Defect was created by removing a central core of cancellous bone in the vertebral body and then filling it with 30% or 100% fresh muscle paste by volume to simulate void creation or no void creation, respectively. Then, 20% bone cement by volume of the vertebral body was injected into each specimen through a unipedicular approach at a rate of 3 mL/min. The gender of the donor, vertebral body size, bone density, cement volume, and intravertebral pressure were recorded. Then, computed tomography scans and cross sections were taken to evaluate the cement distribution in vertebral bodies. No significant difference was found between the two groups in terms of the gender of the donor, vertebral body size, bone density, or bone cement volume. The average maximum intravertebral pressure in the group with void creation was significantly lower than that in the group without void creation (1.20 versus 5.09 kPa, P = 0.001). Especially during the filling of void, the difference was more pronounced. Void creation prior to vertebroplasty allowed the bone cement to infiltrate into the lytic defect. In vertebroplasty for spinal metastases, void creation produced lower intravertebral pressure and facilitated cement filling. To reduce the occurrence of complication, it may be an alternative to eliminate the tumor tissue to create a void prior to cement injection.

  19. Analyzing near infrared scattering from human skin to monitor changes in hematocrit

    NASA Astrophysics Data System (ADS)

    Chaiken, Joseph; Deng, Bin; Goodisman, Jerry; Shaheen, George; Bussjager, R. J.

    2012-01-01

    The leading preventable cause of death, world-wide, civilian or military, for all people between the ages of 18-45 is undetected internal hemorrhage. Autonomic compensation mechanisms mask changes such as e.g. hematocrit fluctuations that could give early warning if only they could be monitored continuously with reasonable degrees of precision and relative accuracy. Probing tissue with near infrared radiation (NIR) simultaneously produces remitted fluorescence and Raman scattering (IE) plus Rayleigh/Mie light scattering (EE) that noninvasively give chemical and physical information about the materials and objects within. We model tissue as a three-phase system: plasma and red blood cell (RBC) phases that are mobile and a static tissue phase. In vivo, any volume of tissue naturally experiences spatial and temporal fluctuations of blood plasma and RBC content. Plasma and RBC fractions may be discriminated from each other on the basis of their physical, chemical and optical properties. Thus IE and EE from NIR probing yield information about these fractions. Assuming there is no void volume in viable tissue, or that void volume is constant, changes in plasma and RBC volume fractions may be calculated from simultaneous measurements of the two observables, EE and IE. In a previously published analysis we showed the underlying phenomenology but did not provide an algorithm for calculating volume fractions from experimental data. Here we present a simple analysis that allows continuous monitoring of fluid fraction and hematocrit (Hct) changes by measuring IE and EE, and apply it to some experimental in vivo measurements.

  20. Estimating the population distribution of usual 24-hour sodium excretion from timed urine void specimens using a statistical approach accounting for correlated measurement errors.

    PubMed

    Wang, Chia-Yih; Carriquiry, Alicia L; Chen, Te-Ching; Loria, Catherine M; Pfeiffer, Christine M; Liu, Kiang; Sempos, Christopher T; Perrine, Cria G; Cogswell, Mary E

    2015-05-01

    High US sodium intake and national reduction efforts necessitate developing a feasible and valid monitoring method across the distribution of low-to-high sodium intake. We examined a statistical approach using timed urine voids to estimate the population distribution of usual 24-h sodium excretion. A sample of 407 adults, aged 18-39 y (54% female, 48% black), collected each void in a separate container for 24 h; 133 repeated the procedure 4-11 d later. Four timed voids (morning, afternoon, evening, overnight) were selected from each 24-h collection. We developed gender-specific equations to calibrate total sodium excreted in each of the one-void (e.g., morning) and combined two-void (e.g., morning + afternoon) urines to 24-h sodium excretion. The calibrated sodium excretions were used to estimate the population distribution of usual 24-h sodium excretion. Participants were then randomly assigned to modeling (n = 160) or validation (n = 247) groups to examine the bias in estimated population percentiles. Median bias in predicting selected percentiles (5th, 25th, 50th, 75th, 95th) of usual 24-h sodium excretion with one-void urines ranged from -367 to 284 mg (-7.7 to 12.2% of the observed usual excretions) for men and -604 to 486 mg (-14.6 to 23.7%) for women, and with two-void urines from -338 to 263 mg (-6.9 to 10.4%) and -166 to 153 mg (-4.1 to 8.1%), respectively. Four of the 6 two-void urine combinations produced no significant bias in predicting selected percentiles. Our approach to estimate the population usual 24-h sodium excretion, which uses calibrated timed-void sodium to account for day-to-day variation and covariance between measurement errors, produced percentile estimates with relatively low biases across low-to-high sodium excretions. This may provide a low-burden, low-cost alternative to 24-h collections in monitoring population sodium intake among healthy young adults and merits further investigation in other population subgroups. © 2015 American Society for Nutrition.

  1. Influence of voids distribution on the deformation behavior of nanocrystalline palladium

    NASA Astrophysics Data System (ADS)

    Bachurin, D. V.

    2018-07-01

    Uniaxial deformation of three-dimensional nanocrystalline palladium containing porosity in the form of voids was investigated by means of molecular dynamics method. Simulations were performed at temperature of 300 K and at a constant strain rate of 108s-1. Two cases of voids distribution were considered: random and at triple or quadrupole junctions. It has been revealed that both the voids distribution and subsequent annealing at elevated temperature influence the deformation behavior of nanocrystalline palladium. In particular, the presence of voids at grain junctions results in a reduction of the Young's modulus and more pronounced softening effect during plastic deformation. The subsequent annealing evokes shrinkage of voids and strengthening effect. Contribution of grain boundary accommodation processes into both elastic and plastic deformation of nanocrystalline materials is discussed.

  2. Constrained optimization framework for interface-aware sub-scale dynamics models for voids closure in Lagrangian hydrodynamics

    DOE PAGES

    Barlow, Andrew; Klima, Matej; Shashkov, Mikhail

    2018-04-02

    In hydrocodes, voids are used to represent vacuum and model free boundaries between vacuum and real materials. We give a systematic description of a new treatment of void closure in the framework of the multimaterial arbitrary Lagrangian–Eulerian (ALE) methods. This includes a new formulation of the interface-aware sub-scale-dynamics (IA-SSD) closure model for multimaterial cells with voids, which is used in the Lagrangian stage of our indirect ALE scheme. The results of the comprehensive testing of the new model are presented for one- and two-dimensional multimaterial calculations in the presence of voids. Finally, we also present a sneak peek of amore » realistic shaped charge calculation in the presence of voids and solids.« less

  3. Constrained optimization framework for interface-aware sub-scale dynamics models for voids closure in Lagrangian hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barlow, Andrew; Klima, Matej; Shashkov, Mikhail

    In hydrocodes, voids are used to represent vacuum and model free boundaries between vacuum and real materials. We give a systematic description of a new treatment of void closure in the framework of the multimaterial arbitrary Lagrangian–Eulerian (ALE) methods. This includes a new formulation of the interface-aware sub-scale-dynamics (IA-SSD) closure model for multimaterial cells with voids, which is used in the Lagrangian stage of our indirect ALE scheme. The results of the comprehensive testing of the new model are presented for one- and two-dimensional multimaterial calculations in the presence of voids. Finally, we also present a sneak peek of amore » realistic shaped charge calculation in the presence of voids and solids.« less

  4. Simulation-aided constitutive law development - Assessment of low triaxiality void nucleation models via extended finite element method

    NASA Astrophysics Data System (ADS)

    Zhao, Jifeng; Kontsevoi, Oleg Y.; Xiong, Wei; Smith, Jacob

    2017-05-01

    In this work, a multi-scale computational framework has been established in order to investigate, refine and validate constitutive behaviors in the context of the Gurson-Tvergaard-Needleman (GTN) void mechanics model. The eXtended Finite Element Method (XFEM) has been implemented in order to (1) develop statistical volume elements (SVE) of a matrix material with subscale inclusions and (2) to simulate the multi-void nucleation process due to interface debonding between the matrix and particle phases. Our analyses strongly suggest that under low stress triaxiality the nucleation rate of the voids f˙ can be well described by a normal distribution function with respect to the matrix equivalent stress (σe), as opposed to that proposed (σbar + 1 / 3σkk) in the original form of the single void GTN model. The modified form of the multi-void nucleation model has been validated based on a series of numerical experiments with different loading conditions, material properties, particle shape/size and spatial distributions. The utilization of XFEM allows for an invariant finite element mesh to represent varying microstructures, which implies suitability for drastically reducing complexity in generating the finite element discretizations for large stochastic arrays of microstructure configurations. The modified form of the multi-void nucleation model is further applied to study high strength steels by incorporating first principles calculations. The necessity of using a phenomenological interface separation law has been fully eliminated and replaced by the physics-based cohesive relationship obtained from Density Functional Theory (DFT) calculations in order to provide an accurate macroscopic material response.

  5. Materials characterization of free volume and void properties by two-dimensional positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Hongmin; Van Horn, J. David; Jean, Y. C.; Hung, Wei-Song; Lee, Kueir-Rarn

    2013-04-01

    Positron annihilation lifetime spectroscopy (PALS) has been widely used to determine the free volume and void properties in polymeric materials. Recently, a two dimensional positron annihilation lifetime spectroscopy (2DPALS) system has been developed for membrane applications. The system measures the coincident signals between the lifetime and the energy which could separate the 2γ and 3γ annihilations and improve the accuracy in the determination of the free volume and void properties. When 2D-PALS is used in coupling with a variable mono-energy slow positron beam, it could be applied to a variety of material characterization. Results of free volumes and voids properties in a multi-layer polymer membrane characterized using 2D-PALS are presented.

  6. Two-phase flow research using the DC-9/KC-135 apparatus

    NASA Technical Reports Server (NTRS)

    McQuillen, John B.; Neumann, Eric S.; Shoemaker, J. Michael

    1996-01-01

    Low-gravity gas-liquid flow research can be conducted aboard the NASA Lewis Research Center DC-9 or the Johnson Space Center KC-135. Air and water solutions serve as the test liquids in cylindrical test sections with constant or variable inner diameters of approximately 2.54 cm and lengths of up to 3.0 m. Superficial velocities range from 0.1 to 1.1 m/sec for liquids and from 0.1 to 25 m/sec for air. Flow rate, differential pressure, void fraction, film thickness, wall shear stress, and acceleration data are measured and recorded at data rates of up to 1000 Hz throughout the 20-sec duration of the experiment. Flow is visualized with a high-speed video system. In addition, the apparatus has a heat-transfer capability whereby sensible heat is transferred between the test-section wall and a subcooled liquid phase so that the heat-transfer characteristics of gas-liquid two-phase flows can be determined.

  7. Using the New Two-Phase-Titan to Evaluate Potential Lahar Hazard at Villa la Angostura, Argentina

    NASA Astrophysics Data System (ADS)

    Sheridan, M. F.; Cordoba, G. A.; Viramonte, J. G.; Folch, A.; Villarosa, G.; Delgado, H.

    2013-05-01

    The 2011 eruption of Puyehue Volcano, located in the Cordon del Caulle volcanic complex, Chile, produced an ash plume that mainly affected downwind areas in Argentina. This plume forced air transport in the region to be closed for several weeks. Tephra fall deposits from this eruption affected many locations and pumice deposits on lakes killed most of the fish. As the ash emission occurred during the southern hemisphere winter (June), ash horizons were inter layered with layers of snow. This situation posed a potential threat for human settlements located downslope of the mountains. This was the case at Villa la Angostura, Neuquen province, Argentina, which sits on a series of fluvial deposits that originate in three major basins: Piedritas, Colorado, and Florencia. The Institute of Geological Survey of Argentina (SEGEMAR) estimated that the total accumulated deposit in each basin contains a ratio of approximately 30% ash and 70% snow. The CyTED-Ceniza Iberoamerican network worked together with Argentinean, Colombian and USA institutions in this hazard assessment. We used the program Two-Phase-Titan to model two scenarios in each of the basins. This computer code was developed at SUNY University at Buffalo supported by NSF Grant EAR 711497. Two-Phase-Titan is a new depth-averaged model for two phase flows that uses balance equations for multiphase mixtures. We evaluate the stresses using a Coulomb law for the solid phase and the typical hydraulic shallow water approach for the fluid phase. The linkage for compositions in the range between the pure end-member phases is accommodated by the inclusion of a phenomenological-based drag coefficient. The model is capable of simulating the whole range of particle volumetric fractions, from pure fluid flows to pure solid avalanches. The initial conditions, volume and solid concentration, required by Two-Phase-Titan were imposed using the SEGEMAR estimation of total deposited volume, assuming that the maximum volume that can flow at once in each of the basins is one half of the total. A second scenario assumed that half of the maximum could also happen. The volumetric solid concentration was chosen to be 30%, in agreement with the estimates of the deposited volume of the ash layers. The Argentinean National Commission of Space (CONAE) initially provided us with a digital elevation model (DEM) of 15 meters resolution. In the six simulations that we performed with this DEM we found that in all cases, the flow coming down slope in the Florencia basin stopped at the same place. A detailed survey that included a field inspection allowed us to discover that the DEM does not adequately reproduce the topography; it shows a non-existent barrier. Subsequently CONAE produced a 10 meter DEM of the area. Using this new DEM the simulation reached places not predicted by the program using the 15 meter DEM.

  8. Cosmic voids detection without density measurements

    NASA Astrophysics Data System (ADS)

    Elyiv, Andrii; Marulli, Federico; Pollina, Giorgia; Baldi, Marco; Branchini, Enzo; Cimatti, Andrea; Moscardini, Lauro

    2015-03-01

    Cosmic voids are effective cosmological probes to discriminate among competing world models. Their identification is generally based on density or geometry criteria that, because of their very nature, are prone to shot noise. We propose two void finders that are based on dynamical criterion to select voids in Lagrangian coordinates and minimize the impact of sparse sampling. The first approach exploits the Zel'dovich approximation to trace back in time the orbits of galaxies located in voids and their surroundings; the second uses the observed galaxy-galaxy correlation function to relax the objects' spatial distribution to homogeneity and isotropy. In both cases voids are defined as regions of the negative velocity divergence, which can be regarded as sinks of the back-in-time streamlines of the mass tracers. To assess the performance of our methods we used a dark matter halo mock catalogue CODECS, and compared the results with those obtained with the ZOBOV void finder. We find that the void divergence profiles are less scattered than the density ones and, therefore, their stacking constitutes a more accurate cosmological probe. The significance of the divergence signal in the central part of voids obtained from both our finders is 60 per cent higher than for overdensity profiles in the ZOBOV case. The ellipticity of the stacked void measured in the divergence field is closer to unity, as expected, than what is found when using halo positions. Therefore, our void finders are complementary to the existing methods, which should contribute to improve the accuracy of void-based cosmological tests.

  9. The leading edge of basement logging science: The detailed in situ volcanic architecture, crustal construction processes, vacancy for water, minerals, and microbes, and beyond

    NASA Astrophysics Data System (ADS)

    Tominaga, M.

    2010-12-01

    Understanding the detailed architecture of the upper ocean crust is one of the key components to advance our knowledge on numerous events occurring in the oceanic lithosphere from spreading ridges to subduction zones. Studies on crustal characterization are limited to either the crustal or hand-specimen scales so far, and little has been done at centimeter - meter scale, which potentially ties those two end-member prospects. The lack of this scale is due mainly to the difficulties in direct sampling and the limited resolution of geophysical experiments; as a consequence, critical questions remain unanswered, e.g., what does the cross-section of actual ocean crust look like and what does it tell us?; where exactly in the lithosphere does fluid exist and promote the deep hydration and biosphere?; to what extent do we average out the heterogeneity in the crustal properties depending on the scale? Ocean Drilling Program (ODP) Hole 1256D is located at the 15 Ma super-fast spreading Cocos Plate and the first drilled hole that successfully penetrate through the intact upper ocean crust. Coring in the Hole 1256D basement is suffered from the low core recovery rates (~ 32 %) and the origins of recovered cores are mostly biased toward formations with minimal fractures. Wire-line logging in this hole becomes, thus, extremely useful for both the physical and chemical characterization of the crust. In particular, Formation MicroScanner (FMS) data acquired from multiple paths during three drilling expeditions have unprecedented lateral coverage of the borehole wall. The FMS images are the first realization of the cross-section of in situ architecture of the intact upper ocean crust with a centimeter-meter scale resolution. A lithostratigraphy model is reconstructed by integrating the analyses on FMS electrofacies, other physical property logs, and recovered cores. The new lithostratigraphy reveals that nearly 50 % of the in situ lithofacies in the Hole 1256D crust consists of either breccias or highly fractured lava flows, inferring that the shipboard stratigraphy with mostly massive flows is inaccurate. The meticulously deciphered lava morphology tie the lava deposition history in Hole 1256D to the East Pacific Rise surface volcanology, and with this, the upper ocean crustal construction processes in the Hole 1256D crust, from the spreading axis to the abyssal plain, can be proposed. Furthermore, the vacancy in the crustal matrix, where water and minerals can be stored and microbes can exist, is determined from the FMS images. The distribution and areas of the surface void calculated by ImageJ image processor reveals that the visible void in the 1256D crust vary 10 to 60 % depending on lithofacies, with the average of 37 %. This downhole distribution of the void areas also shows the positive correlation with previously observed lab-based porosity and 1-D sonic-log based fractional porosity data. Further study is in progress on scaling of the porosity structure from hand-specimen to crustal scales in the Hole 1256D crust: from the lab porosity data, to 1D sonic-log, to the areas of surface void detected observed in the FMS images, and ultimately to the vertical seismic experiments.

  10. Autonomous selection of PDE inpainting techniques vs. exemplar inpainting techniques for void fill of high resolution digital surface models

    NASA Astrophysics Data System (ADS)

    Rahmes, Mark; Yates, J. Harlan; Allen, Josef DeVaughn; Kelley, Patrick

    2007-04-01

    High resolution Digital Surface Models (DSMs) may contain voids (missing data) due to the data collection process used to obtain the DSM, inclement weather conditions, low returns, system errors/malfunctions for various collection platforms, and other factors. DSM voids are also created during bare earth processing where culture and vegetation features have been extracted. The Harris LiteSite TM Toolkit handles these void regions in DSMs via two novel techniques. We use both partial differential equations (PDEs) and exemplar based inpainting techniques to accurately fill voids. The PDE technique has its origin in fluid dynamics and heat equations (a particular subset of partial differential equations). The exemplar technique has its origin in texture analysis and image processing. Each technique is optimally suited for different input conditions. The PDE technique works better where the area to be void filled does not have disproportionately high frequency data in the neighborhood of the boundary of the void. Conversely, the exemplar based technique is better suited for high frequency areas. Both are autonomous with respect to detecting and repairing void regions. We describe a cohesive autonomous solution that dynamically selects the best technique as each void is being repaired.

  11. Design and implementation of Remote Digital Energy Meter (RDEM) based on GSM technology

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Waseem; Wang, Jie; Irfan, Muhammad; Shiraz, M.; Khan, Ali Hassan

    2017-11-01

    Electric power is one of the basic requirement for socio economic and social prosperity of any country, which is mainly employs for domestic, industrial and agricultural sectors. The primary purpose of this research is to design and implement an energy meter which can remotely control and monitor through global system for mobile (GSM) communication technology. For this purpose, a single phase or three phase digital energy meters are used to add on different advanced modules. The energy meter can be activated and display power consumption information at the consumer premises on liquid crystal display and through a short message service (SMS) by using GSM technology. At the power sending end, an energy meter can be remotely control and monitor through GSM technology without any system disturbances. This study will lead to make the system easier, economical, reliable and efficient for the electrical department.

  12. Analysis of radiative and phase-change phenomena with application to space-based thermal energy storage

    NASA Technical Reports Server (NTRS)

    Lund, Kurt O.

    1991-01-01

    The simplified geometry for the analysis is an infinite, axis symmetric annulus with a specified solar flux at the outer radius. The inner radius is either adiabatic (modeling Flight Experiment conditions), or convective (modeling Solar Dynamic conditions). Liquid LiF either contacts the outer wall (modeling ground based testing), or faces a void gap at the outer wall (modeling possible space based conditions). The analysis is presented in three parts: Part 3 considers and adiabatic inner wall and linearized radiation equations; part 2 adds effects of convection at the inner wall; and part 1 includes the effect of the void gap, as well as previous effects, and develops the radiation model further. The main results are the differences in melting behavior which can occur between ground based 1 g experiments and the microgravity flight experiments. Under 1 gravity, melted PCM will always contact the outer wall having the heat flux source, thus providing conductance from this source to the phase change front. In space based tests where a void gap may likely form during solidification, the situation is reversed; radiation is now the only mode of heat transfer and the majority of melting takes place from the inner wall.

  13. Theoretical prediction and atomic kinetic Monte Carlo simulations of void superlattice self-organization under irradiation.

    PubMed

    Gao, Yipeng; Zhang, Yongfeng; Schwen, Daniel; Jiang, Chao; Sun, Cheng; Gan, Jian; Bai, Xian-Ming

    2018-04-26

    Nano-structured superlattices may have novel physical properties and irradiation is a powerful mean to drive their self-organization. However, the formation mechanism of superlattice under irradiation is still open for debate. Here we use atomic kinetic Monte Carlo simulations in conjunction with a theoretical analysis to understand and predict the self-organization of nano-void superlattices under irradiation, which have been observed in various types of materials for more than 40 years but yet to be well understood. The superlattice is found to be a result of spontaneous precipitation of voids from the matrix, a process similar to phase separation in regular solid solution, with the symmetry dictated by anisotropic materials properties such as one-dimensional interstitial atom diffusion. This discovery challenges the widely accepted empirical rule of the coherency between the superlattice and host matrix crystal lattice. The atomic scale perspective has enabled a new theoretical analysis to successfully predict the superlattice parameters, which are in good agreement with independent experiments. The theory developed in this work can provide guidelines for designing target experiments to tailor desired microstructure under irradiation. It may also be generalized for situations beyond irradiation, such as spontaneous phase separation with reaction.

  14. Two-Phase flow instrumentation for nuclear accidents simulation

    NASA Astrophysics Data System (ADS)

    Monni, G.; De Salve, M.; Panella, B.

    2014-11-01

    The paper presents the research work performed at the Energy Department of the Politecnico di Torino, concerning the development of two-phase flow instrumentation and of models, based on the analysis of experimental data, that are able to interpret the measurement signals. The study has been performed with particular reference to the design of power plants, such as nuclear water reactors, where the two-phase flow thermal fluid dynamics must be accurately modeled and predicted. In two-phase flow typically a set of different measurement instruments (Spool Piece - SP) must be installed in order to evaluate the mass flow rate of the phases in a large range of flow conditions (flow patterns, pressures and temperatures); moreover, an interpretative model of the SP need to be developed and experimentally verified. The investigated meters are: Turbine, Venturi, Impedance Probes, Concave sensors, Wire mesh sensor, Electrical Capacitance Probe. Different instrument combinations have been tested, and the performance of each one has been analyzed.

  15. Dimensionality effects in void-induced explosive sensitivity

    DOE PAGES

    Herring, Stuart Davis; Germann, Timothy Clark; Gronbech-Jensen, Niels

    2016-09-02

    Here, the dimensionality of defects in high explosives controls their heat generation and the expansion of deflagrations from them. We compare the behaviour of spherical voids in three dimensions to that of circular voids in two dimensions. The behaviour is qualitatively similar, but the additional focusing along the extra transverse dimension significantly reduces the piston velocity needed to initiate reactions. However, the reactions do not grow as well in three dimensions, so detonations require larger piston velocities. Pressure exponents are seen to be similar to those for the two-dimensional system.

  16. Maintaining Low Voiding Solder Die Attach for Power Die While Minimizing Die Tilt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamm, Randy; Peterson, Kenneth A.

    2015-10-01

    This paper addresses work to minimize voiding and die tilt in solder attachment of a large power die, measuring 9.0 mm X 6.5 mm X 0.1 mm (0.354” x 0.256” x 0.004”), to a heat spreader. As demands for larger high power die continue, minimizing voiding and die tilt is of interest for improved die functionality, yield, manufacturability, and reliability. High-power die generate considerable heat, which is important to dissipate effectively through control of voiding under high thermal load areas of the die while maintaining a consistent bondline (minimizing die tilt). Voiding was measured using acoustic imaging and die tiltmore » was measured using two different optical measurement systems. 80Au-20Sn solder reflow was achieved using a batch vacuum solder system with optimized fixturing. Minimizing die tilt proved to be the more difficult of the two product requirements to meet. Process development variables included tooling, weight and solder preform thickness.« less

  17. New analytical solutions to the two-phase water faucet problem

    DOE PAGES

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2016-06-17

    Here, the one-dimensional water faucet problem is one of the classical benchmark problems originally proposed by Ransom to study the two-fluid two-phase flow model. With certain simplifications, such as massless gas phase and no wall and interfacial frictions, analytical solutions had been previously obtained for the transient liquid velocity and void fraction distribution. The water faucet problem and its analytical solutions have been widely used for the purposes of code assessment, benchmark and numerical verifications. In our previous study, the Ransom’s solutions were used for the mesh convergence study of a high-resolution spatial discretization scheme. It was found that, atmore » the steady state, an anticipated second-order spatial accuracy could not be achieved, when compared to the existing Ransom’s analytical solutions. A further investigation showed that the existing analytical solutions do not actually satisfy the commonly used two-fluid single-pressure two-phase flow equations. In this work, we present a new set of analytical solutions of the water faucet problem at the steady state, considering the gas phase density’s effect on pressure distribution. This new set of analytical solutions are used for mesh convergence studies, from which anticipated second-order of accuracy is achieved for the 2nd order spatial discretization scheme. In addition, extended Ransom’s transient solutions for the gas phase velocity and pressure are derived, with the assumption of decoupled liquid and gas pressures. Numerical verifications on the extended Ransom’s solutions are also presented.« less

  18. Analysis of endoscopic third ventriculostomy patency by MRI: value of different pulse sequences, the sequence parameters, and the imaging planes for investigation of flow void.

    PubMed

    Dinçer, Alp; Yildiz, Erdem; Kohan, Saeed; Memet Özek, M

    2011-01-01

    The aim of the study is to evaluate the efficiency of turbo spin-echo (TSE), three-dimensional constructive interference in the steady state (3D CISS) and cine phase contrast (Cine PC) sequences in determining flow through the endoscopic third ventriculostomy (ETV) fenestration, and to determine the effect of various TSE sequence parameters. The study was approved by our institutional review board and informed consent from all patients was obtained. Two groups of patients were included: group I (24 patients with good clinical outcome after ETV) and group II (22 patients with hydrocephalus evaluated preoperatively). The imaging protocol for both groups was identical. TSE T2 with various sequence parameters and imaging planes, and 3D CISS, followed by cine PC were obtained. Flow void was graded as four-point scales. The sensitivity, specificity, accuracy, positive and negative predictive values of sequences were calculated. Bidirectional flow through the fenestration was detected in all group I patients by cine PC. Stroke volumes through the fenestration in group I ranged 10-160.8 ml/min. There was no correlation between the presence of reversed flow and flow void grading. Also, there was no correlation between the stroke volumes and flow void grading. The sensitivity of 3D CISS was low, and 2 mm sagittal TSE T2, nearly equal to cine PC, provided best result. Cine PC and TSE T2 both have high confidence in the assessment of the flow through the fenestration. But, sequence parameters significantly affect the efficiency of TSE T2.

  19. Micromechanical investigation of ductile failure in Al 5083-H116 via 3D unit cell modeling

    NASA Astrophysics Data System (ADS)

    Bomarito, G. F.; Warner, D. H.

    2015-01-01

    Ductile failure is governed by the evolution of micro-voids within a material. The micro-voids, which commonly initiate at second phase particles within metal alloys, grow and interact with each other until failure occurs. The evolution of the micro-voids, and therefore ductile failure, depends on many parameters (e.g., stress state, temperature, strain rate, void and particle volume fraction, etc.). In this study, the stress state dependence of the ductile failure of Al 5083-H116 is investigated by means of 3-D Finite Element (FE) periodic cell models. The cell models require only two pieces of information as inputs: (1) the initial particle volume fraction of the alloy and (2) the constitutive behavior of the matrix material. Based on this information, cell models are subjected to a given stress state, defined by the stress triaxiality and the Lode parameter. For each stress state, the cells are loaded in many loading orientations until failure. Material failure is assumed to occur in the weakest orientation, and so the orientation in which failure occurs first is considered as the critical orientation. The result is a description of material failure that is derived from basic principles and requires no fitting parameters. Subsequently, the results of the simulations are used to construct a homogenized material model, which is used in a component-scale FE model. The component-scale FE model is compared to experiments and is shown to over predict ductility. By excluding smaller nucleation events and load path non-proportionality, it is concluded that accuracy could be gained by including more information about the true microstructure in the model; emphasizing that its incorporation into micromechanical models is critical to developing quantitatively accurate physics-based ductile failure models.

  20. NanoXCT: a novel technique to probe the internal architecture of pharmaceutical particles.

    PubMed

    Wong, Jennifer; D'Sa, Dexter; Foley, Matthew; Chan, John Gar Yan; Chan, Hak-Kim

    2014-11-01

    To demonstrate the novel application of nano X-ray computed tomography (NanoXCT) for visualizing and quantifying the internal structures of pharmaceutical particles. An Xradia NanoXCT-100, which produces ultra high-resolution and non-destructive imaging that can be reconstructed in three-dimensions (3D), was used to characterize several pharmaceutical particles. Depending on the particle size of the sample, NanoXCT was operated in Zernike Phase Contrast (ZPC) mode using either: 1) large field of view (LFOV), which has a two-dimensional (2D) spatial resolution of 172 nm; or 2) high resolution (HRES) that has a resolution of 43.7 nm. Various pharmaceutical particles with different physicochemical properties were investigated, including raw (2-hydroxypropyl)-beta-cyclodextrin (HβCD), poly (lactic-co-glycolic) acid (PLGA) microparticles, and spray-dried particles that included smooth and nanomatrix bovine serum albumin (BSA), lipid-based carriers, and mannitol. Both raw HβCD and PLGA microparticles had a network of voids, whereas spray-dried smooth BSA and mannitol generally had a single void. Lipid-based carriers and nanomatrix BSA particles resulted in low quality images due to high noise-to-signal ratio. The quantitative capabilities of NanoXCT were also demonstrated where spray-dried mannitol was found to have an average void volume of 0.117 ± 0.247 μm(3) and average void-to-material percentage of 3.5%. The single PLGA particle had values of 1993 μm(3) and 59.3%, respectively. This study reports the first series of non-destructive 3D visualizations of inhalable pharmaceutical particles. Overall, NanoXCT presents a powerful tool to dissect and observe the interior of pharmaceutical particles, including those of a respirable size.

  1. The sudden coalescene model of the boiling crisis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrica, P.M.; Clausse, A.

    1995-09-01

    A local two-phase flow integral model of nucleate boiling and crisis is presented. The model is based on average balances on a control volume, yielding to a set of three nonlinear differential equations for the local void fraction, bubble number density and velocity. Boiling crisis as critical heat flux is interpreted as a dynamic transition caused by the coalescence of bubbles near the heater. The theoretical dynamic model is compared with experimental results obtained for linear power ramps in a horizontal plate heater in R-113, showing an excellent qualitative agreement.

  2. Fiber optic sensors; Proceedings of the Meeting, Cannes, France, November 26, 27, 1985

    NASA Technical Reports Server (NTRS)

    Arditty, Herve J. (Editor); Jeunhomme, Luc B. (Editor)

    1986-01-01

    The conference presents papers on distributed sensors and sensor networks, signal processing and detection techniques, temperature measurements, chemical sensors, and the measurement of pressure, strain, and displacements. Particular attention is given to optical fiber distributed sensors and sensor networks, tactile sensing in robotics using an optical network and Z-plane techniques, and a spontaneous Raman temperature sensor. Other topics include coherence in optical fiber gyroscopes, a high bandwidth two-phase flow void fraction fiber optic sensor, and a fiber-optic dark-field microbend sensor.

  3. DETERMINING THE LARGE-SCALE ENVIRONMENTAL DEPENDENCE OF GAS-PHASE METALLICITY IN DWARF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglass, Kelly A.; Vogeley, Michael S., E-mail: kelly.a.douglass@drexel.edu

    2017-01-10

    We study how the cosmic environment affects galaxy evolution in the universe by comparing the metallicities of dwarf galaxies in voids with dwarf galaxies in more dense regions. Ratios of the fluxes of emission lines, particularly those of the forbidden [O iii] and [S ii] transitions, provide estimates of a region’s electron temperature and number density. From these two quantities and the emission line fluxes [O ii] λ 3727, [O iii] λ 4363, and [O iii] λλ 4959, 5007, we estimate the abundance of oxygen with the direct T{sub e}  method. We estimate the metallicity of 42 blue, star-forming voidmore » dwarf galaxies and 89 blue, star-forming dwarf galaxies in more dense regions using spectroscopic observations from the Sloan Digital Sky Survey Data Release 7, as reprocessed in the MPA-JHU value-added catalog. We find very little difference between the two sets of galaxies, indicating little influence from the large-scale environment on their chemical evolution. Of particular interest are a number of extremely metal-poor dwarf galaxies that are less prevalent in voids than in the denser regions.« less

  4. Laboratory test investigations on soil water characteristic curve and air permeability of municipal solid waste.

    PubMed

    Shi, Jianyong; Wu, Xun; Ai, Yingbo; Zhang, Zhen

    2018-05-01

    The air permeability coefficient has a high correlation with the water content of municipal solid waste. In this study, continuous drying methodology using a tension meter was employed to construct the soil water characteristic curve of municipal solid waste (M-SWCC). The municipal solid waste air permeability test was conducted by a newly designed apparatus. The measured M-SWCC was well reproduced by the van Genuchten (V-G) model and was used to predict the parameters of typical points in M-SWCC, including saturated water content, field capacity, residual water content and water content at the inflection point. It was found that the M-SWCC was significantly influenced by void ratio. The final evaporation and test period of M-SWCC increase with the increase in void ratio of municipal solid waste. The evolution of air permeability coefficient with water content of municipal solid waste depicted three distinct characteristic stages. It was observed that the water contents that corresponded to the two cut-off points of the three stages were residual water content and water content at the inflection point, respectively. The air permeability coefficient of municipal solid waste decreased with the increase of the water content from zero to the residual water content. The air permeability coefficient was almost invariable when the water content increased from residual water content to the water content at the inflection point. When the water content of municipal solid waste exceeded the water content at the inflection point, the air permeability coefficient sharply decreased with the increase of water content.

  5. Mechanics of Granular Materials: Experimentation and Simulations for Determining the Compressive and Shear Behaviors of Sand at Granular and Meso Scales

    DTIC Science & Technology

    2011-09-30

    stresses below 10 MPa . This linear phase is followed by rapid collapse of voids with increase in axial stress. The void ratio curves for different...loading. The vertically applied load on the indenter tip was increased until it reached a user-defined value, followed by unloading. The load...0.425 mm, the P30 Young’s modulus values increase from 97.4 GPa, to 102.1 GPa and 108.9 GPa, respectively. As the grain sizes reduce further, the P30

  6. Relationship between blood and urine alcohol concentrations in apprehended drivers who claimed consumption of alcohol after driving with and without supporting evidence.

    PubMed

    Jones, Alan Wayne; Kugelberg, Fredrik C

    2010-01-30

    For various reasons, many people suspected of driving under the influence of alcohol (DUIA) are not apprehended sitting behind the wheel, but some time after the driving. This gives them the opportunity to claim they drank alcohol after the time of driving or after they were involved in a road-traffic crash. Alleged post-offence drinking is not easy for the prosecution to disprove, which often means that the DUIA charge is dropped or the person is acquitted if the case goes to trial. The routine practice of sampling and measuring the concentration of alcohol in blood (BAC) and urine (UAC) and calculating urine/blood ratios (UAC/BAC) and the changes in UAC between two successive voids furnishes useful information to support or challenge alleged drinking after driving. We present here a retrospective case series of DUIA offenders (N=40) in half of which there was supporting evidence of an after-drink (eye witness or police reports) and in the other half no such evidence existed apart from the suspect's admission. When there was supporting evidence of an after-drink, the UAC/BAC ratio for the first void was close to or less than unity (mean 1.04, median 1.08, range 0.54-1.21) and the UAC increased by 0.21 g/L (range 0.02-0.57) between the two voids. Without any supporting evidence of post-offence drinking the mean UAC/BAC ratio was 1.46 (range 1.35-1.93) for the first void, verifying that absorption and distribution of alcohol in all body fluids and tissues was complete. In these cases, the UAC between successive voids decreased by 0.25 g/L on average (range 0.10-0.49), indicating the post-absorptive phase of the BAC curve. Long experience from investigating claims of post-offence drinking leads us to conclude that in the vast majority of cases this lacks any substance and is simply a last resort by DUIA offenders to evade justice. Unless supporting evidence exists (eye witness, police reports, etc.) of post-offence drinking the courts are encouraged to ignore this defence argument. 2009 Elsevier Ireland Ltd. All rights reserved.

  7. Modeling and Simulation of Voids in Composite Tape Winding Process Based on Domain Superposition Technique

    NASA Astrophysics Data System (ADS)

    Deng, Bo; Shi, Yaoyao

    2017-11-01

    The tape winding technology is an effective way to fabricate rotationally composite materials. Nevertheless, some inevitable defects will seriously influence the performance of winding products. One of the crucial ways to identify the quality of fiber-reinforced composite material products is examining its void content. Significant improvement in products' mechanical properties can be achieved by minimizing the void defect. Two methods were applied in this study, finite element analysis and experimental testing, respectively, to investigate the mechanism of how void forming in composite tape winding processing. Based on the theories of interlayer intimate contact and Domain Superposition Technique (DST), a three-dimensional model of prepreg tape void with SolidWorks has been modeled in this paper. Whereafter, ABAQUS simulation software was used to simulate the void content change with pressure and temperature. Finally, a series of experiments were performed to determine the accuracy of the model-based predictions. The results showed that the model is effective for predicting the void content in the composite tape winding process.

  8. Reliability Improvement By Adopting Ti-barrier Metal For Porous Low-k ILD Structure

    NASA Astrophysics Data System (ADS)

    Sakata, A.; Yamashita, S.; Omoto, S.; Hatano, M.; Wada, J.; Higashi, K.; Yamaguchi, H.; Yosho, T.; Imamizu, K.; Yamada, M.; Hasunuma, M.; Takahashi, S.; Yamada, A.; Hasegawa, T.; Motoyama, K.; Tagami, M.; Kitano, T.; Kaneko, H.

    2007-10-01

    Titanium (Ti) has been proposed as an excellent barrier metal (BM) material for ULSI's Cu metallization from the stand point of two characteristics. One is the oxidation property, especially for the porous low-k ILD materials for 45 nm node device; the other is the interface behavior of Ti with Cu. Both stress induced voiding (SIV) suppression and one order longer electromigration (EM) lifetime were obtained by the adoption of Ti-BM instead of the conventional Tantalum (Ta)-BM. SIV failure is accelerated in porous low-k ILD by the following steps; 1) BM oxidation by the absorbed moisture in porous low-k ILD, 2) Adhesion degradation caused by the BM oxidation results in micro delamination of Cu film (void nucleation), 3) Void growth induced by the stress gradient in the Cu interconnect. It has been considered that the small volume change of Ti oxidation and the existence of metallic Ti-O solid-solution phase would be the reason for control of moisture penetration from the low-k ILD materials. In addition, Ti/Cu intermetallic reaction and the segregation of Ti atoms at Cu grain boundaries suppress Cu migration at BM/Cu interface and Cu grain boundaries, respectively. This is supported by higher EM activation energy of Cu line with Ti-BM than that with Ta-BM. These phenomena contribute to higher interconnect reliability.

  9. Lower urinary tract dysfunction in children after intravesical ureteric reimplantation surgery under one year of age.

    PubMed

    Ooi, S M; Kane, N; Khosa, J; Barker, A; Samnakay, N

    2014-12-01

    To report the results of a study conducted on voiding function in children who have undergone intravesical trans-trigonal Cohen ureteric reimplantation surgery before the age of one year. Twenty-eight children (18 males, 10 females) had surgery at a mean age of 4.9 months (range 8-352 days). Bladder function was assessed at a mean age of 7.3 years using questionnaires, the dysfunctional voiding scoring system, PinQ quality of life tool, uroflowmetry and post-void residuals. Of the total children, 72% had normal lower urinary tract (LUT) function. Eight children (28%) had evidence of LUT dysfunction, two had urge incontinence, two had giggle incontinence, two had voiding postponement, one had dysfunctional elimination syndrome and one had evidence of dysfunctional voiding. Five of the eight children were managed with continence physiotherapy (urotherapy) and one required ongoing anticholinergic therapy. When compared to the published rates of LUT dysfunction in the general paediatric community, no evidence was found to suggest an increased incidence of bladder dysfunction in children undergoing intravesical Cohen ureteric reimplantation surgery under one year of age. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  10. Study on defect properties of nanocrystalline TiO2 during phase transition by positron annihilation lifetime

    NASA Astrophysics Data System (ADS)

    Zheng, F.; Liu, Y.; Liu, Z.; Dai, Y.-Q.; Fang, P.-F.; Wang, S.-J.

    2012-08-01

    The defect properties of nanocrystalline TiO2 were investigated by positron annihilation lifetime spectroscopy (PALS) and X-ray diffraction (XRD) as a function of annealed temperature that ranged from 300 to 850 °C. Below 500 °C, the measured positron lifetimes of τ1 (200-206 ps) and τ2 (378-402 ps) revealed the existence of mono-vacancy and vacancy-clusters at grain surface and in the micro-void of intergranular region. Between 500 and 750 °C, the phase transition from anatase to rutile was probed by the variations of positron lifetime and XRD pattern. With the increasing temperature from 500 to 850 °C, the positron lifetime τ1, τ2 and its intensity I2 sharply decreased from 200 ps, 378 ps, and 60% to 135 ps, 274 ps, and 33%, respectively. The results clearly indicate that the mono-vacancy or vacancy-clusters at grain surface and micro-voids between the grains were annealed out during the phase transition.

  11. Micro-CT and nano-CT analysis of filling quality of three different endodontic sealers.

    PubMed

    Huang, Yan; Celikten, Berkan; de Faria Vasconcelos, Karla; Ferreira Pinheiro Nicolielo, Laura; Lippiatt, Nicholas; Buyuksungur, Arda; Jacobs, Reinhilde; Orhan, Kaan

    2017-12-01

    To investigate voids in different root canal sealers using micro-CT and nano-CT, and to explore the feasibility of using nano-CT for quantitative analysis of sealer filling quality. 30 extracted mandibular central incisors were randomly assigned into three groups according to the applied root canal sealers (Total BC Sealer, Sure Seal Root, AH Plus) by the single cone technique. Subsequently, micro-CT and nano-CT were performed to analyse the incidence rate of voids, void fraction, void volume and their distribution in each sample. Micro-CT evaluation showed no significant difference among sealers for the incidence rate of voids or void fraction in the whole filling materials (p > 0.05), whereas a significant difference was found between AH Plus and the other two sealers using nano-CT (p < 0.05). All three sealers presented less void volume in the apical third; however, higher void volumes were observed in the apical and coronal thirds in AH Plus using micro-CT (p < 0.05), while nano-CT results displayed higher void volume in AH Plus among all the sealers and regions (p < 0.05). Bioactive sealers showed higher root filling rate, lower incidence rate of voids, void fraction and void volume than AH Plus under nano-CT analysis, when round root canals were treated by the single cone technique. The disparate results suggest that the higher resolution of nano-CT have a greater ability of distinguishing internal porosity, and therefore suggesting the potential use of nano-CT in quantitative analysis of filling quality of sealers.

  12. Damage percolation during stretch flange forming of aluminum alloy sheet

    NASA Astrophysics Data System (ADS)

    Chen, Zengtao; Worswick, Michael J.; Keith Pilkey, A.; Lloyd, David J.

    2005-12-01

    A multi-scale finite element (FE)-damage percolation model was employed to simulate stretch flange forming of aluminum alloys AA5182 and AA5754. Material softening and strain gradients were captured using a Gurson-based FE model. FE results were then fed into the so-called damage percolation code, from which the damage development was modelled within measured microstructures. The formability of the stretch flange samples was predicted based upon the onset of catastrophic failure triggered by profuse void coalescence within the measured second-phase particle field. Damage development is quantified in terms of crack and void areal fractions, and compared to metallographic results obtained from interrupted stretch flange specimens. Parametric study is conducted on the effect of void nucleation strain in the prediction of formability of stretch flanges to "calibrate" proper nucleation strains for both alloys.

  13. Multiple flow processes accompanying a dam-break flood in a small upland watershed, Centralia, Washington

    USGS Publications Warehouse

    Costa, John E.

    1994-01-01

    On October 5, 1991, following 35 consecutive days of dry weather, a 105-meter long, 37-meter wide, 5.2-meter deep concrete-lined watersupply reservoir on a hillside in the eastern edge of Centralia, Washington, suddenly failed, sending 13,250 cubic meters of water rushing down a small, steep tributary channel into the city. Two houses were destroyed, several others damaged, mud and debris were deposited in streets, on lawns, and in basements over four city blocks, and 400 people were evacuated. The cause of failure is believed to have been a sliding failure along a weak seam or joint in the siltstone bedrock beneath the reservoir, possibly triggered by increased seepage into the rock foundation through continued deterioration of concrete panel seams, and a slight rise (0.6 meters) in the pool elevation. A second adjacent reservoir containing 18,900 cubic meters of water also drained, but far more slowly, when a 41-cm diameter connecting pipe was broken by the landslide. The maximum discharge resulting from the dam-failure was about 71 cubic meters per second. A reconstructed hydrograph based on the known reservoir volume and calculated peak discharge indicates the flood duration was about 6.2 minutes. Sedimentologic evidence, high-water mark distribution, and landforms preserved in the valley floor indicate that the dam failure flood consisted of two flow phases: an initial debris flow that deposited coarse bouldery sediment along the slope-area reach as it lost volume, followed soon after by a water-flood that achieved a stage about one-half meter higher than the debris flow. The Centralia dam failure is one of three constructed dams destroyed by rapid foundation failure that defines the upper limits of an envelope curve of peak flood discharge as a function of potential energy for failed constructed dams worldwide.

  14. Nondestructive Determination of Moisture Content in Dry Fruits by Impedance and Phase angle measurements

    USDA-ARS?s Scientific Manuscript database

    Impedance (Z), and phase angle (') of a cylindrical parallel-plate capacitor with dry fruits between the plates was measured using a CI meter (Chari’s Impedance meter), at 1 and 9 MHz . Capacitance, C was derived from Z and ', and using the C, ', and Z values of a set of cherries whose moisture con...

  15. Use of double and triple-ion irradiation to study the influence of high levels of helium and hydrogen on void swelling of 8-12% Cr ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Kupriiyanova, Y. E.; Bryk, V. V.; Borodin, O. V.; Kalchenko, A. S.; Voyevodin, V. N.; Tolstolutskaya, G. D.; Garner, F. A.

    2016-01-01

    In accelerator-driven spallation (ADS) devices, some of the structural materials will be exposed to intense fluxes of very high energy protons and neutrons, producing not only displacement damage, but very high levels of helium and hydrogen. Unlike fission flux-spectra where most helium and hydrogen are generated by transmutation in nickel and only secondarily in iron or chromium, gas production in ADS flux-spectra are rather insensitive to alloy composition, such that Fe-Cr base ferritic alloys also generate very large gas levels. While ferritic alloys are known to swell less than austenitic alloys in fission spectra, there is a concern that high gas levels in fusion and especially ADS facilities may strongly accelerate void swelling in ferritic alloys. In this study of void swelling in response to helium and hydrogen generation, irradiation was conducted on three ferritic-martensitic steels using the Electrostatic Accelerator with External Injector (ESUVI) facility that can easily produce any combination of helium to dpa and/or hydrogen to dpa ratios. Irradiation was conducted under single, dual and triple beam modes using 1.8 MeV Cr+3, 40 keV He+, and 20 keV H+. In the first part of this study we investigated the response of dual-phase EP-450 to variations in He/dpa and H/dpa ratio, focusing first on dual ion studies and then triple ion studies, showing that there is a diminishing influence on swelling with increasing total gas content. In the second part we investigated the relative response of three alloys spanning a range of starting microstructure and composition. In addition to observing various synergisms between He and H, the most important conclusion was that the tempered martensite phase, known to lag behind the ferrite phase in swelling in the absence of gases, loses much of its resistance to void nucleation when irradiated at large gas/dpa levels.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baidakov, Vladimir G., E-mail: baidakov@itp.uran.ru; Tipeev, Azat O.

    The method of molecular dynamics simulation has been used to investigate the phase decay of a metastable Lennard-Jones face-centered cubic crystal at positive and negative pressures. It is shown that at high degrees of metastability, crystal decay proceeds through the spontaneous formation and growth of new-phase nuclei. It has been found that there exists a certain boundary temperature. Below this temperature, the crystal phase disintegrates as the result of formation of voids, and above, as a result of formation of liquid droplets. The boundary temperature corresponds to the temperature of cessation of a crystal–liquid phase equilibrium when the melting linemore » comes in contact with the spinodal of the stretched liquid. The results of the simulations are interpreted in the framework of classical nucleation theory. The thermodynamics of phase transitions in solids has been examined with allowance for the elastic energy of stresses arising owing to the difference in the densities of the initial and the forming phases. As a result of the action of elastic forces, at negative pressures, the boundary of the limiting superheating (stretching) of a crystal approaches the spinodal, on which the isothermal bulk modulus of dilatation becomes equal to zero. At the boundary of the limiting superheating (stretching), the shape of liquid droplets and voids is close to the spherical one.« less

  17. Reactivity effects of moderator voids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahlfeld, C.E.; Pryor, R.J.

    1975-01-01

    Reactivity worths for large moderator voids similar to those produced by steaming in postulated reactor transients were measured in the Process Development Pile (PDP) reactor. The experimental results were compared to the computed void worths obtained from techniques currently used in routine safety analyses. Neutron energy spectrum measurements were used to verify a modified lattice pattern that correctly computed the measured spectrum, and consequently, improved macroscopic cross sections. In addition, a special two-dimensional transport calculation was performed to obtain an axially defined diffusion coefficient for the void region. The combination of the modified lattice calculations and the axial diffusion coefficientmore » yielded void reactivity worths which agreed very well with experiment. It was concluded that the computational modules available in the JOSHUA system (GLASS, GRIMHX) would yield accurate void reactivity worths in SLR--SRP safety analysis studies, provided the above mentioned modifications were made.« less

  18. Experimental study of void formation during aluminum solidification in reduced gravity. Ph.D. Thesis - Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis Paul, III

    1993-01-01

    Void formation due to volumetric shrinkage and liquid/vapor reorientation during aluminum solidification was observed in real time by using a radiographic viewing system in normal and reduced gravity. An end-chill directional solidification furnace with water quench was designed and constructed to solidify aluminum samples during the approximately 16 sec of reduced gravity (+/-0.02g) achieved by flying an aircraft through a parabolic trajectory. In the first series of tests the aluminum was contained in a vacuum sealed, pyrolytic boron nitride crucible. An ullage space was present during each test. Void formation was recorded for two cases: a nonwetting system, and a wetting system where wetting occurred between the aluminum and the crucible lid. The void formation in the nonwetting case was similar in normal and reduced gravity, with a single vapor cavity forming at the top of the crucible. In the wetting case during reduced gravity surface tension caused two voids to form in the top corners of the crucible, but during normal gravity only one large void formed across the top. In the second series of tests the aluminum was contained in a pyrolytic boron nitride crucible that was placed in a stainless steel container and sealed in an environment of argon plus 4 percent hydrogen. An ullage space was present during each test. Void formation was recorded for two cases: a nonwetting system, and a wetting system where wetting occurred between the aluminum and one side wall and the lid. The void for nation in the nonwetting case was similar in normal and reduced gravity, with a single vapor cavity forming at the top of the crucible, although the meniscus became more convex in reduced gravity. In the wetting case the aluminum did not climb up the corners in 1g, and one large symmetric void resulted at the top when the aluminum had solidified. In the wetting case during reduced gravity the molten aluminum was drawn up the wetted wall and partially across the lid by a capillary underpressure; however, on the nonwetting wall the aluminum moved down. One void resulted along the nonwetting side of the container continuing to the top on the same side.

  19. 30 CFR 203.41 - If I have a qualified deep well or a qualified phase 1 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 200 meters but entirely less than 400 meters deep that: (1) Occurs before December 18, 2008; and (2... § 203.31(b) applies. In both situations, your lease must be partly or entirely in less than 200 meters...

  20. Variability of collagen crosslinks: impact of sample collection period

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Dillon, E. L.; DeKerlegand, D. E.; Davis-Street, J. E.

    2004-01-01

    Because of the variability of collagen crosslinks, their use as markers for bone resorption is often criticized. We hypothesized that the variability could be reduced by collecting urine for 24 hours (or longer) instead of using single voids, and by not normalizing to creatinine. Urine samples were collected from 22 healthy subjects during two or more 24-hour periods. Each 24-hour pool and each 2nd void of the day were analyzed for N-telopeptide (NTX), pyridinium (PYD), and deoxypyridinoline (DPD) crosslinks. Data were analyzed by using linear regression. For NTX, R2 for the two, 2nd-void samples (n = 38) was 0.55, whereas R2 for the two 24-hour pools was 0.51 or 0.52, expressed per day or per creatinine. For PYD and DPD, R2 for the 2nd-void samples was 0.26 and 0.18, R2 for the 24-hour pools expressed per day was 0.58 and 0.74, and R2 for the 24-hour pools expressed per creatinine was 0.65 and 0.76, respectively. Regression of the 2nd void and the corresponding 24-hour pool, expressed per day, yielded R2 = 0.19, 0.19, and 0.08, for NTX, PYD, and DPD, respectively (n = 76 each). For the 2nd-void sample and its corresponding 24-hour pool, expressed per creatinine, R2 = 0.24, 0.33, and 0.08, respectively. In a separate study, the coefficient of variation for NTX was reduced (P < 0.05) when data from more than one 24-hour collection were combined. Thus, the variability inherent in crosslink determinations can be reduced by collecting urine for longer periods. In research studies, the high variability of single-void collections, compounded by creatinine normalization, may alter or obscure findings.

  1. Fixed-dose combination PRO 160/120 of sabal and urtica extracts improves nocturia in men with LUTS suggestive of BPH: re-evaluation of four controlled clinical studies.

    PubMed

    Oelke, Matthias; Berges, Richard; Schläfke, Sandra; Burkart, Martin

    2014-10-01

    To determine the effects of the herbal fixed-dose combination PRO 160/120 (extracts from saw palmetto fruits and stinging nettle roots) on nocturnal voiding frequency, as measured by question 7 of the IPSS questionnaire, in patients with moderate-to-severe LUTS/BPH after 24 weeks of treatment compared to placebo, to the α-blocker tamsulosin, or to the 5α-reductase inhibitor finasteride. The study is about post hoc evaluation of four published randomized, double-blind clinical trials on PRO 160/120, two compared with placebo, one with finasteride and one with tamsulosin. In addition, a pooled data analysis of the two placebo-controlled trials was conducted. We analyzed data from a total of 922 patients with a mean age of 66 years and a mean baseline nocturnal voiding frequency of 2.1. In the pooled analysis of placebo-controlled trials, nocturnal voids improved by 0.8 (29 %) with PRO 160/120 compared to 0.6 (18 %) with placebo (p = 0.015, Wilcoxon test, one-tailed). The 69 % responder rate to PRO 160/120 was significantly superior to the placebo response (52 %; p = 0.003, χ (2)-test, two-tailed). The majority of responders improved by 1 void/night. Absolute improvements and response rates were consistently higher with PRO 160/120 than with placebo over a range of baseline nocturnal voiding frequencies. There were no differences between PRO 160/120 and finasteride or tamsulosin regarding absolute improvement of nocturnal voids or responds rates. PRO 160/120 significantly improved nocturnal voiding frequency compared to placebo and similar to tamsulosin or finasteride.

  2. Complex Structures in Sediments Overlying Sinkholes: 3D-GPR and Azimuthal Resistivity Imaging

    NASA Astrophysics Data System (ADS)

    Kruse, S.; Kiflu, H. G.; Ammar, A. I., Sr.; Karashay, P., III; Marshall, A. M.; McNiff, C. M.

    2014-12-01

    3D GPR surveys in the covered karst terrain of west-central Florida, USA, reveal surprising geometries of surficial sediments. Several meters of surficial sands overlie progressively more clay-rich sediments, which in turn overlie weathered limestone. The top of a clay-rich horizon produces an exceptionally clear GPR reflector visible from depths between 0.5 and ~8 meters. On length scales of 10-20 meters, the geometry of this horizon as it drapes over underlying weathered limestone suggests that depressions are not conical, but instead more complex troughs that surround domed stratigraphic highs. Azimuthal semi-variograms of the clay horizon depth show greatest correlation in directions that are aligned with the direction of elevated resistivities at depths to 10-14 meters. One possible interpretation is that dissolution in underlying limestone is concentrated in elongated zones rather than in columnar or spherical voids. Elongated sand-filled depressions in the clay layer produce azimuthal resistivity highs in the direction of the elongation. This direction in turn corresponds to the major axis of depressions in the clay-rich GPR reflecting horizon. Groundwater recharge in this area is concentrated into conduits that breach the clay-rich units that overlie the limestone aquifer. This study suggests that the conduits themselves may be elongated features rather than cylindrical in form. Recharge flow paths may be more complex than previously recognized. The high-resolution GPR images require 3D surveys with 250 MHz and 500 MHz antennas, with 10-cm line spacings, careful corrections for antenna positions and 3D migrations of the data.

  3. Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia Wang; Xiaodong Sun; Benjamin Doup

    In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As twophase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present workmore » aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminator s are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.« less

  4. 30 CFR 203.40 - Which leases are eligible for royalty relief as a result of drilling a deep well or a phase 1...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... longitude in water depths entirely less than 400 meters deep. (b) The lease has not produced gas or oil from... than 200 meters and entirely less than 400 meters deep. (c) In the case of a lease located partly or... less than 400 meters of water, it must either: (1) Have been issued before November 28, 1995, and not...

  5. Investigation of representing hysteresis in macroscopic models of two-phase flow in porous media using intermediate scale experimental data

    NASA Astrophysics Data System (ADS)

    Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; Gonzalez-Nicolas, Ana; Illangasekare, Tissa

    2017-01-01

    Incorporating hysteresis into models is important to accurately capture the two phase flow behavior when porous media systems undergo cycles of drainage and imbibition such as in the cases of injection and post-injection redistribution of CO2 during geological CO2 storage (GCS). In the traditional model of two-phase flow, existing constitutive models that parameterize the hysteresis associated with these processes are generally based on the empirical relationships. This manuscript presents development and testing of mathematical hysteretic capillary pressure—saturation—relative permeability models with the objective of more accurately representing the redistribution of the fluids after injection. The constitutive models are developed by relating macroscopic variables to basic physics of two-phase capillary displacements at pore-scale and void space distribution properties. The modeling approach with the developed constitutive models with and without hysteresis as input is tested against some intermediate-scale flow cell experiments to test the ability of the models to represent movement and capillary trapping of immiscible fluids under macroscopically homogeneous and heterogeneous conditions. The hysteretic two-phase flow model predicted the overall plume migration and distribution during and post injection reasonably well and represented the postinjection behavior of the plume more accurately than the nonhysteretic models. Based on the results in this study, neglecting hysteresis in the constitutive models of the traditional two-phase flow theory can seriously overpredict or underpredict the injected fluid distribution during post-injection under both homogeneous and heterogeneous conditions, depending on the selected value of the residual saturation in the nonhysteretic models.

  6. DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X. Wang; X. Sun; H. Zhao

    In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do notmore » exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in which flow regime transition occurs.« less

  7. Force measurement-based discontinuity detection during friction stir welding

    DOE PAGES

    Shrivastava, Amber; Zinn, Michael; Duffie, Neil A.; ...

    2017-02-23

    Here, the objective of this work is to develop a method for detecting the creation of discontinuities ( i.e., voids, volume defects) during friction stir welding. Friction stir welding is inherently cost effective, however, the need for significant weld inspection can make the process cost prohibitive. A new approach to weld inspection is required in which an in situ characterization of weld quality can be obtained, reducing the need for postprocess inspection. To this end, friction stir welds with subsurface voids and without voids were created. The subsurface voids were generated by reducing the friction stir tool rotation frequency andmore » increasing the tool traverse speed in order to create “colder” welds. Process forces were measured during welding, and the void sizes were measured postprocess by computerized tomography ( i.e., 3D X-ray imaging). Two parameters, based on frequency domain content and time-domain average of the force signals, were found to be correlated with void size. Criteria for subsurface void detection and size prediction were developed and shown to be in good agreement with experimental observations. Furthermore, with the proper choice of data acquisition system and frequency analyzer the occurrence of subsurface voids can be detected in real time.« less

  8. Force measurement-based discontinuity detection during friction stir welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivastava, Amber; Zinn, Michael; Duffie, Neil A.

    Here, the objective of this work is to develop a method for detecting the creation of discontinuities ( i.e., voids, volume defects) during friction stir welding. Friction stir welding is inherently cost effective, however, the need for significant weld inspection can make the process cost prohibitive. A new approach to weld inspection is required in which an in situ characterization of weld quality can be obtained, reducing the need for postprocess inspection. To this end, friction stir welds with subsurface voids and without voids were created. The subsurface voids were generated by reducing the friction stir tool rotation frequency andmore » increasing the tool traverse speed in order to create “colder” welds. Process forces were measured during welding, and the void sizes were measured postprocess by computerized tomography ( i.e., 3D X-ray imaging). Two parameters, based on frequency domain content and time-domain average of the force signals, were found to be correlated with void size. Criteria for subsurface void detection and size prediction were developed and shown to be in good agreement with experimental observations. Furthermore, with the proper choice of data acquisition system and frequency analyzer the occurrence of subsurface voids can be detected in real time.« less

  9. The co-evolution of microstructure features in self-ion irradiated HT9 at very high damage levels

    NASA Astrophysics Data System (ADS)

    Getto, Elizabeth Margaret

    The objective of this study was to understand the co-evolution of microstructure features in self-ion irradiated HT9 at very high damage levels. HT9 (heat 84425) was pre-implanted with 10 atom parts per million helium and then irradiated with 5 MeV Fe++ in the temperature range of 440-480°C to 188 dpa. A damage dependence study from 75 to 650 dpa was performed at the peak swelling temperature of 460°C. The swelling, dislocation and precipitate evolution was determined using Analytic Electron Microscopes in both Conventional Transmission electron microscopy (CTEM) and Scanning Transmission Electron Microscopy (STEM) modes. Void swelling reached a nominally linear rate of 0.03%/dpa from 188 to 650 dpa at 460°C. G phase precipitates were observed by 75 dpa and grew linearly up to 650 dpa. M 2X was observed by 250 dpa and peaked in volume fraction at 450 dpa. Dislocation loop evolution was observed up to 650 dpa including a step change in diameter between 375 and 450 dpa; which correlated with nucleation and growth of M2X. The experimental results were interpreted using a rate theory model, the Radiation Induced Microstructure Evolution (RIME), in the damage range from 188 to 650 dpa. A simple system of voids and dislocations was modeled in which the dislocations measured from experiment were used as input, or the dislocations were allowed to evolve dynamically, resulting in swelling that was overestimated by 63% relative to that observed experimentally. G phase had limited effect on the void or dislocation behavior. The behavior of M2X within the microstructure was characterized as a direct effect as a coherent sink, and as an indirect effect in consuming carbon from the matrix, which had the largest impact on both void and dislocation behavior. A slowly monotonically increasing swelling rate was observed both experimentally and computationally, with swelling rates of ˜0.025%/dpa and ˜0.036%/dpa before and after 450 dpa. The agreement in void behavior between experiment and model when all effects (loops, network, G phase, M2X formation and growth, and removal of carbon) are accounted for demonstrates the importance of characterizing the evolution of the full microstructure over a large dpa range.

  10. Roles of interfacial reaction on mechanical properties of solder interfaces

    NASA Astrophysics Data System (ADS)

    Liu, Pilin

    This study investigated roles of interfacial reaction in fracture and fatigue of solder interconnects. The interfacial reaction phases in the as-reflowed and after aging were examined by cross-sectional transmission electron microscopy (TEM) while interfacial mechanical properties were determined from a flexural peel fracture mechanics technique. Because of their widespread uses in microelectronic packaging, SnPb solder interfaces, and Bi-containing Pb-free solder interfaces were chosen as the subjects of this study. In the interfacial reaction study, we observed a complicated micro structural evolution during solid-state aging of electroless-Ni(P)/SnPb solder interconnects. In as-reflowed condition, the interfacial reaction produced Ni3Sn 4 and P-rich layers. Following overaging, the interfacial microstructure degenerated into a complex multilayer structure consisting of multiple layers of Ni-Sn compounds and transformed Ni-P phases. In SnPb solder interfacial system, fatigue study showed that the overaging of the high P electroless Ni-P/SnPb interconnects resulted in a sharp reduction in the fatigue resistance of the interface in the high crack growth rate regime. Fracture mechanism analysis indicated that the sharp drop in fatigue resistance was triggered by the brittle fracture of the Ni3Sn2 intermetallic phase developed at the overaged interface. The fatigue behavior was strongly dependent on P concentration in electroless Ni. Kirkendall voids were found in the interfacial region after aging, but they did not cause premature fracture of the solder interfaces. In Bi-containing solder interfacial system, we found that Bi segregated to the Cu-intermetallic interface during aging in SnBi/Cu interconnect. This caused serious embrittlement of Sn-Bi/Cu interface. Further aging induced numerous voids along the Cu3Sn/Cu interface. These interfacial voids were different from Kirkendall voids. Their formation was explained on basis of vacancy condensation at the interface as the Bi segregants reduced the number of effective Cu vacancy sink sites and enhanced void nucleation at the interface. The Bi segregation was avoided by replacing the Cu metallization with Ni. It was found that Bi developed a concentration gradient in the Ni 3Sn4 during interfacial reaction, with the Bi concentration falling off to zero as the Ni/IMC interface was approached. Therefore, the inhibition of Bi segregation by Ni was due to the inability of Bi to reach Ni/IMC interface.

  11. Understanding dislocation mechanics at the mesoscale using phase field dislocation dynamics

    PubMed Central

    Hunter, A.

    2016-01-01

    In this paper, we discuss the formulation, recent developments and findings obtained from a mesoscale mechanics technique called phase field dislocation dynamics (PFDD). We begin by presenting recent advancements made in modelling face-centred cubic materials, such as integration with atomic-scale simulations to account for partial dislocations. We discuss calculations that help in understanding grain size effects on transitions from full to partial dislocation-mediated slip behaviour and deformation twinning. Finally, we present recent extensions of the PFDD framework to alternative crystal structures, such as body-centred cubic metals, and two-phase materials, including free surfaces, voids and bi-metallic crystals. With several examples we demonstrate that the PFDD model is a powerful and versatile method that can bridge the length and time scales between atomistic and continuum-scale methods, providing a much needed understanding of deformation mechanisms in the mesoscale regime. PMID:27002063

  12. Large Binocular Telescope project

    NASA Astrophysics Data System (ADS)

    Hill, John M.; Salinari, Piero

    2003-02-01

    The Large Binocular Telescope (LBT) Project is a collaboration between institutions in Arizona, Germany, Italy, and Ohio. The first of two 8.4-meter borosilicate honeycomb primary mirrors for LBT is being polished at the Steward Observatory Mirror Lab this year. The second of the two 8.4-meter mirror blanks waits its turn in the polishing queue. The baseline optical configuration of LBT includes adaptive infrared secondaries of a Gregorian design. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4-arcminute diameter field-of-view. These adaptive secondary mirrors with 672 voice-coil actuators are now in the early stages of fabrication. The interferometric focus combining the light from the two 8.4-meter primaries will reimage the two folded Gregorian focal planes to three central locations for phased array imaging. The telescope elevation structure accommodates swing arm spiders which allow rapid interchange of the various secondary and tertiary mirrors as well as prime focus cameras. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The telescope structure was fabricated and pre-assembled in Italy by Ansaldo-Camozzi in Milan. The structure was disassembled, packed and shipped to Arizona. The enclosure was built on Mt. Graham and is ready for telescope installation.

  13. Finite-element analysis of transverse compressive and thermal loads on Nb 3Sn wires with voids

    DOE PAGES

    Zhai, Y.; D'Hauthuille, L.; Barth, C.; ...

    2016-02-29

    High-field superconducting magnets play a very important role in many large-scale physics experiments, particularly particle colliders and fusion confinement devices such as Large Hadron Collider (LHC) and International Thermonuclear Experimental Reactor (ITER). The two most common superconductors used in these applications are NbTi and Nb 3Sn. Nb 3Sn wires are favored because of their significantly higher J c (critical current density) for higher field applications. The main disadvantage of Nb 3Sn is that the superconducting performance of the wire is highly strain sensitive and it is very brittle. This strain sensitivity is strongly influenced by two factors: plasticity and crackedmore » filaments. Cracks are induced by large stress concentrators that can be traced to the presence of voids in the wire. We develop detailed 2-D and 3-D finite-element models containing wire filaments and different possible distributions of voids in a bronze-route Nb 3Sn wire. We apply compressive transverse loads for various cases of void distributions to simulate the stress and strain response of a Nb 3Sn wire under the Lorentz force. Furthermore, this paper improves our understanding of the effect voids have on the Nb 3Sn wire's mechanical properties, and in so, the connection between the distribution of voids and performance degradation such as the correlation between irreversible strain limit and the void-induced local stress concentrations.« less

  14. Effect of Various SPD Techniques on Structure and Superplastic Deformation of Two Phase MgLiAl Alloy

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Jan; Bobrowski, Piotr; Rusz, Stanislav; Hilser, Ondrej; Tański, Tomasz A.; Borek, Wojciech; Łagoda, Marek; Ostachowski, Paweł; Pałka, Paweł; Boczkal, Grzegorz; Kuc, Dariusz; Mikuszewski, Tomasz

    2018-03-01

    MgLiAl alloy containing 9 wt% Li and 1.5% Al composed of hexagonal α and bcc β phases was cast under protecting atmosphere and hot extruded. Various methods of severe plastic deformation were applied to study their effect on structure and grain refinement. Rods were subjected to 1-3 passes of Twist Channel Angular Pressing TCAP (with helical component), cyclic compression to total strain ɛ = 5 using MAXStrain Gleeble equipment, both performed at temperature interval 160-200 °C and, as third SPD method, KOBO type extrusion at RT. The TCAP pass resulted in grain refinement of α phase from 30 μm down to about 2 μm and that of β phase from 12 to 5 μm. Maxstrain cycling 10 × up to ɛ = 5 led to much finer grain size of 300 nm. KOBO method performed at RT caused average grain size refinement of α and β phases down to about 1 μm. Hardness of alloy decreased slightly with increasing number of TCAP passes due to increase of small void density. It was higher after MAXStrain cycling and after KOBO extrusion. TEM studies after TCAP passes showed higher dislocation density in the β region than in the α phase. Crystallographic relationship (001) α|| (110) β indicated parallel positioning of slip planes of both phases. Electron diffraction technique confirmed increase of grain misorientation with number of TCAP passes. Stress/strain curves recorded at temperature 200 °C showed superplastic forming after 1st and 3rd TCAP passes with better superplastic properties due to higher elongation with increasing number of passes. Values of strain rate sensitivity coefficient m were calculated at 0.29 after 3rd TCAP pass for strain rate range 10-5 to 5 × 10-3 s-1. Deformation by MAXStrain cycling caused much more effective grain refinement with fine microtwins in α phase. Superplastic deformation was also observed in alloy deformed by KOBO method, however the value of m = 0.21 was obtained at lower temperature of deformation equal to 160 °C and deformation rate in the range 10-5 to 5 × 10-3. Tensile samples deformed superplastically showed grain growth and void formation caused by grain boundary slip. Summarizing, all methods applied resulted in sufficient grain refinement to obtain the effect of superplastic deformation for alloys of two phase α + β structure.

  15. Design, analysis, and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Garcia, A.; Minning, C.

    1981-01-01

    Thermal, optical, structural, and electrical isolation analyses are decribed. Major factors in the design of terrestrial photovoltaic modules are discussed. Mechanical defects in the different layers of an encapsulation system, it was found, would strongly influence the minimum pottant thickness required for electrical isolation. Structural, optical, and electrical properties, a literature survey indicated, are hevily influenced by the presence of moisture. These items, identified as technology voids, are discussed. Analyses were based upon a 1.2 meter square module using 10.2 cm (4-inch) square cells placed 1.3 mm apart as shown in Figure 2-2. Sizing of the structural support member of a module was determined for a uniform, normal pressure load of 50 psf, corresponding to the pressure difference generated between the front and back surface of a module by a 100 mph wind. Thermal and optical calculations were performed for a wind velocity of 1 meter/sec parallel to the ground and for module tilt (relative to the local horizontal) of 37 deg. Placement of a module in a typical array field is illustrated.

  16. Design, analysis, and test verification of advanced encapsulation systems

    NASA Astrophysics Data System (ADS)

    Garcia, A.; Minning, C.

    1981-11-01

    Thermal, optical, structural, and electrical isolation analyses are decribed. Major factors in the design of terrestrial photovoltaic modules are discussed. Mechanical defects in the different layers of an encapsulation system, it was found, would strongly influence the minimum pottant thickness required for electrical isolation. Structural, optical, and electrical properties, a literature survey indicated, are hevily influenced by the presence of moisture. These items, identified as technology voids, are discussed. Analyses were based upon a 1.2 meter square module using 10.2 cm (4-inch) square cells placed 1.3 mm apart as shown in Figure 2-2. Sizing of the structural support member of a module was determined for a uniform, normal pressure load of 50 psf, corresponding to the pressure difference generated between the front and back surface of a module by a 100 mph wind. Thermal and optical calculations were performed for a wind velocity of 1 meter/sec parallel to the ground and for module tilt (relative to the local horizontal) of 37 deg. Placement of a module in a typical array field is illustrated.

  17. A biodetrital coral mound complex: Key to early diagenetic processes in the mississippian bangor limestone

    USGS Publications Warehouse

    Haywick, D.W.; Kopaska-Merkel, D. C.; Bersch, M.G.

    2009-01-01

    The Bangor Limestone is a Mississippian (Chesterian) shallow marine carbonate formation exposed over a large portion of the Interior Low Plateaus province of northern Alabama. It is dominated by oolitic grainstone and skeletal wackestone and packstone, but in one outcrop near Moulton, Alabama, the Bangor contains a five m thick, 25 m wide, oolitebiodetrital moundtidal flat succession. This sequence is interpreted as a 4th order sea level cycle. Four petrofacies (oolite, mound, skeletal and mudstone/dolomicrite) and four diagenetic phases (iron oxide, fibrous calcite cement, calcite spar cement and dolomite) are distinguished at the study site. Iron oxide, a minor component, stained and/or coated some ooids, intraclasts and skeletal components in the oolite petrofacies. Many of the allochems were stained prior to secondary cortical growth suggesting a short period of subaerial exposure during oolite sedimentation. The oolite petrofacies also contains minor amounts of fibrous calcite cement, a first generation marine cement, and rare infiltrated micrite that might represent a second phase of marine cement, or a first phase of meteoric cement (i.e., "vadose silt") (Dunham 1969). Intergranular pore space in all four petrofacies is filled with up to three phases of meteoric calcite spar cement. The most complete record of meteoric cementation is preserved within coralline void spaces in the mound petrofacies and indicates precipitation in the following order: (1) non-ferroan scalenohedral spar, (2) ferroan drusy spar (0.1-0.4 wt% Fe2+) and (3) non-ferroan drusy spar. The first scalenohedral phase of meteoric cement is distributed throughout the oolite and mound petrofacies. The ferroan phase of meteoric calcite is a void-filling cement that is abundant in the mound petrofacies and less common in the skeletal and mudstone/dolomicrite petrofacies. Non-ferroan drusy calcite is pervasive throughout the Bangor Limestone at the Moulton study site. Growth of the fourth diagenetic phase, dolomite, was the dominant event in the micrite/dolomicrite petrofacies, particularly just below an irregular surface overlain by a brecciated interval. The irregular surface is interpreted as an exposure surface. Three phases of dolomite occur below the exposure surface. The majority is finely crystalline, anhedral, and enriched in Si4+, criteria which support a supratidal or mixed hypersaline\\meteoric origin. Secondary phases of coarser euhedral non-ferroan and ferroan dolomite are restricted to fenestrae and other voids in the micrite/dolomicrite petrofacies and were precipitated during subsequent meteoric diagenesis. Diagenesis of the Bangor Limestone at the Moulton outcrop was dominated by synsedimentary and very early meteoric processes driven by periods of subaerial exposure. Large voids within the mound petrofacies were particularly important, as they remained open long enough to record a more detailed early meteoric cement stratigraphy that might not be evident in Bangor Limestone outcrops elsewhere in Alabama.

  18. Smart Grid Integrity Attacks: Characterizations and Countermeasures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annarita Giani; Eilyan Bitar; Miles McQueen

    2011-10-01

    Real power injections at loads and generators, and real power flows on selected lines in a transmission network are monitored, transmitted over a SCADA network to the system operator, and used in state estimation algorithms to make dispatch, re-balance and other energy management system [EMS] decisions. Coordinated cyber attacks of power meter readings can be arranged to be undetectable by any bad data detection algorithm. These unobservable attacks present a serious threat to grid operations. Of particular interest are sparse attacks that involve the compromise of a modest number of meter readings. An efficient algorithm to find all unobservable attacksmore » [under standard DC load flow approximations] involving the compromise of exactly two power injection meters and an arbitrary number of power meters on lines is presented. This requires O(n2m) flops for a power system with n buses and m line meters. If all lines are metered, there exist canonical forms that characterize all 3, 4, and 5-sparse unobservable attacks. These can be quickly detected in power systems using standard graph algorithms. Known secure phase measurement units [PMUs] can be used as countermeasures against an arbitrary collection of cyber attacks. Finding the minimum number of necessary PMUs is NP-hard. It is shown that p + 1 PMUs at carefully chosen buses are sufficient to neutralize a collection of p cyber attacks.« less

  19. LSST (Hoop/Column) Maypole Antenna Development Program, phase 1, part 2

    NASA Technical Reports Server (NTRS)

    Sullivan, M. R.

    1982-01-01

    Cable technology is discussed. Manufacturing flow and philosophy are considered. Acceptance, gratification and flight tests are discussed. Fifteen-meter and fifty-meter models are considered. An economic assessment is included.

  20. LSST (Hoop/Column) Maypole Antenna Development Program, phase 1, part 2

    NASA Astrophysics Data System (ADS)

    Sullivan, M. R.

    1982-06-01

    Cable technology is discussed. Manufacturing flow and philosophy are considered. Acceptance, gratification and flight tests are discussed. Fifteen-meter and fifty-meter models are considered. An economic assessment is included.

  1. Mechanistic insights into the oxidation behavior of Ni alloys in high-temperature CO 2

    DOE PAGES

    Oleksak, Richard P.; Baltrus, John P.; Nakano, Jinichiro; ...

    2017-06-01

    We present results of a Ni superalloy oxidized for short times in high purity CO 2 and similarly in Ar containing ≤ 1 ppb O 2. A detailed analysis of the oxidized surfaces reveals striking similarities for the two exposure environments, suggesting O 2 impurities control the oxidation process in high-temperature CO 2. Selective oxidation results in Cr-rich oxide layers grown by 2 outward diffusion, while Cr vacancies left in the metal contribute to significant void formation at the oxide/metal interface. Unlike for most of the alloy surface, the oxidation behavior of secondary phase metal carbides is considerably different inmore » the two environments.« less

  2. Urodynamic measurements reflect physiological bladder function in rats.

    PubMed

    Schneider, Marc P; Sartori, Andrea M; Tampé, Juliane; Moors, Selina; Engmann, Anne K; Ineichen, Benjamin V; Hofer, Anna-Sophie; Schwab, Martin E; Kessler, Thomas M

    2018-04-01

    Our objective was to investigate and compare bladder function in rats assessed by metabolic cage and by urodynamic measurements in fully awake animals. Bladder function of female Lewis rats was investigated in naïve animals by metabolic cage at baseline, 14-16 days after bladder catheter and external urethral sphincter electromyography electrode implantation in fully awake animals by urodynamics, and again by metabolic cage. Investigating the same animals (n = 8), voided volume, average flow, and duration of voiding were similar (P > 0.05) in naïve animals measured by metabolic cage and after catheter implantation by urodynamic measurements and by metabolic cage. In naïve animals measured by metabolic cage, voided volumes were significantly different in the light (resting phase) versus the dark (active phase) part of the 24 h cycle (mean difference 0.14 mL, 21%, P = 0.004, n = 27). Lower urinary tract function assessed by metabolic cage or by urodynamic meaurements in fully awake rats was indistinguishable. Thus, catheter implantation did not significantly change physiological bladder function. This shows that urodynamic measurements in awake animals are an appropriate approach to study lower urinary tract function in health and disease in animal models, directly paralleling the human diagnostic procedures. © 2017 Wiley Periodicals, Inc.

  3. Experimental investigation of 20 K two-stage layered active magnetic regenerative refrigerator

    NASA Astrophysics Data System (ADS)

    Park, Inmyong; Jeong, Sangkwon

    2015-12-01

    The performance of a two-stage layered AMRR is experimentally investigated. The test apparatus includes two-stage layered AMRs, low temperature superconducting (LTS) magnet which generates maximum magnetic field of 4 T, and the helium gas flow system. The helium compressor with the tandem rotary valve is employed to generate the oscillating flow of the helium gas minimizing the pressure swing effect. The mass flow rate of working fluid is controlled separately at the first and second stages of the AMR by solenoid valves. The mass flow rate of the AMRs is measured by the mass flow meter and the cryogenic hot-film sensor which is calibrated at cryogenic temperature range from 20 K to 77 K. In order to reduce the heat leak by shuttle heat transfer of the working fluid, void volumes have been implemented and connected to the cold ends of the AMR1 and AMR2. The temperature span of the AMR is recorded as 52 K and the performance of the AMR with the variation of the mass flow rate is analysed. The results show that the mass flow rate and the heat leak due to the shuttle heat transfer by oscillating working fluid are crucial factors in the AMR performance.

  4. Experimental investigation of defect criticality in FRP laminate composites

    NASA Astrophysics Data System (ADS)

    Joyce, Peter James

    1999-11-01

    This work examines the defect criticality of fiber reinforced polymer Composites. The objective is to determine the sensitivity of the finished composite to various process-induced defects. This work focuses on two different classes of process-induced defects; (1) fiber waviness in high performance carbon-fiber reinforced unidirectional composites and (2) void volume in low cost glass-fabric reinforced composites. The role of fiber waviness in the compressive response of unidirectional composites has been studied by a number of other investigators. Because of difficulties associated with producing real composites with varying levels of fiber waviness, most experimental studies of fiber waviness have evaluated composites with artificially induced fiber waviness. Furthermore, most experimental studies have been concentrated on the effects of out-of-plane fiber waviness. The objective of this work is to evaluate the effects of in-plane fiber waviness naturally occurring in autoclave consolidated thermoplastic laminates. The first phase of this project involved the development of a simple technique for measuring the resulting fiber waviness levels. An experimental investigation of the compression strength reduction in composites with in-plane fiber waviness followed. The experimental program included carbon-fiber reinforced thermoplastic composites manufactured from prepreg tape by hand layup, and carbon-fiber and glass-fiber reinforced composites manufactured from an experimental powder towpreg by filament winding and autoclave consolidation. The compression specimens exhibited kink band failure in the prepreg composite and varying amounts of longitudinal splitting and kink banding in the towpreg composites. The compression test results demonstrated the same trend as predicted by microbudding theory but the overall quantitative correlation was poor. The second thrust of this research evaluated void effects in resin transfer molded composites. Much of the existing literature in this area has focused on composites with unidirectional fiber reinforcement. In this program, the influence of void volume on the mechanical behavior of RTM composites with plain weave reinforcement was investigated. The experimental program demonstrated that the effects of void volume are negligible in terms of the fiber dominated properties. Interlaminar shear strength tests on the other hand demonstrated a linear dependence on void volume in the range tested.

  5. 30 CFR 203.34 - To which production may an RSV earned by qualified phase 2 and phase 3 ultra-deep wells on my...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., on a lease that is located entirely or partly in water less than 200 meters deep; or (2) May 18, 2007, on a lease that is located entirely in water more than 200 meters deep. ... Leases Not Subject to Deep Water Royalty Relief § 203.34 To which production may an RSV earned by...

  6. Cross-stacked carbon nanotubes assisted self-separation of free-standing GaN substrates by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Wei, Tongbo; Yang, Jiankun; Wei, Yang; Huo, Ziqiang; Ji, Xiaoli; Zhang, Yun; Wang, Junxi; Li, Jinmin; Fan, Shoushan

    2016-06-01

    We report a novel method to fabricate high quality 2-inch freestanding GaN substrate grown on cross-stacked carbon nanotubes (CSCNTs) coated sapphire by hydride vapor phase epitaxy (HVPE). As nanoscale masks, these CSCNTs can help weaken the interface connection and release the compressive stress by forming voids during fast coalescence and also block the propagation of threading dislocations (TDs). During the cool-down process, thermal stress-induced cracks are initiated at the CSCNTs interface with the help of air voids and propagated all over the films which leads to full self-separation of FS-GaN substrate. Raman and photoluminescence spectra further reveal the stress relief and crystalline improvement of GaN with CSCNTs. It is expected that the efficient, low cost and mass-producible technique may enable new applications for CNTs in nitride optoelectronic fields.

  7. Cross-stacked carbon nanotubes assisted self-separation of free-standing GaN substrates by hydride vapor phase epitaxy.

    PubMed

    Wei, Tongbo; Yang, Jiankun; Wei, Yang; Huo, Ziqiang; Ji, Xiaoli; Zhang, Yun; Wang, Junxi; Li, Jinmin; Fan, Shoushan

    2016-06-24

    We report a novel method to fabricate high quality 2-inch freestanding GaN substrate grown on cross-stacked carbon nanotubes (CSCNTs) coated sapphire by hydride vapor phase epitaxy (HVPE). As nanoscale masks, these CSCNTs can help weaken the interface connection and release the compressive stress by forming voids during fast coalescence and also block the propagation of threading dislocations (TDs). During the cool-down process, thermal stress-induced cracks are initiated at the CSCNTs interface with the help of air voids and propagated all over the films which leads to full self-separation of FS-GaN substrate. Raman and photoluminescence spectra further reveal the stress relief and crystalline improvement of GaN with CSCNTs. It is expected that the efficient, low cost and mass-producible technique may enable new applications for CNTs in nitride optoelectronic fields.

  8. Cross-stacked carbon nanotubes assisted self-separation of free-standing GaN substrates by hydride vapor phase epitaxy

    PubMed Central

    Wei, Tongbo; Yang, Jiankun; Wei, Yang; Huo, Ziqiang; Ji, Xiaoli; Zhang, Yun; Wang, Junxi; Li, Jinmin; Fan, Shoushan

    2016-01-01

    We report a novel method to fabricate high quality 2-inch freestanding GaN substrate grown on cross-stacked carbon nanotubes (CSCNTs) coated sapphire by hydride vapor phase epitaxy (HVPE). As nanoscale masks, these CSCNTs can help weaken the interface connection and release the compressive stress by forming voids during fast coalescence and also block the propagation of threading dislocations (TDs). During the cool-down process, thermal stress-induced cracks are initiated at the CSCNTs interface with the help of air voids and propagated all over the films which leads to full self-separation of FS-GaN substrate. Raman and photoluminescence spectra further reveal the stress relief and crystalline improvement of GaN with CSCNTs. It is expected that the efficient, low cost and mass-producible technique may enable new applications for CNTs in nitride optoelectronic fields. PMID:27340030

  9. Critical velocities for deflagration and detonation triggered by voids in a REBO high explosive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herring, Stuart Davis; Germann, Timothy C; Jensen, Niels G

    2010-01-01

    The effects of circular voids on the shock sensitivity of a two-dimensional model high explosive crystal are considered. We simulate a piston impact using molecular dynamics simulations with a Reactive Empirical Bond Order (REBO) model potential for a sub-micron, sub-ns exothermic reaction in a diatomic molecular solid. The probability of initiating chemical reactions is found to rise more suddenly with increasing piston velocity for larger voids that collapse more deterministically. A void with radius as small as 10 nm reduces the minimum initiating velocity by a factor of 4. The transition at larger velocities to detonation is studied in amore » micron-long sample with a single void (and its periodic images). The reaction yield during the shock traversal increases rapidly with velocity, then becomes a prompt, reliable detonation. A void of radius 2.5 nm reduces the critical velocity by 10% from the perfect crystal. A Pop plot of the time-to-detonation at higher velocities shows a characteristic pressure dependence.« less

  10. Influence investigation of a void region on modeling light propagation in a heterogeneous medium.

    PubMed

    Yang, Defu; Chen, Xueli; Ren, Shenghan; Qu, Xiaochao; Tian, Jie; Liang, Jimin

    2013-01-20

    A void region exists in some biological tissues, and previous studies have shown that inaccurate images would be obtained if it were not processed. A hybrid radiosity-diffusion method (HRDM) that couples the radiosity theory and the diffusion equation has been proposed to deal with the void problem and has been well demonstrated in two-dimensional and three-dimensional (3D) simple models. However, the extent of the impact of the void region on the accuracy of modeling light propagation has not been investigated. In this paper, we first implemented and verified the HRDM in 3D models, including both the regular geometries and a digital mouse model, and then investigated the influences of the void region on modeling light propagation in a heterogeneous medium. Our investigation results show that the influence of the region can be neglected when the size of the void is less than a certain range, and other cases must be taken into account.

  11. Creep-Fatigue Interaction and Cyclic Strain Analysis in P92 Steel Based on Test

    NASA Astrophysics Data System (ADS)

    Ji, Dongmei; Zhang, Lai-Chang; Ren, Jianxing; Wang, Dexian

    2015-04-01

    This work focused on the interaction of creep and fatigue and cyclic strain analysis in high-chromium ferritic P92 steel based on load-controlled creep-fatigue (CF) tests and conventional creep test at 873 K. Mechanical testing shows that the cyclic load inhibits the propagation of creep damage in the P92 steel and CF interaction becomes more severe with the decrease in the holding period duration and stress ratio. These results are also verified by the analysis of cyclic strain. The fatigue lifetime reduces with the increasing of the holding period duration and it does not reduce much with the increasing stress ratio especially under the conditions of long holding period duration. The cyclic strains (i.e., the strain range and creep strain) of CF tests consist of three stages, which is the same as those for the conventional creep behavior. The microscopic fracture surface observations illustrated that two different kinds of voids are observed at the fracture surfaces and Laves phase precipitates at the bottom of the voids.

  12. Automatic remote-integration metering center. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philippidis, P.A.; Weinreb, M.; de Gil, B.F.

    1988-11-01

    The report documents a multi-phase program for the development and demonstration of a unique automatic and remote metering system. The system consists of a solid-state meter module to provide electrical consumption data, tamper detection, and load control functions; a central master station to interrogate the meter modules for their data and also to transmit load control signals; and a data display module to be accessible to tenants wishing to obtain their meter readings. The system has the capability to measure and allocate demand and to process time of use rates. It also has a meter accuracy self-test feature. The systemmore » is suitable for both direct metering of multi-family buildings and the sub-metering of master-metered apartment buildings. In addition to describing the system, the report documents the results of a 371-point field trial at Scott Tower, a cooperative apartment building in the Bronx, New York.« less

  13. An Experimental Study of Plunging Liquid Jet Induced Air Carryunder and Dispersion

    DTIC Science & Technology

    1991-12-24

    the ’ greenhouse ’ effect (ie, the absorption of CO2 by the oceans), and a number of other important maritime-related applications. In particular, the air entrainment process due to the breaking bow waves of surface ships may cause long (ie, up to 5 km in length) wakes. Naturally easily detectable wakes are undesirable for naval warships. In the present study plunging liquid jet experiments were performed and detailed Laser Doppler Anemometer (LDA) data were taken of the phasic velocity field and the void fraction distribution in the induced two-phase

  14. Development of Electrical Capacitance Sensors for Accident Tolerant Fuel (ATF) Testing at the Transient Reactor Test (TREAT) Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Maolong; Ryals, Matthew; Ali, Amir

    2016-08-01

    A variety of instruments are being developed and qualified to support the Accident Tolerant Fuels (ATF) program and future transient irradiations at the Transient Reactor Test (TREAT) facility at Idaho National Laboratory (INL). The University of New Mexico (UNM) is working with INL to develop capacitance-based void sensors for determining the timing of critical boiling phenomena in static capsule fuel testing and the volume-averaged void fraction in flow-boiling in-pile water loop fuel testing. The static capsule sensor developed at INL is a plate-type configuration, while UNM is utilizing a ring-type capacitance sensor. Each sensor design has been theoretically and experimentallymore » investigated at INL and UNM. Experiments are being performed at INL in an autoclave to investigate the performance of these sensors under representative Pressurized Water Reactor (PWR) conditions in a static capsule. Experiments have been performed at UNM using air-water two-phase flow to determine the sensitivity and time response of the capacitance sensor under a flow boiling configuration. Initial measurements from the capacitance sensor have demonstrated the validity of the concept to enable real-time measurement of void fraction. The next steps include designing the cabling interface with the flow loop at UNM for Reactivity Initiated Accident (RIA) ATF testing at TREAT and further characterization of the measurement response for each sensor under varying conditions by experiments and modeling.« less

  15. Morphological transformation of soot: investigation of microphysical processes during the condensation of sulphuric acid and limonene ozonolysis products vapours

    NASA Astrophysics Data System (ADS)

    Pathak, R. K. P.; Pei, X.; Hallquist, M.; Pagels, J. H.

    2017-12-01

    Morphological transformation of soot particle by condensation of low volatility materials on it is a dominant atmospheric process with serious implications for its optical and hygroscopic properties, and atmospheric lifetime. In this study, the morphological transformation of soot agglomerate under the influence of condensation of vapours of sulphuric acid, and/or limonene ozonolysis products were investigated systematically using a Differential Mobility Analyser-Aerosol Particle Mass Analyser (DMA-APM) and the Tandem DMA techniques integrated with a laminar flow-tube system. We discovered that the morphology transformation of soot in general was a sequence of two-step process, i.e. (i) filling of void space within soot agglomerate; (ii) growth of particle diameter. These two steps followed and complimented each other. In the very beginning the filling was the dominant process followed by growth until it led to the accumulation of enough material that in turn exerted surface forces that eventually facilitated the further filling. The filling of void space was constrained by the initial morphology of fresh soot and the nature and amount of the material condensed. This process continued in several sequential steps until all void space within the soot agglomerate was filled completely and then growth of a spherical particle continued as long as mass was condensed on it. In this study, we developed a framework to quantify the microphysical transformation of soot upon the condensation of various materials. The framework utilized experimental data and hypothesis of ideal sphere growth and filling of voids to quantify the distribution of condensed materials in these two processes complimenting each other. Using this framework, we have quantified the percentage of material that went into processes of particle growth and void filling at each step. Using the same framework, we further estimated the fraction of internal voids and open voids and used this information to derive the volume equivalent diameter of soot agglomerate containing internal voids and calculated in-situ dynamic shape factor. Our study is the first study that tracks in situ microphysical changes in soot morphology quantitatively, providing the detailed status of both fresh and coated soot particles.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Y.; D'Hauthuille, L.; Barth, C.

    High-field superconducting magnets play a very important role in many large-scale physics experiments, particularly particle colliders and fusion confinement devices such as Large Hadron Collider (LHC) and International Thermonuclear Experimental Reactor (ITER). The two most common superconductors used in these applications are NbTi and Nb 3Sn. Nb 3Sn wires are favored because of their significantly higher J c (critical current density) for higher field applications. The main disadvantage of Nb 3Sn is that the superconducting performance of the wire is highly strain sensitive and it is very brittle. This strain sensitivity is strongly influenced by two factors: plasticity and crackedmore » filaments. Cracks are induced by large stress concentrators that can be traced to the presence of voids in the wire. We develop detailed 2-D and 3-D finite-element models containing wire filaments and different possible distributions of voids in a bronze-route Nb 3Sn wire. We apply compressive transverse loads for various cases of void distributions to simulate the stress and strain response of a Nb 3Sn wire under the Lorentz force. Furthermore, this paper improves our understanding of the effect voids have on the Nb 3Sn wire's mechanical properties, and in so, the connection between the distribution of voids and performance degradation such as the correlation between irreversible strain limit and the void-induced local stress concentrations.« less

  17. Searching for Dwarf H Alpha Emission-line Galaxies within Voids III: First Spectra

    NASA Astrophysics Data System (ADS)

    Moody, J. Ward; Draper, Christian; McNeil, Stephen; Joner, Michael D.

    2017-02-01

    The presence or absence of dwarf galaxies with {M}r\\prime > -14 in low-density voids is determined by the nature of dark matter halos. To better understand what this nature is, we are conducting an imaging survey through redshifted Hα filters to look for emission-line dwarf galaxies in the centers of two nearby galaxy voids called FN2 and FN8. Either finding such dwarfs or establishing that they are not present is a significant result. As an important step in establishing the robustness of the search technique, we have observed six candidates from the survey of FN8 with the Gillett Gemini telescope and GMOS spectrometer. All of these candidates had emission, although none was Hα. The emission in two objects was the [O III]λ4959, 5007 doublet plus Hβ, and the emission in the remaining four was the [O II]λ3727 doublet, all from objects beyond the void. While no objects were within the void, these spectra show that the survey is capable of finding emission-line dwarfs in the void centers that are as faint as {M}r\\prime ˜ -12.4, should they be present. These spectra also show that redshifts estimated from our filtered images are accurate to several hundred km s-1 if the line is identified correctly, encouraging further work in finding ways to conduct redshift surveys through imaging alone.

  18. Revealing the hidden structures of an historical bridge by high resolution geophysical methods : A case study of Pont de Coq, France

    NASA Astrophysics Data System (ADS)

    Antoine, R.; Fauchard, C.

    2012-04-01

    In the last decades, public institutions have shown an increased interest in heritage conservation and monuments protection. Geophysical methods have been used for 20 years as powerful tools to assist in the curation of buildings. Ancient masonry bridges usually exhibit a complex structure/geometry. This complexity makes the use of combined geophysical methods highly necessary to obtain a meaningful model of the internal structure of such constructions and their environment. A high resolution geophysical survey was carried out at a stone arch bridge called Pont de Coq and located near Menerval, Normandy (France) in 2011. This decameter-sized bridge was built 400 years ago and crosses the Epte river, which is a tributary of the Seine river. The main objective of this work was to evaluate the structural state of the bridge and its vicinities. Two complementary methods were used : Electrical Resistivity tomography (ERT) and Ground Penetrating radar (GPR). Several profiles were realized along the road crossing the bridge and transversally to the construction, as well as on the two banks of the Epte river. High resolution electrical resistivity data were obtained both in the horizontal and vertical direction up to 8 meter-depth by two ERT methods (Wenner/Schlumberger and dipole-dipole). The GPR was used with shielded antennas at three different frequencies (200 MHz, 400 MHz and 1.5 GHz). This approach lead to the investigation of the subsurface up to approximately 6 meters-depth, with a resolution in the range of 0.04 m-0.40m. An excellent correlation is obtained between the ERT and the GPR methods, allowing us to propose a precise structural model of the Pont de Coq and to characterize the soil under the building. Several anomalies are observed within the roadway of the bridge at 50 cm-depth, as well as within the vaulting, corresponding to the presence of voids and a root network which lead to the slow destruction of the structure.

  19. The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions

    NASA Astrophysics Data System (ADS)

    Hruszkewycz, S. O.; Harder, R.; Xiao, X.; Fuoss, P. H.

    2010-12-01

    Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.

  20. The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions.

    PubMed

    Hruszkewycz, S O; Harder, R; Xiao, X; Fuoss, P H

    2010-12-01

    Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    Here, the one-dimensional water faucet problem is one of the classical benchmark problems originally proposed by Ransom to study the two-fluid two-phase flow model. With certain simplifications, such as massless gas phase and no wall and interfacial frictions, analytical solutions had been previously obtained for the transient liquid velocity and void fraction distribution. The water faucet problem and its analytical solutions have been widely used for the purposes of code assessment, benchmark and numerical verifications. In our previous study, the Ransom’s solutions were used for the mesh convergence study of a high-resolution spatial discretization scheme. It was found that, atmore » the steady state, an anticipated second-order spatial accuracy could not be achieved, when compared to the existing Ransom’s analytical solutions. A further investigation showed that the existing analytical solutions do not actually satisfy the commonly used two-fluid single-pressure two-phase flow equations. In this work, we present a new set of analytical solutions of the water faucet problem at the steady state, considering the gas phase density’s effect on pressure distribution. This new set of analytical solutions are used for mesh convergence studies, from which anticipated second-order of accuracy is achieved for the 2nd order spatial discretization scheme. In addition, extended Ransom’s transient solutions for the gas phase velocity and pressure are derived, with the assumption of decoupled liquid and gas pressures. Numerical verifications on the extended Ransom’s solutions are also presented.« less

  2. The color bar phase meter: A simple and economical method for calibrating crystal oscillators

    NASA Technical Reports Server (NTRS)

    Davis, D. D.

    1973-01-01

    Comparison of crystal oscillators to the rubidium stabilized color burst is made easy and inexpensive by use of the color bar phase meter. Required equipment consists of an unmodified color TV receiver, a color bar synthesizer and a stop watch (a wrist watch or clock with sweep second hand may be used with reduced precision). Measurement precision of 1 x 10 to the minus 10th power can be realized in measurement times of less than two minutes. If the color bar synthesizer were commercially available, user cost should be less than $200.00, exclusive of the TV receiver. Parts cost for the color bar synthesizer which translates the crystal oscillator frequency to 3.579MHz and modulates the received RF signal before it is fed to the receiver antenna terminals is about $25.00. A more sophisticated automated version, with precision of 1 x 10 to the minus 11th power would cost about twice as much.

  3. Proportionality between Doppler noise and integrated signal path electron density validated by differenced S-X range

    NASA Technical Reports Server (NTRS)

    Berman, A. L.

    1977-01-01

    Observations of Viking differenced S-band/X-band (S-X) range are shown to correlate strongly with Viking Doppler noise. A ratio of proportionality between downlink S-band plasma-induced range error and two-way Doppler noise is calculated. A new parameter (similar to the parameter epsilon which defines the ratio of local electron density fluctuations to mean electron density) is defined as a function of observed data sample interval (Tau) where the time-scale of the observations is 15 Tau. This parameter is interpreted to yield the ratio of net observed phase (or electron density) fluctuations to integrated electron density (in RMS meters/meter). Using this parameter and the thin phase-changing screen approximation, a value for the scale size L is calculated. To be consistent with Doppler noise observations, it is seen necessary for L to be proportional to closest approach distance a, and a strong function of the observed data sample interval, and hence the time-scale of the observations.

  4. Improved performance of the laser guide star adaptive optics system at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, J R; Avicola, K; Bauman, B J

    1999-07-20

    Results of experiments with the laser guide star adaptive optics system on the 3-meter Shane telescope at Lick Observatory have demonstrated a factor of 4 performance improvement over previous results. Stellar images recorded at a wavelength of 2 {micro}m were corrected to over 40% of the theoretical diffraction-limited peak intensity. For the previous two years, this sodium-layer laser guide star system has corrected stellar images at this wavelength to {approx}10% of the theoretical peak intensity limit. After a campaign to improve the beam quality of the laser system, and to improve calibration accuracy and stability of the adaptive optics systemmore » using new techniques for phase retrieval and phase-shifting diffraction interferometry, the system performance has been substantially increased. The next step will be to use the Lick system for astronomical science observations, and to demonstrate this level of performance with the new system being installed on the 10-meter Keck II telescope.« less

  5. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: a general microscopic picture.

    PubMed

    Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng

    2014-11-10

    Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies.

  6. Environmentally friendly pervious concrete for treating deicer-laden stormwater (phase one report).

    DOT National Transportation Integrated Search

    2015-12-30

    A graphene oxide-modified pervious concrete was developed by using low-reactivity, high-calcium fly ash as sole binder and chemical : activators and other admixtures. The density, void ratio, mechanical strength, infiltration rate, Youngs modulus,...

  7. Murine social stress results in long lasting voiding dysfunction.

    PubMed

    Butler, Stephan; Luz, Sandra; McFadden, Kile; Fesi, Joanna; Long, Christopher; Spruce, Lynn; Seeholzer, Steven; Canning, Douglas; Valentino, Rita; Zderic, Stephen

    2018-01-01

    Repeated exposure to social stress shifts the voiding phenotype in male mice leading to bladder wall remodeling and is associated with increased expression of the stress neuropeptide, corticotropin-releasing factor (CRF) in Barrington's nucleus neurons. In these studies, we set out to determine if the voiding phenotype could recover upon removal from the stressor. Male mice were exposed for 1h daily to an aggressor and the voiding phenotype was assessed at one month followed by randomization to three groups. One group underwent immediate sacrifice. Two groups were allowed a one month recovery from the social stress exposure with or without the addition of fluoxetine (1.2mg/ml) in their drinking water and repeat voiding patterns were measured prior to sacrifice. Social stress significantly increased bladder mass, bladder mass corrected for body weight, voided volumes, and decreased urinary frequency. The abnormal voiding phenotype persisted after a 1month recovery with no effect from the addition of fluoxetine. CRF mRNA in Barrington's nucleus was increased by social stress and remained elevated following recovery with no effect from the addition of fluoxetine. The mRNA and protein expression for the alpha 1 chains of type 1 and type III collagen was unchanged across all groups suggesting that changes in the extracellular matrix of the bladder are not responsible for the voiding phenotype. This persisting voiding dysfunction correlates with the persistent elevation of CRF mRNA expression in Barrington's nucleus. Copyright © 2017. Published by Elsevier Inc.

  8. Integration of polarization-multiplexing and phase-shifting in nanometric two dimensional self-mixing measurement.

    PubMed

    Tao, Yufeng; Xia, Wei; Wang, Ming; Guo, Dongmei; Hao, Hui

    2017-02-06

    Integration of phase manipulation and polarization multiplexing was introduced to self-mixing interferometry (SMI) for high-sensitive measurement. Light polarizations were used to increase measuring path number and predict manifold merits for potential applications. Laser source was studied as a microwave-photonic resonator optically-injected by double reflected lights on a two-feedback-factor analytical model. Independent external paths exploited magnesium-oxide doped lithium niobate crystals at perpendicular polarizations to transfer interferometric phases into amplitudes of harmonics. Theoretical resolutions reached angstrom level. By integrating two techniques, this SMI outperformed the conventional single-path SMIs by simultaneous dual-targets measurement on single laser tube with high sensitivity and low speckle noise. In experimental demonstration, by nonlinear filtering method, a custom-made phase-resolved algorithm real-time figured out instantaneous two-dimensional displacements with nanometer resolution. Experimental comparisons to lock-in technique and a commercial Ploytec-5000 laser Doppler velocity meter validated this two-path SMI in micron range without optical cross-talk. Moreover, accuracy subjected to slewing rates of crystals could be flexibly adjusted.

  9. A Mechanical, Microstructural, and Damage Study of Various Tailor Hot Stamped Material Conditions Consisting of Martensite, Bainite, Ferrite, and Pearlite

    NASA Astrophysics Data System (ADS)

    Bardelcik, Alexander; Vowles, Caryn J.; Worswick, Michael J.

    2018-04-01

    This paper examines the mechanical, microstructural, and damage characteristics of five different material conditions that were created using the tailored hot stamping process with in-die heating. The tailored material conditions, TMC1 to TMC5 (softest-hardest), were created using die temperatures ranging from 700 °C to 400 °C, respectively. The tensile strength (and total elongation) ranged from 615 MPa (0.24) for TMC1 to 1122 MPa (0.11) for TMC5. TMC3 and TMC4 exhibited intermediate strength levels, with almost no increase in total elongation relative to TMC5. FE-SEM microscopy was used to quantify the mixed-phase microstructures, which ranged in volume fractions of ferrite, pearlite, bainite, and martensite. High-resolution optical microscopy was used to quantify void accumulation and showed that the total void area fraction at 0.60 thickness strain was low for TMC1 and TMC5 ( 0.09 pct) and highest for TMC3 (0.31 pct). Damage modes were characterized and revealed that the poor damage behavior of TMC3 (martensite/bainite/ferrite composition) was a result of small martensitic grains forming at grain boundaries and grain boundary junctions, which facilitated void nucleation as shown by the highest measured void density for this particular material condition. The excellent ductility of TMC1 was a result of a large grained ferritic/pearlitic microstructure that was less susceptible to void nucleation and growth. Large titanium nitride (TiN) inclusions were observed in all of the tailored material conditions and it was shown that they noticeably contributed to the total void accumulation, specifically for the TMC3 and TMC4 material conditions.

  10. The Clock mutant mouse is a novel experimental model for nocturia and nocturnal polyuria.

    PubMed

    Ihara, Tatsuya; Mitsui, Takahiko; Nakamura, Yuki; Kira, Satoru; Miyamoto, Tatsuya; Nakagomi, Hiroshi; Sawada, Norifumi; Hirayama, Yuri; Shibata, Keisuke; Shigetomi, Eiji; Shinozaki, Yoichi; Yoshiyama, Mitsuharu; Andersson, Karl-Erik; Nakao, Atsuhito; Takeda, Masayuki; Koizumi, Schuichi

    2017-04-01

    The pathophysiologies of nocturia (NOC) and nocturnal polyuria (NP) are multifactorial and their etiologies remain unclear in a large number of patients. Clock genes exist in most cells and organs, and the products of Clock regulate circadian rhythms as representative clock genes. Clock genes regulate lower urinary tract function, and a newly suggested concept is that abnormalities in clock genes cause lower urinary tract symptoms. In the present study, we investigated the voiding behavior of Clock mutant (Clock Δ19/Δ19 ) mice in order to determine the effects of clock genes on NOC/NP. Male C57BL/6 mice aged 8-12 weeks (WT) and male C57BL/6 Clock Δ19/Δ19 mice aged 8 weeks were used. They were bred under 12 hr light/dark conditions for 2 weeks and voiding behavior was investigated by measuring water intake volume, urine volume, urine volume/void, and voiding frequency in metabolic cages in the dark and light periods. No significant differences were observed in behavior patterns between Clock Δ19/Δ19 and WT mice. Clock Δ19/Δ19 mice showed greater voiding frequencies and urine volumes during the sleep phase than WT mice. The diurnal change in urine volume/void between the dark and light periods in WT mice was absent in Clock Δ19/Δ19 mice. Additionally, functional bladder capacity was significantly lower in Clock Δ19/Δ19 mice than in WT mice. We demonstrated that Clock Δ19/Δ19 mice showed the phenotype of NOC/NP. The Clock Δ19/Δ19 mouse may be used as an animal model of NOC and NP. Neurourol. Urodynam. 36:1034-1038, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Inflatable antennas for microwave pwoer transmission

    NASA Technical Reports Server (NTRS)

    Williams, Geoff

    1989-01-01

    Operational phase of the inflatable radiator; inflatable space structures; advantages; inflated thin-film satellites; antenna configuration; 3 meter diameter test paraboloid (HAIR program); and weight breakdown for the 100 meter diameter reflector are outlined. This presentation is represented by viewgraphs only.

  12. National Elevation Dataset

    USGS Publications Warehouse

    ,

    2002-01-01

    The National Elevation Dataset (NED) is a new raster product assembled by the U.S. Geological Survey. NED is designed to provide National elevation data in a seamless form with a consistent datum, elevation unit, and projection. Data corrections were made in the NED assembly process to minimize artifacts, perform edge matching, and fill sliver areas of missing data. NED has a resolution of one arc-second (approximately 30 meters) for the conterminous United States, Hawaii, Puerto Rico and the island territories and a resolution of two arc-seconds for Alaska. NED data sources have a variety of elevation units, horizontal datums, and map projections. In the NED assembly process the elevation values are converted to decimal meters as a consistent unit of measure, NAD83 is consistently used as horizontal datum, and all the data are recast in a geographic projection. Older DEM's produced by methods that are now obsolete have been filtered during the NED assembly process to minimize artifacts that are commonly found in data produced by these methods. Artifact removal greatly improves the quality of the slope, shaded-relief, and synthetic drainage information that can be derived from the elevation data. Figure 2 illustrates the results of this artifact removal filtering. NED processing also includes steps to adjust values where adjacent DEM's do not match well, and to fill sliver areas of missing data between DEM's. These processing steps ensure that NED has no void areas and artificial discontinuities have been minimized. The artifact removal filtering process does not eliminate all of the artifacts. In areas where the only available DEM is produced by older methods, then "striping" may still occur.

  13. Supernovae observations in a ``meatball'' universe with a local void

    NASA Astrophysics Data System (ADS)

    Kainulainen, Kimmo; Marra, Valerio

    2009-12-01

    We study the impact of cosmic inhomogeneities on the interpretation of observations. We build an inhomogeneous universe model without dark energy that can confront supernova data and yet is reasonably well compatible with the Copernican principle. Our model combines a relatively small local void, that gives apparent acceleration at low redshifts, with a meatball model that gives sizable lensing (dimming) at high redshifts. Together these two elements, which focus on different effects of voids on the data, allow the model to mimic the concordance model.

  14. Diffraction limited gamma-ray optics using Fresnel lenses for micro-arc second angular resolution

    NASA Astrophysics Data System (ADS)

    Skinner, G.; von Ballmoos, P.; Gehrels, N.; Krzmanic, J.

    2003-03-01

    Refractive indices at gamma-ray wavelengths are such that material thicknesses of the order of millimeters allow the phase of a wavefront to be changed by up to 2π . Thus a phase Fresnel lens can be made from a simple profiled thin disk of, for example, aluminium or plastic. Such a lens can easily have a collecting area of several square meters and an efficiency >90%. Ordinary engineering tolerances allow the manufacture of a lens which can be diffraction limited in the pico-meter wavelength band (up to ˜MeV) and thus provides a simple optical system with angular resolution better than a micro arc second i.e. the resolution necessary to resolve structures on the scale of the event horizon of super-massive black holes in AGN. However the focal length of such a lens is very long - up to a million km. Nevertheless studies have shown that a mission `Fresnel' using a detector and a phase Fresnel lens on two station-keeping spacecraft separated by such a distance is feasible. Results from these studies and work on other proof of concept studies are presented.

  15. Advanced optical smoke meters for jet engine exhaust measurement

    NASA Technical Reports Server (NTRS)

    Pitz, R. W.

    1986-01-01

    Smoke meters with increased sensitivity, improved accuracy, and rapid response are needed to measure the smoke levels emitted by modern jet engines. The standard soiled tape meter in current use is based on filtering, which yields long term averages and is insensitive to low smoke levels. Two new optical smoke meter techniques that promise to overcome these difficulties have been experimentally evaluated: modulated transmission (MODTRAN) and photothermal deflection spectroscopy (PDS). Both techniques are based on light absorption by smoke, which is closely related to smoke density. They are variations on direct transmission measurements which produce a modulated signal that can be easily measured with phase sensitive detection. The MODTRAN and PDS techniques were tested on low levels of smoke and diluted samples of NO2 in nitrogen, simulating light adsorption due to smoke. The results are evaluated against a set of ideal smoke meter criteria that include a desired smoke measurement range of 0.1 to 12 mg cu.m. (smoke numbers of 1 to 50) and a frequency response of 1 per second. The MODTRAN instrument is found to be inaccurate for smoke levels below 3 mg/cu.m. and is able to make a only about once every 20 seconds because of its large sample cell. The PDS instrument meets nearly all the characteristics of an ideal smoke meter: it has excellent sensitivity over a range of smoke levels from 0.1 to 20 mg/cu.m. (smoke numbers of 1 to 60) and good frequency response (1 per second).

  16. Two-phase flow characteristics of liquid nitrogen in vertically upward 0.5 and 1.0 mm micro-tubes: Visualization studies

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Fu, X.

    2009-10-01

    Application of liquid nitrogen to cooling is widely employed in many fields, such as cooling of the high temperature superconducting devices, cryosurgery and so on, in which liquid nitrogen is generally forced to flow inside very small passages to maintain good thermal performance and stability. In order to have a full understanding of the flow and heat transfer characteristics of liquid nitrogen in micro-tube, high-speed digital photography was employed to acquire the typical two-phase flow patterns of liquid nitrogen in vertically upward micro-tubes of 0.531 and 1.042 mm inner diameters. It was found from the experimental results that the flow patterns were mainly bubbly flow, slug flow, churn flow and annular flow. And the confined bubble flow, mist flow, bubble condensation and flow oscillation were also observed. These flow patterns were characterized in different types of flow regime maps. The surface tension force and the size of the diameter were revealed to be the major factors affecting the flow pattern transitions. It was found that the transition boundaries of the slug/churn flow and churn/annular flow of the present experiment shifted to lower superficial vapor velocity; while the transition boundary of the bubbly/slug flow shifted to higher superficial vapor velocity compared to the results of the room-temperature fluids in the tubes with the similar hydraulic diameters. The corresponding transition boundaries moved to lower superficial velocity when reducing the inner diameter of the micro-tubes. Time-averaged void fraction and heat transfer characteristics for individual flow patterns were presented and special attention was paid to the effect of the diameter on the variation of void fraction.

  17. Neutron Tomography Using Mobile Neutron Generators for Assessment of Void Distributions in Thermal Hydraulic Test Loops

    NASA Astrophysics Data System (ADS)

    Andersson, P.; Bjelkenstedt, T.; Sundén, E. Andersson; Sjöstrand, H.; Jacobsson-Svärd, S.

    Detailed knowledge of the lateral distribution of steam (void) and water in a nuclear fuel assembly is of great value for nuclear reactor operators and fuel manufacturers, with consequences for both reactor safety and economy of operation. Therefore, nuclear relevant two-phase flows are being studied at dedicated thermal-hydraulic test loop, using two-phase flow systems ranging from simplified geometries such as heated circular pipes to full scale mock-ups of nuclear fuel assemblies. Neutron tomography (NT) has been suggested for assessment of the lateral distribution of steam and water in such test loops, motivated by a good ability of neutrons to penetrate the metallic structures of metal pipes and nuclear fuel rod mock-ups, as compared to e.g. conventional X-rays, while the liquid water simultaneously gives comparatively good contrast. However, these stationary test loops require the measurement setup to be mobile, which is often not the case for NT setups. Here, it is acknowledged that fast neutrons of 14 MeV from mobile neutron generators constitute a viable option for a mobile NT system. We present details of the development of neutron tomography for this purpose at the division of Applied Nuclear Physics at Uppsala University. Our concept contains a portable neutron generator, exploiting the fusion reaction of deuterium and tritium, and a detector with plastic scintillator elements designed to achieveadequate spatial and energy resolution, all mounted in a light-weight frame without collimators or bulky moderation to allow for a mobile instrument that can be moved about the stationary thermal hydraulic test sections. The detector system stores event-to-event pulse-height information to allow for discrimination based on the energy deposition in the scintillator elements.

  18. Effect of Dark Energy Perturbation on Cosmic Voids Formation

    NASA Astrophysics Data System (ADS)

    Endo, Takao; Nishizawa, Atsushi J.; Ichiki, Kiyotomo

    2018-05-01

    In this paper, we present the effects of dark energy perturbation on the formation and abundance of cosmic voids. We consider dark energy to be a fluid with a negative pressure characterised by a constant equation of state w and speed of sound c_s^2. By solving fluid equations for two components, namely, dark matter and dark energy fluids, we quantify the effects of dark energy perturbation on the sizes of top-hat voids. We also explore the effects on the size distribution of voids based on the excursion set theory. We confirm that dark energy perturbation negligibly affects the size evolution of voids; c_s^2=0 varies the size only by 0.1% as compared to the homogeneous dark energy model. We also confirm that dark energy perturbation suppresses the void size when w < -1 and enhances the void size when w > -1 (Basse et al. 2011). In contrast to the negligible impact on the size, we find that the size distribution function on scales larger than 10 Mpc/h highly depends on dark energy perturbation; compared to the homogeneous dark energy model, the number of large voids of radius 30Mpc is 25% larger for the model with w = -0.9 and c_s^2=0 while they are 20% less abundant for the model with w = -1.3 and c_s^2=0.

  19. Detection of sinkholes or anomalies using full seismic wave fields : phase II [summary].

    DOT National Transportation Integrated Search

    2016-09-01

    Florida geology with its non-uniform rock and soil layers, variable deposits of poor soils (clay, organics, etc.), and weathered (and possibly voided) limestone is a major concern for design engineers, contractors, and maintenance personnel. However,...

  20. Hybrid TLC-pair meter for the Sphinx Project

    NASA Technical Reports Server (NTRS)

    Wada, T.; Yamamoto, I.; Takahashi, N.; Misaki, A.

    1985-01-01

    The chief aims in THE SPHINX PROJECT are research of super lepton physics and new detector experiments. At the second phase of THE SPHINX PROJECT, a hybrid TLC-PAIR METER was designed for measuring high energy neutrino sources (E upsilon * TeV), searching high energy muon sources (E mu TeV) and measuring muon group (E mu 1 TeV). The principle of PAIR METER has been already proposed. In this TLC-PAIR METER, electromagnetic shower induced by cosmic ray muons are detected using TL (Thermoluminescence) sheets with position counters.

  1. MSFC Test Results for Selected Mirrors: Brush-Wellman/Goodrich 0.5 meter Joined-Beryllium Mirror; IABG 0.5 meter C/SiC Mirror; Xinetics 0.5 meter SiC Mirror; and Kodak 0.23 meter SiO2 Mirror

    NASA Technical Reports Server (NTRS)

    Hadaway, James; Blackwell, Lisa; Matthews, Gary; Eng, Ron; Stahl, Phil; Hraba, John; Thornton, Gary

    2002-01-01

    The results of cryo tests performed at the XRCF on the above mirrors will be presented. Each mirror was tested from room-temperature to around 30 K. The first three were tested together on a 3-mirror stand in the large chamber using the PhaseCam interferometer, while the Kodak mirror was tested in the small chamber using the EPI interferometer.

  2. Serotonin (5-HT)2A/2C receptor agonist (2,5-dimethoxy-4-idophenyl)-2-aminopropane hydrochloride (DOI) improves voiding efficiency in the diabetic rat.

    PubMed

    Tu, Hongjian; Cao, Nailong; Gu, Baojun; Si, Jiemin; Chen, Zhong; Andersson, Karl-Erik

    2015-07-01

    To examine the effects of the serotonin (5-HT)2A/2C receptor agonist (2,5-dimethoxy-4-idophenyl)-2-aminopropane hydrochloride (DOI) on micturition in rats with diabetes mellitus (DM). Female Sprague-Dawley rats (n = 16) were divided into two groups: rats with Type 1 DM and age-matched control rats. DM was induced by i.p. injection of streptozotocin (65 mg/kg) and detailed cystometrogram (CMG) studies were performed 8 weeks post-injection in all rats under urethane anaesthesia. The selective 5-HT2A antagonist ketanserin was administered after each DOI dose-response curve was plotted. All drugs were administered i.v. Compared with controls, comprehensive urodynamic studies showed that DM rats had a higher bladder capacity and post-void residual urine volume (PVR), and a markedly lower voiding efficiency. In DM rats, DOI (0.01-0.3 mg/kg) induced significant dose-dependent increases in micturition volume and reductions in PVR, resulting in greater voiding efficiency. CMG measurements showed a dose-dependent increase in high-frequency oscillation (HFO) activity, evidenced by an increased duration of HFOs per voiding. This correlated with the improved voiding efficiency. Ketanserin (0.1 mg/kg) partially or completely reversed the DOI-induced changes. The HFOs observed in the present study seem to correlate with external urethral sphincter bursting activity during voiding. Bladder voiding efficiency was reduced in DM rats. The 5-HT2A receptor agonist can enhance HFO activity and improves voiding efficiency, and so may represent a new strategy to improve voiding efficiency after DM in experimental studies. © 2014 The Authors BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.

  3. Space Station

    NASA Image and Video Library

    1986-08-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts a configuration with enhanced capabilities. It builds on the horizontal boom and module pattern of the revised baseline. This configuration would feature dual keels, two vertical spines 105-meters long joined by upper and lower booms. The structure carrying the modules would become a transverse boom of a basically rectangular structure. The two new booms, 45-meters in length, would provide extensive accommodations for attached payloads, and would offer a wide field of view. Power would be increased significantly, with the addition if a 50-kW solar dynamic power system.

  4. Icing Analysis of a Swept NACA 0012 Wing Using LEWICE3D Version 3.48

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin S.

    2014-01-01

    Icing calculations were performed for a NACA 0012 swept wing tip using LEWICE3D Version 3.48 coupled with the ANSYS CFX flow solver. The calculated ice shapes were compared to experimental data generated in the NASA Glenn Icing Research Tunnel (IRT). The IRT tests were designed to test the performance of the LEWICE3D ice void density model which was developed to improve the prediction of swept wing ice shapes. Icing tests were performed for a range of temperatures at two different droplet inertia parameters and two different sweep angles. The predicted mass agreed well with the experiment with an average difference of 12%. The LEWICE3D ice void density model under-predicted void density by an average of 30% for the large inertia parameter cases and by 63% for the small inertia parameter cases. This under-prediction in void density resulted in an over-prediction of ice area by an average of 115%. The LEWICE3D ice void density model produced a larger average area difference with experiment than the standard LEWICE density model, which doesn't account for the voids in the swept wing ice shape, (115% and 75% respectively) but it produced ice shapes which were deemed more appropriate because they were conservative (larger than experiment). Major contributors to the overly conservative ice shape predictions were deficiencies in the leading edge heat transfer and the sensitivity of the void ice density model to the particle inertia parameter. The scallop features present on the ice shapes were thought to generate interstitial flow and horse shoe vortices which enhance the leading edge heat transfer. A set of changes to improve the leading edge heat transfer and the void density model were tested. The changes improved the ice shape predictions considerably. More work needs to be done to evaluate the performance of these modifications for a wider range of geometries and icing conditions.

  5. Icing Analysis of a Swept NACA 0012 Wing Using LEWICE3D Version 3.48

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin S.

    2014-01-01

    Icing calculations were performed for a NACA 0012 swept wing tip using LEWICE3D Version 3.48 coupled with the ANSYS CFX flow solver. The calculated ice shapes were compared to experimental data generated in the NASA Glenn Icing Research Tunnel (IRT). The IRT tests were designed to test the performance of the LEWICE3D ice void density model which was developed to improve the prediction of swept wing ice shapes. Icing tests were performed for a range of temperatures at two different droplet inertia parameters and two different sweep angles. The predicted mass agreed well with the experiment with an average difference of 12%. The LEWICE3D ice void density model under-predicted void density by an average of 30% for the large inertia parameter cases and by 63% for the small inertia parameter cases. This under-prediction in void density resulted in an over-prediction of ice area by an average of 115%. The LEWICE3D ice void density model produced a larger average area difference with experiment than the standard LEWICE density model, which doesn't account for the voids in the swept wing ice shape, (115% and 75% respectively) but it produced ice shapes which were deemed more appropriate because they were conservative (larger than experiment). Major contributors to the overly conservative ice shape predictions were deficiencies in the leading edge heat transfer and the sensitivity of the void ice density model to the particle inertia parameter. The scallop features present on the ice shapes were thought to generate interstitial flow and horse shoe vortices which enhance the leading edge heat transfer. A set of changes to improve the leading edge heat transfer and the void density model were tested. The changes improved the ice shape predictions considerably. More work needs to be done to evaluate the performance of these modifications for a wider range of geometries and icing conditions

  6. 3D visualization of two-phase flow in the micro-tube by a simple but effective method

    NASA Astrophysics Data System (ADS)

    Fu, X.; Zhang, P.; Hu, H.; Huang, C. J.; Huang, Y.; Wang, R. Z.

    2009-08-01

    The present study provides a simple but effective method for 3D visualization of the two-phase flow in the micro-tube. An isosceles right-angle prism combined with a mirror located 45° bevel to the prism is employed to synchronously obtain the front and side views of the flow patterns with a single camera, where the locations of the prism and the micro-tube for clear imaging should satisfy a fixed relationship which is specified in the present study. The optical design is proven successfully by the tough visualization work at the cryogenic temperature range. The image deformation due to the refraction and geometrical configuration of the test section is quantitatively investigated. It is calculated that the image is enlarged by about 20% in inner diameter compared to the real object, which is validated by the experimental results. Meanwhile, the image deformation by adding a rectangular optical correction box outside the circular tube is comparatively investigated. It is calculated that the image is reduced by about 20% in inner diameter with a rectangular optical correction box compared to the real object. The 3D re-construction process based on the two views is conducted through three steps, which shows that the 3D visualization method can easily be applied for two-phase flow research in micro-scale channels and improves the measurement accuracy of some important parameters of the two-phase flow such as void fraction, spatial distribution of bubbles, etc.

  7. Influence of oval and circular post placement using different resin cements on push-out bond strength and void volume analysed by micro-CT.

    PubMed

    Uzun, I; Keleş, A; Arslan, H; Güler, B; Keskin, C; Gündüz, K

    2016-12-01

    To evaluate the percentage volume of voids within cement layers, to determine the push-out bond strength of circular and oval fibre posts luted with different commercial resin cements in oval cross-sectional root canals, and to correlate push-out bond strength values and volume of voids of circular and oval fibre posts. Seventy-two mandibular premolars with oval-shaped root canals were selected. The specimens were divided into two main groups according to the post type (oval and circular). Groups were further divided into three subgroups (n = 24) according to resin cement type: Maxcem Elite, Rely-X Unicem and Duo-Link. The volumes of voids within the cements were analysed by micro-computed tomography (micro-CT). The bond strength was then measured using a push-out test with an Instron universal testing machine. The failure modes were evaluated. Statistical analyses were performed using a three-way anova, Tukey's post hoc, Pearson's correlation and chi-square test (P = 0.05). The push-out bond strength values were significantly affected by root canal region, post type and cement type (P < 0.001). Root canal region, post type and cement type also significantly affected void volume (P < 0.001). There was a significant interaction between post type and cement type (P < 0.001). The most frequent failure type was adhesive failure in all the groups. There was no significant correlation between the push-out bond strength and void volume (P > 0.05). Void volume did not affect push-out bond strength of oval and circular posts luted in oval canals. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. Flight experiment of thermal energy storage

    NASA Technical Reports Server (NTRS)

    Namkoong, David

    1989-01-01

    Thermal energy storage (TES) enables a solar dynamic system to deliver constant electric power through periods of sun and shade. Brayton and Stirling power systems under current considerations for missions in the near future require working fluid temperatures in the 1100 to 1300+ K range. TES materials that meet these requirements fall into the fluoride family of salts. These salts store energy as a heat of fusion, thereby transferring heat to the fluid at constant temperature during shade. The principal feature of fluorides that must be taken into account is the change in volume that occurs with melting and freezing. Salts shrink as they solidify, a change reaching 30 percent for some salts. The location of voids that form as result of the shrinkage is critical when the solar dynamic system reemerges into the sun. Hot spots can develop in the TES container or the container can become distorted if the melting salt cannot expand elsewhere. Analysis of the transient, two-phase phenomenon is being incorporated into a three-dimensional computer code. The code is capable of analysis under microgravity as well as 1 g. The objective of the flight program is to verify the predictions of the code, particularly of the void location and its effect on containment temperature. The four experimental packages comprising the program will be the first tests of melting and freezing conducted under microgravity. Each test package will be installed in a Getaway Special container to be carried by the shuttle. The package will be self-contained and independent of shuttle operations other than the initial opening of the container lid and the final closing of the lid. Upon the return of the test package from flight, the TES container will be radiographed and finally partitioned to examine the exact location and shape of the void. Visual inspection of the void and the temperature data during flight will constitute the bases for code verification.

  9. Forensic investigation of two voided slab bridges in the Virginia Department of Transportation's Richmond District.

    DOT National Transportation Integrated Search

    2017-06-01

    The precast prestressed concrete voided slab structure is a popular bridge design because of its rapid construction and cost : savings in terms of eliminating formwork at the jobsite. However, the longitudinal shear transfer mechanism often fails, le...

  10. 30 CFR 203.43 - To which production do I apply the RSV earned from qualified deep wells or qualified phase 1...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in water between 200 and 400 meters deep, you begin drilling an original deep well with a perforated... 200 meters deep; (ii) May 18, 2007, for an RSV earned by a qualified deep well on a lease that is located entirely in water more than 200 meters deep; or (iii) The date that the first qualified well that...

  11. Damage evolution during actuation fatigue in shape memory alloys (SPIE Best Student Paper Award)

    NASA Astrophysics Data System (ADS)

    Phillips, Francis R.; Wheeler, Robert; Lagoudas, Dimitris C.

    2018-03-01

    Shape Memory Alloys (SMAs) are unique materials able to undergo a thermomechanically induced, reversible phase transformation. Additionally, SMA are subject to two types of fatigue, that is structural fatigue due to cyclic loading as experienced by most materials, as well as actuation fatigue due to repeated thermally induced phase transformation. The evolution of multiple material characteristics is presented over the actuation fatigue lifetime of NiTiHf actuators, including the accumulation of irrecoverable strain, the evolution of internal voids, and the evolution of the effective modulus of the actuator. The results indicate that all three of these material characteristics are clearly interconnected and careful analysis of each of these characteristics can help to understand the evolution of the others, as well as help to understand how actuation fatigue leads to ultimate failure of the actuator.

  12. Video Voiding Device for Diagnosing Lower Urinary Tract Dysfunction in Men.

    PubMed

    Shokoueinejad, Mehdi; Alkashgari, Rayan; Mosli, Hisham A; Alothmany, Nazeeh; Levin, Jacob M; Webster, John G

    2017-01-01

    We introduce a novel diagnostic Visual Voiding Device (VVD), which has the ability to visually document urinary voiding events and calculate key voiding parameters such as instantaneous flow rate. The observation of the urinary voiding process along with the instantaneous flow rate can be used to diagnose symptoms of Lower Urinary Tract Dysfunction (LUTD) and improve evaluation of LUTD treatments by providing subsequent follow-up documentations of voiding events after treatments. The VVD enables a patient to have a urinary voiding event in privacy while a urologist monitors, processes, and documents the event from a distance. The VVD consists of two orthogonal cameras which are used to visualize urine leakage from the urethral meatus, urine stream trajectory, and its break-up into droplets. A third, lower back camera monitors a funnel topped cylinder where urine accumulates that contains a floater for accurate readings regardless of the urine color. Software then processes the change in level of accumulating urine in the cylinder and the visual flow properties to calculate urological parameters. Video playback allows for reexamination of the voiding process. The proposed device was tested by integrating a mass flowmeter into the setup and simultaneously measuring the instantaneous flow rate of a predetermined voided volume in order to verify the accuracy of VVD compared to the mass flowmeter. The VVD and mass flowmeter were found to have an accuracy of ±2 and ±3% relative to full scale, respectively. A VVD clinical trial was conducted on 16 healthy male volunteers ages 23-65.

  13. Reactivity change in a fast-spectrum space power reactor due to a 328-meter-per-second (1075-ft/sec) impact

    NASA Technical Reports Server (NTRS)

    Peoples, J. A., Jr.; Puthoff, R. L.

    1973-01-01

    Application of nuclear reactors in space will present operational problems. One such problem is the possibility of an earth impact at velocities in excess of 305 m/sec (1000 ft/sec). This report shows the results of an impact against concrete at 328 m/sec (1075 ft/sec) and examines the deformed core to estimate the range of activity inserted as a result of the impact. The results of this examination are that the deformation of the reactor core within the containment vessel left only an estimated 2.7 percent void in the core and that the reactivity inserted due to this impact deformation could be from 4.0 to 10.25 dollars.

  14. Could multiple voids explain the cosmic microwave background Cold Spot anomaly?

    DOE PAGES

    Naidoo, Krishna; Benoit-Levy, Aurelien; Lahav, Ofer

    2016-03-20

    Understanding the observed Cold Spot (CS) (temperature of ~ -150 mu K at its centre) on the Cosmic Microwave Background (CMB) is an outstanding problem. Explanations vary from assuming it is just a ≳ 3σ primordial Gaussian fluctuation to the imprint of a supervoid via the Integrated Sachs-Wolfe and Rees-Sciama (ISW+RS) effects. Since single spherical supervoids cannot account for the full profile, the ISW+RS of multiple line-of-sight voids is studied here to mimic the structure of the cosmic web. Two structure configurations are considered. The first, through simulations of 20 voids, produces a central mean temperature of ~-50 mu K.more » In this model the central CS temperature lies at ~ 2σ but fails to explain the CS hot ring. An alternative multi-void model (using more pronounced compensated voids) produces much smaller temperature profiles, but contains a prominent hot ring. Arrangements containing closely placed voids at low redshift are found to be particularly well suited to produce CS-like profiles. We then measure the significance of the CS if CS-like profiles (which are fitted to the ISW+RS of multi-void scenarios) are removed. Furthermore, the CS tension with the LCDM model can be reduced dramatically for an array of temperature profiles smaller than the CS itself.« less

  15. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: A general microscopic picture

    PubMed Central

    Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng

    2014-01-01

    Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies. PMID:25382029

  16. Improving adsorption cryocoolers by multi-stage compression and reducing void volume

    NASA Technical Reports Server (NTRS)

    Bard, S.

    1986-01-01

    It is shown that the performance of gas adsorption cryocoolers is greatly improved by using adsorbents with low void volume within and between individual adsorbent particles (reducing void volumes in plumbing lines), and by compressing the working fluid in more than one stage. Refrigerator specific power requirements and compressor volumetric efficiencies are obtained in terms of adsorbent and plumbing line void volumes and operating pressures for various charcoal adsorbents using an analytical model. Performance optimization curves for 117.5 and 80 K charcoal/nitrogen adsorption cryocoolers are given for both single stage and multistage compressor systems, and compressing the nitrogen in two stages is shown to lower the specific power requirements by 18 percent for the 117.5 K system.

  17. NWA 1586: Macrosmelting in a Monomict Ureilite

    NASA Astrophysics Data System (ADS)

    Singletary, S. J.; Grove, T. L.

    2003-03-01

    NWA 1586 is a unique new ureilite recovered in 2001 and displays the typical monomict ureilite texture. Pigeonite grains in this ureilite contain domains that consist of three pyroxenes, metal, a silica rich phase and voids. We interpret these to represent a macrosmelting event.

  18. Thermal Energy Storage Flight Experiment in Microgravity

    NASA Technical Reports Server (NTRS)

    Namkoong, David

    1992-01-01

    The Thermal Energy Storage Flight Experiment was designed to characterize void shape and location in LiF-based phase change materials in different energy storage configurations representative of advanced solar dynamic systems. Experiment goals and payload design are described in outline and graphic form.

  19. Use of metallic glasses for fabrication of structures with submicron dimensions

    DOEpatents

    Wiley, John D.; Perepezko, John H.

    1986-01-01

    Patterned structures of submicron dimension formed of supported or unsupported amorphous metals having submicron feature sizes characterized by etching behavior sufficient to allow delineation of sharp edges and smooth flat flanks, resistance to time-dependent dimensional changes caused by creep, flow, in-diffusion of unwanted impurities, out-diffusion of constituent atoms, void formation, grain growth or phase separation and resistance to phase transformations or compound formation.

  20. Laboratory investigation of air-void systems produced by air-entraining admixtures in fresh and hardened mortar.

    DOT National Transportation Integrated Search

    2006-01-01

    The air-void systems produced by two commercially available air-entraining admixtures (AEA), one a vinsol resin formulation and the other a tall oil formulation, were studied in mortars. Mortars were composed of four different portland cements and tw...

  1. A Two-Radius Circular Array Method: Extracting Independent Information on Phase Velocities of Love Waves From Microtremor Records From a Simple Seismic Array

    NASA Astrophysics Data System (ADS)

    Tada, T.; Cho, I.; Shinozaki, Y.

    2005-12-01

    We have invented a Two-Radius (TR) circular array method of microtremor exploration, an algorithm that enables to estimate phase velocities of Love waves by analyzing horizontal-component records of microtremors that are obtained with an array of seismic sensors placed around circumferences of two different radii. The data recording may be done either simultaneously around the two circles or in two separate sessions with sensors distributed around each circle. Both Rayleigh and Love waves are present in the horizontal components of microtremors, but in the data processing of our TR method, all information on the Rayleigh waves ends up cancelled out, and information on the Love waves alone are left to be analyzed. Also, unlike the popularly used frequency-wavenumber spectral (F-K) method, our TR method does not resolve individual plane-wave components arriving from different directions and analyze their "vector" phase velocities, but instead directly evaluates their "scalar" phase velocities --- phase velocities that contain no information on the arrival direction of waves --- through a mathematical procedure which involves azimuthal averaging. The latter feature leads us to expect that, with our TR method, it is possible to conduct phase velocity analysis with smaller numbers of sensors, with higher stability, and up to longer-wavelength ranges than with the F-K method. With a view to investigating the capabilities and limitations of our TR method in practical implementation to real data, we have deployed circular seismic arrays of different sizes at a test site in Japan where the underground structure is well documented through geophysical exploration. Ten seismic sensors were placed equidistantly around two circumferences, five around each circle, with varying combinations of radii ranging from several meters to several tens of meters, and simultaneous records of microtremors around circles of two different radii were analyzed with our TR method to produce estimates for the phase velocities of Love waves. The estimates were then checked against "model" phase velocities that are derived from theoretical calculations. We have also conducted a check of the estimated spectral ratios against the "model" spectral ratios, where we mean by "spectral ratio" an intermediary quantity that is calculated from observed records prior to the estimation of the phase velocity in the data analysis procedure of our TR method. In most cases, the estimated phase velocities coincided well with the model phase velocities within a wavelength range extending roughly from 3r to 6r (r: array radius). It was found out that, outside the upper and lower resolution limits of the TR method, the discrepancy between the estimated and model phase velocities, as well as the discrepancy between the estimated and model spectral ratios, were accounted for satisfactorily by theoretical consideration of three factors: the presence of higher surface-wave modes, directional aliasing effects related to the finite number of sensors in the seismic array, and the presence of incoherent noise.

  2. SRTM Anaglyph: Meseta de Somuncura, Patagonia, Argentina (Near Los Menucos)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Meseta de Somuncura is a semi-arid basalt plateau in northern Patagonia. This view of the northwestern part of the plateau, near Los Menucos, Argentina, shows numerous depressions where the upper basalt layers are missing or collapsed. Collapse occurs above voids in the underlying rock. These voids might have been caused by lava tubes carrying away molten lava from under the cooled and solidified surface of a lava flow. Alternatively, voids might result when ground water dissolves carbonate (limestone) or evaporite (salt) deposits that the lava may be covering.

    Many of the depressions have salty lakes. Light wind streaks downwind (eastward) from the lakes show that salt crystals blow off the lake beds during dry times. Some eroded sand and silt debris from the basalt must also blow downwind, but the degree to which wind plays a role in the erosion of the depressions is not clear.

    This anaglyph was generated by first draping a Landsat Thematic Mapper image over a topographic map from the Shuttle Radar Topography Mission, then producing the two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and the right eye with a blue filter.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center,Sioux Falls, South Dakota.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.

    Size: 30 kilometers (19 miles) x 40 kilometers (25 miles) Location: 41.0 deg. South lat., 67.7 deg. West lon. Orientation: North toward upper left Image Data: Landsat band 4 (near infrared) Date Acquired: February 19, 2000 (SRTM), January 22, 2000 (Landsat) Image: NASA/JPL/NIMA

  3. SRTM Stereo Pair: Meseta de Somuncura, Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Meseta de Somuncura is a semi-arid basalt plateau in northern Patagonia. This view of the northwestern part of the plateau, near Los Menucos, Argentina, shows numerous depressions where the upper basalt layers are missing or collapsed. Collapse occurs above voids in the underlying rock. These voids might have been caused by lava tubes carrying away molten lava from under the cooled and solidified surface of a lava flow. Alternatively, voids might result when ground water dissolves carbonate (limestone) or evaporite (salt) deposits that the lava may be covering.

    Many of the depressions have salty lakes. Light wind streaks downwind (eastward) from the lakes show that salt crystals blow off the lake beds during dry times. Some eroded sand and silt debris from the basalt must also blow downwind, but the degree to which wind plays a role in the erosion of the depressions is not clear.

    This cross-eyed stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced Landsat 7satellite color image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center,Sioux Falls, South Dakota.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.

    Size: 30 kilometers (19 miles) x 40 kilometers (25 miles) Location: 41.0 deg. South lat., 67.7 deg. West lon. Orientation: North toward upper left Image Data: Landsat bands 1,4,7 in blue, green, red Date Acquired: February 19, 2000 (SRTM), January 22, 2000 (Landsat) Image: NASA/JPL/NIMA

  4. Effects of temperature and void on the dynamics and microstructure of structural transition in single crystal iron

    NASA Astrophysics Data System (ADS)

    Shao, Jian-Li; Wang, Pei; Zhang, Feng-Guo; He, An-Min

    2018-06-01

    With classic molecular dynamics simulations, we investigate the effects of temperature and void on the bcc to hcp/fcc structural transition in single crystal iron driven by 1D ([0 0 1]) and 3D (uniform) compressions. The results show that the pressure threshold does not reduce monotonously with temperature. The pressure threshold firstly increases and then decreases in the range of 60–360 K under 1D compression, while the variation trend is just opposite under 3D compression. As expected, the initial defect may lower the pressure threshold via heterogenous nucleation. This effect is found to be more distinct at lower temperature, and the heterogenous nucleation mainly results in hcp structure. Under the condition of strain constraint, the products of structural transition will respectively form flaky hcp twin structure ((1 0 0) or (0 1 0)) and lamellar structure ({1 1 0}) of mixed phases under 1D and 3D compressions. During the structural transition, we find the shear stress (1D compression) of hcp phase is always lower than that of bcc phase. The cold energy calculations indicate that the hcp phase is the most stable under high pressure. However, we observe the evident metastable state of bcc phase, whose energy will be much higher than both hcp and fcc phases, and then provides the possibility for the occurrence of fcc nucleation.

  5. Electromigration and thermomigration in lead-free tin-silver-copper and eutectic tin-lead flip chip solder joints

    NASA Astrophysics Data System (ADS)

    Ou Yang, Fan-Yi

    Phase separation and microstructure change of eutectic SnPb and SnAgCu flip chip solder joint were investigated under thermomigration, electromigration, stressmigration and the combination of these effects. Different morphological behaviors under DC and AC electromigration were seen. Phase separation with Pb rich phase migration to the anode was observed when current density is below 1.6 x 104 A/cm2 at 100°C. For some cases, phase separation of Pb-rich phase and Su-rich phase as well as refinement of lamellar microstructure has also been observed. We propose that the refinement is due to recrystallization. On the other hand, time-dependent melting of eutectic SnPb flip chip solder joints has been observed to occur frequently with current density above 1.6 x 104 A/cm 2at 100°C. It has been found that it is due to joule heating of the on-chip Al interconnects. We found that electromigration has especially generated voids at the anode of the Al. This damage has greatly increased the resistance of the Al, which produces the heat needed to melt the solder joint. Owing to the line-to-bump configuration in flip chip solder joints, current crowding occurs when electrons enters into or exits from the solder bump. At the cathode contact, current crowding induced pancake-type void formation was observed widely. Furthermore, at the anode contact, we note that hillock or whisker forms. The cross-sectioned surface in SnPb showed dimple and bulge after electromigration, while that of SnAgCu remained flat. The difference is due to a larger back stress in the SnAgCu, consequently electromigration in SnAgCu is slower than that in SnPb. For thermomigration in eutectic SnPb flip chip solder joints, phase separation of Sn and Pb occurred, with Pb moving to the cold end. Both Sn and Pb have a stepwise concentration profile across solder bump. Refinement of lamellar microstructure was observed, indicating recrystallization. Also, thermomigration in eutectic SnAgCu flip chip solder joint were presented. It seems that vacancy flux plays a dominant role in thermomigration in Pb-free solder bumps; voids formed on the cold end and Sn moved to the hot end.

  6. Ceramic impregnated superabrasives

    DOEpatents

    Radtke, Robert P.; Sherman, Andrew

    2009-02-10

    A superabrasive fracture resistant compact is formed by depositing successive layers of ceramic throughout the network of open pores in a thermally stable self-bonded polycrystalline diamond or cubic boron nitride preform. The void volume in the preform is from approximately 2 to 10 percent of the volume of the preform, and the average pore size is below approximately 3000 nanometers. The preform is evacuated and infiltrated under at least about 1500 pounds per square inch pressure with a liquid pre-ceramic polymerizable precursor. The precursor is infiltrated into the preform at or below the boiling point of the precursor. The precursor is polymerized into a solid phase material. The excess is removed from the outside of the preform, and the polymer is pyrolized to form a ceramic. The process is repeated at least once more so as to achieve upwards of 90 percent filling of the original void volume. When the remaining void volume drops below about 1 percent the physical properties of the compact, such as fracture resistance, improve substantially. Multiple infiltration cycles result in the deposition of sufficient ceramic to reduce the void volume to below 0.5 percent. The fracture resistance of the compacts in which the pores are lined with formed in situ ceramic is generally at least one and one-half times that of the starting preforms.

  7. A Model for the Breakup of Comet Linear (C/1999 S4)

    NASA Technical Reports Server (NTRS)

    Samarasinha, Nalin H.

    2001-01-01

    We propose a mechanism based on the rubble-pile hypothesis of the cometary nucleus (Weissman 1986) to explain the catastrophic breakup of comet LINEAR (C/1999 S4) observed during July-August 2000. We suggest that a solid nucleus made up of 10-100 m "cometesimals" (Weidenschilling 1997) contains a network of inter-connected voids in the inter-cometesimal regions. The production of super-volatile (i.e., species more volatile than water) gases into these voids occurs due to the thermal wave propagating through the nucleus and associated phase transitions of water ice. The network of voids provides an efficient pathway for rapid propagation of these gases within the nucleus resulting in gas pressure caused stresses over a wide regime of the nucleus. This provides a mechanism for catastrophic breakups of small cometary nuclei such as comet LINEAR (C/1999 S4) as well as for some observed cometary outbursts including those that occur at large heliocentric distances (e.g., West et al. 1991). We emphasize the importance of techniques such as radar reflection tomography and radiowave transmission tomography (e.g., Kofman et al. 1998) aboard cometary missions to determine the three dimensional structure of the nucleus in particular the extent of large scale voids.

  8. Numerical study of photon migration in the presence of a void region using the radiative transfer and diffusion equations

    NASA Astrophysics Data System (ADS)

    Miyakawa, Erina; Fujii, Hiroyuki; Hattori, Kiyohito; Tatekura, Yuki; Kobayashi, Kazumichi; Watanabe, Masao

    2016-12-01

    Diffuse optical tomography (DOT), which is still under development, has a potential to enable non-invasive diagnoses of thyroid cancers in the human neck using the near-infrared light. This modality needs a photon migration model because scattered light is used. There are two types of photon migration models: the radiative transport equation (RTE) and diffusion equation (DE). The RTE can describe photon migration in the human neck with accuracy, while the DE enables an efficient calculation. For developing the accurate and efficient model of photon migration, it is crucial to investigate a condition where the DE holds in a scattering medium including a void region under the refractive-index mismatch at the void boundary because the human neck has a trachea (void region) and the refractive indices are different between the human neck and trachea. Hence, in this paper, we compare photon migration using the RTE with that using the DE in the medium. The numerical results show that the DE is valid under the refractive-index match at the void boundary even though the void region is near the source and detector positions. Under the refractive-index mismatch at the boundary, the numerical results using the DE disagree with those using the RTE when the void region is near the source and detector positions. This is probably because the anisotropy of the light scattering remains around the void boundary.

  9. Voids as alternatives to dark energy and the propagation of γ rays through the universe.

    PubMed

    DeLavallaz, Arnaud; Fairbairn, Malcolm

    2012-04-27

    We test the opacity of a void universe to TeV energy γ rays having obtained the extragalactic background light in that universe using a simple model and the observed constraints on the star formation rate history. We find that the void universe has significantly more opacity than a Λ cold dark matter universe, putting it at odds with observations of BL-Lac objects. We argue that while this method of distinguishing between the two cosmologies contains uncertainties, it circumvents any debates over fine-tuning.

  10. Phase transitions of antibiotic clarithromycin forms I, IV and new form VII crystals.

    PubMed

    Ito, Masataka; Shiba, Rika; Watanabe, Miteki; Iwao, Yasunori; Itai, Shigeru; Noguchi, Shuji

    2018-06-01

    Metastable crystal form I of the antibiotic clarithromycin has a pharmaceutically valuable characteristic that its crystalline phase transition can be applied for its sustained release from tablets. The phase transition of form I was investigated in detail by single crystal and powder X-ray analyses, dynamic vapor sorption analysis and thermal analysis. The single crystal structure of form I revealed that form I was not an anhydrate crystal but contained a partially occupied water molecule in the channel-like void space. Dynamic vapor sorption (DVS) analysis demonstrated that form I crystals reversibly sorbed water molecules in two steps when the relative humidity (RH) increased and finally transited to hydrate form IV at 95% RH. DVS analysis also showed that when the RH decreased form IV crystals lost water molecules at 40% RH and transited to the newly identified anhydrate crystal form VII. Form VII reversibly transited to form IV at lower RH than form I, suggesting that form I is more suitable for manufacturing a sustained-release tablet of CAM utilizing the crystalline phase transition. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Toward Self-Control Systems for Neurogenic Underactive Bladder: A Triboelectric Nanogenerator Sensor Integrated with a Bistable Micro-Actuator.

    PubMed

    Arab Hassani, Faezeh; Mogan, Roshini P; Gammad, Gil G L; Wang, Hao; Yen, Shih-Cheng; Thakor, Nitish V; Lee, Chengkuo

    2018-04-24

    Aging, neurologic diseases, and diabetes are a few risk factors that may lead to underactive bladder (UAB) syndrome. Despite all of the serious consequences of UAB, current solutions, the most common being ureteric catheterization, are all accompanied by serious shortcomings. The necessity of multiple catheterizations per day for a physically able patient not only reduces the quality of life with constant discomfort and pain but also can end up causing serious complications. Here, we present a bistable actuator to empty the bladder by incorporating shape memory alloy components integrated on flexible polyvinyl chloride sheets. The introduction of two compression and restoration phases for the actuator allows for repeated actuation for a more complete voiding of the bladder. The proposed actuator exhibits one of the highest reported voiding percentages of up to 78% of the bladder volume in an anesthetized rat after only 20 s of actuation. This amount of voiding is comparable to the common catheterization method, and its one time implantation onto the bladder rectifies the drawbacks of multiple catheterizations per day. Furthermore, the scaling of the device for animal models larger than rats can be easily achieved by adjusting the number of nitinol springs. For neurogenic UAB patients with degraded nerve function as well as degenerated detrusor muscle, we integrate a flexible triboelectric nanogenerator sensor with the actuator to detect the fullness of the bladder. The sensitivity of this sensor to the filling status of the bladder shows its capability for defining a self-control system in the future that would allow autonomous micturition.

  12. Heat transfer enhancement for spent nuclear fuel assembly disposal packages using metallic void fillers: A prevention technique for solidification shrinkage-induced interfacial gaps

    NASA Astrophysics Data System (ADS)

    Park, Yongsoo; McKrell, Thomas J.; Driscoll, Michael J.

    2017-06-01

    This study considers replacing the externally accessible void spaces inside a disposal package containing a spent nuclear fuel assembly (SNFA) with high heat conducting metal to increase the effective thermal conductivity of the package and simplify the heat transfer mechanism inside the package by reducing it to a conduction dominant problem. The focus of the study is on preventing the gaps adjacent to the walls of the package components, produced by solidification shrinkage of poured liquid metal. We approached the problem by providing a temporary coating layer on the components to avoid direct build-up of thick metal oxides on their surface to promote metallic bonding at the interfaces under a non-inert environment. Laboratory scale experiments without SNFA were performed with Zn coated low carbon steel canisters and Zamak-3 void filler under two different filling temperature conditions - below and above the melting point of Zn (designated BMP and AMP respectively). Gap formation was successfully prevented in both cases while we confirmed an open gap in a control experiment, which used an uncoated canister. Minor growth of Al-Fe intermetallic phases was observed at the canister/filler interface of the sample produced under the BMP condition while their growth was significant and showed irregularly distributed morphology in the sample produced under the AMP condition, which has a potential to mitigate excessive residual stresses caused by shrinkage prevention. A procedure for the full-scale application was specified based on the results.

  13. Deterministic entanglement of superconducting qubits by parity measurement and feedback.

    PubMed

    Ristè, D; Dukalski, M; Watson, C A; de Lange, G; Tiggelman, M J; Blanter, Ya M; Lehnert, K W; Schouten, R N; DiCarlo, L

    2013-10-17

    The stochastic evolution of quantum systems during measurement is arguably the most enigmatic feature of quantum mechanics. Measuring a quantum system typically steers it towards a classical state, destroying the coherence of an initial quantum superposition and the entanglement with other quantum systems. Remarkably, the measurement of a shared property between non-interacting quantum systems can generate entanglement, starting from an uncorrelated state. Of special interest in quantum computing is the parity measurement, which projects the state of multiple qubits (quantum bits) to a state with an even or odd number of excited qubits. A parity meter must discern the two qubit-excitation parities with high fidelity while preserving coherence between same-parity states. Despite numerous proposals for atomic, semiconducting and superconducting qubits, realizing a parity meter that creates entanglement for both even and odd measurement results has remained an outstanding challenge. Here we perform a time-resolved, continuous parity measurement of two superconducting qubits using the cavity in a three-dimensional circuit quantum electrodynamics architecture and phase-sensitive parametric amplification. Using postselection, we produce entanglement by parity measurement reaching 88 per cent fidelity to the closest Bell state. Incorporating the parity meter in a feedback-control loop, we transform the entanglement generation from probabilistic to fully deterministic, achieving 66 per cent fidelity to a target Bell state on demand. These realizations of a parity meter and a feedback-enabled deterministic measurement protocol provide key ingredients for active quantum error correction in the solid state.

  14. A structural topological optimization method for multi-displacement constraints and any initial topology configuration

    NASA Astrophysics Data System (ADS)

    Rong, J. H.; Yi, J. H.

    2010-10-01

    In density-based topological design, one expects that the final result consists of elements either black (solid material) or white (void), without any grey areas. Moreover, one also expects that the optimal topology can be obtained by starting from any initial topology configuration. An improved structural topological optimization method for multi- displacement constraints is proposed in this paper. In the proposed method, the whole optimization process is divided into two optimization adjustment phases and a phase transferring step. Firstly, an optimization model is built to deal with the varied displacement limits, design space adjustments, and reasonable relations between the element stiffness matrix and mass and its element topology variable. Secondly, a procedure is proposed to solve the optimization problem formulated in the first optimization adjustment phase, by starting with a small design space and advancing to a larger deign space. The design space adjustments are automatic when the design domain needs expansions, in which the convergence of the proposed method will not be affected. The final topology obtained by the proposed procedure in the first optimization phase, can approach to the vicinity of the optimum topology. Then, a heuristic algorithm is given to improve the efficiency and make the designed structural topology black/white in both the phase transferring step and the second optimization adjustment phase. And the optimum topology can finally be obtained by the second phase optimization adjustments. Two examples are presented to show that the topologies obtained by the proposed method are of very good 0/1 design distribution property, and the computational efficiency is enhanced by reducing the element number of the design structural finite model during two optimization adjustment phases. And the examples also show that this method is robust and practicable.

  15. MSE wall void repair effect on corrosion of reinforcement - phase 2 : specialty fill materials, [summary].

    DOT National Transportation Integrated Search

    2015-06-01

    Ramps leading, for example, to overpasses or bridges are usually constructed using : mechanically stabilized earth (MSE) walls, earthworks retained by concrete walls. Because : MSE walls are reinforced with steel embedded in the fill, their fill is c...

  16. Embedded data collector (EDC) phase II load and resistance factor design (LRFD).

    DOT National Transportation Integrated Search

    2015-09-01

    A total of 16 static load test results was collected in Florida and Louisiana. New static load tests on five test piles : in Florida (four of which were voided) were monitored with Embedded Data Collector (EDC) instrumentation and : contributed to th...

  17. Study of nitrogen two-phase flow pressure drop in horizontal and vertical orientation

    NASA Astrophysics Data System (ADS)

    Koettig, T.; Kirsch, H.; Santandrea, D.; Bremer, J.

    2017-12-01

    The large-scale liquid argon Short Baseline Neutrino Far-detector located at Fermilab is designed to detect neutrinos allowing research in the field of neutrino oscillations. It will be filled with liquid argon and operate at almost ambient pressure. Consequently, its operation temperature is determined at about 87 K. The detector will be surrounded by a thermal shield, which is actively cooled with boiling nitrogen at a pressure of about 2.8 bar absolute, the respective saturation pressure of nitrogen. Due to strict temperature gradient constraints, it is important to study the two-phase flow pressure drop of nitrogen along the cooling circuit of the thermal shield in different orientations of the flow with respect to gravity. An experimental setup has been built in order to determine the two-phase flow pressure drop in nitrogen in horizontal, vertical upward and vertical downward direction. The measurements have been conducted under quasi-adiabatic conditions and at a saturation pressure of 2.8 bar absolute. The mass velocity has been varied in the range of 20 kg·m-2·s-1 to 70 kg·m-2·s-1 and the pressure drop data has been recorded scanning the two-phase region from vapor qualities close to zero up to 0.7. The experimental data will be compared with several established predictions of pressure drop e.g. Mueller-Steinhagen and Heck by using the void fraction correlation of Rouhani.

  18. Two-phase flow correlations as applied to pumping well testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabir, C.S.; Hasan, A.R.

    1994-06-01

    In a pumping-well buildup test, computation of bottom-hole pressure (BHP) and flow rate (BHF) requires the use of a two-phase flow correlation for estimating the gas void-fraction or holdup along the pipe length and shut-in time. Various correlations are available to perform this task. The purpose of this work is to review these two-phase correlations and to provide an objective evaluation. This analysis is necessitated by the fact that considerable differences in BHP and BHF may occur -- depending upon the correlation used -- in wells with long pumping liquid columns or those that have high gas/liquid ratio production. Consequently,more » a potential exists for obtaining different reservoir parameters from transient interpretation. Using laboratory data for two-phase flow in annular geometry, relative strengths of these correlations are explored. The authors' own data and those of others (a total of 114 points) are used in this comparative study. For static liquid columns, the correlations of Hasan-Kabir, Gilbert, and Podio et al. provide acceptable agreement with experimental data, exceptions being the Godbey-Dimon and Schmidt et al. correlations. In contrast, for the moving liquid column scenario, as in a buildup test, the Hasan-Kabir model provides the best agreement with the data set used in this work. A basis for smoothing the bubbly/slug transition boundary is given for the Hasan-Kabir method, together with a field example.« less

  19. Supernovae as seen by off-center observers in a local void

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blomqvist, Michael; Mörtsell, Edvard, E-mail: michaelb@astro.su.se, E-mail: edvard@fysik.su.se

    2010-05-01

    Inhomogeneous universe models have been proposed as an alternative explanation for the apparent acceleration of the cosmic expansion that does not require dark energy. In the simplest class of inhomogeneous models, we live within a large, spherically symmetric void. Several studies have shown that such a model can be made consistent with many observations, in particular the redshift-luminosity distance relation for type Ia supernovae, provided that the void is of Gpc size and that we live close to the center. Such a scenario challenges the Copernican principle that we do not occupy a special place in the universe. We usemore » the first-year Sloan Digital Sky Survey-II supernova search data set as well as the Constitution supernova data set to put constraints on the observer position in void models, using the fact that off-center observers will observe an anisotropic universe. We first show that a spherically symmetric void can give good fits to the supernova data for an on-center observer, but that the two data sets prefer very different voids. We then continue to show that the observer can be displaced at least fifteen percent of the void scale radius from the center and still give an acceptable fit to the supernova data. When combined with the observed dipole anisotropy of the cosmic microwave background however, we find that the data compells the observer to be located within about one percent of the void scale radius. Based on these results, we conclude that considerable fine-tuning of our position within the void is needed to fit the supernova data, strongly disfavouring the model from a Copernican principle point of view.« less

  20. Three-Dimensional Computed Tomography as a Method for Finding Die Attach Voids in Diodes

    NASA Technical Reports Server (NTRS)

    Brahm, E. N.; Rolin, T. D.

    2010-01-01

    NASA analyzes electrical, electronic, and electromechanical (EEE) parts used in space vehicles to understand failure modes of these components. The diode is an EEE part critical to NASA missions that can fail due to excessive voiding in the die attach. Metallography, one established method for studying the die attach, is a time-intensive, destructive, and equivocal process whereby mechanical grinding of the diodes is performed to reveal voiding in the die attach. Problems such as die attach pull-out tend to complicate results and can lead to erroneous conclusions. The objective of this study is to determine if three-dimensional computed tomography (3DCT), a nondestructive technique, is a viable alternative to metallography for detecting die attach voiding. The die attach voiding in two- dimensional planes created from 3DCT scans was compared to several physical cross sections of the same diode to determine if the 3DCT scan accurately recreates die attach volumetric variability

  1. Effects of Sn Layer Orientation on the Evolution of Cu/Sn Interfaces

    NASA Astrophysics Data System (ADS)

    Sun, Menglong; Zhao, Zhangjian; Hu, Fengtian; Hu, Anmin; Li, Ming; Ling, Huiqin; Hang, Tao

    2018-03-01

    The effects of Sn layer orientation on the evolution of Cu/Sn joint interfaces were investigated. Three Sn layers possessing (112), (321) and (420) orientations were electroplated on polycrystalline Cu substrates respectively. The orientations of Sn layer preserved during reflowing at 250 °C for 10 s. After aging at 150 °C for different time, the interfacial microstructures were observed from the cross-section and top-view. The alignment between the c-axis of Sn and Cu diffusion direction significantly sped up the Cu diffusion, leading to the thickest intermetallic compound layer formed in (112) joint. Two types of voids, namely, intracrystalline voids and grain islanding caused intercrystalline voids generated at Cu/Cu3Sn interfaces due to the different interdiffusion coefficients of Cu and Sn (112) oriented Sn/Cu joint produced many more voids than (321) joint, and no voids were detected in (420) joint. Therefore, to enhance the reliability of solder joints, using (420) oriented Sn as solder layer could be an efficient way.

  2. Liquid Oxygen/Liquid Methane Test Results of the RS-18 Lunar Ascent Engine at Simulated Altitude Conditions at NASA White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Melcher, John C., IV; Allred, Jennifer K.

    2009-01-01

    Tests were conducted with the RS-18 rocket engine using liquid oxygen (LO2) and liquid methane (LCH4) propellants under simulated altitude conditions at NASA Johnson Space Center White Sands Test Facility (WSTF). This project is part of NASA's Propulsion and Cryogenics Advanced Development (PCAD) project. "Green" propellants, such as LO2/LCH4, offer savings in both performance and safety over equivalently sized hypergolic propulsion systems in spacecraft applications such as ascent engines or service module engines. Altitude simulation was achieved using the WSTF Large Altitude Simulation System, which provided altitude conditions equivalent up to 122,000 ft (37 km). For specific impulse calculations, engine thrust and propellant mass flow rates were measured. LO2 flow ranged from 5.9 - 9.5 lbm/sec (2.7 - 4.3 kg/sec), and LCH4 flow varied from 3.0 - 4.4 lbm/sec (1.4 - 2.0 kg/sec) during the RS-18 hot-fire test series. Propellant flow rate was measured using a coriolis mass-flow meter and compared with a serial turbine-style flow meter. Results showed a significant performance measurement difference during ignition startup due to two-phase flow effects. Subsequent cold-flow testing demonstrated that the propellant manifolds must be adequately flushed in order for the coriolis flow meters to give accurate data. The coriolis flow meters were later shown to provide accurate steady-state data, but the turbine flow meter data should be used in transient phases of operation. Thrust was measured using three load cells in parallel, which also provides the capability to calculate thrust vector alignment. Ignition was demonstrated using a gaseous oxygen/methane spark torch igniter. Test objectives for the RS-18 project are 1) conduct a shakedown of the test stand for LO2/methane lunar ascent engines, 2) obtain vacuum ignition data for the torch and pyrotechnic igniters, and 3) obtain nozzle kinetics data to anchor two-dimensional kinetics codes. All of these objectives were met with the RS-18 data and additional testing data from subsequent LO2/methane test programs in 2009 which included the first simulated-altitude pyrotechnic ignition demonstration of LO2/methane.

  3. Real-time adaptive ramp metering : phase I, MILOS proof of concept (multi-objective, integrated, large-scale, optimized system).

    DOT National Transportation Integrated Search

    2006-12-01

    Over the last several years, researchers at the University of Arizonas ATLAS Center have developed an adaptive ramp : metering system referred to as MILOS (Multi-Objective, Integrated, Large-Scale, Optimized System). The goal of this project : is ...

  4. Investigation of porous asphalt microstructure using optical and electron microscopy.

    PubMed

    Poulikakos, L D; Partl, M N

    2010-11-01

    Direct observations of porous asphalt concrete samples in their natural state using optical and electron microscopy techniques led to useful information regarding the microstructure of two mixes and indicated a relationship between microstructure and in situ performance. This paper presents evidence that suboptimal microstructure can lead to premature failure thus making a first step in defining well or suboptimal performing pavements with a bottom-up approach (microstructure). Laboratory and field compaction produce different samples in terms of the microstructure. Laboratory compaction using the gyratory method has produced more microcracks in mineral aggregates after the binder had cooled. Well-performing mixes used polymer-modified binders, had a more homogeneous void structure with fewer elongated voids and better interlocking of the aggregates. Furthermore, well-performing mixes showed better distribution of the mastic and better coverage of the aggregates with bitumen. Low vacuum scanning electron microscopy showed that styrene butadiene styrene polymer modification in binder exists in the form of discontinuous globules and not continuous networks. A reduction in the polymer phase was observed as a result of aging and in-service use. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  5. Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model

    NASA Astrophysics Data System (ADS)

    Pakseresht, Pedram; Apte, Sourabh V.

    2017-11-01

    Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).

  6. Detrusor after-contraction: a new insight.

    PubMed

    Valentini, Francoise A; Marti, Brigitte G; Robain, Gilberte; Nelson, Pierre P

    2015-01-01

    Detrusor after-contractions (DAC) are non-common in adults. Both definition (nothing in ICS reports) and significance (artefact, link with detrusor overactivity (DO) or bladder outlet obstruction (BOO)) remain discussed. Our purpose was to carry out an analysis of the urodynamic parameters during voidings with DAC and, using the VBN model, to simulate pathophysiological conditions able to explain both voiding phase and DAC. From large urodynamic database of patients referred for evaluation of lower urinary tract dysfunction, DAC were observed in 60 patients (5.7%). Criteria for DAC were post-void residual <30mL and increase of detrusor pressure >10cmH(2)O. VBN model was used for analysis of both pressure and flow curves, and simulations of pathophysiological conditions. Onset of DAC (ODAC) occurred when Q=7.3±5.7mL/s and bladder volume=17.9±15.4mL. Urgency-frequency syndrome and urodynamic diagnosis of DO were the more frequent scenarios associated with DAC. ODAC was associated to an inversion of the slope of detrusor pressure curve without any perturbation in flow curve. Among tested pathophysiological hypothesis (great, abnormal, detrusor force, sphincter contraction), none allowed restoring all recorded curves (flow rate, voiding pressure and DAC). No urodynamic characteristic of the first part of voiding is an index of occurrence of DAC. ODAC is a significant phenomenon linked with the bladder collapse. DAC is not associated with BOO but more probably with DO and appears as the result of local conditions in an almost empty bladder (concentration of stresses around a transducer); thus DAC seems of weak clinical significance.

  7. Measuring Accurately Single-Phase Sinusoidal and Non-Sinusoidal Power.

    DTIC Science & Technology

    1983-01-01

    current component. Since the induction watthour meter is designed for measuring ac variations only, the creation of a dc component in an ac circuit due...available and the basic principle of measurement used in each. 3.1 Power Measuring Meters Instruments designed to measure the amount of average power...1.0 percent of full scale and + 0.5% of reading. 3.2 Encrgy Measuring Meters Instruments designed to measure the amount of power consumed in a circuit

  8. Microwave and Millimeter Wave Imaging Using Synthetic Aperture Focusing and Holographical Techniques

    NASA Technical Reports Server (NTRS)

    Case, Joseph Tobias

    2005-01-01

    Microwave and millimeter wave nondestructive testing and evaluation (NDT&E) methods have shown great potential for determining material composition in composite structures, determining material thickness or debond thickness between two layers, and determining the location and size of flaws, defects, and anomalies. The same testing methods have also shown great potential to produce relatively high-resolution images of voids inside Spray On Foam Insulation (SOFI) test panels using real focused methods employing lens antennas. An alternative to real focusing methods are synthetic focusing methods. The essence of synthetic focusing is to match the phase of the scattered signal to measured points spaced regularly on a plane. Many variations of synthetic focusing methods have already been developed for radars, ultrasonic testing applications, and microwave concealed weapon detection. Two synthetic focusing methods were investigated; namely, a) frequency-domain synthetic aperture focusing technique (FDSAFT), and b) wide-band microwave holography. These methods were applied towards materials whose defects were of low dielectric contrast like air void in SOFI. It is important to note that this investigation used relatively low frequencies from 8.2 GHz to 26.5 GHz that are not conducive for direct imaging of the SOFI. The ultimate goal of this work has been to demonstrate the capability of these methods before they are applied to much higher frequencies such as the millimeter wave frequency spectrum (e.g., 30-300 GHz).

  9. Observations of Time Variable Magnitude Events of Phoebe, Ariel, and Titania

    NASA Astrophysics Data System (ADS)

    Miller, Charles; Chanover, N. J.; Holtzman, J. A.; Verbiscer, A. J.

    2007-10-01

    Visual observations of Saturn's moon Phoebe and Uranus' moons Ariel and Titania were made from the Apache Point Observatory (APO). Phoebe was observed with the APO 1 meter telescope over a two month period from 06 January to 04 March 2005, bracketing the zero-phase opposition on 13 January 2005. Phoebe was observed at Sun-Phoebe-Earth phase angles as low as 0.05 degrees on consecutive nights immediately before and after opposition in V, B, R, and I filters. Light curves of the opposition surge, the brightness increase that occurs as the phase angle drops below 0.10 degrees, are presented from this data. The data were processed using standard IRAF aperture photometry image processing techniques. The magnitude and duration of the opposition surge provide clues about the grain size of surface particles on Phoebe. Observations were also made of Uranian moons during mutual occultations in August 2007. Mutual satellite occultations are taking place throughout 2007 as Uranus passes through its equinox, which occurs once every 42 years. The timing and flux variation of satellite occultations provide a check on the accuracy of satellite orbital models. Light curves for Ariel and Titania in R and I filters as they are occulted by Umbriel are presented from data acquired with the APO 1 meter and 3.5 meter telescopes. Comparison is made to the predicted total flux reduction and event timing for each occultation as calculated by the Institut de Mecanique Celeste et de Calcul des Ephemerides (IMCCE) and implications of the results on determination of the relative orbital inclinations of Umbriel, Ariel, and Titania are discussed. This work was supported by an NMSU Space and Aerospace Research Cluster Graduate Fellowship .

  10. Use of electrical resistivity to detect underground mine voids in Ohio

    USGS Publications Warehouse

    Sheets, Rodney A.

    2002-01-01

    Electrical resistivity surveys were completed at two sites along State Route 32 in Jackson and Vinton Counties, Ohio. The surveys were done to determine whether the electrical resistivity method could identify areas where coal was mined, leaving air- or water-filled voids. These voids can be local sources of potable water or acid mine drainage. They could also result in potentially dangerous collapse of roads or buildings that overlie the voids. The resistivity response of air- or water-filled voids compared to the surrounding bedrock may allow electrical resistivity surveys to delineate areas underlain by such voids. Surface deformation along State Route 32 in Jackson County led to a site investigation, which included electrical resistivity surveys. Several highly resistive areas were identified using axial dipole-dipole and Wenner resistivity surveys. Subsequent drilling and excavation led to the discovery of several air-filled abandoned underground mine tunnels. A site along State Route 32 in Vinton County, Ohio, was drilled as part of a mining permit application process. A mine void under the highway was instrumented with a pressure transducer to monitor water levels. During a period of high water level, electrical resistivity surveys were completed. The electrical response was dominated by a thin, low-resistivity layer of iron ore above where the coal was mined out. Nearby overhead powerlines also affected the results.

  11. Detection of underground voids in Ohio by use of geophysical methods

    USGS Publications Warehouse

    Munk, Jens; Sheets, R.A.

    1997-01-01

    Geophysical methods are generally classified as electrical, potential field, and seismic methods. Each method type relies on contrasts of physical properties in the subsurface. Forward models based on the physical properties of air- and water-filled voids within common geologic materials indicate that several geophysical methods are technically feasible for detection of subsurface voids in Ohio, but ease of use and interpretation varies widely between the methods. Ground-penetrating radar is the most rapid and cost-effective method for collection of subsurface data in areas associated with voids under roadways. Electrical resistivity, gravity, or seismic reflection methods have applications for direct delineation of voids, but data-collection and analytical procedures are more time consuming. Electrical resistivity, electromagnetic, or magnetic methods may be useful in locating areas where conductive material, such as rail lines, are present in abandoned underground coal mines. Other electrical methods include spontaneous potential and very low frequency (VLF); these latter two methods are considered unlikely candidates for locating underground voids in Ohio. Results of ground-penetrating radar surveys at three highway sites indicate that subsurface penetration varies widely with geologic material type and amount of cultural interference. Two highway sites were chosen over abandoned underground coal mines in eastern Ohio. A third site in western Ohio was chosen in an area known to be underlain by naturally occurring voids in lime stone. Ground-penetrating radar surveys at Interstate 470, in Belmont County, Ohio, indicate subsurface penetration of less than 15 feet over a mined coal seam that was known to vary in depth from 0 to 40 feet. Although no direct observations of voids were made, anomalous areas that may be related to collapse structures above voids were indicated. Cultural interference dominated the radar records at Interstate 70, Guernsey County, Ohio, where coal was mined under the site at a depth of about 50 feet. Interference from overhead powerlines, the field vehicle, and guardrails complicated an interpretation of the radar records where the depth of penetration was estimated to be less than 5 feet. Along State Route 33, in Logan County, Ohio, bedding planes and structures possibly associated with dissolution of limestone were profiled with ground-penetrating radar. Depth of penetration was estimated to be greater than 50 feet.

  12. Large Binocular Telescope project

    NASA Astrophysics Data System (ADS)

    Hill, John M.; Salinari, Piero

    2000-08-01

    The Large Binocular Telescope (LBT) Project is a collaboration between institutions in Arizona, Germany, Italy, and Ohio. The telescope will have two 8.4 meter diameter primary mirrors phased on a common mounting with a 22.8 meter baseline. The second of two borosilicate honeycomb primary mirrors for LBT is being case at the Steward Observatory Mirror Lab this year. The baseline optical configuration of LBT includes adaptive infrared secondaries of a Gregorian design. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4 arcminute diameter field-of- view. The interferometric focus combining the light from the two 8.4 meter primaries will reimage the two folded Gregorian focal planes to three central locations. The telescope elevation structure accommodates swing arm spiders which allow rapid interchange of the various secondary and tertiary mirrors as well as prime focus cameras. Maximum stiffness and minimal thermal disturbance were important drivers for the design of the telescope in order to provide the best possible images for interferometric observations. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The telescope structure is being fabricated in Italy by Ansaldo Energia S.p.A. in Milan. After pre-erection in the factory, the telescope will be shipped to Arizona in early 2001. The enclosure is being built on Mt. Graham under the auspices of Hart Construction Management Services of Safford, Arizona. The enclosure will be completed by late 2001 and ready for telescope installation.

  13. Inherent limitations of nondestructive chlorophyll meters: a comparison of two types of meters

    NASA Technical Reports Server (NTRS)

    Monje, O. A.; Bugbee, B.

    1992-01-01

    Two types of nondestructive chlorophyll meters were compared with a standard, destructive chlorophyll measurement technique. The nondestructive chlorophyll meters were 1) a custom built, single-wavelength meter, and 2) the recently introduced, dual-wavelengh, chlorophyll meter from Minolta (model SPAD-502). Data from both meters were closely correlated with destructive measurements of chlorophyll (r2 = 0.90 and 0.93; respectively) for leaves with chlorophyll concentrations ranging from 100 to 600 mg m-2, but both meters consistently overestimated chlorophyll outside this range. Although the dual-wavelength meter was slightly more accurate than the single-wavelength meter (higher r2), the light-scattering properties of leaf cells and the nonhomogeneous distribution of chlorophyll in leaves appear to limit the ability of all meters to estimate in vivo chlorophyll concentration.

  14. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys

    NASA Astrophysics Data System (ADS)

    Lu, Chenyang; Niu, Liangliang; Chen, Nanjun; Jin, Ke; Yang, Taini; Xiu, Pengyuan; Zhang, Yanwen; Gao, Fei; Bei, Hongbin; Shi, Shi; He, Mo-Rigen; Robertson, Ian M.; Weber, William J.; Wang, Lumin

    2016-12-01

    A grand challenge in material science is to understand the correlation between intrinsic properties and defect dynamics. Radiation tolerant materials are in great demand for safe operation and advancement of nuclear and aerospace systems. Unlike traditional approaches that rely on microstructural and nanoscale features to mitigate radiation damage, this study demonstrates enhancement of radiation tolerance with the suppression of void formation by two orders magnitude at elevated temperatures in equiatomic single-phase concentrated solid solution alloys, and more importantly, reveals its controlling mechanism through a detailed analysis of the depth distribution of defect clusters and an atomistic computer simulation. The enhanced swelling resistance is attributed to the tailored interstitial defect cluster motion in the alloys from a long-range one-dimensional mode to a short-range three-dimensional mode, which leads to enhanced point defect recombination. The results suggest design criteria for next generation radiation tolerant structural alloys.

  15. High-Resolution Seismic Imaging of Near-Surface Voids

    NASA Astrophysics Data System (ADS)

    Gritto, R.; Korneev, V. A.; Elobaid, E. A.; Mohamed, F.; Sadooni, F.

    2017-12-01

    A major hazard in Qatar is the presence of karst, which is ubiquitous throughout the country including depressions, sinkholes, and caves. Causes for the development of karst include faulting and fracturing where fluids find pathways through limestone and dissolve the host rock to form caverns. Of particular concern in rapidly growing metropolitan areas that expand in heretofore unexplored regions are the collapse of such caverns. Because Qatar has seen a recent boom in construction, including the planning and development of complete new sub-sections of metropolitan areas, the development areas need to be investigated for the presence of karst to determine their suitability for the planned project. We present a suite of seismic techniques applied to a controlled experiment to detect, locate and estimate the size of a karst analog in form of a man-made water shaft on the campus of Qatar University, Doha, Qatar. Seismic waves are well suited for karst detection and characterization. Voids represent high-contrast seismic objects that exhibit strong responses due to incident seismic waves. However, the complex geometry of karst, including shape and size, makes their imaging nontrivial. While karst detection can be reduced to the simple problem of detecting an anomaly, karst characterization can be complicated by the 3D nature of the problem of unknown scale, where irregular surfaces can generate diffracted waves of different kind. In our presentation, we employ a variety of seismic techniques to demonstrate the detection and characterization of a vertical water collection shaft analyzing the phase, amplitude and spectral information of seismic waves that have been scattered by the object. We use the reduction in seismic wave amplitudes and the delay in phase arrival times in the geometrical shadow of the vertical shaft to independently detect and locate the object in space. Additionally, we use narrow band-pass filtered data combining two orthogonal transmission surveys to detect and locate the object. Furthermore, we show that ambient noise recordings may generate data with sufficient signal-to-noise ratio to successfully detect and locate subsurface voids. Being able to use ambient noise recordings would eliminate the need to employ active seismic sources that are time consuming and more expensive to operate.

  16. Seismic Techniques for Subsurface Voids Detection

    NASA Astrophysics Data System (ADS)

    Gritto, Roland; Korneev, Valeri; Elobaid Elnaiem, Ali; Mohamed, Fathelrahman; Sadooni, Fadhil

    2016-04-01

    A major hazards in Qatar is the presence of karst, which is ubiquitous throughout the country including depressions, sinkholes, and caves. Causes for the development of karst include faulting and fracturing where fluids find pathways through limestone and dissolve the host rock to form caverns. Of particular concern in rapidly growing metropolitan areas that expand in heretofore unexplored regions are the collapse of such caverns. Because Qatar has seen a recent boom in construction, including the planning and development of complete new sub-sections of metropolitan areas, the development areas need to be investigated for the presence of karst to determine their suitability for the planned project. In this paper, we present the results of a study to demonstrate a variety of seismic techniques to detect the presence of a karst analog in form of a vertical water-collection shaft located on the campus of Qatar University, Doha, Qatar. Seismic waves are well suited for karst detection and characterization. Voids represent high-contrast seismic objects that exhibit strong responses due to incident seismic waves. However, the complex geometry of karst, including shape and size, makes their imaging nontrivial. While karst detection can be reduced to the simple problem of detecting an anomaly, karst characterization can be complicated by the 3D nature of the problem of unknown scale, where irregular surfaces can generate diffracted waves of different kind. In our presentation we employ a variety of seismic techniques to demonstrate the detection and characterization of a vertical water collection shaft analyzing the phase, amplitude and spectral information of seismic waves that have been scattered by the object. We used the reduction in seismic wave amplitudes and the delay in phase arrival times in the geometrical shadow of the vertical shaft to independently detect and locate the object in space. Additionally, we use narrow band-pass filtered data combining two orthogonal transmission surveys to detect and locate the object. Furthermore, we showed that ambient noise recordings may generate data with sufficient signal-to-noise ratio to successfully detect and locate subsurface voids. Being able to use ambient noise recordings would eliminate the need to employ active seismic sources that are time consuming and more expensive to operate.

  17. Two reference time scales for studying the dynamic cavitation of liquid films

    NASA Technical Reports Server (NTRS)

    Sun, D. C.; Brewe, David E.

    1991-01-01

    Two formulas, one for characteristic time of filling a void with a vapor of the surrounding liquid, and one of filling the void by diffusion of the dissolved gas in the liquid, are derived. Based on this analysis, it is seen that in an oil film bearing operating under dynamic loads, the content of cavitation region should be oil vapor rather than the air liberated from solution, if the oil is free of entrained air.

  18. Computation for Electromigration in Interconnects of Microelectronic Devices

    NASA Astrophysics Data System (ADS)

    Averbuch, Amir; Israeli, Moshe; Ravve, Igor; Yavneh, Irad

    2001-03-01

    Reliability and performance of microelectronic devices depend to a large extent on the resistance of interconnect lines. Voids and cracks may occur in the interconnects, causing a severe increase in the total resistance and even open circuits. In this work we analyze void motion and evolution due to surface diffusion effects and applied external voltage. The interconnects under consideration are three-dimensional (sandwich) constructs made of a very thin metal film of possibly variable thickness attached to a substrate of nonvanishing conductance. A two-dimensional level set approach was applied to study the dynamics of the moving (assumed one-dimensional) boundary of a void in the metal film. The level set formulation of an electromigration and diffusion model results in a fourth-order nonlinear (two-dimensional) time-dependent PDE. This equation was discretized by finite differences on a regular grid in space and a Runge-Kutta integration scheme in time, and solved simultaneously with a second-order static elliptic PDE describing the electric potential distribution throughout the interconnect line. The well-posed three-dimensional problem for the potential was approximated via singular perturbations, in the limit of small aspect ratio, by a two-dimensional elliptic equation with variable coefficients describing the combined local conductivity of metal and substrate (which is allowed to vary in time and space). The difference scheme for the elliptic PDE was solved by a multigrid technique at each time step. Motion of voids in both weak and strong electric fields was examined, and different initial void configurations were considered, including circles, ellipses, polygons with rounded corners, a butterfly, and long grooves. Analysis of the void behavior and its influence on the resistance gives the circuit designer a tool for choosing the proper parameters of an interconnect (width-to-length ratio, properties of the line material, conductivity of the underlayer, etc.).

  19. Effectiveness and safety of silodosin in the treatment of lower urinary tract symptoms in patients with benign prostatic hyperplasia: A European phase IV clinical study (SiRE study).

    PubMed

    Montorsi, Francesco; Gandaglia, Giorgio; Chapple, Christopher; Cruz, Francisco; Desgrandchamps, Francois; Llorente, Carlos

    2016-07-01

    To assess the benefit-risk balance of silodosin in a real-life setting of benign prostatic hyperplasia patients with lower urinary tract symptoms. A phase IV trial including men aged ≥60 years with a clinical diagnosis of benign prostatic hyperplasia with an International Prostate Symptom Score ≥12 was carried out. Patients received silodosin 8 mg for 24 weeks. The primary end-point was a decrease ≥25% in the total International Prostate Symptom Score. Secondary end-points were: changes in total, storage and voiding, and quality of life International Prostate Symptom Scores; changes in the International Continence Society-male questionnaire; changes in the frequency/volume chart; and satisfaction according to the Patient Perception of Study Medication questionnaire. Treatment-emergent adverse events were recorded. Overall, 1036 patients were enrolled. Of these, 766 patients (77.1%) had a decrease ≥25% in the total International Prostate Symptom Score. The mean total International Prostate Symptom Score, and storage and voiding symptoms subscores decreased from 18.9, 8.1 and 10.8 to 10.6, 4.9 and 5.7. Nocturia decreased from 85.7% to 52.4%. The mean International Prostate Symptom Score quality of life score decreased from 4.0 to 2.2. Half of the patients reported an improvement in the frequency and bothersomeness of the most frequent symptoms reported at baseline (all P < 0.001). A reduction in the number of voids was documented by the frequency/volume chart data. The most common treatment-emergent adverse event was ejaculation failure (185 patients; 17.9%), which led to study discontinuation in 2.4% of patients. Overall, 74.2% of patients were satisfied with the medication. Silodosin improved lower urinary tract symptoms in three out of four patients, including diurnal voiding and storage symptoms, nocturia, and quality of life. This treatment showed a favorable safety profile in this setting. © 2016 The Japanese Urological Association.

  20. Microstructural Evolution of Ni-Sn Transient Liquid Phase Sintering Bond during High-Temperature Aging

    NASA Astrophysics Data System (ADS)

    Feng, Hongliang; Huang, Jihua; Peng, Xianwen; Lv, Zhiwei; Wang, Yue; Yang, Jian; Chen, Shuhai; Zhao, Xingke

    2018-05-01

    For high-temperature-resistant packaging of new generation power chip, a chip packaging simulation structure of Ni/Ni-Sn/Ni was bonded by a transient liquid-phase sintering process. High-temperature aging experiments were carried out to investigate joint heat stability. The microstructural evolution and mechanism during aging, and mechanical properties after aging were analyzed. The results show that the 30Ni-70Sn bonding layer as-bonded at 340°C for 240 min is mainly composed of Ni3Sn4 and residual Ni particles. When aged at 350°C, because of the difficulty of nucleation for Ni3Sn and quite slow growth of Ni3Sn2, the bonding layer is stable and the strength of that doesn't change obviously with aging time. When aging temperature increased to 500°C, however, the residual Ni particles were gradually dissolved and the bonding layer formed a stable structure with dominated Ni3Sn2 after 36 h. Meanwhile, due to the volume shrinkage (4.43%) from Ni3Sn2 formation, a number of voids were formed. The shear strength shows an increase, resulting from Ni3Sn2 formation, but then it decreases slightly caused by voids. After aging at 500°C for 100 h, shear strength is still maintained at 29.6 MPa. In addition, the mechanism of void formation was analyzed and microstructural evolution model was also established.

  1. Carbon microtubes

    DOEpatents

    Peng, Huisheng [Shanghai, CN; Zhu, Yuntian Theodore [Cary, NC; Peterson, Dean E [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM

    2011-06-14

    A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 .mu.m to about 150 .mu.m, and a density of less than 20 mg/cm.sup.3. Also described is a carbon microtube, having a diameter of at least 10 .mu.m and comprising a hollow, substantially tubular structure having a porous wall, wherein the porous wall comprises a plurality of voids, said voids substantially parallel to the length of the microtube, and defined by an inner surface, an outer surface, and a shared surface separating two adjacent voids.

  2. NDE Imaging of Time Differential Terahertz Waves

    NASA Technical Reports Server (NTRS)

    Trinh, Long B.

    2008-01-01

    Natural voids are present in the vicinity of a conathane interface that bonds two different foam materials. These voids are out of focus with the terahertz imaging system and multiple optical reflections also make it difficult to determine their depths. However, waves passing through the top foam article at normal incidence are partially reflected at the denser conathane layer prior to total reflection at the tank s wall. Reflections embedded in the oscillating noise segment prior to the main signals can be extracted with dual applications of filtering and time derivative. Void's depth is computed from direct path's time of flight.

  3. An Indoor Positioning Technique Based on a Feed-Forward Artificial Neural Network Using Levenberg-Marquardt Learning Method

    NASA Astrophysics Data System (ADS)

    Pahlavani, P.; Gholami, A.; Azimi, S.

    2017-09-01

    This paper presents an indoor positioning technique based on a multi-layer feed-forward (MLFF) artificial neural networks (ANN). Most of the indoor received signal strength (RSS)-based WLAN positioning systems use the fingerprinting technique that can be divided into two phases: the offline (calibration) phase and the online (estimation) phase. In this paper, RSSs were collected for all references points in four directions and two periods of time (Morning and Evening). Hence, RSS readings were sampled at a regular time interval and specific orientation at each reference point. The proposed ANN based model used Levenberg-Marquardt algorithm for learning and fitting the network to the training data. This RSS readings in all references points and the known position of these references points was prepared for training phase of the proposed MLFF neural network. Eventually, the average positioning error for this network using 30% check and validation data was computed approximately 2.20 meter.

  4. Topography and Landforms of Ecuador

    USGS Publications Warehouse

    Chirico, Peter G.; Warner, Michael B.

    2005-01-01

    EXPLANATION The digital elevation model of Ecuador represented in this data set was produced from over 40 individual tiles of elevation data from the Shuttle Radar Topography Mission (SRTM). Each tile was downloaded, converted from its native Height file format (.hgt), and imported into a geographic information system (GIS) for additional processing. Processing of the data included data gap filling, mosaicking, and re-projection of the tiles to form one single seamless digital elevation model. For 11 days in February of 2000, NASA, the National Geospatial-Intelligence Agency (NGA), the German Aerospace Center (DLR), and the Italian Space Agency (ASI) flew X-band and C-band radar interferometry onboard the Space Shuttle Endeavor. The mission covered the Earth between 60?N and 57?S and will provide interferometric digital elevation models (DEMs) of approximately 80% of the Earth's land mass when processing is complete. The radar-pointing angle was approximately 55? at scene center. Ascending and descending orbital passes generated multiple interferometric data scenes for nearly all areas. Up to eight passes of data were merged to form the final processed SRTM DEMs. The effect of merging scenes averages elevation values recorded in coincident scenes and reduces, but does not completely eliminate, the amount of area with layover and terrain shadow effects. The most significant form of data processing for the Ecuador DEM was gap-filling areas where the SRTM data contained a data void. These void areas are a result of radar shadow, layover, standing water, and other effects of terrain, as well as technical radar interferometry phase unwrapping issues. To fill these gaps, topographic contours were digitized from 1:50,000 - scale topographic maps which date from the mid-late 1980's (Souris, 2001). Digital contours were gridded to form elevation models for void areas and subsequently were merged with the SRTM data through GIS and remote sensing image-processing techniques. The data contained in this publication includes a gap filled, countrywide SRTM DEM of Ecuador projected in Universal Transverse Mercator (UTM) Zone 17 North projection, Provisional South American, 1956, Ecuador datum and a non gap filled SRTM DEM of the Galapagos Islands projected in UTM Zone 15 North projection. Both the Ecuador and Galapagos Islands DEMs are available as an ESRI Grid, stored as ArcInfo Export files (.e00), and in Erdas Imagine (IMG) file formats with a 90 meter pixel resolution. Also included in this publication are high and low resolution Adobe Acrobat (PDF) files of topography and landforms maps in Ecuador. The high resolution map should be used for printing and display, while the lower resolution map can be used for quick viewing and reference purposes.

  5. The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow.

    PubMed

    Kong, Weihang; Kong, Lingfu; Li, Lei; Liu, Xingbin; Xie, Ronghua; Li, Jun; Tang, Haitao

    2016-08-24

    Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP) for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM). Firstly, using the finite element method (FEM), the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results.

  6. Consistent and significant improvement of nighttime voiding frequency (nocturia) with silodosin in men with LUTS suggestive of BPH: pooled analysis of three randomized, placebo-controlled, double-blind phase III studies.

    PubMed

    Eisenhardt, Andreas; Schneider, Tim; Cruz, Francisco; Oelke, Matthias

    2014-10-01

    Nocturia is prevalent and bothersome in men with lower urinary tract symptoms suggestive of BPH (LUTS/BPH). α-Adrenoceptor antagonists without subtype selectivity have inconsistently shown significant effects on nocturia in these patients. We explored the effects of the α1A-adrenoceptor subtype-selective antagonist silodosin on nocturia by analyzing three placebo-controlled registration studies. Responses to question 7 of the IPSS questionnaire were analyzed for the entire study population and patients with ≥ 2 voids/night at baseline. Improvement/worsening rates for nocturia were calculated for once-daily silodosin 8 mg and placebo. Silodosin effects on the mean number of nocturnal voids were compared with placebo, and the number of patients in whom nocturia was reduced to <2 times was calculated. In total, 1,479 men were treated with silodosin or placebo; 1,266 men (85 %) had ≥ 2 voids/night at baseline. Compared to placebo, more men treated with silodosin reported about nocturia improvement (53.4 vs. 42.8 %, p < 0.0001) and fewer patients about worsening (9.0 vs. 14.3 %, p < 0.0001). Silodosin significantly reduced nocturia within each study and pooled cohort compared to placebo (p < 0.001). In men with ≥ 2 nocturnal voids at baseline, 61 and 49 % of patients with silodosin and placebo had reductions of ≥ 1 voids/night, respectively (p = 0.0003), and significantly more patients with silodosin had <2 nocturia episodes at study end compared to placebo (29.3 vs. 19.0 %; p = 0.0002). Although a weak impact on nocturia is already known from α-adrenoceptor antagonists without subtype selectivity, the individual placebo-controlled studies and the pooled data analysis showed that the α1A-adrenoceptor subtype-selective antagonist silodosin consistently and significantly improves nocturia in men with LUTS/BPH.

  7. Optical synchronization system for femtosecond X-ray sources

    DOEpatents

    Wilcox, Russell B [El Cerrito, CA; Holzwarth, Ronald [Munich, DE

    2011-12-13

    Femtosecond pump/probe experiments using short X-Ray and optical pulses require precise synchronization between 100 meter-10 km separated lasers in a various experiments. For stabilization in the hundred femtosecond range a CW laser is amplitude modulated at 1-10 GHz, the signal retroreflected from the far end, and the relative phase used to correct the transit time with various implementations. For the sub-10 fsec range the laser frequency itself is upshifted 55 MHz with an acousto-optical modulator, retroreflected, upshifted again and phase compared at the sending end to a 110 MHz reference. Initial experiments indicate less than 1 fsec timing jitter. To lock lasers in the sub-10 fs range two single-frequency lasers separated by several teraHertz will be lock to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes.

  8. NHEXAS PHASE I MARYLAND STUDY--METALS IN URINE ANALYTICAL RESULTS

    EPA Science Inventory

    The Metals in Urine data set contains analytical results for measurements of up to 3 metals in 376 urine samples over 80 households. Each sample was collected from the primary respondent within each household during the study and represented the first morning void of either Day ...

  9. Liquid level, void fraction, and superheated steam sensor for nuclear-reactor cores. [PWR; BWR

    DOEpatents

    Tokarz, R.D.

    1981-10-27

    This disclosure relates to an apparatus for monitoring the presence of coolant in liquid or mixed liquid and vapor, and superheated gaseous phases at one or more locations within an operating nuclear reactor core, such as pressurized water reactor or a boiling water reactor.

  10. Advanced Signal Processing Techniques Applied to Terahertz Inspections on Aerospace Foams

    NASA Technical Reports Server (NTRS)

    Trinh, Long Buu

    2009-01-01

    The space shuttle's external fuel tank is thermally insulated by the closed cell foams. However, natural voids composed of air and trapped gas are found as by-products when the foams are cured. Detection of foam voids and foam de-bonding is a formidable task owing to the small index of refraction contrast between foam and air (1.04:1). In the presence of a denser binding matrix agent that bonds two different foam materials, time-differentiation of filtered terahertz signals can be employed to magnify information prior to the main substrate reflections. In the absence of a matrix binder, de-convolution of the filtered time differential terahertz signals is performed to reduce the masking effects of antenna ringing. The goal is simply to increase probability of void detection through image enhancement and to determine the depth of the void.

  11. 75 FR 1049 - Public Utility District No. 1 of Snohomish County, WA; Notice of Intent To File License...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ... Tidal Project would consist of (1) two 10-meter, 500-kilowatt (kW) Open-Centre Turbines supplied by OpenHydro Group Ltd., mounted on completely submerged gravity foundations; (2) two 250-meter service cables... cable termination vault about 50 meters from shore; (3) two 81-meter-long buried conduits containing the...

  12. Laser Truss Sensor for Segmented Telescope Phasing

    NASA Technical Reports Server (NTRS)

    Liu, Duncan T.; Lay, Oliver P.; Azizi, Alireza; Erlig, Herman; Dorsky, Leonard I.; Asbury, Cheryl G.; Zhao, Feng

    2011-01-01

    A paper describes the laser truss sensor (LTS) for detecting piston motion between two adjacent telescope segment edges. LTS is formed by two point-to-point laser metrology gauges in a crossed geometry. A high-resolution (<30 nm) LTS can be implemented with existing laser metrology gauges. The distance change between the reference plane and the target plane is measured as a function of the phase change between the reference and target beams. To ease the bandwidth requirements for phase detection electronics (or phase meter), homodyne or heterodyne detection techniques have been used. The phase of the target beam also changes with the refractive index of air, which changes with the air pressure, temperature, and humidity. This error can be minimized by enclosing the metrology beams in baffles. For longer-term (weeks) tracking at the micron level accuracy, the same gauge can be operated in the absolute metrology mode with an accuracy of microns; to implement absolute metrology, two laser frequencies will be used on the same gauge. Absolute metrology using heterodyne laser gauges is a demonstrated technology. Complexity of laser source fiber distribution can be optimized using the range-gated metrology (RGM) approach.

  13. ATD-2 Surface Scheduling and Metering Concept

    NASA Technical Reports Server (NTRS)

    Coppenbarger, Richard A.; Jung, Yoon Chul; Capps, Richard Alan; Engelland, Shawn A.

    2017-01-01

    This presentation describes the concept of ATD-2 tactical surface scheduling and metering. The concept is composed of several elements, including data exchange and integration; surface modeling; surface scheduling; and surface metering. The presentation explains each of the elements. Surface metering is implemented to balance demand and capacity• When surface metering is on, target times from surface scheduler areconverted to advisories for throttling demand• Through the scheduling process, flights with CTOTs will not get addedmetering delay (avoids potential for ‘double delay’)• Carriers can designate certain flights as exempt from metering holds• Demand throttle in Phase 1 at CLT is through advisories sent to rampcontrollers for pushback instructions to the flight deck– Push now– Hold for an advised period of time (in minutes)• Principles of surface metering can be more generally applied to otherairports in the NAS to throttle demand via spot-release times (TMATs Strong focus on optimal use of airport resources• Flexibility enables stakeholders to vary the amount of delay theywould like transferred to gate• Addresses practical aspects of executing surface metering in aturbulent real world environment• Algorithms designed for both short term demand/capacityimbalances (banks) or sustained metering situations• Leverage automation to enable surface metering capability withoutrequiring additional positions• Represents first step in Tactical/Strategic fusion• Provides longer look-ahead calculations to enable analysis ofstrategic surface metering potential usage

  14. Top-down approach is possible strategy for predicting breakthrough fUTIs and renal scars in infants.

    PubMed

    Kawai, Shina; Kanai, Takahiro; Hyuga, Taiju; Nakamura, Shigeru; Aoyagi, Jun; Ito, Takane; Saito, Takashi; Odaka, Jun; Furukawa, Rieko; Aihara, Toshinori; Nakai, Hideo

    2017-07-01

    Acute-phase technetium-99 m dimercaptosuccinic acid (DMSA) scintigraphy is recommended for initial imaging in children with febrile urinary tract infection (fUTI). Recently, the importance of identifying patients at risk of recurrent fUTI (r-fUTI) has been emphasized. To clarify the effectiveness of DMSA scintigraphy for predicting r-fUTI in infants, we investigated the relationship between defects on DMSA scintigraphy and r-fUTI. Seventy-nine consecutive infants (male: female, 60:19) with fUTI were enrolled in this study. DMSA scintigraphy was performed in the acute phase, and patients with defect underwent voiding cystourethrography and chronic-phase (6 months later) DMSA scintigraphy. Patients were followed on continuous antibiotic prophylaxis (CAP). Defects on acute-phase DMSA scintigraphy were observed in 32 children (40.5%) of 79. The mean follow-up observation period was 17.0 ± 10.1 months. Four patients had r-fUTI (5%). Two of them had defects on DMSA scintigraphy in both the acute phase and chronic phase, and had bilateral vesicoureteral reflux (VUR) grade IV. Two others had r-fUTI without defects on DMSA and did not have VUR. Twelve patients had defect on chronic-phase DMSA scintigraphy and four of them had no VUR. The top-down approach is a possible method for predicting r-fUTI in infants and does not miss clinically significant VUR. Also, given that the prevalence of r-fUTI was 5% regardless of the presence of defects on acute-phase DMSA, then, in conjunction with genital hygiene and CAP, acute-phase DMSA might be unnecessary if chronic-phase DMSA is performed for all patients to detect renal scar. © 2017 Japan Pediatric Society.

  15. Macroscopic constitutive equations of thermo-poroviscoelasticity derived using eigenstrains

    NASA Astrophysics Data System (ADS)

    Suvorov, A. P.; Selvadurai, A. P. S.

    2010-10-01

    Macroscopic constitutive equations for thermo-viscoelastic processes in a fully saturated porous medium are re-derived from basic principles of micromechanics applicable to solid multi-phase materials such as composites. Simple derivations of the constitutive relations and the void occupancy relationship are presented. The derivations use the notion of eigenstrain or, equivalently, eigenstress applied to the separate phases of a porous medium. Governing coupled equations for the displacement components and the fluid pressure are also obtained.

  16. High-performance formamidinium-based perovskite solar cells via microstructure-mediated δ-to-α phase transformation

    DOE PAGES

    Liu, Tanghao; Zong, Yingxia; Zhou, Yuanyuan; ...

    2017-03-14

    The δ → α phase transformation is a crucial step in the solution-growth process of formamidinium-based lead triiodide (FAPbI 3) hybrid organic–inorganic perovskite (HOIP) thin films for perovskite solar cells (PSCs). Because the addition of cesium (Cs) stabilizes the α phase of FAPbI 3-based HOIPs, here our research focuses on FAPbI 3(Cs) thin films. We show that having a large grain size in the δ-FAPbI 3(Cs) non-perovskite intermediate films is essential for the growth of high-quality α-FAPbI 3(Cs) HOIP thin films. Here grain coarsening and phase transformation occur simultaneously during the thermal annealing step. A large starting grain size inmore » the δ-FAPbI 3(Cs) thin films suppresses grain coarsening, precluding the formation of voids at the final α-FAPbI 3(Cs)–substrate interfaces. PSCs based on the interface void-free α-FAPbI 3(Cs) HOIP thin films are much more efficient and stable in the ambient atmosphere. This interesting finding inspired us to develop a simple room-temperature aging method for preparing coarse-grained δ-FAPbI 3(Cs) intermediate films, which are subsequently converted to coarse-grained, high-quality α-FAPbI 3(Cs) HOIP thin films. As a result, this study highlights the importance of microstructure meditation in the processing of formamidinium-based PSCs.« less

  17. Phase equilibria in the UO 2-PuO 2 system under a temperature gradient

    NASA Astrophysics Data System (ADS)

    Kleykamp, Heiko

    2001-04-01

    The phase behaviour of U 0.80Pu 0.20O 1.95 was investigated under a steady-state temperature gradient between the solidus and liquidus by a short-time power-to-melt irradiation experiment. The radial U, Pu, Am and O profiles in the fuel pin after redistribution were measured by X-ray microanalysis. During irradiation, an inner fuel melt forms which is separated from the outer solid only by one concentric liquid-solid-phase boundary. The UO 2 concentration increases to 85% and the PuO 2 concentration decreases to 15% on the solid side of the interface. Opposite gradients occur on the liquid side of the interface. The concentration discontinuity is a consequence of the necessary equality of the chemical potentials of UO 2 and PuO 2 on both sides of the phase boundary which corresponds to a 2750°C isotherm. The radial oxygen profile results in an O/(U + Pu) ratio of 2.00 at the fuel surface and 1.92 at the central void of the fuel. The redistribution is caused by the thermal diffusion of oxygen vacancies in the lattice along the temperature gradient. This process is quantified by the heat of transport Q*v which ranges between -10 kJ/mol at the central void and about -230 kJ/mol near the fuel surface.

  18. In situ 3-D mapping of pore structures and hollow grains of interplanetary dust particles with phase contrast X-ray nanotomography

    NASA Astrophysics Data System (ADS)

    Hu, Z. W.; Winarski, R. P.

    2016-09-01

    Unlocking the 3-D structure and properties of intact chondritic porous interplanetary dust particles (IDPs) in nanoscale detail is challenging, which is also complicated by atmospheric entry heating, but is important for advancing our understanding of the formation and origins of IDPs and planetary bodies as well as dust and ice agglomeration in the outer protoplanetary disk. Here, we show that indigenous pores, pristine grains, and thermal alteration products throughout intact particles can be noninvasively visualized and distinguished morphologically and microstructurally in 3-D detail down to ~10 nm by exploiting phase contrast X-ray nanotomography. We have uncovered the surprisingly intricate, submicron, and nanoscale pore structures of a ~10-μm-long porous IDP, consisting of two types of voids that are interconnected in 3-D space. One is morphologically primitive and mostly submicron-sized intergranular voids that are ubiquitous; the other is morphologically advanced and well-defined intragranular nanoholes that run through the approximate centers of ~0.3 μm or lower submicron hollow grains. The distinct hollow grains exhibit complex 3-D morphologies but in 2-D projections resemble typical organic hollow globules observed by transmission electron microscopy. The particle, with its outer region characterized by rough vesicular structures due to thermal alteration, has turned out to be an inherently fragile and intricately submicron- and nanoporous aggregate of the sub-μm grains or grain clumps that are delicately bound together frequently with little grain-to-grain contact in 3-D space.

  19. Urologic evaluation of urinary tract infection in pregnancy.

    PubMed

    Diokno, A C; Compton, A; Seski, J; Vinson, R

    1986-01-01

    Thirty-three antepartum patients with urinary tract infections underwent urologic evaluation as soon as the infection had been successfully treated. The evaluation included history of voiding habits, cystometry, urethral calibration and cystourethroscopy. A second phase of the urologic evaluation included an excretory urogram and repeat cystometry 10-12 weeks postpartum. Sixty percent had a history of infrequent voiding, and 90% of them had a bladder capacity greater than 450 mL. Forty-one percent of the patients had a normal bladder capacity (less than 450 mL), and 85% of this group did not have any history of infrequent voiding. The radiographic evaluation postpartum in 18 of 33 patients revealed major abnormalities in 50%. These abnormalities were seen as often and were as significant in women with asymptomatic bacteriuria as in those who presented with acute pyelonephritis. The results suggest that the large bladder seen in pregnant women may be secondary to the chronic, unphysiologic habit of infrequent voiding. Furthermore, this study reinforced the fact that most pregnant women with urinary tract infection have preexisting chronic bladder or renal abnormalities that predispose them to infection. Those at risk should be identified early through a careful history and urinalysis to determine which ones need urinary prophylaxis during pregnancy. Postpartum urologic investigation should be carried out to identify any structural or functional problems; understanding them is helpful in present and future management.

  20. Energetics of a two-phase model of lithospheric damage, shear localization and plate-boundary formation

    NASA Astrophysics Data System (ADS)

    Bercovici, David; Ricard, Yanick

    2003-03-01

    The two-phase theory for compaction and damage proposed by Bercovici et al. (2001a, J. Geophys. Res.,106, 8887-8906) employs a nonequilibrium relation between interfacial surface energy, pressure and viscous deformation, thereby providing a model for damage (void generation and microcracking) and a continuum description of weakening, failure and shear localization. Here we examine further variations of the model which consider (1) how interfacial surface energy, when averaged over the mixture, appears to be partitioned between phases; (2) how variability in deformational-work partitioning greatly facilitates localization; and (3) how damage and localization are manifested in heat output and bulk energy exchange. Microphysical considerations of molecular bonding and activation energy suggest that the apparent partitioning of surface energy between phases goes as the viscosity of the phases. When such partitioning is used in the two-phase theory, it captures the melt-compaction theory of McKenzie (1984, J. Petrol.,25, 713-765) exactly, as well as the void-damage theory proposed in a companion paper (Ricard & Bercovici, submitted). Calculations of 1-D shear localization with this variation of the theory still show at least three possible regimes of damage and localization: at low stress is weak localization with diffuse slowly evolving shear bands; at higher stress strong localization with narrow rapidly growing bands exists; and at yet higher shear stress it is possible for the system to undergo broadly distributed damage and no localization. However, the intensity of localization is strongly controlled by the variability of the deformational-work partitioning with dilation rate, represented by the parameter γ. For γ>> 1, extreme localization is allowed, with sharp profiles in porosity (weak zones), nearly discontinuous separation velocities and effectively singular dilation rates. Finally, the bulk heat output is examined for the 1-D system to discern how much deformational work is effectively stored as surface energy. In the high-stress, distributed-damage cases, heat output is reduced as more interfacial surface energy is created. Yet, in either the weak or strong localizing cases, the system always releases surface energy, regardless of the presence of damage or not, and thus slightly more heat is in fact released than energy is input through external work. Moreover, increased levels of damage (represented by the maximum work-partitioning f*) make the localizing system release surface energy faster as damage enhances phase separation and focusing of the porosity field, thus yielding more rapid loss of net interfacial surface area. However, when cases with different levels of damage are compared at similar stages of development (say, the peak porosity of the localization) it is apparent that increased damage causes smaller relative heat release and retards loss of net interfacial surface energy. The energetics and energy partitioning of this damage and shear-localization model are applied to estimating the energy costs of forming plate boundaries and generating plates from mantle convection.

  1. Solar observations with the prototype of the Brazilian Decimetric Array

    NASA Astrophysics Data System (ADS)

    Sawant, H. S.; Ramesh, R.; Faria, C.; Cecatto, J. R.; Fernandes, F. C. R.; Madsen, F. H. R.; Subramanian, K. R.; Sundararajan, M. S.

    The prototype of the Brazilian Decimetric Array BDA consists of 5 element alt-az mounted parabolic mesh type dishes of 4-meter diameter having base lines up to 220 meters in the E--W direction The array was put into regular operation at Cachoeira Paulista Brazil longitude 45 r 00 20 W and latitude 22 r 41 19 S This array operates in the frequency range of 1 2 -- 1 7 GHz Solar observations are carried at sim 1 4 GHz in transit and tracking modes Spatial fine structures superimposed on the one dimensional brightness map of the sun associated with active regions and or with solar activity and their time evolution will be presented In the second phase of the project the frequency range will be increased to 1 2 - 1 7 2 8 and 5 6 GHz Central part of the array will consist of 26 antennas with 4-meter diameter laid out randomically in the square of 256 by 256 meter with minimum and maximum base lines of 8 and 256 meters respectively Details of this array with imaging capabilities in snap shot mode for solar observations and procedure of the phase and amplitude calibrations will be presented The development of instrument will be completed by the beginning of 2008

  2. Application of high-order numerical schemes and Newton-Krylov method to two-phase drift-flux model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    This study concerns the application and solver robustness of the Newton-Krylov method in solving two-phase flow drift-flux model problems using high-order numerical schemes. In our previous studies, the Newton-Krylov method has been proven as a promising solver for two-phase flow drift-flux model problems. However, these studies were limited to use first-order numerical schemes only. Moreover, the previous approach to treating the drift-flux closure correlations was later revealed to cause deteriorated solver convergence performance, when the mesh was highly refined, and also when higher-order numerical schemes were employed. In this study, a second-order spatial discretization scheme that has been tested withmore » two-fluid two-phase flow model was extended to solve drift-flux model problems. In order to improve solver robustness, and therefore efficiency, a new approach was proposed to treating the mean drift velocity of the gas phase as a primary nonlinear variable to the equation system. With this new approach, significant improvement in solver robustness was achieved. With highly refined mesh, the proposed treatment along with the Newton-Krylov solver were extensively tested with two-phase flow problems that cover a wide range of thermal-hydraulics conditions. Satisfactory convergence performances were observed for all test cases. Numerical verification was then performed in the form of mesh convergence studies, from which expected orders of accuracy were obtained for both the first-order and the second-order spatial discretization schemes. Finally, the drift-flux model, along with numerical methods presented, were validated with three sets of flow boiling experiments that cover different flow channel geometries (round tube, rectangular tube, and rod bundle), and a wide range of test conditions (pressure, mass flux, wall heat flux, inlet subcooling and outlet void fraction).« less

  3. Application of high-order numerical schemes and Newton-Krylov method to two-phase drift-flux model

    DOE PAGES

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2017-08-07

    This study concerns the application and solver robustness of the Newton-Krylov method in solving two-phase flow drift-flux model problems using high-order numerical schemes. In our previous studies, the Newton-Krylov method has been proven as a promising solver for two-phase flow drift-flux model problems. However, these studies were limited to use first-order numerical schemes only. Moreover, the previous approach to treating the drift-flux closure correlations was later revealed to cause deteriorated solver convergence performance, when the mesh was highly refined, and also when higher-order numerical schemes were employed. In this study, a second-order spatial discretization scheme that has been tested withmore » two-fluid two-phase flow model was extended to solve drift-flux model problems. In order to improve solver robustness, and therefore efficiency, a new approach was proposed to treating the mean drift velocity of the gas phase as a primary nonlinear variable to the equation system. With this new approach, significant improvement in solver robustness was achieved. With highly refined mesh, the proposed treatment along with the Newton-Krylov solver were extensively tested with two-phase flow problems that cover a wide range of thermal-hydraulics conditions. Satisfactory convergence performances were observed for all test cases. Numerical verification was then performed in the form of mesh convergence studies, from which expected orders of accuracy were obtained for both the first-order and the second-order spatial discretization schemes. Finally, the drift-flux model, along with numerical methods presented, were validated with three sets of flow boiling experiments that cover different flow channel geometries (round tube, rectangular tube, and rod bundle), and a wide range of test conditions (pressure, mass flux, wall heat flux, inlet subcooling and outlet void fraction).« less

  4. Specimen preparation by ion beam slope cutting for characterization of ductile damage by scanning electron microscopy.

    PubMed

    Besserer, Hans-Bernward; Gerstein, Gregory; Maier, Hans Jürgen; Nürnberger, Florian

    2016-04-01

    To investigate ductile damage in parts made by cold sheet-bulk metal forming a suited specimen preparation is required to observe the microstructure and defects such as voids by electron microscopy. By means of ion beam slope cutting both a targeted material removal can be applied and mechanical or thermal influences during preparation avoided. In combination with scanning electron microscopy this method allows to examine voids in the submicron range and thus to analyze early stages of ductile damage. In addition, a relief structure is formed by the selectivity of the ion bombardment, which depends on grain orientation and microstructural defects. The formation of these relief structures is studied using scanning electron microscopy and electron backscatter diffraction and the use of this side effect to interpret the microstructural mechanisms of voids formation by plastic deformation is discussed. A comprehensive investigation of the suitability of ion beam milling to analyze ductile damage is given at the examples of a ferritic deep drawing steel and a dual phase steel. © 2016 Wiley Periodicals, Inc.

  5. Shipboard Elevator Magnetic Sensor Development. Phase I, Laboratory Investigations.

    DTIC Science & Technology

    1981-08-19

    greater detail. The principles studied were those of the flux-meter and the flux-gate magnetometer . Of these two, the flux-gate magnetometer principle was...Abstract (Continued) Flux-gate magnetometers continuously sense the component of a stationary or slowly varying magnetic field along a chosen axis. The...distance of the sensor from the target’s line of travel, while precisely indicating displacements along the line. The modes of detection include level

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naidoo, Krishna; Benoit-Levy, Aurelien; Lahav, Ofer

    Understanding the observed Cold Spot (CS) (temperature of ~ -150 mu K at its centre) on the Cosmic Microwave Background (CMB) is an outstanding problem. Explanations vary from assuming it is just a ≳ 3σ primordial Gaussian fluctuation to the imprint of a supervoid via the Integrated Sachs-Wolfe and Rees-Sciama (ISW+RS) effects. Since single spherical supervoids cannot account for the full profile, the ISW+RS of multiple line-of-sight voids is studied here to mimic the structure of the cosmic web. Two structure configurations are considered. The first, through simulations of 20 voids, produces a central mean temperature of ~-50 mu K.more » In this model the central CS temperature lies at ~ 2σ but fails to explain the CS hot ring. An alternative multi-void model (using more pronounced compensated voids) produces much smaller temperature profiles, but contains a prominent hot ring. Arrangements containing closely placed voids at low redshift are found to be particularly well suited to produce CS-like profiles. We then measure the significance of the CS if CS-like profiles (which are fitted to the ISW+RS of multi-void scenarios) are removed. Furthermore, the CS tension with the LCDM model can be reduced dramatically for an array of temperature profiles smaller than the CS itself.« less

  7. Weak measurements and quantum weak values for NOON states

    NASA Astrophysics Data System (ADS)

    Rosales-Zárate, L.; Opanchuk, B.; Reid, M. D.

    2018-03-01

    Quantum weak values arise when the mean outcome of a weak measurement made on certain preselected and postselected quantum systems goes beyond the eigenvalue range for a quantum observable. Here, we propose how to determine quantum weak values for superpositions of states with a macroscopically or mesoscopically distinct mode number, that might be realized as two-mode Bose-Einstein condensate or photonic NOON states. Specifically, we give a model for a weak measurement of the Schwinger spin of a two-mode NOON state, for arbitrary N . The weak measurement arises from a nondestructive measurement of the two-mode occupation number difference, which for atomic NOON states might be realized via phase contrast imaging and the ac Stark effect using an optical meter prepared in a coherent state. The meter-system coupling results in an entangled cat-state. By subsequently evolving the system under the action of a nonlinear Josephson Hamiltonian, we show how postselection leads to quantum weak values, for arbitrary N . Since the weak measurement can be shown to be minimally invasive, the weak values provide a useful strategy for a Leggett-Garg test of N -scopic realism.

  8. Summary and evaluation: fuel dynamics loss-of-flow experiments (tests L2, L3, and L4)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barts, E.W.; Deitrich, L.W.; Eberhart, J.G.

    1975-09-01

    Three similar experiments conducted to support the analyses of hypothetical LMFBR unprotected-loss-of-flow accidents are summarized and evaluated. The tests, designated L2, L3, and L4, provided experimental data against which accident-analysis codes could be compared, so as to guide further analysis and modeling of the initiating phases of the hypothetical accident. The tests were conducted using seven-pin bundles of mixed-oxide fuel pins in Mark-II flowing-sodium loops in the TREAT reactor. Test L2 used fresh fuel. Tests L3 and L4 used irradiated fuel pins having, respectively, ''intermediate-power'' (no central void) and ''high-power'' (fully developed central void) microstructure. 12 references. (auth)

  9. High-resolution simulations of cylindrical void collapse in energetic materials: Effect of primary and secondary collapse on initiation thresholds

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal Kumar; Schmidt, Martin J.; Udaykumar, H. S.

    2017-04-01

    Void collapse in energetic materials leads to hot spot formation and enhanced sensitivity. Much recent work has been directed towards simulation of collapse-generated reactive hot spots. The resolution of voids in calculations to date has varied as have the resulting predictions of hot spot intensity. Here we determine the required resolution for reliable cylindrical void collapse calculations leading to initiation of chemical reactions. High-resolution simulations of collapse provide new insights into the mechanism of hot spot generation. It is found that initiation can occur in two different modes depending on the loading intensity: Either the initiation occurs due to jet impact at the first collapse instant or it can occur at secondary lobes at the periphery of the collapsed void. A key observation is that secondary lobe collapse leads to large local temperatures that initiate reactions. This is due to a combination of a strong blast wave from the site of primary void collapse and strong colliding jets and vortical flows generated during the collapse of the secondary lobes. The secondary lobe collapse results in a significant lowering of the predicted threshold for ignition of the energetic material. The results suggest that mesoscale simulations of void fields may suffer from significant uncertainty in threshold predictions because unresolved calculations cannot capture the secondary lobe collapse phenomenon. The implications of this uncertainty for mesoscale simulations are discussed in this paper.

  10. Time dependent voiding mechanisms in polyamide 6 submitted to high stress triaxiality: experimental characterisation and finite element modelling

    NASA Astrophysics Data System (ADS)

    Selles, Nathan; King, Andrew; Proudhon, Henry; Saintier, Nicolas; Laiarinandrasana, Lucien

    2017-08-01

    Double notched round bars made of semi-crystalline polymer polyamide 6 (PA6) were submitted to monotonic tensile and creep tests. The two notches had a root radius of 0.45 mm, which imposes a multiaxial stress state and a state of high triaxiality in the net (minimal) section of the specimens. Tests were carried out until the failure occurred from one of the notches. The other one, unbroken but deformed under steady strain rate or steady load, was inspected using the Synchrotron Radiation Computed Tomography (SRCT) technique. These 3D through thickness inspections allowed the study of microstructural evolution at the peak stress for the monotonic tensile test and at the beginning of the tertiary creep for the creep tests. Cavitation features were assessed with a micrometre resolution within the notched region. Spatial distributions of void volume fraction ( Vf) and void morphology were studied. Voiding mechanisms were similar under steady strain rates and steady loads. The maximum values of Vf were located between the axis of revolution of the specimens and the notch surface and voids were considered as flat cylinders with a circular basis perpendicular to the loading direction. A model, based on porous plasticity, was used to simulate the mechanical response of this PA6 material under high stress triaxiality. Both macroscopic behaviour (loading curves) and voiding micro-mechanisms (radial distributions of void volume fraction) were accurately predicted using finite element simulations.

  11. Double inflation - A possible resolution of the large-scale structure problem

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Villumsen, Jens V.; Vittorio, Nicola; Silk, Joseph; Juszkiewicz, Roman

    1987-01-01

    A model is presented for the large-scale structure of the universe in which two successive inflationary phases resulted in large small-scale and small large-scale density fluctuations. This bimodal density fluctuation spectrum in an Omega = 1 universe dominated by hot dark matter leads to large-scale structure of the galaxy distribution that is consistent with recent observational results. In particular, large, nearly empty voids and significant large-scale peculiar velocity fields are produced over scales of about 100 Mpc, while the small-scale structure over less than about 10 Mpc resembles that in a low-density universe, as observed. Detailed analytical calculations and numerical simulations are given of the spatial and velocity correlations.

  12. Space Radar Image of Long Valley, California -Interferometry/Topography

    NASA Image and Video Library

    1999-05-01

    These four images of the Long Valley region of east-central California illustrate the steps required to produced three dimensional data and topographics maps from radar interferometry. All data displayed in these images were acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour during its two flights in April and October, 1994. The image in the upper left shows L-band (horizontally transmitted and received) SIR-C radar image data for an area 34 by 59 kilometers (21 by 37 miles). North is toward the upper right; the radar illumination is from the top of the image. The bright areas are hilly regions that contain exposed bedrock and pine forest. The darker gray areas are the relatively smooth, sparsely vegetated valley floors. The dark irregular patch near the lower left is Lake Crowley. The curving ridge that runs across the center of the image from top to bottom is the northeast rim of the Long Valley Caldera, a remnant crater from a massive volcanic eruption that occurred about 750,000 years ago. The image in the upper right is an interferogram of the same area, made by combining SIR-C L-band data from the April and October flights. The colors in this image represent the difference in the phase of the radar echoes obtained on the two flights. Variations in the phase difference are caused by elevation differences. Formation of continuous bands of phase differences, known as interferometric "fringes," is only possible if the two observations were acquired from nearly the same position in space. For these April and October data takes, the shuttle tracks were less than 100 meters (328 feet) apart. The image in the lower left shows a topographic map derived from the interferometric data. The colors represent increments of elevation, as do the thin black contour lines, which are spaced at 50-meter (164-foot) elevation intervals. Heavy contour lines show 250-meter intervals (820-foot). Total relief in this area is about 1,320 meters (4,330 feet). Brightness variations come from the radar image, which has been geometrically corrected to remove radar distortions and rotated to have north toward the top. The image in the lower right is a three-dimensional perspective view of the northeast rim of the Long Valley caldera, looking toward the northwest. SIR-C C-band radar image data are draped over topographic data derived from the interferometry processing. No vertical exaggeration has been applied. Combining topographic and radar image data allows scientists to examine relationships between geologic structures and landforms, and other properties of the land cover, such as soil type, vegetation distribution and hydrologic characteristics. http://photojournal.jpl.nasa.gov/catalog/PIA01770

  13. Probabilistic immortality of Cu damascene interconnects

    NASA Astrophysics Data System (ADS)

    Hau-Riege, Stefan P.

    2002-02-01

    We have studied electromigration short-line effects in Cu damascene interconnects through experiments on lines of various lengths L, stressed at a variety of current densities j, and embedded in different dielectric materials. We observed two modes of resistance evolution: Either the resistance of the lines remains constant for the duration of the test, so that the lines are considered immortal, or the lines fail due to abrupt open-circuit failure. The resistance was not observed to gradually increase and then saturate, as commonly observed in Al-based interconnects, because the barrier is too thin and resistive to serve as a redundant current path should voiding occur. The critical stress for void nucleation was found to be smaller than 41 MPa, since voiding occurred even under the mildest test conditions of j=2 MA/cm2 and L=10.5 μm at 300 °C. A small fraction of short Cu lines failed even at low current densities, which deems necessary a concept of probabilistic immortality rather than deterministic immortality. Experiments and modeling suggest that the probability of immortality is described by (jL2/B), where B is the effective elastic modulus of the metallization scheme. By contrast, the immortality of Al-based interconnects with shunt layers is described by (jL) if no voids nucleate, and (jL/B) if voids do nucleate. Even though the phenomenology of short-line effects differs for Al- and Cu-based interconnects, the immortality of interconnects of either materials system can be explained by the phenomena of nucleation barriers for void formation and void-growth saturation. The differences are due solely to the absence of a shunt layer and the low critical stress for void nucleation in the case of Cu.

  14. Spattering activity at Halemáumáu in 2015 and the transition between Hawaiian and Strombolian eruptions

    NASA Astrophysics Data System (ADS)

    Mintz, B. G.; Houghton, B. F.; Orr, T. R.; Taddeucci, J.; Gaudin, D.; Kueppers, U.; Carey, R.; Scarlato, P.; Del Bello, E.

    2016-12-01

    Explosive activity in 2015 at the free surface of the Halemáumáu lava lake at Kīlauea showed features of both Hawaiian fountaining and Strombolian explosivity. Like low Hawaiian fountains, spattering events often persisted for tens of minutes or hours. However, like Strombolian explosions, the activity consisted of a series of bursting of discrete, meter-sized gas bubbles. Each bubble burst threw fluidal bombs, with meter to decimeter diameters, to elevations of meters to a few tens of meters above the collapsing bubble remnant. Initial velocities of the pyroclasts were lower than either Strombolian explosions or high Hawaiian fountains, typically only 7 to 14 meters/second on average.Although some events were triggered by short-lived rock falls that penetrated the crust of the lava lake, the resulting outgassing activity would become self-sustaining and persistent. Activity was at times, confined to a single point source, to several point sources, or along arcs extending tens of meters parallel to the lake margin.This activity represents another type of behavior exhibited by basaltic volcanoes and provides greater insight into the spectrum between Hawaiian fountaining and Strombolian explosivity. Consequently, this activity is highly instructive in terms of: (a) the diversity of degassing/outgassing possible at basaltic volcanoes and (b) the controls on mechanically coupled versus decoupled behavior of the exsolved bubbles. The 2015 Halemáumáu activity was often continuous over similar timescales to Hawaiian fountaining but was markedly less steady than high fountains. A significant portion of the gas phase was released as discrete bubble bursts, but with frequencies two or three orders of magnitude higher than at Stromboli, which permitted sustained but not steady events.

  15. Pre-analytical Factors Influence Accuracy of Urine Spot Iodine Assessment in Epidemiological Surveys.

    PubMed

    Doggui, Radhouene; El Ati-Hellal, Myriam; Traissac, Pierre; El Ati, Jalila

    2018-03-26

    Urinary iodine concentration (UIC) is commonly used to assess iodine status of subjects in epidemiological surveys. As pre-analytical factors are an important source of measurement error and studies about this phase are scarce, our objective was to assess the influence of urine sampling conditions on UIC, i.e., whether the child ate breakfast or not, urine void rank of the day, and time span between last meal and urine collection. A nationwide, two-stage, stratified, cross-sectional study including 1560 children (6-12 years) was performed in 2012. UIC was determined by the Sandell-Kolthoff method. Pre-analytical factors were assessed from children's mothers by using a questionnaire. Association between iodine status and pre-analytical factors were adjusted for one another and socio-economic characteristics by multivariate linear and multinomial regression models (RPR: relative prevalence ratios). Skipping breakfast prior to morning urine sampling decreased UIC by 40 to 50 μg/L and the proportion of UIC < 100 μg/L was higher among children having those skipped breakfast (RPR = 3.2[1.0-10.4]). In unadjusted analyses, UIC was less among children sampled more than 5 h from their last meal. UIC decreased with rank of urine void (e.g., first vs. second, P < 0.001); also, the proportion of UIC < 100 μg/L was greater among 4th rank samples (vs. second RPR = 2.1[1.1-4.0]). Subjects' breakfast status and urine void rank should be accounted for when assessing iodine status. Providing recommendations to standardize pre-analytical factors is a key step toward improving accuracy and comparability of survey results for assessing iodine status from spot urine samples. These recommendations have to be evaluated by future research.

  16. In situ visualization of metallurgical reactions in nanoscale Cu/Sn diffusion couples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Qiyue; Stach, Eric A.; Gao, Fan

    2015-02-10

    The Cu–Sn metallurgical soldering reaction in two-segmented Cu–Sn nanowires is visualized by in-situ transmission electron microscopy. By varying the relative lengths of Cu and Sn segments, we show that the metallurgical reaction starts at ~ 200 ° with the formation of a Cu–Sn solid solution for the Sn/Cu length ratio smaller than 1:5 while the formation of Cu–Sn intermetallic compounds (IMCs) for larger Sn/Cu length ratios. Upon heating the nanowires up to ~ 500 °C, two phase transformation pathways occur, η-Cu₆Sn₅ → ε-Cu₃Sn → δ-Cu₄₁Sn₁₁ for nanowires with a long Cu segment and η-Cu₆Sn₅ → ε-Cu₃Sn → γ-Cu₃Sn with amore » short Cu segment. The dynamic in situ TEM visualization of the evolution of Kirkendall voids demonstrates that Cu diffuses faster both in Sn and IMCs than that of Sn in Cu₃ and IMCs, which is the underlying cause of the dependence of the IMC formation and associated phase evolution on the relative lengths of the Cu and Sn segments.« less

  17. Development of a passive phase separator for space and earth applications

    PubMed Central

    Wu, Xiongjun; Loraine, Greg; Hsiao, Chao-Tsung; Chahine, Georges L.

    2018-01-01

    The limited amount of liquids and gases that can be carried to space makes it imperative to recycle and reuse these fluids for extended human operations. During recycling processes gas and liquid phases are often intermixed. In the absence of gravity, separating gases from liquids is challenging due to the absence of buoyancy. This paper describes development of a passive phase separator that is capable of efficiently and reliably separating gas–liquid mixtures of both high and low void fractions in a wide range of flow rates that is applicable to for both space and earth applications. PMID:29628785

  18. Loss of urinary voiding sensation due to herpes zoster.

    PubMed

    Hiraga, Akiyuki; Nagumo, Kiyomi; Sakakibara, Ryuji; Kojima, Shigeyuki; Fujinawa, Naoto; Hashimoto, Tasuku

    2003-01-01

    A case of sacral herpes zoster infection in a 56-year-old man with the complication of loss of urinary voiding sensation is presented. He had typical herpes zoster eruption on the left S2 dermatome, hypalgesia of the S1-S4 dermatomes, and absence of urinary voiding sensation. There was no other urinary symptom at the first medical examination. Urinary complications associated with herpes zoster are uncommon, but two types, acute cystitis and acute retention, have been recognized. No cases of loss of urinary voiding sensation due to herpes zoster have been reported. In this case, hypalgesia of the sacral dermatomes was mild compared to the marked loss of urethral sensation. This inconsistency is explained by the hypothesis that the number of urethral fibers is very small as compared to that of cutaneous fibers, therefore, urethral sensation would be more severely disturbed than cutaneous sensation. Copyright 2003 Wiley-Liss, Inc.

  19. Evaluation of a fuzzy logic ramp metering algorithm : a comparative study among three ramp metering algorithms used in the greater Seattle area

    DOT National Transportation Integrated Search

    2000-02-01

    A Fuzzy Logic Ramp Metering Algorithm was implemented on 126 ramps in the greater Seattle area. Two multiple-ramp study sites were evaluted by comparing the fuzzy logic controller (FLC) to the other two ramp metering algorithms in operation at those ...

  20. Microstructural characterization and density change of 304 stainless steel reflector blocks after long-term irradiation in EBR-II

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Wiezorek, J. M. K.; Garner, F. A.; Freyer, P. D.; Okita, T.; Sagisaka, M.; Isobe, Y.; Allen, T. R.

    2015-10-01

    While thin reactor structural components such as cladding and ducts do not experience significant gradients in dpa rate, gamma heating rate, temperature or stress, thick components can develop strong local variations in void swelling and irradiation creep in response to gradients in these variables. In this study we conducted microstructural investigations by transmission electron microscopy of two 52 mm thick 304-type stainless steel hex-blocks irradiated for 12 years in the EBR-II reactor with accumulated doses ranging from ∼0.4 to 33 dpa. Spatial variations in the populations of voids, precipitates, Frank loops and dislocation lines have been determined for 304 stainless steel sections exposed to different temperatures, different dpa levels and at different dpa rates, demonstrating the existence of spatial gradients in the resulting void swelling. The microstructural measurements compare very well with complementary density change measurements regarding void swelling gradients in the 304 stainless steel hex-block components. The TEM studies revealed that the original cold-worked-state microstructure of the unirradiated blocks was completely erased by irradiation, replaced by high densities of interstitial Frank loops, voids and carbide precipitates at both the lowest and highest doses. At large dose levels the amount of volumetric void swelling correlated directly with the gamma heating gradient-related temperature increase (e.g. for 28 dpa, ∼2% swelling at 418 °C and ∼2.9% swelling at 448 °C). Under approximately iso-thermal local conditions, volumetric void swelling was found to increase with dose level (e.g. ∼0.2% swelling at 0.4 dpa, ∼0.5% swelling at 4 dpa and ∼2% swelling at 28 dpa). Carbide precipitate formation levels were found to be relatively independent of both dpa level and temperature and induced a measurable densification. Void swelling was dominant at the higher dose levels and caused measurable decreases in density. Void swelling at the lowest doses was larger than might be expected based on the dpa level, an observation in agreement with earlier studies showing that the onset of void swelling is accelerated by decreasing dpa rates.

  1. Formation of austenite in high Cr ferritic/martensitic steels by high fluence neutron irradiation

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Faulkner, R. G.; Morgan, T. S.

    2008-12-01

    High Cr ferritic/martensitic steels are leading candidates for structural components of future fusion reactors and new generation fission reactors due to their excellent swelling resistance and thermal properties. A commercial grade 12%CrMoVNb ferritic/martensitic stainless steel in the form of parent plate and off-normal weld materials was fast neutron irradiated up to 33 dpa (1.1 × 10 -6 dpa/s) at 400 °C and 28 dpa (1.7 × 10 -6 dpa/s) at 465 °C, respectively. TEM investigation shows that the fully martensitic weld metal transformed to a duplex austenite/ferrite structure due to high fluence neutron irradiation, the austenite was heavily voided (˜15 vol.%) and the ferrite was relatively void-free; whilst no austenite phases were detected in plate steel. Thermodynamic and phase equilibria software MTDATA has been employed for the first time to investigate neutron irradiation-induced phase transformations. The neutron irradiation effect is introduced by adding additional Gibbs free energy into the system. This additional energy is produced by high energy neutron irradiation and can be estimated from the increased dislocation loop density caused by irradiation. Modelling results show that neutron irradiation reduces the ferrite/austenite transformation temperature, especially for high Ni weld metal. The calculated results exhibit good agreement with experimental observation.

  2. Six-Phase Heating(trademark) Pilot-Scale Test. Technology Performance Report, Dense Non-Aqueous Phase Liquid, Eastern Parking Lot Groundwater Plume. Air Force Plant 4, Fort Worth, Texas

    DTIC Science & Technology

    2001-05-01

    The well vapor flows were calculated using the following formula taken from the Dwyer Series DS-300 Flow Sensor Instal/ation and Operating...IVllllble. TNRCC-D199 (Rev. 09-01 93) Send oriainal CODV by cerllfled mall 10: / TDLA ).(WWD/PIPl, P.O. BOll 12157 Austin TX 7871 1 Please use black Ink...gas, impinger exhaust, dry gas meter inlet, and dry gas meter outlet. A Fyrite™ kit was used to measure the oxygen and carbon dioxide concentration in

  3. Tapioca starch graft copolymers and Dome Matrix® modules II. Effect of modules assemblage on riboflavin release kinetics.

    PubMed

    Casas, Marta; Strusi, Orazio Luca; Jiménez-Castellanos, M Rosa; Colombo, Paolo

    2011-01-01

    This paper studies the Riboflavin release from systems made of assembled modules of Dome Matrix® technology using tapioca starch-ethylmethacrylate (TSEMA) and tapioca hydroxypropylstarch-ethylmethacrylate (THSEMA) graft copolymers produced by two different drying methods. Two different shape modules were manufactured for this study, i.e., female and male modules, in order to facilitate their assemblage in "void configuration", a system with an internal void space. Drug release studies on void configurations based on THSEMA show faster releases than TSEMA; HPMC systems used as a comparative reference showed intermediate release. Moreover, using void configurations made with one module of TSEMA and the other of THSEMA is possible to average the drug release, without difference between the drying methods used for the polymers. With respect to the floatation characteristics, all the void configurations floated immediately and, due to the mass center of the system, the floatation position of the system was always axial with the female module up and the male down. The drug release studies performed with a sinker to force the immersion of the systems in the medium did not show differences with respect to the dissolution test without a sinker. The combination of floatation capability of the assembled modules and the prolonged drug release provided with the graft copolymers make these assembled modules candidates as controlled release gastro-retentive dosage forms. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Large deployable antenna program. Phase 1: Technology assessment and mission architecture

    NASA Technical Reports Server (NTRS)

    Rogers, Craig A.; Stutzman, Warren L.

    1991-01-01

    The program was initiated to investigate the availability of critical large deployable antenna technologies which would enable microwave remote sensing missions from geostationary orbits as required for Mission to Planet Earth. Program goals for the large antenna were: 40-meter diameter, offset-fed paraboloid, and surface precision of 0.1 mm rms. Phase 1 goals were: to review the state-of-the-art for large, precise, wide-scanning radiometers up to 60 GHz; to assess critical technologies necessary for selected concepts; to develop mission architecture for these concepts; and to evaluate generic technologies to support the large deployable reflectors necessary for these missions. Selected results of the study show that deployable reflectors using furlable segments are limited by surface precision goals to 12 meters in diameter, current launch vehicles can place in geostationary only a 20-meter class antenna, and conceptual designs using stiff reflectors are possible with areal densities of 2.4 deg/sq m.

  5. A LOW-COST IMPEDANCE METER FOR SENSING THE MOISTURE CONTENT OF IN-SHELL PEANUTS

    USDA-ARS?s Scientific Manuscript database

    A low cost impedance meter developed at the National Peanut Research Laboratory described here was used to generate RF signals at frequencies of 1, 5 and 9 MHz. The RF signals were applied to a parallel-plate capacitor holding a sample of peanuts and the capacitance (C), phase angle (') and impedanc...

  6. Moisture Determination of Nuts and Dry Fruits using a Capacitance Sensor

    USDA-ARS?s Scientific Manuscript database

    Impedance (Z), and phase angle (') of a cylindrical parallel-plate capacitor with in-shell peanuts between the plates was measured earlier, using a CI meter (Chari’s Impedance meter), at 1 and 5 MHz . Capacitance C, was derived from Z and ', and using the C, ', and Z values of a set of peanuts whos...

  7. Sensing the Moisture Content of Dry Cherries - A Rapid and Nondestructive Method

    USDA-ARS?s Scientific Manuscript database

    Impedance (Z), and phase angle (') of a parallel-plate capacitor with a single cherry fruit between the plates was measured using a CI meter (Chari’s Impedance meter), at 1 and 9 MHz . Capacitance C, was derived from Z and ', and using the C, ', and Z values of a set of cherries whose moisture cont...

  8. NASA/Navy lift/cruise fan. Phase 1: Design summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The initial design of the LCF459 lift/cruise fan system is documented. The LCF459 is a 1.5 meter diameter turbotip lift/cruise fan whose design point pressure ratio is 1.32 at a tip speed of 353 meters per second. The gas source for the tip turbine is the YJ97-GE-100 engine.

  9. Finite element analysis of cylinder shell resonator and design of intelligent density meter

    NASA Astrophysics Data System (ADS)

    W, Sui X.; M, Fan Y.; X, Zhang G.; R, Qiu Z.

    2005-01-01

    On the basis of the mathematical model and finite element analysis of the cylinder shell resonator, a novel resonant liquid density meter is designed. The meter consists of a cylinder shell resonator fixed on both ends, a measurement circuit with automatic gain control and automatic phase control, and a signal processing system with microcomputer unit C8051F021. The density meter is insensitive to the liquid pressure, and it can intelligently compensate for the temperature. The experiment results show the meter characteristic coefficients of K0, K1, and K2 at 25 centigrade are -129.5668 kg m-3, -0.2535 × 106 kg m-3 s-1 and 0.6239 × 1010 kg m-3 s-2, respectively. The accuracy of the sensor is ±0.1% in range of 700-900 kg m-3

  10. Evaluation of surface, microstructure and phase modifications on various tungsten grades induced by pulsed plasma loading

    NASA Astrophysics Data System (ADS)

    Vilémová, M.; Pala, Z.; Jäger, A.; Matějíček, J.; Chernyshova, M.; Kowalska-Strzęciwilk, E.; Tonarová, D.; Gribkov, V. A.

    2016-03-01

    Progress in the field of nuclear fusion requires the development of a new generation of tungsten materials that are expected to meet specific property, lifetime and safety requirements. Pursuing this goal, the new materials must be properly tested in a wide range of conditions including cases where material is brought to the molten stage, such as with large fusion plasma instabilities. In this study, two prospective candidates from the family of dispersion strengthened (DS) tungsten materials, i.e., W-1%Y2O3 and W-2.5%TiC, were subjected to extreme heat loading exerted by the deuterium plasma generator PF6. The study focuses on the interaction of the tungsten matrix with the dispersed particles during material melting. The materials underwent significant changes in microstructure and phase content. Among the most serious was the loss of TiC particles and void formation in W-2.5%TiC and phase change of polymorphic Y2O3 particles in W-1% Y2O3.

  11. Development of high performance ODS alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Lin; Gao, Fei; Garner, Frank

    2018-01-29

    This project aims to capitalize on insights developed from recent high-dose self-ion irradiation experiments in order to develop and test the next generation of optimized ODS alloys needed to meet the nuclear community's need for high strength, radiation-tolerant cladding and core components, especially with enhanced resistance to void swelling. Two of these insights are that ferrite grains swell earlier than tempered martensite grains, and oxide dispersions currently produced only in ferrite grains require a high level of uniformity and stability to be successful. An additional insight is that ODS particle stability is dependent on as-yet unidentified compositional combinations of dispersoidmore » and alloy matrix, such as dispersoids are stable in MA957 to doses greater than 200 dpa but dissolve in MA956 at doses less than 200 dpa. These findings focus attention on candidate next-generation alloys which address these concerns. Collaboration with two Japanese groups provides this project with two sets of first-round candidate alloys that have already undergone extensive development and testing for unirradiated properties, but have not yet been evaluated for their irradiation performance. The first set of candidate alloys are dual phase (ferrite + martensite) ODS alloys with oxide particles uniformly distributed in both ferrite and martensite phases. The second set of candidate alloys are ODS alloys containing non-standard dispersoid compositions with controllable oxide particle sizes, phases and interfaces.« less

  12. Molecular microelectrostatic view on electronic states near pentacene grain boundaries

    NASA Astrophysics Data System (ADS)

    Verlaak, Stijn; Heremans, Paul

    2007-03-01

    Grain boundaries are the most inevitable and pronounced structural defects in pentacene films. To study the effect of those structural defects on the electronic state distribution, the energy levels of a hole on molecules at and near the defect have been calculated using a submolecular self-consistent-polarization-field approach in combination with atomic charge-quadrupole interaction energy calculations. This method has been benchmarked prior to application on four idealized grain boundaries: a grain boundary void, a void with molecules squeezed in between two grains, a boundary between two grains with different crystallographic orientations, and a grain boundary void in which a permanent dipole (e.g., a water molecule) has nested. While idealized, those views highlight different aspects of real grain boundaries. Implications on macroscopic charge transport models are discussed, as well as some relation between growth conditions and the formation of the grain boundary.

  13. Surface evolution in bare bamboo-type metal lines under diffusion and electric field effects

    NASA Astrophysics Data System (ADS)

    Averbuch, Amir; Israeli, Moshe; Nathan, Menachem; Ravve, Igor

    2003-07-01

    Irregularities such as voids and cracks often occur in bamboo-type metal lines of microelectronic interconnects. They increase the resistance of the circuits, and may even lead to a fatal failure. In this work, we analyze numerically the electromigration of an unpassivated bamboo-type line with pre-existing irregularities in its top surface (also called a grain-void interface). The bamboo line is subjected to surface diffusion forces and external electric fields. Under these forces, initial defects may either heal or become worse. The grain-void interface is considered to be one-dimensional, and the physical formulation of an electromigration and diffusion model results in two coupled, fourth order, one-dimensional time-dependent PDEs, with the boundary conditions imposed at the electrode points and at the triple point, which belongs to two neighboring grains and the void. These equations are discretized by finite differences on a regular grid in space, and by a Runge-Kutta integration scheme in time, and solved simultaneously with a static Laplace equation describing the voltage distribution throughout each grain, when the substrate conductivity is neglected. Since the voltage distribution is required only along an interface line, the two-dimensional discretization of the grain interior is not needed, and the static problem is solved by the boundary element method at each time step. The motion of the interface line is studied for different ratios between diffusion and electric field forces, and for different initial configurations of the grain-void interface. We study plain and tilted contour lines, considering positive and negative tilts with respect to the external electric field, a stepped contour with field lines entering or exiting the 'step', and a number of modifications of the classical Mullins problem of thermal grooving. We also consider a two-grain Mullins problem with a normal and tilted boundary between the grains, examining positive and negative tilts.

  14. PSU/WES Interlaboratory Comparative Methodology Study of an Experimental Cementitious Repository Seal Material. Report 2. Final Results.

    DTIC Science & Technology

    1982-03-01

    meter 25 11.0 Microstructure by SEM 11.1 Introduction In order to correlate observed physical and mechanical properties in cured grout samples, a...studied at the two laboratories has proper physical properties , phase composi- tions, and microstructures for the materials used and ages covered...Scanning Electron Microscope Resolution Test Specimen ( Al -W) D. B. Ballard Research Material 100 SEM Resolution Test Specimen (AI-W)., is an alloy of

  15. Using Muons to Image the Subsurface.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonal, Nedra; Cashion, Avery Ted; Cieslewski, Grzegorz

    Muons are subatomic particles that can penetrate the earth 's crust several kilometers and may be useful for subsurface characterization . The absorption rate of muons depends on the density of the materials through which they pass. Muons are more sensitive to density variation than other phenomena, including gravity, making them beneficial for subsurface investigation . Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and the detector, much like a CAT scan. Currently, muon tomography can resolve features to the sub-meter scale. This work consistsmore » of three parts to address the use of muons for subsurface characterization : 1) assess the use of muon scattering for estimating density differences of common rock types, 2 ) using muon flux to detect a void in rock, 3) measure muon direction by designing a new detector. Results from this project lay the groundwork for future directions in this field. Low-density objects can be detected by muons even when enclosed in high-density material like lead, and even small changes in density (e.g. changes due to fracturing of material) can be detected. Rock density has a linear relationship with muon scattering density per rock volume when this ratio is greater than 0.10 . Limitations on using muon scattering to assess density changes among common rock types have been identified. However, other analysis methods may show improved results for these relatively low density materials. Simulations show that muons can be used to image void space (e.g. tunnels) within rock but experimental results have been ambiguous. Improvements are suggested to improve imaging voids such as tunnels through rocks. Finally, a muon detector has been designed and tested to measure muon direction, which will improve signal-to-noise ratio and help address fundamental questions about the source of upgoing muons .« less

  16. Predictive Mechanical Characterization of Macro-Molecular Material Chemistry Structures of Cement Paste at Nano Scale - Two-phase Macro-Molecular Structures of Calcium Silicate Hydrate, Tri-Calcium Silicate, Di-Calcium Silicate and Calcium Hydroxide

    NASA Astrophysics Data System (ADS)

    Padilla Espinosa, Ingrid Marcela

    Concrete is a hierarchical composite material with a random structure over a wide range of length scales. At submicron length scale the main component of concrete is cement paste, formed by the reaction of Portland cement clinkers and water. Cement paste acts as a binding matrix for the other components and is responsible for the strength of concrete. Cement paste microstructure contains voids, hydrated and unhydrated cement phases. The main crystalline phases of unhydrated cement are tri-calcium silicate (C3S) and di-calcium silicate (C2S), and of hydrated cement are calcium silicate hydrate (CSH) and calcium hydroxide (CH). Although efforts have been made to comprehend the chemical and physical nature of cement paste, studies at molecular level have primarily been focused on individual components. Present research focuses on the development of a method to model, at molecular level, and analysis of the two-phase combination of hydrated and unhydrated phases of cement paste as macromolecular systems. Computational molecular modeling could help in understanding the influence of the phase interactions on the material properties, and mechanical performance of cement paste. Present work also strives to create a framework for molecular level models suitable for potential better comparisons with low length scale experimental methods, in which the sizes of the samples involve the mixture of different hydrated and unhydrated crystalline phases of cement paste. Two approaches based on two-phase cement paste macromolecular structures, one involving admixed molecular phases, and the second involving cluster of two molecular phases are investigated. The mechanical properties of two-phase macromolecular systems of cement paste consisting of key hydrated phase CSH and unhydrated phases C3S or C2S, as well as CSH with the second hydrated phase CH were calculated. It was found that these cement paste two-phase macromolecular systems predicted an isotropic material behavior. Also, these systems exhibited a high bulk modulus, compared to the elastic modulus. These results are an indication and concur with the high compression strength of cement paste seen at engineering length scale. In addition, the bulk modulus of two-phase systems consisting of hydrated CSH and unhydrated C3S or C2S was found to increase with higher levels of unhydrated components. The interaction energies of two-phase cement paste molecular structures studied in the present work were calculated, showing that a higher interaction is attained when the two phases are admixed as small components instead of cluster of phases. Finally, the mechanical behavior under shear deformation was predicted by using a quasi-static deformation method and analyzed for a representative two-phase (CSH and C2S) macromolecular structure of cement paste.

  17. Geologic analysis of the Rosetta NavCam, Osiris and ROLIS images of the comet 67P/Churyumov-Gerasimenko nucleus

    NASA Astrophysics Data System (ADS)

    Basilevsky, A. T.; Mall, U.; Keller, H. U.; Skorov, Yu. V.; Hviid, S. F.; Mottola, S.; Krasilnikov, S. S.; Dabrowski, B.

    2017-03-01

    This paper is based on geologic analysis of the surface morphology of nucleus of the Jupiter family comet 67P. This comet was visited by the ESA mission Rosetta, which escorted the comet since May 2014 till the end of September 2016 and studied it by 11 instruments of the mission orbiter and 10 instruments of the lander. The nucleus is 4 km in diameter, has a bilobate shape with the smaller (Head) and larger (Body) lobes, and the narrow neck between them. For the analysis, primarily images taken by the Rosetta Navigation camera (NavCam) were used and then complemented by selected images from the ROLIS and OSIRIS cameras. Two major types of the nucleus material are distinguished by us and other researchers: 1) the consolidated nucleus material and 2) the loose material, a kind of cometary regolith, covering the nucleus consolidated material. On the surface of the consolidated material rather long (up to hundreds meters) straight lineaments are distinguishable. They probably correspond to fractures and in some cases to strata. Their presence suggests that the consolidated material is rather compact and lacks voids larger than tens of meters across. Surfaces of consolidated nucleus material typically show knobby appearance at the scales from tens of meters and meters to centimeters and millimeters. This suggests that this material is grainy, consisting of more and less resistant (to surface weathering) ;particles; on the scale of the visible knobs. The geometric analysis of steep slopes based on the nucleus shape model allowed us to estimate a tensile, shear and compressive strength of the consolidated material. It was shown that the 67P consolidated nucleus material is very fragile, and taking into account the scale effect one can conclude that it is as fragile as fresh fallen snow and maybe even more fragile. In addition, estimates of the compressive strength of the surface material were considered at the sites of the first and the last contacts of the Philae lander with the surface. Observations also showed evidence of various downslope and lateral movements of rather large material masses (landslide? avalanche?) as well as boulders and ;fines;, which are driven primarily by gravity and then by the acquired inertia, but in some cases a material transport by dust-gas jets/outbursts could play a role. The latter could also be responsible for formation of the eolian-type ripples.

  18. Inhomogeneity of microstructure, mechanical properties, magnetism, and corrosion observed in a 12Cr18Ni10Ti fuel assembly shroud irradiated in BN-350 to 59 dpa

    NASA Astrophysics Data System (ADS)

    Maksimkin, O. P.; Tsay, K. V.; Garner, F. A.

    2015-12-01

    A hexagonal shroud containing a standard in-core fueled subassembly from the BN-350 reactor was examined after reaching 59 dpa maximum, followed by long-term storage underwater. Specimens were derived from both mid-face and rib-corner positions. It was shown that there were complex spatial variations in void swelling, mechanical properties, microhardness, radiation-induced magnetism as well as corrosion while underwater. The spatial variations arose from two major sources. The first source was variations in height associated with variations in dpa rate and irradiation temperature. The second source was shown to be spatial variations in starting microstructure arising primarily from a higher level of initial deformation and hardness in the rib-corners of the hexagonal shroud. With irradiation the differences in microhardness between the two regions disappeared, but void swelling in the rib areas was larger than at mid-face positions. The swelling enhancement at the corners is thought to arise primarily from the combined effect of temper annealing at a temperature known to remove carbon from the matrix before irradiation, and the influence of higher deformed microstructures to accelerate recrystallization, possibly with assistance from localized residual stresses. Swelling was relatively low at the bottom low-temperature end of the shroud, but increased on the upper end of the assembly, reflecting primarily a transition between a precipitation regime involving titanium carbide to one involving nickel-rich and silicon-rich G-phase.

  19. A new triclinic modification of the pyrochlore-type KOs{sub 2}O{sub 6} superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katrych, S.; Gu, Q.F.; Bukowski, Z.

    2009-03-15

    A new modification of KOs{sub 2}O{sub 6}, the representative of a new structural type (Pearson symbol aP18, a=5.5668(1) A, b=6.4519(2) A, c=7.2356(2) A, {alpha}=65.377(3){sup o}, {beta}=70.572(3){sup o}, {gamma}=75.613(2){sup o} space group P-1, no. 2 was synthesized employing high pressure technique. Its structure was determined by single-crystal X-ray diffraction. The structure can be described as two OsO{sub 6} octahedral chains relating to each other through inversion and forming big voids with K atoms inside. Quantum chemical calculations were performed on the novel compound and structurally related cubic compound. High-pressure X-ray study showed that cubic KOs{sub 2}O{sub 6} phase was stable upmore » to 32.5(2) GPa at room temperature. - Graphical abstract: A new modification of KOs{sub 2}O{sub 6}, the representative of a new structural type (Pearson symbol aP18, a=5.5668(1) A, b=6.4519(2) A, c=7.2356(2) A, {alpha}=65.377(3){sup o}, {beta}=70.572(3){sup o}, {gamma}=75.613(2){sup o} space group P-1, no. 2 was synthesized employing high pressure technique. The structure can be described as two OsO{sub 6} octahedral chains relating to each other through inversion and forming big voids with K atoms inside.« less

  20. Treatment of stress urinary incontinence with adipose tissue-derived stem cells.

    PubMed

    Lin, Guiting; Wang, Guifang; Banie, Lia; Ning, Hongxiu; Shindel, Alan W; Fandel, Thomas M; Lue, Tom F; Lin, Ching-Shwun

    2010-01-01

    Effective treatment for stress urinary incontinence (SUI) is lacking. This study investigated whether transplantation of adipose tissue-derived stem cells (ADSC) can treat SUI in a rat model. Rats were induced to develop SUI by postpartum vaginal balloon dilation and bilateral ovariectomy. ADSC were isolated from the peri-ovary fat, examined for stem cell properties, and labeled with thymidine analog BrdU or EdU. Ten rats received urethral injection of saline as a control. Twelve rats received urethral injection of EdU-labeled ADSC and six rats received intravenous injection of BrdU-labeled ADSC through the tail vein. Four weeks later, urinary voiding function was assessed by conscious cystometry. The rats were then killed and their urethras harvested for tracking of ADSC and quantification of elastin, collagen and smooth muscle contents. Cystometric analysis showed that eight out 10 rats in the control group had abnormal voiding, whereas four of 12 (33.3%) and two of six (33.3%) rats in the urethra-ADSC and tail vein-ADSC groups, respectively, had abnormal voiding. Histologic analysis showed that the ADSC-treated groups had significantly higher elastin content than the control group and, within the ADSC-treated groups, rats with normal voiding pattern also had significantly higher elastin content than rats with voiding dysfunction. ADSC-treated normal-voiding rats had significantly higher smooth muscle content than control or ADSC-treated rats with voiding dysfunction. Transplantation of ADSC via urethral or intravenous injection is effective in the treatment and/or prevention of SUI in a pre-clinical setting.

Top