Sample records for two-point boundary-value problem

  1. Numerical methods for stiff systems of two-point boundary value problems

    NASA Technical Reports Server (NTRS)

    Flaherty, J. E.; Omalley, R. E., Jr.

    1983-01-01

    Numerical procedures are developed for constructing asymptotic solutions of certain nonlinear singularly perturbed vector two-point boundary value problems having boundary layers at one or both endpoints. The asymptotic approximations are generated numerically and can either be used as is or to furnish a general purpose two-point boundary value code with an initial approximation and the nonuniform computational mesh needed for such problems. The procedures are applied to a model problem that has multiple solutions and to problems describing the deformation of thin nonlinear elastic beam that is resting on an elastic foundation.

  2. Mixed boundary value problems in mechanics

    NASA Technical Reports Server (NTRS)

    Erdogan, F.

    1975-01-01

    Certain boundary value problems were studied over a domain D which may contain the point at infinity and may be multiply connected. Contours forming the boundary are assumed to consist of piecewise smooth arcs. Mixed boundary value problems are those with points of flux singularity on the boundary; these are points on the surface, either side of which at least one of the differential operator has different behavior. The physical system was considered to be described by two quantities, the potential and the flux type quantities. Some of the examples that were illustrated included problems in potential theory and elasticity.

  3. Scalar discrete nonlinear multipoint boundary value problems

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jesus; Taylor, Padraic

    2007-06-01

    In this paper we provide sufficient conditions for the existence of solutions to scalar discrete nonlinear multipoint boundary value problems. By allowing more general boundary conditions and by imposing less restrictions on the nonlinearities, we obtain results that extend previous work in the area of discrete boundary value problems [Debra L. Etheridge, Jesus Rodriguez, Periodic solutions of nonlinear discrete-time systems, Appl. Anal. 62 (1996) 119-137; Debra L. Etheridge, Jesus Rodriguez, Scalar discrete nonlinear two-point boundary value problems, J. Difference Equ. Appl. 4 (1998) 127-144].

  4. Use of Green's functions in the numerical solution of two-point boundary value problems

    NASA Technical Reports Server (NTRS)

    Gallaher, L. J.; Perlin, I. E.

    1974-01-01

    This study investigates the use of Green's functions in the numerical solution of the two-point boundary value problem. The first part deals with the role of the Green's function in solving both linear and nonlinear second order ordinary differential equations with boundary conditions and systems of such equations. The second part describes procedures for numerical construction of Green's functions and considers briefly the conditions for their existence. Finally, there is a description of some numerical experiments using nonlinear problems for which the known existence, uniqueness or convergence theorems do not apply. Examples here include some problems in finding rendezvous orbits of the restricted three body system.

  5. A mesh gradient technique for numerical optimization

    NASA Technical Reports Server (NTRS)

    Willis, E. A., Jr.

    1973-01-01

    A class of successive-improvement optimization methods in which directions of descent are defined in the state space along each trial trajectory are considered. The given problem is first decomposed into two discrete levels by imposing mesh points. Level 1 consists of running optimal subarcs between each successive pair of mesh points. For normal systems, these optimal two-point boundary value problems can be solved by following a routine prescription if the mesh spacing is sufficiently close. A spacing criterion is given. Under appropriate conditions, the criterion value depends only on the coordinates of the mesh points, and its gradient with respect to those coordinates may be defined by interpreting the adjoint variables as partial derivatives of the criterion value function. In level 2, the gradient data is used to generate improvement steps or search directions in the state space which satisfy the boundary values and constraints of the given problem.

  6. New algorithms for solving third- and fifth-order two point boundary value problems based on nonsymmetric generalized Jacobi Petrov–Galerkin method

    PubMed Central

    Doha, E.H.; Abd-Elhameed, W.M.; Youssri, Y.H.

    2014-01-01

    Two families of certain nonsymmetric generalized Jacobi polynomials with negative integer indexes are employed for solving third- and fifth-order two point boundary value problems governed by homogeneous and nonhomogeneous boundary conditions using a dual Petrov–Galerkin method. The idea behind our method is to use trial functions satisfying the underlying boundary conditions of the differential equations and the test functions satisfying the dual boundary conditions. The resulting linear systems from the application of our method are specially structured and they can be efficiently inverted. The use of generalized Jacobi polynomials simplify the theoretical and numerical analysis of the method and also leads to accurate and efficient numerical algorithms. The presented numerical results indicate that the proposed numerical algorithms are reliable and very efficient. PMID:26425358

  7. A boundary-value problem for a first-order hyperbolic system in a two-dimensional domain

    NASA Astrophysics Data System (ADS)

    Zhura, N. A.; Soldatov, A. P.

    2017-06-01

    We consider a strictly hyperbolic first-order system of three equations with constant coefficients in a bounded piecewise-smooth domain. The boundary of the domain is assumed to consist of six smooth non-characteristic arcs. A boundary-value problem in this domain is posed by alternately prescribing one or two linear combinations of the components of the solution on these arcs. We show that this problem has a unique solution under certain additional conditions on the coefficients of these combinations, the boundary of the domain and the behaviour of the solution near the characteristics passing through the corner points of the domain.

  8. Existence and uniqueness theorems for impulsive fractional differential equations with the two-point and integral boundary conditions.

    PubMed

    Mardanov, M J; Mahmudov, N I; Sharifov, Y A

    2014-01-01

    We study a boundary value problem for the system of nonlinear impulsive fractional differential equations of order α (0 < α ≤ 1) involving the two-point and integral boundary conditions. Some new results on existence and uniqueness of a solution are established by using fixed point theorems. Some illustrative examples are also presented. We extend previous results even in the integer case α = 1.

  9. Fixed Point Results for G-α-Contractive Maps with Application to Boundary Value Problems

    PubMed Central

    Roshan, Jamal Rezaei

    2014-01-01

    We unify the concepts of G-metric, metric-like, and b-metric to define new notion of generalized b-metric-like space and discuss its topological and structural properties. In addition, certain fixed point theorems for two classes of G-α-admissible contractive mappings in such spaces are obtained and some new fixed point results are derived in corresponding partially ordered space. Moreover, some examples and an application to the existence of a solution for the first-order periodic boundary value problem are provided here to illustrate the usability of the obtained results. PMID:24895655

  10. Existence of solutions of a two-dimensional boundary value problem for a system of nonlinear equations arising in growing cell populations.

    PubMed

    Jeribi, Aref; Krichen, Bilel; Mefteh, Bilel

    2013-01-01

    In the paper [A. Ben Amar, A. Jeribi, and B. Krichen, Fixed point theorems for block operator matrix and an application to a structured problem under boundary conditions of Rotenberg's model type, to appear in Math. Slovaca. (2014)], the existence of solutions of the two-dimensional boundary value problem (1) and (2) was discussed in the product Banach space L(p)×L(p) for p∈(1, ∞). Due to the lack of compactness on L1 spaces, the analysis did not cover the case p=1. The purpose of this work is to extend the results of Ben Amar et al. to the case p=1 by establishing new variants of fixed-point theorems for a 2×2 operator matrix, involving weakly compact operators.

  11. Dynamics and control of flexible spacecraft during and after slewing maneuvers

    NASA Technical Reports Server (NTRS)

    Kakad, Yogendra P.

    1989-01-01

    The dynamics and control of slewing maneuvers of NASA Spacecraft COntrol Laboratory Experiment (SCOLE) are analyzed. The control problem of slewing maneuvers of SCOLE is formulated in terms of an arbitrary maneuver about any given axis. The control system is developed for the combined problem of rigid-body slew maneuver and vibration suppression of the flexible appendage. The control problem formulation incorporates the nonlinear dynamical equations derived previously, and is expressed in terms of a two-point boundary value problem utilizing a quadratic type of performance index. The two-point boundary value problem is solved as a hierarchical control problem with the overall system being split in terms of two subsystems, namely the slewing of the entire assembly and the vibration suppression of the flexible antenna. The coupling variables between the two dynamical subsystems are identified and these two subsystems for control purposes are treated independently in parallel at the first level. Then the state-space trajectory of the combined problem is optimized at the second level.

  12. Modified Taylor series method for solving nonlinear differential equations with mixed boundary conditions defined on finite intervals.

    PubMed

    Vazquez-Leal, Hector; Benhammouda, Brahim; Filobello-Nino, Uriel Antonio; Sarmiento-Reyes, Arturo; Jimenez-Fernandez, Victor Manuel; Marin-Hernandez, Antonio; Herrera-May, Agustin Leobardo; Diaz-Sanchez, Alejandro; Huerta-Chua, Jesus

    2014-01-01

    In this article, we propose the application of a modified Taylor series method (MTSM) for the approximation of nonlinear problems described on finite intervals. The issue of Taylor series method with mixed boundary conditions is circumvented using shooting constants and extra derivatives of the problem. In order to show the benefits of this proposal, three different kinds of problems are solved: three-point boundary valued problem (BVP) of third-order with a hyperbolic sine nonlinearity, two-point BVP for a second-order nonlinear differential equation with an exponential nonlinearity, and a two-point BVP for a third-order nonlinear differential equation with a radical nonlinearity. The result shows that the MTSM method is capable to generate easily computable and highly accurate approximations for nonlinear equations. 34L30.

  13. Finite-volume application of high order ENO schemes to multi-dimensional boundary-value problems

    NASA Technical Reports Server (NTRS)

    Casper, Jay; Dorrepaal, J. Mark

    1990-01-01

    The finite volume approach in developing multi-dimensional, high-order accurate essentially non-oscillatory (ENO) schemes is considered. In particular, a two dimensional extension is proposed for the Euler equation of gas dynamics. This requires a spatial reconstruction operator that attains formal high order of accuracy in two dimensions by taking account of cross gradients. Given a set of cell averages in two spatial variables, polynomial interpolation of a two dimensional primitive function is employed in order to extract high-order pointwise values on cell interfaces. These points are appropriately chosen so that correspondingly high-order flux integrals are obtained through each interface by quadrature, at each point having calculated a flux contribution in an upwind fashion. The solution-in-the-small of Riemann's initial value problem (IVP) that is required for this pointwise flux computation is achieved using Roe's approximate Riemann solver. Issues to be considered in this two dimensional extension include the implementation of boundary conditions and application to general curvilinear coordinates. Results of numerical experiments are presented for qualitative and quantitative examination. These results contain the first successful application of ENO schemes to boundary value problems with solid walls.

  14. Numerical analysis of the asymptotic two-point boundary value solution for N-body trajectories.

    NASA Technical Reports Server (NTRS)

    Lancaster, J. E.; Allemann, R. A.

    1972-01-01

    Previously published asymptotic solutions for lunar and interplanetary trajectories have been modified and combined to formulate a general analytical boundary value solution applicable to a broad class of trajectory problems. In addition, the earlier first-order solutions have been extended to second-order to determine if improved accuracy is possible. Comparisons between the asymptotic solution and numerical integration for several lunar and interplanetary trajectories show that the asymptotic solution is generally quite accurate. Also, since no iterations are required, a solution to the boundary value problem is obtained in a fraction of the time required for numerically integrated solutions.

  15. Alternative Attitude Commanding and Control for Precise Spacecraft Landing

    NASA Technical Reports Server (NTRS)

    Singh, Gurkirpal

    2004-01-01

    A report proposes an alternative method of control for precision landing on a remote planet. In the traditional method, the attitude of a spacecraft is required to track a commanded translational acceleration vector, which is generated at each time step by solving a two-point boundary value problem. No requirement of continuity is imposed on the acceleration. The translational acceleration does not necessarily vary smoothly. Tracking of a non-smooth acceleration causes the vehicle attitude to exhibit undesirable transients and poor pointing stability behavior. In the alternative method, the two-point boundary value problem is not solved at each time step. A smooth reference position profile is computed. The profile is recomputed only when the control errors get sufficiently large. The nominal attitude is still required to track the smooth reference acceleration command. A steering logic is proposed that controls the position and velocity errors about the reference profile by perturbing the attitude slightly about the nominal attitude. The overall pointing behavior is therefore smooth, greatly reducing the degree of pointing instability.

  16. A New Homotopy Perturbation Scheme for Solving Singular Boundary Value Problems Arising in Various Physical Models

    NASA Astrophysics Data System (ADS)

    Roul, Pradip; Warbhe, Ujwal

    2017-08-01

    The classical homotopy perturbation method proposed by J. H. He, Comput. Methods Appl. Mech. Eng. 178, 257 (1999) is useful for obtaining the approximate solutions for a wide class of nonlinear problems in terms of series with easily calculable components. However, in some cases, it has been found that this method results in slowly convergent series. To overcome the shortcoming, we present a new reliable algorithm called the domain decomposition homotopy perturbation method (DDHPM) to solve a class of singular two-point boundary value problems with Neumann and Robin-type boundary conditions arising in various physical models. Five numerical examples are presented to demonstrate the accuracy and applicability of our method, including thermal explosion, oxygen-diffusion in a spherical cell and heat conduction through a solid with heat generation. A comparison is made between the proposed technique and other existing seminumerical or numerical techniques. Numerical results reveal that only two or three iterations lead to high accuracy of the solution and this newly improved technique introduces a powerful improvement for solving nonlinear singular boundary value problems (SBVPs).

  17. A class of renormalised meshless Laplacians for boundary value problems

    NASA Astrophysics Data System (ADS)

    Basic, Josip; Degiuli, Nastia; Ban, Dario

    2018-02-01

    A meshless approach to approximating spatial derivatives on scattered point arrangements is presented in this paper. Three various derivations of approximate discrete Laplace operator formulations are produced using the Taylor series expansion and renormalised least-squares correction of the first spatial derivatives. Numerical analyses are performed for the introduced Laplacian formulations, and their convergence rate and computational efficiency are examined. The tests are conducted on regular and highly irregular scattered point arrangements. The results are compared to those obtained by the smoothed particle hydrodynamics method and the finite differences method on a regular grid. Finally, the strong form of various Poisson and diffusion equations with Dirichlet or Robin boundary conditions are solved in two and three dimensions by making use of the introduced operators in order to examine their stability and accuracy for boundary value problems. The introduced Laplacian operators perform well for highly irregular point distribution and offer adequate accuracy for mesh and mesh-free numerical methods that require frequent movement of the grid or point cloud.

  18. Stress-intensity factor calculations using the boundary force method

    NASA Technical Reports Server (NTRS)

    Tan, P. W.; Raju, I. S.; Newman, J. C., Jr.

    1987-01-01

    The Boundary Force Method (BFM) was formulated for the three fundamental problems of elasticity: the stress boundary value problem, the displacement boundary value problem, and the mixed boundary value problem. Because the BFM is a form of an indirect boundary element method, only the boundaries of the region of interest are modeled. The elasticity solution for the stress distribution due to concentrated forces and a moment applied at an arbitrary point in a cracked infinite plate is used as the fundamental solution. Thus, unlike other boundary element methods, here the crack face need not be modeled as part of the boundary. The formulation of the BFM is described and the accuracy of the method is established by analyzing a center-cracked specimen subjected to mixed boundary conditions and a three-hole cracked configuration subjected to traction boundary conditions. The results obtained are in good agreement with accepted numerical solutions. The method is then used to generate stress-intensity solutions for two common cracked configurations: an edge crack emanating from a semi-elliptical notch, and an edge crack emanating from a V-notch. The BFM is a versatile technique that can be used to obtain very accurate stress intensity factors for complex crack configurations subjected to stress, displacement, or mixed boundary conditions. The method requires a minimal amount of modeling effort.

  19. Numerical solution of sixth-order boundary-value problems using Legendre wavelet collocation method

    NASA Astrophysics Data System (ADS)

    Sohaib, Muhammad; Haq, Sirajul; Mukhtar, Safyan; Khan, Imad

    2018-03-01

    An efficient method is proposed to approximate sixth order boundary value problems. The proposed method is based on Legendre wavelet in which Legendre polynomial is used. The mechanism of the method is to use collocation points that converts the differential equation into a system of algebraic equations. For validation two test problems are discussed. The results obtained from proposed method are quite accurate, also close to exact solution, and other different methods. The proposed method is computationally more effective and leads to more accurate results as compared to other methods from literature.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, J. I.; Henry, J.; Ramos, A. M.

    We prove the approximate controllability of several nonlinear parabolic boundary-value problems by means of two different methods: the first one can be called a Cancellation method and the second one uses the Kakutani fixed-point theorem.

  1. Neighboring extremals of dynamic optimization problems with path equality constraints

    NASA Technical Reports Server (NTRS)

    Lee, A. Y.

    1988-01-01

    Neighboring extremals of dynamic optimization problems with path equality constraints and with an unknown parameter vector are considered in this paper. With some simplifications, the problem is reduced to solving a linear, time-varying two-point boundary-value problem with integral path equality constraints. A modified backward sweep method is used to solve this problem. Two example problems are solved to illustrate the validity and usefulness of the solution technique.

  2. Optimal Low Energy Earth-Moon Transfers

    NASA Technical Reports Server (NTRS)

    Griesemer, Paul Ricord; Ocampo, Cesar; Cooley, D. S.

    2010-01-01

    The optimality of a low-energy Earth-Moon transfer is examined for the first time using primer vector theory. An optimal control problem is formed with the following free variables: the location, time, and magnitude of the transfer insertion burn, and the transfer time. A constraint is placed on the initial state of the spacecraft to bind it to a given initial orbit around a first body, and on the final state of the spacecraft to limit its Keplerian energy with respect to a second body. Optimal transfers in the system are shown to meet certain conditions placed on the primer vector and its time derivative. A two point boundary value problem containing these necessary conditions is created for use in targeting optimal transfers. The two point boundary value problem is then applied to the ballistic lunar capture problem, and an optimal trajectory is shown. Additionally, the ballistic lunar capture trajectory is examined to determine whether one or more additional impulses may improve on the cost of the transfer.

  3. Optimal trajectories based on linear equations

    NASA Technical Reports Server (NTRS)

    Carter, Thomas E.

    1990-01-01

    The Principal results of a recent theory of fuel optimal space trajectories for linear differential equations are presented. Both impulsive and bounded-thrust problems are treated. A new form of the Lawden Primer vector is found that is identical for both problems. For this reason, starting iteratives from the solution of the impulsive problem are highly effective in the solution of the two-point boundary-value problem associated with bounded thrust. These results were applied to the problem of fuel optimal maneuvers of a spacecraft near a satellite in circular orbit using the Clohessy-Wiltshire equations. For this case two-point boundary-value problems were solved using a microcomputer, and optimal trajectory shapes displayed. The results of this theory can also be applied if the satellite is in an arbitrary Keplerian orbit through the use of the Tschauner-Hempel equations. A new form of the solution of these equations has been found that is identical for elliptical, parabolic, and hyperbolic orbits except in the way that a certain integral is evaluated. For elliptical orbits this integral is evaluated through the use of the eccentric anomaly. An analogous evaluation is performed for hyperbolic orbits.

  4. Boundary assessment under uncertainty: A case study

    USGS Publications Warehouse

    Pawlowsky, V.; Olea, R.A.; Davis, J.C.

    1993-01-01

    Estimating certain attributes within a geological body whose exact boundary is not known presents problems because of the lack of information. Estimation may result in values that are inadmissible from a geological point of view, especially with attributes which necessarily must be zero outside the boundary, such as the thickness of the oil column outside a reservoir. A simple but effective way to define the boundary is to use indicator kriging in two steps, the first for the purpose of extrapolating control points outside the body, the second to obtain a weighting function which expresses the uncertainty attached to estimations obtained in the boundary region. ?? 1993 International Association for Mathematical Geology.

  5. An Automatic Orthonormalization Method for Solving Stiff Boundary-Value Problems

    NASA Astrophysics Data System (ADS)

    Davey, A.

    1983-08-01

    A new initial-value method is described, based on a remark by Drury, for solving stiff linear differential two-point cigenvalue and boundary-value problems. The method is extremely reliable, it is especially suitable for high-order differential systems, and it is capable of accommodating realms of stiffness which other methods cannot reach. The key idea behind the method is to decompose the stiff differential operator into two non-stiff operators, one of which is nonlinear. The nonlinear one is specially chosen so that it advances an orthonormal frame, indeed the method is essentially a kind of automatic orthonormalization; the second is auxiliary but it is needed to determine the required function. The usefulness of the method is demonstrated by calculating some eigenfunctions for an Orr-Sommerfeld problem when the Reynolds number is as large as 10°.

  6. Optimal ballistically captured Earth-Moon transfers

    NASA Astrophysics Data System (ADS)

    Ricord Griesemer, Paul; Ocampo, Cesar; Cooley, D. S.

    2012-07-01

    The optimality of a low-energy Earth-Moon transfer terminating in ballistic capture is examined for the first time using primer vector theory. An optimal control problem is formed with the following free variables: the location, time, and magnitude of the transfer insertion burn, and the transfer time. A constraint is placed on the initial state of the spacecraft to bind it to a given initial orbit around a first body, and on the final state of the spacecraft to limit its Keplerian energy with respect to a second body. Optimal transfers in the system are shown to meet certain conditions placed on the primer vector and its time derivative. A two point boundary value problem containing these necessary conditions is created for use in targeting optimal transfers. The two point boundary value problem is then applied to the ballistic lunar capture problem, and an optimal trajectory is shown. Additionally, the problem is then modified to fix the time of transfer, allowing for optimal multi-impulse transfers. The tradeoff between transfer time and fuel cost is shown for Earth-Moon ballistic lunar capture transfers.

  7. Variational algorithms for nonlinear smoothing applications

    NASA Technical Reports Server (NTRS)

    Bach, R. E., Jr.

    1977-01-01

    A variational approach is presented for solving a nonlinear, fixed-interval smoothing problem with application to offline processing of noisy data for trajectory reconstruction and parameter estimation. The nonlinear problem is solved as a sequence of linear two-point boundary value problems. Second-order convergence properties are demonstrated. Algorithms for both continuous and discrete versions of the problem are given, and example solutions are provided.

  8. Techniques for determining physical zones of influence

    DOEpatents

    Hamann, Hendrik F; Lopez-Marrero, Vanessa

    2013-11-26

    Techniques for analyzing flow of a quantity in a given domain are provided. In one aspect, a method for modeling regions in a domain affected by a flow of a quantity is provided which includes the following steps. A physical representation of the domain is provided. A grid that contains a plurality of grid-points in the domain is created. Sources are identified in the domain. Given a vector field that defines a direction of flow of the quantity within the domain, a boundary value problem is defined for each of one or more of the sources identified in the domain. Each of the boundary value problems is solved numerically to obtain a solution for the boundary value problems at each of the grid-points. The boundary problem solutions are post-processed to model the regions affected by the flow of the quantity on the physical representation of the domain.

  9. A uniformly valid approximation algorithm for nonlinear ordinary singular perturbation problems with boundary layer solutions.

    PubMed

    Cengizci, Süleyman; Atay, Mehmet Tarık; Eryılmaz, Aytekin

    2016-01-01

    This paper is concerned with two-point boundary value problems for singularly perturbed nonlinear ordinary differential equations. The case when the solution only has one boundary layer is examined. An efficient method so called Successive Complementary Expansion Method (SCEM) is used to obtain uniformly valid approximations to this kind of solutions. Four test problems are considered to check the efficiency and accuracy of the proposed method. The numerical results are found in good agreement with exact and existing solutions in literature. The results confirm that SCEM has a superiority over other existing methods in terms of easy-applicability and effectiveness.

  10. Numerical solution of system of boundary value problems using B-spline with free parameter

    NASA Astrophysics Data System (ADS)

    Gupta, Yogesh

    2017-01-01

    This paper deals with method of B-spline solution for a system of boundary value problems. The differential equations are useful in various fields of science and engineering. Some interesting real life problems involve more than one unknown function. These result in system of simultaneous differential equations. Such systems have been applied to many problems in mathematics, physics, engineering etc. In present paper, B-spline and B-spline with free parameter methods for the solution of a linear system of second-order boundary value problems are presented. The methods utilize the values of cubic B-spline and its derivatives at nodal points together with the equations of the given system and boundary conditions, ensuing into the linear matrix equation.

  11. A hybrid perturbation-Galerkin method for differential equations containing a parameter

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1989-01-01

    A two-step hybrid perturbation-Galerkin method to solve a variety of differential equations which involve a parameter is presented and discussed. The method consists of: (1) the use of a perturbation method to determine the asymptotic expansion of the solution about one or more values of the parameter; and (2) the use of some of the perturbation coefficient functions as trial functions in the classical Bubnov-Galerkin method. This hybrid method has the potential of overcoming some of the drawbacks of the perturbation method and the Bubnov-Galerkin method when they are applied by themselves, while combining some of the good features of both. The proposed method is illustrated first with a simple linear two-point boundary value problem and is then applied to a nonlinear two-point boundary value problem in lubrication theory. The results obtained from the hybrid method are compared with approximate solutions obtained by purely numerical methods. Some general features of the method, as well as some special tips for its implementation, are discussed. A survey of some current research application areas is presented and its degree of applicability to broader problem areas is discussed.

  12. On shifted Jacobi spectral method for high-order multi-point boundary value problems

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Bhrawy, A. H.; Hafez, R. M.

    2012-10-01

    This paper reports a spectral tau method for numerically solving multi-point boundary value problems (BVPs) of linear high-order ordinary differential equations. The construction of the shifted Jacobi tau approximation is based on conventional differentiation. This use of differentiation allows the imposition of the governing equation at the whole set of grid points and the straight forward implementation of multiple boundary conditions. Extension of the tau method for high-order multi-point BVPs with variable coefficients is treated using the shifted Jacobi Gauss-Lobatto quadrature. Shifted Jacobi collocation method is developed for solving nonlinear high-order multi-point BVPs. The performance of the proposed methods is investigated by considering several examples. Accurate results and high convergence rates are achieved.

  13. Solutions of the benchmark problems by the dispersion-relation-preserving scheme

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Shen, H.; Kurbatskii, K. A.; Auriault, L.

    1995-01-01

    The 7-point stencil Dispersion-Relation-Preserving scheme of Tam and Webb is used to solve all the six categories of the CAA benchmark problems. The purpose is to show that the scheme is capable of solving linear, as well as nonlinear aeroacoustics problems accurately. Nonlinearities, inevitably, lead to the generation of spurious short wave length numerical waves. Often, these spurious waves would overwhelm the entire numerical solution. In this work, the spurious waves are removed by the addition of artificial selective damping terms to the discretized equations. Category 3 problems are for testing radiation and outflow boundary conditions. In solving these problems, the radiation and outflow boundary conditions of Tam and Webb are used. These conditions are derived from the asymptotic solutions of the linearized Euler equations. Category 4 problems involved solid walls. Here, the wall boundary conditions for high-order schemes of Tam and Dong are employed. These conditions require the use of one ghost value per boundary point per physical boundary condition. In the second problem of this category, the governing equations, when written in cylindrical coordinates, are singular along the axis of the radial coordinate. The proper boundary conditions at the axis are derived by applying the limiting process of r approaches 0 to the governing equations. The Category 5 problem deals with the numerical noise issue. In the present approach, the time-independent mean flow solution is computed first. Once the residual drops to the machine noise level, the incident sound wave is turned on gradually. The solution is marched in time until a time-periodic state is reached. No exact solution is known for the Category 6 problem. Because of this, the problem is formulated in two totally different ways, first as a scattering problem then as a direct simulation problem. There is good agreement between the two numerical solutions. This offers confidence in the computed results. Both formulations are solved as initial value problems. As such, no Kutta condition is required at the trailing edge of the airfoil.

  14. Bubble contraction in free-boundary Hele-Shaw flow with surface tension and kinetic undercooling regularisation

    NASA Astrophysics Data System (ADS)

    Dallaston, Michael; McCue, Scott

    2012-11-01

    When an inviscid bubble expands into a viscous fluid in a Hele-Shaw cell, the bubble boundary is unstable, in general forming long fingers (the Saffman-Taylor instability). In order to make the problem well-posed, a regularising boundary effect must be included. The most widely studied of these are surface tension, which penalises high curvatures, and kinetic undercooling, which penalises high velocities. Both these effects act as a stabilising influence on the free boundary. Less attention has been paid to the case of contracting bubbles, which shrink to a single point (or points) in finite time. In this case, the two effects are in competition, as surface tension stabilises the boundary, while kinetic undercooling destabilises it. This leads to bifurcation behaviour in the asymptotic (near-extinction) shape of the bubble as the relative strengths of the two effects are varied. In particular, there is a critical range of parameter values for which both circular and slit-type bubbles are stable, with a third (unstable) oval-type shape also present. We discuss some numerical and analytic techniques for solving the full free boundary problem and for exploring this interesting extinction behaviour.

  15. Application of shifted Jacobi pseudospectral method for solving (in)finite-horizon min-max optimal control problems with uncertainty

    NASA Astrophysics Data System (ADS)

    Nikooeinejad, Z.; Delavarkhalafi, A.; Heydari, M.

    2018-03-01

    The difficulty of solving the min-max optimal control problems (M-MOCPs) with uncertainty using generalised Euler-Lagrange equations is caused by the combination of split boundary conditions, nonlinear differential equations and the manner in which the final time is treated. In this investigation, the shifted Jacobi pseudospectral method (SJPM) as a numerical technique for solving two-point boundary value problems (TPBVPs) in M-MOCPs for several boundary states is proposed. At first, a novel framework of approximate solutions which satisfied the split boundary conditions automatically for various boundary states is presented. Then, by applying the generalised Euler-Lagrange equations and expanding the required approximate solutions as elements of shifted Jacobi polynomials, finding a solution of TPBVPs in nonlinear M-MOCPs with uncertainty is reduced to the solution of a system of algebraic equations. Moreover, the Jacobi polynomials are particularly useful for boundary value problems in unbounded domain, which allow us to solve infinite- as well as finite and free final time problems by domain truncation method. Some numerical examples are given to demonstrate the accuracy and efficiency of the proposed method. A comparative study between the proposed method and other existing methods shows that the SJPM is simple and accurate.

  16. Numerical method for solving the nonlinear four-point boundary value problems

    NASA Astrophysics Data System (ADS)

    Lin, Yingzhen; Lin, Jinnan

    2010-12-01

    In this paper, a new reproducing kernel space is constructed skillfully in order to solve a class of nonlinear four-point boundary value problems. The exact solution of the linear problem can be expressed in the form of series and the approximate solution of the nonlinear problem is given by the iterative formula. Compared with known investigations, the advantages of our method are that the representation of exact solution is obtained in a new reproducing kernel Hilbert space and accuracy of numerical computation is higher. Meanwhile we present the convergent theorem, complexity analysis and error estimation. The performance of the new method is illustrated with several numerical examples.

  17. Matrix Sturm-Liouville equation with a Bessel-type singularity on a finite interval

    NASA Astrophysics Data System (ADS)

    Bondarenko, Natalia

    2017-03-01

    The matrix Sturm-Liouville equation on a finite interval with a Bessel-type singularity in the end of the interval is studied. Special fundamental systems of solutions for this equation are constructed: analytic Bessel-type solutions with the prescribed behavior at the singular point and Birkhoff-type solutions with the known asymptotics for large values of the spectral parameter. The asymptotic formulas for Stokes multipliers, connecting these two fundamental systems of solutions, are derived. We also set boundary conditions and obtain asymptotic formulas for the spectral data (the eigenvalues and the weight matrices) of the boundary value problem. Our results will be useful in the theory of direct and inverse spectral problems.

  18. Group invariant solution for a pre-existing fluid-driven fracture in impermeable rock

    NASA Astrophysics Data System (ADS)

    Fitt, A. D.; Mason, D. P.; Moss, E. A.

    2007-11-01

    The propagation of a two-dimensional fluid-driven fracture in impermeable rock is considered. The fluid flow in the fracture is laminar. By applying lubrication theory a partial differential equation relating the half-width of the fracture to the fluid pressure is derived. To close the model the PKN formulation is adopted in which the fluid pressure is proportional to the half-width of the fracture. By considering a linear combination of the Lie point symmetries of the resulting non-linear diffusion equation the boundary value problem is expressed in a form appropriate for a similarity solution. The boundary value problem is reformulated as two initial value problems which are readily solved numerically. The similarity solution describes a preexisting fracture since both the total volume and length of the fracture are initially finite and non-zero. Applications in which the rate of fluid injection into the fracture and the pressure at the fracture entry are independent of time are considered.

  19. The Boundary Function Method. Fundamentals

    NASA Astrophysics Data System (ADS)

    Kot, V. A.

    2017-03-01

    The boundary function method is proposed for solving applied problems of mathematical physics in the region defined by a partial differential equation of the general form involving constant or variable coefficients with a Dirichlet, Neumann, or Robin boundary condition. In this method, the desired function is defined by a power polynomial, and a boundary function represented in the form of the desired function or its derivative at one of the boundary points is introduced. Different sequences of boundary equations have been set up with the use of differential operators. Systems of linear algebraic equations constructed on the basis of these sequences allow one to determine the coefficients of a power polynomial. Constitutive equations have been derived for initial boundary-value problems of all the main types. With these equations, an initial boundary-value problem is transformed into the Cauchy problem for the boundary function. The determination of the boundary function by its derivative with respect to the time coordinate completes the solution of the problem.

  20. Numerical solution of the electron transport equation

    NASA Astrophysics Data System (ADS)

    Woods, Mark

    The electron transport equation has been solved many times for a variety of reasons. The main difficulty in its numerical solution is that it is a very stiff boundary value problem. The most common numerical methods for solving boundary value problems are symmetric collocation methods and shooting methods. Both of these types of methods can only be applied to the electron transport equation if the boundary conditions are altered with unrealistic assumptions because they require too many points to be practical. Further, they result in oscillating and negative solutions, which are physically meaningless for the problem at hand. For these reasons, all numerical methods for this problem to date are a bit unusual because they were designed to try and avoid the problem of extreme stiffness. This dissertation shows that there is no need to introduce spurious boundary conditions or invent other numerical methods for the electron transport equation. Rather, there already exists methods for very stiff boundary value problems within the numerical analysis literature. We demonstrate one such method in which the fast and slow modes of the boundary value problem are essentially decoupled. This allows for an upwind finite difference method to be applied to each mode as is appropriate. This greatly reduces the number of points needed in the mesh, and we demonstrate how this eliminates the need to define new boundary conditions. This method is verified by showing that under certain restrictive assumptions, the electron transport equation has an exact solution that can be written as an integral. We show that the solution from the upwind method agrees with the quadrature evaluation of the exact solution. This serves to verify that the upwind method is properly solving the electron transport equation. Further, it is demonstrated that the output of the upwind method can be used to compute auroral light emissions.

  1. Multiple shooting algorithms for jump-discontinuous problems in optimal control and estimation

    NASA Technical Reports Server (NTRS)

    Mook, D. J.; Lew, Jiann-Shiun

    1991-01-01

    Multiple shooting algorithms are developed for jump-discontinuous two-point boundary value problems arising in optimal control and optimal estimation. Examples illustrating the origin of such problems are given to motivate the development of the solution algorithms. The algorithms convert the necessary conditions, consisting of differential equations and transversality conditions, into algebraic equations. The solution of the algebraic equations provides exact solutions for linear problems. The existence and uniqueness of the solution are proved.

  2. COMPLEX VARIABLE BOUNDARY ELEMENT METHOD: APPLICATIONS.

    USGS Publications Warehouse

    Hromadka, T.V.; Yen, C.C.; Guymon, G.L.

    1985-01-01

    The complex variable boundary element method (CVBEM) is used to approximate several potential problems where analytical solutions are known. A modeling result produced from the CVBEM is a measure of relative error in matching the known boundary condition values of the problem. A CVBEM error-reduction algorithm is used to reduce the relative error of the approximation by adding nodal points in boundary regions where error is large. From the test problems, overall error is reduced significantly by utilizing the adaptive integration algorithm.

  3. Group invariant solution for a pre-existing fracture driven by a power-law fluid in impermeable rock

    NASA Astrophysics Data System (ADS)

    Fareo, A. G.; Mason, D. P.

    2013-12-01

    The effect of power-law rheology on hydraulic fracturing is investigated. The evolution of a two-dimensional fracture with non-zero initial length and driven by a power-law fluid is analyzed. Only fluid injection into the fracture is considered. The surrounding rock mass is impermeable. With the aid of lubrication theory and the PKN approximation a partial differential equation for the fracture half-width is derived. Using a linear combination of the Lie-point symmetry generators of the partial differential equation, the group invariant solution is obtained and the problem is reduced to a boundary value problem for an ordinary differential equation. Exact analytical solutions are derived for hydraulic fractures with constant volume and with constant propagation speed. The asymptotic solution near the fracture tip is found. The numerical solution for general working conditions is obtained by transforming the boundary value problem to a pair of initial value problems. Throughout the paper, hydraulic fracturing with shear thinning, Newtonian and shear thickening fluids are compared.

  4. Effect of nose shape on three-dimensional stagnation region streamlines and heating rates

    NASA Technical Reports Server (NTRS)

    Hassan, Basil; Dejarnette, Fred R.; Zoby, E. V.

    1991-01-01

    A new method for calculating the three-dimensional inviscid surface streamlines and streamline metrics using Cartesian coordinates and time as the independent variable of integration has been developed. The technique calculates the streamline from a specified point on the body to a point near the stagnation point by using a prescribed pressure distribution in the Euler equations. The differential equations, which are singular at the stagnation point, are of the two point boundary value problem type. Laminar heating rates are calculated using the axisymmetric analog concept for three-dimensional boundary layers and approximate solutions to the axisymmetric boundary layer equations. Results for elliptic conic forebody geometries show that location of the point of maximum heating depends on the type of conic in the plane of symmetry and the angle of attack, and that this location is in general different from the stagnation point. The new method was found to give smooth predictions of heat transfer in the nose region where previous methods gave oscillatory results.

  5. Locating CVBEM collocation points for steady state heat transfer problems

    USGS Publications Warehouse

    Hromadka, T.V.

    1985-01-01

    The Complex Variable Boundary Element Method or CVBEM provides a highly accurate means of developing numerical solutions to steady state two-dimensional heat transfer problems. The numerical approach exactly solves the Laplace equation and satisfies the boundary conditions at specified points on the boundary by means of collocation. The accuracy of the approximation depends upon the nodal point distribution specified by the numerical analyst. In order to develop subsequent, refined approximation functions, four techniques for selecting additional collocation points are presented. The techniques are compared as to the governing theory, representation of the error of approximation on the problem boundary, the computational costs, and the ease of use by the numerical analyst. ?? 1985.

  6. Bifurcation of solutions to Hamiltonian boundary value problems

    NASA Astrophysics Data System (ADS)

    McLachlan, R. I.; Offen, C.

    2018-06-01

    A bifurcation is a qualitative change in a family of solutions to an equation produced by varying parameters. In contrast to the local bifurcations of dynamical systems that are often related to a change in the number or stability of equilibria, bifurcations of boundary value problems are global in nature and may not be related to any obvious change in dynamical behaviour. Catastrophe theory is a well-developed framework which studies the bifurcations of critical points of functions. In this paper we study the bifurcations of solutions of boundary-value problems for symplectic maps, using the language of (finite-dimensional) singularity theory. We associate certain such problems with a geometric picture involving the intersection of Lagrangian submanifolds, and hence with the critical points of a suitable generating function. Within this framework, we then study the effect of three special cases: (i) some common boundary conditions, such as Dirichlet boundary conditions for second-order systems, restrict the possible types of bifurcations (for example, in generic planar systems only the A-series beginning with folds and cusps can occur); (ii) integrable systems, such as planar Hamiltonian systems, can exhibit a novel periodic pitchfork bifurcation; and (iii) systems with Hamiltonian symmetries or reversing symmetries can exhibit restricted bifurcations associated with the symmetry. This approach offers an alternative to the analysis of critical points in function spaces, typically used in the study of bifurcation of variational problems, and opens the way to the detection of more exotic bifurcations than the simple folds and cusps that are often found in examples.

  7. Stability analysis of spectral methods for hyperbolic initial-boundary value systems

    NASA Technical Reports Server (NTRS)

    Gottlieb, D.; Lustman, L.; Tadmor, E.

    1986-01-01

    A constant coefficient hyperbolic system in one space variable, with zero initial data is discussed. Dissipative boundary conditions are imposed at the two points x = + or - 1. This problem is discretized by a spectral approximation in space. Sufficient conditions under which the spectral numerical solution is stable are demonstrated - moreover, these conditions have to be checked only for scalar equations. The stability theorems take the form of explicit bounds for the norm of the solution in terms of the boundary data. The dependence of these bounds on N, the number of points in the domain (or equivalently the degree of the polynomials involved), is investigated for a class of standard spectral methods, including Chebyshev and Legendre collocations.

  8. A new Ellipsoidal Gravimetric-Satellite Altimetry Boundary Value Problem; Case study: High Resolution Geoid of Iran

    NASA Astrophysics Data System (ADS)

    Ardalan, A.; Safari, A.; Grafarend, E.

    2003-04-01

    A new ellipsoidal gravimetric-satellite altimetry boundary value problem has been developed and successfully tested. This boundary value problem has been constructed for gravity observables of the type (i) gravity potential (ii) gravity intensity (iii) deflection of vertical and (iv) satellite altimetry data. The developed boundary value problem is enjoying the ellipsoidal nature and as such can take advantage of high precision GPS observations in the set-up of the problem. The highlights of the solution are as follows: begin{itemize} Application of ellipsoidal harmonic expansion up to degree/order and ellipsoidal centrifugal field for the reduction of global gravity and isostasy effects from the gravity observable at the surface of the Earth. Application of ellipsoidal Newton integral on the equal area map projection surface for the reduction of residual mass effects within a radius of 55 km around the computational point. Ellipsoidal harmonic downward continuation of the residual observables from the surface of the earth down to the surface of reference ellipsoid using the ellipsoidal height of the observation points derived from GPS. Restore of the removed effects at the application points on the surface of reference ellipsoid. Conversion of the satellite altimetry derived heights of the water bodies into potential. Combination of the downward continued gravity information with the potential equivalent of the satellite altimetry derived heights of the water bodies. Application of ellipsoidal Bruns formula for converting the potential values on the surface of the reference ellipsoid into the geoidal heights (i.e. ellipsoidal heights of the geoid) with respect to the reference ellipsoid. Computation of the high-resolution geoid of Iran has successfully tested this new methodology!

  9. Control optimization of a lifting body entry problem by an improved and a modified method of perturbation function. Ph.D. Thesis - Houston Univ.

    NASA Technical Reports Server (NTRS)

    Garcia, F., Jr.

    1974-01-01

    A study of the solution problem of a complex entry optimization was studied. The problem was transformed into a two-point boundary value problem by using classical calculus of variation methods. Two perturbation methods were devised. These methods attempted to desensitize the contingency of the solution of this type of problem on the required initial co-state estimates. Also numerical results are presented for the optimal solution resulting from a number of different initial co-states estimates. The perturbation methods were compared. It is found that they are an improvement over existing methods.

  10. Error analysis of finite difference schemes applied to hyperbolic initial boundary value problems

    NASA Technical Reports Server (NTRS)

    Skollermo, G.

    1979-01-01

    Finite difference methods for the numerical solution of mixed initial boundary value problems for hyperbolic equations are studied. The reported investigation has the objective to develop a technique for the total error analysis of a finite difference scheme, taking into account initial approximations, boundary conditions, and interior approximation. Attention is given to the Cauchy problem and the initial approximation, the homogeneous problem in an infinite strip with inhomogeneous boundary data, the reflection of errors in the boundaries, and two different boundary approximations for the leapfrog scheme with a fourth order accurate difference operator in space.

  11. Girsanov's transformation based variance reduced Monte Carlo simulation schemes for reliability estimation in nonlinear stochastic dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanjilal, Oindrila, E-mail: oindrila@civil.iisc.ernet.in; Manohar, C.S., E-mail: manohar@civil.iisc.ernet.in

    The study considers the problem of simulation based time variant reliability analysis of nonlinear randomly excited dynamical systems. Attention is focused on importance sampling strategies based on the application of Girsanov's transformation method. Controls which minimize the distance function, as in the first order reliability method (FORM), are shown to minimize a bound on the sampling variance of the estimator for the probability of failure. Two schemes based on the application of calculus of variations for selecting control signals are proposed: the first obtains the control force as the solution of a two-point nonlinear boundary value problem, and, the secondmore » explores the application of the Volterra series in characterizing the controls. The relative merits of these schemes, vis-à-vis the method based on ideas from the FORM, are discussed. Illustrative examples, involving archetypal single degree of freedom (dof) nonlinear oscillators, and a multi-degree of freedom nonlinear dynamical system, are presented. The credentials of the proposed procedures are established by comparing the solutions with pertinent results from direct Monte Carlo simulations. - Highlights: • The distance minimizing control forces minimize a bound on the sampling variance. • Establishing Girsanov controls via solution of a two-point boundary value problem. • Girsanov controls via Volterra's series representation for the transfer functions.« less

  12. An extended laser flash technique for thermal diffusivity measurement of high-temperature materials

    NASA Technical Reports Server (NTRS)

    Shen, F.; Khodadadi, J. M.

    1993-01-01

    Knowledge of thermal diffusivity data for high-temperature materials (solids and liquids) is very important in analyzing a number of processes, among them solidification, crystal growth, and welding. However, reliable thermal diffusivity versus temperature data, particularly those for high-temperature liquids, are still far from complete. The main measurement difficulties are due to the presence of convection and the requirement for a container. Fortunately, the availability of levitation techniques has made it possible to solve the containment problem. Based on the feasibility of the levitation technology, a new laser flash technique which is applicable to both levitated liquid and solid samples is being developed. At this point, the analysis for solid samples is near completion and highlights of the technique are presented here. The levitated solid sample which is assumed to be a sphere is subjected to a very short burst of high power radiant energy. The temperature of the irradiated surface area is elevated and a transient heat transfer process takes place within the sample. This containerless process is a two-dimensional unsteady heat conduction problem. Due to the nonlinearity of the radiative plus convective boundary condition, an analytic solution cannot be obtained. Two options are available at this point. Firstly, the radiation boundary condition can be linearized, which then accommodates a closed-form analytic solution. Comparison of the analytic curves for the temperature rise at different points to the experimentally-measured values will then provide the thermal diffusivity values. Secondly, one may set up an inverse conduction problem whereby experimentally obtained surface temperature history is used as the boundary conditions. The thermal diffusivity can then be elevated by minimizing the difference between the real heat flux boundary condition (radiation plus convection) and the measurements. Status of an experimental study directed at measuring the thermal diffusivity of high-temperature solid samples of pure Nickel and Inconel 718 superalloys are presented. Preliminary measurements showing surface temperature histories are discussed.

  13. A hybrid-perturbation-Galerkin technique which combines multiple expansions

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1989-01-01

    A two-step hybrid perturbation-Galerkin method for the solution of a variety of differential equations type problems is found to give better results when multiple perturbation expansions are employed. The method assumes that there is parameter in the problem formulation and that a perturbation method can be sued to construct one or more expansions in this perturbation coefficient functions multiplied by computed amplitudes. In step one, regular and/or singular perturbation methods are used to determine the perturbation coefficient functions. The results of step one are in the form of one or more expansions each expressed as a sum of perturbation coefficient functions multiplied by a priori known gauge functions. In step two the classical Bubnov-Galerkin method uses the perturbation coefficient functions computed in step one to determine a set of amplitudes which replace and improve upon the gauge functions. The hybrid method has the potential of overcoming some of the drawbacks of the perturbation and Galerkin methods as applied separately, while combining some of their better features. The proposed method is applied, with two perturbation expansions in each case, to a variety of model ordinary differential equations problems including: a family of linear two-boundary-value problems, a nonlinear two-point boundary-value problem, a quantum mechanical eigenvalue problem and a nonlinear free oscillation problem. The results obtained from the hybrid methods are compared with approximate solutions obtained by other methods, and the applicability of the hybrid method to broader problem areas is discussed.

  14. Hybrid state vector methods for structural dynamic and aeroelastic boundary value problems

    NASA Technical Reports Server (NTRS)

    Lehman, L. L.

    1982-01-01

    A computational technique is developed that is suitable for performing preliminary design aeroelastic and structural dynamic analyses of large aspect ratio lifting surfaces. The method proves to be quite general and can be adapted to solving various two point boundary value problems. The solution method, which is applicable to both fixed and rotating wing configurations, is based upon a formulation of the structural equilibrium equations in terms of a hybrid state vector containing generalized force and displacement variables. A mixed variational formulation is presented that conveniently yields a useful form for these state vector differential equations. Solutions to these equations are obtained by employing an integrating matrix method. The application of an integrating matrix provides a discretization of the differential equations that only requires solutions of standard linear matrix systems. It is demonstrated that matrix partitioning can be used to reduce the order of the required solutions. Results are presented for several example problems in structural dynamics and aeroelasticity to verify the technique and to demonstrate its use. These problems examine various types of loading and boundary conditions and include aeroelastic analyses of lifting surfaces constructed from anisotropic composite materials.

  15. Co-state initialization for the minimum-time low-thrust trajectory optimization

    NASA Astrophysics Data System (ADS)

    Taheri, Ehsan; Li, Nan I.; Kolmanovsky, Ilya

    2017-05-01

    This paper presents an approach for co-state initialization which is a critical step in solving minimum-time low-thrust trajectory optimization problems using indirect optimal control numerical methods. Indirect methods used in determining the optimal space trajectories typically result in two-point boundary-value problems and are solved by single- or multiple-shooting numerical methods. Accurate initialization of the co-state variables facilitates the numerical convergence of iterative boundary value problem solvers. In this paper, we propose a method which exploits the trajectory generated by the so-called pseudo-equinoctial and three-dimensional finite Fourier series shape-based methods to estimate the initial values of the co-states. The performance of the approach for two interplanetary rendezvous missions from Earth to Mars and from Earth to asteroid Dionysus is compared against three other approaches which, respectively, exploit random initialization of co-states, adjoint-control transformation and a standard genetic algorithm. The results indicate that by using our proposed approach the percent of the converged cases is higher for trajectories with higher number of revolutions while the computation time is lower. These features are advantageous for broad trajectory search in the preliminary phase of mission designs.

  16. Design of supercritical swept wings

    NASA Technical Reports Server (NTRS)

    Garabedian, P.; Mcfadden, G.

    1982-01-01

    Computational fluid dynamics are used to discuss problems inherent to transonic three-dimensional flow past supercritical swept wings. The formulation for a boundary value problem for the flow past the wing is provided, including consideration of weak shock waves and the use of parabolic coordinates. A swept wing code is developed which requires a mesh of 152 x 10 x 12 points and 200 time cycles. A formula for wave drag is calculated, based on the idea that the conservation form of the momentum equation becomes an entropy inequality measuring the drag, expressible in terms of a small-disturbance equation for a potential function in two dimensions. The entropy inequality has been incorporated in a two-dimensional code for the analysis of transonic flow over airfoils. A method of artificial viscosity is explored for optimum pressure distributions with design, and involves a free boundary problem considering speed over only a portion of the wing.

  17. Computational and analytical comparison of flux discretizations for the semiconductor device equations beyond Boltzmann statistics

    NASA Astrophysics Data System (ADS)

    Farrell, Patricio; Koprucki, Thomas; Fuhrmann, Jürgen

    2017-10-01

    We compare three thermodynamically consistent numerical fluxes known in the literature, appearing in a Voronoï finite volume discretization of the van Roosbroeck system with general charge carrier statistics. Our discussion includes an extension of the Scharfetter-Gummel scheme to non-Boltzmann (e.g. Fermi-Dirac) statistics. It is based on the analytical solution of a two-point boundary value problem obtained by projecting the continuous differential equation onto the interval between neighboring collocation points. Hence, it serves as a reference flux. The exact solution of the boundary value problem can be approximated by computationally cheaper fluxes which modify certain physical quantities. One alternative scheme averages the nonlinear diffusion (caused by the non-Boltzmann nature of the problem), another one modifies the effective density of states. To study the differences between these three schemes, we analyze the Taylor expansions, derive an error estimate, visualize the flux error and show how the schemes perform for a carefully designed p-i-n benchmark simulation. We present strong evidence that the flux discretization based on averaging the nonlinear diffusion has an edge over the scheme based on modifying the effective density of states.

  18. Feedback Implementation of Zermelo's Optimal Control by Sugeno Approximation

    NASA Technical Reports Server (NTRS)

    Clifton, C.; Homaifax, A.; Bikdash, M.

    1997-01-01

    This paper proposes an approach to implement optimal control laws of nonlinear systems in real time. Our methodology does not require solving two-point boundary value problems online and may not require it off-line either. The optimal control law is learned using the original Sugeno controller (OSC) from a family of optimal trajectories. We compare the trajectories generated by the OSC and the trajectories yielded by the optimal feedback control law when applied to Zermelo's ship steering problem.

  19. Similar solutions for viscous hypersonic flow over a slender three-fourths-power body of revolution

    NASA Technical Reports Server (NTRS)

    Lin, Chin-Shun

    1987-01-01

    For hypersonic flow with a shock wave, there is a similar solution consistent throughout the viscous and inviscid layers along a very slender three-fourths-power body of revolution The strong pressure interaction problem can then be treated by the method of similarity. Numerical calculations are performed in the viscous region with the edge pressure distribution known from the inviscid similar solutions. The compressible laminar boundary-layer equations are transformed into a system of ordinary differential equations. The resulting two-point boundary value problem is then solved by the Runge-Kutta method with a modified Newton's method for the corresponding boundary conditions. The effects of wall temperature, mass bleeding, and body transverse curvature are investigated. The induced pressure, displacement thickness, skin friction, and heat transfer due to the previously mentioned parameters are estimated and analyzed.

  20. Computer analysis of multicircuit shells of revolution by the field method

    NASA Technical Reports Server (NTRS)

    Cohen, G. A.

    1975-01-01

    The field method, presented previously for the solution of even-order linear boundary value problems defined on one-dimensional open branch domains, is extended to boundary value problems defined on one-dimensional domains containing circuits. This method converts the boundary value problem into two successive numerically stable initial value problems, which may be solved by standard forward integration techniques. In addition, a new method for the treatment of singular boundary conditions is presented. This method, which amounts to a partial interchange of the roles of force and displacement variables, is problem independent with respect to both accuracy and speed of execution. This method was implemented in a computer program to calculate the static response of ring stiffened orthotropic multicircuit shells of revolution to asymmetric loads. Solutions are presented for sample problems which illustrate the accuracy and efficiency of the method.

  1. Continuation of periodic orbits in symmetric Hamiltonian and conservative systems

    NASA Astrophysics Data System (ADS)

    Galan-Vioque, J.; Almaraz, F. J. M.; Macías, E. F.

    2014-12-01

    We present and review results on the continuation and bifurcation of periodic solutions in conservative, reversible and Hamiltonian systems in the presence of symmetries. In particular we show how two-point boundary value problem continuation software can be used to compute families of periodic solutions of symmetric Hamiltonian systems. The technique is introduced with a very simple model example (the mathematical pendulum), justified with a theoretical continuation result and then applied to two non trivial examples: the non integrable spring pendulum and the continuation of the figure eight solution of the three body problem.

  2. Hybrid near-optimal aeroassisted orbit transfer plane change trajectories

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J.; Duckeman, Gregory A.

    1994-01-01

    In this paper, a hybrid methodology is used to determine optimal open loop controls for the atmospheric portion of the aeroassisted plane change problem. The method is hybrid in the sense that it combines the features of numerical collocation with the analytically tractable portions of the problem which result when the two-point boundary value problem is cast in the form of a regular perturbation problem. Various levels of approximation are introduced by eliminating particular collocation parameters and their effect upon problem complexity and required number of nodes is discussed. The results include plane changes of 10, 20, and 30 degrees for a given vehicle.

  3. Launch flexibility using NLP guidance and remote wind sensing

    NASA Technical Reports Server (NTRS)

    Cramer, Evin J.; Bradt, Jerre E.; Hardtla, John W.

    1990-01-01

    This paper examines the use of lidar wind measurements in the implementation of a guidance strategy for a nonlinear programming (NLP) launch guidance algorithm. The NLP algorithm uses B-spline command function representation for flexibility in the design of the guidance steering commands. Using this algorithm, the guidance system solves a two-point boundary value problem at each guidance update. The specification of different boundary value problems at each guidance update provides flexibility that can be used in the design of the guidance strategy. The algorithm can use lidar wind measurements for on pad guidance retargeting and for load limiting guidance steering commands. Examples presented in the paper use simulated wind updates to correct wind induced final orbit errors and to adjust the guidance steering commands to limit the product of the dynamic pressure and angle-of-attack for launch vehicle load alleviation.

  4. ALGORITHM TO REDUCE APPROXIMATION ERROR FROM THE COMPLEX-VARIABLE BOUNDARY-ELEMENT METHOD APPLIED TO SOIL FREEZING.

    USGS Publications Warehouse

    Hromadka, T.V.; Guymon, G.L.

    1985-01-01

    An algorithm is presented for the numerical solution of the Laplace equation boundary-value problem, which is assumed to apply to soil freezing or thawing. The Laplace equation is numerically approximated by the complex-variable boundary-element method. The algorithm aids in reducing integrated relative error by providing a true measure of modeling error along the solution domain boundary. This measure of error can be used to select locations for adding, removing, or relocating nodal points on the boundary or to provide bounds for the integrated relative error of unknown nodal variable values along the boundary.

  5. A Boundary Value Problem for Introductory Physics?

    ERIC Educational Resources Information Center

    Grundberg, Johan

    2008-01-01

    The Laplace equation has applications in several fields of physics, and problems involving this equation serve as paradigms for boundary value problems. In the case of the Laplace equation in a disc there is a well-known explicit formula for the solution: Poisson's integral. We show how one can derive this formula, and in addition two equivalent…

  6. New algorithms for solving high even-order differential equations using third and fourth Chebyshev-Galerkin methods

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Abd-Elhameed, W. M.; Bassuony, M. A.

    2013-03-01

    This paper is concerned with spectral Galerkin algorithms for solving high even-order two point boundary value problems in one dimension subject to homogeneous and nonhomogeneous boundary conditions. The proposed algorithms are extended to solve two-dimensional high even-order differential equations. The key to the efficiency of these algorithms is to construct compact combinations of Chebyshev polynomials of the third and fourth kinds as basis functions. The algorithms lead to linear systems with specially structured matrices that can be efficiently inverted. Numerical examples are included to demonstrate the validity and applicability of the proposed algorithms, and some comparisons with some other methods are made.

  7. A numerical technique for linear elliptic partial differential equations in polygonal domains.

    PubMed

    Hashemzadeh, P; Fokas, A S; Smitheman, S A

    2015-03-08

    Integral representations for the solution of linear elliptic partial differential equations (PDEs) can be obtained using Green's theorem. However, these representations involve both the Dirichlet and the Neumann values on the boundary, and for a well-posed boundary-value problem (BVPs) one of these functions is unknown. A new transform method for solving BVPs for linear and integrable nonlinear PDEs usually referred to as the unified transform ( or the Fokas transform ) was introduced by the second author in the late Nineties. For linear elliptic PDEs, this method can be considered as the analogue of Green's function approach but now it is formulated in the complex Fourier plane instead of the physical plane. It employs two global relations also formulated in the Fourier plane which couple the Dirichlet and the Neumann boundary values. These relations can be used to characterize the unknown boundary values in terms of the given boundary data, yielding an elegant approach for determining the Dirichlet to Neumann map . The numerical implementation of the unified transform can be considered as the counterpart in the Fourier plane of the well-known boundary integral method which is formulated in the physical plane. For this implementation, one must choose (i) a suitable basis for expanding the unknown functions and (ii) an appropriate set of complex values, which we refer to as collocation points, at which to evaluate the global relations. Here, by employing a variety of examples we present simple guidelines of how the above choices can be made. Furthermore, we provide concrete rules for choosing the collocation points so that the condition number of the matrix of the associated linear system remains low.

  8. Extreme values and the level-crossing problem: An application to the Feller process

    NASA Astrophysics Data System (ADS)

    Masoliver, Jaume

    2014-04-01

    We review the question of the extreme values attained by a random process. We relate it to level crossings to one boundary (first-passage problems) as well as to two boundaries (escape problems). The extremes studied are the maximum, the minimum, the maximum absolute value, and the range or span. We specialize in diffusion processes and present detailed results for the Wiener and Feller processes.

  9. Numerical reconstruction of unknown Robin inclusions inside a heat conductor by a non-iterative method

    NASA Astrophysics Data System (ADS)

    Nakamura, Gen; Wang, Haibing

    2017-05-01

    Consider the problem of reconstructing unknown Robin inclusions inside a heat conductor from boundary measurements. This problem arises from active thermography and is formulated as an inverse boundary value problem for the heat equation. In our previous works, we proposed a sampling-type method for reconstructing the boundary of the Robin inclusion and gave its rigorous mathematical justification. This method is non-iterative and based on the characterization of the solution to the so-called Neumann- to-Dirichlet map gap equation. In this paper, we give a further investigation of the reconstruction method from both the theoretical and numerical points of view. First, we clarify the solvability of the Neumann-to-Dirichlet map gap equation and establish a relation of its solution to the Green function associated with an initial-boundary value problem for the heat equation inside the Robin inclusion. This naturally provides a way of computing this Green function from the Neumann-to-Dirichlet map and explains what is the input for the linear sampling method. Assuming that the Neumann-to-Dirichlet map gap equation has a unique solution, we also show the convergence of our method for noisy measurements. Second, we give the numerical implementation of the reconstruction method for two-dimensional spatial domains. The measurements for our inverse problem are simulated by solving the forward problem via the boundary integral equation method. Numerical results are presented to illustrate the efficiency and stability of the proposed method. By using a finite sequence of transient input over a time interval, we propose a new sampling method over the time interval by single measurement which is most likely to be practical.

  10. A boundary-Fitted Coordinate Code for General Two-Dimensional Regions with Obstacles and Boundary Intrusions.

    DTIC Science & Technology

    1983-03-01

    values of these functions on the two sides of the slits. The acceleration parameters for the iteration at each point are in the field array WACC (I,J...code will calculate a locally optimum value at each point in the field, these values being placed in the field array WACC . This calculation is...changes in x and y, are calculated by calling subroutine ERROR.) The acceleration parameter is placed in the field 65 array WACC . The addition to the

  11. Solution of an optimal control lifting body entry problem by an improved method of perturbation functions

    NASA Technical Reports Server (NTRS)

    Garcia, F., Jr.

    1975-01-01

    This paper presents a solution to a complex lifting reentry three-degree-of-freedom problem by using the calculus of variations to minimize the integral of the sum of the aerodynamics loads and heat rate input to the vehicle. The entry problem considered does not have state and/or control constraints along the trajectory. The calculus of variations method applied to this problem gives rise to a set of necessary conditions which are used to formulate a two point boundary value (TPBV) problem. This TPBV problem is then numerically solved by an improved method of perturbation functions (IMPF) using several starting co-state vectors. These vectors were chosen so that each one had a larger norm with respect to show how the envelope of convergence is significantly increased using this method and cases are presented to point this out.

  12. Guidance and control strategies for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Naidu, Desineni S.; Hibey, Joseph L.

    1988-01-01

    The optimal control problem arising in coplanar, orbital transfer employing aeroassist technology is addressed. The maneuver involves the transfer from high Earth orbit to low Earth orbit. A performance index is chosen the minimize the fuel consumpltion for the transfer. Simulations are carried out for establishing a corridor of entry conditions which are suitable for flying the spacecraft through the atmosphere. A highlight of the paper is the application of an efficient multiple shooting method for taming the notorious nonlinear, two-point, boundary value problem resulting from optimization procedure.

  13. User's guide to four-body and three-body trajectory optimization programs

    NASA Technical Reports Server (NTRS)

    Pu, C. L.; Edelbaum, T. N.

    1974-01-01

    A collection of computer programs and subroutines written in FORTRAN to calculate 4-body (sun-earth-moon-space) and 3-body (earth-moon-space) optimal trajectories is presented. The programs incorporate a variable step integration technique and a quadrature formula to correct single step errors. The programs provide capability to solve initial value problem, two point boundary value problem of a transfer from a given initial position to a given final position in fixed time, optimal 2-impulse transfer from an earth parking orbit of given inclination to a given final position and velocity in fixed time and optimal 3-impulse transfer from a given position to a given final position and velocity in fixed time.

  14. Two Legendre-Dual-Petrov-Galerkin Algorithms for Solving the Integrated Forms of High Odd-Order Boundary Value Problems

    PubMed Central

    Abd-Elhameed, Waleed M.; Doha, Eid H.; Bassuony, Mahmoud A.

    2014-01-01

    Two numerical algorithms based on dual-Petrov-Galerkin method are developed for solving the integrated forms of high odd-order boundary value problems (BVPs) governed by homogeneous and nonhomogeneous boundary conditions. Two different choices of trial functions and test functions which satisfy the underlying boundary conditions of the differential equations and the dual boundary conditions are used for this purpose. These choices lead to linear systems with specially structured matrices that can be efficiently inverted, hence greatly reducing the cost. The various matrix systems resulting from these discretizations are carefully investigated, especially their complexities and their condition numbers. Numerical results are given to illustrate the efficiency of the proposed algorithms, and some comparisons with some other methods are made. PMID:24616620

  15. Optimal Control Problems with Switching Points. Ph.D. Thesis, 1990 Final Report

    NASA Technical Reports Server (NTRS)

    Seywald, Hans

    1991-01-01

    The main idea of this report is to give an overview of the problems and difficulties that arise in solving optimal control problems with switching points. A brief discussion of existing optimality conditions is given and a numerical approach for solving the multipoint boundary value problems associated with the first-order necessary conditions of optimal control is presented. Two real-life aerospace optimization problems are treated explicitly. These are altitude maximization for a sounding rocket (Goddard Problem) in the presence of a dynamic pressure limit, and range maximization for a supersonic aircraft flying in the vertical, also in the presence of a dynamic pressure limit. In the second problem singular control appears along arcs with active dynamic pressure limit, which in the context of optimal control, represents a first-order state inequality constraint. An extension of the Generalized Legendre-Clebsch Condition to the case of singular control along state/control constrained arcs is presented and is applied to the aircraft range maximization problem stated above. A contribution to the field of Jacobi Necessary Conditions is made by giving a new proof for the non-optimality of conjugate paths in the Accessory Minimum Problem. Because of its simple and explicit character, the new proof may provide the basis for an extension of Jacobi's Necessary Condition to the case of the trajectories with interior point constraints. Finally, the result that touch points cannot occur for first-order state inequality constraints is extended to the case of vector valued control functions.

  16. Initial-Boundary Value Problem for Two-Component Gerdjikov-Ivanov Equation with 3 × 3 Lax Pair on Half-Line

    NASA Astrophysics Data System (ADS)

    Zhu, Qiao-Zhen; Fan, En-Gui; Xu, Jian

    2017-10-01

    The Fokas unified method is used to analyze the initial-boundary value problem of two-component Gerdjikov-Ivanonv equation on the half-line. It is shown that the solution of the initial-boundary problem can be expressed in terms of the solution of a 3 × 3 Riemann-Hilbert problem. The Dirichlet to Neumann map is obtained through the global relation. Supported by grants from the National Science Foundation of China under Grant No. 11671095, National Science Foundation of China under Grant No. 11501365, Shanghai Sailing Program supported by Science and Technology Commission of Shanghai Municipality under Grant No 15YF1408100, and the Hujiang Foundation of China (B14005)

  17. Speed selection for traveling-wave solutions to the diffusion-reaction equation with cubic reaction term and Burgers nonlinear convection.

    PubMed

    Sabelnikov, V A; Lipatnikov, A N

    2014-09-01

    The problem of traveling wave (TW) speed selection for solutions to a generalized Murray-Burgers-KPP-Fisher parabolic equation with a strictly positive cubic reaction term is considered theoretically and the initial boundary value problem is numerically solved in order to support obtained analytical results. Depending on the magnitude of a parameter inherent in the reaction term (i) the term is either a concave function or a function with the inflection point and (ii) transition from pulled to pushed TW solution occurs due to interplay of two nonlinear terms; the reaction term and the Burgers convection term. Explicit pushed TW solutions are derived. It is shown that physically observable TW solutions, i.e., solutions obtained by solving the initial boundary value problem with a sufficiently steep initial condition, can be determined by seeking the TW solution characterized by the maximum decay rate at its leading edge. In the Appendix, the developed approach is applied to a non-linear diffusion-reaction equation that is widely used to model premixed turbulent combustion.

  18. Some boundary-value problems for anisotropic quarter plane

    NASA Astrophysics Data System (ADS)

    Arkhypenko, K. M.; Kryvyi, O. F.

    2018-04-01

    To solve the mixed boundary-value problems of the anisotropic elasticity for the anisotropic quarter plane, a method based on the use of the space of generalized functions {\\Im }{\\prime }({\\text{R}}+2) with slow growth properties was developed. The two-dimensional integral Fourier transform was used to construct the system of fundamental solutions for the anisotropic quarter plane in this space and a system of eight boundary integral relations was obtained, which allows one to reduce the mixed boundary-value problems for the anisotropic quarter plane directly to systems of singular integral equations with fixed singularities. The exact solutions of these systems were found by using the integral Mellin transform. The asymptotic behavior of solutions was investigated at the vertex of the quarter plane.

  19. Improving the Accuracy of Quadrature Method Solutions of Fredholm Integral Equations That Arise from Nonlinear Two-Point Boundary Value Problems

    NASA Technical Reports Server (NTRS)

    Sidi, Avram; Pennline, James A.

    1999-01-01

    In this paper we are concerned with high-accuracy quadrature method solutions of nonlinear Fredholm integral equations of the form y(x) = r(x) + definite integral of g(x, t)F(t,y(t))dt with limits between 0 and 1,0 less than or equal to x les than or equal to 1, where the kernel function g(x,t) is continuous, but its partial derivatives have finite jump discontinuities across x = t. Such integral equations arise, e.g., when one applied Green's function techniques to nonlinear two-point boundary value problems of the form y "(x) =f(x,y(x)), 0 less than or equal to x less than or equal to 1, with y(0) = y(sub 0) and y(l) = y(sub l), or other linear boundary conditions. A quadrature method that is especially suitable and that has been employed for such equations is one based on the trepezoidal rule that has a low accuracy. By analyzing the corresponding Euler-Maclaurin expansion, we derive suitable correction terms that we add to the trapezoidal rule, thus obtaining new numerical quadrature formulas of arbitrarily high accuracy that we also use in defining quadrature methods for the integral equations above. We prove an existence and uniqueness theorem for the quadrature method solutions, and show that their accuracy is the same as that of the underlying quadrature formula. The solution of the nonlinear systems resulting from the quadrature methods is achieved through successive approximations whose convergence is also proved. The results are demonstrated with numerical examples.

  20. Improving the Accuracy of Quadrature Method Solutions of Fredholm Integral Equations that Arise from Nonlinear Two-Point Boundary Value Problems

    NASA Technical Reports Server (NTRS)

    Sidi, Avram; Pennline, James A.

    1999-01-01

    In this paper we are concerned with high-accuracy quadrature method solutions of nonlinear Fredholm integral equations of the form y(x) = r(x) + integral(0 to 1) g(x,t) F(t, y(t)) dt, 0 less than or equal to x less than or equal to 1, where the kernel function g(x,t) is continuous, but its partial derivatives have finite jump discontinuities across x = t. Such integrals equations arise, e.g., when one applies Green's function techniques to nonlinear two-point boundary value problems of the form U''(x) = f(x,y(x)), 0 less than or equal to x less than or equal to 1, with y(0) = y(sub 0) and g(l) = y(sub 1), or other linear boundary conditions. A quadrature method that is especially suitable and that has been employed for such equations is one based on the trapezoidal rule that has a low accuracy. By analyzing the corresponding Euler-Maclaurin expansion, we derive suitable correction terms that we add to the trapezoidal thus obtaining new numerical quadrature formulas of arbitrarily high accuracy that we also use in defining quadrature methods for the integral equations above. We prove an existence and uniqueness theorem for the quadrature method solutions, and show that their accuracy is the same as that of the underlying quadrature formula. The solution of the nonlinear systems resulting from the quadrature methods is achieved through successive approximations whose convergence is also proved. The results are demonstrated with numerical examples.

  1. Scaling Relations and Self-Similarity of 3-Dimensional Reynolds-Averaged Navier-Stokes Equations.

    PubMed

    Ercan, Ali; Kavvas, M Levent

    2017-07-25

    Scaling conditions to achieve self-similar solutions of 3-Dimensional (3D) Reynolds-Averaged Navier-Stokes Equations, as an initial and boundary value problem, are obtained by utilizing Lie Group of Point Scaling Transformations. By means of an open-source Navier-Stokes solver and the derived self-similarity conditions, we demonstrated self-similarity within the time variation of flow dynamics for a rigid-lid cavity problem under both up-scaled and down-scaled domains. The strength of the proposed approach lies in its ability to consider the underlying flow dynamics through not only from the governing equations under consideration but also from the initial and boundary conditions, hence allowing to obtain perfect self-similarity in different time and space scales. The proposed methodology can be a valuable tool in obtaining self-similar flow dynamics under preferred level of detail, which can be represented by initial and boundary value problems under specific assumptions.

  2. A collocation-shooting method for solving fractional boundary value problems

    NASA Astrophysics Data System (ADS)

    Al-Mdallal, Qasem M.; Syam, Muhammed I.; Anwar, M. N.

    2010-12-01

    In this paper, we discuss the numerical solution of special class of fractional boundary value problems of order 2. The method of solution is based on a conjugating collocation and spline analysis combined with shooting method. A theoretical analysis about the existence and uniqueness of exact solution for the present class is proven. Two examples involving Bagley-Torvik equation subject to boundary conditions are also presented; numerical results illustrate the accuracy of the present scheme.

  3. Two-Point Resistance of a Non-Regular Cylindrical Network with a Zero Resistor Axis and Two Arbitrary Boundaries

    NASA Astrophysics Data System (ADS)

    Tan, Zhi-Zhong

    2017-03-01

    We study a problem of two-point resistance in a non-regular m × n cylindrical network with a zero resistor axis and two arbitrary boundaries by means of the Recursion-Transform method. This is a new problem never solved before, the Green’s function technique and the Laplacian matrix approach are invalid in this case. A disordered network with arbitrary boundaries is a basic model in many physical systems or real world systems, however looking for the exact calculation of the resistance of a binary resistor network is important but difficult in the case of the arbitrary boundaries, the boundary is like a wall or trap which affects the behavior of finite network. In this paper we obtain a general resistance formula of a non-regular m × n cylindrical network, which is composed of a single summation. Further, the current distribution is given explicitly as a byproduct of the method. As applications, several interesting results are derived by making special cases from the general formula. Supported by the Natural Science Foundation of Jiangsu Province under Grant No. BK20161278

  4. A solution of the geodetic boundary value problem to order e3

    NASA Technical Reports Server (NTRS)

    Mather, R. S.

    1973-01-01

    A solution is obtained for the geodetic boundary value problem which defines height anomalies to + or - 5 cm, if the earth were rigid. The solution takes into account the existence of the earth's topography, together with its ellipsoidal shape and atmosphere. A relation is also established between the commonly used solution of Stokes and a development correct to order e cubed. The data requirements call for a complete definition of gravity anomalies at the surface of the earth and a knowledge of elevation characteristics at all points exterior to the geoid. In addition, spherical harmonic representations must be based on geocentric rather than geodetic latitudes.

  5. Adaptive wavelet collocation methods for initial value boundary problems of nonlinear PDE's

    NASA Technical Reports Server (NTRS)

    Cai, Wei; Wang, Jian-Zhong

    1993-01-01

    We have designed a cubic spline wavelet decomposition for the Sobolev space H(sup 2)(sub 0)(I) where I is a bounded interval. Based on a special 'point-wise orthogonality' of the wavelet basis functions, a fast Discrete Wavelet Transform (DWT) is constructed. This DWT transform will map discrete samples of a function to its wavelet expansion coefficients in O(N log N) operations. Using this transform, we propose a collocation method for the initial value boundary problem of nonlinear PDE's. Then, we test the efficiency of the DWT transform and apply the collocation method to solve linear and nonlinear PDE's.

  6. Boundary layers at the interface of two different shear flows

    NASA Astrophysics Data System (ADS)

    Weidman, Patrick D.; Wang, C. Y.

    2018-05-01

    We present solutions for the boundary layer between two uniform shear flows flowing in the same direction. In the upper layer, the flow has shear strength a, fluid density ρ1, and kinematic viscosity ν1, while the lower layer has shear strength b, fluid density ρ2, and kinematic viscosity ν2. Similarity transformations reduce the boundary-layer equations to a pair of ordinary differential equations governed by three dimensionless parameters: the shear strength ratio γ = b/a, the density ratio ρ = ρ2/ρ1, and the viscosity ratio ν = ν2/ν1. Further analysis shows that an affine transformation reduces this multi-parameter problem to a single ordinary differential equation which may be efficiently integrated as an initial-value problem. Solutions of the original boundary-value problem are shown to agree with the initial-value integrations, but additional dual and quadruple solutions are found using this method. We argue on physical grounds and through bifurcation analysis that these additional solutions are not tenable. The present problem is applicable to the trailing edge flow over a thin airfoil with camber.

  7. Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure.

    PubMed

    Ghanbari, J; Naghdabadi, R

    2009-07-22

    We have used a hierarchical multiscale modeling scheme for the analysis of cortical bone considering it as a nanocomposite. This scheme consists of definition of two boundary value problems, one for macroscale, and another for microscale. The coupling between these scales is done by using the homogenization technique. At every material point in which the constitutive model is needed, a microscale boundary value problem is defined using a macroscopic kinematical quantity and solved. Using the described scheme, we have studied elastic properties of cortical bone considering its nanoscale microstructural constituents with various mineral volume fractions. Since the microstructure of bone consists of mineral platelet with nanometer size embedded in a protein matrix, it is similar to the microstructure of soft matrix nanocomposites reinforced with hard nanostructures. Considering a representative volume element (RVE) of the microstructure of bone as the microscale problem in our hierarchical multiscale modeling scheme, the global behavior of bone is obtained under various macroscopic loading conditions. This scheme may be suitable for modeling arbitrary bone geometries subjected to a variety of loading conditions. Using the presented method, mechanical properties of cortical bone including elastic moduli and Poisson's ratios in two major directions and shear modulus is obtained for different mineral volume fractions.

  8. Analytical Solution for Interface Flow to a Sink With an Upconed Saline Water Lens: Strack's Regimes Revisited

    NASA Astrophysics Data System (ADS)

    Kacimov, A. R.; Obnosov, Y. V.

    2018-01-01

    A study is made of a steady, two-dimensional groundwater flow with a horizontal well (drain), which pumps out freshwater from an aquifer sandwiched between a horizontal bedrock and ponded soil surface, and containing a lens-shaped static volume of a heavier saline water (DNAPL-dense nonaqueous phase liquid) as a free surface. For flow toward a line sink, an explicit analytical solution is obtained by a conformal mapping of the hexagon in the complex potential plane onto a reference plane and the Keldysh-Sedov integral representation of a mixed boundary-value problem for a complex physical coordinate. The interface is found as a function of the pumping rate, the well locus, the ratio of liquid densities, and the hydraulic heads at the soil surface and in the well. The shape with two inflexion points and fronts varies from a small-thickness bedrock-spread pancake to a critical curvilinear triangle, which cusps toward the sink. The problem is mathematically solvable in a relatively narrow band of geometric and hydraulic parameters. A similar analytic solution for a static heavy bubble confined by a closed-curve interface (no contact with the bedrock) is outlined as an illustration of the method to solve a mixed boundary-value problem.

  9. On the stability analysis of hyperelastic boundary value problems using three- and two-field mixed finite element formulations

    NASA Astrophysics Data System (ADS)

    Schröder, Jörg; Viebahn, Nils; Wriggers, Peter; Auricchio, Ferdinando; Steeger, Karl

    2017-09-01

    In this work we investigate different mixed finite element formulations for the detection of critical loads for the possible occurrence of bifurcation and limit points. In detail, three- and two-field formulations for incompressible and quasi-incompressible materials are analyzed. In order to apply various penalty functions for the volume dilatation in displacement/pressure mixed elements we propose a new consistent scheme capturing the non linearities of the penalty constraints. It is shown that for all mixed formulations, which can be reduced to a generalized displacement scheme, a straight forward stability analysis is possible. However, problems based on the classical saddle-point structure require a different analyses based on the change of the signature of the underlying matrix system. The basis of these investigations is the work from Auricchio et al. (Comput Methods Appl Mech Eng 194:1075-1092, 2005, Comput Mech 52:1153-1167, 2013).

  10. The Ablowitz–Ladik system on a finite set of integers

    NASA Astrophysics Data System (ADS)

    Xia, Baoqiang

    2018-07-01

    We show how to solve initial-boundary value problems for integrable nonlinear differential–difference equations on a finite set of integers. The method we employ is the discrete analogue of the unified transform (Fokas method). The implementation of this method to the Ablowitz–Ladik system yields the solution in terms of the unique solution of a matrix Riemann–Hilbert problem, which has a jump matrix with explicit -dependence involving certain functions referred to as spectral functions. Some of these functions are defined in terms of the initial value, while the remaining spectral functions are defined in terms of two sets of boundary values. These spectral functions are not independent but satisfy an algebraic relation called global relation. We analyze the global relation to characterize the unknown boundary values in terms of the given initial and boundary values. We also discuss the linearizable boundary conditions.

  11. On Compressible Vortex Sheets

    NASA Astrophysics Data System (ADS)

    Secchi, Paolo

    2005-05-01

    We introduce the main known results of the theory of incompressible and compressible vortex sheets. Moreover, we present recent results obtained by the author with J. F. Coulombel about supersonic compressible vortex sheets in two space dimensions. The problem is a nonlinear free boundary hyperbolic problem with two difficulties: the free boundary is characteristic and the Lopatinski condition holds only in a weak sense, yielding losses of derivatives. Under a supersonic condition that precludes violent instabilities, we prove an energy estimate for the boundary value problem obtained by linearization around an unsteady piecewise solution.

  12. A variational technique for smoothing flight-test and accident data

    NASA Technical Reports Server (NTRS)

    Bach, R. E., Jr.

    1980-01-01

    The problem of determining aircraft motions along a trajectory is solved using a variational algorithm that generates unmeasured states and forcing functions, and estimates instrument bias and scale-factor errors. The problem is formulated as a nonlinear fixed-interval smoothing problem, and is solved as a sequence of linear two-point boundary value problems, using a sweep method. The algorithm has been implemented for use in flight-test and accident analysis. Aircraft motions are assumed to be governed by a six-degree-of-freedom kinematic model; forcing functions consist of body accelerations and winds, and the measurement model includes aerodynamic and radar data. Examples of the determination of aircraft motions from typical flight-test and accident data are presented.

  13. On Riemann boundary value problems for null solutions of the two dimensional Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Bory Reyes, Juan; Abreu Blaya, Ricardo; Rodríguez Dagnino, Ramón Martin; Kats, Boris Aleksandrovich

    2018-01-01

    The Riemann boundary value problem (RBVP to shorten notation) in the complex plane, for different classes of functions and curves, is still widely used in mathematical physics and engineering. For instance, in elasticity theory, hydro and aerodynamics, shell theory, quantum mechanics, theory of orthogonal polynomials, and so on. In this paper, we present an appropriate hyperholomorphic approach to the RBVP associated to the two dimensional Helmholtz equation in R^2 . Our analysis is based on a suitable operator calculus.

  14. Multi-step optimization strategy for fuel-optimal orbital transfer of low-thrust spacecraft

    NASA Astrophysics Data System (ADS)

    Rasotto, M.; Armellin, R.; Di Lizia, P.

    2016-03-01

    An effective method for the design of fuel-optimal transfers in two- and three-body dynamics is presented. The optimal control problem is formulated using calculus of variation and primer vector theory. This leads to a multi-point boundary value problem (MPBVP), characterized by complex inner constraints and a discontinuous thrust profile. The first issue is addressed by embedding the MPBVP in a parametric optimization problem, thus allowing a simplification of the set of transversality constraints. The second problem is solved by representing the discontinuous control function by a smooth function depending on a continuation parameter. The resulting trajectory optimization method can deal with different intermediate conditions, and no a priori knowledge of the control structure is required. Test cases in both the two- and three-body dynamics show the capability of the method in solving complex trajectory design problems.

  15. Existence and non-uniqueness of similarity solutions of a boundary-layer problem

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Y.; Lakin, W. D.

    1986-01-01

    A Blasius boundary value problem with inhomogeneous lower boundary conditions f(0) = 0 and f'(0) = - lambda with lambda strictly positive was considered. The Crocco variable formulation of this problem has a key term which changes sign in the interval of interest. It is shown that solutions of the boundary value problem do not exist for values of lambda larger than a positive critical value lambda. The existence of solutions is proven for 0 lambda lambda by considering an equivalent initial value problem. It is found however that for 0 lambda lambda, solutions of the boundary value problem are nonunique. Physically, this nonuniqueness is related to multiple values of the skin friction.

  16. Existence and non-uniqueness of similarity solutions of a boundary layer problem

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Y.; Lakin, W. D.

    1984-01-01

    A Blasius boundary value problem with inhomogeneous lower boundary conditions f(0) = 0 and f'(0) = - lambda with lambda strictly positive was considered. The Crocco variable formulation of this problem has a key term which changes sign in the interval of interest. It is shown that solutions of the boundary value problem do not exist for values of lambda larger than a positive critical value lambda. The existence of solutions is proven for 0 lambda lambda by considering an equivalent initial value problem. It is found however that for 0 lambda lambda, solutions of the boundary value problem are nonunique. Physically, this nonuniqueness is related to multiple values of the skin friction.

  17. Optimal solar sail planetocentric trajectories

    NASA Technical Reports Server (NTRS)

    Sackett, L. L.

    1977-01-01

    The analysis of solar sail planetocentric optimal trajectory problem is described. A computer program was produced to calculate optimal trajectories for a limited performance analysis. A square sail model is included and some consideration is given to a heliogyro sail model. Orbit to a subescape point and orbit to orbit transfer are considered. Trajectories about the four inner planets can be calculated and shadowing, oblateness, and solar motion may be included. Equinoctial orbital elements are used to avoid the classical singularities, and the method of averaging is applied to increase computational speed. Solution of the two-point boundary value problem which arises from the application of optimization theory is accomplished with a Newton procedure. Time optimal trajectories are emphasized, but a penalty function has been considered to prevent trajectories which intersect a planet's surface.

  18. The use of MACSYMA for solving elliptic boundary value problems

    NASA Technical Reports Server (NTRS)

    Thejll, Peter; Gilbert, Robert P.

    1990-01-01

    A boundary method is presented for the solution of elliptic boundary value problems. An approach based on the use of complete systems of solutions is emphasized. The discussion is limited to the Dirichlet problem, even though the present method can possibly be adapted to treat other boundary value problems.

  19. Determination of boundaries between ranges of high and low gradient of beam profile.

    PubMed

    Wendykier, Jacek; Bieniasiewicz, Marcin; Grządziel, Aleksandra; Jedynak, Tadeusz; Kośniewski, Wiktor; Reudelsdorf, Marta; Wendykier, Piotr

    2016-01-01

    This work addresses the problem of treatment planning system commissioning by introducing a new method of determination of boundaries between high and low gradient in beam profile. The commissioning of a treatment planning system is a very important task in the radiation therapy. One of the main goals of this task is to compare two field profiles: measured and calculated. Applying points of 80% and 120% of nominal field size can lead to the incorrect determination of boundaries, especially for small field sizes. The method that is based on the beam profile gradient allows for proper assignment of boundaries between high and low gradient regions even for small fields. TRS 430 recommendations for commissioning were used. The described method allows a separation between high and low gradient, because it directly uses the value of the gradient of a profile. For small fields, the boundaries determined by the new method allow a commissioning of a treatment planning system according to the TRS 430, while the point of 80% of nominal field size is already in the high gradient region. The method of determining the boundaries by using the beam profile gradient can be extremely helpful during the commissioning of the treatment planning system for Intensity Modulated Radiation Therapy or for other techniques which require very small field sizes.

  20. A numerical solution of a singular boundary value problem arising in boundary layer theory.

    PubMed

    Hu, Jiancheng

    2016-01-01

    In this paper, a second-order nonlinear singular boundary value problem is presented, which is equivalent to the well-known Falkner-Skan equation. And the one-dimensional third-order boundary value problem on interval [Formula: see text] is equivalently transformed into a second-order boundary value problem on finite interval [Formula: see text]. The finite difference method is utilized to solve the singular boundary value problem, in which the amount of computational effort is significantly less than the other numerical methods. The numerical solutions obtained by the finite difference method are in agreement with those obtained by previous authors.

  1. High-order Two-way Artificial Boundary Conditions for Nonlinear Wave Propagation with Backscattering

    NASA Technical Reports Server (NTRS)

    Fibich, Gadi; Tsynkov, Semyon

    2000-01-01

    When solving linear scattering problems, one typically first solves for the impinging wave in the absence of obstacles. Then, by linear superposition, the original problem is reduced to one that involves only the scattered waves driven by the values of the impinging field at the surface of the obstacles. In addition, when the original domain is unbounded, special artificial boundary conditions (ABCs) that would guarantee the reflectionless propagation of waves have to be set at the outer boundary of the finite computational domain. The situation becomes conceptually different when the propagation equation is nonlinear. In this case the impinging and scattered waves can no longer be separated, and the problem has to be solved in its entirety. In particular, the boundary on which the incoming field values are prescribed, should transmit the given incoming waves in one direction and simultaneously be transparent to all the outgoing waves that travel in the opposite direction. We call this type of boundary conditions two-way ABCs. In the paper, we construct the two-way ABCs for the nonlinear Helmholtz equation that models the laser beam propagation in a medium with nonlinear index of refraction. In this case, the forward propagation is accompanied by backscattering, i.e., generation of waves in the direction opposite to that of the incoming signal. Our two-way ABCs generate no reflection of the backscattered waves and at the same time impose the correct values of the incoming wave. The ABCs are obtained for a fourth-order accurate discretization to the Helmholtz operator; the fourth-order grid convergence is corroborated experimentally by solving linear model problems. We also present solutions in the nonlinear case using the two-way ABC which, unlike the traditional Dirichlet boundary condition, allows for direct calculation of the magnitude of backscattering.

  2. A Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin for Diffusion

    NASA Technical Reports Server (NTRS)

    Huynh, H. T.

    2009-01-01

    We introduce a new approach to high-order accuracy for the numerical solution of diffusion problems by solving the equations in differential form using a reconstruction technique. The approach has the advantages of simplicity and economy. It results in several new high-order methods including a simplified version of discontinuous Galerkin (DG). It also leads to new definitions of common value and common gradient quantities at each interface shared by the two adjacent cells. In addition, the new approach clarifies the relations among the various choices of new and existing common quantities. Fourier stability and accuracy analyses are carried out for the resulting schemes. Extensions to the case of quadrilateral meshes are obtained via tensor products. For the two-point boundary value problem (steady state), it is shown that these schemes, which include most popular DG methods, yield exact common interface quantities as well as exact cell average solutions for nearly all cases.

  3. On Interactions of Oscillation Modes for a Weakly Non-Linear Undamped Elastic Beam with AN External Force

    NASA Astrophysics Data System (ADS)

    BOERTJENS, G. J.; VAN HORSSEN, W. T.

    2000-08-01

    In this paper an initial-boundary value problem for the vertical displacement of a weakly non-linear elastic beam with an harmonic excitation in the horizontal direction at the ends of the beam is studied. The initial-boundary value problem can be regarded as a simple model describing oscillations of flexible structures like suspension bridges or iced overhead transmission lines. Using a two-time-scales perturbation method an approximation of the solution of the initial-boundary value problem is constructed. Interactions between different oscillation modes of the beam are studied. It is shown that for certain external excitations, depending on the phase of an oscillation mode, the amplitude of specific oscillation modes changes.

  4. Numerical computations on one-dimensional inverse scattering problems

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Hariharan, S. I.

    1983-01-01

    An approximate method to determine the index of refraction of a dielectric obstacle is presented. For simplicity one dimensional models of electromagnetic scattering are treated. The governing equations yield a second order boundary value problem, in which the index of refraction appears as a functional parameter. The availability of reflection coefficients yield two additional boundary conditions. The index of refraction by a k-th order spline which can be written as a linear combination of B-splines is approximated. For N distinct reflection coefficients, the resulting N boundary value problems yield a system of N nonlinear equations in N unknowns which are the coefficients of the B-splines.

  5. BOUNDARY VALUE PROBLEM INVOLVING THE p-LAPLACIAN ON THE SIERPIŃSKI GASKET

    NASA Astrophysics Data System (ADS)

    Priyadarshi, Amit; Sahu, Abhilash

    In this paper, we study the following boundary value problem involving the weak p-Laplacian. -Δpu=λa(x)|u|q-1u + b(x)|u|l-1uin 𝒮∖𝒮 0; u=0on 𝒮0, where 𝒮 is the Sierpiński gasket in ℝ2, 𝒮0 is its boundary, λ > 0, p > 1, 0 < q < p - 1 < l and a,b : 𝒮→ ℝ are bounded nonnegative functions. We will show the existence of at least two nontrivial weak solutions to the above problem for a certain range of λ using the analysis of fibering maps on suitable subsets.

  6. Recursive recovery of Markov transition probabilities from boundary value data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patch, Sarah Kathyrn

    1994-04-01

    In an effort to mathematically describe the anisotropic diffusion of infrared radiation in biological tissue Gruenbaum posed an anisotropic diffusion boundary value problem in 1989. In order to accommodate anisotropy, he discretized the temporal as well as the spatial domain. The probabilistic interpretation of the diffusion equation is retained; radiation is assumed to travel according to a random walk (of sorts). In this random walk the probabilities with which photons change direction depend upon their previous as well as present location. The forward problem gives boundary value data as a function of the Markov transition probabilities. The inverse problem requiresmore » finding the transition probabilities from boundary value data. Problems in the plane are studied carefully in this thesis. Consistency conditions amongst the data are derived. These conditions have two effects: they prohibit inversion of the forward map but permit smoothing of noisy data. Next, a recursive algorithm which yields a family of solutions to the inverse problem is detailed. This algorithm takes advantage of all independent data and generates a system of highly nonlinear algebraic equations. Pluecker-Grassmann relations are instrumental in simplifying the equations. The algorithm is used to solve the 4 x 4 problem. Finally, the smallest nontrivial problem in three dimensions, the 2 x 2 x 2 problem, is solved.« less

  7. The application of Green's theorem to the solution of boundary-value problems in linearized supersonic wing theory

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Lomax, Harvard

    1950-01-01

    Following the introduction of the linearized partial differential equation for nonsteady three-dimensional compressible flow, general methods of solution are given for the two and three-dimensional steady-state and two-dimensional unsteady-state equations. It is also pointed out that, in the absence of thickness effects, linear theory yields solutions consistent with the assumptions made when applied to lifting-surface problems for swept-back plan forms at sonic speeds. The solutions of the particular equations are determined in all cases by means of Green's theorem, and thus depend on the use of Green's equivalent layer of sources, sinks, and doublets. Improper integrals in the supersonic theory are treated by means of Hadamard's "finite part" technique.

  8. An explicit solution to the exoatmospheric powered flight guidance and trajectory optimization problem for rocket propelled vehicles

    NASA Technical Reports Server (NTRS)

    Jaggers, R. F.

    1977-01-01

    A derivation of an explicit solution to the two point boundary-value problem of exoatmospheric guidance and trajectory optimization is presented. Fixed initial conditions and continuous burn, multistage thrusting are assumed. Any number of end conditions from one to six (throttling is required in the case of six) can be satisfied in an explicit and practically optimal manner. The explicit equations converge for off nominal conditions such as engine failure, abort, target switch, etc. The self starting, predictor/corrector solution involves no Newton-Rhapson iterations, numerical integration, or first guess values, and converges rapidly if physically possible. A form of this algorithm has been chosen for onboard guidance, as well as real time and preflight ground targeting and trajectory shaping for the NASA Space Shuttle Program.

  9. Indentations and Starting Points in Traveling Sales Tour Problems: Implications for Theory

    ERIC Educational Resources Information Center

    MacGregor, James N.

    2012-01-01

    A complete, non-trivial, traveling sales tour problem contains at least one "indentation", where nodes in the interior of the point set are connected between two adjacent nodes on the boundary. Early research reported that human tours exhibited fewer such indentations than expected. A subsequent explanation proposed that this was because…

  10. Exact Solution to Stationary Onset of Convection Due to Surface Tension Variation in a Multicomponent Fluid Layer With Interfacial Deformation

    NASA Technical Reports Server (NTRS)

    Skarda, J. Raymond Lee; McCaughan, Frances E.

    1998-01-01

    Stationary onset of convection due to surface tension variation in an unbounded multicomponent fluid layer is considered. Surface deformation is included and general flux boundary conditions are imposed on the stratifying agencies (temperature/composition) disturbance equations. Exact solutions are obtained to the general N-component problem for both finite and infinitesimal wavenumbers. Long wavelength instability may coexist with a finite wavelength instability for certain sets of parameter values, often referred to as frontier points. For an impermeable/insulated upper boundary and a permeable/conductive lower boundary, frontier boundaries are computed in the space of Bond number, Bo, versus Crispation number, Cr, over the range 5 x 10(exp -7) less than or equal to Bo less than or equal to 1. The loci of frontier points in (Bo, Cr) space for different values of N, diffusivity ratios, and, Marangoni numbers, collapsed to a single curve in (Bo, D(dimensional variable)Cr) space, where D(dimensional variable) is a Marangoni number weighted diffusivity ratio.

  11. Asymptotic stability of a nonlinear Korteweg-de Vries equation with critical lengths

    NASA Astrophysics Data System (ADS)

    Chu, Jixun; Coron, Jean-Michel; Shang, Peipei

    2015-10-01

    We study an initial-boundary-value problem of a nonlinear Korteweg-de Vries equation posed on the finite interval (0, 2 kπ) where k is a positive integer. The whole system has Dirichlet boundary condition at the left end-point, and both of Dirichlet and Neumann homogeneous boundary conditions at the right end-point. It is known that the origin is not asymptotically stable for the linearized system around the origin. We prove that the origin is (locally) asymptotically stable for the nonlinear system if the integer k is such that the kernel of the linear Korteweg-de Vries stationary equation is of dimension 1. This is for example the case if k = 1.

  12. Quaternion regularization in celestial mechanics, astrodynamics, and trajectory motion control. III

    NASA Astrophysics Data System (ADS)

    Chelnokov, Yu. N.

    2015-09-01

    The present paper1 analyzes the basic problems arising in the solution of problems of the optimum control of spacecraft (SC) trajectory motion (including the Lyapunov instability of solutions of conjugate equations) using the principle of the maximum. The use of quaternion models of astrodynamics is shown to allow: (1) the elimination of singular points in the differential phase and conjugate equations and in their partial analytical solutions; (2) construction of the first integrals of the new quaternion; (3) a considerable decrease of the dimensions of systems of differential equations of boundary value optimization problems with their simultaneous simplification by using the new quaternion variables related with quaternion constants of motion by rotation transformations; (4) construction of general solutions of differential equations for phase and conjugate variables on the sections of SC passive motion in the simplest and most convenient form, which is important for the solution of optimum pulse SC transfers; (5) the extension of the possibilities of the analytical investigation of differential equations of boundary value problems with the purpose of identifying the basic laws of optimum control and motion of SC; (6) improvement of the computational stability of the solution of boundary value problems; (7) a decrease in the required volume of computation.

  13. A Numerical-Analytical Approach Based on Canonical Transformations for Computing Optimal Low-Thrust Transfers

    NASA Astrophysics Data System (ADS)

    da Silva Fernandes, S.; das Chagas Carvalho, F.; Bateli Romão, J. V.

    2018-04-01

    A numerical-analytical procedure based on infinitesimal canonical transformations is developed for computing optimal time-fixed low-thrust limited power transfers (no rendezvous) between coplanar orbits with small eccentricities in an inverse-square force field. The optimization problem is formulated as a Mayer problem with a set of non-singular orbital elements as state variables. Second order terms in eccentricity are considered in the development of the maximum Hamiltonian describing the optimal trajectories. The two-point boundary value problem of going from an initial orbit to a final orbit is solved by means of a two-stage Newton-Raphson algorithm which uses an infinitesimal canonical transformation. Numerical results are presented for some transfers between circular orbits with moderate radius ratio, including a preliminary analysis of Earth-Mars and Earth-Venus missions.

  14. Regularization and computational methods for precise solution of perturbed orbit transfer problems

    NASA Astrophysics Data System (ADS)

    Woollands, Robyn Michele

    The author has developed a suite of algorithms for solving the perturbed Lambert's problem in celestial mechanics. These algorithms have been implemented as a parallel computation tool that has broad applicability. This tool is composed of four component algorithms and each provides unique benefits for solving a particular type of orbit transfer problem. The first one utilizes a Keplerian solver (a-iteration) for solving the unperturbed Lambert's problem. This algorithm not only provides a "warm start" for solving the perturbed problem but is also used to identify which of several perturbed solvers is best suited for the job. The second algorithm solves the perturbed Lambert's problem using a variant of the modified Chebyshev-Picard iteration initial value solver that solves two-point boundary value problems. This method converges over about one third of an orbit and does not require a Newton-type shooting method and thus no state transition matrix needs to be computed. The third algorithm makes use of regularization of the differential equations through the Kustaanheimo-Stiefel transformation and extends the domain of convergence over which the modified Chebyshev-Picard iteration two-point boundary value solver will converge, from about one third of an orbit to almost a full orbit. This algorithm also does not require a Newton-type shooting method. The fourth algorithm uses the method of particular solutions and the modified Chebyshev-Picard iteration initial value solver to solve the perturbed two-impulse Lambert problem over multiple revolutions. The method of particular solutions is a shooting method but differs from the Newton-type shooting methods in that it does not require integration of the state transition matrix. The mathematical developments that underlie these four algorithms are derived in the chapters of this dissertation. For each of the algorithms, some orbit transfer test cases are included to provide insight on accuracy and efficiency of these individual algorithms. Following this discussion, the combined parallel algorithm, known as the unified Lambert tool, is presented and an explanation is given as to how it automatically selects which of the three perturbed solvers to compute the perturbed solution for a particular orbit transfer. The unified Lambert tool may be used to determine a single orbit transfer or for generating of an extremal field map. A case study is presented for a mission that is required to rendezvous with two pieces of orbit debris (spent rocket boosters). The unified Lambert tool software developed in this dissertation is already being utilized by several industrial partners and we are confident that it will play a significant role in practical applications, including solution of Lambert problems that arise in the current applications focused on enhanced space situational awareness.

  15. Singular boundary value problem for the integrodifferential equation in an insurance model with stochastic premiums: Analysis and numerical solution

    NASA Astrophysics Data System (ADS)

    Belkina, T. A.; Konyukhova, N. B.; Kurochkin, S. V.

    2012-10-01

    A singular boundary value problem for a second-order linear integrodifferential equation with Volterra and non-Volterra integral operators is formulated and analyzed. The equation is defined on ℝ+, has a weak singularity at zero and a strong singularity at infinity, and depends on several positive parameters. Under natural constraints on the coefficients of the equation, existence and uniqueness theorems for this problem with given limit boundary conditions at singular points are proved, asymptotic representations of the solution are given, and an algorithm for its numerical determination is described. Numerical computations are performed and their interpretation is given. The problem arises in the study of the survival probability of an insurance company over infinite time (as a function of its initial surplus) in a dynamic insurance model that is a modification of the classical Cramer-Lundberg model with a stochastic process rate of premium under a certain investment strategy in the financial market. A comparative analysis of the results with those produced by the model with deterministic premiums is given.

  16. Application of matched asymptotic expansions to lunar and interplanetary trajectories. Volume 2: Derivations of second-order asymptotic boundary value solutions

    NASA Technical Reports Server (NTRS)

    Lancaster, J. E.

    1973-01-01

    Previously published asymptotic solutions for lunar and interplanetery trajectories have been modified and combined to formulate a general analytical solution to the problem of N-bodies. The earlier first-order solutions, derived by the method of matched asymptotic expansions, have been extended to second order for the purpose of obtaining increased accuracy. The complete derivation of the second-order solution, including the application of a regorous matching principle, is given. It is shown that the outer and inner expansions can be matched in a region of order mu to the alpha power, where 2/5 alpha 1/2, and mu (the moon/earth or planet/sun mass ratio) is much less than one. The second-order asymptotic solution has been used as a basis for formulating a number of analytical two-point boundary value solutions. These include earth-to-moon, one- and two-impulse moon-to-Earth, and interplanetary solutions. Each is presented as an explicit analytical solution which does not require iterative steps to satisfy the boundary conditions. The complete derivation of each solution is shown, as well as instructions for numerical evaluation. For Vol. 1, see N73-27738.

  17. Multiple positive solutions to nonlinear boundary value problems of a system for fractional differential equations.

    PubMed

    Zhai, Chengbo; Hao, Mengru

    2014-01-01

    By using Krasnoselskii's fixed point theorem, we study the existence of at least one or two positive solutions to a system of fractional boundary value problems given by -D(0+)(ν1)y1(t) = λ1a1(t)f(y1(t), y2(t)), - D(0+)(ν2)y2(t) = λ2a2(t)g(y1(t), y2(t)), where D(0+)(ν) is the standard Riemann-Liouville fractional derivative, ν1, ν2 ∈ (n - 1, n] for n > 3 and n ∈ N, subject to the boundary conditions y1((i))(0) = 0 = y ((i))(0), for 0 ≤ i ≤ n - 2, and [D(0+)(α)y1(t)] t=1 = 0 = [D(0+ (α)y2(t)] t=1, for 1 ≤ α ≤ n - 2, or y1((i))(0) = 0 = y ((i))(0), for 0 ≤ i ≤ n - 2, and [D(0+)(α)y1(t)] t=1 = ϕ1(y1), [D(0+)(α)y2(t)] t=1 = ϕ2(y2), for 1 ≤ α ≤ n - 2, ϕ1, ϕ2 ∈ C([0,1], R). Our results are new and complement previously known results. As an application, we also give an example to demonstrate our result.

  18. Well-posedness of the free boundary problem in compressible elastodynamics

    NASA Astrophysics Data System (ADS)

    Trakhinin, Yuri

    2018-02-01

    We study the free boundary problem for the flow of a compressible isentropic inviscid elastic fluid. At the free boundary moving with the velocity of the fluid particles the columns of the deformation gradient are tangent to the boundary and the pressure vanishes outside the flow domain. We prove the local-in-time existence of a unique smooth solution of the free boundary problem provided that among three columns of the deformation gradient there are two which are non-collinear vectors at each point of the initial free boundary. If this non-collinearity condition fails, the local-in-time existence is proved under the classical Rayleigh-Taylor sign condition satisfied at the first moment. By constructing an Hadamard-type ill-posedness example for the frozen coefficients linearized problem we show that the simultaneous failure of the non-collinearity condition and the Rayleigh-Taylor sign condition leads to Rayleigh-Taylor instability.

  19. Multispike solutions for the Brezis-Nirenberg problem in dimension three

    NASA Astrophysics Data System (ADS)

    Musso, Monica; Salazar, Dora

    2018-06-01

    We consider the problem Δu + λu +u5 = 0, u > 0, in a smooth bounded domain Ω in R3, under zero Dirichlet boundary conditions. We obtain solutions to this problem exhibiting multiple bubbling behavior at k different points of the domain as λ tends to a special positive value λ0, which we characterize in terms of the Green function of - Δ - λ.

  20. Well-posedness of nonlocal parabolic differential problems with dependent operators.

    PubMed

    Ashyralyev, Allaberen; Hanalyev, Asker

    2014-01-01

    The nonlocal boundary value problem for the parabolic differential equation v'(t) + A(t)v(t) = f(t) (0 ≤ t ≤ T), v(0) = v(λ) + φ, 0 < λ ≤ T in an arbitrary Banach space E with the dependent linear positive operator A(t) is investigated. The well-posedness of this problem is established in Banach spaces C 0 (β,γ) (E α-β ) of all E α-β -valued continuous functions φ(t) on [0, T] satisfying a Hölder condition with a weight (t + τ)(γ). New Schauder type exact estimates in Hölder norms for the solution of two nonlocal boundary value problems for parabolic equations with dependent coefficients are established.

  1. Global height datum unification: a new approach in gravity potential space

    NASA Astrophysics Data System (ADS)

    Ardalan, A. A.; Safari, A.

    2005-12-01

    The problem of “global height datum unification” is solved in the gravity potential space based on: (1) high-resolution local gravity field modeling, (2) geocentric coordinates of the reference benchmark, and (3) a known value of the geoid’s potential. The high-resolution local gravity field model is derived based on a solution of the fixed-free two-boundary-value problem of the Earth’s gravity field using (a) potential difference values (from precise leveling), (b) modulus of the gravity vector (from gravimetry), (c) astronomical longitude and latitude (from geodetic astronomy and/or combination of (GNSS) Global Navigation Satellite System observations with total station measurements), (d) and satellite altimetry. Knowing the height of the reference benchmark in the national height system and its geocentric GNSS coordinates, and using the derived high-resolution local gravity field model, the gravity potential value of the zero point of the height system is computed. The difference between the derived gravity potential value of the zero point of the height system and the geoid’s potential value is computed. This potential difference gives the offset of the zero point of the height system from geoid in the “potential space”, which is transferred into “geometry space” using the transformation formula derived in this paper. The method was applied to the computation of the offset of the zero point of the Iranian height datum from the geoid’s potential value W 0=62636855.8 m2/s2. According to the geometry space computations, the height datum of Iran is 0.09 m below the geoid.

  2. Boundary-integral methods in elasticity and plasticity. [solutions of boundary value problems

    NASA Technical Reports Server (NTRS)

    Mendelson, A.

    1973-01-01

    Recently developed methods that use boundary-integral equations applied to elastic and elastoplastic boundary value problems are reviewed. Direct, indirect, and semidirect methods using potential functions, stress functions, and displacement functions are described. Examples of the use of these methods for torsion problems, plane problems, and three-dimensional problems are given. It is concluded that the boundary-integral methods represent a powerful tool for the solution of elastic and elastoplastic problems.

  3. Optimal Trajectories for the Helicopter in One-Engine-Inoperative Terminal-Area Operations

    NASA Technical Reports Server (NTRS)

    Zhao, Yiyuan; Chen, Robert T. N.

    1996-01-01

    This paper presents a summary of a series of recent analytical studies conducted to investigate One-Engine-Inoperative (OEI) optimal control strategies and the associated optimal trajectories for a twin engine helicopter in Category-A terminal-area operations. These studies also examine the associated heliport size requirements and the maximum gross weight capability of the helicopter. Using an eight states, two controls, augmented point-mass model representative of the study helicopter, Continued TakeOff (CTO), Rejected TakeOff (RTO), Balked Landing (BL), and Continued Landing (CL) are investigated for both Vertical-TakeOff-and-Landing (VTOL) and Short-TakeOff-and-Landing (STOL) terminal-area operations. The formulation of the nonlinear optimal control problems with considerations for realistic constraints, solution methods for the two-point boundary-value problem, a new real-time generation method for the optimal OEI trajectories, and the main results of this series of trajectory optimization studies are presented. In particular, a new balanced- weight concept for determining the takeoff decision point for VTOL Category-A operations is proposed, extending the balanced-field length concept used for STOL operations.

  4. A system-approach to the elastohydrodynamic lubrication point-contact problem

    NASA Technical Reports Server (NTRS)

    Lim, Sang Gyu; Brewe, David E.

    1991-01-01

    The classical EHL (elastohydrodynamic lubrication) point contact problem is solved using a new system-approach, similar to that introduced by Houpert and Hamrock for the line-contact problem. Introducing a body-fitted coordinate system, the troublesome free-boundary is transformed to a fixed domain. The Newton-Raphson method can then be used to determine the pressure distribution and the cavitation boundary subject to the Reynolds boundary condition. This method provides an efficient and rigorous way of solving the EHL point contact problem with the aid of a supercomputer and a promising method to deal with the transient EHL point contact problem. A typical pressure distribution and film thickness profile are presented and the minimum film thicknesses are compared with the solution of Hamrock and Dowson. The details of the cavitation boundaries for various operating parameters are discussed.

  5. On solvability of boundary value problems for hyperbolic fourth-order equations with nonlocal boundary conditions of integral type

    NASA Astrophysics Data System (ADS)

    Popov, Nikolay S.

    2017-11-01

    Solvability of some initial-boundary value problems for linear hyperbolic equations of the fourth order is studied. A condition on the lateral boundary in these problems relates the values of a solution or the conormal derivative of a solution to the values of some integral operator applied to a solution. Nonlocal boundary-value problems for one-dimensional hyperbolic second-order equations with integral conditions on the lateral boundary were considered in the articles by A.I. Kozhanov. Higher-dimensional hyperbolic equations of higher order with integral conditions on the lateral boundary were not studied earlier. The existence and uniqueness theorems of regular solutions are proven. The method of regularization and the method of continuation in a parameter are employed to establish solvability.

  6. A note on libration point orbits, temporary capture and low-energy transfers

    NASA Astrophysics Data System (ADS)

    Fantino, E.; Gómez, G.; Masdemont, J. J.; Ren, Y.

    2010-11-01

    In the circular restricted three-body problem (CR3BP) the weak stability boundary (WSB) is defined as a boundary set in the phase space between stable and unstable motion relative to the second primary. At a given energy level, the boundaries of such region are provided by the stable manifolds of the central objects of the L1 and L2 libration points, i.e., the two planar Lyapunov orbits. Besides, the unstable manifolds of libration point orbits (LPOs) around L1 and L2 have been identified as responsible for the weak or temporary capture around the second primary of the system. These two issues suggest the existence of natural dynamical channels between the Earth's vicinity and the Sun-Earth libration points L1 and L2. Furthermore, it has been shown that the Sun-Earth L2 central unstable manifolds can be linked, through an heteroclinic connection, to the central stable manifolds of the L2 point in the Earth-Moon three-body problem. This concept has been applied to the design of low energy transfers (LETs) from the Earth to the Moon. In this contribution we consider all the above three issues, i.e., weak stability boundaries, temporary capture and low energy transfers, and we discuss the role played by the invariant manifolds of LPOs in each of them. The study is made in the planar approximation.

  7. Quasi-stationary mechanics of elastic continua with bending stiffness wrapping on a pulley system

    NASA Astrophysics Data System (ADS)

    Kaczmarczyk, S.; Mirhadizadeh, S.

    2016-05-01

    In many engineering applications elastic continua such as ropes and belts often are subject to bending when they pass over pulleys / sheaves. In this paper the quasi-stationary mechanics of a cable-pulley system is studied. The cable is modelled as a moving Euler- Bernoulli beam. The distribution of tension is non-uniform along its span and due to the bending stiffness the contact points at the pulley-beam boundaries are not unknown. The system is described by a set of nonlinear ordinary differential equations with undetermined boundary conditions. The resulting nonlinear Boundary Value Problem (BVP) with unknown boundaries is solved by converting the problem into the ‘standard’ form defined over a fixed interval. Numerical results obtained for a range of typical configurations with relevant boundary conditions applied demonstrate that due to the effects of bending stiffness the angels of wrap are reduced and the span tensions are increased.

  8. Pseudospectral collocation methods for fourth order differential equations

    NASA Technical Reports Server (NTRS)

    Malek, Alaeddin; Phillips, Timothy N.

    1994-01-01

    Collocation schemes are presented for solving linear fourth order differential equations in one and two dimensions. The variational formulation of the model fourth order problem is discretized by approximating the integrals by a Gaussian quadrature rule generalized to include the values of the derivative of the integrand at the boundary points. Collocation schemes are derived which are equivalent to this discrete variational problem. An efficient preconditioner based on a low-order finite difference approximation to the same differential operator is presented. The corresponding multidomain problem is also considered and interface conditions are derived. Pseudospectral approximations which are C1 continuous at the interfaces are used in each subdomain to approximate the solution. The approximations are also shown to be C3 continuous at the interfaces asymptotically. A complete analysis of the collocation scheme for the multidomain problem is provided. The extension of the method to the biharmonic equation in two dimensions is discussed and results are presented for a problem defined in a nonrectangular domain.

  9. On two special values of temperature factor in hypersonic flow stagnation point

    NASA Astrophysics Data System (ADS)

    Bilchenko, G. G.; Bilchenko, N. G.

    2018-03-01

    The hypersonic aircraft permeable cylindrical and spherical surfaces laminar boundary layer heat and mass transfer control mathematical model properties are investigated. The nonlinear algebraic equations systems are obtained for two special values of temperature factor in the hypersonic flow stagnation point. The mappings bijectivity between heat and mass transfer local parameters and controls is established. The computation experiments results are presented: the domains of allowed values “heat-friction” are obtained.

  10. Scattering of surface water waves involving semi-infinite floating elastic plates on water of finite depth

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Aloknath; Mohapatra, Smrutiranjan

    2013-09-01

    Two problems of scattering of surface water waves involving a semi-infinite elastic plate and a pair of semi-infinite elastic plates, separated by a gap of finite width, floating horizontally on water of finite depth, are investigated in the present work for a two-dimensional time-harmonic case. Within the frame of linear water wave theory, the solutions of the two boundary value problems under consideration have been represented in the forms of eigenfunction expansions. Approximate values of the reflection and transmission coefficients are obtained by solving an over-determined system of linear algebraic equations in each problem. In both the problems, the method of least squares as well as the singular value decomposition have been employed and tables of numerical values of the reflection and transmission coefficients are presented for specific choices of the parameters for modelling the elastic plates. Our main aim is to check the energy balance relation in each problem which plays a very important role in the present approach of solutions of mixed boundary value problems involving Laplace equations. The main advantage of the present approach of solutions is that the results for the values of reflection and transmission coefficients obtained by using both the methods are found to satisfy the energy-balance relations associated with the respective scattering problems under consideration. The absolute values of the reflection and transmission coefficients are presented graphically against different values of the wave numbers.

  11. Metaheuristic optimisation methods for approximate solving of singular boundary value problems

    NASA Astrophysics Data System (ADS)

    Sadollah, Ali; Yadav, Neha; Gao, Kaizhou; Su, Rong

    2017-07-01

    This paper presents a novel approximation technique based on metaheuristics and weighted residual function (WRF) for tackling singular boundary value problems (BVPs) arising in engineering and science. With the aid of certain fundamental concepts of mathematics, Fourier series expansion, and metaheuristic optimisation algorithms, singular BVPs can be approximated as an optimisation problem with boundary conditions as constraints. The target is to minimise the WRF (i.e. error function) constructed in approximation of BVPs. The scheme involves generational distance metric for quality evaluation of the approximate solutions against exact solutions (i.e. error evaluator metric). Four test problems including two linear and two non-linear singular BVPs are considered in this paper to check the efficiency and accuracy of the proposed algorithm. The optimisation task is performed using three different optimisers including the particle swarm optimisation, the water cycle algorithm, and the harmony search algorithm. Optimisation results obtained show that the suggested technique can be successfully applied for approximate solving of singular BVPs.

  12. Analytic solution for American strangle options using Laplace-Carson transforms

    NASA Astrophysics Data System (ADS)

    Kang, Myungjoo; Jeon, Junkee; Han, Heejae; Lee, Somin

    2017-06-01

    A strangle has been important strategy for options when the trader believes there will be a large movement in the underlying asset but are uncertain of which way the movement will be. In this paper, we derive analytic formula for the price of American strangle options. American strangle options can be mathematically formulated into the free boundary problems involving two early exercise boundaries. By using Laplace-Carson Transform(LCT), we can derive the nonlinear system of equations satisfied by the transformed value of two free boundaries. We then solve this nonlinear system using Newton's method and finally get the free boundaries and option values using numerical Laplace inversion techniques. We also derive the Greeks for the American strangle options as well as the value of perpetual American strangle options. Furthermore, we present various graphs for the free boundaries and option values according to the change of parameters.

  13. What is Wrong with the Boundary Conditions in Column Tracer Tests

    NASA Astrophysics Data System (ADS)

    Zhan, H.

    2007-12-01

    Solute transport in a column is probably one of the most fundamental problems investigated in contaminant hydrology and soil physics because it serves as a benchmark for testing transport theories, for measuring dispersivities, etc. Despite its importance, there are still dispute and inconsistency on how to deal with the boundary conditions involved in such problems. The boundary condition could impose great influence upon transport in a column, particularly when the length of the column is relatively short, or the so-called Peclet number is not large. There are three types of boundary conditions to choose for transport in a column. Among these three types of boundary conditions, only the third-type boundary satisfies the mass balance requirement rigorously. The first type boundary, despite its frequent use in previous studies, could lead to serious mass balance problems. The most serious problem is on how to deal with the outlet boundary. Some studies have used a zero concentration gradient at the outlet (the so-called Danckwerts' boundary condition). This is named the model A. Another idea is to treat the finite length column as a part of an infinitely long column and to calculate the concentration at the outlet based on a formula developed for an infinitely long column. This is named the model B. The model A satisfies the mass balance requirement but was found to fit with the experimental data poorly. The model B does not satisfy the mass balance requirement, but usually agree well with the experimental data. So, the dilemma is: which model to choose? At present, most investigators prefer to choose the model B because of its close agreement with the experimental data, despite of its violation of the mass balance requirement. But the question is: why the model A, which satisfies the mass balance requirement, does not fit with the experimental data? It turns out that the advection-dispersion equation (ADE) that uses the Fick's first law to describe the hydrodynamic dispersion has some problems, particularly in the regions near the two boundaries. Taylor (1921) has pointed out that the dispersion coefficient varies linearly with time at the beginning and tends to its asymptotic, Fickian value after a travel time of a few correlation scales. Dagan and Bresler (1985) have further pointed out that the constant dispersivity is attained after the solute body has traveled tens of conductivity integral scales. For transport in a homogeneous column, the integral scale of the conductivity is probably around the pore scale or equivalent to the dispersivity value. Therefore, for a finite column whose length is not much greater than the dispersivity value, the transition zones in which solute transport is non-Fickian could consist of a significant portion of the column length. It is such non-Fickian transport in the column that is responsible for the failure of the model A. But still, why does the model B yield the right solution? There is no answer to this question based on a rigorous quantitative analysis yet. To resolve the dilemma, one must carry out a non-Fickian transport study to deal with the transition zones. It is my hypothesis that if the non-Fickian transport analysis succeeds, one will find that the mass balance requirement is indeed satisfied in the model B. Dagan and Bresler (1985) have pointed to the right direction, but a rigorous analysis has not followed. This is something interesting and worthwhile to investigate. REFERENCES CITED Dagan, G., and Bresler, E., 1985. Comment on ¡°Flux-averaged and volume-averaged concentration in continuum approaches to solute transport¡± by J.C. Parker and M.Th. van Genuchten. Water Resources Research, 21: 1299- 1300. Taylor, G.I., 1921. Diffusion by continuous movements. Proc. London Math Soc. 2: 196-212.

  14. Optimal landing of a helicopter in autorotation

    NASA Technical Reports Server (NTRS)

    Lee, A. Y. N.

    1985-01-01

    Gliding descent in autorotation is a maneuver used by helicopter pilots in case of engine failure. The landing of a helicopter in autorotation is formulated as a nonlinear optimal control problem. The OH-58A helicopter was used. Helicopter vertical and horizontal velocities, vertical and horizontal displacement, and the rotor angle speed were modeled. An empirical approximation for the induced veloctiy in the vortex-ring state were provided. The cost function of the optimal control problem is a weighted sum of the squared horizontal and vertical components of the helicopter velocity at touchdown. Optimal trajectories are calculated for entry conditions well within the horizontal-vertical restriction curve, with the helicopter initially in hover or forwared flight. The resultant two-point boundary value problem with path equality constraints was successfully solved using the Sequential Gradient Restoration Technique.

  15. 3DGRAPE - THREE DIMENSIONAL GRIDS ABOUT ANYTHING BY POISSON'S EQUATION

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.

    1994-01-01

    The ability to treat arbitrary boundary shapes is one of the most desirable characteristics of a method for generating grids. 3DGRAPE is designed to make computational grids in or about almost any shape. These grids are generated by the solution of Poisson's differential equations in three dimensions. The program automatically finds its own values for inhomogeneous terms which give near-orthogonality and controlled grid cell height at boundaries. Grids generated by 3DGRAPE have been applied to both viscous and inviscid aerodynamic problems, and to problems in other fluid-dynamic areas. 3DGRAPE uses zones to solve the problem of warping one cube into the physical domain in real-world computational fluid dynamics problems. In a zonal approach, a physical domain is divided into regions, each of which maps into its own computational cube. It is believed that even the most complicated physical region can be divided into zones, and since it is possible to warp a cube into each zone, a grid generator which is oriented to zones and allows communication across zonal boundaries (where appropriate) solves the problem of topological complexity. 3DGRAPE expects to read in already-distributed x,y,z coordinates on the bodies of interest, coordinates which will remain fixed during the entire grid-generation process. The 3DGRAPE code makes no attempt to fit given body shapes and redistribute points thereon. Body-fitting is a formidable problem in itself. The user must either be working with some simple analytical body shape, upon which a simple analytical distribution can be easily effected, or must have available some sophisticated stand-alone body-fitting software. 3DGRAPE does not require the user to supply the block-to-block boundaries nor the shapes of the distribution of points. 3DGRAPE will typically supply those block-to-block boundaries simply as surfaces in the elliptic grid. Thus at block-to-block boundaries the following conditions are obtained: (1) grids lines will match up as they approach the block-to-block boundary from either side, (2) grid lines will cross the boundary with no slope discontinuity, (3) the spacing of points along the line piercing the boundary will be continuous, (4) the shape of the boundary will be consistent with the surrounding grid, and (5) the distribution of points on the boundary will be reasonable in view of the surrounding grid. 3DGRAPE offers a powerful building-block approach to complex 3-D grid generation, but is a low-level tool. Users may build each face of each block as they wish, from a wide variety of resources. 3DGRAPE uses point-successive-over-relaxation (point-SOR) to solve the Poisson equations. This method is slow, although it does vectorize nicely. Any number of sophisticated graphics programs may be used on the stored output file of 3DGRAPE though it lacks interactive graphics. Versatility was a prominent consideration in developing the code. The block structure allows a great latitude in the problems it can treat. As the acronym implies, this program should be able to handle just about any physical region into which a computational cube or cubes can be warped. 3DGRAPE was written in FORTRAN 77 and should be machine independent. It was originally developed on a Cray under COS and tested on a MicroVAX 3200 under VMS 5.1.

  16. Numerical Treatment of Degenerate Diffusion Equations via Feller's Boundary Classification, and Applications

    NASA Technical Reports Server (NTRS)

    Cacio, Emanuela; Cohn, Stephen E.; Spigler, Renato

    2011-01-01

    A numerical method is devised to solve a class of linear boundary-value problems for one-dimensional parabolic equations degenerate at the boundaries. Feller theory, which classifies the nature of the boundary points, is used to decide whether boundary conditions are needed to ensure uniqueness, and, if so, which ones they are. The algorithm is based on a suitable preconditioned implicit finite-difference scheme, grid, and treatment of the boundary data. Second-order accuracy, unconditional stability, and unconditional convergence of solutions of the finite-difference scheme to a constant as the time-step index tends to infinity are further properties of the method. Several examples, pertaining to financial mathematics, physics, and genetics, are presented for the purpose of illustration.

  17. Application of GA, PSO, and ACO algorithms to path planning of autonomous underwater vehicles

    NASA Astrophysics Data System (ADS)

    Aghababa, Mohammad Pourmahmood; Amrollahi, Mohammad Hossein; Borjkhani, Mehdi

    2012-09-01

    In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwater vehicles were computed using a numerical solution of a nonlinear optimal control problem (NOCP). An energy performance index as a cost function, which should be minimized, was defined. The resulting problem was a two-point boundary value problem (TPBVP). A genetic algorithm (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) algorithms were applied to solve the resulting TPBVP. Applying an Euler-Lagrange equation to the NOCP, a conjugate gradient penalty method was also adopted to solve the TPBVP. The problem of energetic environments, involving some energy sources, was discussed. Some near-optimal paths were found using a GA, PSO, and ACO algorithms. Finally, the problem of collision avoidance in an energetic environment was also taken into account.

  18. Application of matched asymptotic expansions to lunar and interplanetary trajectories. Volume 1: Technical discussion

    NASA Technical Reports Server (NTRS)

    Lancaster, J. E.

    1973-01-01

    Previously published asymptotic solutions for lunar and interplanetary trajectories have been modified and combined to formulate a general analytical solution to the problem on N-bodies. The earlier first-order solutions, derived by the method of matched asymptotic expansions, have been extended to second order for the purpose of obtaining increased accuracy. The derivation of the second-order solution is summarized by showing the essential steps, some in functional form. The general asymptotic solution has been used as a basis for formulating a number of analytical two-point boundary value solutions. These include earth-to-moon, one- and two-impulse moon-to-earth, and interplanetary solutions. The results show that the accuracies of the asymptotic solutions range from an order of magnitude better than conic approximations to that of numerical integration itself. Also, since no iterations are required, the asymptotic boundary value solutions are obtained in a fraction of the time required for comparable numerically integrated solutions. The subject of minimizing the second-order error is discussed, and recommendations made for further work directed toward achieving a uniform accuracy in all applications.

  19. Boundary-integral modeling of cochlear hydrodynamics

    NASA Astrophysics Data System (ADS)

    Pozrikidis, C.

    2008-04-01

    A two-dimensional model that captures the essential features of the vibration of the basilar membrane of the cochlea is proposed. The flow due to the vibration of the stapes footplate and round window is modeled by a point source and a point sink, and the cochlear pressure is computed simultaneously with the oscillations of the basilar membrane. The mathematical formulation relies on the boundary-integral representation of the potential flow established far from the basilar membrane and cochlea side walls, neglecting the thin Stokes boundary layer lining these surfaces. The boundary-integral approach furnishes integral equations for the membrane vibration amplitude and pressure distribution on the upper or lower side of the membrane. Several approaches are discussed, and numerical solutions in the frequency domain are presented for a rectangular cochlea model using different membrane response functions. The numerical results reproduce and extend the theoretical predictions of previous authors and delineate the effect of physical and geometrical parameters. It is found that the membrane vibration depends weakly on the position of the membrane between the upper and lower wall of the cochlear channel and on the precise location of the oval and round windows. Solutions of the initial-value problem with a single-period sinusoidal impulse reveal the formation of a traveling wave packet that eventually disappears at the helicotrema.

  20. An iterative kernel based method for fourth order nonlinear equation with nonlinear boundary condition

    NASA Astrophysics Data System (ADS)

    Azarnavid, Babak; Parand, Kourosh; Abbasbandy, Saeid

    2018-06-01

    This article discusses an iterative reproducing kernel method with respect to its effectiveness and capability of solving a fourth-order boundary value problem with nonlinear boundary conditions modeling beams on elastic foundations. Since there is no method of obtaining reproducing kernel which satisfies nonlinear boundary conditions, the standard reproducing kernel methods cannot be used directly to solve boundary value problems with nonlinear boundary conditions as there is no knowledge about the existence and uniqueness of the solution. The aim of this paper is, therefore, to construct an iterative method by the use of a combination of reproducing kernel Hilbert space method and a shooting-like technique to solve the mentioned problems. Error estimation for reproducing kernel Hilbert space methods for nonlinear boundary value problems have yet to be discussed in the literature. In this paper, we present error estimation for the reproducing kernel method to solve nonlinear boundary value problems probably for the first time. Some numerical results are given out to demonstrate the applicability of the method.

  1. Possible effects of free convection on fire behavior - laminar and turbulent line and point sources of heat

    Treesearch

    S. Scesa; F. M. Sauer

    1954-01-01

    The transfer theory is applied to the problem of atmospheric diffusion of momentum and heat induced by line and point sources of heat on the surface of the earth. In order that the validity of the approximations of the boundary layer theory be realized, the thickness of the layer in which the temperatures and velocities differ appreciably from the values at...

  2. Feedback laws for fuel minimization for transport aircraft

    NASA Technical Reports Server (NTRS)

    Price, D. B.; Gracey, C.

    1984-01-01

    The Theoretical Mechanics Branch has as one of its long-range goals to work toward solving real-time trajectory optimization problems on board an aircraft. This is a generic problem that has application to all aspects of aviation from general aviation through commercial to military. Overall interest is in the generic problem, but specific problems to achieve concrete results are examined. The problem is to develop control laws that generate approximately optimal trajectories with respect to some criteria such as minimum time, minimum fuel, or some combination of the two. These laws must be simple enough to be implemented on a computer that is flown on board an aircraft, which implies a major simplification from the two point boundary value problem generated by a standard trajectory optimization problem. In addition, the control laws allow for changes in end conditions during the flight, and changes in weather along a planned flight path. Therefore, a feedback control law that generates commands based on the current state rather than a precomputed open-loop control law is desired. This requirement, along with the need for order reduction, argues for the application of singular perturbation techniques.

  3. The Goertler vortex instability mechanism in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Hall, P.

    1984-01-01

    The two dimensional boundary layer on a concave wall is centrifugally unstable with respect to vortices aligned with the basic flow for sufficiently high values of the Goertler number. However, in most situations of practical interest the basic flow is three dimensional and previous theoretical investigations do not apply. The linear stability of the flow over an infinitely long swept wall of variable curvature is considered. If there is no pressure gradient in the boundary layer the instability problem can always be related to an equivalent two dimensional calculation. However, in general, this is not the case and even for small values of the crossflow velocity field dramatic differences between the two and three dimensional problems emerge. When the size of the crossflow is further increased, the vortices in the neutral location have their axes locally perpendicular to the vortex lines of the basic flow.

  4. Scalar Casimir densities and forces for parallel plates in cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Bezerra de Mello, E. R.; Saharian, A. A.; Abajyan, S. V.

    2018-04-01

    We analyze the Green function, the Casimir densities and forces associated with a massive scalar quantum field confined between two parallel plates in a higher dimensional cosmic string spacetime. The plates are placed orthogonal to the string, and the field obeys the Robin boundary conditions on them. The boundary-induced contributions are explicitly extracted in the vacuum expectation values (VEVs) of the field squared and of the energy-momentum tensor for both the single plate and two plates geometries. The VEV of the energy-momentum tensor, in additional to the diagonal components, contains an off diagonal component corresponding to the shear stress. The latter vanishes on the plates in special cases of Dirichlet and Neumann boundary conditions. For points outside the string core the topological contributions in the VEVs are finite on the plates. Near the string the VEVs are dominated by the boundary-free part, whereas at large distances the boundary-induced contributions dominate. Due to the nonzero off diagonal component of the vacuum energy-momentum tensor, in addition to the normal component, the Casimir forces have nonzero component parallel to the boundary (shear force). Unlike the problem on the Minkowski bulk, the normal forces acting on the separate plates, in general, do not coincide if the corresponding Robin coefficients are different. Another difference is that in the presence of the cosmic string the Casimir forces for Dirichlet and Neumann boundary conditions differ. For Dirichlet boundary condition the normal Casimir force does not depend on the curvature coupling parameter. This is not the case for other boundary conditions. A new qualitative feature induced by the cosmic string is the appearance of the shear stress acting on the plates. The corresponding force is directed along the radial coordinate and vanishes for Dirichlet and Neumann boundary conditions. Depending on the parameters of the problem, the radial component of the shear force can be either positive or negative.

  5. The free versus fixed geodetic boundary value problem for different combinations of geodetic observables

    NASA Astrophysics Data System (ADS)

    Grafarend, E. W.; Heck, B.; Knickmeyer, E. H.

    1985-03-01

    Various formulations of the geodetic fixed and free boundary value problem are presented, depending upon the type of boundary data. For the free problem, boundary data of type astronomical latitude, astronomical longitude and a pair of the triplet potential, zero and first-order vertical gradient of gravity are presupposed. For the fixed problem, either the potential or gravity or the vertical gradient of gravity is assumed to be given on the boundary. The potential and its derivatives on the boundary surface are linearized with respect to a reference potential and a reference surface by Taylor expansion. The Eulerian and Lagrangean concepts of a perturbation theory of the nonlinear geodetic boundary value problem are reviewed. Finally the boundary value problems are solved by Hilbert space techniques leading to new generalized Stokes and Hotine functions. Reduced Stokes and Hotine functions are recommended for numerical reasons. For the case of a boundary surface representing the topography a base representation of the solution is achieved by solving an infinite dimensional system of equations. This system of equations is obtained by means of the product-sum-formula for scalar surface spherical harmonics with Wigner 3j-coefficients.

  6. Spectral asymptotics of Euclidean quantum gravity with diff-invariant boundary conditions

    NASA Astrophysics Data System (ADS)

    Esposito, Giampiero; Fucci, Guglielmo; Kamenshchik, Alexander Yu; Kirsten, Klaus

    2005-03-01

    A general method is known to exist for studying Abelian and non-Abelian gauge theories, as well as Euclidean quantum gravity, at 1-loop level on manifolds with boundary. In the latter case, boundary conditions on metric perturbations h can be chosen to be completely invariant under infinitesimal diffeomorphisms, to preserve the invariance group of the theory and BRST symmetry. In the de Donder gauge, however, the resulting boundary-value problem for the Laplace-type operator acting on h is known to be self-adjoint but not strongly elliptic. The latter is a technical condition ensuring that a unique smooth solution of the boundary-value problem exists, which implies, in turn, that the global heat-kernel asymptotics yielding 1-loop divergences and 1-loop effective action actually exists. The present paper shows that, on the Euclidean 4-ball, only the scalar part of perturbative modes for quantum gravity is affected by the lack of strong ellipticity. Further evidence for lack of strong ellipticity, from an analytic point of view, is therefore obtained. Interestingly, three sectors of the scalar-perturbation problem remain elliptic, while lack of strong ellipticity is 'confined' to the remaining fourth sector. The integral representation of the resulting ζ-function asymptotics on the Euclidean 4-ball is also obtained; this remains regular at the origin by virtue of a spectral identity here obtained for the first time.

  7. Positivity and Almost Positivity of Biharmonic Green's Functions under Dirichlet Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Grunau, Hans-Christoph; Robert, Frédéric

    2010-03-01

    In general, for higher order elliptic equations and boundary value problems like the biharmonic equation and the linear clamped plate boundary value problem, neither a maximum principle nor a comparison principle or—equivalently—a positivity preserving property is available. The problem is rather involved since the clamped boundary conditions prevent the boundary value problem from being reasonably written as a system of second order boundary value problems. It is shown that, on the other hand, for bounded smooth domains {Ω subsetmathbb{R}^n} , the negative part of the corresponding Green’s function is “small” when compared with its singular positive part, provided {n≥q 3} . Moreover, the biharmonic Green’s function in balls {Bsubsetmathbb{R}^n} under Dirichlet (that is, clamped) boundary conditions is known explicitly and is positive. It has been known for some time that positivity is preserved under small regular perturbations of the domain, if n = 2. In the present paper, such a stability result is proved for {n≥q 3}.

  8. Second-Order Two-Sided Estimates in Nonlinear Elliptic Problems

    NASA Astrophysics Data System (ADS)

    Cianchi, Andrea; Maz'ya, Vladimir G.

    2018-05-01

    Best possible second-order regularity is established for solutions to p-Laplacian type equations with {p \\in (1, ∞)} and a square-integrable right-hand side. Our results provide a nonlinear counterpart of the classical L 2-coercivity theory for linear problems, which is missing in the existing literature. Both local and global estimates are obtained. The latter apply to solutions to either Dirichlet or Neumann boundary value problems. Minimal regularity on the boundary of the domain is required, although our conclusions are new even for smooth domains. If the domain is convex, no regularity of its boundary is needed at all.

  9. Numerical Solution of Time-Dependent Problems with a Fractional-Power Elliptic Operator

    NASA Astrophysics Data System (ADS)

    Vabishchevich, P. N.

    2018-03-01

    A time-dependent problem in a bounded domain for a fractional diffusion equation is considered. The first-order evolution equation involves a fractional-power second-order elliptic operator with Robin boundary conditions. A finite-element spatial approximation with an additive approximation of the operator of the problem is used. The time approximation is based on a vector scheme. The transition to a new time level is ensured by solving a sequence of standard elliptic boundary value problems. Numerical results obtained for a two-dimensional model problem are presented.

  10. Comments on numerical solution of boundary value problems of the Laplace equation and calculation of eigenvalues by the grid method

    NASA Technical Reports Server (NTRS)

    Lyusternik, L. A.

    1980-01-01

    The mathematics involved in numerically solving for the plane boundary value of the Laplace equation by the grid method is developed. The approximate solution of a boundary value problem for the domain of the Laplace equation by the grid method consists of finding u at the grid corner which satisfies the equation at the internal corners (u=Du) and certain boundary value conditions at the boundary corners.

  11. Numerical Determination of Critical Conditions for Thermal Ignition

    NASA Technical Reports Server (NTRS)

    Luo, W.; Wake, G. C.; Hawk, C. W.; Litchford, R. J.

    2008-01-01

    The determination of ignition or thermal explosion in an oxidizing porous body of material, as described by a dimensionless reaction-diffusion equation of the form .tu = .2u + .e-1/u over the bounded region O, is critically reexamined from a modern perspective using numerical methodologies. First, the classic stationary model is revisited to establish the proper reference frame for the steady-state solution space, and it is demonstrated how the resulting nonlinear two-point boundary value problem can be reexpressed as an initial value problem for a system of first-order differential equations, which may be readily solved using standard algorithms. Then, the numerical procedure is implemented and thoroughly validated against previous computational results based on sophisticated path-following techniques. Next, the transient nonstationary model is attacked, and the full nonlinear form of the reaction-diffusion equation, including a generalized convective boundary condition, is discretized and expressed as a system of linear algebraic equations. The numerical methodology is implemented as a computer algorithm, and validation computations are carried out as a prelude to a broad-ranging evaluation of the assembly problem and identification of the watershed critical initial temperature conditions for thermal ignition. This numerical methodology is then used as the basis for studying the relationship between the shape of the critical initial temperature distribution and the corresponding spatial moments of its energy content integral and an attempt to forge a fundamental conjecture governing this relation. Finally, the effects of dynamic boundary conditions on the classic storage problem are investigated and the groundwork is laid for the development of an approximate solution methodology based on adaptation of the standard stationary model.

  12. A classical Perron method for existence of smooth solutions to boundary value and obstacle problems for degenerate-elliptic operators via holomorphic maps

    NASA Astrophysics Data System (ADS)

    Feehan, Paul M. N.

    2017-09-01

    We prove existence of solutions to boundary value problems and obstacle problems for degenerate-elliptic, linear, second-order partial differential operators with partial Dirichlet boundary conditions using a new version of the Perron method. The elliptic operators considered have a degeneracy along a portion of the domain boundary which is similar to the degeneracy of a model linear operator identified by Daskalopoulos and Hamilton [9] in their study of the porous medium equation or the degeneracy of the Heston operator [21] in mathematical finance. Existence of a solution to the partial Dirichlet problem on a half-ball, where the operator becomes degenerate on the flat boundary and a Dirichlet condition is only imposed on the spherical boundary, provides the key additional ingredient required for our Perron method. Surprisingly, proving existence of a solution to this partial Dirichlet problem with ;mixed; boundary conditions on a half-ball is more challenging than one might expect. Due to the difficulty in developing a global Schauder estimate and due to compatibility conditions arising where the ;degenerate; and ;non-degenerate boundaries; touch, one cannot directly apply the continuity or approximate solution methods. However, in dimension two, there is a holomorphic map from the half-disk onto the infinite strip in the complex plane and one can extend this definition to higher dimensions to give a diffeomorphism from the half-ball onto the infinite ;slab;. The solution to the partial Dirichlet problem on the half-ball can thus be converted to a partial Dirichlet problem on the slab, albeit for an operator which now has exponentially growing coefficients. The required Schauder regularity theory and existence of a solution to the partial Dirichlet problem on the slab can nevertheless be obtained using previous work of the author and C. Pop [16]. Our Perron method relies on weak and strong maximum principles for degenerate-elliptic operators, concepts of continuous subsolutions and supersolutions for boundary value and obstacle problems for degenerate-elliptic operators, and maximum and comparison principle estimates previously developed by the author [13].

  13. Solving time-dependent two-dimensional eddy current problems

    NASA Technical Reports Server (NTRS)

    Lee, Min Eig; Hariharan, S. I.; Ida, Nathan

    1988-01-01

    Results of transient eddy current calculations are reported. For simplicity, a two-dimensional transverse magnetic field which is incident on an infinitely long conductor is considered. The conductor is assumed to be a good but not perfect conductor. The resulting problem is an interface initial boundary value problem with the boundary of the conductor being the interface. A finite difference method is used to march the solution explicitly in time. The method is shown. Treatment of appropriate radiation conditions is given special consideration. Results are validated with approximate analytic solutions. Two stringent test cases of high and low frequency incident waves are considered to validate the results.

  14. Exact solution of two collinear cracks normal to the boundaries of a 1D layered hexagonal piezoelectric quasicrystal

    NASA Astrophysics Data System (ADS)

    Zhou, Y.-B.; Li, X.-F.

    2018-07-01

    The electroelastic problem related to two collinear cracks of equal length and normal to the boundaries of a one-dimensional hexagonal piezoelectric quasicrystal layer is analysed. By using the finite Fourier transform, a mixed boundary value problem is solved when antiplane mechanical loading and inplane electric loading are applied. The problem is reduce to triple series equations, which are then transformed to a singular integral equation. For uniform remote loading, an exact solution is obtained in closed form, and explicit expressions for the electroelastic field are determined. The intensity factors of the electroelastic field and the energy release rate at the inner and outer crack tips are given and presented graphically.

  15. Aerodynamics of an airfoil with a jet issuing from its surface

    NASA Technical Reports Server (NTRS)

    Tavella, D. A.; Karamcheti, K.

    1982-01-01

    A simple, two dimensional, incompressible and inviscid model for the problem posed by a two dimensional wing with a jet issuing from its lower surface is considered and a parametric analysis is carried out to observe how the aerodynamic characteristics depend on the different parameters. The mathematical problem constitutes a boundary value problem where the position of part of the boundary is not known a priori. A nonlinear optimization approach was used to solve the problem, and the analysis reveals interesting characteristics that may help to better understand the physics involved in more complex situations in connection with high lift systems.

  16. MHD stagnation-point flow over a nonlinearly shrinking sheet with suction effect

    NASA Astrophysics Data System (ADS)

    Awaludin, Izyan Syazana; Ahmad, Rokiah; Ishak, Anuar

    2018-04-01

    The stagnation point flow over a shrinking permeable sheet in the existence of magnetic field is numerically investigated in this paper. The system of partial differential equations are transformed to a nonlinear ordinary differential equation using similarity transformation and is solved numerically using the boundary value problem solver, bvp4c, in Matlab software. It is found that dual solutions exist for a certain range of the shrinking strength.

  17. Stability of semidiscrete approximations for hyperbolic initial-boundary-value problems: An eigenvalue analysis

    NASA Technical Reports Server (NTRS)

    Warming, Robert F.; Beam, Richard M.

    1986-01-01

    A hyperbolic initial-boundary-value problem can be approximated by a system of ordinary differential equations (ODEs) by replacing the spatial derivatives by finite-difference approximations. The resulting system of ODEs is called a semidiscrete approximation. A complication is the fact that more boundary conditions are required for the spatially discrete approximation than are specified for the partial differential equation. Consequently, additional numerical boundary conditions are required and improper treatment of these additional conditions can lead to instability. For a linear initial-boundary-value problem (IBVP) with homogeneous analytical boundary conditions, the semidiscrete approximation results in a system of ODEs of the form du/dt = Au whose solution can be written as u(t) = exp(At)u(O). Lax-Richtmyer stability requires that the matrix norm of exp(At) be uniformly bounded for O less than or = t less than or = T independent of the spatial mesh size. Although the classical Lax-Richtmyer stability definition involves a conventional vector norm, there is no known algebraic test for the uniform boundedness of the matrix norm of exp(At) for hyperbolic IBVPs. An alternative but more complicated stability definition is used in the theory developed by Gustafsson, Kreiss, and Sundstrom (GKS). The two methods are compared.

  18. Analytical approximation schemes for solving exact renormalization group equations in the local potential approximation

    NASA Astrophysics Data System (ADS)

    Bervillier, C.; Boisseau, B.; Giacomini, H.

    2008-02-01

    The relation between the Wilson-Polchinski and the Litim optimized ERGEs in the local potential approximation is studied with high accuracy using two different analytical approaches based on a field expansion: a recently proposed genuine analytical approximation scheme to two-point boundary value problems of ordinary differential equations, and a new one based on approximating the solution by generalized hypergeometric functions. A comparison with the numerical results obtained with the shooting method is made. A similar accuracy is reached in each case. Both two methods appear to be more efficient than the usual field expansions frequently used in the current studies of ERGEs (in particular for the Wilson-Polchinski case in the study of which they fail).

  19. Time as an Observable in Nonrelativistic Quantum Mechanics

    NASA Technical Reports Server (NTRS)

    Hahne, G. E.

    2003-01-01

    The argument follows from the viewpoint that quantum mechanics is taken not in the usual form involving vectors and linear operators in Hilbert spaces, but as a boundary value problem for a special class of partial differential equations-in the present work, the nonrelativistic Schrodinger equation for motion of a structureless particle in four- dimensional space-time in the presence of a potential energy distribution that can be time-as well as space-dependent. The domain of interest is taken to be one of two semi-infinite boxes, one bounded by two t=constant planes and the other by two t=constant planes. Each gives rise to a characteristic boundary value problem: one in which the initial, input values on one t=constant wall are given, with zero asymptotic wavefunction values in all spatial directions, the output being the values on the second t=constant wall; the second with certain input values given on both z=constant walls, with zero asymptotic values in all directions involving time and the other spatial coordinates, the output being the complementary values on the z=constant walls. The first problem corresponds to ordinary quantum mechanics; the second, to a fully time-dependent version of a problem normally considered only for the steady state (time-independent Schrodinger equation). The second problem is formulated in detail. A conserved indefinite metric is associated with space-like propagation, where the sign of the norm of a unidirectional state corresponds to its spatial direction of travel.

  20. Quadratic RK shooting solution for a environmental parameter prediction boundary value problem

    NASA Astrophysics Data System (ADS)

    Famelis, Ioannis Th.; Tsitouras, Ch.

    2014-10-01

    Using tools of Information Geometry, the minimum distance between two elements of a statistical manifold is defined by the corresponding geodesic, e.g. the minimum length curve that connects them. Such a curve, where the probability distribution functions in the case of our meteorological data are two parameter Weibull distributions, satisfies a 2nd order Boundary Value (BV) system. We study the numerical treatment of the resulting special quadratic form system using Shooting method. We compare the solutions of the problem when we employ a classical Singly Diagonally Implicit Runge Kutta (SDIRK) 4(3) pair of methods and a quadratic SDIRK 5(3) pair . Both pairs have the same computational costs whereas the second one attains higher order as it is specially constructed for quadratic problems.

  1. Boundary layer flow of air over water on a flat plate

    NASA Technical Reports Server (NTRS)

    Nelson, John; Alving, Amy E.; Joseph, Daniel D.

    1993-01-01

    A non-similar boundary layer theory for air blowing over a water layer on a flat plate is formulated and studied as a two-fluid problem in which the position of the interface is unknown. The problem is considered at large Reynolds number (based on x), away from the leading edge. A simple non-similar analytic solution of the problem is derived for which the interface height is proportional to x(sub 1/4) and the water and air flow satisfy the Blasius boundary layer equations, with a linear profile in the water and a Blasius profile in the air. Numerical studies of the initial value problem suggests that this asymptotic, non-similar air-water boundary layer solution is a global attractor for all initial conditions.

  2. Boundary condition computational procedures for inviscid, supersonic steady flow field calculations

    NASA Technical Reports Server (NTRS)

    Abbett, M. J.

    1971-01-01

    Results are given of a comparative study of numerical procedures for computing solid wall boundary points in supersonic inviscid flow calculatons. Twenty five different calculation procedures were tested on two sample problems: a simple expansion wave and a simple compression (two-dimensional steady flow). A simple calculation procedure was developed. The merits and shortcomings of the various procedures are discussed, along with complications for three-dimensional and time-dependent flows.

  3. A Global Interpolation Function (GIF) boundary element code for viscous flows

    NASA Technical Reports Server (NTRS)

    Reddy, D. R.; Lafe, O.; Cheng, A. H-D.

    1995-01-01

    Using global interpolation functions (GIF's), boundary element solutions are obtained for two- and three-dimensional viscous flows. The solution is obtained in the form of a boundary integral plus a series of global basis functions. The unknown coefficients of the GIF's are determined to ensure the satisfaction of the governing equations at selected collocation points. The values of the coefficients involved in the boundary integral equations are determined by enforcing the boundary conditions. Both primitive variable and vorticity-velocity formulations are examined.

  4. Parallel algorithms for boundary value problems

    NASA Technical Reports Server (NTRS)

    Lin, Avi

    1990-01-01

    A general approach to solve boundary value problems numerically in a parallel environment is discussed. The basic algorithm consists of two steps: the local step where all the P available processors work in parallel, and the global step where one processor solves a tridiagonal linear system of the order P. The main advantages of this approach are two fold. First, this suggested approach is very flexible, especially in the local step and thus the algorithm can be used with any number of processors and with any of the SIMD or MIMD machines. Secondly, the communication complexity is very small and thus can be used as easily with shared memory machines. Several examples for using this strategy are discussed.

  5. Unified Lambert Tool for Massively Parallel Applications in Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Woollands, Robyn M.; Read, Julie; Hernandez, Kevin; Probe, Austin; Junkins, John L.

    2018-03-01

    This paper introduces a parallel-compiled tool that combines several of our recently developed methods for solving the perturbed Lambert problem using modified Chebyshev-Picard iteration. This tool (unified Lambert tool) consists of four individual algorithms, each of which is unique and better suited for solving a particular type of orbit transfer. The first is a Keplerian Lambert solver, which is used to provide a good initial guess (warm start) for solving the perturbed problem. It is also used to determine the appropriate algorithm to call for solving the perturbed problem. The arc length or true anomaly angle spanned by the transfer trajectory is the parameter that governs the automated selection of the appropriate perturbed algorithm, and is based on the respective algorithm convergence characteristics. The second algorithm solves the perturbed Lambert problem using the modified Chebyshev-Picard iteration two-point boundary value solver. This algorithm does not require a Newton-like shooting method and is the most efficient of the perturbed solvers presented herein, however the domain of convergence is limited to about a third of an orbit and is dependent on eccentricity. The third algorithm extends the domain of convergence of the modified Chebyshev-Picard iteration two-point boundary value solver to about 90% of an orbit, through regularization with the Kustaanheimo-Stiefel transformation. This is the second most efficient of the perturbed set of algorithms. The fourth algorithm uses the method of particular solutions and the modified Chebyshev-Picard iteration initial value solver for solving multiple revolution perturbed transfers. This method does require "shooting" but differs from Newton-like shooting methods in that it does not require propagation of a state transition matrix. The unified Lambert tool makes use of the General Mission Analysis Tool and we use it to compute thousands of perturbed Lambert trajectories in parallel on the Space Situational Awareness computer cluster at the LASR Lab, Texas A&M University. We demonstrate the power of our tool by solving a highly parallel example problem, that is the generation of extremal field maps for optimal spacecraft rendezvous (and eventual orbit debris removal). In addition we demonstrate the need for including perturbative effects in simulations for satellite tracking or data association. The unified Lambert tool is ideal for but not limited to space situational awareness applications.

  6. Optimal Control and Smoothing Techniques for Computing Minimum Fuel Orbital Transfers and Rendezvous

    NASA Astrophysics Data System (ADS)

    Epenoy, R.; Bertrand, R.

    We investigate in this paper the computation of minimum fuel orbital transfers and rendezvous. Each problem is seen as an optimal control problem and is solved by means of shooting methods [1]. This approach corresponds to the use of Pontryagin's Maximum Principle (PMP) [2-4] and leads to the solution of a Two Point Boundary Value Problem (TPBVP). It is well known that this last one is very difficult to solve when the performance index is fuel consumption because in this case the optimal control law has a particular discontinuous structure called "bang-bang". We will show how to modify the performance index by a term depending on a small parameter in order to yield regular controls. Then, a continuation method on this parameter will lead us to the solution of the original problem. Convergence theorems will be given. Finally, numerical examples will illustrate the interest of our method. We will consider two particular problems: The GTO (Geostationary Transfer Orbit) to GEO (Geostationary Equatorial Orbit) transfer and the LEO (Low Earth Orbit) rendezvous.

  7. A phase transition in the first passage of a Brownian process through a fluctuating boundary with implications for neural coding.

    PubMed

    Taillefumier, Thibaud; Magnasco, Marcelo O

    2013-04-16

    Finding the first time a fluctuating quantity reaches a given boundary is a deceptively simple-looking problem of vast practical importance in physics, biology, chemistry, neuroscience, economics, and industrial engineering. Problems in which the bound to be traversed is itself a fluctuating function of time include widely studied problems in neural coding, such as neuronal integrators with irregular inputs and internal noise. We show that the probability p(t) that a Gauss-Markov process will first exceed the boundary at time t suffers a phase transition as a function of the roughness of the boundary, as measured by its Hölder exponent H. The critical value occurs when the roughness of the boundary equals the roughness of the process, so for diffusive processes the critical value is Hc = 1/2. For smoother boundaries, H > 1/2, the probability density is a continuous function of time. For rougher boundaries, H < 1/2, the probability is concentrated on a Cantor-like set of zero measure: the probability density becomes divergent, almost everywhere either zero or infinity. The critical point Hc = 1/2 corresponds to a widely studied case in the theory of neural coding, in which the external input integrated by a model neuron is a white-noise process, as in the case of uncorrelated but precisely balanced excitatory and inhibitory inputs. We argue that this transition corresponds to a sharp boundary between rate codes, in which the neural firing probability varies smoothly, and temporal codes, in which the neuron fires at sharply defined times regardless of the intensity of internal noise.

  8. Convergence of an hp-Adaptive Finite Element Strategy in Two and Three Space-Dimensions

    NASA Astrophysics Data System (ADS)

    Bürg, Markus; Dörfler, Willy

    2010-09-01

    We show convergence of an automatic hp-adaptive refinement strategy for the finite element method on the elliptic boundary value problem. The strategy is a generalization of a refinement strategy proposed for one-dimensional situations to problems in two and three space-dimensions.

  9. Completed Beltrami-Michell formulation for analyzing mixed boundary value problems in elasticity

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Kaljevic, Igor; Hopkins, Dale A.; Saigal, Sunil

    1995-01-01

    In elasticity, the method of forces, wherein stress parameters are considered as the primary unknowns, is known as the Beltrami-Michell formulation (BMF). The existing BMF can only solve stress boundary value problems; it cannot handle the more prevalent displacement of mixed boundary value problems of elasticity. Therefore, this formulation, which has restricted application, could not become a true alternative to the Navier's displacement method, which can solve all three types of boundary value problems. The restrictions in the BMF have been alleviated by augmenting the classical formulation with a novel set of conditions identified as the boundary compatibility conditions. This new method, which completes the classical force formulation, has been termed the completed Beltrami-Michell formulation (CBMF). The CBMF can solve general elasticity problems with stress, displacement, and mixed boundary conditions in terms of stresses as the primary unknowns. The CBMF is derived from the stationary condition of the variational functional of the integrated force method. In the CBMF, stresses for kinematically stable structures can be obtained without any reference to the displacements either in the field or on the boundary. This paper presents the CBMF and its derivation from the variational functional of the integrated force method. Several examples are presented to demonstrate the applicability of the completed formulation for analyzing mixed boundary value problems under thermomechanical loads. Selected example problems include a cylindrical shell wherein membrane and bending responses are coupled, and a composite circular plate.

  10. A fast direct solver for boundary value problems on locally perturbed geometries

    NASA Astrophysics Data System (ADS)

    Zhang, Yabin; Gillman, Adrianna

    2018-03-01

    Many applications including optimal design and adaptive discretization techniques involve solving several boundary value problems on geometries that are local perturbations of an original geometry. This manuscript presents a fast direct solver for boundary value problems that are recast as boundary integral equations. The idea is to write the discretized boundary integral equation on a new geometry as a low rank update to the discretized problem on the original geometry. Using the Sherman-Morrison formula, the inverse can be expressed in terms of the inverse of the original system applied to the low rank factors and the right hand side. Numerical results illustrate for problems where perturbation is localized the fast direct solver is three times faster than building a new solver from scratch.

  11. Some problems of the calculation of three-dimensional boundary layer flows on general configurations

    NASA Technical Reports Server (NTRS)

    Cebeci, T.; Kaups, K.; Mosinskis, G. J.; Rehn, J. A.

    1973-01-01

    An accurate solution of the three-dimensional boundary layer equations over general configurations such as those encountered in aircraft and space shuttle design requires a very efficient, fast, and accurate numerical method with suitable turbulence models for the Reynolds stresses. The efficiency, speed, and accuracy of a three-dimensional numerical method together with the turbulence models for the Reynolds stresses are examined. The numerical method is the implicit two-point finite difference approach (Box Method) developed by Keller and applied to the boundary layer equations by Keller and Cebeci. In addition, a study of some of the problems that may arise in the solution of these equations for three-dimensional boundary layer flows over general configurations.

  12. Computational approach to Thornley's problem by bivariate operational calculus

    NASA Astrophysics Data System (ADS)

    Bazhlekova, E.; Dimovski, I.

    2012-10-01

    Thornley's problem is an initial-boundary value problem with a nonlocal boundary condition for linear onedimensional reaction-diffusion equation, used as a mathematical model of spiral phyllotaxis in botany. Applying a bivariate operational calculus we find explicit representation of the solution, containing two convolution products of special solutions and the arbitrary initial and boundary functions. We use a non-classical convolution with respect to the space variable, extending in this way the classical Duhamel principle. The special solutions involved are represented in the form of fast convergent series. Numerical examples are considered to show the application of the present technique and to analyze the character of the solution.

  13. Weak stability of the plasma-vacuum interface problem

    NASA Astrophysics Data System (ADS)

    Catania, Davide; D'Abbicco, Marcello; Secchi, Paolo

    2016-09-01

    We consider the free boundary problem for the two-dimensional plasma-vacuum interface in ideal compressible magnetohydrodynamics (MHD). In the plasma region, the flow is governed by the usual compressible MHD equations, while in the vacuum region we consider the Maxwell system for the electric and the magnetic fields. At the free interface, driven by the plasma velocity, the total pressure is continuous and the magnetic field on both sides is tangent to the boundary. We study the linear stability of rectilinear plasma-vacuum interfaces by computing the Kreiss-Lopatinskiĭ determinant of an associated linearized boundary value problem. Apart from possible resonances, we obtain that the piecewise constant plasma-vacuum interfaces are always weakly linearly stable, independently of the size of tangential velocity, magnetic and electric fields on both sides of the characteristic discontinuity. We also prove that solutions to the linearized problem obey an energy estimate with a loss of regularity with respect to the source terms, both in the interior domain and on the boundary, due to the failure of the uniform Kreiss-Lopatinskiĭ condition, as the Kreiss-Lopatinskiĭ determinant associated with this linearized boundary value problem has roots on the boundary of the frequency space. In the proof of the a priori estimates, a crucial part is played by the construction of symmetrizers for a reduced differential system, which has poles at which the Kreiss-Lopatinskiĭ condition may fail simultaneously.

  14. The role of damage-softened material behavior in the fracture of composites and adhesives

    NASA Technical Reports Server (NTRS)

    Ungsuwarungsri, T.; Knauss, W. G.

    1986-01-01

    Failure mechanisms of materials under very high strains experienced at and ahead of the crack tip such as formation, growth, and interaction of microvoids in ductile materials, microcracks in brittle solids or crazes in polymers and adhesives are represented by one-dimensional, nonlinear stress-strain relations possessing different ways by which the material loses capacity to carry load up to fracture or total separation. A double cantilever beam (DCB) type specimen is considered. The nonlinear material is confined to a thin strip between the two elastic beams loaded by a wedge. The problem is first modeled as a beam on a nonlinear foundation. The pertinent equation is solved numerically as a two-point boundary value problem for both the stationary and the quasi-stationay propagating crack. A finite element model is then used to model the problem in more detail in order to assess the adequacy of the beam model for the reduction of experimental data to determine in-situ properties of the thin interlayer.

  15. Forced cubic Schrödinger equation with Robin boundary data: large-time asymptotics

    PubMed Central

    Kaikina, Elena I.

    2013-01-01

    We consider the initial-boundary-value problem for the cubic nonlinear Schrödinger equation, formulated on a half-line with inhomogeneous Robin boundary data. We study traditionally important problems of the theory of nonlinear partial differential equations, such as the global-in-time existence of solutions to the initial-boundary-value problem and the asymptotic behaviour of solutions for large time. PMID:24204185

  16. A reciprocal theorem for a mixture theory. [development of linearized theory of interacting media

    NASA Technical Reports Server (NTRS)

    Martin, C. J.; Lee, Y. M.

    1972-01-01

    A dynamic reciprocal theorem for a linearized theory of interacting media is developed. The constituents of the mixture are a linear elastic solid and a linearly viscous fluid. In addition to Steel's field equations, boundary conditions and inequalities on the material constants that have been shown by Atkin, Chadwick and Steel to be sufficient to guarantee uniqueness of solution to initial-boundary value problems are used. The elements of the theory are given and two different boundary value problems are considered. The reciprocal theorem is derived with the aid of the Laplace transform and the divergence theorem and this section is concluded with a discussion of the special cases which arise when one of the constituents of the mixture is absent.

  17. Sources of spurious force oscillations from an immersed boundary method for moving-body problems

    NASA Astrophysics Data System (ADS)

    Lee, Jongho; Kim, Jungwoo; Choi, Haecheon; Yang, Kyung-Soo

    2011-04-01

    When a discrete-forcing immersed boundary method is applied to moving-body problems, it produces spurious force oscillations on a solid body. In the present study, we identify two sources of these force oscillations. One source is from the spatial discontinuity in the pressure across the immersed boundary when a grid point located inside a solid body becomes that of fluid with a body motion. The addition of mass source/sink together with momentum forcing proposed by Kim et al. [J. Kim, D. Kim, H. Choi, An immersed-boundary finite volume method for simulations of flow in complex geometries, Journal of Computational Physics 171 (2001) 132-150] reduces the spurious force oscillations by alleviating this pressure discontinuity. The other source is from the temporal discontinuity in the velocity at the grid points where fluid becomes solid with a body motion. The magnitude of velocity discontinuity decreases with decreasing the grid spacing near the immersed boundary. Four moving-body problems are simulated by varying the grid spacing at a fixed computational time step and at a constant CFL number, respectively. It is found that the spurious force oscillations decrease with decreasing the grid spacing and increasing the computational time step size, but they depend more on the grid spacing than on the computational time step size.

  18. Solution of second order quasi-linear boundary value problems by a wavelet method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Zhou, Youhe; Wang, Jizeng, E-mail: jzwang@lzu.edu.cn

    2015-03-10

    A wavelet Galerkin method based on expansions of Coiflet-like scaling function bases is applied to solve second order quasi-linear boundary value problems which represent a class of typical nonlinear differential equations. Two types of typical engineering problems are selected as test examples: one is about nonlinear heat conduction and the other is on bending of elastic beams. Numerical results are obtained by the proposed wavelet method. Through comparing to relevant analytical solutions as well as solutions obtained by other methods, we find that the method shows better efficiency and accuracy than several others, and the rate of convergence can evenmore » reach orders of 5.8.« less

  19. Solving time-dependent two-dimensional eddy current problems

    NASA Technical Reports Server (NTRS)

    Lee, Min Eig; Hariharan, S. I.; Ida, Nathan

    1990-01-01

    Transient eddy current calculations are presented for an EM wave-scattering and field-penetrating case in which a two-dimensional transverse magnetic field is incident on a good (i.e., not perfect) and infinitely long conductor. The problem thus posed is of initial boundary-value interface type, where the boundary of the conductor constitutes the interface. A potential function is used for time-domain modeling of the situation, and finite difference-time domain techniques are used to march the potential function explicitly in time. Attention is given to the case of LF radiation conditions.

  20. State space approach to mixed boundary value problems.

    NASA Technical Reports Server (NTRS)

    Chen, C. F.; Chen, M. M.

    1973-01-01

    A state-space procedure for the formulation and solution of mixed boundary value problems is established. This procedure is a natural extension of the method used in initial value problems; however, certain special theorems and rules must be developed. The scope of the applications of the approach includes beam, arch, and axisymmetric shell problems in structural analysis, boundary layer problems in fluid mechanics, and eigenvalue problems for deformable bodies. Many classical methods in these fields developed by Holzer, Prohl, Myklestad, Thomson, Love-Meissner, and others can be either simplified or unified under new light shed by the state-variable approach. A beam problem is included as an illustration.

  1. TIGGERC: Turbomachinery Interactive Grid Generator for 2-D Grid Applications and Users Guide

    NASA Technical Reports Server (NTRS)

    Miller, David P.

    1994-01-01

    A two-dimensional multi-block grid generator has been developed for a new design and analysis system for studying multiple blade-row turbomachinery problems. TIGGERC is a mouse driven, interactive grid generation program which can be used to modify boundary coordinates and grid packing and generates surface grids using a hyperbolic tangent or algebraic distribution of grid points on the block boundaries. The interior points of each block grid are distributed using a transfinite interpolation approach. TIGGERC can generate a blocked axisymmetric H-grid, C-grid, I-grid or O-grid for studying turbomachinery flow problems. TIGGERC was developed for operation on Silicon Graphics workstations. Detailed discussion of the grid generation methodology, menu options, operational features and sample grid geometries are presented.

  2. The frequency-dependent response of single aerosol particles to vapour phase oscillations and its application in measuring diffusion coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, Thomas C.; Davies, James F.; Wilson, Kevin R.

    A new method for measuring diffusion in the condensed phase of single aerosol particles is proposed and demonstrated. The technique is based on the frequency-dependent response of a binary particle to oscillations in the vapour phase of one of its chemical components. Here, we discuss how this physical situation allows for what would typically be a non-linear boundary value problem to be approximately reduced to a linear boundary value problem. For the case of aqueous aerosol particles, we investigate the accuracy of the closed-form analytical solution to this linear problem through a comparison with the numerical solution of the fullmore » problem. Then, using experimentally measured whispering gallery modes to track the frequency-dependent response of aqueous particles to relative humidity oscillations, we determine diffusion coefficients as a function of water activity. The measured diffusion coefficients are compared to previously reported values found using the two common experiments: (i) the analysis of the sorption/desorption of water from a particle after a step-wise change to the surrounding relative humidity and (ii) the isotopic exchange of water between a particle and the vapour phase. The technique presented here has two main strengths: first, when compared to the sorption/desorption experiment, it does not require the numerical evaluation of a boundary value problem during the fitting process as a closed-form expression is available. Second, when compared to the isotope exchange experiment, it does not require the use of labeled molecules. Therefore, the frequency-dependent experiment retains the advantages of these two commonly used methods but does not suffer from their drawbacks.« less

  3. The frequency-dependent response of single aerosol particles to vapour phase oscillations and its application in measuring diffusion coefficients

    DOE PAGES

    Preston, Thomas C.; Davies, James F.; Wilson, Kevin R.

    2017-01-13

    A new method for measuring diffusion in the condensed phase of single aerosol particles is proposed and demonstrated. The technique is based on the frequency-dependent response of a binary particle to oscillations in the vapour phase of one of its chemical components. Here, we discuss how this physical situation allows for what would typically be a non-linear boundary value problem to be approximately reduced to a linear boundary value problem. For the case of aqueous aerosol particles, we investigate the accuracy of the closed-form analytical solution to this linear problem through a comparison with the numerical solution of the fullmore » problem. Then, using experimentally measured whispering gallery modes to track the frequency-dependent response of aqueous particles to relative humidity oscillations, we determine diffusion coefficients as a function of water activity. The measured diffusion coefficients are compared to previously reported values found using the two common experiments: (i) the analysis of the sorption/desorption of water from a particle after a step-wise change to the surrounding relative humidity and (ii) the isotopic exchange of water between a particle and the vapour phase. The technique presented here has two main strengths: first, when compared to the sorption/desorption experiment, it does not require the numerical evaluation of a boundary value problem during the fitting process as a closed-form expression is available. Second, when compared to the isotope exchange experiment, it does not require the use of labeled molecules. Therefore, the frequency-dependent experiment retains the advantages of these two commonly used methods but does not suffer from their drawbacks.« less

  4. Laplace Boundary-Value Problem in Paraboloidal Coordinates

    ERIC Educational Resources Information Center

    Duggen, L.; Willatzen, M.; Voon, L. C. Lew Yan

    2012-01-01

    This paper illustrates both a problem in mathematical physics, whereby the method of separation of variables, while applicable, leads to three ordinary differential equations that remain fully coupled via two separation constants and a five-term recurrence relation for series solutions, and an exactly solvable problem in electrostatics, as a…

  5. Introducing Differential Equations Students to the Fredholm Alternative--In Staggered Doses

    ERIC Educational Resources Information Center

    Savoye, Philippe

    2011-01-01

    The development, in an introductory differential equations course, of boundary value problems in parallel with initial value problems and the Fredholm Alternative. Examples are provided of pairs of homogeneous and nonhomogeneous boundary value problems for which existence and uniqueness issues are considered jointly. How this heightens students'…

  6. A global time-dependent model of thunderstorm electricity. I - Mathematical properties of the physical and numerical models

    NASA Technical Reports Server (NTRS)

    Browning, G. L.; Tzur, I.; Roble, R. G.

    1987-01-01

    A time-dependent model is introduced that can be used to simulate the interaction of a thunderstorm with its global electrical environment. The model solves the continuity equation of the Maxwell current, which is assumed to be composed of the conduction, displacement, and source currents. Boundary conditions which can be used in conjunction with the continuity equation to form a well-posed initial-boundary value problem are determined. Properties of various components of solutions of the initial-boundary value problem are analytically determined. The results indicate that the problem has two time scales, one determined by the background electrical conductivity and the other by the time variation of the source function. A numerical method for obtaining quantitative results is introduced, and its properties are studied. Some simulation results on the evolution of the displacement and conduction currents during the electrification of a storm are presented.

  7. First-Order System Least-Squares for Second-Order Elliptic Problems with Discontinuous Coefficients

    NASA Technical Reports Server (NTRS)

    Manteuffel, Thomas A.; McCormick, Stephen F.; Starke, Gerhard

    1996-01-01

    The first-order system least-squares methodology represents an alternative to standard mixed finite element methods. Among its advantages is the fact that the finite element spaces approximating the pressure and flux variables are not restricted by the inf-sup condition and that the least-squares functional itself serves as an appropriate error measure. This paper studies the first-order system least-squares approach for scalar second-order elliptic boundary value problems with discontinuous coefficients. Ellipticity of an appropriately scaled least-squares bilinear form of the size of the jumps in the coefficients leading to adequate finite element approximation results. The occurrence of singularities at interface corners and cross-points is discussed. and a weighted least-squares functional is introduced to handle such cases. Numerical experiments are presented for two test problems to illustrate the performance of this approach.

  8. The analytical solution of the problem of a shock focusing in a gas for one-dimensional case

    NASA Astrophysics Data System (ADS)

    Shestakovskaya, E. S.; Magazov, F. G.

    2018-03-01

    The analytical solution of the problem of an imploding shock wave in the vessel with an impermeable wall is constructed for the cases of planar, cylindrical and spherical symmetry. The negative velocity is set at the vessel boundary. The velocity of cold ideal gas is zero. At the initial time the shock spreads from this point into the center of symmetry. The boundary moves under the particular law which conforms to the movement of the shock. In Euler variables it moves but in Lagrangian variables its trajectory is a vertical line. Equations that determine the structure of the gas flow between the shock front and the boundary as a function of time and the Lagrangian coordinate as well as the dependence of the entropy on the shock wave velocity are obtained. Self-similar coefficients and corresponding critical values of self-similar coordinates were found for a wide range of adiabatic index. The problem is solved for Lagrangian coordinates.

  9. A modified two-layer iteration via a boundary point approach to generalized multivalued pseudomonotone mixed variational inequalities.

    PubMed

    Saddeek, Ali Mohamed

    2017-01-01

    Most mathematical models arising in stationary filtration processes as well as in the theory of soft shells can be described by single-valued or generalized multivalued pseudomonotone mixed variational inequalities with proper convex nondifferentiable functionals. Therefore, for finding the minimum norm solution of such inequalities, the current paper attempts to introduce a modified two-layer iteration via a boundary point approach and to prove its strong convergence. The results here improve and extend the corresponding recent results announced by Badriev, Zadvornov and Saddeek (Differ. Equ. 37:934-942, 2001).

  10. A numerical study of different projection-based model reduction techniques applied to computational homogenisation

    NASA Astrophysics Data System (ADS)

    Soldner, Dominic; Brands, Benjamin; Zabihyan, Reza; Steinmann, Paul; Mergheim, Julia

    2017-10-01

    Computing the macroscopic material response of a continuum body commonly involves the formulation of a phenomenological constitutive model. However, the response is mainly influenced by the heterogeneous microstructure. Computational homogenisation can be used to determine the constitutive behaviour on the macro-scale by solving a boundary value problem at the micro-scale for every so-called macroscopic material point within a nested solution scheme. Hence, this procedure requires the repeated solution of similar microscopic boundary value problems. To reduce the computational cost, model order reduction techniques can be applied. An important aspect thereby is the robustness of the obtained reduced model. Within this study reduced-order modelling (ROM) for the geometrically nonlinear case using hyperelastic materials is applied for the boundary value problem on the micro-scale. This involves the Proper Orthogonal Decomposition (POD) for the primary unknown and hyper-reduction methods for the arising nonlinearity. Therein three methods for hyper-reduction, differing in how the nonlinearity is approximated and the subsequent projection, are compared in terms of accuracy and robustness. Introducing interpolation or Gappy-POD based approximations may not preserve the symmetry of the system tangent, rendering the widely used Galerkin projection sub-optimal. Hence, a different projection related to a Gauss-Newton scheme (Gauss-Newton with Approximated Tensors- GNAT) is favoured to obtain an optimal projection and a robust reduced model.

  11. Boundary condition at a two-phase interface in the lattice Boltzmann method for the convection-diffusion equation.

    PubMed

    Yoshida, Hiroaki; Kobayashi, Takayuki; Hayashi, Hidemitsu; Kinjo, Tomoyuki; Washizu, Hitoshi; Fukuzawa, Kenji

    2014-07-01

    A boundary scheme in the lattice Boltzmann method (LBM) for the convection-diffusion equation, which correctly realizes the internal boundary condition at the interface between two phases with different transport properties, is presented. The difficulty in satisfying the continuity of flux at the interface in a transient analysis, which is inherent in the conventional LBM, is overcome by modifying the collision operator and the streaming process of the LBM. An asymptotic analysis of the scheme is carried out in order to clarify the role played by the adjustable parameters involved in the scheme. As a result, the internal boundary condition is shown to be satisfied with second-order accuracy with respect to the lattice interval, if we assign appropriate values to the adjustable parameters. In addition, two specific problems are numerically analyzed, and comparison with the analytical solutions of the problems numerically validates the proposed scheme.

  12. Integrable boundary value problems for elliptic type Toda lattice in a disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerses, Metin; Habibullin, Ismagil; Zheltukhin, Kostyantyn

    The concept of integrable boundary value problems for soliton equations on R and R{sub +} is extended to regions enclosed by smooth curves. Classes of integrable boundary conditions in a disk for the Toda lattice and its reductions are found.

  13. Low-Dispersion Scheme for Nonlinear Acoustic Waves in Nonuniform Flow

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Kaushik, Dinesh K.; Idres, Moumen

    1997-01-01

    The linear dispersion-relation-preserving scheme and its boundary conditions have been extended to the nonlinear Euler equations. This allowed computing, a nonuniform flowfield and a nonlinear acoustic wave propagation in such a medium, by the same scheme. By casting all the equations, boundary conditions, and the solution scheme in generalized curvilinear coordinates, the solutions were made possible for non-Cartesian domains and, for the better deployment of the grid points, nonuniform grid step sizes could be used. It has been tested for a number of simple initial-value and periodic-source problems. A simple demonstration of the difference between a linear and nonlinear propagation was conducted. The wall boundary condition, derived from the momentum equations and implemented through a pressure at a ghost point, and the radiation boundary condition, derived from the asymptotic solution to the Euler equations, have proven to be effective for the nonlinear equations and nonuniform flows. The nonreflective characteristic boundary conditions also have shown success but limited to the nonlinear waves in no mean flow, and failed for nonlinear waves in nonuniform flow.

  14. Unsteady separated stagnation-point flow and heat transfer of a viscous fluid over a moving flat surface

    NASA Astrophysics Data System (ADS)

    Dholey, S.

    2018-04-01

    In this paper, we have investigated numerically the laminar unsteady separated stagnation-point flow and heat transfer of a viscous fluid over a moving flat surface in the presence of a time dependent free stream velocity which causes the unsteadiness of this flow problem. The plate is assumed to move in the same or opposite direction of the free stream velocity. The flow is therefore governed by the velocity ratio parameter λ (ratio of the plate velocity to the free stream velocity) and the unsteadiness parameter β. When the plate surface moves in the same direction of the free stream velocity (i.e., when λ > 0), the solution of this flow problem continues for any given value of β. On the other hand, when they move in opposite directions (i.e., when λ < 0), the solution does not exist after a certain value of λ depending upon the values of β. In this case, separation appears inside the layer only for a negative value of β, and for a positive value of β, the boundary layer solution is terminated after a certain distance from the plate surface with an attached flow solution with no point of inflection. The concerning issue of the steady flow (β = 0) case has also been considered and two types of attached flow solutions have been found—one with a point of inflection and the other with no point of inflection, in a definite range of λ (-1.246 58 ≤ λ ≤ -1.07). However, this range decreases with an increase in |β| when β < 0. A novel result which arises from the heat transfer analysis is that for a given value of λ(= 0), first the heat transfer rate increases with the increase of the Prandtl number Pr and after attaining a maximum value, it decreases and finally tends to be zero for large values of Pr depending upon the values of β > 0. On the contrary, for a given value of β(≤ 0), the rate of heat transfer increases consistently with the increase of Pr.

  15. Propagation of Boundary-Induced Discontinuity in Stationary Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Kawagoe, Daisuke; Chen, I.-Kun

    2018-01-01

    We consider the boundary value problem of the stationary transport equation in the slab domain of general dimensions. In this paper, we discuss the relation between discontinuity of the incoming boundary data and that of the solution to the stationary transport equation. We introduce two conditions posed on the boundary data so that discontinuity of the boundary data propagates along positive characteristic lines as that of the solution to the stationary transport equation. Our analysis does not depend on the celebrated velocity averaging lemma, which is different from previous works. We also introduce an example in two dimensional case which shows that piecewise continuity of the boundary data is not a sufficient condition for the main result.

  16. Control of minimum member size in parameter-free structural shape optimization by a medial axis approximation

    NASA Astrophysics Data System (ADS)

    Schmitt, Oliver; Steinmann, Paul

    2018-06-01

    We introduce a manufacturing constraint for controlling the minimum member size in structural shape optimization problems, which is for example of interest for components fabricated in a molding process. In a parameter-free approach, whereby the coordinates of the FE boundary nodes are used as design variables, the challenging task is to find a generally valid definition for the thickness of non-parametric geometries in terms of their boundary nodes. Therefore we use the medial axis, which is the union of all points with at least two closest points on the boundary of the domain. Since the effort for the exact computation of the medial axis of geometries given by their FE discretization highly increases with the number of surface elements we use the distance function instead to approximate the medial axis by a cloud of points. The approximation is demonstrated on three 2D examples. Moreover, the formulation of a minimum thickness constraint is applied to a sensitivity-based shape optimization problem of one 2D and one 3D model.

  17. Control of minimum member size in parameter-free structural shape optimization by a medial axis approximation

    NASA Astrophysics Data System (ADS)

    Schmitt, Oliver; Steinmann, Paul

    2017-09-01

    We introduce a manufacturing constraint for controlling the minimum member size in structural shape optimization problems, which is for example of interest for components fabricated in a molding process. In a parameter-free approach, whereby the coordinates of the FE boundary nodes are used as design variables, the challenging task is to find a generally valid definition for the thickness of non-parametric geometries in terms of their boundary nodes. Therefore we use the medial axis, which is the union of all points with at least two closest points on the boundary of the domain. Since the effort for the exact computation of the medial axis of geometries given by their FE discretization highly increases with the number of surface elements we use the distance function instead to approximate the medial axis by a cloud of points. The approximation is demonstrated on three 2D examples. Moreover, the formulation of a minimum thickness constraint is applied to a sensitivity-based shape optimization problem of one 2D and one 3D model.

  18. Asymptotic analysis of the narrow escape problem in dendritic spine shaped domain: three dimensions

    NASA Astrophysics Data System (ADS)

    Li, Xiaofei; Lee, Hyundae; Wang, Yuliang

    2017-08-01

    This paper deals with the three-dimensional narrow escape problem in a dendritic spine shaped domain, which is composed of a relatively big head and a thin neck. The narrow escape problem is to compute the mean first passage time of Brownian particles traveling from inside the head to the end of the neck. The original model is to solve a mixed Dirichlet-Neumann boundary value problem for the Poisson equation in the composite domain, and is computationally challenging. In this paper we seek to transfer the original problem to a mixed Robin-Neumann boundary value problem by dropping the thin neck part, and rigorously derive the asymptotic expansion of the mean first passage time with high order terms. This study is a nontrivial three-dimensional generalization of the work in Li (2014 J. Phys. A: Math. Theor. 47 505202), where a two-dimensional analogue domain is considered.

  19. FORTRAN programs for calculating nonlinear seismic ground response in two dimensions

    USGS Publications Warehouse

    Joyner, W.B.

    1978-01-01

    The programs described here were designed for calculating the nonlinear seismic response of a two-dimensional configuration of soil underlain by a semi-infinite elastic medium representing bedrock. There are two programs. One is for plane strain motions, that is, motions in the plane perpendicular to the long axis of the structure, and the other is for antiplane strain motions, that is motions parallel to the axis. The seismic input is provided by specifying what the motion of the rock-soil boundary would be if the soil were absent and the boundary were a free surface. This may be done by supplying a magnetic tape containing the values of particle velocity for every boundary point at every instant of time. Alternatively, a punch card deck may be supplied giving acceleration values at every instant of time. In the plane strain program it is assumed that the acceleration values apply simultaneously to every point on the boundary; in the antiplane strain program it is assumed that the acceleration values characterize a plane shear wave propagating upward in the underlying elastic medium at a specified angle with the vertical. The nonlinear hysteretic behavior of the soil is represented by a three-dimensional rheological model. A boundary condition is used which takes account of finite rigidity in the elastic substratum. The computations are performed by an explicit finite-difference scheme that proceeds step by step in space and time. Computations are done in terms of stress departures from an unspecified initial state. Source listings are provided here along with instructions for preparing the input. A more detailed discussion of the method is presented elsewhere.

  20. On the Formulation of Weakly Singular Displacement/Traction Integral Equations; and Their Solution by the MLPG Method

    NASA Technical Reports Server (NTRS)

    Atluri, Satya N.; Shen, Shengping

    2002-01-01

    In this paper, a very simple method is used to derive the weakly singular traction boundary integral equation based on the integral relationships for displacement gradients. The concept of the MLPG method is employed to solve the integral equations, especially those arising in solid mechanics. A moving Least Squares (MLS) interpolation is selected to approximate the trial functions in this paper. Five boundary integral Solution methods are introduced: direct solution method; displacement boundary-value problem; traction boundary-value problem; mixed boundary-value problem; and boundary variational principle. Based on the local weak form of the BIE, four different nodal-based local test functions are selected, leading to four different MLPG methods for each BIE solution method. These methods combine the advantages of the MLPG method and the boundary element method.

  1. Symmetric vibrations of a liquid in a vessel with a separator and an elastic bottom

    NASA Astrophysics Data System (ADS)

    Goncharov, D. A.; Pozhalostin, A. A.

    2018-04-01

    The paper considers the problem of small axisymmetric vibrations of an ideal fluid filling a vessel with rigid walls and an elastic bottom. The liquid is divided into two layers by an elastic septum. The elastic baffle and the vessel elastic bottom are modeled by elastic membranes. The Neumann boundary-value problem is posed for the fluid. The equations of motion of the membranes are integrated with boundary conditions.

  2. HEATING 7. 1 user's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, K.W.

    1991-07-01

    HEATING is a FORTRAN program designed to solve steady-state and/or transient heat conduction problems in one-, two-, or three- dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heating generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which maymore » be surface-to-boundary or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General graybody radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING is variably dimensioned and utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion). The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less

  3. An Investigation of Energy Transmission Due to Flexural Wave Propagation in Lightweight, Built-Up Structures. Thesis

    NASA Technical Reports Server (NTRS)

    Mickol, John Douglas; Bernhard, R. J.

    1986-01-01

    A technique to measure flexural structure-borne noise intensity is investigated. Two accelerometers serve as transducers in this cross-spectral technique. The structure-borne sound power is obtained by two different techniques and compared. In the first method, a contour integral of intensity is performed from the values provided by the two-accelerometer intensity technique. In the second method, input power is calculated directly from the output of force and acceleration transducers. A plate and two beams were the subjects of the sound power comparisons. Excitation for the structures was either band-limited white noise or a deterministic signal similar to a swept sine. The two-accelerometer method was found to be sharply limited by near field and transducer spacing limitations. In addition, for the lightweight structures investigated, it was found that the probe inertia can have a significant influence on the power input to the structure. In addition to the experimental investigation of structure-borne sound energy, an extensive study of the point harmonically forced, point-damped beam boundary value problem was performed to gain insight into measurements of this nature. The intensity formulations were also incorporated into the finite element method. Intensity mappings were obtained analytically via finite element modeling of simple structures.

  4. Program VSAERO theory document: A computer program for calculating nonlinear aerodynamic characteristics of arbitrary configurations

    NASA Technical Reports Server (NTRS)

    Maskew, Brian

    1987-01-01

    The VSAERO low order panel method formulation is described for the calculation of subsonic aerodynamic characteristics of general configurations. The method is based on piecewise constant doublet and source singularities. Two forms of the internal Dirichlet boundary condition are discussed and the source distribution is determined by the external Neumann boundary condition. A number of basic test cases are examined. Calculations are compared with higher order solutions for a number of cases. It is demonstrated that for comparable density of control points where the boundary conditions are satisfied, the low order method gives comparable accuracy to the higher order solutions. It is also shown that problems associated with some earlier low order panel methods, e.g., leakage in internal flows and junctions and also poor trailing edge solutions, do not appear for the present method. Further, the application of the Kutta conditions is extremely simple; no extra equation or trailing edge velocity point is required. The method has very low computing costs and this has made it practical for application to nonlinear problems requiring iterative solutions for wake shape and surface boundary layer effects.

  5. Photon migration in non-scattering tissue and the effects on image reconstruction

    NASA Astrophysics Data System (ADS)

    Dehghani, H.; Delpy, D. T.; Arridge, S. R.

    1999-12-01

    Photon propagation in tissue can be calculated using the relationship described by the transport equation. For scattering tissue this relationship is often simplified and expressed in terms of the diffusion approximation. This approximation, however, is not valid for non-scattering regions, for example cerebrospinal fluid (CSF) below the skull. This study looks at the effects of a thin clear layer in a simple model representing the head and examines its effect on image reconstruction. Specifically, boundary photon intensities (total number of photons exiting at a point on the boundary due to a source input at another point on the boundary) are calculated using the transport equation and compared with data calculated using the diffusion approximation for both non-scattering and scattering regions. The effect of non-scattering regions on the calculated boundary photon intensities is presented together with the advantages and restrictions of the transport code used. Reconstructed images are then presented where the forward problem is solved using the transport equation for a simple two-dimensional system containing a non-scattering ring and the inverse problem is solved using the diffusion approximation to the transport equation.

  6. A pseudospectral Legendre method for hyperbolic equations with an improved stability condition

    NASA Technical Reports Server (NTRS)

    Tal-Ezer, Hillel

    1986-01-01

    A new pseudospectral method is introduced for solving hyperbolic partial differential equations. This method uses different grid points than previously used pseudospectral methods: in fact the grid points are related to the zeroes of the Legendre polynomials. The main advantage of this method is that the allowable time step is proportional to the inverse of the number of grid points 1/N rather than to 1/n(2) (as in the case of other pseudospectral methods applied to mixed initial boundary value problems). A highly accurate time discretization suitable for these spectral methods is discussed.

  7. Optimal aeroassisted coplanar orbital transfer using an energy model

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Taylor, Deborah B.

    1989-01-01

    The atmospheric portion of the trajectories for the aeroassisted coplanar orbit transfer was investigated. The equations of motion for the problem are expressed using reduced order model and total vehicle energy, kinetic plus potential, as the independent variable rather than time. The order reduction is achieved analytically without an approximation of the vehicle dynamics. In this model, the problem of coplanar orbit transfer is seen as one in which a given amount of energy must be transferred from the vehicle to the atmosphere during the trajectory without overheating the vehicle. An optimal control problem is posed where a linear combination of the integrated square of the heating rate and the vehicle drag is the cost function to be minimized. The necessary conditions for optimality are obtained. These result in a 4th order two-point-boundary-value problem. A parametric study of the optimal guidance trajectory in which the proportion of the heating rate term versus the drag varies is made. Simulations of the guidance trajectories are presented.

  8. Numerical methods for solving moment equations in kinetic theory of neuronal network dynamics

    NASA Astrophysics Data System (ADS)

    Rangan, Aaditya V.; Cai, David; Tao, Louis

    2007-02-01

    Recently developed kinetic theory and related closures for neuronal network dynamics have been demonstrated to be a powerful theoretical framework for investigating coarse-grained dynamical properties of neuronal networks. The moment equations arising from the kinetic theory are a system of (1 + 1)-dimensional nonlinear partial differential equations (PDE) on a bounded domain with nonlinear boundary conditions. The PDEs themselves are self-consistently specified by parameters which are functions of the boundary values of the solution. The moment equations can be stiff in space and time. Numerical methods are presented here for efficiently and accurately solving these moment equations. The essential ingredients in our numerical methods include: (i) the system is discretized in time with an implicit Euler method within a spectral deferred correction framework, therefore, the PDEs of the kinetic theory are reduced to a sequence, in time, of boundary value problems (BVPs) with nonlinear boundary conditions; (ii) a set of auxiliary parameters is introduced to recast the original BVP with nonlinear boundary conditions as BVPs with linear boundary conditions - with additional algebraic constraints on the auxiliary parameters; (iii) a careful combination of two Newton's iterates for the nonlinear BVP with linear boundary condition, interlaced with a Newton's iterate for solving the associated algebraic constraints is constructed to achieve quadratic convergence for obtaining the solutions with self-consistent parameters. It is shown that a simple fixed-point iteration can only achieve a linear convergence for the self-consistent parameters. The practicability and efficiency of our numerical methods for solving the moment equations of the kinetic theory are illustrated with numerical examples. It is further demonstrated that the moment equations derived from the kinetic theory of neuronal network dynamics can very well capture the coarse-grained dynamical properties of integrate-and-fire neuronal networks.

  9. On the solution of integral equations with a generalized cauchy kernal

    NASA Technical Reports Server (NTRS)

    Kaya, A. C.; Erdogan, F.

    1986-01-01

    A certain class of singular integral equations that may arise from the mixed boundary value problems in nonhonogeneous materials is considered. The distinguishing feature of these equations is that in addition to the Cauchy singularity, the kernels contain terms that are singular only at the end points. In the form of the singular integral equations adopted, the density function is a potential or a displacement and consequently the kernal has strong singularities of the form (t-x)(-2), x(n-2) (t+x)(n), (n is = or 2, 0 x, t b). The complex function theory is used to determine the fundamental function of the problem for the general case and a simple numerical technique is described to solve the integral equation. Two examples from the theory of elasticity are then considered to show the application of the technique.

  10. A Computationally Inexpensive Optimal Guidance via Radial-Basis-Function Neural Network for Autonomous Soft Landing on Asteroids

    PubMed Central

    Zhang, Peng; Liu, Keping; Zhao, Bo; Li, Yuanchun

    2015-01-01

    Optimal guidance is essential for the soft landing task. However, due to its high computational complexities, it is hardly applied to the autonomous guidance. In this paper, a computationally inexpensive optimal guidance algorithm based on the radial basis function neural network (RBFNN) is proposed. The optimization problem of the trajectory for soft landing on asteroids is formulated and transformed into a two-point boundary value problem (TPBVP). Combining the database of initial states with the relative initial co-states, an RBFNN is trained offline. The optimal trajectory of the soft landing is determined rapidly by applying the trained network in the online guidance. The Monte Carlo simulations of soft landing on the Eros433 are performed to demonstrate the effectiveness of the proposed guidance algorithm. PMID:26367382

  11. Impact and Penetration Problems.

    DTIC Science & Technology

    1981-03-16

    constant is now determined theoretically. iii) By utilizing the formal similarity between the two criteria (1) and (3), we can predict the theoretical...cohesive strengths of various crystals. Once the experimental value for y is given, the calculations can be carried 4 out easily to determine the...analytical solution to the mixed boundary value problem yields the nonlocal displacement and stress fields. The nonlocal parameter c is determined by

  12. Numerical boundary condition procedures and multigrid methods; Proceedings of the Symposium, NASA Ames Research Center, Moffett Field, CA, October 19-22, 1981

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Papers presented in this volume provide an overview of recent work on numerical boundary condition procedures and multigrid methods. The topics discussed include implicit boundary conditions for the solution of the parabolized Navier-Stokes equations for supersonic flows; far field boundary conditions for compressible flows; and influence of boundary approximations and conditions on finite-difference solutions. Papers are also presented on fully implicit shock tracking and on the stability of two-dimensional hyperbolic initial boundary value problems for explicit and implicit schemes.

  13. Reaction-diffusion systems coupled at the boundary and the Morse-Smale property

    NASA Astrophysics Data System (ADS)

    Broche, Rita de Cássia D. S.; de Oliveira, Luiz Augusto F.

    We study an one-dimensional nonlinear reaction-diffusion system coupled on the boundary. Such system comes from modeling problems of temperature distribution on two bars of same length, jointed together, with different diffusion coefficients. We prove the transversality property of unstable and stable manifolds assuming all equilibrium points are hyperbolic. To this end, we write the system as an equation with noncontinuous diffusion coefficient. We then study the nonincreasing property of the number of zeros of a linearized nonautonomous equation as well as the Sturm-Liouville properties of the solutions of a linear elliptic problem.

  14. Efficient algorithms for analyzing the singularly perturbed boundary value problems of fractional order

    NASA Astrophysics Data System (ADS)

    Sayevand, K.; Pichaghchi, K.

    2018-04-01

    In this paper, we were concerned with the description of the singularly perturbed boundary value problems in the scope of fractional calculus. We should mention that, one of the main methods used to solve these problems in classical calculus is the so-called matched asymptotic expansion method. However we shall note that, this was not achievable via the existing classical definitions of fractional derivative, because they do not obey the chain rule which one of the key elements of the matched asymptotic expansion method. In order to accommodate this method to fractional derivative, we employ a relatively new derivative so-called the local fractional derivative. Using the properties of local fractional derivative, we extend the matched asymptotic expansion method to the scope of fractional calculus and introduce a reliable new algorithm to develop approximate solutions of the singularly perturbed boundary value problems of fractional order. In the new method, the original problem is partitioned into inner and outer solution equations. The reduced equation is solved with suitable boundary conditions which provide the terminal boundary conditions for the boundary layer correction. The inner solution problem is next solved as a solvable boundary value problem. The width of the boundary layer is approximated using appropriate resemblance function. Some theoretical results are established and proved. Some illustrating examples are solved and the results are compared with those of matched asymptotic expansion method and homotopy analysis method to demonstrate the accuracy and efficiency of the method. It can be observed that, the proposed method approximates the exact solution very well not only in the boundary layer, but also away from the layer.

  15. Fourth-order convergence of a compact scheme for the one-dimensional biharmonic equation

    NASA Astrophysics Data System (ADS)

    Fishelov, D.; Ben-Artzi, M.; Croisille, J.-P.

    2012-09-01

    The convergence of a fourth-order compact scheme to the one-dimensional biharmonic problem is established in the case of general Dirichlet boundary conditions. The compact scheme invokes value of the unknown function as well as Pade approximations of its first-order derivative. Using the Pade approximation allows us to approximate the first-order derivative within fourth-order accuracy. However, although the truncation error of the discrete biharmonic scheme is of fourth-order at interior point, the truncation error drops to first-order at near-boundary points. Nonetheless, we prove that the scheme retains its fourth-order (optimal) accuracy. This is done by a careful inspection of the matrix elements of the discrete biharmonic operator. A number of numerical examples corroborate this effect. We also present a study of the eigenvalue problem uxxxx = νu. We compute and display the eigenvalues and the eigenfunctions related to the continuous and the discrete problems. By the positivity of the eigenvalues, one can deduce the stability of of the related time-dependent problem ut = -uxxxx. In addition, we study the eigenvalue problem uxxxx = νuxx. This is related to the stability of the linear time-dependent equation uxxt = νuxxxx. Its continuous and discrete eigenvalues and eigenfunction (or eigenvectors) are computed and displayed graphically.

  16. Acoustic-Liner Admittance in a Duct

    NASA Technical Reports Server (NTRS)

    Watson, W. R.

    1986-01-01

    Method calculates admittance from easily obtainable values. New method for calculating acoustic-liner admittance in rectangular duct with grazing flow based on finite-element discretization of acoustic field and reposing of unknown admittance value as linear eigenvalue problem on admittance value. Problem solved by Gaussian elimination. Unlike existing methods, present method extendable to mean flows with two-dimensional boundary layers as well. In presence of shear, results of method compared well with results of Runge-Kutta integration technique.

  17. More on asymptotically anti-de Sitter spaces in topologically massive gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henneaux, Marc; Physique theorique et mathematique, Universite Libre de Bruxelles and International Solvay Institutes, ULB Campus Plaine C.P. 231, B-1050 Bruxelles; Martinez, Cristian

    2010-09-15

    Recently, the asymptotic behavior of three-dimensional anti-de Sitter (AdS) gravity with a topological mass term was investigated. Boundary conditions were given that were asymptotically invariant under the two dimensional conformal group and that included a falloff of the metric sufficiently slow to consistently allow pp-wave type of solutions. Now, pp waves can have two different chiralities. Above the chiral point and at the chiral point, however, only one chirality can be considered, namely, the chirality that has the milder behavior at infinity. The other chirality blows up faster than AdS and does not define an asymptotically AdS spacetime. By contrast,more » both chiralities are subdominant with respect to the asymptotic behavior of AdS spacetime below the chiral point. Nevertheless, the boundary conditions given in the earlier treatment only included one of the two chiralities (which could be either one) at a time. We investigate in this paper whether one can generalize these boundary conditions in order to consider simultaneously both chiralities below the chiral point. We show that this is not possible if one wants to keep the two-dimensional conformal group as asymptotic symmetry group. Hence, the boundary conditions given in the earlier treatment appear to be the best possible ones compatible with conformal symmetry. In the course of our investigations, we provide general formulas controlling the asymptotic charges for all values of the topological mass (not just below the chiral point).« less

  18. Similar solutions of double-diffusive dissipative layers along free surfaces

    NASA Astrophysics Data System (ADS)

    Napolitano, L. G.; Viviani, A.; Savino, R.

    1990-10-01

    Free convection due to buoyant forces (natural convection) and surface tension gradients (Marangoni convection) generated by temperature and concentration gradients is discussed together with the formation of double-diffusive boundary layers along liquid-gas interfaces. Similarity solutions for each class of free convection are derived and the resulting nonlinear two-point problems are solved numerically using the quasi-linearization method. Velocity, temperature, concentration profiles, interfacial velocity, heat and mass transfer bulk coefficients for various Prandtl and Schmidt numbers, and different values of the similarity parameters are determined. The convective flows are of particular interest because they are considered to influence the processes of crystal growth, both on earth and in a microgravity environment.

  19. A mathematical model for the deformation of the eyeball by an elastic band.

    PubMed

    Keeling, Stephen L; Propst, Georg; Stadler, Georg; Wackernagel, Werner

    2009-06-01

    In a certain kind of eye surgery, the human eyeball is deformed sustainably by the application of an elastic band. This article presents a mathematical model for the mechanics of the combined eye/band structure along with an algorithm to compute the model solutions. These predict the immediate and the lasting indentation of the eyeball. The model is derived from basic physical principles by minimizing a potential energy subject to a volume constraint. Assuming spherical symmetry, this leads to a two-point boundary-value problem for a non-linear second-order ordinary differential equation that describes the minimizing static equilibrium. By comparison with laboratory data, a preliminary validation of the model is given.

  20. Initial-boundary value problems associated with the Ablowitz-Ladik system

    NASA Astrophysics Data System (ADS)

    Xia, Baoqiang; Fokas, A. S.

    2018-02-01

    We employ the Ablowitz-Ladik system as an illustrative example in order to demonstrate how to analyze initial-boundary value problems for integrable nonlinear differential-difference equations via the unified transform (Fokas method). In particular, we express the solutions of the integrable discrete nonlinear Schrödinger and integrable discrete modified Korteweg-de Vries equations in terms of the solutions of appropriate matrix Riemann-Hilbert problems. We also discuss in detail, for both the above discrete integrable equations, the associated global relations and the process of eliminating of the unknown boundary values.

  1. Multispectral processing based on groups of resolution elements

    NASA Technical Reports Server (NTRS)

    Richardson, W.; Gleason, J. M.

    1975-01-01

    Several nine-point rules are defined and compared with previously studied rules. One of the rules performed well in boundary areas, but with reduced efficiency in field interiors; another combined best performance on field interiors with good sensitivity to boundary detail. The basic threshold gradient and some modifications were investigated as a means of boundary point detection. The hypothesis testing methods of closed-boundary formation were also tested and evaluated. An analysis of the boundary detection problem was initiated, employing statistical signal detection and parameter estimation techniques to analyze various formulations of the problem. These formulations permit the atmospheric and sensor system effects on the data to be thoroughly analyzed. Various boundary features and necessary assumptions can also be investigated in this manner.

  2. Modifying PASVART to solve singular nonlinear 2-point boundary problems

    NASA Technical Reports Server (NTRS)

    Fulton, James P.

    1988-01-01

    To study the buckling and post-buckling behavior of shells and various other structures, one must solve a nonlinear 2-point boundary problem. Since closed-form analytic solutions for such problems are virtually nonexistent, numerical approximations are inevitable. This makes the availability of accurate and reliable software indispensable. In a series of papers Lentini and Pereyra, expanding on the work of Keller, developed PASVART: an adaptive finite difference solver for nonlinear 2-point boundary problems. While the program does produce extremely accurate solutions with great efficiency, it is hindered by a major limitation. PASVART will only locate isolated solutions of the problem. In buckling problems, the solution set is not unique. It will contain singular or bifurcation points, where different branches of the solution set may intersect. Thus, PASVART is useless precisely when the problem becomes interesting. To resolve this deficiency we propose a modification of PASVART that will enable the user to perform a more complete bifurcation analysis. PASVART would be combined with the Thurston bifurcation solution: as adaptation of Newton's method that was motivated by the work of Koiter 3 are reinterpreted in terms of an iterative computational method by Thurston.

  3. Numerical Solution of the Electron Transport Equation in the Upper Atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Mark Christopher; Holmes, Mark; Sailor, William C

    A new approach for solving the electron transport equation in the upper atmosphere is derived. The problem is a very stiff boundary value problem, and to obtain an accurate numerical solution, matrix factorizations are used to decouple the fast and slow modes. A stable finite difference method is applied to each mode. This solver is applied to a simplifieed problem for which an exact solution exists using various versions of the boundary conditions that might arise in a natural auroral display. The numerical and exact solutions are found to agree with each other to at least two significant digits.

  4. Robust pupil center detection using a curvature algorithm

    NASA Technical Reports Server (NTRS)

    Zhu, D.; Moore, S. T.; Raphan, T.; Wall, C. C. (Principal Investigator)

    1999-01-01

    Determining the pupil center is fundamental for calculating eye orientation in video-based systems. Existing techniques are error prone and not robust because eyelids, eyelashes, corneal reflections or shadows in many instances occlude the pupil. We have developed a new algorithm which utilizes curvature characteristics of the pupil boundary to eliminate these artifacts. Pupil center is computed based solely on points related to the pupil boundary. For each boundary point, a curvature value is computed. Occlusion of the boundary induces characteristic peaks in the curvature function. Curvature values for normal pupil sizes were determined and a threshold was found which together with heuristics discriminated normal from abnormal curvature. Remaining boundary points were fit with an ellipse using a least squares error criterion. The center of the ellipse is an estimate of the pupil center. This technique is robust and accurately estimates pupil center with less than 40% of the pupil boundary points visible.

  5. An Investigation of Starting Point Preferences in Human Performance on Traveling Salesman Problems

    ERIC Educational Resources Information Center

    MacGregor, James N.

    2014-01-01

    Previous studies have shown that people start traveling sales problem tours significantly more often from boundary than from interior nodes. There are a number of possible reasons for such a tendency: first, it may arise as a direct result of the processes involved in tour construction; second, boundary points may be perceptually more salient than…

  6. NASA Ames three-dimensional potential flow analyses system (POTFAN) boundary condition code (BCDN), version 1

    NASA Technical Reports Server (NTRS)

    Davis, J. E.; Medan, R. T.

    1977-01-01

    This segment of the POTFAN system is used to generate right hand sides (boundary conditions) of the system of equations associated with the flow field under consideration. These specified flow boundary conditions are encountered in the oblique derivative boundary value problem (boundary value problem of the third kind) and contain the Neumann boundary condition as a special case. Arbitrary angle of attack and/or sideslip and/or rotation rates may be specified, as well as an arbitrary, nonuniform external flow field and the influence of prescribed singularity distributions.

  7. TBGG- INTERACTIVE ALGEBRAIC GRID GENERATION

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1994-01-01

    TBGG, Two-Boundary Grid Generation, applies an interactive algebraic grid generation technique in two dimensions. The program incorporates mathematical equations that relate the computational domain to the physical domain. TBGG has application to a variety of problems using finite difference techniques, such as computational fluid dynamics. Examples include the creation of a C-type grid about an airfoil and a nozzle configuration in which no left or right boundaries are specified. The underlying two-boundary technique of grid generation is based on Hermite cubic interpolation between two fixed, nonintersecting boundaries. The boundaries are defined by two ordered sets of points, referred to as the top and bottom. Left and right side boundaries may also be specified, and call upon linear blending functions to conform interior interpolation to the side boundaries. Spacing between physical grid coordinates is determined as a function of boundary data and uniformly spaced computational coordinates. Control functions relating computational coordinates to parametric intermediate variables that affect the distance between grid points are embedded in the interpolation formulas. A versatile control function technique with smooth cubic spline functions is also presented. The TBGG program is written in FORTRAN 77. It works best in an interactive graphics environment where computational displays and user responses are quickly exchanged. The program has been implemented on a CDC Cyber 170 series computer using NOS 2.4 operating system, with a central memory requirement of 151,700 (octal) 60 bit words. TBGG requires a Tektronix 4015 terminal and the DI-3000 Graphics Library of Precision Visuals, Inc. TBGG was developed in 1986.

  8. Boundary Regularity for the Porous Medium Equation

    NASA Astrophysics Data System (ADS)

    Björn, Anders; Björn, Jana; Gianazza, Ugo; Siljander, Juhana

    2018-05-01

    We study the boundary regularity of solutions to the porous medium equation {u_t = Δ u^m} in the degenerate range {m > 1} . In particular, we show that in cylinders the Dirichlet problem with positive continuous boundary data on the parabolic boundary has a solution which attains the boundary values, provided that the spatial domain satisfies the elliptic Wiener criterion. This condition is known to be optimal, and it is a consequence of our main theorem which establishes a barrier characterization of regular boundary points for general—not necessarily cylindrical—domains in {{R}^{n+1}} . One of our fundamental tools is a new strict comparison principle between sub- and superparabolic functions, which makes it essential for us to study both nonstrict and strict Perron solutions to be able to develop a fruitful boundary regularity theory. Several other comparison principles and pasting lemmas are also obtained. In the process we obtain a rather complete picture of the relation between sub/superparabolic functions and weak sub/supersolutions.

  9. Asymptotic matching by the symbolic manipulator MACSYMA

    NASA Technical Reports Server (NTRS)

    Lo, L. L.

    1985-01-01

    The delegation of the labor of calculating higher-order terms in singular perturbation (SP) expansions to a computer by the use of MACSYMA is considered. The method of matched asymptotic expansions is studied in detail for two model SP problems: a model resembling the boundary layer equation with a small parameter multiplying the highest derivatives; and a turning-point problem. It is shown that MACSYMA has successfully performed the higher-order matching in both problems.

  10. Discrete effect on the halfway bounce-back boundary condition of multiple-relaxation-time lattice Boltzmann model for convection-diffusion equations.

    PubMed

    Cui, Shuqi; Hong, Ning; Shi, Baochang; Chai, Zhenhua

    2016-04-01

    In this paper, we will focus on the multiple-relaxation-time (MRT) lattice Boltzmann model for two-dimensional convection-diffusion equations (CDEs), and analyze the discrete effect on the halfway bounce-back (HBB) boundary condition (or sometimes called bounce-back boundary condition) of the MRT model where three different discrete velocity models are considered. We first present a theoretical analysis on the discrete effect of the HBB boundary condition for the simple problems with a parabolic distribution in the x or y direction, and a numerical slip proportional to the second-order of lattice spacing is observed at the boundary, which means that the MRT model has a second-order convergence rate in space. The theoretical analysis also shows that the numerical slip can be eliminated in the MRT model through tuning the free relaxation parameter corresponding to the second-order moment, while it cannot be removed in the single-relaxation-time model or the Bhatnagar-Gross-Krook model unless the relaxation parameter related to the diffusion coefficient is set to be a special value. We then perform some simulations to confirm our theoretical results, and find that the numerical results are consistent with our theoretical analysis. Finally, we would also like to point out the present analysis can be extended to other boundary conditions of lattice Boltzmann models for CDEs.

  11. A far-field non-reflecting boundary condition for two-dimensional wake flows

    NASA Technical Reports Server (NTRS)

    Danowitz, Jeffrey S.; Abarbanel, Saul A.; Turkel, Eli

    1995-01-01

    Far-field boundary conditions for external flow problems have been developed based upon long-wave perturbations of linearized flow equations about a steady state far field solution. The boundary improves convergence to steady state in single-grid temporal integration schemes using both regular-time-stepping and local-time-stepping. The far-field boundary may be near the trailing edge of the body which significantly reduces the number of grid points, and therefore the computational time, in the numerical calculation. In addition the solution produced is smoother in the far-field than when using extrapolation conditions. The boundary condition maintains the convergence rate to steady state in schemes utilizing multigrid acceleration.

  12. A free boundary approach to the Rosensweig instability of ferrofluids

    NASA Astrophysics Data System (ADS)

    Parini, Enea; Stylianou, Athanasios

    2018-04-01

    We establish the existence of saddle points for a free boundary problem describing the two-dimensional free surface of a ferrofluid undergoing normal field instability. The starting point is the ferrohydrostatic equations for the magnetic potentials in the ferrofluid and air, and the function describing their interface. These constitute the strong form for the Euler-Lagrange equations of a convex-concave functional, which we extend to include interfaces that are not necessarily graphs of functions. Saddle points are then found by iterating the direct method of the calculus of variations and applying classical results of convex analysis. For the existence part, we assume a general nonlinear magnetization law; for a linear law, we also show, via convex duality, that the saddle point is a constrained minimizer of the relevant energy functional.

  13. Hybrid Fourier pseudospectral/discontinuous Galerkin time-domain method for wave propagation

    NASA Astrophysics Data System (ADS)

    Pagán Muñoz, Raúl; Hornikx, Maarten

    2017-11-01

    The Fourier Pseudospectral time-domain (Fourier PSTD) method was shown to be an efficient way of modelling acoustic propagation problems as described by the linearized Euler equations (LEE), but is limited to real-valued frequency independent boundary conditions and predominantly staircase-like boundary shapes. This paper presents a hybrid approach to solve the LEE, coupling Fourier PSTD with a nodal Discontinuous Galerkin (DG) method. DG exhibits almost no restrictions with respect to geometrical complexity or boundary conditions. The aim of this novel method is to allow the computation of complex geometries and to be a step towards the implementation of frequency dependent boundary conditions by using the benefits of DG at the boundaries, while keeping the efficient Fourier PSTD in the bulk of the domain. The hybridization approach is based on conformal meshes to avoid spatial interpolation of the DG solutions when transferring values from DG to Fourier PSTD, while the data transfer from Fourier PSTD to DG is done utilizing spectral interpolation of the Fourier PSTD solutions. The accuracy of the hybrid approach is presented for one- and two-dimensional acoustic problems and the main sources of error are investigated. It is concluded that the hybrid methodology does not introduce significant errors compared to the Fourier PSTD stand-alone solver. An example of a cylinder scattering problem is presented and accurate results have been obtained when using the proposed approach. Finally, no instabilities were found during long-time calculation using the current hybrid methodology on a two-dimensional domain.

  14. Identification of the Thermal Conductivity Coefficient for Quasi-Stationary Two-Dimensional Heat Conduction Equations

    NASA Astrophysics Data System (ADS)

    Matsevityi, Yu. M.; Alekhina, S. V.; Borukhov, V. T.; Zayats, G. M.; Kostikov, A. O.

    2017-11-01

    The problem of identifying the time-dependent thermal conductivity coefficient in the initial-boundary-value problem for the quasi-stationary two-dimensional heat conduction equation in a bounded cylinder is considered. It is assumed that the temperature field in the cylinder is independent of the angular coordinate. To solve the given problem, which is related to a class of inverse problems, a mathematical approach based on the method of conjugate gradients in a functional form is being developed.

  15. Second order finite-difference ghost-point multigrid methods for elliptic problems with discontinuous coefficients on an arbitrary interface

    NASA Astrophysics Data System (ADS)

    Coco, Armando; Russo, Giovanni

    2018-05-01

    In this paper we propose a second-order accurate numerical method to solve elliptic problems with discontinuous coefficients (with general non-homogeneous jumps in the solution and its gradient) in 2D and 3D. The method consists of a finite-difference method on a Cartesian grid in which complex geometries (boundaries and interfaces) are embedded, and is second order accurate in the solution and the gradient itself. In order to avoid the drop in accuracy caused by the discontinuity of the coefficients across the interface, two numerical values are assigned on grid points that are close to the interface: a real value, that represents the numerical solution on that grid point, and a ghost value, that represents the numerical solution extrapolated from the other side of the interface, obtained by enforcing the assigned non-homogeneous jump conditions on the solution and its flux. The method is also extended to the case of matrix coefficient. The linear system arising from the discretization is solved by an efficient multigrid approach. Unlike the 1D case, grid points are not necessarily aligned with the normal derivative and therefore suitable stencils must be chosen to discretize interface conditions in order to achieve second order accuracy in the solution and its gradient. A proper treatment of the interface conditions will allow the multigrid to attain the optimal convergence factor, comparable with the one obtained by Local Fourier Analysis for rectangular domains. The method is robust enough to handle large jump in the coefficients: order of accuracy, monotonicity of the errors and good convergence factor are maintained by the scheme.

  16. A Matlab-based finite-difference solver for the Poisson problem with mixed Dirichlet-Neumann boundary conditions

    NASA Astrophysics Data System (ADS)

    Reimer, Ashton S.; Cheviakov, Alexei F.

    2013-03-01

    A Matlab-based finite-difference numerical solver for the Poisson equation for a rectangle and a disk in two dimensions, and a spherical domain in three dimensions, is presented. The solver is optimized for handling an arbitrary combination of Dirichlet and Neumann boundary conditions, and allows for full user control of mesh refinement. The solver routines utilize effective and parallelized sparse vector and matrix operations. Computations exhibit high speeds, numerical stability with respect to mesh size and mesh refinement, and acceptable error values even on desktop computers. Catalogue identifier: AENQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v3.0 No. of lines in distributed program, including test data, etc.: 102793 No. of bytes in distributed program, including test data, etc.: 369378 Distribution format: tar.gz Programming language: Matlab 2010a. Computer: PC, Macintosh. Operating system: Windows, OSX, Linux. RAM: 8 GB (8, 589, 934, 592 bytes) Classification: 4.3. Nature of problem: To solve the Poisson problem in a standard domain with “patchy surface”-type (strongly heterogeneous) Neumann/Dirichlet boundary conditions. Solution method: Finite difference with mesh refinement. Restrictions: Spherical domain in 3D; rectangular domain or a disk in 2D. Unusual features: Choice between mldivide/iterative solver for the solution of large system of linear algebraic equations that arise. Full user control of Neumann/Dirichlet boundary conditions and mesh refinement. Running time: Depending on the number of points taken and the geometry of the domain, the routine may take from less than a second to several hours to execute.

  17. The Dynamics of a Viscous Gas Ring around a Kerr Black Hole

    NASA Astrophysics Data System (ADS)

    Riffert, H.

    2000-01-01

    The dynamics of a rotationally symmetric viscous gas ring around a Kerr black hole is calculated in the thin-disk approximation. An evolution equation for the surface density Σ(t,r) is derived, which is the relativistic extension of a classical equation obtained by R. Lüst. A singular point appears at the radius of the last stable circular orbit r=rc. The nature of this point is investigated, and it turns out that the solution is always bounded at rc, and no boundary condition can be obtained at this radius. A unique solution of an initial value problem requires a matching condition at rc which follows from the flow structure between rc and the horizon. In the model presented here, the density in this domain is zero, and the resulting boundary condition leads to a vanishing shear stress at r=rc, which is the condition used in the standard stationary thin-disk model of Novikov & Thorne. Numerical solutions of the evolution equation are presented for two different angular momenta of the black hole. The time evolution of the resulting accretion rate depends strongly on this angular momentum.

  18. Estimates of green tensors for certain boundary value problems

    NASA Technical Reports Server (NTRS)

    Solonnikov, V.

    1988-01-01

    Consider the first boundary value problem for a stationary Navier-Stokes system in a bounded three-dimensional region Omega with the boundary S: delta v = grad p+f, div v=0, v/s=0. Odqvist (1930) developed the potential theory and formulated the Green tensor for the above problem. The basic singular solution used by Odqvist to express the Green tensor is given. A theorem generalizing his results is presented along with four associated theorems. A specific problem associated with the study of the differential properties of the solution of stationary problems of magnetohydrodynamics is examined.

  19. A finite element formulation for supersonic flows around complex configurations

    NASA Technical Reports Server (NTRS)

    Morino, L.

    1974-01-01

    The problem of small perturbation potential supersonic flow around complex configurations is considered. This problem requires the solution of an integral equation relating the values of the potential on the surface of the body to the values of the normal derivative, which is known from the small perturbation boundary conditions. The surface of the body is divided into small (hyperboloidal quadrilateral) surface elements which are described in terms of the Cartesian components of the four corner points. The values of the potential (and its normal derivative) within each element are assumed to be constant and equal to its value at the centroid of the element. This yields a set of linear algebraic equations whose coefficients are given by source and doublet integrals over the surface elements. Closed form evaluations of the integrals are presented.

  20. Laser Surveying

    NASA Technical Reports Server (NTRS)

    1978-01-01

    NASA technology has produced a laser-aided system for surveying land boundaries in difficult terrain. It does the job more accurately than conventional methods, takes only one-third the time normally required, and is considerably less expensive. In surveying to mark property boundaries, the objective is to establish an accurate heading between two "corner" points. This is conventionally accomplished by erecting a "range pole" at one point and sighting it from the other point through an instrument called a theodolite. But how do you take a heading between two points which are not visible to each other, for instance, when tall trees, hills or other obstacles obstruct the line of sight? That was the problem confronting the U.S. Department of Agriculture's Forest Service. The Forest Service manages 187 million acres of land in 44 states and Puerto Rico. Unfortunately, National Forest System lands are not contiguous but intermingled in complex patterns with privately-owned land. In recent years much of the private land has been undergoing development for purposes ranging from timber harvesting to vacation resorts. There is a need for precise boundary definition so that both private owners and the Forest Service can manage their properties with confidence that they are not trespassing on the other's land.

  1. Quantum models with energy-dependent potentials solvable in terms of exceptional orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze-Halberg, Axel, E-mail: axgeschu@iun.edu; Department of Physics, Indiana University Northwest, 3400 Broadway, Gary IN 46408; Roy, Pinaki, E-mail: pinaki@isical.ac.in

    We construct energy-dependent potentials for which the Schrödinger equations admit solutions in terms of exceptional orthogonal polynomials. Our method of construction is based on certain point transformations, applied to the equations of exceptional Hermite, Jacobi and Laguerre polynomials. We present several examples of boundary-value problems with energy-dependent potentials that admit a discrete spectrum and the corresponding normalizable solutions in closed form.

  2. Optimal control in adaptive optics modeling of nonlinear systems

    NASA Astrophysics Data System (ADS)

    Herrmann, J.

    The problem of using an adaptive optics system to correct for nonlinear effects like thermal blooming is addressed using a model containing nonlinear lenses through which Gaussian beams are propagated. The best correction of this nonlinear system can be formulated as a deterministic open loop optimal control problem. This treatment gives a limit for the best possible correction. Aspects of adaptive control and servo systems are not included at this stage. An attempt is made to determine that control in the transmitter plane which minimizes the time averaged area or maximizes the fluence in the target plane. The standard minimization procedure leads to a two-point-boundary-value problem, which is ill-conditioned in the case. The optimal control problem was solved using an iterative gradient technique. An instantaneous correction is introduced and compared with the optimal correction. The results of the calculations show that for short times or weak nonlinearities the instantaneous correction is close to the optimal correction, but that for long times and strong nonlinearities a large difference develops between the two types of correction. For these cases the steady state correction becomes better than the instantaneous correction and approaches the optimum correction.

  3. Investigating a hybrid perturbation-Galerkin technique using computer algebra

    NASA Technical Reports Server (NTRS)

    Andersen, Carl M.; Geer, James F.

    1988-01-01

    A two-step hybrid perturbation-Galerkin method is presented for the solution of a variety of differential equations type problems which involve a scalar parameter. The resulting (approximate) solution has the form of a sum where each term consists of the product of two functions. The first function is a function of the independent field variable(s) x, and the second is a function of the parameter lambda. In step one the functions of x are determined by forming a perturbation expansion in lambda. In step two the functions of lambda are determined through the use of the classical Bubnov-Gelerkin method. The resulting hybrid method has the potential of overcoming some of the drawbacks of the perturbation and Bubnov-Galerkin methods applied separately, while combining some of the good features of each. In particular, the results can be useful well beyond the radius of convergence associated with the perturbation expansion. The hybrid method is applied with the aid of computer algebra to a simple two-point boundary value problem where the radius of convergence is finite and to a quantum eigenvalue problem where the radius of convergence is zero. For both problems the hybrid method apparently converges for an infinite range of the parameter lambda. The results obtained from the hybrid method are compared with approximate solutions obtained by other methods, and the applicability of the hybrid method to broader problem areas is discussed.

  4. On the solution of integral equations with a generalized cauchy kernel

    NASA Technical Reports Server (NTRS)

    Kaya, A. C.; Erdogan, F.

    1986-01-01

    In this paper a certain class of singular integral equations that may arise from the mixed boundary value problems in nonhomogeneous materials is considered. The distinguishing feature of these equations is that in addition to the Cauchy singularity, the kernels contain terms that are singular only at the end points. In the form of the singular integral equations adopted, the density function is a potential or a displacement and consequently the kernel has strong singularities of the form (t-x) sup-2, x sup n-2 (t+x) sup n, (n or = 2, 0x,tb). The complex function theory is used to determine the fundamental function of the problem for the general case and a simple numerical technique is described to solve the integral equation. Two examples from the theory of elasticity are then considered to show the application of the technique.

  5. Fuel-optimal trajectories of aeroassisted orbital transfer with plane change

    NASA Technical Reports Server (NTRS)

    Naidu, Desineni Subbaramaiah; Hibey, Joseph L.

    1989-01-01

    The problem of minimization of fuel consumption during the atmospheric portion of an aeroassisted, orbital transfer with plane change is addressed. The complete mission has required three characteristic velocities, a deorbit impulse at high earth orbit (HEO), a boost impulse at the atmospheric exit, and a reorbit impulse at low earth orbit (LEO). A performance index has been formulated as the sum of these three impulses. Application of optimal control principles has led to a nonlinear, two-point, boundary value problem which was solved by using a multiple shooting algorithm. The strategy for the atmospheric portion of the minimum-fuel transfer is to start initially with the maximum positive lift in order to recover from the downward plunge, and then to fly with a gradually decreasing lift such that the vehicle skips out of the atmosphere with a flight path angle near zero degrees.

  6. Sensitivity of resistive and Hall measurements to local inhomogeneities

    NASA Astrophysics Data System (ADS)

    Koon, Daniel W.; Wang, Fei; Hjorth Petersen, Dirch; Hansen, Ole

    2013-10-01

    We derive exact, analytic expressions for the sensitivity of resistive and Hall measurements to local inhomogeneities in a specimen's material properties in the combined linear limit of a weak perturbation over an infinitesimal area in a small magnetic field. We apply these expressions both to four-point probe measurements on an infinite plane and to symmetric, circular van der Pauw discs, obtaining functions consistent with published results. These new expressions speed up calculation of the sensitivity for a specimen of arbitrary shape to little more than the solution of two Laplace equation boundary-value problems of the order of N3 calculations, rather than N2 problems of total order N5, and in a few cases produces an analytic expression for the sensitivity. These functions provide an intuitive, visual explanation of how, for example, measurements can predict the wrong carrier type in n-type ZnO.

  7. Slew maneuvers of Spacecraft Control Laboratory Experiment (SCOLE)

    NASA Technical Reports Server (NTRS)

    Kakad, Yogendra P.

    1992-01-01

    This is the final report on the dynamics and control of slew maneuvers of the Spacecraft Control Laboratory Experiment (SCOLE) test facility. The report documents the basic dynamical equation derivations for an arbitrary large angle slew maneuver as well as the basic decentralized slew maneuver control algorithm. The set of dynamical equations incorporate rigid body slew maneuver and three dimensional vibrations of the complete assembly comprising the rigid shuttle, the flexible beam, and the reflector with an offset mass. The analysis also includes kinematic nonlinearities of the entire assembly during the maneuver and the dynamics of the interactions between the rigid shuttle and the flexible appendage. The equations are simplified and evaluated numerically to include the first ten flexible modes to yield a model for designing control systems to perform slew maneuvers. The control problem incorporates the nonlinear dynamical equations and is expressed in terms of a two point boundary value problem.

  8. Assessing the usefulness of the photogrammetric method in the process of capturing data on parcel boundaries

    NASA Astrophysics Data System (ADS)

    Benduch, Piotr; Pęska-Siwik, Agnieszka

    2017-06-01

    A parcel is the most important object of real estate cadastre. Its primary spatial attribute are boundaries, determining the extent of property rights. Capturing the data on boundaries should be performed in the way ensuring sufficiently high accuracy and reliability. In recent years, as part of the project "ZSIN - Construction of Integrated Real Estate Information System - Stage I", in the territories of the participating districts, actions were taken aimed at the modernization of the register of land and buildings. In many cases, this process was carried out basing on photogrammetric materials. Applicable regulations allow such a possibility. This paper, basing on the documentation from the National Geodetic and Cartographic Documentation Center and on the authors' own surveys attempts to assess the applicability of the photogrammetric method to capture data on the boundaries of cadastral parcels. The scope of the research, most importantly, included the problem of accuracy with which it was possible to determine the position of a boundary point using photogrammetric surveys carried out on the terrain model created from processed aerial photographs. The article demonstrates the manner of recording this information in the cadastral database, as well as the resulting legal consequences. Moreover, the level of reliability of the entered values of the selected attributes of boundary points was assessed.

  9. The complex variable boundary element method: Applications in determining approximative boundaries

    USGS Publications Warehouse

    Hromadka, T.V.

    1984-01-01

    The complex variable boundary element method (CVBEM) is used to determine approximation functions for boundary value problems of the Laplace equation such as occurs in potential theory. By determining an approximative boundary upon which the CVBEM approximator matches the desired constant (level curves) boundary conditions, the CVBEM is found to provide the exact solution throughout the interior of the transformed problem domain. Thus, the acceptability of the CVBEM approximation is determined by the closeness-of-fit of the approximative boundary to the study problem boundary. ?? 1984.

  10. Numerical Simulation of a Seaway with Breaking

    NASA Astrophysics Data System (ADS)

    Dommermuth, Douglas; O'Shea, Thomas; Brucker, Kyle; Wyatt, Donald

    2012-11-01

    The focus of this presentation is to describe the recent efforts to simulate a fully non-linear seaway with breaking by using a high-order spectral (HOS) solution of the free-surface boundary value problem to drive a three-dimensional Volume of Fluid (VOF) solution. Historically, the two main types of simulations to simulate free-surface flows are the boundary integral equations method (BIEM) and high-order spectral (HOS) methods. BIEM calculations fail at the point at which the surface impacts upon itself, if not sooner, and HOS methods can only simulate a single valued free-surface. Both also employ a single-phase approximation in which the effects of the air on the water are neglected. Due to these limitations they are unable to simulate breaking waves and air entrainment. The Volume of Fluid (VOF) method on the other hand is suitable for modeling breaking waves and air entrainment. However it is computationally intractable to generate a realistic non-linear sea-state. Here, we use the HOS solution to quickly drive, or nudge, the VOF solution into a non-linear state. The computational strategies, mathematical formulation, and numerical implementation will be discussed. The results of the VOF simulation of a seaway with breaking will also be presented, and compared to the single phase, single valued HOS results.

  11. Minimum energy control for a two-compartment neuron to extracellular electric fields

    NASA Astrophysics Data System (ADS)

    Yi, Guo-Sheng; Wang, Jiang; Li, Hui-Yan; Wei, Xi-Le; Deng, Bin

    2016-11-01

    The energy optimization of extracellular electric field (EF) stimulus for a neuron is considered in this paper. We employ the optimal control theory to design a low energy EF input for a reduced two-compartment model. It works by driving the neuron to closely track a prescriptive spike train. A cost function is introduced to balance the contradictory objectives, i.e., tracking errors and EF stimulus energy. By using the calculus of variations, we transform the minimization of cost function to a six-dimensional two-point boundary value problem (BVP). Through solving the obtained BVP in the cases of three fundamental bifurcations, it is shown that the control method is able to provide an optimal EF stimulus of reduced energy for the neuron to effectively track a prescriptive spike train. Further, the feasibility of the adopted method is interpreted from the point of view of the biophysical basis of spike initiation. These investigations are conducive to designing stimulating dose for extracellular neural stimulation, which are also helpful to interpret the effects of extracellular field on neural activity.

  12. Stability of semidiscrete approximations for hyperbolic initial-boundary-value problems: Stationary modes

    NASA Technical Reports Server (NTRS)

    Warming, Robert F.; Beam, Richard M.

    1988-01-01

    Spatially discrete difference approximations for hyperbolic initial-boundary-value problems (IBVPs) require numerical boundary conditions in addition to the analytical boundary conditions specified for the differential equations. Improper treatment of a numerical boundary condition can cause instability of the discrete IBVP even though the approximation is stable for the pure initial-value or Cauchy problem. In the discrete IBVP stability literature there exists a small class of discrete approximations called borderline cases. For nondissipative approximations, borderline cases are unstable according to the theory of the Gustafsson, Kreiss, and Sundstrom (GKS) but they may be Lax-Richtmyer stable or unstable in the L sub 2 norm on a finite domain. It is shown that borderline approximation can be characterized by the presence of a stationary mode for the finite-domain problem. A stationary mode has the property that it does not decay with time and a nontrivial stationary mode leads to algebraic growth of the solution norm with mesh refinement. An analytical condition is given which makes it easy to detect a stationary mode; several examples of numerical boundary conditions are investigated corresponding to borderline cases.

  13. Principal Eigenvalue Minimization for an Elliptic Problem with Indefinite Weight and Robin Boundary Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hintermueller, M., E-mail: hint@math.hu-berlin.de; Kao, C.-Y., E-mail: Ckao@claremontmckenna.edu; Laurain, A., E-mail: laurain@math.hu-berlin.de

    2012-02-15

    This paper focuses on the study of a linear eigenvalue problem with indefinite weight and Robin type boundary conditions. We investigate the minimization of the positive principal eigenvalue under the constraint that the absolute value of the weight is bounded and the total weight is a fixed negative constant. Biologically, this minimization problem is motivated by the question of determining the optimal spatial arrangement of favorable and unfavorable regions for a species to survive. For rectangular domains with Neumann boundary condition, it is known that there exists a threshold value such that if the total weight is below this thresholdmore » value then the optimal favorable region is like a section of a disk at one of the four corners; otherwise, the optimal favorable region is a strip attached to the shorter side of the rectangle. Here, we investigate the same problem with mixed Robin-Neumann type boundary conditions and study how this boundary condition affects the optimal spatial arrangement.« less

  14. On some problems in a theory of thermally and mechanically interacting continuous media. Ph.D. Thesis; [linearized theory of interacting mixture of elastic solid and viscous fluid

    NASA Technical Reports Server (NTRS)

    Lee, Y. M.

    1971-01-01

    Using a linearized theory of thermally and mechanically interacting mixture of linear elastic solid and viscous fluid, we derive a fundamental relation in an integral form called a reciprocity relation. This reciprocity relation relates the solution of one initial-boundary value problem with a given set of initial and boundary data to the solution of a second initial-boundary value problem corresponding to a different initial and boundary data for a given interacting mixture. From this general integral relation, reciprocity relations are derived for a heat-conducting linear elastic solid, and for a heat-conducting viscous fluid. An initial-boundary value problem is posed and solved for the mixture of linear elastic solid and viscous fluid. With the aid of the Laplace transform and the contour integration, a real integral representation for the displacement of the solid constituent is obtained as one of the principal results of the analysis.

  15. Applying the Explicit Time Central Difference Method for Numerical Simulation of the Dynamic Behavior of Elastoplastic Flexible Reinforced Plates

    NASA Astrophysics Data System (ADS)

    Yankovskii, A. P.

    2017-12-01

    Based on a stepwise algorithm involving central finite differences for the approximation in time, a mathematical model is developed for elastoplastic deformation of cross-reinforced plates with isotropically hardening materials of components of the composition. The model allows obtaining the solution of elastoplastic problems at discrete points in time by an explicit scheme. The initial boundary value problem of the dynamic behavior of flexible plates reinforced in their own plane is formulated in the von Kármán approximation with allowance for their weakened resistance to the transverse shear. With a common approach, the resolving equations corresponding to two variants of the Timoshenko theory are obtained. An explicit "cross" scheme for numerical integration of the posed initial boundary value problem has been constructed. The scheme is consistent with the incremental algorithm used for simulating the elastoplastic behavior of a reinforced medium. Calculations of the dynamic behavior have been performed for elastoplastic cylindrical bending of differently reinforced fiberglass rectangular elongated plates. It is shown that the reinforcement structure significantly affects their elastoplastic dynamic behavior. It has been found that the classical theory of plates is as a rule unacceptable for carrying out the required calculations (except for very thin plates), and the first version of the Timoshenko theory yields reasonable results only in cases of relatively thin constructions reinforced by lowmodulus fibers. Proceeding from the results of the work, it is recommended to use the second variant of the Timoshenko theory (as a more accurate one) for calculations of the elastoplastic behavior of reinforced plates.

  16. The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: A careful study of the boundary error

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Gottlieb, David; Abarbanel, Saul; Don, Wai-Sun

    1993-01-01

    The conventional method of imposing time dependent boundary conditions for Runge-Kutta (RK) time advancement reduces the formal accuracy of the space-time method to first order locally, and second order globally, independently of the spatial operator. This counter intuitive result is analyzed in this paper. Two methods of eliminating this problem are proposed for the linear constant coefficient case: (1) impose the exact boundary condition only at the end of the complete RK cycle, (2) impose consistent intermediate boundary conditions derived from the physical boundary condition and its derivatives. The first method, while retaining the RK accuracy in all cases, results in a scheme with much reduced CFL condition, rendering the RK scheme less attractive. The second method retains the same allowable time step as the periodic problem. However it is a general remedy only for the linear case. For non-linear hyperbolic equations the second method is effective only for for RK schemes of third order accuracy or less. Numerical studies are presented to verify the efficacy of each approach.

  17. On two-point boundary correlations in the six-vertex model with domain wall boundary conditions

    NASA Astrophysics Data System (ADS)

    Colomo, F.; Pronko, A. G.

    2005-05-01

    The six-vertex model with domain wall boundary conditions on an N × N square lattice is considered. The two-point correlation function describing the probability of having two vertices in a given state at opposite (top and bottom) boundaries of the lattice is calculated. It is shown that this two-point boundary correlator is expressible in a very simple way in terms of the one-point boundary correlators of the model on N × N and (N - 1) × (N - 1) lattices. In alternating sign matrix (ASM) language this result implies that the doubly refined x-enumerations of ASMs are just appropriate combinations of the singly refined ones.

  18. Quantification of surface charge density and its effect on boundary slip.

    PubMed

    Jing, Dalei; Bhushan, Bharat

    2013-06-11

    Reduction of fluid drag is important in the micro-/nanofluidic systems. Surface charge and boundary slip can affect the fluid drag, and surface charge is also believed to affect boundary slip. The quantification of surface charge and boundary slip at a solid-liquid interface has been widely studied, but there is a lack of understanding of the effect of surface charge on boundary slip. In this paper, the surface charge density of borosilicate glass and octadecyltrichlorosilane (OTS) surfaces immersed in saline solutions with two ionic concentrations and deionized (DI) water with different pH values and electric field values is quantified by fitting experimental atomic force microscopy (AFM) electrostatic force data using a theoretical model relating the surface charge density and electrostatic force. Results show that pH and electric field can affect the surface charge density of glass and OTS surfaces immersed in saline solutions and DI water. The mechanisms of the effect of pH and electric field on the surface charge density are discussed. The slip length of the OTS surface immersed in saline solutions with two ionic concentrations and DI water with different pH values and electric field values is measured, and their effects on the slip length are analyzed from the point of surface charge. Results show that a larger absolute value of surface charge density leads to a smaller slip length for the OTS surface.

  19. Completed Beltrami-Michell Formulation for Analyzing Radially Symmetrical Bodies

    NASA Technical Reports Server (NTRS)

    Kaljevic, Igor; Saigal, Sunil; Hopkins, Dale A.; Patnaik, Surya N.

    1994-01-01

    A force method formulation, the completed Beltrami-Michell formulation (CBMF), has been developed for analyzing boundary value problems in elastic continua. The CBMF is obtained by augmenting the classical Beltrami-Michell formulation with novel boundary compatibility conditions. It can analyze general elastic continua with stress, displacement, or mixed boundary conditions. The CBMF alleviates the limitations of the classical formulation, which can solve stress boundary value problems only. In this report, the CBMF is specialized for plates and shells. All equations of the CBMF, including the boundary compatibility conditions, are derived from the variational formulation of the integrated force method (IFM). These equations are defined only in terms of stresses. Their solution for kinematically stable elastic continua provides stress fields without any reference to displacements. In addition, a stress function formulation for plates and shells is developed by augmenting the classical Airy's formulation with boundary compatibility conditions expressed in terms of the stress function. The versatility of the CBMF and the augmented stress function formulation is demonstrated through analytical solutions of several mixed boundary value problems. The example problems include a composite circular plate and a composite circular cylindrical shell under the simultaneous actions of mechanical and thermal loads.

  20. Some numerical methods for the Hele-Shaw equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitaker, N.

    1994-03-01

    Tryggvason and Aref used a boundary integral method and the vortex-in-cell method to evolve the interface between two fluids in a Hele-Shaw cell. The method gives excellent results for intermediate values of the nondimensional surface tension parameter. The results are different from the predicted results of McLean and Saffman for small surface tension. For large surface tension, there are some numerical problems. In this paper, we implement the method of Tryggvason and Aref but use the point vortex method instead of the vortex-in-cell method. A parametric spline is used to represent the interface. The finger widths obtained agree well withmore » those predicted by McLean and Saffman. We conclude the the method of Tryggvason and Aref can provide excellent results but that the vortex-in-cell method may not be the method of choice for extreme values of the surface tension parameter. In a second method, we represent the interface with a Fourier representation. In addition, an alternative way of discretizing the boundary integral is used. Our results are compared to the linearized theory and the results of McLean and Saffman and are shown to be highly accurate. 21 refs., 4 figs., 2 tabs.« less

  1. Experimental evaluation of heat transfer on a 1030:1 area ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Kacynski, Kenneth J.; Pavli, Albert J.; Smith, Tamara A.

    1987-01-01

    A 1030:1 carbon steel, heat-sink nozzle was tested. The test conditions included a nominal chamber pressure of 2413 kN/sq m and a mixture ratio range of 2.78 to 5.49. The propellants were gaseous oxygen and gaseous hydrogen. Outer wall temperature measurements were used to calculate the inner wall temperature and the heat flux and heat rate to the nozzle at specified axial locations. The experimental heat fluxes were compared to those predicted by the Two-Dimensional Kinetics (TDK) computer model analysis program. When laminar boundary layer flow was assumed in the analysis, the predicted values were within 15 percent of the experimental values for the area ratios of 20 to 975. However, when turbulent boundary layer conditions were assumed, the predicted values were approximately 120 percent higher than the experimental values. A study was performed to determine if the conditions within the nozzle could sustain a laminar boundary layer. Using the flow properties predicted by TDK, the momentum-thickness Reynolds number was calculated, and the point of transition to turbulent flow was predicted. The predicted transition point was within 0.5 inches of the nozzle throat. Calculations of the acceleration parameter were then made to determine if the flow conditions could produce relaminarization of the boundary layer. It was determined that if the boundary layer flow was inclined to transition to turbulent, the acceleration conditions within the nozzle would tend to suppress turbulence and keep the flow laminar-like.

  2. Experimental evaluation of heat transfer on a 1030:1 area ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Kacynski, Kenneth J.; Pavli, Albert J.; Smith, Tamara A.

    1987-01-01

    A 1030:1 carbon steel, heat-sink nozzle was tested. The test conditions included a nominal chamber pressure of 2413 kN/sq m and a mixture ratio range of 2.78 to 5.49. The propellants were gaseous oxygen and gaseous hydrogen. Outer wall temperature measurements were used to calculate the inner wall temperature and the heat flux and heat rate to the nozzle at specified axial locations. The experimental heat fluxes were compared to those predicted by the Two-Dimensional Kinetics (TDK) computer model analysis program. When laminar boundary layer flow was assumed in the analysis, the predicted values were within 15% of the experimental values for the area ratios of 20 to 975. However, when turbulent boundary layer conditions were assumed, the predicted values were approximately 120% higher than the experimental values. A study was performed to determine if the conditions within the nozzle could sustain a laminar boundary layer. Using the flow properties predicted by TDK, the momentum-thickness Reynolds number was calculated, and the point of transition to turbulent flow was predicted. The predicted transition point was within 0.5 inches of the nozzle throat. Calculations of the acceleration parameter were then made to determine if the flow conditions could produce relaminarization of the boundary layer. It was determined that if the boundary layer flow was inclined to transition to turbulent, the acceleration conditions within the nozzle would tend to suppress turbulence and keep the flow laminar-like.

  3. Non-linear analytic and coanalytic problems ( L_p-theory, Clifford analysis, examples)

    NASA Astrophysics Data System (ADS)

    Dubinskii, Yu A.; Osipenko, A. S.

    2000-02-01

    Two kinds of new mathematical model of variational type are put forward: non-linear analytic and coanalytic problems. The formulation of these non-linear boundary-value problems is based on a decomposition of the complete scale of Sobolev spaces into the "orthogonal" sum of analytic and coanalytic subspaces. A similar decomposition is considered in the framework of Clifford analysis. Explicit examples are presented.

  4. Application of ANNs approach for wave-like and heat-like equations

    NASA Astrophysics Data System (ADS)

    Jafarian, Ahmad; Baleanu, Dumitru

    2017-12-01

    Artificial neural networks are data processing systems which originate from human brain tissue studies. The remarkable abilities of these networks help us to derive desired results from complicated raw data. In this study, we intend to duplicate an efficient iterative method to the numerical solution of two famous partial differential equations, namely the wave-like and heat-like problems. It should be noted that many physical phenomena such as coupling currents in a flat multi-strand two-layer super conducting cable, non-homogeneous elastic waves in soils and earthquake stresses, are described by initial-boundary value wave and heat partial differential equations with variable coefficients. To the numerical solution of these equations, a combination of the power series method and artificial neural networks approach, is used to seek an appropriate bivariate polynomial solution of the mentioned initial-boundary value problem. Finally, several computer simulations confirmed the theoretical results and demonstrating applicability of the method.

  5. Diffraction of Electromagnetic Waves on a Waveguide Joint

    NASA Astrophysics Data System (ADS)

    Malykh, Mikhail; Sevastianov, Leonid; Tyutyunnik, Anastasiya; Nikolaev, Nikolai

    2018-02-01

    In general, the investigation of the electromagnetic field in an inhomogeneous waveguide doesn't reduce to the study of two independent boundary value problems for the Helmholtz equation. We show how to rewrite the Helmholtz equations in the "Hamiltonian form" to express the connection between these two problems explicitly. The problem of finding monochromatic waves in an arbitrary waveguide is reduced to an infinite system of ordinary differential equations in a properly constructed Hilbert space. The calculations are performed in the computer algebra system Sage.

  6. Reducible boundary conditions in coupled channels

    NASA Astrophysics Data System (ADS)

    Pankrashkin, Konstantin

    2005-10-01

    We study Hamiltonians with point interactions in spaces of vector-valued functions. Using some information from the theory of quantum graphs, we describe a class of the operators which can be reduced to the direct sum of several one-dimensional problems. It shown that such a reduction is closely connected with the invariance under channel permutations. Examples are provided by some 'model' interactions, in particular, the so-called δ, δ' and the Kirchhoff couplings.

  7. A pseudospectral Legendre method for hyperbolic equations with an improved stability condition

    NASA Technical Reports Server (NTRS)

    Tal-Ezer, H.

    1984-01-01

    A new pseudospectral method is introduced for solving hyperbolic partial differential equations. This method uses different grid points than previously used pseudospectral methods: in fact the grid are related to the zeroes of the Legendre polynomials. The main advantage of this method is that the allowable time step is proportional to the inverse of the number of grid points 1/N rather than to 1/n(2) (as in the case of other pseudospectral methods applied to mixed initial boundary value problems). A highly accurate time discretization suitable for these spectral methods is discussed.

  8. Dynamic history-dependent variational-hemivariational inequalities with applications to contact mechanics

    NASA Astrophysics Data System (ADS)

    Migórski, Stanislaw; Ogorzaly, Justyna

    2017-02-01

    In the paper we deliver a new existence and uniqueness result for a class of abstract nonlinear variational-hemivariational inequalities which are governed by two operators depending on the history of the solution, and include two nondifferentiable functionals, a convex and a nonconvex one. Then, we consider an initial boundary value problem which describes a model of evolution of a viscoelastic body in contact with a foundation. The contact process is assumed to be dynamic, and the friction is described by subdifferential boundary conditions. Both the constitutive law and the contact condition involve memory operators. As an application of the abstract theory, we provide a result on the unique weak solvability of the contact problem.

  9. An exact stiffness theory for unidirectional xFRP composites

    NASA Astrophysics Data System (ADS)

    Klasztorny, M.; Konderla, P.; Piekarski, R.

    2009-01-01

    UD xFRP composites, i.e., isotropic plastics reinforced with long transversely isotropic fibres packed unidirectionally according to the hexagonal scheme are considered. The constituent materials are geometrically and physically linear. The previous formulations of the exact stiffness theory of such composites are revised, and the theory is developed further based on selected boundary-value problems of elasticity theory. The numerical examples presented are focussed on testing the theory with account of previous variants of this theory and experimental values of the effective elastic constants. The authors have pointed out that the exact stiffness theory of UD xFRP composites, with the modifications proposed in our study, will be useful in the engineering practice and in solving the current problems of the mechanics of composite materials.

  10. Pseudo-point transport technique: a new method for solving the Boltzmann transport equation in media with highly fluctuating cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakhai, B.

    A new method for solving radiation transport problems is presented. The heart of the technique is a new cross section processing procedure for the calculation of group-to-point and point-to-group cross sections sets. The method is ideally suited for problems which involve media with highly fluctuating cross sections, where the results of the traditional multigroup calculations are beclouded by the group averaging procedures employed. Extensive computational efforts, which would be required to evaluate double integrals in the multigroup treatment numerically, prohibit iteration to optimize the energy boundaries. On the other hand, use of point-to-point techniques (as in the stochastic technique) ismore » often prohibitively expensive due to the large computer storage requirement. The pseudo-point code is a hybrid of the two aforementioned methods (group-to-group and point-to-point) - hence the name pseudo-point - that reduces the computational efforts of the former and the large core requirements of the latter. The pseudo-point code generates the group-to-point or the point-to-group transfer matrices, and can be coupled with the existing transport codes to calculate pointwise energy-dependent fluxes. This approach yields much more detail than is available from the conventional energy-group treatments. Due to the speed of this code, several iterations could be performed (in affordable computing efforts) to optimize the energy boundaries and the weighting functions. The pseudo-point technique is demonstrated by solving six problems, each depicting a certain aspect of the technique. The results are presented as flux vs energy at various spatial intervals. The sensitivity of the technique to the energy grid and the savings in computational effort are clearly demonstrated.« less

  11. A finite-element analysis for steady and oscillatory supersonic flows around complex configurations

    NASA Technical Reports Server (NTRS)

    Morino, L.; Chen, L. T.

    1974-01-01

    The problem of small perturbation potential supersonic flow around complex configurations is considered. This problem requires the solution of an integral equation relating the values of the potential on the surface of the body to the values of the normal derivative, which is known from the small perturbation boundary conditions. The surface of the body is divided into small (hyperboloidal quadrilateral) surface elements, sigma sub i, which are described in terms of the Cartesian components of the four corner points. The values of the potential (and its normal derivative) within each element is assumed to be constant and equal to its value at the centroid of the element, and this yields a set of linear algebraic equations. The coefficients of the equation are given by source and doublet integrals over the surface elements, sigma sub i. The results obtained using the above formulation are compared with existing analytical and experimental results.

  12. Approximate optimal tracking control for near-surface AUVs with wave disturbances

    NASA Astrophysics Data System (ADS)

    Yang, Qing; Su, Hao; Tang, Gongyou

    2016-10-01

    This paper considers the optimal trajectory tracking control problem for near-surface autonomous underwater vehicles (AUVs) in the presence of wave disturbances. An approximate optimal tracking control (AOTC) approach is proposed. Firstly, a six-degrees-of-freedom (six-DOF) AUV model with its body-fixed coordinate system is decoupled and simplified and then a nonlinear control model of AUVs in the vertical plane is given. Also, an exosystem model of wave disturbances is constructed based on Hirom approximation formula. Secondly, the time-parameterized desired trajectory which is tracked by the AUV's system is represented by the exosystem. Then, the coupled two-point boundary value (TPBV) problem of optimal tracking control for AUVs is derived from the theory of quadratic optimal control. By using a recently developed successive approximation approach to construct sequences, the coupled TPBV problem is transformed into a problem of solving two decoupled linear differential sequences of state vectors and adjoint vectors. By iteratively solving the two equation sequences, the AOTC law is obtained, which consists of a nonlinear optimal feedback item, an expected output tracking item, a feedforward disturbances rejection item, and a nonlinear compensatory term. Furthermore, a wave disturbances observer model is designed in order to solve the physically realizable problem. Simulation is carried out by using the Remote Environmental Unit (REMUS) AUV model to demonstrate the effectiveness of the proposed algorithm.

  13. Solidification of a binary mixture

    NASA Technical Reports Server (NTRS)

    Antar, B. N.

    1982-01-01

    The time dependent concentration and temperature profiles of a finite layer of a binary mixture are investigated during solidification. The coupled time dependent Stefan problem is solved numerically using an implicit finite differencing algorithm with the method of lines. Specifically, the temporal operator is approximated via an implicit finite difference operator resulting in a coupled set of ordinary differential equations for the spatial distribution of the temperature and concentration for each time. Since the resulting differential equations set form a boundary value problem with matching conditions at an unknown spatial point, the method of invariant imbedding is used for its solution.

  14. Asymptotic solution of the problem for a thin axisymmetric cavern

    NASA Technical Reports Server (NTRS)

    Serebriakov, V. V.

    1973-01-01

    The boundary value problem which describes the axisymmetric separation of the flow around a body by a stationary infinite stream is considered. It is understood that the cavitation number varies over the length of the cavern. Using the asymptotic expansions for the potential of a thin body, the orders of magnitude of terms in the equations of the problem are estimated. Neglecting small quantities, a simplified boundary value problem is obtained.

  15. More on boundary holographic Witten diagrams

    NASA Astrophysics Data System (ADS)

    Sato, Yoshiki

    2018-01-01

    In this paper we discuss geodesic Witten diagrams in general holographic conformal field theories with boundary or defect. In boundary or defect conformal field theory, two-point functions are nontrivial and can be decomposed into conformal blocks in two distinct ways; ambient channel decomposition and boundary channel decomposition. In our previous work [A. Karch and Y. Sato, J. High Energy Phys. 09 (2017) 121., 10.1007/JHEP09(2017)121] we only consider two-point functions of same operators. We generalize our previous work to a situation where operators in two-point functions are different. We obtain two distinct decomposition for two-point functions of different operators.

  16. Design and Experimental Implementation of Optimal Spacecraft Antenna Slews

    DTIC Science & Technology

    2013-12-01

    LINK PENDULUM MODEL ............................................................58  C.  AZIMUTH-ELEVATION SYSTEM...BOUNDARY VALUE PROBLEM ......................77  B.  DOUBLE PENDULUM EXAMPLE............................................................82  C.  SOLVING THE...Figure 15.  Two-link Pendulum .........................................................................................58  Figure 16.  Double

  17. Two-and three-dimensional unsteady lift problems in high-speed flight

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard; Heaslet, Max A; Fuller, Franklyn B; Sluder, Loma

    1952-01-01

    The problem of transient lift on two- and three-dimensional wings flying at high speeds is discussed as a boundary-value problem for the classical wave equation. Kirchoff's formula is applied so that the analysis is reduced, just as in the steady state, to an investigation of sources and doublets. The applications include the evaluation of indicial lift and pitching-moment curves for two-dimensional sinking and pitching wings flying at Mach numbers equal to 0, 0.8, 1.0, 1.2 and 2.0. Results for the sinking case are also given for a Mach number of 0.5. In addition, the indicial functions for supersonic-edged triangular wings in both forward and reverse flow are presented and compared with the two-dimensional values.

  18. Versions of the collocation and least squares method for solving biharmonic equations in non-canonical domains

    NASA Astrophysics Data System (ADS)

    Belyaev, V. A.; Shapeev, V. P.

    2017-10-01

    New versions of the collocations and least squares method of high-order accuracy are proposed and implemented for the numerical solution of the boundary value problems for the biharmonic equation in non-canonical domains. The solution of the biharmonic equation is used for simulating the stress-strain state of an isotropic plate under the action of transverse load. The differential problem is projected into a space of fourth-degree polynomials by the CLS method. The boundary conditions for the approximate solution are put down exactly on the boundary of the computational domain. The versions of the CLS method are implemented on the grids which are constructed in two different ways. It is shown that the approximate solution of problems converges with high order. Thus it matches with high accuracy with the analytical solution of the test problems in the case of known solution in the numerical experiments on the convergence of the solution of various problems on a sequence of grids.

  19. An inverse problem in thermal imaging

    NASA Technical Reports Server (NTRS)

    Bryan, Kurt; Caudill, Lester F., Jr.

    1994-01-01

    This paper examines uniqueness and stability results for an inverse problem in thermal imaging. The goal is to identify an unknown boundary of an object by applying a heat flux and measuring the induced temperature on the boundary of the sample. The problem is studied both in the case in which one has data at every point on the boundary of the region and the case in which only finitely many measurements are available. An inversion procedure is developed and used to study the stability of the inverse problem for various experimental configurations.

  20. The Sedov Blast Wave as a Radial Piston Verification Test

    DOE PAGES

    Pederson, Clark; Brown, Bart; Morgan, Nathaniel

    2016-06-22

    The Sedov blast wave is of great utility as a verification problem for hydrodynamic methods. The typical implementation uses an energized cell of finite dimensions to represent the energy point source. We avoid this approximation by directly finding the effects of the energy source as a boundary condition (BC). Furthermore, the proposed method transforms the Sedov problem into an outward moving radial piston problem with a time-varying velocity. A portion of the mesh adjacent to the origin is removed and the boundaries of this hole are forced with the velocities from the Sedov solution. This verification test is implemented onmore » two types of meshes, and convergence is shown. Our results from the typical initial condition (IC) method and the new BC method are compared.« less

  1. Analytical methods for solving boundary value heat conduction problems with heterogeneous boundary conditions on lines. I - Review

    NASA Astrophysics Data System (ADS)

    Kartashov, E. M.

    1986-10-01

    Analytical methods for solving boundary value problems for the heat conduction equation with heterogeneous boundary conditions on lines, on a plane, and in space are briefly reviewed. In particular, the method of dual integral equations and summator series is examined with reference to stationary processes. A table of principal solutions to dual integral equations and pair summator series is proposed which presents the known results in a systematic manner. Newly obtained results are presented in addition to the known ones.

  2. The mechanical problems on additive manufacturing of viscoelastic solids with integral conditions on a surface increasing in the growth process

    NASA Astrophysics Data System (ADS)

    Parshin, D. A.; Manzhirov, A. V.

    2018-04-01

    Quasistatic mechanical problems on additive manufacturing aging viscoelastic solids are investigated. The processes of piecewise-continuous accretion of such solids are considered. The consideration is carried out in the framework of linear mechanics of growing solids. A theorem about commutativity of the integration over an arbitrary surface increasing in the solid growing process and the time-derived integral operator of viscoelasticity with a limit depending on the solid point is proved. This theorem provides an efficient way to construct on the basis of Saint-Venant principle solutions of nonclassical boundary-value problems for describing the mechanical behaviour of additively formed solids with integral satisfaction of boundary conditions on the surfaces expanding due to the additional material influx to the formed solid. The constructed solutions will retrace the evolution of the stress-strain state of the solids under consideration during and after the processes of their additive formation. An example of applying the proved theorem is given.

  3. On the role of acoustic feedback in boundary-layer instability.

    PubMed

    Wu, Xuesong

    2014-07-28

    In this paper, the classical triple-deck formalism is employed to investigate two instability problems in which an acoustic feedback loop plays an essential role. The first concerns a subsonic boundary layer over a flat plate on which two well-separated roughness elements are present. A spatially amplifying Tollmien-Schlichting (T-S) wave between the roughness elements is scattered by the downstream roughness to emit a sound wave that propagates upstream and impinges on the upstream roughness to regenerate the T-S wave, thereby forming a closed feedback loop in the streamwise direction. Numerical calculations suggest that, at high Reynolds numbers and for moderate roughness heights, the long-range acoustic coupling may lead to absolute instability, which is characterized by self-sustained oscillations at discrete frequencies. The dominant peak frequency may jump from one value to another as the Reynolds number, or the distance between the roughness elements, is varied gradually. The second problem concerns the supersonic 'twin boundary layers' that develop along two well-separated parallel flat plates. The two boundary layers are in mutual interaction through the impinging and reflected acoustic waves. It is found that the interaction leads to a new instability that is absent in the unconfined boundary layer. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Potential mapping with charged-particle beams

    NASA Technical Reports Server (NTRS)

    Robinson, J. W.; Tillery, D. G.

    1979-01-01

    Experimental methods of mapping the equipotential surfaces near some structure of interest rely on the detection of charged particles which have traversed the regions of interest and are detected remotely. One method is the measurement of ion energies for ions created at a point of interest and expelled from the region by the fields. The ion energy at the detector in eV corresponds to the potential where the ion was created. An ionizing beam forms the ions from background neutrals. The other method is to inject charged particles into the region of interest and to locate their exit points. A set of several trajectories becomes a data base for a systematic mapping technique. An iterative solution of a boundary value problem establishes concepts and limitations pertaining to the mapping problem.

  5. Conformal mapping and bound states in bent waveguides

    NASA Astrophysics Data System (ADS)

    Sadurní, E.; Schleich, W. P.

    2010-12-01

    Is it possible to trap a quantum particle in an open geometry? In this work we deal with the boundary value problem of the stationary Schroedinger (or Helmholtz) equation within a waveguide with straight segments and a rectangular bending. The problem can be reduced to a one-dimensional matrix Schroedinger equation using two descriptions: oblique modes and conformal coordinates. We use a corner-corrected WKB formalism to find the energies of the one-dimensional problem. It is shown that the presence of bound states is an effect due to the boundary alone, with no classical counterpart for this geometry. The conformal description proves to be simpler, as the coupling of transversal modes is not essential in this case.

  6. Numerical solution of the general coupled nonlinear Schrödinger equations on unbounded domains.

    PubMed

    Li, Hongwei; Guo, Yue

    2017-12-01

    The numerical solution of the general coupled nonlinear Schrödinger equations on unbounded domains is considered by applying the artificial boundary method in this paper. In order to design the local absorbing boundary conditions for the coupled nonlinear Schrödinger equations, we generalize the unified approach previously proposed [J. Zhang et al., Phys. Rev. E 78, 026709 (2008)PLEEE81539-375510.1103/PhysRevE.78.026709]. Based on the methodology underlying the unified approach, the original problem is split into two parts, linear and nonlinear terms, and we then achieve a one-way operator to approximate the linear term to make the wave out-going, and finally we combine the one-way operator with the nonlinear term to derive the local absorbing boundary conditions. Then we reduce the original problem into an initial boundary value problem on the bounded domain, which can be solved by the finite difference method. The stability of the reduced problem is also analyzed by introducing some auxiliary variables. Ample numerical examples are presented to verify the accuracy and effectiveness of our proposed method.

  7. Shape determination and control for large space structures

    NASA Technical Reports Server (NTRS)

    Weeks, C. J.

    1981-01-01

    An integral operator approach is used to derive solutions to static shape determination and control problems associated with large space structures. Problem assumptions include a linear self-adjoint system model, observations and control forces at discrete points, and performance criteria for the comparison of estimates or control forms. Results are illustrated by simulations in the one dimensional case with a flexible beam model, and in the multidimensional case with a finite model of a large space antenna. Modal expansions for terms in the solution algorithms are presented, using modes from the static or associated dynamic mode. These expansions provide approximated solutions in the event that a used form analytical solution to the system boundary value problem is not available.

  8. Multi-objective optimization of a continuous bio-dissimilation process of glycerol to 1, 3-propanediol.

    PubMed

    Xu, Gongxian; Liu, Ying; Gao, Qunwang

    2016-02-10

    This paper deals with multi-objective optimization of continuous bio-dissimilation process of glycerol to 1, 3-propanediol. In order to maximize the production rate of 1, 3-propanediol, maximize the conversion rate of glycerol to 1, 3-propanediol, maximize the conversion rate of glycerol, and minimize the concentration of by-product ethanol, we first propose six new multi-objective optimization models that can simultaneously optimize any two of the four objectives above. Then these multi-objective optimization problems are solved by using the weighted-sum and normal-boundary intersection methods respectively. Both the Pareto filter algorithm and removal criteria are used to remove those non-Pareto optimal points obtained by the normal-boundary intersection method. The results show that the normal-boundary intersection method can successfully obtain the approximate Pareto optimal sets of all the proposed multi-objective optimization problems, while the weighted-sum approach cannot achieve the overall Pareto optimal solutions of some multi-objective problems. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. On the Measure and the Structure of the Free Boundary of the Lower Dimensional Obstacle Problem

    NASA Astrophysics Data System (ADS)

    Focardi, Matteo; Spadaro, Emanuele

    2018-04-01

    We provide a thorough description of the free boundary for the lower dimensional obstacle problem in R^{n+1} up to sets of null H^{n-1} measure. In particular, we prove (i) local finiteness of the (n-1)-dimensional Hausdorff measure of the free boundary, (ii) H^{n-1}-rectifiability of the free boundary, (iii) classification of the frequencies up to a set of Hausdorff dimension at most (n-2) and classification of the blow-ups at H^{n-1} almost every free boundary point.

  10. Numerical Solution of Systems of Loaded Ordinary Differential Equations with Multipoint Conditions

    NASA Astrophysics Data System (ADS)

    Assanova, A. T.; Imanchiyev, A. E.; Kadirbayeva, Zh. M.

    2018-04-01

    A system of loaded ordinary differential equations with multipoint conditions is considered. The problem under study is reduced to an equivalent boundary value problem for a system of ordinary differential equations with parameters. A system of linear algebraic equations for the parameters is constructed using the matrices of the loaded terms and the multipoint condition. The conditions for the unique solvability and well-posedness of the original problem are established in terms of the matrix made up of the coefficients of the system of linear algebraic equations. The coefficients and the righthand side of the constructed system are determined by solving Cauchy problems for linear ordinary differential equations. The solutions of the system are found in terms of the values of the desired function at the initial points of subintervals. The parametrization method is numerically implemented using the fourth-order accurate Runge-Kutta method as applied to the Cauchy problems for ordinary differential equations. The performance of the constructed numerical algorithms is illustrated by examples.

  11. Convenient stability criteria for difference approximations of hyperbolic initial-boundary value problems

    NASA Technical Reports Server (NTRS)

    Goldberg, M.; Tadmor, E.

    1985-01-01

    New convenient stability criteria are provided in this paper for a large class of finite difference approximations to initial-boundary value problems associated with the hyperbolic system u sub t = au sub x + Bu + f in the quarter plane x or = 0, t or = 0. Using the new criteria, stability is easily established for numerous combinations of well known basic schemes and boundary conditins, thus generalizing many special cases studied in recent literature.

  12. Convenient stability criteria for difference approximations of hyperbolic initial-boundary value problems

    NASA Technical Reports Server (NTRS)

    Goldberg, M.; Tadmor, E.

    1983-01-01

    New convenient stability criteria are provided in this paper for a large class of finite difference approximations to initial-boundary value problems associated with the hyperbolic system u sub t = au sub x + Bu + f in the quarter plane x or = 0, t or = 0. Using the new criteria, stability is easily established for numerous combinations of well known basic schemes and boundary conditions, thus generalizing many special cases studied in recent literature.

  13. Potential applications of skip SMV with thrust engine

    NASA Astrophysics Data System (ADS)

    Wang, Weilin; Savvaris, Al

    2016-11-01

    This paper investigates the potential applications of Space Maneuver Vehicles (SMV) with skip trajectory. Due to soaring space operations over the past decades, the risk of space debris has considerably increased such as collision risks with space asset, human property on ground and even aviation. Many active debris removal methods have been investigated and in this paper, a debris remediation method is first proposed based on skip SMV. The key point is to perform controlled re-entry. These vehicles are expected to achieve a trans-atmospheric maneuver with thrust engine. If debris is released at altitude below 80 km, debris could be captured by the atmosphere drag force and re-entry interface prediction accuracy is improved. Moreover if the debris is released in a cargo at a much lower altitude, this technique protects high value space asset from break up by the atmosphere and improves landing accuracy. To demonstrate the feasibility of this concept, the present paper presents the simulation results for two specific mission profiles: (1) descent to predetermined altitude; (2) descent to predetermined point (altitude, longitude and latitude). The evolutionary collocation method is adopted for skip trajectory optimization due to its global optimality and high-accuracy. This method is actually a two-step optimization approach based on the heuristic algorithm and the collocation method. The optimal-control problem is transformed into a nonlinear programming problem (NLP) which can be efficiently and accurately solved by the sequential quadratic programming (SQP) procedure. However, such a method is sensitive to initial values. To reduce the sensitivity problem, genetic algorithm (GA) is adopted to refine the grids and provide near optimum initial values. By comparing the simulation data from different scenarios, it is found that skip SMV is feasible in active debris removal and the evolutionary collocation method gives a truthful re-entry trajectory that satisfies the path and boundary constraints.

  14. [Kinetic theory and boundary conditions for highly inelastic spheres]. Quarterly progress report, April 1, 1993--June 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richman, M.

    1993-12-31

    In this quarter, a kinetic theory was employed to set up the boundary value problem for steady, fully developed, gravity-driven flows of identical, smooth, highly inelastic spheres down bumpy inclines. The solid fraction, mean velocity, and components of the full second moment of fluctuation velocity were treated as mean fields. In addition to the balance equations for mass and momentum, the balance of the full second moment of fluctuation velocity was treated as an equation that must be satisfied by the mean fields. However, in order to simplify the resulting boundary value problem, fluxes of second moments in its isotropicmore » piece only were retained. The constitutive relations for the stresses and collisional source of second moment depend explicitly on the second moment of fluctuation velocity, and the constitutive relation for the energy flux depends on gradients of granular temperature, solid fraction, and components of the second moment. The boundary conditions require that the flows are free of stress and energy flux at their tops, and that momentum and energy are balanced at the bumpy base. The details of the boundary value problem are provided. In the next quarter, a solution procedure will be developed, and it will be employed to obtain sample numerical solutions to the boundary value problem described here.« less

  15. Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail; Volpi, Michele; Copa, Loris

    2010-05-01

    The problem of environmental monitoring networks optimization (MNO) belongs to one of the basic and fundamental tasks in spatio-temporal data collection, analysis, and modeling. There are several approaches to this problem, which can be considered as a design or redesign of monitoring network by applying some optimization criteria. The most developed and widespread methods are based on geostatistics (family of kriging models, conditional stochastic simulations). In geostatistics the variance is mainly used as an optimization criterion which has some advantages and drawbacks. In the present research we study an application of advanced techniques following from the statistical learning theory (SLT) - support vector machines (SVM) and the optimization of monitoring networks when dealing with a classification problem (data are discrete values/classes: hydrogeological units, soil types, pollution decision levels, etc.) is considered. SVM is a universal nonlinear modeling tool for classification problems in high dimensional spaces. The SVM solution is maximizing the decision boundary between classes and has a good generalization property for noisy data. The sparse solution of SVM is based on support vectors - data which contribute to the solution with nonzero weights. Fundamentally the MNO for classification problems can be considered as a task of selecting new measurement points which increase the quality of spatial classification and reduce the testing error (error on new independent measurements). In SLT this is a typical problem of active learning - a selection of the new unlabelled points which efficiently reduce the testing error. A classical approach (margin sampling) to active learning is to sample the points closest to the classification boundary. This solution is suboptimal when points (or generally the dataset) are redundant for the same class. In the present research we propose and study two new advanced methods of active learning adapted to the solution of MNO problem: 1) hierarchical top-down clustering in an input space in order to remove redundancy when data are clustered, and 2) a general method (independent on classifier) which gives posterior probabilities that can be used to define the classifier confidence and corresponding proposals for new measurement points. The basic ideas and procedures are explained by applying simulated data sets. The real case study deals with the analysis and mapping of soil types, which is a multi-class classification problem. Maps of soil types are important for the analysis and 3D modeling of heavy metals migration in soil and prediction risk mapping. The results obtained demonstrate the high quality of SVM mapping and efficiency of monitoring network optimization by using active learning approaches. The research was partly supported by SNSF projects No. 200021-126505 and 200020-121835.

  16. Program for the solution of multipoint boundary value problems of quasilinear differential equations

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Linear equations are solved by a method of superposition of solutions of a sequence of initial value problems. For nonlinear equations and/or boundary conditions, the solution is iterative and in each iteration a problem like the linear case is solved. A simple Taylor series expansion is used for the linearization of both nonlinear equations and nonlinear boundary conditions. The perturbation method of solution is used in preference to quasilinearization because of programming ease, and smaller storage requirements; and experiments indicate that the desired convergence properties exist although no proof or convergence is given.

  17. The first boundary-value problem for a fractional diffusion-wave equation in a non-cylindrical domain

    NASA Astrophysics Data System (ADS)

    Pskhu, A. V.

    2017-12-01

    We solve the first boundary-value problem in a non-cylindrical domain for a diffusion-wave equation with the Dzhrbashyan- Nersesyan operator of fractional differentiation with respect to the time variable. We prove an existence and uniqueness theorem for this problem, and construct a representation of the solution. We show that a sufficient condition for unique solubility is the condition of Hölder smoothness for the lateral boundary of the domain. The corresponding results for equations with Riemann- Liouville and Caputo derivatives are particular cases of results obtained here.

  18. An H(mo) Interpolation Result

    DTIC Science & Technology

    1989-11-14

    9] V. A. Kondrat’ev. Boundary problems for parabolic equations in closed domains. Trans. Mosc . Math. Soc., 15:450-504, 1966. [10] V. A. Kondrat’ev...Boundary problems for elliptic equations in domains with conical or angular points. Trans. Mosc . Math. Soc., 16:227-313, 1967. [11] Y. Maday. Analysis

  19. VNAP2: A Computer Program for Computation of Two-dimensional, Time-dependent, Compressible, Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Cline, M. C.

    1981-01-01

    A computer program, VNAP2, for calculating turbulent (as well as laminar and inviscid), steady, and unsteady flow is presented. It solves the two dimensional, time dependent, compressible Navier-Stokes equations. The turbulence is modeled with either an algebraic mixing length model, a one equation model, or the Jones-Launder two equation model. The geometry may be a single or a dual flowing stream. The interior grid points are computed using the unsplit MacCormack scheme. Two options to speed up the calculations for high Reynolds number flows are included. The boundary grid points are computed using a reference plane characteristic scheme with the viscous terms treated as source functions. An explicit artificial viscosity is included for shock computations. The fluid is assumed to be a perfect gas. The flow boundaries may be arbitrary curved solid walls, inflow/outflow boundaries, or free jet envelopes. Typical problems that can be solved concern nozzles, inlets, jet powered afterbodies, airfoils, and free jet expansions. The accuracy and efficiency of the program are shown by calculations of several inviscid and turbulent flows. The program and its use are described completely, and six sample cases and a code listing are included.

  20. Numerical Boundary Conditions for Computational Aeroacoustics Benchmark Problems

    NASA Technical Reports Server (NTRS)

    Tam, Chritsopher K. W.; Kurbatskii, Konstantin A.; Fang, Jun

    1997-01-01

    Category 1, Problems 1 and 2, Category 2, Problem 2, and Category 3, Problem 2 are solved computationally using the Dispersion-Relation-Preserving (DRP) scheme. All these problems are governed by the linearized Euler equations. The resolution requirements of the DRP scheme for maintaining low numerical dispersion and dissipation as well as accurate wave speeds in solving the linearized Euler equations are now well understood. As long as 8 or more mesh points per wavelength is employed in the numerical computation, high quality results are assured. For the first three categories of benchmark problems, therefore, the real challenge is to develop high quality numerical boundary conditions. For Category 1, Problems 1 and 2, it is the curved wall boundary conditions. For Category 2, Problem 2, it is the internal radiation boundary conditions inside the duct. For Category 3, Problem 2, they are the inflow and outflow boundary conditions upstream and downstream of the blade row. These are the foci of the present investigation. Special nonhomogeneous radiation boundary conditions that generate the incoming disturbances and at the same time allow the outgoing reflected or scattered acoustic disturbances to leave the computation domain without significant reflection are developed. Numerical results based on these boundary conditions are provided.

  1. Alternative Transfer to the Earth-Moon Lagrangian Points L4 and L5 Using Lunar Gravity assist

    NASA Astrophysics Data System (ADS)

    Salazar, Francisco; Winter, Othon; Macau, Elbert; Bertachini de Almeida Prado, Antonio Fernando

    2012-07-01

    Lagrangian points L4 and L5 lie at 60 degrees ahead of and behind Moon in its orbit with respect to the Earth. Each one of them is a third point of an equilateral triangle with the base of the line defined by those two bodies. These Lagrangian points are stable for the Earth-Moon mass ratio. Because of their distance electromagnetic radiations from the Earth arrive on them substantially attenuated. As so, these Lagrangian points represent remarkable positions to host astronomical observatories. However, this same distance characteristic may be a challenge for periodic servicing mission. This paper studies transfer orbits in the planar restricted three-body problem. To avoid solving a two-boundary problem, the patched-conic approximation is used to find initial conditions to transfer a spacecraft between an Earth circular parking orbit and the Lagrangian points L4, L5 (in the Earth-Moon system), such that a swing-by maneuver is applied using the lunar gravity. We also found orbits that can be used to make a tour to the Lagrangian points L4, L5 based on the theorem of image trajectories. Keywords: Stable Lagrangian points, L4, L5, Three-Body problem, Patched Conic, Swing-by

  2. LiveWire interactive boundary extraction algorithm based on Haar wavelet transform and control point set direction search

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; Zhang, Jun; Tian, Jinwen

    2015-12-01

    Based on deep analysis of the LiveWire interactive boundary extraction algorithm, a new algorithm focusing on improving the speed of LiveWire algorithm is proposed in this paper. Firstly, the Haar wavelet transform is carried on the input image, and the boundary is extracted on the low resolution image obtained by the wavelet transform of the input image. Secondly, calculating LiveWire shortest path is based on the control point set direction search by utilizing the spatial relationship between the two control points users provide in real time. Thirdly, the search order of the adjacent points of the starting node is set in advance. An ordinary queue instead of a priority queue is taken as the storage pool of the points when optimizing their shortest path value, thus reducing the complexity of the algorithm from O[n2] to O[n]. Finally, A region iterative backward projection method based on neighborhood pixel polling has been used to convert dual-pixel boundary of the reconstructed image to single-pixel boundary after Haar wavelet inverse transform. The algorithm proposed in this paper combines the advantage of the Haar wavelet transform and the advantage of the optimal path searching method based on control point set direction search. The former has fast speed of image decomposition and reconstruction and is more consistent with the texture features of the image and the latter can reduce the time complexity of the original algorithm. So that the algorithm can improve the speed in interactive boundary extraction as well as reflect the boundary information of the image more comprehensively. All methods mentioned above have a big role in improving the execution efficiency and the robustness of the algorithm.

  3. Streamline integration as a method for two-dimensional elliptic grid generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiesenberger, M., E-mail: Matthias.Wiesenberger@uibk.ac.at; Held, M.; Einkemmer, L.

    We propose a new numerical algorithm to construct a structured numerical elliptic grid of a doubly connected domain. Our method is applicable to domains with boundaries defined by two contour lines of a two-dimensional function. Furthermore, we can adapt any analytically given boundary aligned structured grid, which specifically includes polar and Cartesian grids. The resulting coordinate lines are orthogonal to the boundary. Grid points as well as the elements of the Jacobian matrix can be computed efficiently and up to machine precision. In the simplest case we construct conformal grids, yet with the help of weight functions and monitor metricsmore » we can control the distribution of cells across the domain. Our algorithm is parallelizable and easy to implement with elementary numerical methods. We assess the quality of grids by considering both the distribution of cell sizes and the accuracy of the solution to elliptic problems. Among the tested grids these key properties are best fulfilled by the grid constructed with the monitor metric approach. - Graphical abstract: - Highlights: • Construct structured, elliptic numerical grids with elementary numerical methods. • Align coordinate lines with or make them orthogonal to the domain boundary. • Compute grid points and metric elements up to machine precision. • Control cell distribution by adaption functions or monitor metrics.« less

  4. Numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity

    NASA Astrophysics Data System (ADS)

    Korepanov, V. V.; Matveenko, V. P.; Fedorov, A. Yu.; Shardakov, I. N.

    2013-07-01

    An algorithm for the numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity is considered. The algorithm is based on separation of a power-law dependence from the finite-element solution in a neighborhood of singular points in the domain under study, where singular solutions are possible. The obtained power-law dependencies allow one to conclude whether the stresses have singularities and what the character of these singularities is. The algorithm was tested for problems of classical elasticity by comparing the stress singularity exponents obtained by the proposed method and from known analytic solutions. Problems with various cases of singular points, namely, body surface points at which either the smoothness of the surface is violated, or the type of boundary conditions is changed, or distinct materials are in contact, are considered as applications. The stress singularity exponents obtained by using the models of classical and asymmetric elasticity are compared. It is shown that, in the case of cracks, the stress singularity exponents are the same for the elasticity models under study, but for other cases of singular points, the stress singularity exponents obtained on the basis of asymmetric elasticity have insignificant quantitative distinctions from the solutions of the classical elasticity.

  5. Analysis of a class of boundary value problems depending on left and right Caputo fractional derivatives

    NASA Astrophysics Data System (ADS)

    Antunes, Pedro R. S.; Ferreira, Rui A. C.

    2017-07-01

    In this work we study boundary value problems associated to a nonlinear fractional ordinary differential equation involving left and right Caputo derivatives. We discuss the regularity of the solutions of such problems and, in particular, give precise necessary conditions so that the solutions are C1([0, 1]). Taking into account our analytical results, we address the numerical solution of those problems by the augmented -RBF method. Several examples illustrate the good performance of the numerical method.

  6. Girsanov's transformation based variance reduced Monte Carlo simulation schemes for reliability estimation in nonlinear stochastic dynamics

    NASA Astrophysics Data System (ADS)

    Kanjilal, Oindrila; Manohar, C. S.

    2017-07-01

    The study considers the problem of simulation based time variant reliability analysis of nonlinear randomly excited dynamical systems. Attention is focused on importance sampling strategies based on the application of Girsanov's transformation method. Controls which minimize the distance function, as in the first order reliability method (FORM), are shown to minimize a bound on the sampling variance of the estimator for the probability of failure. Two schemes based on the application of calculus of variations for selecting control signals are proposed: the first obtains the control force as the solution of a two-point nonlinear boundary value problem, and, the second explores the application of the Volterra series in characterizing the controls. The relative merits of these schemes, vis-à-vis the method based on ideas from the FORM, are discussed. Illustrative examples, involving archetypal single degree of freedom (dof) nonlinear oscillators, and a multi-degree of freedom nonlinear dynamical system, are presented. The credentials of the proposed procedures are established by comparing the solutions with pertinent results from direct Monte Carlo simulations.

  7. Optimal Control of Thermo--Fluid Phenomena in Variable Domains

    NASA Astrophysics Data System (ADS)

    Volkov, Oleg; Protas, Bartosz

    2008-11-01

    This presentation concerns our continued research on adjoint--based optimization of viscous incompressible flows (the Navier--Stokes problem) coupled with heat conduction involving change of phase (the Stefan problem), and occurring in domains with variable boundaries. This problem is motivated by optimization of advanced welding techniques used in automotive manufacturing, where the goal is to determine an optimal heat input, so as to obtain a desired shape of the weld pool surface upon solidification. We argue that computation of sensitivities (gradients) in such free--boundary problems requires the use of the shape--differential calculus as a key ingredient. We also show that, with such tools available, the computational solution of the direct and inverse (optimization) problems can in fact be achieved in a similar manner and in a comparable computational time. Our presentation will address certain mathematical and computational aspects of the method. As an illustration we will consider the two--phase Stefan problem with contact point singularities where our approach allows us to obtain a thermodynamically consistent solution.

  8. Integral Method of Boundary Characteristics: Neumann Condition

    NASA Astrophysics Data System (ADS)

    Kot, V. A.

    2018-05-01

    A new algorithm, based on systems of identical equalities with integral and differential boundary characteristics, is proposed for solving boundary-value problems on the heat conduction in bodies canonical in shape at a Neumann boundary condition. Results of a numerical analysis of the accuracy of solving heat-conduction problems with variable boundary conditions with the use of this algorithm are presented. The solutions obtained with it can be considered as exact because their errors comprise hundredths and ten-thousandths of a persent for a wide range of change in the parameters of a problem.

  9. Variational principle for the Navier-Stokes equations.

    PubMed

    Kerswell, R R

    1999-05-01

    A variational principle is presented for the Navier-Stokes equations in the case of a contained boundary-driven, homogeneous, incompressible, viscous fluid. Based upon making the fluid's total viscous dissipation over a given time interval stationary subject to the constraint of the Navier-Stokes equations, the variational problem looks overconstrained and intractable. However, introducing a nonunique velocity decomposition, u(x,t)=phi(x,t) + nu(x,t), "opens up" the variational problem so that what is presumed a single allowable point over the velocity domain u corresponding to the unique solution of the Navier-Stokes equations becomes a surface with a saddle point over the extended domain (phi,nu). Complementary or dual variational problems can then be constructed to estimate this saddle point value strictly from above as part of a minimization process or below via a maximization procedure. One of these reduced variational principles is the natural and ultimate generalization of the upper bounding problem developed by Doering and Constantin. The other corresponds to the ultimate Busse problem which now acts to lower bound the true dissipation. Crucially, these reduced variational problems require only the solution of a series of linear problems to produce bounds even though their unique intersection is conjectured to correspond to a solution of the nonlinear Navier-Stokes equations.

  10. Theoretical investigations of plasma processes in the ion bombardment thruster

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1975-01-01

    A physical model for a thruster discharge was developed, consisting of a spatially diverging plasma sustained electrically between a small ring cathode and a larger ring anode in a cylindrical chamber with an axial magnetic field. The associated boundary-value problem for the coupled partial differential equations with mixed boundary conditions, which describe the electric potential and the plasma velocity fields, was solved in closed form. By means of quantum-mechanical perturbation theory, a formula for the number S(E) of atoms sputtered on the average by an ion of energy E was derived from first principles. The boundary-value problem describing the diffusion of the sputtered atoms through the surrounding rarefied electron-ion plasma to the system surfaces of ion propulsion systems was formulated and treated analytically. It is shown that outer boundary-value problems of this type lead to a complex integral equation, which requires numerical resolution.

  11. Similarity solution of the Boussinesq equation

    NASA Astrophysics Data System (ADS)

    Lockington, D. A.; Parlange, J.-Y.; Parlange, M. B.; Selker, J.

    Similarity transforms of the Boussinesq equation in a semi-infinite medium are available when the boundary conditions are a power of time. The Boussinesq equation is reduced from a partial differential equation to a boundary-value problem. Chen et al. [Trans Porous Media 1995;18:15-36] use a hodograph method to derive an integral equation formulation of the new differential equation which they solve by numerical iteration. In the present paper, the convergence of their scheme is improved such that numerical iteration can be avoided for all practical purposes. However, a simpler analytical approach is also presented which is based on Shampine's transformation of the boundary value problem to an initial value problem. This analytical approximation is remarkably simple and yet more accurate than the analytical hodograph approximations.

  12. The quantum-field renormalization group in the problem of a growing phase boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonov, N.V.; Vasil`ev, A.N.

    1995-09-01

    Within the quantum-field renormalization-group approach we examine the stochastic equation discussed by S.I. Pavlik in describing a randomly growing phase boundary. We show that, in contrast to Pavlik`s assertion, the model is not multiplicatively renormalizable and that its consistent renormalization-group analysis requires introducing an infinite number of counterterms and the respective coupling constants ({open_quotes}charge{close_quotes}). An explicit calculation in the one-loop approximation shows that a two-dimensional surface of renormalization-group points exits in the infinite-dimensional charge space. If the surface contains an infrared stability region, the problem allows for scaling with the nonuniversal critical dimensionalities of the height of the phase boundarymore » and time, {delta}{sub h} and {delta}{sub t}, which satisfy the exact relationship 2 {delta}{sub h}= {delta}{sub t} + d, where d is the dimensionality of the phase boundary. 23 refs., 1 tab.« less

  13. A Model for Selection of Eyespots on Butterfly Wings.

    PubMed

    Sekimura, Toshio; Venkataraman, Chandrasekhar; Madzvamuse, Anotida

    2015-01-01

    The development of eyespots on the wing surface of butterflies of the family Nympalidae is one of the most studied examples of biological pattern formation.However, little is known about the mechanism that determines the number and precise locations of eyespots on the wing. Eyespots develop around signaling centers, called foci, that are located equidistant from wing veins along the midline of a wing cell (an area bounded by veins). A fundamental question that remains unsolved is, why a certain wing cell develops an eyespot, while other wing cells do not. We illustrate that the key to understanding focus point selection may be in the venation system of the wing disc. Our main hypothesis is that changes in morphogen concentration along the proximal boundary veins of wing cells govern focus point selection. Based on previous studies, we focus on a spatially two-dimensional reaction-diffusion system model posed in the interior of each wing cell that describes the formation of focus points. Using finite element based numerical simulations, we demonstrate that variation in the proximal boundary condition is sufficient to robustly select whether an eyespot focus point forms in otherwise identical wing cells. We also illustrate that this behavior is robust to small perturbations in the parameters and geometry and moderate levels of noise. Hence, we suggest that an anterior-posterior pattern of morphogen concentration along the proximal vein may be the main determinant of the distribution of focus points on the wing surface. In order to complete our model, we propose a two stage reaction-diffusion system model, in which an one-dimensional surface reaction-diffusion system, posed on the proximal vein, generates the morphogen concentrations that act as non-homogeneous Dirichlet (i.e., fixed) boundary conditions for the two-dimensional reaction-diffusion model posed in the wing cells. The two-stage model appears capable of generating focus point distributions observed in nature. We therefore conclude that changes in the proximal boundary conditions are sufficient to explain the empirically observed distribution of eyespot focus points on the entire wing surface. The model predicts, subject to experimental verification, that the source strength of the activator at the proximal boundary should be lower in wing cells in which focus points form than in those that lack focus points. The model suggests that the number and locations of eyespot foci on the wing disc could be largely controlled by two kinds of gradients along two different directions, that is, the first one is the gradient in spatially varying parameters such as the reaction rate along the anterior-posterior direction on the proximal boundary of the wing cells, and the second one is the gradient in source values of the activator along the veins in the proximal-distal direction of the wing cell.

  14. Two-dimensional supersonic nonlinear Schrödinger flow past an extended obstacle

    NASA Astrophysics Data System (ADS)

    El, G. A.; Kamchatnov, A. M.; Khodorovskii, V. V.; Annibale, E. S.; Gammal, A.

    2009-10-01

    Supersonic flow of a superfluid past a slender impenetrable macroscopic obstacle is studied in the framework of the two-dimensional (2D) defocusing nonlinear Schrödinger (NLS) equation. This problem is of fundamental importance as a dispersive analog of the corresponding classical gas-dynamics problem. Assuming the oncoming flow speed is sufficiently high, we asymptotically reduce the original boundary-value problem for a steady flow past a slender body to the one-dimensional dispersive piston problem described by the nonstationary NLS equation, in which the role of time is played by the stretched x coordinate and the piston motion curve is defined by the spatial body profile. Two steady oblique spatial dispersive shock waves (DSWs) spreading from the pointed ends of the body are generated in both half planes. These are described analytically by constructing appropriate exact solutions of the Whitham modulation equations for the front DSW and by using a generalized Bohr-Sommerfeld quantization rule for the oblique dark soliton fan in the rear DSW. We propose an extension of the traditional modulation description of DSWs to include the linear “ship-wave” pattern forming outside the nonlinear modulation region of the front DSW. Our analytic results are supported by direct 2D unsteady numerical simulations and are relevant to recent experiments on Bose-Einstein condensates freely expanding past obstacles.

  15. Flutter analysis using transversality theory

    NASA Technical Reports Server (NTRS)

    Afolabi, D.

    1993-01-01

    A new method of calculating flutter boundaries of undamped aeronautical structures is presented. The method is an application of the weak transversality theorem used in catastrophe theory. In the first instance, the flutter problem is cast in matrix form using a frequency domain method, leading to an eigenvalue matrix. The characteristic polynomial resulting from this matrix usually has a smooth dependence on the system's parameters. As these parameters change with operating conditions, certain critical values are reached at which flutter sets in. Our approach is to use the transversality theorem in locating such flutter boundaries using this criterion: at a flutter boundary, the characteristic polynomial does not intersect the axis of the abscissa transversally. Formulas for computing the flutter boundaries and flutter frequencies of structures with two degrees of freedom are presented, and extension to multi-degree of freedom systems is indicated. The formulas have obvious applications in, for instance, problems of panel flutter at supersonic Mach numbers.

  16. Numerical Recovering of a Speed of Sound by the BC-Method in 3D

    NASA Astrophysics Data System (ADS)

    Pestov, Leonid; Bolgova, Victoria; Danilin, Alexandr

    We develop the numerical algorithm for solving the inverse problem for the wave equation by the Boundary Control method. The problem, which we refer to as a forward one, is an initial boundary value problem for the wave equation with zero initial data in the bounded domain. The inverse problem is to find the speed of sound c(x) by the measurements of waves induced by a set of boundary sources. The time of observation is assumed to be greater then two acoustical radius of the domain. The numerical algorithm for sound reconstruction is based on two steps. The first one is to find a (sufficiently large) number of controls {f_j} (the basic control is defined by the position of the source and some time delay), which generates the same number of known harmonic functions, i.e. Δ {u_j}(.,T) = 0 , where {u_j} is the wave generated by the control {f_j} . After that the linear integral equation w.r.t. the speed of sound is obtained. The piecewise constant model of the speed is used. The result of numerical testing of 3-dimensional model is presented.

  17. A new approach to impulsive rendezvous near circular orbit

    NASA Astrophysics Data System (ADS)

    Carter, Thomas; Humi, Mayer

    2012-04-01

    A new approach is presented for the problem of planar optimal impulsive rendezvous of a spacecraft in an inertial frame near a circular orbit in a Newtonian gravitational field. The total characteristic velocity to be minimized is replaced by a related characteristic-value function and this related optimization problem can be solved in closed form. The solution of this problem is shown to approach the solution of the original problem in the limit as the boundary conditions approach those of a circular orbit. Using a form of primer-vector theory the problem is formulated in a way that leads to relatively easy calculation of the optimal velocity increments. A certain vector that can easily be calculated from the boundary conditions determines the number of impulses required for solution of the optimization problem and also is useful in the computation of these velocity increments. Necessary and sufficient conditions for boundary conditions to require exactly three nonsingular non-degenerate impulses for solution of the related optimal rendezvous problem, and a means of calculating these velocity increments are presented. A simple example of a three-impulse rendezvous problem is solved and the resulting trajectory is depicted. Optimal non-degenerate nonsingular two-impulse rendezvous for the related problem is found to consist of four categories of solutions depending on the four ways the primer vector locus intersects the unit circle. Necessary and sufficient conditions for each category of solutions are presented. The region of the boundary values that admit each category of solutions of the related problem are found, and in each case a closed-form solution of the optimal velocity increments is presented. Similar results are presented for the simpler optimal rendezvous that require only one-impulse. For brevity degenerate and singular solutions are not discussed in detail, but should be presented in a following study. Although this approach is thought to provide simpler computations than existing methods, its main contribution may be in establishing a new approach to the more general problem.

  18. Multilevel Methods for Elliptic Problems with Highly Varying Coefficients on Nonaligned Coarse Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheichl, Robert; Vassilevski, Panayot S.; Zikatanov, Ludmil T.

    2012-06-21

    We generalize the analysis of classical multigrid and two-level overlapping Schwarz methods for 2nd order elliptic boundary value problems to problems with large discontinuities in the coefficients that are not resolved by the coarse grids or the subdomain partition. The theoretical results provide a recipe for designing hierarchies of standard piecewise linear coarse spaces such that the multigrid convergence rate and the condition number of the Schwarz preconditioned system do not depend on the coefficient variation or on any mesh parameters. One assumption we have to make is that the coarse grids are sufficiently fine in the vicinity of crossmore » points or where regions with large diffusion coefficients are separated by a narrow region where the coefficient is small. We do not need to align them with possible discontinuities in the coefficients. The proofs make use of novel stable splittings based on weighted quasi-interpolants and weighted Poincaré-type inequalities. Finally, numerical experiments are included that illustrate the sharpness of the theoretical bounds and the necessity of the technical assumptions.« less

  19. Boundary Approximation Methods for Sloving Elliptic Problems on Unbounded Domains

    NASA Astrophysics Data System (ADS)

    Li, Zi-Cai; Mathon, Rudolf

    1990-08-01

    Boundary approximation methods with partial solutions are presented for solving a complicated problem on an unbounded domain, with both a crack singularity and a corner singularity. Also an analysis of partial solutions near the singular points is provided. These methods are easy to apply, have good stability properties, and lead to highly accurate solutions. Hence, boundary approximation methods with partial solutions are recommended for the treatment of elliptic problems on unbounded domains provided that piecewise solution expansions, in particular, asymptotic solutions near the singularities and infinity, can be found.

  20. Proceedings of the Dundee Conference (10th) Held in Dundee, Scotland on July 1988. Ordinary and Partial Differential Equations. Volume 2

    DTIC Science & Technology

    1988-07-01

    a priori inequalities with applications to R J Knops boundary value problems 40 Singular systems of differential equations V G Sigiilito S L...Stochastic functional differential equations S E A Mohammed 100 Optimal control of variational inequalities 125 Ennio de Giorgi Colloquium V Barbu P Kr e...location of the period-doubled bifurcation point varies slightly with Zc [ 3 ]. In addition, no significant effect is found if a smoother functional

  1. Solving a Local Boundary Value Problem for a Nonlinear Nonstationary System in the Class of Feedback Controls

    NASA Astrophysics Data System (ADS)

    Kvitko, A. N.

    2018-01-01

    An algorithm convenient for numerical implementation is proposed for constructing differentiable control functions that transfer a wide class of nonlinear nonstationary systems of ordinary differential equations from an initial state to a given point of the phase space. Constructive sufficient conditions imposed on the right-hand side of the controlled system are obtained under which this transfer is possible. The control of a robotic manipulator is considered, and its numerical simulation is performed.

  2. Resonances and vibrations in an elevator cable system due to boundary sway

    NASA Astrophysics Data System (ADS)

    Gaiko, Nick V.; van Horssen, Wim T.

    2018-06-01

    In this paper, an analytical method is presented to study an initial-boundary value problem describing the transverse displacements of a vertically moving beam under boundary excitation. The length of the beam is linearly varying in time, i.e., the axial, vertical velocity of the beam is assumed to be constant. The bending stiffness of the beam is assumed to be small. This problem may be regarded as a model describing the lateral vibrations of an elevator cable excited at its boundaries by the wind-induced building sway. Slow variation of the cable length leads to a singular perturbation problem which is expressed in slowly changing, time-dependent coefficients in the governing differential equation. By providing an interior layer analysis, infinitely many resonance manifolds are detected. Further, the initial-boundary value problem is studied in detail using a three-timescales perturbation method. The constructed formal approximations of the solutions are in agreement with the numerical results.

  3. Survey of the status of finite element methods for partial differential equations

    NASA Technical Reports Server (NTRS)

    Temam, Roger

    1986-01-01

    The finite element methods (FEM) have proved to be a powerful technique for the solution of boundary value problems associated with partial differential equations of either elliptic, parabolic, or hyperbolic type. They also have a good potential for utilization on parallel computers particularly in relation to the concept of domain decomposition. This report is intended as an introduction to the FEM for the nonspecialist. It contains a survey which is totally nonexhaustive, and it also contains as an illustration, a report on some new results concerning two specific applications, namely a free boundary fluid-structure interaction problem and the Euler equations for inviscid flows.

  4. The dynamics and control of large flexible space structures - 13

    NASA Technical Reports Server (NTRS)

    Bainum, Peter M.; Li, Feiyue; Xu, Jianke

    1990-01-01

    The optimal control of three-dimensional large angle maneuvers and vibrations of a Shuttle-mast-reflector system is considered. The nonlinear equations of motion are formulated by using Lagrange's formula, with the mast modeled as a continuous beam subject to three-dimensional deformations. Pontryagin's Maximum Principle is applied to the slewing problem, to derive the necessary conditions for the optimal controls, which are bounded by given saturation levels. The resulting two point boundary value problem is then solved by using the quasilinearization algorithm and the method of particular solutions. The study of the large angle maneuvering of the Shuttle-beam-reflector spacecraft in the plane of a circular earth orbit is extended to consider the effects of the structural offset connection, the axial shortening, and the gravitational torque on the slewing motion. Finally the effect of additional design parameters (such as related to additional payload requirement) on the linear quadratic regulator based design of an orbiting control/structural system is examined.

  5. Point force and point electric charge applied to the boundary of three-dimensional anisotropic piezoelectric solid

    DOE PAGES

    Borovikov, V. A.; Kalinin, S. V.; Khavin, Yu.; ...

    2015-08-19

    We derive the Green's functions for a three-dimensional semi-infinite fully anisotropic piezoelectric material using the plane wave theory method. The solution gives the complete set of electromechanical fields due to an arbitrarily oriented point force and a point electric charge applied to the boundary of the half-space. Moreover, the solution constitutes generalization of Boussinesq's and Cerruti's problems of elastic isotropy for the anisotropic piezoelectric materials. On the example of piezoceramics PZT-6B, the present results are compared with the previously obtained solution for the special case of transversely isotropic piezoelectric solid subjected to the same boundary condition.

  6. OTIS 3.2 Software Released

    NASA Technical Reports Server (NTRS)

    Riehl, John P.; Sjauw, Waldy K.

    2004-01-01

    Trajectory, mission, and vehicle engineers concern themselves with finding the best way for an object to get from one place to another. These engineers rely upon special software to assist them in this. For a number of years, many engineers have used the OTIS program for this assistance. With OTIS, an engineer can fully optimize trajectories for airplanes, launch vehicles like the space shuttle, interplanetary spacecraft, and orbital transfer vehicles. OTIS provides four modes of operation, with each mode providing successively stronger optimization capability. The most powerful mode uses a mathematical method called implicit integration to solve what engineers and mathematicians call the optimal control problem. OTIS 3.2, which was developed at the NASA Glenn Research Center, is the latest release of this industry workhorse and features new capabilities for parameter optimization and mission design. OTIS stands for Optimal Control by Implicit Simulation, and it is implicit integration that makes OTIS so powerful at solving trajectory optimization problems. Why is this so important? The optimization process not only determines how to get from point A to point B, but it can also determine how to do this with the least amount of propellant, with the lightest starting weight, or in the fastest time possible while avoiding certain obstacles along the way. There are numerous conditions that engineers can use to define optimal, or best. OTIS provides a framework for defining the starting and ending points of the trajectory (point A and point B), the constraints on the trajectory (requirements like "avoid these regions where obstacles occur"), and what is being optimized (e.g., minimize propellant). The implicit integration method can find solutions to very complicated problems when there is not a lot of information available about what the optimal trajectory might be. The method was first developed for solving two-point boundary value problems and was adapted for use in OTIS. Implicit integration usually allows OTIS to find solutions to problems much faster than programs that use explicit integration and parametric methods. Consequently, OTIS is best suited to solving very complicated and highly constrained problems.

  7. Boundary-value problem for a counterrotating electrical discharge in an axial magnetic field. [plasma centrifuge for isotope separation

    NASA Technical Reports Server (NTRS)

    Hong, S. H.; Wilhelm, H. E.

    1978-01-01

    An electrical discharge between two ring electrodes embedded in the mantle of a cylindrical chamber is considered, in which the plasma in the anode and cathode regions rotates in opposite directions under the influence of an external axial magnetic field. The associated boundary-value problem for the coupled partial differential equations describing the azimuthal velocity and radial current-density fields is solved in closed form. The velocity, current density, induced magnetic induction, and electric fields are presented for typical Hartmann numbers, magnetic Reynolds numbers, and geometry parameters. The discharge is shown to produce anodic and cathodic plasma sections rotating at speeds of the order 1,000,000 cm/sec for conventional magnetic field intensities. Possible application of the magnetoactive discharge as a plasma centrifuge for isotope separation is discussed.

  8. Using shape contexts method for registration of contra lateral breasts in thermal images.

    PubMed

    Etehadtavakol, Mahnaz; Ng, Eddie Yin-Kwee; Gheissari, Niloofar

    2014-12-10

    To achieve symmetric boundaries for left and right breasts boundaries in thermal images by registration. The proposed method for registration consists of two steps. In the first step, shape context, an approach as presented by Belongie and Malik was applied for registration of two breast boundaries. The shape context is an approach to measure shape similarity. Two sets of finite sample points from shape contours of two breasts are then presented. Consequently, the correspondences between the two shapes are found. By finding correspondences, the sample point which has the most similar shape context is obtained. In this study, a line up transformation which maps one shape onto the other has been estimated in order to complete shape. The used of a thin plate spline permitted good estimation of a plane transformation which has capability to map unselective points from one shape onto the other. The obtained aligning transformation of boundaries points has been applied successfully to map the two breasts interior points. Some of advantages for using shape context method in this work are as follows: (1) no special land marks or key points are needed; (2) it is tolerant to all common shape deformation; and (3) although it is uncomplicated and straightforward to use, it gives remarkably powerful descriptor for point sets significantly upgrading point set registration. Results are very promising. The proposed algorithm was implemented for 32 cases. Boundary registration is done perfectly for 28 cases. We used shape contexts method that is simple and easy to implement to achieve symmetric boundaries for left and right breasts boundaries in thermal images.

  9. Highway extraction from high resolution aerial photography using a geometric active contour model

    NASA Astrophysics Data System (ADS)

    Niu, Xutong

    Highway extraction and vehicle detection are two of the most important steps in traffic-flow analysis from multi-frame aerial photographs. The traditional method of deriving traffic flow trajectories relies on manual vehicle counting from a sequence of aerial photographs, which is tedious and time-consuming. This research presents a new framework for semi-automatic highway extraction. The basis of the new framework is an improved geometric active contour (GAC) model. This novel model seeks to minimize an objective function that transforms a problem of propagation of regular curves into an optimization problem. The implementation of curve propagation is based on level set theory. By using an implicit representation of a two-dimensional curve, a level set approach can be used to deal with topological changes naturally, and the output is unaffected by different initial positions of the curve. However, the original GAC model, on which the new model is based, only incorporates boundary information into the curve propagation process. An error-producing phenomenon called leakage is inevitable wherever there is an uncertain weak edge. In this research, region-based information is added as a constraint into the original GAC model, thereby, giving this proposed method the ability of integrating both boundary and region-based information during the curve propagation. Adding the region-based constraint eliminates the leakage problem. This dissertation applies the proposed augmented GAC model to the problem of highway extraction from high-resolution aerial photography. First, an optimized stopping criterion is designed and used in the implementation of the GAC model. It effectively saves processing time and computations. Second, a seed point propagation framework is designed and implemented. This framework incorporates highway extraction, tracking, and linking into one procedure. A seed point is usually placed at an end node of highway segments close to the boundary of the image or at a position where possible blocking may occur, such as at an overpass bridge or near vehicle crowds. These seed points can be automatically propagated throughout the entire highway network. During the process, road center points are also extracted, which introduces a search direction for solving possible blocking problems. This new framework has been successfully applied to highway network extraction from a large orthophoto mosaic. In the process, vehicles on the highway extracted from mosaic were detected with an 83% success rate.

  10. Boundary value problem for the solution of magnetic cutoff rigidities and some special applications

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry

    1987-01-01

    Since a planet's magnetic field can sometimes provide a spacecraft with some protection against cosmic ray and solar flare particles, it is important to be able to quantify this protection. This is done by calculating cutoff rigidities. An alternate to the conventional method (particle trajectory tracing) is introduced, which is to treat the problem as a boundary value problem. In this approach trajectory tracing is only needed to supply boundary conditions. In some special cases, trajectory tracing is not needed at all because the problem can be solved analytically. A differential equation governing cutoff rigidities is derived for static magnetic fields. The presense of solid objects, which can block a trajectory and other force fields are not included. A few qualititative comments, on existence and uniqueness of solutions, are made which may be useful when deciding how the boundary conditions should be set up. Also included are topics on axially symmetric fields.

  11. Elasto visco-plastic flow with special attention to boundary conditions

    NASA Technical Reports Server (NTRS)

    Shimazaki, Y.; Thompson, E. G.

    1981-01-01

    A simple but nontrivial steady-state creeping elasto visco-plastic (Maxwell fluid) radial flow problem is analyzed, with special attention given to the effects of the boundary conditions. Solutions are obtained through integration of a governing equation on stress using the Runge-Kutta method for initial value problems and finite differences for boundary value problems. A more general approach through the finite element method, an approach that solves for the velocity field rather than the stress field and that is applicable to a wide range of problems, is presented and tested using the radial flow example. It is found that steady-state flows of elasto visco-plastic materials are strongly influenced by the state of stress of material as it enters the region of interest. The importance of this boundary or initial condition in analyses involving materials coming into control volumes from unusual stress environments is emphasized.

  12. Summation by parts, projections, and stability

    NASA Technical Reports Server (NTRS)

    Olsson, Pelle

    1993-01-01

    We have derived stability results for high-order finite difference approximations of mixed hyperbolic-parabolic initial-boundary value problems (IBVP). The results are obtained using summation by parts and a new way of representing general linear boundary conditions as an orthogonal projection. By slightly rearranging the analytic equations, we can prove strict stability for hyperbolic-parabolic IBVP. Furthermore, we generalize our technique so as to yield strict stability on curvilinear non-smooth domains in two space dimensions. Finally, we show how to incorporate inhomogeneous boundary data while retaining strict stability. Using the same procedure one can prove strict stability in higher dimensions as well.

  13. Numerical method for predicting flow characteristics and performance of nonaxisymmetric nozzles, theory

    NASA Technical Reports Server (NTRS)

    Thomas, P. D.

    1979-01-01

    The theoretical foundation and formulation of a numerical method for predicting the viscous flowfield in and about isolated three dimensional nozzles of geometrically complex configuration are presented. High Reynolds number turbulent flows are of primary interest for any combination of subsonic, transonic, and supersonic flow conditions inside or outside the nozzle. An alternating-direction implicit (ADI) numerical technique is employed to integrate the unsteady Navier-Stokes equations until an asymptotic steady-state solution is reached. Boundary conditions are computed with an implicit technique compatible with the ADI technique employed at interior points of the flow region. The equations are formulated and solved in a boundary-conforming curvilinear coordinate system. The curvilinear coordinate system and computational grid is generated numerically as the solution to an elliptic boundary value problem. A method is developed that automatically adjusts the elliptic system so that the interior grid spacing is controlled directly by the a priori selection of the grid spacing on the boundaries of the flow region.

  14. On similarity solutions of a boundary layer problem with an upstream moving wall

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Y.; Lakin, W. D.; Nachman, A.

    1986-01-01

    The problem of a boundary layer on a flat plate which has a constant velocity opposite in direction to that of the uniform mainstream is examined. It was previously shown that the solution of this boundary value problem is crucially dependent on the parameter which is the ratio of the velocity of the plate to the velocity of the free stream. In particular, it was proved that a solution exists only if this parameter does not exceed a certain critical value, and numerical evidence was adduced to show that this solution is nonunique. Using Crocco formulation the present work proves this nonuniqueness. Also considered are the analyticity of solutions and the derivation of upper bounds on the critical value of wall velocity parameter.

  15. Integral methods of solving boundary-value problems of nonstationary heat conduction and their comparative analysis

    NASA Astrophysics Data System (ADS)

    Kot, V. A.

    2017-11-01

    The modern state of approximate integral methods used in applications, where the processes of heat conduction and heat and mass transfer are of first importance, is considered. Integral methods have found a wide utility in different fields of knowledge: problems of heat conduction with different heat-exchange conditions, simulation of thermal protection, Stefantype problems, microwave heating of a substance, problems on a boundary layer, simulation of a fluid flow in a channel, thermal explosion, laser and plasma treatment of materials, simulation of the formation and melting of ice, inverse heat problems, temperature and thermal definition of nanoparticles and nanoliquids, and others. Moreover, polynomial solutions are of interest because the determination of a temperature (concentration) field is an intermediate stage in the mathematical description of any other process. The following main methods were investigated on the basis of the error norms: the Tsoi and Postol’nik methods, the method of integral relations, the Gudman integral method of heat balance, the improved Volkov integral method, the matched integral method, the modified Hristov method, the Mayer integral method, the Kudinov method of additional boundary conditions, the Fedorov boundary method, the method of weighted temperature function, the integral method of boundary characteristics. It was established that the two last-mentioned methods are characterized by high convergence and frequently give solutions whose accuracy is not worse that the accuracy of numerical solutions.

  16. A Novel Numerical Method for Fuzzy Boundary Value Problems

    NASA Astrophysics Data System (ADS)

    Can, E.; Bayrak, M. A.; Hicdurmaz

    2016-05-01

    In the present paper, a new numerical method is proposed for solving fuzzy differential equations which are utilized for the modeling problems in science and engineering. Fuzzy approach is selected due to its important applications on processing uncertainty or subjective information for mathematical models of physical problems. A second-order fuzzy linear boundary value problem is considered in particular due to its important applications in physics. Moreover, numerical experiments are presented to show the effectiveness of the proposed numerical method on specific physical problems such as heat conduction in an infinite plate and a fin.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yousong, E-mail: yousong.luo@rmit.edu.au

    This paper deals with a class of optimal control problems governed by an initial-boundary value problem of a parabolic equation. The case of semi-linear boundary control is studied where the control is applied to the system via the Wentzell boundary condition. The differentiability of the state variable with respect to the control is established and hence a necessary condition is derived for the optimal solution in the case of both unconstrained and constrained problems. The condition is also sufficient for the unconstrained convex problems. A second order condition is also derived.

  18. A two-dimensional MHD global coronal model - Steady-state streamers

    NASA Technical Reports Server (NTRS)

    Wang, A.-H.; Wu, S. T.; Suess, S. T.; Poletto, G.

    1992-01-01

    A 2D, time-dependent, numerical, MHD model for the simulation of coronal streamers from the solar surface to 15 solar is presented. Three examples are given; for dipole, quadrupole and hexapole (Legendre polynomials P1, P2, and P3) initial field topologies. The computed properties are density, temperature, velocity, and magnetic field. The calculation is set up as an initial-boundary value problem wherein a relaxation in time produces the steady state solution. In addition to the properties of the solutions, their accuracy is discussed. Besides solutions for dipole, quadrupole, and hexapole geometries, the model use of realistic values for the density and Alfven speed while still meeting the requirement that the flow speed be super-Alfvenic at the outer boundary by extending the outer boundary to 15 solar radii.

  19. Anatomical evaluation and stress distribution of intact canine femur.

    PubMed

    Verim, Ozgur; Tasgetiren, Suleyman; Er, Mehmet S; Ozdemir, Vural; Yuran, Ahmet F

    2013-03-01

    In the biomedical field, three-dimensional (3D) modeling and analysis of bones and tissues has steadily gained in importance. The aim of this study was to produce more accurate 3D models of the canine femur derived from computed tomography (CT) data by using several modeling software programs and two different methods. The accuracy of the analysis depends on the modeling process and the right boundary conditions. Solidworks, Rapidform, Inventor, and 3DsMax software programs were used to create 3D models. Data derived from CT were converted into 3D models using two different methods: in the first, 3D models were generated using boundary lines, while in the second, 3D models were generated using point clouds. Stress analyses in the models were made by ANSYS v12, also considering any muscle forces acting on the canine femur. When stress values and statistical values were taken into consideration, more accurate models were obtained with the point cloud method. It was found that the maximum von Mises stress on the canine femur shaft was 34.8 MPa. Stress and accuracy values were obtained from the model formed using the Rapidform software. The values obtained were similar to those in other studies in the literature. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Pattern formations and optimal packing.

    PubMed

    Mityushev, Vladimir

    2016-04-01

    Patterns of different symmetries may arise after solution to reaction-diffusion equations. Hexagonal arrays, layers and their perturbations are observed in different models after numerical solution to the corresponding initial-boundary value problems. We demonstrate an intimate connection between pattern formations and optimal random packing on the plane. The main study is based on the following two points. First, the diffusive flux in reaction-diffusion systems is approximated by piecewise linear functions in the framework of structural approximations. This leads to a discrete network approximation of the considered continuous problem. Second, the discrete energy minimization yields optimal random packing of the domains (disks) in the representative cell. Therefore, the general problem of pattern formations based on the reaction-diffusion equations is reduced to the geometric problem of random packing. It is demonstrated that all random packings can be divided onto classes associated with classes of isomorphic graphs obtained from the Delaunay triangulation. The unique optimal solution is constructed in each class of the random packings. If the number of disks per representative cell is finite, the number of classes of isomorphic graphs, hence, the number of optimal packings is also finite. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Response of Non-Linear Shock Absorbers-Boundary Value Problem Analysis

    NASA Astrophysics Data System (ADS)

    Rahman, M. A.; Ahmed, U.; Uddin, M. S.

    2013-08-01

    A nonlinear boundary value problem of two degrees-of-freedom (DOF) untuned vibration damper systems using nonlinear springs and dampers has been numerically studied. As far as untuned damper is concerned, sixteen different combinations of linear and nonlinear springs and dampers have been comprehensively analyzed taking into account transient terms. For different cases, a comparative study is made for response versus time for different spring and damper types at three important frequency ratios: one at r = 1, one at r > 1 and one at r <1. The response of the system is changed because of the spring and damper nonlinearities; the change is different for different cases. Accordingly, an initially stable absorber may become unstable with time and vice versa. The analysis also shows that higher nonlinearity terms make the system more unstable. Numerical simulation includes transient vibrations. Although problems are much more complicated compared to those for a tuned absorber, a comparison of the results generated by the present numerical scheme with the exact one shows quite a reasonable agreement

  2. A boundary value approach for solving three-dimensional elliptic and hyperbolic partial differential equations.

    PubMed

    Biala, T A; Jator, S N

    2015-01-01

    In this article, the boundary value method is applied to solve three dimensional elliptic and hyperbolic partial differential equations. The partial derivatives with respect to two of the spatial variables (y, z) are discretized using finite difference approximations to obtain a large system of ordinary differential equations (ODEs) in the third spatial variable (x). Using interpolation and collocation techniques, a continuous scheme is developed and used to obtain discrete methods which are applied via the Block unification approach to obtain approximations to the resulting large system of ODEs. Several test problems are investigated to elucidate the solution process.

  3. Fast algorithm for calculation of the moving tsunami wave height

    NASA Astrophysics Data System (ADS)

    Krivorotko, Olga; Kabanikhin, Sergey

    2014-05-01

    One of the most urgent problems of mathematical tsunami modeling is estimation of a tsunami wave height while a wave approaches to the coastal zone. There are two methods for solving this problem, namely, Airy-Green formula in one-dimensional case ° --- S(x) = S(0) 4 H(0)/H (x), and numerical solution of an initial-boundary value problem for linear shallow water equations ( { ηtt = div (gH (x,y)gradη), (x,y,t) ∈ ΩT := Ω ×(0,T); ( η|t=0 = q(x,y), ηt|t=0 = 0, (x,y ) ∈ Ω := (0,Lx)× (0,Ly ); (1) η|δΩT = 0. Here η(x,y,t) is the free water surface vertical displacement, H(x,y) is the depth at point (x,y), q(x,y) is the initial amplitude of a tsunami wave, S(x) is a moving tsunami wave height at point x. The main difficulty problem of tsunami modeling is a very big size of the computational domain ΩT. The calculation of the function η(x,y,t) of three variables in ΩT requires large computing resources. We construct a new algorithm to solve numerically the problem of determining the moving tsunami wave height which is based on kinematic-type approach and analytical representation of fundamental solution (2). The wave is supposed to be generated by the seismic fault of the bottom η(x,y,0) = g(y) ·θ(x), where θ(x) is a Heaviside theta-function. Let τ(x,y) be a solution of the eikonal equation 1 τ2x +τ2y = --, gH (x,y) satisfying initial conditions τ(0,y) = 0 and τx(0,y) = (gH (0,y))-1/2. Introducing new variables and new functions: ° -- z = τ(x,y), u(z,y,t) = ηt(x,y,t), b(z,y) = gH(x,y). We obtain an initial-boundary value problem in new variables from (1) ( 2 2 (2 bz- ) { utt = uzz + b uyy + 2b τyuzy + b(τxx + τyy) + 2b + 2bbyτy uz+ ( +2b(bzτy + by)uy, z,y- >2 0,t > 0,2 -1/2 u|t 0,t > 0. Then after some mathematical transformation we get the structure of the function u(x,y,t) in the form u(z,y,t) = S(z,y)·θ(t - z) + ˜u(z,y,t). (2) Here Å©(z,y,t) is a smooth function, S(z,y) is the solution of the problem: { S + b2τ S + (1b2(τ +τ )+ bz+ bb τ )S = 0, z,y > 0, z ygy(y)( 2-2 xx yy2 b)-1/2y y (3) S(0,y) = 2 b (0,y)- τy(0,y) , y > 0. Note that the problem (3) is two-dimensional which allows one to reduce the number of operations in 1.5 times. The algorithm makes it possible to calculate the moving tsunami wave height S(z,y) coming to a given point (z0,y0) as well as the arrival time. This work was supported by the Russian Foundation for Basic Research (project No. 12-01-00773 «Theory and Numerical Methods for Solving Combined Inverse Problems of Mathematical Physics») and interdisciplinary project of SB RAS 14 «Inverse Problems and Applications: Theory, Algorithms, Software».

  4. Generalized Lagrangian Jacobi Gauss collocation method for solving unsteady isothermal gas through a micro-nano porous medium

    NASA Astrophysics Data System (ADS)

    Parand, Kourosh; Latifi, Sobhan; Delkhosh, Mehdi; Moayeri, Mohammad M.

    2018-01-01

    In the present paper, a new method based on the Generalized Lagrangian Jacobi Gauss (GLJG) collocation method is proposed. The nonlinear Kidder equation, which explains unsteady isothermal gas through a micro-nano porous medium, is a second-order two-point boundary value ordinary differential equation on the unbounded interval [0, ∞). Firstly, using the quasilinearization method, the equation is converted to a sequence of linear ordinary differential equations. Then, by using the GLJG collocation method, the problem is reduced to solving a system of algebraic equations. It must be mentioned that this equation is solved without domain truncation and variable changing. A comparison with some numerical solutions made and the obtained results indicate that the presented solution is highly accurate. The important value of the initial slope, y'(0), is obtained as -1.191790649719421734122828603800159364 for η = 0.5. Comparing to the best result obtained so far, it is accurate up to 36 decimal places.

  5. Buffering effect in continuous chains of unidirectionally coupled generators

    NASA Astrophysics Data System (ADS)

    Glyzin, S. D.; Kolesov, A. Yu.; Rozov, N. Kh.

    2014-11-01

    We propose a mathematical model of a continuous annular chain of unidirectionally coupled generators given by some nonlinear advection-type hyperbolic boundary value problem. Such problems are constructed by a limit transition from annular chains of unidirectionally coupled ordinary differential equations with an unbounded increase in the number of links. We find that a certain buffering phenomenon is realized in our boundary value problem. Namely, we show that any preassigned finite number of stable periodic motions of the traveling-wave type can coexist in the model.

  6. Geopotential coefficient determination and the gravimetric boundary value problem: A new approach

    NASA Technical Reports Server (NTRS)

    Sjoeberg, Lars E.

    1989-01-01

    New integral formulas to determine geopotential coefficients from terrestrial gravity and satellite altimetry data are given. The formulas are based on the integration of data over the non-spherical surface of the Earth. The effect of the topography to low degrees and orders of coefficients is estimated numerically. Formulas for the solution of the gravimetric boundary value problem are derived.

  7. An efficient global energy optimization approach for robust 3D plane segmentation of point clouds

    NASA Astrophysics Data System (ADS)

    Dong, Zhen; Yang, Bisheng; Hu, Pingbo; Scherer, Sebastian

    2018-03-01

    Automatic 3D plane segmentation is necessary for many applications including point cloud registration, building information model (BIM) reconstruction, simultaneous localization and mapping (SLAM), and point cloud compression. However, most of the existing 3D plane segmentation methods still suffer from low precision and recall, and inaccurate and incomplete boundaries, especially for low-quality point clouds collected by RGB-D sensors. To overcome these challenges, this paper formulates the plane segmentation problem as a global energy optimization because it is robust to high levels of noise and clutter. First, the proposed method divides the raw point cloud into multiscale supervoxels, and considers planar supervoxels and individual points corresponding to nonplanar supervoxels as basic units. Then, an efficient hybrid region growing algorithm is utilized to generate initial plane set by incrementally merging adjacent basic units with similar features. Next, the initial plane set is further enriched and refined in a mutually reinforcing manner under the framework of global energy optimization. Finally, the performances of the proposed method are evaluated with respect to six metrics (i.e., plane precision, plane recall, under-segmentation rate, over-segmentation rate, boundary precision, and boundary recall) on two benchmark datasets. Comprehensive experiments demonstrate that the proposed method obtained good performances both in high-quality TLS point clouds (i.e., http://SEMANTIC3D.NET)

  8. Interactive algebraic grid-generation technique

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Wiese, M. R.

    1986-01-01

    An algebraic grid generation technique and use of an associated interactive computer program are described. The technique, called the two boundary technique, is based on Hermite cubic interpolation between two fixed, nonintersecting boundaries. The boundaries are referred to as the bottom and top, and they are defined by two ordered sets of points. Left and right side boundaries which intersect the bottom and top boundaries may also be specified by two ordered sets of points. when side boundaries are specified, linear blending functions are used to conform interior interpolation to the side boundaries. Spacing between physical grid coordinates is determined as a function of boundary data and uniformly space computational coordinates. Control functions relating computational coordinates to parametric intermediate variables that affect the distance between grid points are embedded in the interpolation formulas. A versatile control function technique with smooth-cubic-spline functions is presented. The technique works best in an interactive graphics environment where computational displays and user responses are quickly exchanged. An interactive computer program based on the technique and called TBGG (two boundary grid generation) is also described.

  9. Analysis of a parallelized nonlinear elliptic boundary value problem solver with application to reacting flows

    NASA Technical Reports Server (NTRS)

    Keyes, David E.; Smooke, Mitchell D.

    1987-01-01

    A parallelized finite difference code based on the Newton method for systems of nonlinear elliptic boundary value problems in two dimensions is analyzed in terms of computational complexity and parallel efficiency. An approximate cost function depending on 15 dimensionless parameters is derived for algorithms based on stripwise and boxwise decompositions of the domain and a one-to-one assignment of the strip or box subdomains to processors. The sensitivity of the cost functions to the parameters is explored in regions of parameter space corresponding to model small-order systems with inexpensive function evaluations and also a coupled system of nineteen equations with very expensive function evaluations. The algorithm was implemented on the Intel Hypercube, and some experimental results for the model problems with stripwise decompositions are presented and compared with the theory. In the context of computational combustion problems, multiprocessors of either message-passing or shared-memory type may be employed with stripwise decompositions to realize speedup of O(n), where n is mesh resolution in one direction, for reasonable n.

  10. Evolution families of conformal mappings with fixed points and the Löwner-Kufarev equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goryainov, V V

    2015-01-31

    The paper is concerned with evolution families of conformal mappings of the unit disc to itself that fix an interior point and a boundary point. Conditions are obtained for the evolution families to be differentiable, and an existence and uniqueness theorem for an evolution equation is proved. A convergence theorem is established which describes the topology of locally uniform convergence of evolution families in terms of infinitesimal generating functions. The main result in this paper is the embedding theorem which shows that any conformal mapping of the unit disc to itself with two fixed points can be embedded into a differentiable evolution familymore » of such mappings. This result extends the range of the parametric method in the theory of univalent functions. In this way the problem of the mutual change of the derivative at an interior point and the angular derivative at a fixed point on the boundary is solved for a class of mappings of the unit disc to itself. In particular, the rotation theorem is established for this class of mappings. Bibliography: 27 titles.« less

  11. Asymptotic analysis of quasilinear parabolic-hyperbolic equations describing the large longitudinal motion of a light viscoelastic bar with a heavy attachment

    NASA Astrophysics Data System (ADS)

    Yip, Shui Cheung

    We study the longitudinal motion of a nonlinearly viscoelastic bar with one end fixed and the other end attached to a heavy tip mass. This problem is a precise continuum mechanical analog of the basic discrete mechanical problem of the motion of a mass point on a (massless) spring. This motion is governed by an initial-boundary-value problem for a class of third-order quasilinear parabolic-hyperbolic partial differential equations subject to a nonstandard boundary condition, which is the equation of motion of the tip mass. The ratio of the mass of the bar to that of the tip mass is taken to be a small parameter varepsilon. We prove that this problem has a unique regular solution that admits a valid asymptotic expansion, including an initial-layer expansion, in powers of varepsilon for varepsilon near 0. The fundamental constitutive hypothesis that the tension be a uniformly monotone function of the strain rate plays a critical role in a delicate proof that each term of the initial layer expansion decays exponentially in time. These results depend on new decay estimates for the solution of quasilinear parabolic equations. The constitutive hypothesis that the viscosity become large where the bar nears total compression leads to important uniform bounds for the strain and the strain rate. Higher-order energy estimates support the proof by the Schauder Fixed-Point Theorem of the existence of solutions having a level of regularity appropriate for the asymptotics.

  12. Boundary control for a constrained two-link rigid-flexible manipulator with prescribed performance

    NASA Astrophysics Data System (ADS)

    Cao, Fangfei; Liu, Jinkun

    2018-05-01

    In this paper, we consider a boundary control problem for a constrained two-link rigid-flexible manipulator. The nonlinear system is described by hybrid ordinary differential equation-partial differential equation (ODE-PDE) dynamic model. Based on the coupled ODE-PDE model, boundary control is proposed to regulate the joint positions and eliminate the elastic vibration simultaneously. With the help of prescribed performance functions, the tracking error can converge to an arbitrarily small residual set and the convergence rate is no less than a certain pre-specified value. Asymptotic stability of the closed-loop system is rigorously proved by the LaSalle's Invariance Principle extended to infinite-dimensional system. Numerical simulations are provided to demonstrate the effectiveness of the proposed controller.

  13. A Conforming Multigrid Method for the Pure Traction Problem of Linear Elasticity: Mixed Formulation

    NASA Technical Reports Server (NTRS)

    Lee, Chang-Ock

    1996-01-01

    A multigrid method using conforming P-1 finite element is developed for the two-dimensional pure traction boundary value problem of linear elasticity. The convergence is uniform even as the material becomes nearly incompressible. A heuristic argument for acceleration of the multigrid method is discussed as well. Numerical results with and without this acceleration as well as performance estimates on a parallel computer are included.

  14. Three-dimensional elastic stress and displacement analysis of finite circular geometry solids containing cracks

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, J. P.; Mendelson, A.; Kring, J.

    1973-01-01

    A seminumerical method is presented for solving a set of coupled partial differential equations subject to mixed and coupled boundary conditions. The use of this method is illustrated by obtaining solutions for two circular geometry and mixed boundary value problems in three-dimensional elasticity. Stress and displacement distributions are calculated in an axisymmetric, circular bar of finite dimensions containing a penny-shaped crack. Approximate results for an annular plate containing internal surface cracks are also presented.

  15. Improving a complex finite-difference ground water flow model through the use of an analytic element screening model

    USGS Publications Warehouse

    Hunt, R.J.; Anderson, M.P.; Kelson, V.A.

    1998-01-01

    This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.

  16. On steady motion of viscoelastic fluid of Oldroyd type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baranovskii, E. S., E-mail: esbaranovskii@gmail.com

    2014-06-01

    We consider a mathematical model describing the steady motion of a viscoelastic medium of Oldroyd type under the Navier slip condition at the boundary. In the rheological relation, we use the objective regularized Jaumann derivative. We prove the solubility of the corresponding boundary-value problem in the weak setting. We obtain an estimate for the norm of a solution in terms of the data of the problem. We show that the solution set is sequentially weakly closed. Furthermore, we give an analytic solution of the boundary-value problem describing the flow of a viscoelastic fluid in a flat channel under a slipmore » condition at the walls. Bibliography: 13 titles. (paper)« less

  17. Singular boundary method for global gravity field modelling

    NASA Astrophysics Data System (ADS)

    Cunderlik, Robert

    2014-05-01

    The singular boundary method (SBM) and method of fundamental solutions (MFS) are meshless boundary collocation techniques that use the fundamental solution of a governing partial differential equation (e.g. the Laplace equation) as their basis functions. They have been developed to avoid singular numerical integration as well as mesh generation in the traditional boundary element method (BEM). SBM have been proposed to overcome a main drawback of MFS - its controversial fictitious boundary outside the domain. The key idea of SBM is to introduce a concept of the origin intensity factors that isolate singularities of the fundamental solution and its derivatives using some appropriate regularization techniques. Consequently, the source points can be placed directly on the real boundary and coincide with the collocation nodes. In this study we deal with SBM applied for high-resolution global gravity field modelling. The first numerical experiment presents a numerical solution to the fixed gravimetric boundary value problem. The achieved results are compared with the numerical solutions obtained by MFS or the direct BEM indicating efficiency of all methods. In the second numerical experiments, SBM is used to derive the geopotential and its first derivatives from the Tzz components of the gravity disturbing tensor observed by the GOCE satellite mission. A determination of the origin intensity factors allows to evaluate the disturbing potential and gravity disturbances directly on the Earth's surface where the source points are located. To achieve high-resolution numerical solutions, the large-scale parallel computations are performed on the cluster with 1TB of the distributed memory and an iterative elimination of far zones' contributions is applied.

  18. Stabilization in a two-species chemotaxis system with a logistic source

    NASA Astrophysics Data System (ADS)

    Tello, J. I.; Winkler, M.

    2012-05-01

    We study a system of three partial differential equations modelling the spatio-temporal behaviour of two competitive populations of biological species both of which are attracted chemotactically by the same signal substance. More precisely, we consider the initial-boundary value problem for \\[ \\begin{equation*} \\fl\\left\\{ \\begin{array}{@{}l} u_t= d_1\\Delta u - \\chi_1 \

  19. Renovation of the fixing and loading factors of the beam by the spectral data of free flexural vibrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhymbek, Meiram Erkanatuly; Yessirkegenov, Nurgissa Amankeldiuly; Sadybekov, Makhmud Abdysametovich

    2015-09-18

    In the current paper, the problem of bending vibrations of a beam in which the binding on the right end is unknown and not available for visual inspection is studied. The main objective is to study an inverse problem: find additional unknown boundary conditions by additional spectral data, i.e., the conditions of fixing the right end of the rod. In this work, unlike many other works, as such additional conditions we choose the first natural frequencies (eigenvalues) of two new problems corresponding to the problem of bending vibrations of a beam with loads of different weights at the central point.

  20. Stress-free end problem in layered materials

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Bakioglu, M.

    1977-01-01

    In this paper the plane elastostatic problem for a medium which consists of periodically arranged two sets of bonded dissimilar layers or strips is considered. First it is assumed that one set of strips contains a crack which crosses the bimaterial interfaces. Then, by letting the collinear cracks join, the stress-free end problem is formulated. The singular behavior of the solutions at the point on intersection of the stress-free boundary and the interfaces is examined and appropriate stress intensity factors are defined. The results of some numerical examples are then presented which include the cases of both plane stress and plane strain.

  1. Nonstationary Deformation of an Elastic Layer with Mixed Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Kubenko, V. D.

    2016-11-01

    The analytic solution to the plane problem for an elastic layer under a nonstationary surface load is found for mixed boundary conditions: normal stress and tangential displacement are specified on one side of the layer (fourth boundary-value problem of elasticity) and tangential stress and normal displacement are specified on the other side of the layer (second boundary-value problem of elasticity). The Laplace and Fourier integral transforms are applied. The inverse Laplace and Fourier transforms are found exactly using tabulated formulas and convolution theorems for various nonstationary loads. Explicit analytical expressions for stresses and displacements are derived. Loads applied to a constant surface area and to a surface area varying in a prescribed manner are considered. Computations demonstrate the dependence of the normal stress on time and spatial coordinates. Features of wave processes are analyzed

  2. Finite difference elastic wave modeling with an irregular free surface using ADER scheme

    NASA Astrophysics Data System (ADS)

    Almuhaidib, Abdulaziz M.; Nafi Toksöz, M.

    2015-06-01

    In numerical modeling of seismic wave propagation in the earth, we encounter two important issues: the free surface and the topography of the surface (i.e. irregularities). In this study, we develop a 2D finite difference solver for the elastic wave equation that combines a 4th- order ADER scheme (Arbitrary high-order accuracy using DERivatives), which is widely used in aeroacoustics, with the characteristic variable method at the free surface boundary. The idea is to treat the free surface boundary explicitly by using ghost values of the solution for points beyond the free surface to impose the physical boundary condition. The method is based on the velocity-stress formulation. The ultimate goal is to develop a numerical solver for the elastic wave equation that is stable, accurate and computationally efficient. The solver treats smooth arbitrary-shaped boundaries as simple plane boundaries. The computational cost added by treating the topography is negligible compared to flat free surface because only a small number of grid points near the boundary need to be computed. In the presence of topography, using 10 grid points per shortest shear-wavelength, the solver yields accurate results. Benchmark numerical tests using several complex models that are solved by our method and other independent accurate methods show an excellent agreement, confirming the validity of the method for modeling elastic waves with an irregular free surface.

  3. Numerical simulation of low gravity draining. [computerized simulation of liquid sloshing in cylindrical tanks, and boundary value problems

    NASA Technical Reports Server (NTRS)

    Bizzell, G. D.; Crane, G. E.

    1976-01-01

    A boundary value problem was solved numerically for a liquid that is assumed to be inviscid and incompressible, having a motion that is irrotational and axisymmetric, and having a constant (5 degrees) solid-liquid contact angle. The avoidance of excessive mesh distortion, encountered with strictly Lagrangian or Eulerian kinematics, was achieved by introducing an auxiliary kinematic velocity field along the free surface in order to vary the trajectories used in integrating the ordinary differential equations simulating the moving boundary. The computation of the velocity potential was based upon a nonuniform triangular mesh which was automatically revised to varying depths to accommodate the motion of the free surface. These methods permitted calculation of draining induced axisymmetric slosh through the many (or fractional) finite amplitude oscillations that can occur depending upon the balance of draining, gravitational, and surface tension forces. Velocity fields, evolution of the free surface with time, and liquid residual volumes were computed for three and one half decades of Weber number and for two Bond numbers, tank fill levels, and drain radii. Comparisons with experimental data are very satisfactory.

  4. Fitting ordinary differential equations to short time course data.

    PubMed

    Brewer, Daniel; Barenco, Martino; Callard, Robin; Hubank, Michael; Stark, Jaroslav

    2008-02-28

    Ordinary differential equations (ODEs) are widely used to model many systems in physics, chemistry, engineering and biology. Often one wants to compare such equations with observed time course data, and use this to estimate parameters. Surprisingly, practical algorithms for doing this are relatively poorly developed, particularly in comparison with the sophistication of numerical methods for solving both initial and boundary value problems for differential equations, and for locating and analysing bifurcations. A lack of good numerical fitting methods is particularly problematic in the context of systems biology where only a handful of time points may be available. In this paper, we present a survey of existing algorithms and describe the main approaches. We also introduce and evaluate a new efficient technique for estimating ODEs linear in parameters particularly suited to situations where noise levels are high and the number of data points is low. It employs a spline-based collocation scheme and alternates linear least squares minimization steps with repeated estimates of the noise-free values of the variables. This is reminiscent of expectation-maximization methods widely used for problems with nuisance parameters or missing data.

  5. Altitude transitions in energy climbs

    NASA Technical Reports Server (NTRS)

    Weston, A. R.; Cliff, E. M.; Kelley, H. J.

    1982-01-01

    The aircraft energy-climb trajectory for configurations with a sharp transonic drag rise is well known to possess two branches in the altitude/Mach-number plane. Transition in altitude between the two branches occurs instantaneously, a 'corner' in the minimum-time solution obtained with the energy-state model. If the initial and final values of altitude do not lie on the energy-climb trajectory, then additional jumps (crude approximations to dives and zooms) are required at the initial and terminal points. With a singular-perturbation approach, a 'boundary-layer' correction is obtained for each altitude jump, the transonic jump being a so-called 'internal' boundary layer, different in character from the initial and terminal layers. The determination of this internal boundary layer is examined and some computational results for an example presented.

  6. Nonsteady Problem for an Elastic Half-Plane with Mixed Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Kubenko, V. D.

    2016-03-01

    An approach to studying nonstationary wave processes in an elastic half-plane with mixed boundary conditions of the fourth boundary-value problem of elasticity is proposed. The Laplace and Fourier transforms are used. The sequential inversion of these transforms or the inversion of the joint transform by the Cagniard method allows obtaining the required solution (stresses, displacements) in a closed analytic form. With this approach, the problem can be solved for various types of loads

  7. Existence and stability of periodic solutions of quasi-linear Korteweg — de Vries equation

    NASA Astrophysics Data System (ADS)

    Glyzin, S. D.; Kolesov, A. Yu; Preobrazhenskaia, M. M.

    2017-01-01

    We consider the scalar nonlinear differential-difference equation with two delays, which models electrical activity of a neuron. Under some additional suppositions for this equation well known method of quasi-normal forms can be applied. Its essence lies in the formal normalization of the Poincare - Dulac obtaining quasi-normal form and the subsequent application of the theorems of conformity. In this case, the result of the application of quasi-normal forms is a countable system of differential-difference equations, which can be turned into a boundary value problem of the Korteweg - de Vries equation. The investigation of this boundary value problem allows us to draw a conclusion about the behaviour of the original equation. Namely, for a suitable choice of parameters in the framework of this equation is implemented buffer phenomenon consisting in the presence of the bifurcation mechanism for the birth of an arbitrarily large number of stable cycles.

  8. New Formulae for the High-Order Derivatives of Some Jacobi Polynomials: An Application to Some High-Order Boundary Value Problems

    PubMed Central

    Abd-Elhameed, W. M.

    2014-01-01

    This paper is concerned with deriving some new formulae expressing explicitly the high-order derivatives of Jacobi polynomials whose parameters difference is one or two of any degree and of any order in terms of their corresponding Jacobi polynomials. The derivatives formulae for Chebyshev polynomials of third and fourth kinds of any degree and of any order in terms of their corresponding Chebyshev polynomials are deduced as special cases. Some new reduction formulae for summing some terminating hypergeometric functions of unit argument are also deduced. As an application, and with the aid of the new introduced derivatives formulae, an algorithm for solving special sixth-order boundary value problems are implemented with the aid of applying Galerkin method. A numerical example is presented hoping to ascertain the validity and the applicability of the proposed algorithms. PMID:25386599

  9. Interlaminar stress analysis of dropped-ply laminated plates and shells by a mixed method. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Harrison, Peter N.; Johnson, Eric R.; Starnes, James H., Jr.

    1994-01-01

    A mixed method of approximation based on Reissner's variational principle is developed for the linear analysis of interlaminar stresses in laminated composites, with special interest in laminates that contain terminated internal plies (dropped-ply laminates). Two models are derived, one for problems of generalized plane deformation and the other for the axisymmetric response of shells of revolution. A layerwise approach is taken in which the stress field is assumed with an explicit dependence on the thickness coordinate in each layer. The dependence of the stress field on the thickness coordinate is determined such that the three-dimensional equilibrium equations are satisfied by the approximation. The solution domain is reduced to one dimension by integration through the thickness. Continuity of tractions and displacements between layers is imposed. The governing two-point boundary value problem is composed of a system of both differential and algebraic equations (DAE's) and their associated boundary conditions. Careful evaluation of the system of DAE's was required to arrive at a form that allowed application of a one-step finite difference approximation. A two-stage Gauss implicit Runge-Kutta finite difference scheme was used for the solution because of its relatively high degree of accuracy. Patch tests of the two models revealed problems with solution accuracy for the axisymmetric model of a cylindrical shell loaded by internal pressure. Parametric studies of dropped-ply laminate characteristics and their influence on the interlaminar stresses were performed using the generalized plane deformation model. Eccentricity of the middle surface of the laminate through the ply drop-off was found to have a minimal effect on the interlaminar stresses under longitudinal compression, transverse tension, and in-plane shear. A second study found the stiffness change across the ply termination to have a much greater influence on the interlaminar stresses.

  10. Surface evolution in bare bamboo-type metal lines under diffusion and electric field effects

    NASA Astrophysics Data System (ADS)

    Averbuch, Amir; Israeli, Moshe; Nathan, Menachem; Ravve, Igor

    2003-07-01

    Irregularities such as voids and cracks often occur in bamboo-type metal lines of microelectronic interconnects. They increase the resistance of the circuits, and may even lead to a fatal failure. In this work, we analyze numerically the electromigration of an unpassivated bamboo-type line with pre-existing irregularities in its top surface (also called a grain-void interface). The bamboo line is subjected to surface diffusion forces and external electric fields. Under these forces, initial defects may either heal or become worse. The grain-void interface is considered to be one-dimensional, and the physical formulation of an electromigration and diffusion model results in two coupled, fourth order, one-dimensional time-dependent PDEs, with the boundary conditions imposed at the electrode points and at the triple point, which belongs to two neighboring grains and the void. These equations are discretized by finite differences on a regular grid in space, and by a Runge-Kutta integration scheme in time, and solved simultaneously with a static Laplace equation describing the voltage distribution throughout each grain, when the substrate conductivity is neglected. Since the voltage distribution is required only along an interface line, the two-dimensional discretization of the grain interior is not needed, and the static problem is solved by the boundary element method at each time step. The motion of the interface line is studied for different ratios between diffusion and electric field forces, and for different initial configurations of the grain-void interface. We study plain and tilted contour lines, considering positive and negative tilts with respect to the external electric field, a stepped contour with field lines entering or exiting the 'step', and a number of modifications of the classical Mullins problem of thermal grooving. We also consider a two-grain Mullins problem with a normal and tilted boundary between the grains, examining positive and negative tilts.

  11. Computing Evans functions numerically via boundary-value problems

    NASA Astrophysics Data System (ADS)

    Barker, Blake; Nguyen, Rose; Sandstede, Björn; Ventura, Nathaniel; Wahl, Colin

    2018-03-01

    The Evans function has been used extensively to study spectral stability of travelling-wave solutions in spatially extended partial differential equations. To compute Evans functions numerically, several shooting methods have been developed. In this paper, an alternative scheme for the numerical computation of Evans functions is presented that relies on an appropriate boundary-value problem formulation. Convergence of the algorithm is proved, and several examples, including the computation of eigenvalues for a multi-dimensional problem, are given. The main advantage of the scheme proposed here compared with earlier methods is that the scheme is linear and scalable to large problems.

  12. On computational experiments in some inverse problems of heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Bilchenko, G. G.; Bilchenko, N. G.

    2016-11-01

    The results of mathematical modeling of effective heat and mass transfer on hypersonic aircraft permeable surfaces are considered. The physic-chemical processes (the dissociation and the ionization) in laminar boundary layer of compressible gas are appreciated. Some algorithms of control restoration are suggested for the interpolation and approximation statements of heat and mass transfer inverse problems. The differences between the methods applied for the problem solutions search for these statements are discussed. Both the algorithms are realized as programs. Many computational experiments were accomplished with the use of these programs. The parameters of boundary layer obtained by means of the A.A.Dorodnicyn's generalized integral relations method from solving the direct problems have been used to obtain the inverse problems solutions. Two types of blowing laws restoration for the inverse problem in interpolation statement are presented as the examples. The influence of the temperature factor on the blowing restoration is investigated. The different character of sensitivity of controllable parameters (the local heat flow and local tangent friction) respectively to step (discrete) changing of control (the blowing) and the switching point position is studied.

  13. Origin and continuation of 3/2, 5/2, 3/1, 4/1 and 5/1 resonant periodic orbits in the circular and elliptic restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Antoniadou, Kyriaki I.; Libert, Anne-Sophie

    2018-06-01

    We consider a planetary system consisting of two primaries, namely a star and a giant planet, and a massless secondary, say a terrestrial planet or an asteroid, which moves under their gravitational attraction. We study the dynamics of this system in the framework of the circular and elliptic restricted three-body problem, when the motion of the giant planet describes circular and elliptic orbits, respectively. Originating from the circular family, families of symmetric periodic orbits in the 3/2, 5/2, 3/1, 4/1 and 5/1 mean-motion resonances are continued in the circular and the elliptic problems. New bifurcation points from the circular to the elliptic problem are found for each of the above resonances, and thus, new families continued from these points are herein presented. Stable segments of periodic orbits were found at high eccentricity values of the already known families considered as whole unstable previously. Moreover, new isolated (not continued from bifurcation points) families are computed in the elliptic restricted problem. The majority of the new families mainly consists of stable periodic orbits at high eccentricities. The families of the 5/1 resonance are investigated for the first time in the restricted three-body problems. We highlight the effect of stable periodic orbits on the formation of stable regions in their vicinity and unveil the boundaries of such domains in phase space by computing maps of dynamical stability. The long-term stable evolution of the terrestrial planets or asteroids is dependent on the existence of regular domains in their dynamical neighbourhood in phase space, which could host them for long-time spans. This study, besides other celestial architectures that can be efficiently modelled by the circular and elliptic restricted problems, is particularly appropriate for the discovery of terrestrial companions among the single-giant planet systems discovered so far.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaunak, S.K.; Soni, B.K.

    With research interests shifting away from primarily military or industrial applications to more environmental applications, the area of ocean modelling has become an increasingly popular and exciting area of research. This paper presents a CIPS (Computation Field Simulation) system customized for the solution of oceanographic problems. This system deals primarily with the generation of simple, yet efficient grids for coastal areas. The two primary grid approaches are both structured in methodology. The first approach is a standard approach which is used in such popular grid generation softwares as GE-NIE++, EAGLEVIEW, and TIGER, where the user defines boundaries via points, lines,more » or curves, varies the distribution of points along these boundaries and then creates the interior grid. The second approach is to allow the user to interactively select points on the screen to form the boundary curves and then create the interior grid from these spline curves. The program has been designed with the needs of the ocean modeller in mind so that the modeller can obtain results in a timely yet elegant manner. The modeller performs four basic steps in using the program. First, he selects a region of interest from a popular database. Then, he creates a grid for that region. Next, he sets up boundary and input conditions and runs a circulation model. Finally, the modeller visualizes the output.« less

  15. Technical Note: Harmonic analysis applied to MR image distortion fields specific to arbitrarily shaped volumes.

    PubMed

    Stanescu, T; Jaffray, D

    2018-05-25

    Magnetic resonance imaging is expected to play a more important role in radiation therapy given the recent developments in MR-guided technologies. MR images need to consistently show high spatial accuracy to facilitate RT specific tasks such as treatment planning and in-room guidance. The present study investigates a new harmonic analysis method for the characterization of complex 3D fields derived from MR images affected by system-related distortions. An interior Dirichlet problem based on solving the Laplace equation with boundary conditions (BCs) was formulated for the case of a 3D distortion field. The second-order boundary value problem (BVP) was solved using a finite elements method (FEM) for several quadratic geometries - i.e., sphere, cylinder, cuboid, D-shaped, and ellipsoid. To stress-test the method and generalize it, the BVP was also solved for more complex surfaces such as a Reuleaux 9-gon and the MR imaging volume of a scanner featuring a high degree of surface irregularities. The BCs were formatted from reference experimental data collected with a linearity phantom featuring a volumetric grid structure. The method was validated by comparing the harmonic analysis results with the corresponding experimental reference fields. The harmonic fields were found to be in good agreement with the baseline experimental data for all geometries investigated. In the case of quadratic domains, the percentage of sampling points with residual values larger than 1 mm were 0.5% and 0.2% for the axial components and vector magnitude, respectively. For the general case of a domain defined by the available MR imaging field of view, the reference data showed a peak distortion of about 12 mm and 79% of the sampling points carried a distortion magnitude larger than 1 mm (tolerance intrinsic to the experimental data). The upper limits of the residual values after comparison with the harmonic fields showed max and mean of 1.4 mm and 0.25 mm, respectively, with only 1.5% of sampling points exceeding 1 mm. A novel harmonic analysis approach relying on finite element methods was introduced and validated for multiple volumes with surface shape functions ranging from simple to highly complex. Since a boundary value problem is solved the method requires input data from only the surface of the desired domain of interest. It is believed that the harmonic method will facilitate (a) the design of new phantoms dedicated for the quantification of MR image distortions in large volumes and (b) an integrative approach of combining multiple imaging tests specific to radiotherapy into a single test object for routine imaging quality control. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Meson effective mass in the isospin medium in hard-wall AdS/QCD model

    NASA Astrophysics Data System (ADS)

    Mamedov, Shahin

    2016-02-01

    We study a mass splitting of the light vector, axial-vector, and pseudoscalar mesons in the isospin medium in the framework of the hard-wall model. We write an effective mass definition for the interacting gauge fields and scalar field introduced in gauge field theory in the bulk of AdS space-time. Relying on holographic duality we obtain a formula for the effective mass of a boundary meson in terms of derivative operator over the extra bulk coordinate. The effective mass found in this way coincides with the one obtained from finding of poles of the two-point correlation function. In order to avoid introducing distinguished infrared boundaries in the quantization formula for the different mesons from the same isotriplet we introduce extra action terms at this boundary, which reduces distinguished values of this boundary to the same value. Profile function solutions and effective mass expressions were found for the in-medium ρ , a_1, and π mesons.

  17. Wall-Resolved Large-Eddy Simulation of Flow Separation Over NASA Wall-Mounted Hump

    NASA Technical Reports Server (NTRS)

    Uzun, Ali; Malik, Mujeeb R.

    2017-01-01

    This paper reports the findings from a study that applies wall-resolved large-eddy simulation to investigate flow separation over the NASA wall-mounted hump geometry. Despite its conceptually simple flow configuration, this benchmark problem has proven to be a challenging test case for various turbulence simulation methods that have attempted to predict flow separation arising from the adverse pressure gradient on the aft region of the hump. The momentum-thickness Reynolds number of the incoming boundary layer has a value that is near the upper limit achieved by recent direct numerical simulation and large-eddy simulation of incompressible turbulent boundary layers. The high Reynolds number of the problem necessitates a significant number of grid points for wall-resolved calculations. The present simulations show a significant improvement in the separation-bubble length prediction compared to Reynolds-Averaged Navier-Stokes calculations. The current simulations also provide good overall prediction of the skin-friction distribution, including the relaminarization observed over the front portion of the hump due to the strong favorable pressure gradient. We discuss a number of problems that were encountered during the course of this work and present possible solutions. A systematic study regarding the effect of domain span, subgrid-scale model, tunnel back pressure, upstream boundary layer conditions and grid refinement is performed. The predicted separation-bubble length is found to be sensitive to the span of the domain. Despite the large number of grid points used in the simulations, some differences between the predictions and experimental observations still exist (particularly for Reynolds stresses) in the case of the wide-span simulation, suggesting that additional grid resolution may be required.

  18. Self-organized dynamics in local load-sharing fiber bundle models.

    PubMed

    Biswas, Soumyajyoti; Chakrabarti, Bikas K

    2013-10-01

    We study the dynamics of a local load-sharing fiber bundle model in two dimensions under an external load (which increases with time at a fixed slow rate) applied at a single point. Due to the local load-sharing nature, the redistributed load remains localized along the boundary of the broken patch. The system then goes to a self-organized state with a stationary average value of load per fiber along the (increasing) boundary of the broken patch (damaged region) and a scale-free distribution of avalanche sizes and other related quantities are observed. In particular, when the load redistribution is only among nearest surviving fiber(s), the numerical estimates of the exponent values are comparable with those of the Manna model. When the load redistribution is uniform along the patch boundary, the model shows a simple mean-field limit of this self-organizing critical behavior, for which we give analytical estimates of the saturation load per fiber values and avalanche size distribution exponent. These are in good agreement with numerical simulation results.

  19. On the integral manifold approach to a flame propagation problem

    NASA Astrophysics Data System (ADS)

    Bykov, Viatcheslav; Goldfarb, Igor; Gol'Dshtein, Vladimir

    2004-08-01

    The problem of a pressure-driven flame in an inert porous medium filled with a flammable gaseous mixture is considered. In the frame of reference attached to an advancing combustion wave and after a suitable non-dimensionalization the corresponding mathematical description of the problem includes three highly nonlinear ordinary differential equations. The system is rewritten in the form of a singularly perturbed system of ordinary differential equations and is analysed analytically by the geometrical version of the asymptotic method of integral manifolds (MIM). The paper focuses on an analysis of the fine structure of the flame and its velocity on the basis of an asymptotical consideration of an arbitrary trajectory of the considered system in the phase space. It is shown that two different stages of the trajectory correspond to the two various sub-zones of the flame: the first stage (fast motion from the initial point to the slow integral) is interpreted as a preheat sub-zone and the second stage of the path corresponds to a reaction sub-zone. It is shown that an inter-zone boundary plays an important role in a determination of the flame properties: characteristics of the gaseous mixture at that point determine the flame velocity. The accepted approach of the investigation allows us to gain an analytical expression for the flame velocity. It appears that the velocity formula represents a cubic-root dependence on the Arrhenius exponent, which in turn contains the parameters of the boundary point. The theoretical predictions are found to coincide rather well with the data of direct numerical simulations.

  20. Analytical study of Cattaneo-Christov heat flux model for a boundary layer flow of Oldroyd-B fluid

    NASA Astrophysics Data System (ADS)

    F, M. Abbasi; M, Mustafa; S, A. Shehzad; M, S. Alhuthali; T, Hayat

    2016-01-01

    We investigate the Cattaneo-Christov heat flux model for a two-dimensional laminar boundary layer flow of an incompressible Oldroyd-B fluid over a linearly stretching sheet. Mathematical formulation of the boundary layer problems is given. The nonlinear partial differential equations are converted into the ordinary differential equations using similarity transformations. The dimensionless velocity and temperature profiles are obtained through optimal homotopy analysis method (OHAM). The influences of the physical parameters on the velocity and the temperature are pointed out. The results show that the temperature and the thermal boundary layer thickness are smaller in the Cattaneo-Christov heat flux model than those in the Fourier’s law of heat conduction. Project supported by the Deanship of Scientific Research (DSR) King Abdulaziz University, Jeddah, Saudi Arabia (Grant No. 32-130-36-HiCi).

  1. Towards Understanding the Mechanism of Receptivity and Bypass Dynamics in Laminar Boundary Layers

    NASA Technical Reports Server (NTRS)

    Lasseigne, D. G.; Criminale, W. O.; Joslin, R. D.; Jackson, T. L.

    1999-01-01

    Three problems concerning laminar-turbulent transition are addressed by solving a series of initial value problems. The first problem is the calculation of resonance within the continuous spectrum of the Blasius boundary layer. The second is calculation of the growth of Tollmien-Schlichting waves that are a direct result of disturbances that only lie outside of the boundary layer. And, the third problem is the calculation of non-parallel effects. Together, these problems represent a unified approach to the study of freestream disturbance effects that could lead to transition. Solutions to the temporal, initial-value problem with an inhomogeneous forcing term imposed upon the flow is sought. By solving a series of problems, it is shown that: A transient disturbance lying completely outside of the boundary layer can lead to the growth of an unstable Tollmien-Schlichting wave. A resonance with the continuous spectrum leads to strong amplification that may provide a mechanism for bypass transition once nonlinear effects are considered. A disturbance with a very weak unstable Tollmien-Schlichting wave can lead to a much stronger Tollmien-Schlichting wave downstream, if the original disturbance has a significant portion of its energy in the continuum modes.

  2. A new family of high-order compact upwind difference schemes with good spectral resolution

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Yao, Zhaohui; He, Feng; Shen, M. Y.

    2007-12-01

    This paper presents a new family of high-order compact upwind difference schemes. Unknowns included in the proposed schemes are not only the values of the function but also those of its first and higher derivatives. Derivative terms in the schemes appear only on the upwind side of the stencil. One can calculate all the first derivatives exactly as one solves explicit schemes when the boundary conditions of the problem are non-periodic. When the proposed schemes are applied to periodic problems, only periodic bi-diagonal matrix inversions or periodic block-bi-diagonal matrix inversions are required. Resolution optimization is used to enhance the spectral representation of the first derivative, and this produces a scheme with the highest spectral accuracy among all known compact schemes. For non-periodic boundary conditions, boundary schemes constructed in virtue of the assistant scheme make the schemes not only possess stability for any selective length scale on every point in the computational domain but also satisfy the principle of optimal resolution. Also, an improved shock-capturing method is developed. Finally, both the effectiveness of the new hybrid method and the accuracy of the proposed schemes are verified by executing four benchmark test cases.

  3. SEACAS Theory Manuals: Part 1. Problem Formulation in Nonlinear Solid Mechancis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.

    1998-08-01

    This report gives an introduction to the basic concepts and principles involved in the formulation of nonlinear problems in solid mechanics. By way of motivation, the discussion begins with a survey of some of the important sources of nonlinearity in solid mechanics applications, using wherever possible simple one dimensional idealizations to demonstrate the physical concepts. This discussion is then generalized by presenting generic statements of initial/boundary value problems in solid mechanics, using linear elasticity as a template and encompassing such ideas as strong and weak forms of boundary value problems, boundary and initial conditions, and dynamic and quasistatic idealizations. Themore » notational framework used for the linearized problem is then extended to account for finite deformation of possibly inelastic solids, providing the context for the descriptions of nonlinear continuum mechanics, constitutive modeling, and finite element technology given in three companion reports.« less

  4. Non-modal analysis of the diocotron instability for cylindrical geometry with conducting boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailenko, V. V.; Seok Kim, Jin; Jo, Younghyun

    2014-05-15

    The temporal evolution of the linear diocotron instability of a cylindrical annular plasma column surrounded by a conducting boundary has been investigated by using the methodology of the cylindrical shearing modes. The linear solution of the initial and boundary-value problems is obtained which is valid for any time at which linear effects dominate. The solution reveals that the initial perturbations of the electron density pass through the stage of the non-modal evolution when the perturbation experiences spatio-temporal distortion pertinent to the considered geometry of the electron column. The result is confirmed by a two-dimensional cylindrical particle-in-cell simulation.

  5. Mixed boundary-value problem for an orthotropic rectangular strip with variable coefficients of elasticity

    NASA Astrophysics Data System (ADS)

    Sargsyan, M. Z.; Poghosyan, H. M.

    2018-04-01

    A dynamical problem for a rectangular strip with variable coefficients of elasticity is solved by an asymptotic method. It is assumed that the strip is orthotropic, the elasticity coefficients are exponential functions of y, and mixed boundary conditions are posed. The solution of the inner problem is obtained using Bessel functions.

  6. A wideband FMBEM for 2D acoustic design sensitivity analysis based on direct differentiation method

    NASA Astrophysics Data System (ADS)

    Chen, Leilei; Zheng, Changjun; Chen, Haibo

    2013-09-01

    This paper presents a wideband fast multipole boundary element method (FMBEM) for two dimensional acoustic design sensitivity analysis based on the direct differentiation method. The wideband fast multipole method (FMM) formed by combining the original FMM and the diagonal form FMM is used to accelerate the matrix-vector products in the boundary element analysis. The Burton-Miller formulation is used to overcome the fictitious frequency problem when using a single Helmholtz boundary integral equation for exterior boundary-value problems. The strongly singular and hypersingular integrals in the sensitivity equations can be evaluated explicitly and directly by using the piecewise constant discretization. The iterative solver GMRES is applied to accelerate the solution of the linear system of equations. A set of optimal parameters for the wideband FMBEM design sensitivity analysis are obtained by observing the performances of the wideband FMM algorithm in terms of computing time and memory usage. Numerical examples are presented to demonstrate the efficiency and validity of the proposed algorithm.

  7. On the solution of the generalized wave and generalized sine-Gordon equations

    NASA Technical Reports Server (NTRS)

    Ablowitz, M. J.; Beals, R.; Tenenblat, K.

    1986-01-01

    The generalized wave equation and generalized sine-Gordon equations are known to be natural multidimensional differential geometric generalizations of the classical two-dimensional versions. In this paper, a system of linear differential equations is associated with these equations, and it is shown how the direct and inverse problems can be solved for appropriately decaying data on suitable lines. An initial-boundary value problem is solved for these equations.

  8. Finite elements of nonlinear continua.

    NASA Technical Reports Server (NTRS)

    Oden, J. T.

    1972-01-01

    The finite element method is extended to a broad class of practical nonlinear problems, treating both theory and applications from a general and unifying point of view. The thermomechanical principles of continuous media and the properties of the finite element method are outlined, and are brought together to produce discrete physical models of nonlinear continua. The mathematical properties of the models are analyzed, and the numerical solution of the equations governing the discrete models is examined. The application of the models to nonlinear problems in finite elasticity, viscoelasticity, heat conduction, and thermoviscoelasticity is discussed. Other specific topics include the topological properties of finite element models, applications to linear and nonlinear boundary value problems, convergence, continuum thermodynamics, finite elasticity, solutions to nonlinear partial differential equations, and discrete models of the nonlinear thermomechanical behavior of dissipative media.

  9. A new extrapolation cascadic multigrid method for three dimensional elliptic boundary value problems

    NASA Astrophysics Data System (ADS)

    Pan, Kejia; He, Dongdong; Hu, Hongling; Ren, Zhengyong

    2017-09-01

    In this paper, we develop a new extrapolation cascadic multigrid method, which makes it possible to solve three dimensional elliptic boundary value problems with over 100 million unknowns on a desktop computer in half a minute. First, by combining Richardson extrapolation and quadratic finite element (FE) interpolation for the numerical solutions on two-level of grids (current and previous grids), we provide a quite good initial guess for the iterative solution on the next finer grid, which is a third-order approximation to the FE solution. And the resulting large linear system from the FE discretization is then solved by the Jacobi-preconditioned conjugate gradient (JCG) method with the obtained initial guess. Additionally, instead of performing a fixed number of iterations as used in existing cascadic multigrid methods, a relative residual tolerance is introduced in the JCG solver, which enables us to obtain conveniently the numerical solution with the desired accuracy. Moreover, a simple method based on the midpoint extrapolation formula is proposed to achieve higher-order accuracy on the finest grid cheaply and directly. Test results from four examples including two smooth problems with both constant and variable coefficients, an H3-regular problem as well as an anisotropic problem are reported to show that the proposed method has much better efficiency compared to the classical V-cycle and W-cycle multigrid methods. Finally, we present the reason why our method is highly efficient for solving these elliptic problems.

  10. Transient and asymptotic behaviour of the binary breakage problem

    NASA Astrophysics Data System (ADS)

    Mantzaris, Nikos V.

    2005-06-01

    The general binary breakage problem with power-law breakage functions and two families of symmetric and asymmetric breakage kernels is studied in this work. A useful transformation leads to an equation that predicts self-similar solutions in its asymptotic limit and offers explicit knowledge of the mean size and particle density at each point in dimensionless time. A novel moving boundary algorithm in the transformed coordinate system is developed, allowing the accurate prediction of the full transient behaviour of the system from the initial condition up to the point where self-similarity is achieved, and beyond if necessary. The numerical algorithm is very rapid and its results are in excellent agreement with known analytical solutions. In the case of the symmetric breakage kernels only unimodal, self-similar number density functions are obtained asymptotically for all parameter values and independent of the initial conditions, while in the case of asymmetric breakage kernels, bimodality appears for high degrees of asymmetry and sharp breakage functions. For symmetric and discrete breakage kernels, self-similarity is not achieved. The solution exhibits sustained oscillations with amplitude that depends on the initial condition and the sharpness of the breakage mechanism, while the period is always fixed and equal to ln 2 with respect to dimensionless time.

  11. Optimal control and optimal trajectories of regional macroeconomic dynamics based on the Pontryagin maximum principle

    NASA Astrophysics Data System (ADS)

    Bulgakov, V. K.; Strigunov, V. V.

    2009-05-01

    The Pontryagin maximum principle is used to prove a theorem concerning optimal control in regional macroeconomics. A boundary value problem for optimal trajectories of the state and adjoint variables is formulated, and optimal curves are analyzed. An algorithm is proposed for solving the boundary value problem of optimal control. The performance of the algorithm is demonstrated by computing an optimal control and the corresponding optimal trajectories.

  12. Boundary value problems with incremental plasticity in granular media

    NASA Technical Reports Server (NTRS)

    Chung, T. J.; Lee, J. K.; Costes, N. C.

    1974-01-01

    Discussion of the critical state concept in terms of an incremental theory of plasticity in granular (soil) media, and formulation of the governing equations which are convenient for a computational scheme using the finite element method. It is shown that the critical state concept with its representation by the classical incremental theory of plasticity can provide a powerful means for solving a wide variety of boundary value problems in soil media.

  13. Accurate computation and continuation of homoclinic and heteroclinic orbits for singular perturbation problems

    NASA Technical Reports Server (NTRS)

    Vaughan, William W.; Friedman, Mark J.; Monteiro, Anand C.

    1993-01-01

    In earlier papers, Doedel and the authors have developed a numerical method and derived error estimates for the computation of branches of heteroclinic orbits for a system of autonomous ordinary differential equations in R(exp n). The idea of the method is to reduce a boundary value problem on the real line to a boundary value problem on a finite interval by using a local (linear or higher order) approximation of the stable and unstable manifolds. A practical limitation for the computation of homoclinic and heteroclinic orbits has been the difficulty in obtaining starting orbits. Typically these were obtained from a closed form solution or via a homotopy from a known solution. Here we consider extensions of our algorithm which allow us to obtain starting orbits on the continuation branch in a more systematic way as well as make the continuation algorithm more flexible. In applications, we use the continuation software package AUTO in combination with some initial value software. The examples considered include computation of homoclinic orbits in a singular perturbation problem and in a turbulent fluid boundary layer in the wall region problem.

  14. Analyzing phase diagrams and phase transitions in networked competing populations

    NASA Astrophysics Data System (ADS)

    Ni, Y.-C.; Yin, H. P.; Xu, C.; Hui, P. M.

    2011-03-01

    Phase diagrams exhibiting the extent of cooperation in an evolutionary snowdrift game implemented in different networks are studied in detail. We invoke two independent payoff parameters, unlike a single payoff often used in most previous works that restricts the two payoffs to vary in a correlated way. In addition to the phase transition points when a single payoff parameter is used, phase boundaries separating homogeneous phases consisting of agents using the same strategy and a mixed phase consisting of agents using different strategies are found. Analytic expressions of the phase boundaries are obtained by invoking the ideas of the last surviving patterns and the relative alignments of the spectra of payoff values to agents using different strategies. In a Watts-Strogatz regular network, there exists a re-entrant phenomenon in which the system goes from a homogeneous phase into a mixed phase and re-enters the homogeneous phase as one of the two payoff parameters is varied. The non-trivial phase diagram accompanying this re-entrant phenomenon is quantitatively analyzed. The effects of noise and cooperation in randomly rewired Watts-Strogatz networks are also studied. The transition between a mixed phase and a homogeneous phase is identify to belong to the directed percolation universality class. The methods used in the present work are applicable to a wide range of problems in competing populations of networked agents.

  15. Multi-contrast MRI registration of carotid arteries based on cross-sectional images and lumen boundaries

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Xia; Zhang, Xi; Xu, Xiao-Pan; Liu, Yang; Zhang, Guo-Peng; Li, Bao-Juan; Chen, Hui-Jun; Lu, Hong-Bing

    2017-02-01

    Ischemic stroke has great correlation with carotid atherosclerosis and is mostly caused by vulnerable plaques. It's particularly important to analysis the components of plaques for the detection of vulnerable plaques. Recently plaque analysis based on multi-contrast magnetic resonance imaging has attracted great attention. Though multi-contrast MR imaging has potentials in enhanced demonstration of carotid wall, its performance is hampered by the misalignment of different imaging sequences. In this study, a coarse-to-fine registration strategy based on cross-sectional images and wall boundaries is proposed to solve the problem. It includes two steps: a rigid step using the iterative closest points to register the centerlines of carotid artery extracted from multi-contrast MR images, and a non-rigid step using the thin plate spline to register the lumen boundaries of carotid artery. In the rigid step, the centerline was extracted by tracking the crosssectional images along the vessel direction calculated by Hessian matrix. In the non-rigid step, a shape context descriptor is introduced to find corresponding points of two similar boundaries. In addition, the deterministic annealing technique is used to find a globally optimized solution. The proposed strategy was evaluated by newly developed three-dimensional, fast and high resolution multi-contrast black blood MR imaging. Quantitative validation indicated that after registration, the overlap of two boundaries from different sequences is 95%, and their mean surface distance is 0.12 mm. In conclusion, the proposed algorithm has improved the accuracy of registration effectively for further component analysis of carotid plaques.

  16. The CFL condition for spectral approximations to hyperbolic initial-boundary value problems

    NASA Technical Reports Server (NTRS)

    Gottlieb, David; Tadmor, Eitan

    1991-01-01

    The stability of spectral approximations to scalar hyperbolic initial-boundary value problems with variable coefficients are studied. Time is discretized by explicit multi-level or Runge-Kutta methods of order less than or equal to 3 (forward Euler time differencing is included), and spatial discretizations are studied by spectral and pseudospectral approximations associated with the general family of Jacobi polynomials. It is proved that these fully explicit spectral approximations are stable provided their time-step, delta t, is restricted by the CFL-like condition, delta t less than Const. N(exp-2), where N equals the spatial number of degrees of freedom. We give two independent proofs of this result, depending on two different choices of approximate L(exp 2)-weighted norms. In both approaches, the proofs hinge on a certain inverse inequality interesting for its own sake. The result confirms the commonly held belief that the above CFL stability restriction, which is extensively used in practical implementations, guarantees the stability (and hence the convergence) of fully-explicit spectral approximations in the nonperiodic case.

  17. The CFL condition for spectral approximations to hyperbolic initial-boundary value problems

    NASA Technical Reports Server (NTRS)

    Gottlieb, David; Tadmor, Eitan

    1990-01-01

    The stability of spectral approximations to scalar hyperbolic initial-boundary value problems with variable coefficients are studied. Time is discretized by explicit multi-level or Runge-Kutta methods of order less than or equal to 3 (forward Euler time differencing is included), and spatial discretizations are studied by spectral and pseudospectral approximations associated with the general family of Jacobi polynomials. It is proved that these fully explicit spectral approximations are stable provided their time-step, delta t, is restricted by the CFL-like condition, delta t less than Const. N(exp-2), where N equals the spatial number of degrees of freedom. We give two independent proofs of this result, depending on two different choices of approximate L(exp 2)-weighted norms. In both approaches, the proofs hinge on a certain inverse inequality interesting for its own sake. The result confirms the commonly held belief that the above CFL stability restriction, which is extensively used in practical implementations, guarantees the stability (and hence the convergence) of fully-explicit spectral approximations in the nonperiodic case.

  18. An adaptive gridless methodology in one dimension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, N.T.; Hailey, C.E.

    1996-09-01

    Gridless numerical analysis offers great potential for accurately solving for flow about complex geometries or moving boundary problems. Because gridless methods do not require point connection, the mesh cannot twist or distort. The gridless method utilizes a Taylor series about each point to obtain the unknown derivative terms from the current field variable estimates. The governing equation is then numerically integrated to determine the field variables for the next iteration. Effects of point spacing and Taylor series order on accuracy are studied, and they follow similar trends of traditional numerical techniques. Introducing adaption by point movement using a spring analogymore » allows the solution method to track a moving boundary. The adaptive gridless method models linear, nonlinear, steady, and transient problems. Comparison with known analytic solutions is given for these examples. Although point movement adaption does not provide a significant increase in accuracy, it helps capture important features and provides an improved solution.« less

  19. Unified anomaly suppression and boundary extraction in laser radar range imagery based on a joint curve-evolution and expectation-maximization algorithm.

    PubMed

    Feng, Haihua; Karl, William Clem; Castañon, David A

    2008-05-01

    In this paper, we develop a new unified approach for laser radar range anomaly suppression, range profiling, and segmentation. This approach combines an object-based hybrid scene model for representing the range distribution of the field and a statistical mixture model for the range data measurement noise. The image segmentation problem is formulated as a minimization problem which jointly estimates the target boundary together with the target region range variation and background range variation directly from the noisy and anomaly-filled range data. This formulation allows direct incorporation of prior information concerning the target boundary, target ranges, and background ranges into an optimal reconstruction process. Curve evolution techniques and a generalized expectation-maximization algorithm are jointly employed as an efficient solver for minimizing the objective energy, resulting in a coupled pair of object and intensity optimization tasks. The method directly and optimally extracts the target boundary, avoiding a suboptimal two-step process involving image smoothing followed by boundary extraction. Experiments are presented demonstrating that the proposed approach is robust to anomalous pixels (missing data) and capable of producing accurate estimation of the target boundary and range values from noisy data.

  20. The unidirectional motion of two heat-conducting liquids in a flat channel

    NASA Astrophysics Data System (ADS)

    Andreev, V. K.; Cheremnykh, E. N.

    2017-10-01

    The unidirectional motion of two viscous incompressible liquids in a flat channel is studied. Liquids contact on a flat interface. External boundaries are fixed solid walls, on which the non-stationary temperature gradients are given. The motion is induced by a joint action of thermogravitational and thermocapillary forces and given total non - stationary fluid flow rate in layers. The corresponding initial boundary value problem is conjugate and inverse because the pressure gradients along axes channel have to be determined together with the velocity and temperature field. For this problem the exact stationary solution is found and a priori estimates of non - stationary solutions are obtained. In Laplace images the solution of the non - stationary problem is found in quadratures. It is proved, that the solution converges to a steady regime with time, if the temperature on the walls and the fluid flow rate are stabilized. The numerical calculations for specific liquid media good agree with the theoretical results.

  1. A boundary element alternating method for two-dimensional mixed-mode fracture problems

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Krishnamurthy, T.

    1992-01-01

    A boundary element alternating method, denoted herein as BEAM, is presented for two dimensional fracture problems. This is an iterative method which alternates between two solutions. An analytical solution for arbitrary polynomial normal and tangential pressure distributions applied to the crack faces of an embedded crack in an infinite plate is used as the fundamental solution in the alternating method. A boundary element method for an uncracked finite plate is the second solution. For problems of edge cracks a technique of utilizing finite elements with BEAM is presented to overcome the inherent singularity in boundary element stress calculation near the boundaries. Several computational aspects that make the algorithm efficient are presented. Finally, the BEAM is applied to a variety of two dimensional crack problems with different configurations and loadings to assess the validity of the method. The method gives accurate stress intensity factors with minimal computing effort.

  2. Infinite horizon problems on stratifiable state-constraints sets

    NASA Astrophysics Data System (ADS)

    Hermosilla, C.; Zidani, H.

    2015-02-01

    This paper deals with a state-constrained control problem. It is well known that, unless some compatibility condition between constraints and dynamics holds, the Value Function has not enough regularity, or can fail to be the unique constrained viscosity solution of a Hamilton-Jacobi-Bellman (HJB) equation. Here, we consider the case of a set of constraints having a stratified structure. Under this circumstance, the interior of this set may be empty or disconnected, and the admissible trajectories may have the only option to stay on the boundary without possible approximation in the interior of the constraints. In such situations, the classical pointing qualification hypothesis is not relevant. The discontinuous Value Function is then characterized by means of a system of HJB equations on each stratum that composes the state-constraints. This result is obtained under a local controllability assumption which is required only on the strata where some chattering phenomena could occur.

  3. Scalar excursions in large-eddy simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matheou, Georgios; Dimotakis, Paul E.

    Here, the range of values of scalar fields in turbulent flows is bounded by their boundary values, for passive scalars, and by a combination of boundary values, reaction rates, phase changes, etc., for active scalars. The current investigation focuses on the local conservation of passive scalar concentration fields and the ability of the large-eddy simulation (LES) method to observe the boundedness of passive scalar concentrations. In practice, as a result of numerical artifacts, this fundamental constraint is often violated with scalars exhibiting unphysical excursions. The present study characterizes passive-scalar excursions in LES of a shear flow and examines methods formore » diagnosis and assesment of the problem. The analysis of scalar-excursion statistics provides support of the main hypothesis of the current study that unphysical scalar excursions in LES result from dispersive errors of the convection-term discretization where the subgrid-scale model (SGS) provides insufficient dissipation to produce a sufficiently smooth scalar field. In the LES runs three parameters are varied: the discretization of the convection terms, the SGS model, and grid resolution. Unphysical scalar excursions decrease as the order of accuracy of non-dissipative schemes is increased, but the improvement rate decreases with increasing order of accuracy. Two SGS models are examined, the stretched-vortex and a constant-coefficient Smagorinsky. Scalar excursions strongly depend on the SGS model. The excursions are significantly reduced when the characteristic SGS scale is set to double the grid spacing in runs with the stretched-vortex model. The maximum excursion and volume fraction of excursions outside boundary values show opposite trends with respect to resolution. The maximum unphysical excursions increase as resolution increases, whereas the volume fraction decreases. The reason for the increase in the maximum excursion is statistical and traceable to the number of grid points (sample size) which increases with resolution. In contrast, the volume fraction of unphysical excursions decreases with resolution because the SGS models explored perform better at higher grid resolution.« less

  4. Scalar excursions in large-eddy simulations

    DOE PAGES

    Matheou, Georgios; Dimotakis, Paul E.

    2016-08-31

    Here, the range of values of scalar fields in turbulent flows is bounded by their boundary values, for passive scalars, and by a combination of boundary values, reaction rates, phase changes, etc., for active scalars. The current investigation focuses on the local conservation of passive scalar concentration fields and the ability of the large-eddy simulation (LES) method to observe the boundedness of passive scalar concentrations. In practice, as a result of numerical artifacts, this fundamental constraint is often violated with scalars exhibiting unphysical excursions. The present study characterizes passive-scalar excursions in LES of a shear flow and examines methods formore » diagnosis and assesment of the problem. The analysis of scalar-excursion statistics provides support of the main hypothesis of the current study that unphysical scalar excursions in LES result from dispersive errors of the convection-term discretization where the subgrid-scale model (SGS) provides insufficient dissipation to produce a sufficiently smooth scalar field. In the LES runs three parameters are varied: the discretization of the convection terms, the SGS model, and grid resolution. Unphysical scalar excursions decrease as the order of accuracy of non-dissipative schemes is increased, but the improvement rate decreases with increasing order of accuracy. Two SGS models are examined, the stretched-vortex and a constant-coefficient Smagorinsky. Scalar excursions strongly depend on the SGS model. The excursions are significantly reduced when the characteristic SGS scale is set to double the grid spacing in runs with the stretched-vortex model. The maximum excursion and volume fraction of excursions outside boundary values show opposite trends with respect to resolution. The maximum unphysical excursions increase as resolution increases, whereas the volume fraction decreases. The reason for the increase in the maximum excursion is statistical and traceable to the number of grid points (sample size) which increases with resolution. In contrast, the volume fraction of unphysical excursions decreases with resolution because the SGS models explored perform better at higher grid resolution.« less

  5. Magnetic phase boundaries of CsMnF3: XY-to-Ising crossover and the virtual bicritical point

    NASA Astrophysics Data System (ADS)

    Shapira, Y.; Oliveira, N. F., Jr.; Chang, T. S.

    1980-02-01

    The ordering temperature Tc of the easy-plane hexagonal antiferromagnet CsMnF3 was measured as a function of magnetic field H, up to 120 kOe. Tc was determined from the thermal expansion anomaly at constant H. At H=0, TN≡Tc(0)=51.4 K. When H--> is in the hexagonal plane, the boundary Tc(H) is bow shaped: with increasing H, Tc first increases, then passes through a maximum, and later decreases. The maximum Tc is ~37 mK above TN, and it occurs at H≅29.5 kOe. The bow-shaped phase boundary is attributed to the XY-to-Ising crossover which is induced by the magnetic field, as discussed by Fisher, Nelson, and Kosterlitz. Fits to the phase boundary Tc(H) give a crossover exponent φ=1.185+/-0.03 for one sample and φ=1.184+/-0.025 for another, compared to the theoretical value φ(n=2)=1.175+/-0.015. When H--> is perpendicular to the hexagonal plane, Tc decreases monotonically with increasing H, but the decrease is not in accordance with mean-field theory, which predicts a decrease proportional to H2. The deviation from mean-field behavior is attributed to a virtual bicritical point (VBP) with Heisenberg symmetry, which exists mathematically at a negative value of H2. Although the VBP cannot be observed directly, it affects the behavior in the observable region of H2>=0. Physically, a magnetic field applied perpendicular to the easy plane enhances the Heisenberg-to-XY symmetry breaking, which at H=0 is solely due to the weak easy-plane uniaxial anisotropy. The enhanced symmetry breaking causes a non-mean-field dependence of Tc on H. An equation derived on this basis gives a good description of the phase boundary Tc(H). This equation contains three adjustable parameters, two of which can also be estimated without recourse to the phase boundary Tc(H). The values for these two parameters obtained from a best fit to Tc(H) agree with the independent estimates.

  6. Applications of conformal field theory to problems in 2D percolation

    NASA Astrophysics Data System (ADS)

    Simmons, Jacob Joseph Harris

    This thesis explores critical two-dimensional percolation in bounded regions in the continuum limit. The main method which we employ is conformal field theory (CFT). Our specific results follow from the null-vector structure of the c = 0 CFT that applies to critical two-dimensional percolation. We also make use of the duality symmetry obeyed at the percolation point, and the fact that percolation may be understood as the q-state Potts model in the limit q → 1. Our first results describe the correlations between points in the bulk and boundary intervals or points, i.e. the probability that the various points or intervals are in the same percolation cluster. These quantities correspond to order-parameter profiles under the given conditions, or cluster connection probabilities. We consider two specific cases: an anchoring interval, and two anchoring points. We derive results for these and related geometries using the CFT null-vectors for the corresponding boundary condition changing (bcc) operators. In addition, we exhibit several exact relationships between these probabilities. These relations between the various bulk-boundary connection probabilities involve parameters of the CFT called operator product expansion (OPE) coefficients. We then compute several of these OPE coefficients, including those arising in our new probability relations. Beginning with the familiar CFT operator φ1,2, which corresponds to a free-fixed spin boundary change in the q-state Potts model, we then develop physical interpretations of the bcc operators. We argue that, when properly normalized, higher-order bcc operators correspond to successive fusions of multiple φ1,2, operators. Finally, by identifying the derivative of φ1,2 with the operator φ1,4, we derive several new quantities called first crossing densities. These new results are then combined and integrated to obtain the three previously known crossing quantities in a rectangle: the probability of a horizontal crossing cluster, the probability of a cluster crossing both horizontally and vertically, and the expected number of horizontal crossing clusters. These three results were known to be solutions to a certain fifth-order differential equation, but until now no physically meaningful explanation had appeared. This differential equation arises naturally in our derivation.

  7. Hypersonic Vehicle Trajectory Optimization and Control

    NASA Technical Reports Server (NTRS)

    Balakrishnan, S. N.; Shen, J.; Grohs, J. R.

    1997-01-01

    Two classes of neural networks have been developed for the study of hypersonic vehicle trajectory optimization and control. The first one is called an 'adaptive critic'. The uniqueness and main features of this approach are that: (1) they need no external training; (2) they allow variability of initial conditions; and (3) they can serve as feedback control. This is used to solve a 'free final time' two-point boundary value problem that maximizes the mass at the rocket burn-out while satisfying the pre-specified burn-out conditions in velocity, flightpath angle, and altitude. The second neural network is a recurrent network. An interesting feature of this network formulation is that when its inputs are the coefficients of the dynamics and control matrices, the network outputs are the Kalman sequences (with a quadratic cost function); the same network is also used for identifying the coefficients of the dynamics and control matrices. Consequently, we can use it to control a system whose parameters are uncertain. Numerical results are presented which illustrate the potential of these methods.

  8. Discretized energy minimization in a wave guide with point sources

    NASA Technical Reports Server (NTRS)

    Propst, G.

    1994-01-01

    An anti-noise problem on a finite time interval is solved by minimization of a quadratic functional on the Hilbert space of square integrable controls. To this end, the one-dimensional wave equation with point sources and pointwise reflecting boundary conditions is decomposed into a system for the two propagating components of waves. Wellposedness of this system is proved for a class of data that includes piecewise linear initial conditions and piecewise constant forcing functions. It is shown that for such data the optimal piecewise constant control is the solution of a sparse linear system. Methods for its computational treatment are presented as well as examples of their applicability. The convergence of discrete approximations to the general optimization problem is demonstrated by finite element methods.

  9. Global uniqueness in an inverse problem for time fractional diffusion equations

    NASA Astrophysics Data System (ADS)

    Kian, Y.; Oksanen, L.; Soccorsi, E.; Yamamoto, M.

    2018-01-01

    Given (M , g), a compact connected Riemannian manifold of dimension d ⩾ 2, with boundary ∂M, we consider an initial boundary value problem for a fractional diffusion equation on (0 , T) × M, T > 0, with time-fractional Caputo derivative of order α ∈ (0 , 1) ∪ (1 , 2). We prove uniqueness in the inverse problem of determining the smooth manifold (M , g) (up to an isometry), and various time-independent smooth coefficients appearing in this equation, from measurements of the solutions on a subset of ∂M at fixed time. In the "flat" case where M is a compact subset of Rd, two out the three coefficients ρ (density), a (conductivity) and q (potential) appearing in the equation ρ ∂tα u - div (a∇u) + qu = 0 on (0 , T) × M are recovered simultaneously.

  10. Numerical Simulation of Two Dimensional Flows in Yazidang Reservoir

    NASA Astrophysics Data System (ADS)

    Huang, Lingxiao; Liu, Libo; Sun, Xuehong; Zheng, Lanxiang; Jing, Hefang; Zhang, Xuande; Li, Chunguang

    2018-01-01

    This paper studied the problem of water flow in the Yazid Ang reservoir. It built 2-D RNG turbulent model, rated the boundary conditions, used the finite volume method to discrete equations and divided the grid by the advancing-front method. It simulated the two conditions of reservoir flow field, compared the average vertical velocity of the simulated value and the measured value nearby the water inlet and the water intake. The results showed that the mathematical model could be applied to the similar industrial water reservoir.

  11. Computing eigenfunctions and eigenvalues of boundary-value problems with the orthogonal spectral renormalization method

    NASA Astrophysics Data System (ADS)

    Cartarius, Holger; Musslimani, Ziad H.; Schwarz, Lukas; Wunner, Günter

    2018-03-01

    The spectral renormalization method was introduced in 2005 as an effective way to compute ground states of nonlinear Schrödinger and Gross-Pitaevskii type equations. In this paper, we introduce an orthogonal spectral renormalization (OSR) method to compute ground and excited states (and their respective eigenvalues) of linear and nonlinear eigenvalue problems. The implementation of the algorithm follows four simple steps: (i) reformulate the underlying eigenvalue problem as a fixed-point equation, (ii) introduce a renormalization factor that controls the convergence properties of the iteration, (iii) perform a Gram-Schmidt orthogonalization process in order to prevent the iteration from converging to an unwanted mode, and (iv) compute the solution sought using a fixed-point iteration. The advantages of the OSR scheme over other known methods (such as Newton's and self-consistency) are (i) it allows the flexibility to choose large varieties of initial guesses without diverging, (ii) it is easy to implement especially at higher dimensions, and (iii) it can easily handle problems with complex and random potentials. The OSR method is implemented on benchmark Hermitian linear and nonlinear eigenvalue problems as well as linear and nonlinear non-Hermitian PT -symmetric models.

  12. A Numerical Approximation Framework for the Stochastic Linear Quadratic Regulator on Hilbert Spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levajković, Tijana, E-mail: tijana.levajkovic@uibk.ac.at, E-mail: t.levajkovic@sf.bg.ac.rs; Mena, Hermann, E-mail: hermann.mena@uibk.ac.at; Tuffaha, Amjad, E-mail: atufaha@aus.edu

    We present an approximation framework for computing the solution of the stochastic linear quadratic control problem on Hilbert spaces. We focus on the finite horizon case and the related differential Riccati equations (DREs). Our approximation framework is concerned with the so-called “singular estimate control systems” (Lasiecka in Optimal control problems and Riccati equations for systems with unbounded controls and partially analytic generators: applications to boundary and point control problems, 2004) which model certain coupled systems of parabolic/hyperbolic mixed partial differential equations with boundary or point control. We prove that the solutions of the approximate finite-dimensional DREs converge to the solutionmore » of the infinite-dimensional DRE. In addition, we prove that the optimal state and control of the approximate finite-dimensional problem converge to the optimal state and control of the corresponding infinite-dimensional problem.« less

  13. Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face

    NASA Astrophysics Data System (ADS)

    Bollati, Julieta; Tarzia, Domingo A.

    2018-04-01

    Recently, in Tarzia (Thermal Sci 21A:1-11, 2017) for the classical two-phase Lamé-Clapeyron-Stefan problem an equivalence between the temperature and convective boundary conditions at the fixed face under a certain restriction was obtained. Motivated by this article we study the two-phase Stefan problem for a semi-infinite material with a latent heat defined as a power function of the position and a convective boundary condition at the fixed face. An exact solution is constructed using Kummer functions in case that an inequality for the convective transfer coefficient is satisfied generalizing recent works for the corresponding one-phase free boundary problem. We also consider the limit to our problem when that coefficient goes to infinity obtaining a new free boundary problem, which has been recently studied in Zhou et al. (J Eng Math 2017. https://doi.org/10.1007/s10665-017-9921-y).

  14. Vacuum currents in braneworlds on AdS bulk with compact dimensions

    NASA Astrophysics Data System (ADS)

    Bellucci, S.; Saharian, A. A.; Vardanyan, V.

    2015-11-01

    The two-point function and the vacuum expectation value (VEV) of the current density are investigated for a massive charged scalar field with arbitrary curvature coupling in the geometry of a brane on the background of AdS spacetime with partial toroidal compactification. The presence of a gauge field flux, enclosed by compact dimensions, is assumed. On the brane the field obeys Robin boundary condition and along compact dimensions periodicity conditions with general phases are imposed. There is a range in the space of the values for the coefficient in the boundary condition where the Poincaré vacuum is unstable. This range depends on the location of the brane and is different for the regions between the brane and AdS boundary and between the brane and the horizon. In models with compact dimensions the stability condition is less restrictive than that for the AdS bulk with trivial topology. The vacuum charge density and the components of the current along non-compact dimensions vanish. The VEV of the current density along compact dimensions is a periodic function of the gauge field flux with the period equal to the flux quantum. It is decomposed into the boundary-free and brane-induced contributions. The asymptotic behavior of the latter is investigated near the brane, near the AdS boundary and near the horizon. It is shown that, in contrast to the VEVs of the field squared an denergy-momentum tensor, the current density is finite on the brane and vanishes for the special case of Dirichlet boundary condition. Both the boundary-free and brane-induced contributions vanish on the AdS boundary. The brane-induced contribution vanishes on the horizon and for points near the horizon the current is dominated by the boundary-free part. In the near-horizon limit, the latter is connected to the corresponding quantity for a massless field in the Minkowski bulk by a simple conformal relation. Depending on the value of the Robin coefficient, the presence of the brane can either increase or decrease the vacuum currents. Applications are given for a higher-dimensional version of the Randall-Sundrum 1-brane model.

  15. Diffuse-interface polycrystal plasticity: expressing grain boundaries as geometrically necessary dislocations

    NASA Astrophysics Data System (ADS)

    Admal, Nikhil Chandra; Po, Giacomo; Marian, Jaime

    2017-12-01

    The standard way of modeling plasticity in polycrystals is by using the crystal plasticity model for single crystals in each grain, and imposing suitable traction and slip boundary conditions across grain boundaries. In this fashion, the system is modeled as a collection of boundary-value problems with matching boundary conditions. In this paper, we develop a diffuse-interface crystal plasticity model for polycrystalline materials that results in a single boundary-value problem with a single crystal as the reference configuration. Using a multiplicative decomposition of the deformation gradient into lattice and plastic parts, i.e. F( X,t)= F L( X,t) F P( X,t), an initial stress-free polycrystal is constructed by imposing F L to be a piecewise constant rotation field R 0( X), and F P= R 0( X)T, thereby having F( X,0)= I, and zero elastic strain. This model serves as a precursor to higher order crystal plasticity models with grain boundary energy and evolution.

  16. Computation of Nonlinear Backscattering Using a High-Order Numerical Method

    NASA Technical Reports Server (NTRS)

    Fibich, G.; Ilan, B.; Tsynkov, S.

    2001-01-01

    The nonlinear Schrodinger equation (NLS) is the standard model for propagation of intense laser beams in Kerr media. The NLS is derived from the nonlinear Helmholtz equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves. In this study we use a fourth-order finite-difference method supplemented by special two-way artificial boundary conditions (ABCs) to solve the NLH as a boundary value problem. Our numerical methodology allows for a direct comparison of the NLH and NLS models and for an accurate quantitative assessment of the backscattered signal.

  17. A non-asymptotic homogenization theory for periodic electromagnetic structures.

    PubMed

    Tsukerman, Igor; Markel, Vadim A

    2014-08-08

    Homogenization of electromagnetic periodic composites is treated as a two-scale problem and solved by approximating the fields on both scales with eigenmodes that satisfy Maxwell's equations and boundary conditions as accurately as possible. Built into this homogenization methodology is an error indicator whose value characterizes the accuracy of homogenization. The proposed theory allows one to define not only bulk, but also position-dependent material parameters (e.g. in proximity to a physical boundary) and to quantify the trade-off between the accuracy of homogenization and its range of applicability to various illumination conditions.

  18. Model parameter learning using Kullback-Leibler divergence

    NASA Astrophysics Data System (ADS)

    Lin, Chungwei; Marks, Tim K.; Pajovic, Milutin; Watanabe, Shinji; Tung, Chih-kuan

    2018-02-01

    In this paper, we address the following problem: For a given set of spin configurations whose probability distribution is of the Boltzmann type, how do we determine the model coupling parameters? We demonstrate that directly minimizing the Kullback-Leibler divergence is an efficient method. We test this method against the Ising and XY models on the one-dimensional (1D) and two-dimensional (2D) lattices, and provide two estimators to quantify the model quality. We apply this method to two types of problems. First, we apply it to the real-space renormalization group (RG). We find that the obtained RG flow is sufficiently good for determining the phase boundary (within 1% of the exact result) and the critical point, but not accurate enough for critical exponents. The proposed method provides a simple way to numerically estimate amplitudes of the interactions typically truncated in the real-space RG procedure. Second, we apply this method to the dynamical system composed of self-propelled particles, where we extract the parameter of a statistical model (a generalized XY model) from a dynamical system described by the Viscek model. We are able to obtain reasonable coupling values corresponding to different noise strengths of the Viscek model. Our method is thus able to provide quantitative analysis of dynamical systems composed of self-propelled particles.

  19. Initial-boundary value problem to 2D Boussinesq equations for MHD convection with stratification effects

    NASA Astrophysics Data System (ADS)

    Bian, Dongfen; Liu, Jitao

    2017-12-01

    This paper is concerned with the initial-boundary value problem to 2D magnetohydrodynamics-Boussinesq system with the temperature-dependent viscosity, thermal diffusivity and electrical conductivity. First, we establish the global weak solutions under the minimal initial assumption. Then by imposing higher regularity assumption on the initial data, we obtain the global strong solution with uniqueness. Moreover, the exponential decay rates of weak solutions and strong solution are obtained respectively.

  20. Random deflections of a string on an elastic foundation.

    NASA Technical Reports Server (NTRS)

    Sanders, J. L., Jr.

    1972-01-01

    The paper is concerned with the problem of a taut string on a random elastic foundation subjected to random loads. The boundary value problem is transformed into an initial value problem by the method of invariant imbedding. Fokker-Planck equations for the random initial value problem are formulated and solved in some special cases. The analysis leads to a complete characterization of the random deflection function.

  1. A General Theory of Unsteady Compressible Potential Aerodynamics

    NASA Technical Reports Server (NTRS)

    Morino, L.

    1974-01-01

    The general theory of potential aerodynamic flow around a lifting body having arbitrary shape and motion is presented. By using the Green function method, an integral representation for the potential is obtained for both supersonic and subsonic flow. Under small perturbation assumption, the potential at any point, P, in the field depends only upon the values of the potential and its normal derivative on the surface, sigma, of the body. Hence, if the point P approaches the surface of the body, the representation reduces to an integro-differential equation relating the potential and its normal derivative (which is known from the boundary conditions) on the surface sigma. For the important practical case of small harmonic oscillation around a rest position, the equation reduces to a two-dimensional Fredholm integral equation of second-type. It is shown that this equation reduces properly to the lifting surface theories as well as other classical mathematical formulas. The question of uniqueness is examined and it is shown that, for thin wings, the operator becomes singular as the thickness approaches zero. This fact may yield numerical problems for very thin wings.

  2. Transport phenomena of carbon nanotubes and bioconvection nanoparticles on stagnation point flow in presence of induced magnetic field

    NASA Astrophysics Data System (ADS)

    Iqbal, Z.; Azhar, Ehtsham; Maraj, E. N.

    2017-07-01

    This article is a numerical study of stagnation point flow of carbon nanotubes over an elongating sheet in presence of induced magnetic field submerged in bioconvection nanoparticles. Two types of carbon nanotubes are considered i.e. single wall carbon nanotube and multi wall carbon nanotube mixed in based fluid taken to be water as well as kerosene-oil. The emphasis of present study is to examine effect of induced magnetic field on boundary layer flows along with influence of SWCNT and MWCNT. Physical problem is mathematically modeled and simplified by using appropriate similarity transformations. Shooting method with Runge-Kutta of order 5 is employed to compute numerical results for non-dimensional velocity, induced magnetic field and temperature. The effects of pertinent parameters are portrayed through graphs. Numerical values of skinfriction coefficient and Nusselt number are tabulated to study the behaviors at the stretching surface. It is depicted that induced magnetic field is an increasing function of solid nanoparticles volumetric fraction. Moreover, MWCNT contributes in rising induced magnetic field more as compared to SWCNT for both water and kerosene-oil based fluids.

  3. Solving transient acoustic boundary value problems with equivalent sources using a lumped parameter approach.

    PubMed

    Fahnline, John B

    2016-12-01

    An equivalent source method is developed for solving transient acoustic boundary value problems. The method assumes the boundary surface is discretized in terms of triangular or quadrilateral elements and that the solution is represented using the acoustic fields of discrete sources placed at the element centers. Also, the boundary condition is assumed to be specified for the normal component of the surface velocity as a function of time, and the source amplitudes are determined to match the known elemental volume velocity vector at a series of discrete time steps. Equations are given for marching-on-in-time schemes to solve for the source amplitudes at each time step for simple, dipole, and tripole source formulations. Several example problems are solved to illustrate the results and to validate the formulations, including problems with closed boundary surfaces where long-time numerical instabilities typically occur. A simple relationship between the simple and dipole source amplitudes in the tripole source formulation is derived so that the source radiates primarily in the direction of the outward surface normal. The tripole source formulation is shown to eliminate interior acoustic resonances and long-time numerical instabilities.

  4. Repeated Red-Black ordering

    NASA Astrophysics Data System (ADS)

    Ciarlet, P.

    1994-09-01

    Hereafter, we describe and analyze, from both a theoretical and a numerical point of view, an iterative method for efficiently solving symmetric elliptic problems with possibly discontinuous coefficients. In the following, we use the Preconditioned Conjugate Gradient method to solve the symmetric positive definite linear systems which arise from the finite element discretization of the problems. We focus our interest on sparse and efficient preconditioners. In order to define the preconditioners, we perform two steps: first we reorder the unknowns and then we carry out a (modified) incomplete factorization of the original matrix. We study numerically and theoretically two preconditioners, the second preconditioner corresponding to the one investigated by Brand and Heinemann [2]. We prove convergence results about the Poisson equation with either Dirichlet or periodic boundary conditions. For a meshsizeh, Brand proved that the condition number of the preconditioned system is bounded byO(h-1/2) for Dirichlet boundary conditions. By slightly modifying the preconditioning process, we prove that the condition number is bounded byO(h-1/3).

  5. Topology optimization in acoustics and elasto-acoustics via a level-set method

    NASA Astrophysics Data System (ADS)

    Desai, J.; Faure, A.; Michailidis, G.; Parry, G.; Estevez, R.

    2018-04-01

    Optimizing the shape and topology (S&T) of structures to improve their acoustic performance is quite challenging. The exact position of the structural boundary is usually of critical importance, which dictates the use of geometric methods for topology optimization instead of standard density approaches. The goal of the present work is to investigate different possibilities for handling topology optimization problems in acoustics and elasto-acoustics via a level-set method. From a theoretical point of view, we detail two equivalent ways to perform the derivation of surface-dependent terms and propose a smoothing technique for treating problems of boundary conditions optimization. In the numerical part, we examine the importance of the surface-dependent term in the shape derivative, neglected in previous studies found in the literature, on the optimal designs. Moreover, we test different mesh adaptation choices, as well as technical details related to the implicit surface definition in the level-set approach. We present results in two and three-space dimensions.

  6. The newfoundland basin - Ocean-continent boundary and Mesozoic seafloor spreading history

    NASA Technical Reports Server (NTRS)

    Sullivan, K. D.

    1983-01-01

    It is pointed out that over the past 15 years there has been considerable progress in the refinement of predrift fits and seafloor spreading models of the North Atlantic. With the widespread acceptance of these basic models has come increasing interest in resolution of specific paleogeographic and kinematic problems. Two such problems are the initial position of Iberia with respect to North America and the geometry and chronology of early (pre-80 m.y.) relative motions between these two plates. The present investigation is concerned with geophysical data from numerous Bedford Institute/Dalhousie University cruises to the Newfoundland Basin which were undrtaken to determine the location of the ocean-continent boundary (OCB) and the Mesozoic spreading history on the western side. From the examination of magnetic data in the Newfoundland Basin, the OCB east of the Grand Banks is defined as the seaward limit of the 'smooth' magnetic domain which characterizes the surrounding continental shelves. A substantial improvement in Iberia-North America paleographic reconstructions is achieved.

  7. Sub-optimal control of unsteady boundary layer separation and optimal control of Saltzman-Lorenz model

    NASA Astrophysics Data System (ADS)

    Sardesai, Chetan R.

    The primary objective of this research is to explore the application of optimal control theory in nonlinear, unsteady, fluid dynamical settings. Two problems are considered: (1) control of unsteady boundary-layer separation, and (2) control of the Saltzman-Lorenz model. The unsteady boundary-layer equations are nonlinear partial differential equations that govern the eruptive events that arise when an adverse pressure gradient acts on a boundary layer at high Reynolds numbers. The Saltzman-Lorenz model consists of a coupled set of three nonlinear ordinary differential equations that govern the time-dependent coefficients in truncated Fourier expansions of Rayleigh-Renard convection and exhibit deterministic chaos. Variational methods are used to derive the nonlinear optimal control formulations based on cost functionals that define the control objective through a performance measure and a penalty function that penalizes the cost of control. The resulting formulation consists of the nonlinear state equations, which must be integrated forward in time, and the nonlinear control (adjoint) equations, which are integrated backward in time. Such coupled forward-backward time integrations are computationally demanding; therefore, the full optimal control problem for the Saltzman-Lorenz model is carried out, while the more complex unsteady boundary-layer case is solved using a sub-optimal approach. The latter is a quasi-steady technique in which the unsteady boundary-layer equations are integrated forward in time, and the steady control equation is solved at each time step. Both sub-optimal control of the unsteady boundary-layer equations and optimal control of the Saltzman-Lorenz model are found to be successful in meeting the control objectives for each problem. In the case of boundary-layer separation, the control results indicate that it is necessary to eliminate the recirculation region that is a precursor to the unsteady boundary-layer eruptions. In the case of the Saltzman-Lorenz model, it is possible to control the system about either of the two unstable equilibrium points representing clockwise and counterclockwise rotation of the convection roles in a parameter regime for which the uncontrolled solution would exhibit deterministic chaos.

  8. Boundary holographic Witten diagrams

    DOE PAGES

    Karch, Andreas; Sato, Yoshiki

    2017-09-25

    In this paper we discuss geodesic Witten diagrams in generic holographic conformal field theories with boundary or defect. Boundary CFTs allow two different de-compositions of two-point functions into conformal blocks: boundary channel and ambient channel. Building on earlier work, we derive a holographic dual of the boundary channel decomposition in terms of bulk-to-bulk propagators on lower dimensional AdS slices. In the situation in which we can treat the boundary or defect as a perturbation around pure AdS spacetime, we obtain the leading corrections to the two-point function both in boundary and ambient channel in terms of geodesic Witten diagrams whichmore » exactly reproduce the decomposition into corresponding conformal blocks on the field theory side.« less

  9. Flight control with adaptive critic neural network

    NASA Astrophysics Data System (ADS)

    Han, Dongchen

    2001-10-01

    In this dissertation, the adaptive critic neural network technique is applied to solve complex nonlinear system control problems. Based on dynamic programming, the adaptive critic neural network can embed the optimal solution into a neural network. Though trained off-line, the neural network forms a real-time feedback controller. Because of its general interpolation properties, the neurocontroller has inherit robustness. The problems solved here are an agile missile control for U.S. Air Force and a midcourse guidance law for U.S. Navy. In the first three papers, the neural network was used to control an air-to-air agile missile to implement a minimum-time heading-reverse in a vertical plane corresponding to following conditions: a system without constraint, a system with control inequality constraint, and a system with state inequality constraint. While the agile missile is a one-dimensional problem, the midcourse guidance law is the first test-bed for multiple-dimensional problem. In the fourth paper, the neurocontroller is synthesized to guide a surface-to-air missile to a fixed final condition, and to a flexible final condition from a variable initial condition. In order to evaluate the adaptive critic neural network approach, the numerical solutions for these cases are also obtained by solving two-point boundary value problem with a shooting method. All of the results showed that the adaptive critic neural network could solve complex nonlinear system control problems.

  10. A 2D chaotic path planning for mobile robots accomplishing boundary surveillance missions in adversarial conditions

    NASA Astrophysics Data System (ADS)

    Curiac, Daniel-Ioan; Volosencu, Constantin

    2014-10-01

    The path-planning algorithm represents a crucial issue for every autonomous mobile robot. In normal circumstances a patrol robot will compute an optimal path to ensure its task accomplishment, but in adversarial conditions the problem is getting more complicated. Here, the robot’s trajectory needs to be altered into a misleading and unpredictable path to cope with potential opponents. Chaotic systems provide the needed framework for obtaining unpredictable motion in all of the three basic robot surveillance missions: area, points of interests and boundary monitoring. Proficient approaches have been provided for the first two surveillance tasks, but for boundary patrol missions no method has been reported yet. This paper addresses the mentioned research gap by proposing an efficient method, based on chaotic dynamic of the Hénon system, to ensure unpredictable boundary patrol on any shape of chosen closed contour.

  11. Time-Domain Impedance Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Auriault, Laurent

    1996-01-01

    It is an accepted practice in aeroacoustics to characterize the properties of an acoustically treated surface by a quantity known as impedance. Impedance is a complex quantity. As such, it is designed primarily for frequency-domain analysis. Time-domain boundary conditions that are the equivalent of the frequency-domain impedance boundary condition are proposed. Both single frequency and model broadband time-domain impedance boundary conditions are provided. It is shown that the proposed boundary conditions, together with the linearized Euler equations, form well-posed initial boundary value problems. Unlike ill-posed problems, they are free from spurious instabilities that would render time-marching computational solutions impossible.

  12. Energy and maximum norm estimates for nonlinear conservation laws

    NASA Technical Reports Server (NTRS)

    Olsson, Pelle; Oliger, Joseph

    1994-01-01

    We have devised a technique that makes it possible to obtain energy estimates for initial-boundary value problems for nonlinear conservation laws. The two major tools to achieve the energy estimates are a certain splitting of the flux vector derivative f(u)(sub x), and a structural hypothesis, referred to as a cone condition, on the flux vector f(u). These hypotheses are fulfilled for many equations that occur in practice, such as the Euler equations of gas dynamics. It should be noted that the energy estimates are obtained without any assumptions on the gradient of the solution u. The results extend to weak solutions that are obtained as point wise limits of vanishing viscosity solutions. As a byproduct we obtain explicit expressions for the entropy function and the entropy flux of symmetrizable systems of conservation laws. Under certain circumstances the proposed technique can be applied repeatedly so as to yield estimates in the maximum norm.

  13. Strength measurement of optical fibers by bending

    NASA Astrophysics Data System (ADS)

    Srubshchik, Leonid S.

    1999-01-01

    A two-point bending technique has been used not only to measure the breaking stress of optical fiber but also to predict its static and dynamic fatigue. The present theory of this test is based on elastica theory of rod. However, within the limits of elastica theory the tensile and shear stresses cannot be determined. In this paper we study dynamic and static problems for optical fiber in the two- point bending test on the base of geometrically exact theory in which rod can suffer flexure, extension, and shear. We obtain the governing partial differential equations taking into account the fact that the lateral motion of the fiber is restrained by the presence of flat parallel plates. We develop the computational methods for solving the initial and equilibrium free-boundary nonlinear planar problems. We derive the formulas for predicting of the tensile strength from strength in the bending and calculate one example.

  14. PREDICTING TWO-DIMENSIONAL STEADY-STATE SOIL FREEZING FRONTS USING THE CVBEM.

    USGS Publications Warehouse

    Hromadka, T.V.

    1986-01-01

    The complex variable boundary element method (CVBEM) is used instead of a real variable boundary element method due to the available modeling error evaluation techniques developed. The modeling accuracy is evaluated by the model-user in the determination of an approximative boundary upon which the CVBEM provides an exact solution. Although inhomogeneity (and anisotropy) can be included in the CVBEM model, the resulting fully populated matrix system quickly becomes large. Therefore in this paper, the domain is assumed homogeneous and isotropic except for differences in frozen and thawed conduction parameters on either side of the freezing front. The example problems presented were obtained by use of a popular 64K microcomputer (the current version of the program used in this study has the capacity to accommodate 30 nodal points).

  15. Transformation of two and three-dimensional regions by elliptic systems

    NASA Technical Reports Server (NTRS)

    Mastin, C. Wayne

    1991-01-01

    A reliable linear system is presented for grid generation in 2-D and 3-D. The method is robust in the sense that convergence is guaranteed but is not as reliable as other nonlinear elliptic methods in generating nonfolding grids. The construction of nonfolding grids depends on having reasonable approximations of cell aspect ratios and an appropriate distribution of grid points on the boundary of the region. Some guidelines are included on approximating the aspect ratios, but little help is offered on setting up the boundary grid other than to say that in 2-D the boundary correspondence should be close to that generated by a conformal mapping. It is assumed that the functions which control the grid distribution depend only on the computational variables and not on the physical variables. Whether this is actually the case depends on how the grid is constructed. In a dynamic adaptive procedure where the grid is constructed in the process of solving a fluid flow problem, the grid is usually updated at fixed iteration counts using the current value of the control function. Since the control function is not being updated during the iteration of the grid equations, the grid construction is a linear procedure. However, in the case of a static adaptive procedure where a trial solution is computed and used to construct an adaptive grid, the control functions may be recomputed at every step of the grid iteration.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karch, Andreas; Sato, Yoshiki

    In this paper we discuss geodesic Witten diagrams in generic holographic conformal field theories with boundary or defect. Boundary CFTs allow two different de-compositions of two-point functions into conformal blocks: boundary channel and ambient channel. Building on earlier work, we derive a holographic dual of the boundary channel decomposition in terms of bulk-to-bulk propagators on lower dimensional AdS slices. In the situation in which we can treat the boundary or defect as a perturbation around pure AdS spacetime, we obtain the leading corrections to the two-point function both in boundary and ambient channel in terms of geodesic Witten diagrams whichmore » exactly reproduce the decomposition into corresponding conformal blocks on the field theory side.« less

  17. The Use of Source-Sink and Doublet Distributions Extended to the Solution of Boundary-Value Problems in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Lomax, Harvard

    1948-01-01

    A direct analogy is established between the use of source-sink and doublet distributions in the solution of specific boundary-value problems in subsonic wing theory and the corresponding problems in supersonic theory. The correct concept of the "finite part" of an integral is introduced and used in the calculation of the improper integrals associated with supersonic doublet distributions. The general equations developed are shown to include several previously published results and particular examples are given for the loading on rolling and pitching triangular wings with supersonic leading edges.

  18. Applied mathematical problems in modern electromagnetics

    NASA Astrophysics Data System (ADS)

    Kriegsman, Gregory

    1994-05-01

    We have primarily investigated two classes of electromagnetic problems. The first contains the quantitative description of microwave heating of dispersive and conductive materials. Such problems arise, for example, when biological tissue are exposed, accidentally or purposefully, to microwave radiation. Other instances occur in ceramic processing, such as sintering and microwave assisted chemical vapor infiltration and other industrial drying processes, such as the curing of paints and concrete. The second class characterizes the scattering of microwaves by complex targets which possess two or more disparate length and/or time scales. Spatially complex scatterers arise in a variety of applications, such as large gratings and slowly changing guiding structures. The former are useful in developing microstrip energy couplers while the later can be used to model anatomical subsystems (e.g., the open guiding structure composed of two legs and the adjoining lower torso). Temporally complex targets occur in applications involving dispersive media whose relaxation times differ by orders of magnitude from thermal and/or electromagnetic time scales. For both cases the mathematical description of the problems gives rise to complicated ill-conditioned boundary value problems, whose accurate solutions require a blend of both asymptotic techniques, such as multiscale methods and matched asymptotic expansions, and numerical methods incorporating radiation boundary conditions, such as finite differences and finite elements.

  19. Maneuver simulations of flexible spacecraft by solving TPBVP

    NASA Technical Reports Server (NTRS)

    Bainum, Peter M.; Li, Feiyue

    1991-01-01

    The optimal control of large angle rapid maneuvers and vibrations of a Shuttle mast reflector system is considered. The nonlinear equations of motion are formulated by using Lagrange's formula, with the mast modeled as a continuous beam. The nonlinear terms in the equations come from the coupling between the angular velocities, the modal coordinates, and the modal rates. Pontryagin's Maximum Principle is applied to the slewing problem, to derive the necessary conditions for the optimal controls, which are bounded by given saturation levels. The resulting two point boundary value problem (TPBVP) is then solved by using the quasilinearization algorithm and the method of particular solutions. In the numerical simulations, the structural parameters and the control limits from the Spacecraft Control Lab Experiment (SCOLE) are used. In the 2-D case, only the motion in the plane of an Earth orbit or the single axis slewing motion is discussed. In the 3-D slewing, the mast is modeled as a continuous beam subjected to 3-D deformations. The numerical results for both the linearized system and the nonlinear system are presented to compare the differences in their time response.

  20. A computer program to trace seismic ray distribution in complex two-dimensional geological models

    USGS Publications Warehouse

    Yacoub, Nazieh K.; Scott, James H.

    1970-01-01

    A computer program has been developed to trace seismic rays and their amplitudes and energies through complex two-dimensional geological models, for which boundaries between elastic units are defined by a series of digitized X-, Y-coordinate values. Input data for the program includes problem identification, control parameters, model coordinates and elastic parameter for the elastic units. The program evaluates the partitioning of ray amplitude and energy at elastic boundaries, computes the total travel time, total travel distance and other parameters for rays arising at the earth's surface. Instructions are given for punching program control cards and data cards, and for arranging input card decks. An example of printer output for a simple problem is presented. The program is written in FORTRAN IV language. The listing of the program is shown in the Appendix, with an example output from a CDC-6600 computer.

  1. New Boundary Constraints for Elliptic Systems used in Grid Generation Problems

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This paper discusses new boundary constraints for elliptic partial differential equations as used in grid generation problems in generalized curvilinear coordinate systems. These constraints, based on the principle of local conservation of thermal energy in the vicinity of the boundaries, are derived using the Green's Theorem. They uniquely determine the so called decay parameters in the source terms of these elliptic systems. These constraints' are designed for boundary clustered grids where large gradients in physical quantities need to be resolved adequately. It is observed that the present formulation also works satisfactorily for mild clustering. Therefore, a closure for the decay parameter specification for elliptic grid generation problems has been provided resulting in a fully automated elliptic grid generation technique. Thus, there is no need for a parametric study of these decay parameters since the new constraints fix them uniquely. It is also shown that for Neumann type boundary conditions, these boundary constraints uniquely determine the solution to the internal elliptic problem thus eliminating the non-uniqueness of the solution of an internal Neumann boundary value grid generation problem.

  2. An adaptive grid scheme using the boundary element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munipalli, R.; Anderson, D.A.

    1996-09-01

    A technique to solve the Poisson grid generation equations by Green`s function related methods has been proposed, with the source terms being purely position dependent. The use of distributed singularities in the flow domain coupled with the boundary element method (BEM) formulation is presented in this paper as a natural extension of the Green`s function method. This scheme greatly simplifies the adaption process. The BEM reduces the dimensionality of the given problem by one. Internal grid-point placement can be achieved for a given boundary distribution by adding continuous and discrete source terms in the BEM formulation. A distribution of vortexmore » doublets is suggested as a means of controlling grid-point placement and grid-line orientation. Examples for sample adaption problems are presented and discussed. 15 refs., 20 figs.« less

  3. An ignition-temperature model with two free interfaces in premixed flames

    NASA Astrophysics Data System (ADS)

    Brauner, Claude-Michel; Gordon, Peter V.; Zhang, Wen

    2016-11-01

    In this paper we consider an ignition-temperature zero-order reaction model of thermo-diffusive combustion. This model describes the dynamics of thick flames, which have recently received considerable attention in the physical and engineering literature. The model admits a unique (up to translations) planar travelling wave solution. This travelling wave solution is quite different from those usually studied in combustion theory. The main qualitative feature of this travelling wave is that it has two interfaces: the ignition interface where the ignition temperature is attained and the trailing interface where the concentration of deficient reactants reaches zero. We give a new mathematical framework for studying the cellular instability of such travelling front solutions. Our approach allows the analysis of a free boundary problem to be converted into the analysis of a boundary value problem having a fully nonlinear system of parabolic equations. The latter is very suitable for both mathematical and numerical analysis. We prove the existence of a critical Lewis number such that the travelling wave solution is stable for values of Lewis number below the critical one and is unstable for Lewis numbers that exceed this critical value. Finally, we discuss the results of numerical simulations of a fully nonlinear system that describes the perturbation dynamics of planar fronts. These simulations reveal, in particular, some very interesting 'two-cell' steady patterns of curved combustion fronts.

  4. Boundary conditions and formation of pure spin currents in magnetic field

    NASA Astrophysics Data System (ADS)

    Eliashvili, Merab; Tsitsishvili, George

    2017-09-01

    Schrödinger equation for an electron confined to a two-dimensional strip is considered in the presence of homogeneous orthogonal magnetic field. Since the system has edges, the eigenvalue problem is supplied by the boundary conditions (BC) aimed in preventing the leakage of matter away across the edges. In the case of spinless electrons the Dirichlet and Neumann BC are considered. The Dirichlet BC result in the existence of charge carrying edge states. For the Neumann BC each separate edge comprises two counterflow sub-currents which precisely cancel out each other provided the system is populated by electrons up to certain Fermi level. Cancelation of electric current is a good starting point for developing the spin-effects. In this scope we reconsider the problem for a spinning electron with Rashba coupling. The Neumann BC are replaced by Robin BC. Again, the two counterflow electric sub-currents cancel out each other for a separate edge, while the spin current survives thus modeling what is known as pure spin current - spin flow without charge flow.

  5. Numerical simulation of vortical ideal fluid flow through curved channel

    NASA Astrophysics Data System (ADS)

    Moshkin, N. P.; Mounnamprang, P.

    2003-04-01

    A numerical algorithm to study the boundary-value problem in which the governing equations are the steady Euler equations and the vorticity is given on the inflow parts of the domain boundary is developed. The Euler equations are implemented in terms of the stream function and vorticity. An irregular physical domain is transformed into a rectangle in the computational domain and the Euler equations are rewritten with respect to a curvilinear co-ordinate system. The convergence of the finite-difference equations to the exact solution is shown experimentally for the test problems by comparing the computational results with the exact solutions on the sequence of grids. To find the pressure from the known vorticity and stream function, the Euler equations are utilized in the Gromeka-Lamb form. The numerical algorithm is illustrated with several examples of steady flow through a two-dimensional channel with curved walls. The analysis of calculations shows strong dependence of the pressure field on the vorticity given at the inflow parts of the boundary. Plots of the flow structure and isobars, for different geometries of channel and for different values of vorticity on entrance, are also presented.

  6. Flowing partially penetrating well: solution to a mixed-type boundary value problem

    NASA Astrophysics Data System (ADS)

    Cassiani, G.; Kabala, Z. J.; Medina, M. A.

    A new semi-analytic solution to the mixed-type boundary value problem for a flowing partially penetrating well with infinitesimal skin situated in an anisotropic aquifer is developed. The solution is suited to aquifers having a semi-infinite vertical extent or to packer tests with aquifer horizontal boundaries far enough from the tested area. The problem reduces to a system of dual integral equations (DE) and further to a deconvolution problem. Unlike the analogous Dagan's steady-state solution [Water Resour. Res. 1978; 14:929-34], our DE solution does not suffer from numerical oscillations. The new solution is validated by matching the corresponding finite-difference solution and is computationally much more efficient. An automated (Newton-Raphson) parameter identification algorithm is proposed for field test inversion, utilizing the DE solution for the forward model. The procedure is computationally efficient and converges to correct parameter values. A solution for the partially penetrating flowing well with no skin and a drawdown-drawdown discontinuous boundary condition, analogous to that by Novakowski [Can. Geotech. J. 1993; 30:600-6], is compared to the DE solution. The D-D solution leads to physically inconsistent infinite total flow rate to the well, when no skin effect is considered. The DE solution, on the other hand, produces accurate results.

  7. On Complex Water Conflicts: Role of Enabling Conditions for Pragmatic Resolution

    NASA Astrophysics Data System (ADS)

    Islam, S.; Choudhury, E.

    2016-12-01

    Many of our current and emerging water problems are interconnected and cross boundaries, domains, scales, and sectors. These boundary crossing water problems are neither static nor linear; but often are interconnected nonlinearly with other problems and feedback. The solution space for these complex problems - involving interdependent variables, processes, actors, and institutions - can't be pre-stated. We need to recognize the disconnect among values, interests, and tools as well as problems, policies, and politics. Scientific and technological solutions are desired for efficiency and reliability, but need to be politically feasible and actionable. Governing and managing complex water problems require difficult tradeoffs in exploring and sharing benefits and burdens through carefully crafted negotiation processes. The crafting of such negotiation process, we argue, constitutes a pragmatic approach to negotiation - one that is based on the identification of enabling conditions - as opposed to mechanistic casual explanations, and rooted in contextual conditions to specify and ensure the principles of equity and sustainability. We will use two case studies to demonstrate the efficacy of the proposed principled pragmatic approcah to address complex water problems.

  8. Review of Theoretical Approaches to Nonlinear Supercavitating Flows

    DTIC Science & Technology

    2001-02-01

    hodograph) method to flow past a body with a curved topography was considered iy Levi - Civita [15] and Villat [24]. 2.3. Mixed boundary value problem...streamline flow around a body with a curved boundary 5.1. Levi - Civita approach Levi - Civita [15] was the first to propose an approach to solution of the plane...enotes a real parameter to 1)e determfineid. The second step is formulation of a imiixed bounidary value problem for Levi - Civita [15] function dw v WLC

  9. Convenient stability criteria for difference approximations of hyperbolic initial-boundary value problems

    NASA Technical Reports Server (NTRS)

    Goldberg, M.; Tadmor, E.

    1986-01-01

    The purpose of this paper is to achieve more versatile, convenient stability criteria for a wide class of finite-difference approximations to initial boundary value problems associated with the hyperbolic system u sub t = au sub x + Bu + f in the quarter-plane x greater than or equal to 0, t greater than or equal to 0. With these criteria, stability is easily established for a large number of examples, thus incorporating and generalizing many of the cases studied in recent literature.

  10. The three-wave equation on the half-line

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Fan, Engui

    2014-01-01

    The Fokas method is used to analyze the initial-boundary value problem for the three-wave equation p-{bi-bj}/{ai-aj}p+∑k ({bk-bj}/{ak-aj}-{bi-bk}/{ai-ak})pp=0, i,j,k=1,2,3, on the half-line. Assuming that the solution p(x,t) exists, we show that it can be recovered from its initial and boundary values via the solution of a Riemann-Hilbert problem formulated in the plane of the complex spectral parameter λ.

  11. The dynamics and control of large flexible space structures, part 11

    NASA Technical Reports Server (NTRS)

    Bainum, Peter M.; Reddy, A. S. S. R; Diarra, Cheick M.; Li, Feiyue

    1988-01-01

    A mathematical model is developed to predict the dynamics of the proposed Spacecraft Control Laboratory Experiment during the stationkeeping phase. The Shuttle and reflector are assumed to be rigid, while the mass connecting the Shuttle to the reflector is assumed to be flexible with elastic deformations small as compared with its length. It is seen that in the presence of gravity-gradient torques, the system assumes a new equilibrium position primarily due to the offset in the mass attachment point to the reflector from the reflector's mass center. Control is assumed to be provided through the Shuttle's three torquers and throught six actuators located by painrs at two points on the mass and at the reflector mass center. Numerical results confirm the robustness of an LQR derived control strategy during stationkeeping with maximum control efforts significantly below saturation levels. The linear regulator theory is also used to derive control laws for the linearized model of the rigidized SCOLE configuration where the mast flexibility is not included. It is seen that this same type of control strategy can be applied for the rapid single axis slewing of the SCOLE through amplitudes as large as 20 degrees. These results provide a definite trade-off between the slightly larger slewing times with the considerable reduction in over-all control effort as compared with the results of the two point boundary value problem application of Pontryagin's Maximum Principle.

  12. Heating 7.2 user`s manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, K.W.

    1993-02-01

    HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- andmore » position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less

  13. Heating 7. 2 user's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, K.W.

    1993-02-01

    HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- andmore » position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less

  14. A Curved, Elastostatic Boundary Element for Plane Anisotropic Structures

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S.; Klang, Eric C.

    2001-01-01

    The plane-stress equations of linear elasticity are used in conjunction with those of the boundary element method to develop a novel curved, quadratic boundary element applicable to structures composed of anisotropic materials in a state of plane stress or plane strain. The curved boundary element is developed to solve two-dimensional, elastostatic problems of arbitrary shape, connectivity, and material type. As a result of the anisotropy, complex variables are employed in the fundamental solution derivations for a concentrated unit-magnitude force in an infinite elastic anisotropic medium. Once known, the fundamental solutions are evaluated numerically by using the known displacement and traction boundary values in an integral formulation with Gaussian quadrature. All the integral equations of the boundary element method are evaluated using one of two methods: either regular Gaussian quadrature or a combination of regular and logarithmic Gaussian quadrature. The regular Gaussian quadrature is used to evaluate most of the integrals along the boundary, and the combined scheme is employed for integrals that are singular. Individual element contributions are assembled into the global matrices of the standard boundary element method, manipulated to form a system of linear equations, and the resulting system is solved. The interior displacements and stresses are found through a separate set of auxiliary equations that are derived using an Airy-type stress function in terms of complex variables. The capabilities and accuracy of this method are demonstrated for a laminated-composite plate with a central, elliptical cutout that is subjected to uniform tension along one of the straight edges of the plate. Comparison of the boundary element results for this problem with corresponding results from an analytical model show a difference of less than 1%.

  15. Magnetostratigraphy of a Marine Triassic-Jurassic Boundary Section, Kennecott Point, Queen Charlotte Islands: Implications for the Temporal Correlation of a 'Big Five' Mass Extinction Event.

    NASA Astrophysics Data System (ADS)

    Hilburn, I. A.; Kirschvink, J. L.; Ward, P. D.; Haggart, J. W.; Raub, T. D.

    2008-12-01

    Several causes have been proposed for Triassic-Jurassic (T-J) boundary extinctions, including global ocean anoxia/euxinia, an impact event, and/or eruption of the massive Central Atlantic Magmatic Province (CAMP), but poor intercontinental correlation makes testing these difficult. Sections at Kennecott Point, Queen Charlotte Islands, British Columbia span the late Norian through Rhaetian (Triassic) and into the earliest Hettangian (Jurassic) and provide the best integrated magneto- and chemostratigraphic framework for placing necessary temporal constraints upon the T-J mass extinctions. At Kennecott Point, turnover of radiolaria and ammonoids define the T-J boundary marine extinction and are coincident with a 2 ‰ negative excursion in δ13Corg similar in magnitude to that observed at Ferguson Hill (Muller Canyon), Nevada (1, 2). With Conodont Alteration Index values in the 1-2 range, Kennecott Point provides the ideal setting for use of magnetostratigraphy to tie the marine isotope excursion into the chronostratigraphic framework of the Newark, Hartford, and Fundy Basins. In the summer of 2005, we collected a ~1m resolution magnetostratigraphic section from 105 m of deep marine, silt- and sandstone turbidites and interbedded mudstones, spanning the T-J boundary at Kennecott Point. Hybrid progressive demagnetization - including zero-field, low-temperature cycling; low-field AF cleaning; and thermal demagnetization in ~25°C steps to 445°C under flowing N2 gas (3) - first removed a Northerly, steeply inclined component interpreted to be a Tertiary overprint, revealing an underlying dual-polarity component of moderate inclination. Five major polarity zones extend through our section, with several short, one-sample reversals interspersed amongst them. Comparison of this pattern with other T-J boundary sections (4-6) argues for a Northern hemisphere origin of our site, albeit with large vertical-axis rotations. A long normal chron bounds the T-J boundary punctuated by two short but poorly-resolved reversed chrons and one brief zone of intermediate polarity. As such, our results could support the hypothesis (5, 7) that the surface onset of CAMP volcanism post-dates the T-J marine and terrestrial extinction events. Alternatively, these two reversed intervals in our column could correlate with two later "earliest Jurassic" reversed zones from the Hartford Basin (8), placing the marine extinction event contemporaneous with CAMP volcanism and after the palynofloral event found in the Newark and Hartford Basins. Correlation between the Tethyan / Oyuklu composite magnetostratigraphy (9) and others in North America and Britain remains a major problem for the Global Polarity Timescale. 1. P. D. Ward et al., Palaeo. Palaeo. Palaeo. 244, 281, 2007. 2. K. H. Williford et al., Palaeo. Palaeo. Palaeo. 244, 290, 2007. 3. J. L. Kirschvink et al., G3 9, 2008. 4. M. W. Hounslow et al., Palaeo. Palaeo. Palaeo. 213, 331, 2004. 5. D. V. Kent, P. E. Olsen, JGR-Sol. Earth 104, 12831, 1999. 6. D. V. Kent, P. E. Olsen, EPSL 179, 311, 2000. 7. J. H. Whiteside et al., Palaeo. Palaeo. Palaeo. 244, 345, 2007. 8. D. V. Kent, P. E. Olsen, JGR-Sol. Earth 113, 2008. 9. Y. Gallet et al., EPSL 255, 458, 2007.

  16. A Class of Solvable Stopping Games

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, Luis H. R.

    We consider a class of Dynkin games in the case where the underlying process evolves according to a one-dimensional but otherwise general diffusion. We establish general conditions under which both the value and the saddle point equilibrium exist and under which the exercise boundaries characterizing the saddle point strategy can be explicitly characterized in terms of a pair of standard first order necessary conditions for optimality. We also analyze those cases where an extremal pair of boundaries exists and investigate the overall impact of increased volatility on the equilibrium stopping strategies and their values.

  17. An iterative Riemann solver for systems of hyperbolic conservation law s, with application to hyperelastic solid mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Gregory H.

    2003-08-06

    In this paper we present a general iterative method for the solution of the Riemann problem for hyperbolic systems of PDEs. The method is based on the multiple shooting method for free boundary value problems. We demonstrate the method by solving one-dimensional Riemann problems for hyperelastic solid mechanics. Even for conditions representative of routine laboratory conditions and military ballistics, dramatic differences are seen between the exact and approximate Riemann solution. The greatest discrepancy arises from misallocation of energy between compressional and thermal modes by the approximate solver, resulting in nonphysical entropy and temperature estimates. Several pathological conditions arise in commonmore » practice, and modifications to the method to handle these are discussed. These include points where genuine nonlinearity is lost, degeneracies, and eigenvector deficiencies that occur upon melting.« less

  18. BODYFIT-1FE: a computer code for three-dimensional steady-state/transient single-phase rod-bundle thermal-hydraulic analysis. Draft report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, B.C.J.; Sha, W.T.; Doria, M.L.

    1980-11-01

    The governing equations, i.e., conservation equations for mass, momentum, and energy, are solved as a boundary-value problem in space and an initial-value problem in time. BODYFIT-1FE code uses the technique of boundary-fitted coordinate systems where all the physical boundaries are transformed to be coincident with constant coordinate lines in the transformed space. By using this technique, one can prescribe boundary conditions accurately without interpolation. The transformed governing equations in terms of the boundary-fitted coordinates are then solved by using implicit cell-by-cell procedure with a choice of either central or upwind convective derivatives. It is a true benchmark rod-bundle code withoutmore » invoking any assumptions in the case of laminar flow. However, for turbulent flow, some empiricism must be employed due to the closure problem of turbulence modeling. The detailed velocity and temperature distributions calculated from the code can be used to benchmark and calibrate empirical coefficients employed in subchannel codes and porous-medium analyses.« less

  19. A note on a boundary sine-Gordon model at the free-Fermion point

    NASA Astrophysics Data System (ADS)

    Murgan, Rajan

    2018-02-01

    We investigate the free-Fermion point of a boundary sine-Gordon model with nondiagonal boundary interactions for the ground state using auxiliary functions obtained from T  -  Q equations of a corresponding inhomogeneous open spin-\\frac{1}{2} XXZ chain with nondiagonal boundary terms. In particular, we obtain the Casimir energy. Our result for the Casimir energy is shown to agree with the result from the TBA approach. The analytical result for the effective central charge in the ultraviolet (UV) limit is also verified from the plots of effective central charge for intermediate values of volume.

  20. Assignment of boundary conditions in embedded ground water flow models

    USGS Publications Warehouse

    Leake, S.A.

    1998-01-01

    Many small-scale ground water models are too small to incorporate distant aquifer boundaries. If a larger-scale model exists for the area of interest, flow and head values can be specified for boundaries in the smaller-scale model using values from the larger-scale model. Flow components along rows and columns of a large-scale block-centered finite-difference model can be interpolated to compute horizontal flow across any segment of a perimeter of a small-scale model. Head at cell centers of the larger-scale model can be interpolated to compute head at points on a model perimeter. Simple linear interpolation is proposed for horizontal interpolation of horizontal-flow components. Bilinear interpolation is proposed for horizontal interpolation of head values. The methods of interpolation provided satisfactory boundary conditions in tests using models of hypothetical aquifers.Many small-scale ground water models are too small to incorporate distant aquifer boundaries. If a larger-scale model exists for the area of interest, flow and head values can be specified for boundaries in the smaller-scale model using values from the larger-scale model. Flow components along rows and columns of a large-scale block-centered finite-difference model can be interpolated to compute horizontal flow across any segment of a perimeter of a small-scale model. Head at cell centers of the larger.scale model can be interpolated to compute head at points on a model perimeter. Simple linear interpolation is proposed for horizontal interpolation of horizontal-flow components. Bilinear interpolation is proposed for horizontal interpolation of head values. The methods of interpolation provided satisfactory boundary conditions in tests using models of hypothetical aquifers.

  1. A two-dimensional composite grid numerical model based on the reduced system for oceanography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Y.F.; Browning, G.L.; Chesshire, G.

    The proper mathematical limit of a hyperbolic system with multiple time scales, the reduced system, is a system that contains no high-frequency motions and is well posed if suitable boundary conditions are chosen for the initial-boundary value problem. The composite grid method, a robust and efficient grid-generation technique that smoothly and accurately treats general irregular boundaries, is used to approximate the two-dimensional version of the reduced system for oceanography on irregular ocean basins. A change-of-variable technique that substantially increases the accuracy of the model and a method for efficiently solving the elliptic equation for the geopotential are discussed. Numerical resultsmore » are presented for circular and kidney-shaped basins by using a set of analytic solutions constructed in this paper.« less

  2. Three-dimensional electrical impedance tomography: a topology optimization approach.

    PubMed

    Mello, Luís Augusto Motta; de Lima, Cícero Ribeiro; Amato, Marcelo Britto Passos; Lima, Raul Gonzalez; Silva, Emílio Carlos Nelli

    2008-02-01

    Electrical impedance tomography is a technique to estimate the impedance distribution within a domain, based on measurements on its boundary. In other words, given the mathematical model of the domain, its geometry and boundary conditions, a nonlinear inverse problem of estimating the electric impedance distribution can be solved. Several impedance estimation algorithms have been proposed to solve this problem. In this paper, we present a three-dimensional algorithm, based on the topology optimization method, as an alternative. A sequence of linear programming problems, allowing for constraints, is solved utilizing this method. In each iteration, the finite element method provides the electric potential field within the model of the domain. An electrode model is also proposed (thus, increasing the accuracy of the finite element results). The algorithm is tested using numerically simulated data and also experimental data, and absolute resistivity values are obtained. These results, corresponding to phantoms with two different conductive materials, exhibit relatively well-defined boundaries between them, and show that this is a practical and potentially useful technique to be applied to monitor lung aeration, including the possibility of imaging a pneumothorax.

  3. Isotopic evidence bearing on Late Triassic extinction events, Queen Charlotte Islands, British Columbia, and implications for the duration and cause of the Triassic/Jurassic mass extinction

    USGS Publications Warehouse

    Ward, P.D.; Garrison, G.H.; Haggart, J.W.; Kring, D.A.; Beattie, M.J.

    2004-01-01

    Stable isotope analyses of Late Triassic to earliest Jurassic strata from Kennecott Point in the Queen Charlotte Islands, British Columbia, Canada shows the presence of two distinct and different organic carbon isotope anomalies at the Norian/Rhaetian and Rhaetian/Hettangian (=Triassic/Jurassic) stage boundaries. At the older of these boundaries, which is marked by the disappearance of the bivalve Monotis, the isotope record shows a series of short-lived positive excursions toward heavier values. Strata approaching this boundary show evidence of increasing anoxia. At the higher boundary, marked by the disappearance of the last remaining Triassic ammonites and over 50 species of radiolarians, the isotopic pattern consists of a series of short duration negative anomalies. The two events, separated by the duration of the Rhaetian age, comprise the end-Triassic mass extinction. While there is no definitive evidence as to cause, the isotopic record does not appear similar to that of the impact-caused Cretaceous/Tertiary boundary extinction. ?? 2004 Published by Elsevier B.V.

  4. A diffusion model of protected population on bilocal habitat with generalized resource

    NASA Astrophysics Data System (ADS)

    Vasilyev, Maxim D.; Trofimtsev, Yuri I.; Vasilyeva, Natalya V.

    2017-11-01

    A model of population distribution in a two-dimensional area divided by an ecological barrier, i.e. the boundaries of natural reserve, is considered. Distribution of the population is defined by diffusion, directed migrations and areal resource. The exchange of specimens occurs between two parts of the habitat. The mathematical model is presented in the form of a boundary value problem for a system of non-linear parabolic equations with variable parameters of diffusion and growth function. The splitting space variables, sweep method and simple iteration methods were used for the numerical solution of a system. A set of programs was coded in Python. Numerical simulation results for the two-dimensional unsteady non-linear problem are analyzed in detail. The influence of migration flow coefficients and functions of natural birth/death ratio on the distributions of population densities is investigated. The results of the research would allow to describe the conditions of the stable and sustainable existence of populations in bilocal habitat containing the protected and non-protected zones.

  5. Solution of internal ballistic problem for SRM with grain of complex shape during main firing phase

    NASA Astrophysics Data System (ADS)

    Kiryushkin, A. E.; Minkov, L. L.

    2017-10-01

    Solid rocket motor (SRM) internal ballistics problems are related to the problems with moving boundaries. The algorithm able to solve similar problems in axisymmetric formulation on Cartesian mesh with an arbitrary order of accuracy is considered in this paper. The base of this algorithm is the ghost point extrapolation using inverse Lax-Wendroff procedure. Level set method is used as an implicit representation of the domain boundary. As an example, the internal ballistics problem for SRM with umbrella type grain was solved during the main firing phase. In addition, flow parameters distribution in the combustion chamber was obtained for different time moments.

  6. α-flips and T-points in the Lorenz system

    NASA Astrophysics Data System (ADS)

    Creaser, Jennifer L.; Krauskopf, Bernd; Osinga, Hinke M.

    2015-03-01

    We consider the Lorenz system near the classic parameter regime and study the phenomenon we call an α-flip. An α-flip is a transition where the one-dimensional stable manifolds Ws(p±) of two secondary equilibria p± undergo a sudden transition in terms of the direction from which they approach p±. This is a bifurcation at infinity and does not involve an invariant object in phase space. This fact was discovered by Sparrow in the 1980s but the stages of the transition could not be calculated and the phenomenon was not well understood (Sparrow 1982 The Lorenz equations (New York: Springer)). Here we employ a boundary value problem set-up and use pseudo-arclength continuation in AUTO to follow this sudden transition of Ws(p±) as a continuous family of orbit segments. In this way, we geometrically characterize and determine the moment of the actual α-flip. We also investigate how the α-flip takes place relative to the two-dimensional stable manifold of the origin, which shows no apparent topological change before or after the α-flip. Our approach allows for easy detection and subsequent two-parameter continuation of the first and further α-flips. We illustrate this for the first 25 α-flips and find that they end at terminal points, or T-points, where there is a heteroclinic connection from the secondary equilibria to the origin. It turns out that α-flips must occur naturally near T-points. We find scaling relations for the α-flips and T-points that allow us to predict further such bifurcations and to improve the efficiency of our computations.

  7. Effects of Maximal Sodium and Potassium Conductance on the Stability of Hodgkin-Huxley Model

    PubMed Central

    Wang, Kuanquan; Yuan, Yongfeng; Zhang, Henggui

    2014-01-01

    Hodgkin-Huxley (HH) equation is the first cell computing model in the world and pioneered the use of model to study electrophysiological problems. The model consists of four differential equations which are based on the experimental data of ion channels. Maximal conductance is an important characteristic of different channels. In this study, mathematical method is used to investigate the importance of maximal sodium conductance g-Na and maximal potassium conductance g-K. Applying stability theory, and taking g-Na and g-K as variables, we analyze the stability and bifurcations of the model. Bifurcations are found when the variables change, and bifurcation points and boundary are also calculated. There is only one bifurcation point when g-Na is the variable, while there are two points when g-K is variable. The (g-Na,  g-K) plane is partitioned into two regions and the upper bifurcation boundary is similar to a line when both g-Na and g-K are variables. Numerical simulations illustrate the validity of the analysis. The results obtained could be helpful in studying relevant diseases caused by maximal conductance anomaly. PMID:25104970

  8. Migration of grain boundaries and triple junctions in high-purity aluminum during annealing after slight cold rolling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Wenhong; School of Mechanical Engineering, Shandong University of Technology, Zibo 255049; Wang, Weiguo, E-mail: wang_weiguo@vip.163.com

    Grain orientations and grain boundary migrations near triple junctions in a high purity aluminum were analyzed by electron back scattered diffraction. The results indicate that there are good correlations between the Schmid factors or Taylor factors and the misorientation values of point to original point in grains near the triple junctions in a slightly deformed sample. Grains with higher Schmid factors or lower Taylor factors typically correspond to higher misorientation values near the triple junctions. In a subsequent annealing at 400 °C, both grain boundaries and triple junctions migrate, but the former leave ghost lines. During such migration, a grainmore » boundary grows from the grain with lower Schmid factor (higher Taylor factor) into the grain with higher Schmid factor (lower Taylor factor). Usually, the amount of migration of a grain boundary is considerably greater than that of a triple junction, and the grain boundary becomes more curved after migration. These observations indicate that the triple junctions have drag effects on grain boundary migration. - Highlights: • Polycrystalline aluminum with fine grains about 30 μm were used. • Off-line in situ EBSD was used to identify TJs before and after annealing. • Grains with higher SFs have higher misorientation values near TJs after deformation. • Grain boundaries grow from hard grains into soft grains during annealing. • Triple junctions have drag effects on grain boundaries migration.« less

  9. Analytic corrections to CFD heating predictions accounting for changes in surface catalysis

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Inger, George R.

    1996-01-01

    Integral boundary-layer solution techniques applicable to the problem of determining aerodynamic heating rates of hypersonic vehicles in the vicinity of stagnation points and windward centerlines are briefly summarized. A new approach for combining the insight afforded by integral boundary-layer analysis with comprehensive (but time intensive) computational fluid dynamic (CFD) flowfield solutions of the thin-layer Navier-Stokes equations is described. The approach extracts CFD derived quantities at the wall and at the boundary layer edge for inclusion in a post-processing boundary-layer analysis. It allows a designer at a workstation to address two questions, given a single CFD solution. (1) How much does the heating change for a thermal protection system with different catalytic properties than was used in the original CFD solution? (2) How does the heating change at the interface of two different TPS materials with an abrupt change in catalytic efficiency? The answer to the second question is particularly important, because abrupt changes from low to high catalytic efficiency can lead to localized increase in heating which exceeds the usually conservative estimate provided by a fully catalytic wall assumption.

  10. The effects of suction on the nonlinear stability of the three-dimensional boundary layer above a rotating disc

    NASA Technical Reports Server (NTRS)

    Bassom, Andrew P.; Seddougui, Sharon O.

    1991-01-01

    There exist two types of stationary instability of the flow over a rotating disc corresponding to the upper branch, inviscid mode and the lower branch mode, which has a triple deck structure, of the neutral stability curve. A theoretical study of the linear problem and an account of the weakly nonlinear properties of the lower branch modes have been undertaken by Hall and MacKerrell respectively. Motivated by recent reports of experimental sightings of the lower branch mode and an examination of the role of suction on the linear stability properties of the flow here, the effects are studied of suction on the nonlinear disturbance described by MacKerrell. The additional analysis required in order to incorporate suction is relatively straightforward and enables the derivation of an amplitude equation which describes the evolution of the mode. For each value of the suction, a threshold value of the disturbance amplitude is obtained; modes of size greater than this threshold grow without limit as they develop away from the point of neutral stability.

  11. Nonlinear Schrödinger approach to European option pricing

    NASA Astrophysics Data System (ADS)

    Wróblewski, Marcin

    2017-05-01

    This paper deals with numerical option pricing methods based on a Schrödinger model rather than the Black-Scholes model. Nonlinear Schrödinger boundary value problems seem to be alternatives to linear models which better reflect the complexity and behavior of real markets. Therefore, based on the nonlinear Schrödinger option pricing model proposed in the literature, in this paper a model augmented by external atomic potentials is proposed and numerically tested. In terms of statistical physics the developed model describes the option in analogy to a pair of two identical quantum particles occupying the same state. The proposed model is used to price European call options on a stock index. the model is calibrated using the Levenberg-Marquardt algorithm based on market data. A Runge-Kutta method is used to solve the discretized boundary value problem numerically. Numerical results are provided and discussed. It seems that our proposal more accurately models phenomena observed in the real market than do linear models.

  12. A DRBEM for steady infiltration from periodic semi-circular channels with two different types of roots distribution

    NASA Astrophysics Data System (ADS)

    Solekhudin, Imam; Sumardi

    2017-05-01

    In this study, problems involving steady Infiltration from periodic semicircular channels with root-water uptake function are considered. These problems are governed by Richards equation. This equation can be studied more conveniently by transforming the equation into a modified Helmholtz equation. In these problems, two different types of root-water uptake are considered. A dual reciprocity boundary element method (DRBEM) with a predictor-corrector scheme is used to solve the modified Helmholtz equation numerically. Using the solution obtained, numerical values of suction potential and root-water uptake function can be computed. In addition, amount of water absorbed by the different plant roots distribution can also be computed and compared.

  13. What do we actually mean by 'sociotechnical'? On values, boundaries and the problems of language.

    PubMed

    Klein, Lisl

    2014-03-01

    The term 'sociotechnical' was first coined in the context of industrial democracy. In comparing two projects on shipping in Esso to help define the concept, the essential categories were found to be where systems boundaries were set, and what factors were considered to be relevant 'human' characteristics. This is often discussed in terms of values. During the nineteen-sixties and seventies sociotechnical theory related to the shop-floor work system, and contingency theory to the organisation as a whole, the two levels being distinct. With the coming of information technology, this distinction became blurred; the term 'socio-structural' is proposed to describe the whole system. IT sometimes is the operating technology, it sometimes supports the operating technology, or it may sometimes be mistaken for the operating technology. This is discussed with reference to recent air accidents. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  14. A new method for true and spurious eigensolutions of arbitrary cavities using the combined Helmholtz exterior integral equation formulation method.

    PubMed

    Chen, I L; Chen, J T; Kuo, S R; Liang, M T

    2001-03-01

    Integral equation methods have been widely used to solve interior eigenproblems and exterior acoustic problems (radiation and scattering). It was recently found that the real-part boundary element method (BEM) for the interior problem results in spurious eigensolutions if the singular (UT) or the hypersingular (LM) equation is used alone. The real-part BEM results in spurious solutions for interior problems in a similar way that the singular integral equation (UT method) results in fictitious solutions for the exterior problem. To solve this problem, a Combined Helmholtz Exterior integral Equation Formulation method (CHEEF) is proposed. Based on the CHEEF method, the spurious solutions can be filtered out if additional constraints from the exterior points are chosen carefully. Finally, two examples for the eigensolutions of circular and rectangular cavities are considered. The optimum numbers and proper positions for selecting the points in the exterior domain are analytically studied. Also, numerical experiments were designed to verify the analytical results. It is worth pointing out that the nodal line of radiation mode of a circle can be rotated due to symmetry, while the nodal line of the rectangular is on a fixed position.

  15. Theoretical study of the incompressible Navier-Stokes equations by the least-squares method

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Loh, Ching Y.; Povinelli, Louis A.

    1994-01-01

    Usually the theoretical analysis of the Navier-Stokes equations is conducted via the Galerkin method which leads to difficult saddle-point problems. This paper demonstrates that the least-squares method is a useful alternative tool for the theoretical study of partial differential equations since it leads to minimization problems which can often be treated by an elementary technique. The principal part of the Navier-Stokes equations in the first-order velocity-pressure-vorticity formulation consists of two div-curl systems, so the three-dimensional div-curl system is thoroughly studied at first. By introducing a dummy variable and by using the least-squares method, this paper shows that the div-curl system is properly determined and elliptic, and has a unique solution. The same technique then is employed to prove that the Stokes equations are properly determined and elliptic, and that four boundary conditions on a fixed boundary are required for three-dimensional problems. This paper also shows that under four combinations of non-standard boundary conditions the solution of the Stokes equations is unique. This paper emphasizes the application of the least-squares method and the div-curl method to derive a high-order version of differential equations and additional boundary conditions. In this paper, an elementary method (integration by parts) is used to prove Friedrichs' inequalities related to the div and curl operators which play an essential role in the analysis.

  16. GRAPE- TWO-DIMENSIONAL GRIDS ABOUT AIRFOILS AND OTHER SHAPES BY THE USE OF POISSON'S EQUATION

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.

    1994-01-01

    The ability to treat arbitrary boundary shapes is one of the most desirable characteristics of a method for generating grids, including those about airfoils. In a grid used for computing aerodynamic flow over an airfoil, or any other body shape, the surface of the body is usually treated as an inner boundary and often cannot be easily represented as an analytic function. The GRAPE computer program was developed to incorporate a method for generating two-dimensional finite-difference grids about airfoils and other shapes by the use of the Poisson differential equation. GRAPE can be used with any boundary shape, even one specified by tabulated points and including a limited number of sharp corners. The GRAPE program has been developed to be numerically stable and computationally fast. GRAPE can provide the aerodynamic analyst with an efficient and consistent means of grid generation. The GRAPE procedure generates a grid between an inner and an outer boundary by utilizing an iterative procedure to solve the Poisson differential equation subject to geometrical restraints. In this method, the inhomogeneous terms of the equation are automatically chosen such that two important effects are imposed on the grid. The first effect is control of the spacing between mesh points along mesh lines intersecting the boundaries. The second effect is control of the angles with which mesh lines intersect the boundaries. Along with the iterative solution to Poisson's equation, a technique of coarse-fine sequencing is employed to accelerate numerical convergence. GRAPE program control cards and input data are entered via the NAMELIST feature. Each variable has a default value such that user supplied data is kept to a minimum. Basic input data consists of the boundary specification, mesh point spacings on the boundaries, and mesh line angles at the boundaries. Output consists of a dataset containing the grid data and, if requested, a plot of the generated mesh. The GRAPE program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6000 series computer with a central memory requirement of approximately 135K (octal) of 60 bit words. For plotted output the commercially available DISSPLA graphics software package is required. The GRAPE program was developed in 1980.

  17. Impact of vertical wind shear on roll structure in idealized hurricane boundary layers

    NASA Astrophysics Data System (ADS)

    Wang, Shouping; Jiang, Qingfang

    2017-03-01

    Quasi-two-dimensional roll vortices are frequently observed in hurricane boundary layers. It is believed that this highly coherent structure, likely caused by the inflection-point instability, plays an important role in organizing turbulent transport. Large-eddy simulations are conducted to investigate the impact of wind shear characteristics, such as the shear strength and inflection-point level, on the roll structure in terms of its spectral characteristics and turbulence organization. A mean wind nudging approach is used in the simulations to maintain the specified mean wind shear without directly affecting turbulent motions. Enhancing the radial wind shear expands the roll horizontal scale and strengthens the roll's kinetic energy. Increasing the inflection-point level tends to produce a narrow and sharp peak in the power spectrum at the wavelength consistent with the roll spacing indicated by the instantaneous turbulent fields. The spectral tangential momentum flux, in particular, reaches a strong peak value at the roll wavelength. In contrast, the spectral radial momentum flux obtains its maximum at the wavelength that is usually shorter than the roll's, suggesting that the roll radial momentum transport is less efficient than the tangential because of the quasi-two-dimensionality of the roll structure. The most robust rolls are produced in a simulation with the highest inflection-point level and relatively strong radial wind shear. Based on the spectral analysis, the roll-scale contribution to the turbulent momentum flux can reach 40 % in the middle of the boundary layer.

  18. Sensitivity and bias under conditions of equal and unequal academic task difficulty.

    PubMed

    Reed, Derek D; Martens, Brian K

    2008-01-01

    We conducted an experimental analysis of children's relative problem-completion rates across two workstations under conditions of equal (Experiment 1) and unequal (Experiment 2) problem difficulty. Results were described using the generalized matching equation and were evaluated for degree of schedule versus stimulus control. Experiment 1 involved a symmetrical choice arrangement in which the children could earn points exchangeable for rewards contingent on correct math problem completion. Points were delivered according to signaled variable-interval schedules at each workstation. For 2 children, relative rates of problem completion appeared to have been controlled by the schedule requirements in effect and matched relative rates of reinforcement, with sensitivity values near 1 and bias values near 0. Experiment 2 involved increasing the difficulty of math problems at one of the workstations. Sensitivity values for all 3 participants were near 1, but a substantial increase in bias toward the easier math problems was observed. This bias was possibly associated with responding at the more difficult workstation coming under stimulus control rather than schedule control.

  19. On the solution of integral equations with strongly singular kernels

    NASA Technical Reports Server (NTRS)

    Kaya, A. C.; Erdogan, F.

    1986-01-01

    Some useful formulas are developed to evaluate integrals having a singularity of the form (t-x) sup-m ,m greater than or equal 1. Interpreting the integrals with strong singularities in Hadamard sense, the results are used to obtain approximate solutions of singular integral equations. A mixed boundary value problem from the theory of elasticity is considered as an example. Particularly for integral equations where the kernel contains, in addition to the dominant term (t-x) sup -m , terms which become unbounded at the end points, the present technique appears to be extremely effective to obtain rapidly converging numerical results.

  20. On the solution of integral equations with strong ly singular kernels

    NASA Technical Reports Server (NTRS)

    Kaya, A. C.; Erdogan, F.

    1985-01-01

    In this paper some useful formulas are developed to evaluate integrals having a singularity of the form (t-x) sup-m, m or = 1. Interpreting the integrals with strong singularities in Hadamard sense, the results are used to obtain approximate solutions of singular integral equations. A mixed boundary value problem from the theory of elasticity is considered as an example. Particularly for integral equations where the kernel contains, in addition to the dominant term (t,x) sup-m, terms which become unbounded at the end points, the present technique appears to be extremely effective to obtain rapidly converging numerical results.

  1. On the solution of integral equations with strongly singular kernels

    NASA Technical Reports Server (NTRS)

    Kaya, A. C.; Erdogan, F.

    1987-01-01

    Some useful formulas are developed to evaluate integrals having a singularity of the form (t-x) sup-m, m greater than or equal 1. Interpreting the integrals with strong singularities in Hadamard sense, the results are used to obtain approximate solutions of singular integral equations. A mixed boundary value problem from the theory of elasticity is considered as an example. Particularly for integral equations where the kernel contains, in addition to the dominant term (t-x) sup-m, terms which become unbounded at the end points, the present technique appears to be extremely effective to obtain rapidly converging numerical results.

  2. Applying the method of fundamental solutions to harmonic problems with singular boundary conditions

    NASA Astrophysics Data System (ADS)

    Valtchev, Svilen S.; Alves, Carlos J. S.

    2017-07-01

    The method of fundamental solutions (MFS) is known to produce highly accurate numerical results for elliptic boundary value problems (BVP) with smooth boundary conditions, posed in analytic domains. However, due to the analyticity of the shape functions in its approximation basis, the MFS is usually disregarded when the boundary functions possess singularities. In this work we present a modification of the classical MFS which can be applied for the numerical solution of the Laplace BVP with Dirichlet boundary conditions exhibiting jump discontinuities. In particular, a set of harmonic functions with discontinuous boundary traces is added to the MFS basis. The accuracy of the proposed method is compared with the results form the classical MFS.

  3. The application of MINIQUASI to thermal program boundary and initial value problems

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The feasibility of applying the solution techniques of Miniquasi to the set of equations which govern a thermoregulatory model is investigated. For solving nonlinear equations and/or boundary conditions, a Taylor Series expansion is required for linearization of both equations and boundary conditions. The solutions are iterative and in each iteration, a problem like the linear case is solved. It is shown that Miniquasi cannot be applied to the thermoregulatory model as originally planned.

  4. Steady states and outbreaks of two-phase nonlinear age-structured model of population dynamics with discrete time delay.

    PubMed

    Akimenko, Vitalii; Anguelov, Roumen

    2017-12-01

    In this paper we study the nonlinear age-structured model of a polycyclic two-phase population dynamics including delayed effect of population density growth on the mortality. Both phases are modelled as a system of initial boundary values problem for semi-linear transport equation with delay and initial problem for nonlinear delay ODE. The obtained system is studied both theoretically and numerically. Three different regimes of population dynamics for asymptotically stable states of autonomous systems are obtained in numerical experiments for the different initial values of population density. The quasi-periodical travelling wave solutions are studied numerically for the autonomous system with the different values of time delays and for the system with oscillating death rate and birth modulus. In both cases it is observed three types of travelling wave solutions: harmonic oscillations, pulse sequence and single pulse.

  5. A Method of Computing Electric Field Parameters on Boundaries between Two Media

    ERIC Educational Resources Information Center

    Rizhov, Alexander

    2010-01-01

    Many problems of electric field strength on a boundary between two media require college-level mathematical analysis. However, when the boundary between media is represented by a sphere or a flat plane, these types of problems can be solved algebraically, placing them within reach of high school students. This article presents a solution analysis…

  6. Numerical Leak Detection in a Pipeline Network of Complex Structure with Unsteady Flow

    NASA Astrophysics Data System (ADS)

    Aida-zade, K. R.; Ashrafova, E. R.

    2017-12-01

    An inverse problem for a pipeline network of complex loopback structure is solved numerically. The problem is to determine the locations and amounts of leaks from unsteady flow characteristics measured at some pipeline points. The features of the problem include impulse functions involved in a system of hyperbolic differential equations, the absence of classical initial conditions, and boundary conditions specified as nonseparated relations between the states at the endpoints of adjacent pipeline segments. The problem is reduced to a parametric optimal control problem without initial conditions, but with nonseparated boundary conditions. The latter problem is solved by applying first-order optimization methods. Results of numerical experiments are presented.

  7. A color gamut description algorithm for liquid crystal displays in CIELAB space.

    PubMed

    Sun, Bangyong; Liu, Han; Li, Wenli; Zhou, Shisheng

    2014-01-01

    Because the accuracy of gamut boundary description is significant for gamut mapping process, a gamut boundary calculating method for LCD monitors is proposed in this paper. Within most of the previous gamut boundary calculation algorithms, the gamut boundary is calculated in CIELAB space directly, and part of inside-gamut points are mistaken for the boundary points. While, in the new proposed algorithm, the points on the surface of RGB cube are selected as the boundary points, and then converted and described in CIELAB color space. Thus, in our algorithm, the true gamut boundary points are found and a more accurate gamut boundary is described. In experiment, a Toshiba LCD monitor's 3D CIELAB gamut for evaluation is firstly described which has regular-shaped outer surface, and then two 2D gamut boundaries ( CIE-a*b* boundary and CIE-C*L* boundary) are calculated which are often used in gamut mapping process. When our algorithm is compared with several famous gamut calculating algorithms, the gamut volumes are very close, which indicates that our algorithm's accuracy is precise and acceptable.

  8. A Color Gamut Description Algorithm for Liquid Crystal Displays in CIELAB Space

    PubMed Central

    Sun, Bangyong; Liu, Han; Li, Wenli; Zhou, Shisheng

    2014-01-01

    Because the accuracy of gamut boundary description is significant for gamut mapping process, a gamut boundary calculating method for LCD monitors is proposed in this paper. Within most of the previous gamut boundary calculation algorithms, the gamut boundary is calculated in CIELAB space directly, and part of inside-gamut points are mistaken for the boundary points. While, in the new proposed algorithm, the points on the surface of RGB cube are selected as the boundary points, and then converted and described in CIELAB color space. Thus, in our algorithm, the true gamut boundary points are found and a more accurate gamut boundary is described. In experiment, a Toshiba LCD monitor's 3D CIELAB gamut for evaluation is firstly described which has regular-shaped outer surface, and then two 2D gamut boundaries ( CIE-a*b* boundary and CIE-C*L* boundary) are calculated which are often used in gamut mapping process. When our algorithm is compared with several famous gamut calculating algorithms, the gamut volumes are very close, which indicates that our algorithm's accuracy is precise and acceptable. PMID:24892068

  9. Bifurcation approach to a logistic elliptic equation with a homogeneous incoming flux boundary condition

    NASA Astrophysics Data System (ADS)

    Umezu, Kenichiro

    In this paper, we consider a semilinear elliptic boundary value problem in a smooth bounded domain, having the so-called logistic nonlinearity that originates from population dynamics, with a nonlinear boundary condition. Although the logistic nonlinearity has an absorption effect in the problem, the nonlinear boundary condition is induced by the homogeneous incoming flux on the boundary. The objective of our study is to analyze the existence of a bifurcation component of positive solutions from trivial solutions and its asymptotic behavior and stability. We perform this analysis using the method developed by Lyapunov and Schmidt, based on a scaling argument.

  10. A finite-element analysis for steady and oscillatory subsonic flow around complex configurations

    NASA Technical Reports Server (NTRS)

    Chen, L. T.; Suciu, E. O.; Morino, L.

    1974-01-01

    The problem of potential subsonic flow around complex configurations is considered. The solution is given of an integral equation relating the values of the potential on the surface of the body to the values of the normal derivative, which is known from the boundary conditions. The surface of the body is divided into small (hyperboloidal quadrilateral) surface elements, which are described in terms of the Cartesian components of the four corner points. The values of the potential (and its normal derivative) within each element is assumed to be constant and equal to its value at the centroid of the element. The coefficients of the equation are given by source and doublet integrals over the surface elements. Closed form evaluations of the integrals are presented. The results obtained with the above formulation are compared with existing analytical and experimental results.

  11. The cosmological constant as an eigenvalue of a Sturm-Liouville problem

    NASA Astrophysics Data System (ADS)

    Astashenok, Artyom V.; Elizalde, Emilio; Yurov, Artyom V.

    2014-01-01

    It is observed that one of Einstein-Friedmann's equations has formally the aspect of a Sturm-Liouville problem, and that the cosmological constant, Λ, plays thereby the role of spectral parameter (what hints to its connection with the Casimir effect). The subsequent formulation of appropriate boundary conditions leads to a set of admissible values for Λ, considered as eigenvalues of the corresponding linear operator. Simplest boundary conditions are assumed, namely that the eigenfunctions belong to L 2 space, with the result that, when all energy conditions are satisfied, they yield a discrete spectrum for Λ>0 and a continuous one for Λ<0. A very interesting situation is seen to occur when the discrete spectrum contains only one point: then, there is the possibility to obtain appropriate cosmological conditions without invoking the anthropic principle. This possibility is shown to be realized in cyclic cosmological models, provided the potential of the matter field is similar to the potential of the scalar field. The dynamics of the universe in this case contains a sudden future singularity.

  12. Two-phase Hele-Shaw flow with a moving contact line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinstein, S.J.; Ungar, L.H.; Dussan, E.B.

    1988-01-01

    An asymptotic analysis is presented for Hele-Shaw viscous fingering with a moving contact line at flow rates. As in problems where a thin film is present instead of a contact line, the narrow gap limit is nonuniform, and interfacial boundary conditions valid for the Hele-Shaw equations must be determined in order to predict the flow field and interface shape. Many well-posed boundary-value problems can be identified, each corresponding to a different flow regime characterized by the relative sizes of the capillary number (dimensionless velocity) and the dimensionless gap width. These problems incorporate terms corresponding to the gapwise component of themore » interfacial curvature (the curvature in the cross-sectional view of the Hele-Shaw cell) and spanwise curvature (seen in the top view of the cell) in different ways. Nonunique interface solutions typically arise as in the analogous thin film problems. The relationships between the curvature terms, the spectra of allowable solutions, and the implications for stability are discussed.« less

  13. Integral representations of solutions of the wave equation based on relativistic wavelets

    NASA Astrophysics Data System (ADS)

    Perel, Maria; Gorodnitskiy, Evgeny

    2012-09-01

    A representation of solutions of the wave equation with two spatial coordinates in terms of localized elementary ones is presented. Elementary solutions are constructed from four solutions with the help of transformations of the affine Poincaré group, i.e. with the help of translations, dilations in space and time and Lorentz transformations. The representation can be interpreted in terms of the initial-boundary value problem for the wave equation in a half-plane. It gives the solution as an integral representation of two types of solutions: propagating localized solutions running away from the boundary under different angles and packet-like surface waves running along the boundary and exponentially decreasing away from the boundary. Properties of elementary solutions are discussed. A numerical investigation of coefficients of the decomposition is carried out. An example of the decomposition of the field created by sources moving along a line with different speeds is considered, and the dependence of coefficients on speeds of sources is discussed.

  14. Orbital Maneuvers for Spacecrafts Travelling to/from the Lagrangian Points

    NASA Astrophysics Data System (ADS)

    Bertachini, A.

    The well-known Lagrangian points that appear in the planar restricted three-body problem (Szebehely, 1967) are very important for astronautical applications. They are five points of equilibrium in the equations of motion, what means that a particle located at one of those points with zero velocity will remain there indefinitely. The collinear points (L1, L2 and L3) are always unstable and the triangular points (L4 and L5) are stable in the present case studied (Sun-Earth system). They are all very good points to locate a space-station, since they require a small amount of V (and fuel), the control to be used for station-keeping. The triangular points are specially good for this purpose, since they are stable equilibrium points. In this paper, the planar restricted three-body problem is regularized (using Lemaître regularization) and combined with numerical integration and gradient methods to solve the two point boundary value problem (the Lambert's three-body problem). This combination is applied to the search of families of transfer orbits between the Lagrangian points and the Earth, in the Sun-Earth system, with the minimum possible cost of the control used. So, the final goal of this paper is to find the magnitude and direction of the two impulses to be applied in the spacecraft to complete the transfer: the first one when leaving/arriving at the Lagrangian point and the second one when arriving/living at the Earth. This paper is a continuation of two previous papers that studied transfers in the Earth-Moon system: Broucke (1979), that studied transfer orbits between the Lagrangian points and the Moon and Prado (1996), that studied transfer orbits between the Lagrangian points and the Earth. So, the equations of motion are: whereis the pseudo-potential given by: To solve the TPBVP in the regularized variables the following steps are used: i) Guess a initial velocity Vi, so together with the initial prescribed position ri the complete initial state is known; ii) Guess a final regularized time f and integrate the regularized equations of motion from 0 = 0 until f; iii) Check the final position rf obtained from the numerical integration with the prescribed final position and the final real time with the specified time of flight. If there is an agreement (difference less than a specified error allowed) the solution is found and the process can stop here. If there is no agreement, an increment in the initial guessed velocity Vi and in the guessed final regularized time is made and the process goes back to step i). The method used to find the increment in the guessed variables is the standard gradient method, as described in Press et. al., 1989. The routines available in this reference are also used in this research with minor modifications. After that this algorithm is implemented, the Lambert's three-body problem between the Earth and the Lagrangian points is solved for several values of the time of flight. Since the regularized system is used to solve this problem, there is no need to specify the final position of M3 as lying in an primary's parking orbit (to avoid the singularity). Then, to make a comparison with previous papers (Broucke, 1979 and Prado, 1996) the centre of the primary is used as the final position for M3. The results are organized in plots of the energy and the initial flight path angle (the control to be used) in the rotating frame against the time of flight. The definition of the angle is such that the zero is in the "x" axis, (pointing to the positive direction) and it increases in the counter-clock-wise sense. This problem, as well as the Lambert's original version, has two solutions for a given transfer time: one in the counter-clock-wise direction and one in the clock-wise direction in the inertial frame. In this paper, emphasis is given in finding the families with the smallest possible energy (and velocity), although many other families do exist. Broucke, R., (1979) Travelling Between the Lagrange Points and the Moon, Journal of Guidance and Control, Vol. 2, Prado, A.F.B.A., (1969) Travelling Between the Lagrangian Points and the Earth, Acta Astronautica, Vol. 39, No. 7, pp. Press, W. H.; B. P. Flannery; S. A. Teukolsky and W. T. Vetterling (1989), Numerical Recipes, Cambridge University Szebehely, V., (1967), Theory of Orbits, Academic Press, New York.

  15. KANTBP 2.0: New version of a program for computing energy levels, reaction matrix and radial wave functions in the coupled-channel hyperspherical adiabatic approach

    NASA Astrophysics Data System (ADS)

    Chuluunbaatar, O.; Gusev, A. A.; Vinitsky, S. I.; Abrashkevich, A. G.

    2008-11-01

    A FORTRAN 77 program for calculating energy values, reaction matrix and corresponding radial wave functions in a coupled-channel approximation of the hyperspherical adiabatic approach is presented. In this approach, a multi-dimensional Schrödinger equation is reduced to a system of the coupled second-order ordinary differential equations on a finite interval with homogeneous boundary conditions: (i) the Dirichlet, Neumann and third type at the left and right boundary points for continuous spectrum problem, (ii) the Dirichlet and Neumann type conditions at left boundary point and Dirichlet, Neumann and third type at the right boundary point for the discrete spectrum problem. The resulting system of radial equations containing the potential matrix elements and first-derivative coupling terms is solved using high-order accuracy approximations of the finite element method. As a test desk, the program is applied to the calculation of the reaction matrix and radial wave functions for 3D-model of a hydrogen-like atom in a homogeneous magnetic field. This version extends the previous version 1.0 of the KANTBP program [O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Commun. 177 (2007) 649-675]. Program summaryProgram title: KANTBP Catalogue identifier: ADZH_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZH_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 20 403 No. of bytes in distributed program, including test data, etc.: 147 563 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IV Operating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP RAM: This depends on the number of differential equations; the number and order of finite elements; the number of hyperradial points; and the number of eigensolutions required. The test run requires 2 MB Classification: 2.1, 2.4 External routines: GAULEG and GAUSSJ [2] Nature of problem: In the hyperspherical adiabatic approach [3-5], a multidimensional Schrödinger equation for a two-electron system [6] or a hydrogen atom in magnetic field [7-9] is reduced by separating radial coordinate ρ from the angular variables to a system of the second-order ordinary differential equations containing the potential matrix elements and first-derivative coupling terms. The purpose of this paper is to present the finite element method procedure based on the use of high-order accuracy approximations for calculating approximate eigensolutions of the continuum spectrum for such systems of coupled differential equations on finite intervals of the radial variable ρ∈[ρ,ρ]. This approach can be used in the calculations of effects of electron screening on low-energy fusion cross sections [10-12]. Solution method: The boundary problems for the coupled second-order differential equations are solved by the finite element method using high-order accuracy approximations [13]. The generalized algebraic eigenvalue problem AF=EBF with respect to pair unknowns ( E,F) arising after the replacement of the differential problem by the finite-element approximation is solved by the subspace iteration method using the SSPACE program [14]. The generalized algebraic eigenvalue problem (A-EB)F=λDF with respect to pair unknowns ( λ,F) arising after the corresponding replacement of the scattering boundary problem in open channels at fixed energy value, E, is solved by the LDL factorization of symmetric matrix and back-substitution methods using the DECOMP and REDBAK programs, respectively [14]. As a test desk, the program is applied to the calculation of the reaction matrix and corresponding radial wave functions for 3D-model of a hydrogen-like atom in a homogeneous magnetic field described in [9] on finite intervals of the radial variable ρ∈[ρ,ρ]. For this benchmark model the required analytical expressions for asymptotics of the potential matrix elements and first-derivative coupling terms, and also asymptotics of radial solutions of the boundary problems for coupled differential equations have been produced with help of a MAPLE computer algebra system. Restrictions: The computer memory requirements depend on: the number of differential equations; the number and order of finite elements; the total number of hyperradial points; and the number of eigensolutions required. Restrictions due to dimension sizes may be easily alleviated by altering PARAMETER statements (see Section 3 and [1] for details). The user must also supply subroutine POTCAL for evaluating potential matrix elements. The user should also supply subroutines ASYMEV (when solving the eigenvalue problem) or ASYMS0 and ASYMSC (when solving the scattering problem) which evaluate asymptotics of the radial wave functions at left and right boundary points in case of a boundary condition of the third type for the above problems. Running time: The running time depends critically upon: the number of differential equations; the number and order of finite elements; the total number of hyperradial points on interval [ ρ,ρ]; and the number of eigensolutions required. The test run which accompanies this paper took 2 s without calculation of matrix potentials on the Intel Pentium IV 2.4 GHz. References: [1] O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Commun. 177 (2007) 649-675; http://cpc.cs.qub.ac.uk/summaries/ADZHv10.html. [2] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986. [3] J. Macek, J. Phys. B 1 (1968) 831-843. [4] U. Fano, Rep. Progr. Phys. 46 (1983) 97-165. [5] C.D. Lin, Adv. Atom. Mol. Phys. 22 (1986) 77-142. [6] A.G. Abrashkevich, D.G. Abrashkevich, M. Shapiro, Comput. Phys. Commun. 90 (1995) 311-339. [7] M.G. Dimova, M.S. Kaschiev, S.I. Vinitsky, J. Phys. B 38 (2005) 2337-2352. [8] O. Chuluunbaatar, A.A. Gusev, V.L. Derbov, M.S. Kaschiev, L.A. Melnikov, V.V. Serov, S.I. Vinitsky, J. Phys. A 40 (2007) 11485-11524. [9] O. Chuluunbaatar, A.A. Gusev, V.P. Gerdt, V.A. Rostovtsev, S.I. Vinitsky, A.G. Abrashkevich, M.S. Kaschiev, V.V. Serov, Comput. Phys. Commun. 178 (2007) 301 330; http://cpc.cs.qub.ac.uk/summaries/AEAAv10.html. [10] H.J. Assenbaum, K. Langanke, C. Rolfs, Z. Phys. A 327 (1987) 461-468. [11] V. Melezhik, Nucl. Phys. A 550 (1992) 223-234. [12] L. Bracci, G. Fiorentini, V.S. Melezhik, G. Mezzorani, P. Pasini, Phys. Lett. A 153 (1991) 456-460. [13] A.G. Abrashkevich, D.G. Abrashkevich, M.S. Kaschiev, I.V. Puzynin, Comput. Phys. Commun. 85 (1995) 40-64. [14] K.J. Bathe, Finite Element Procedures in Engineering Analysis, Englewood Cliffs, Prentice-Hall, New York, 1982.

  16. A non-asymptotic homogenization theory for periodic electromagnetic structures

    PubMed Central

    Tsukerman, Igor; Markel, Vadim A.

    2014-01-01

    Homogenization of electromagnetic periodic composites is treated as a two-scale problem and solved by approximating the fields on both scales with eigenmodes that satisfy Maxwell's equations and boundary conditions as accurately as possible. Built into this homogenization methodology is an error indicator whose value characterizes the accuracy of homogenization. The proposed theory allows one to define not only bulk, but also position-dependent material parameters (e.g. in proximity to a physical boundary) and to quantify the trade-off between the accuracy of homogenization and its range of applicability to various illumination conditions. PMID:25104912

  17. [Objective evaluation of driving fatigue by using variability of pupil diameter under spontaneous pupillary fluctuation conditions].

    PubMed

    Xiong, Xingliang; Zhang, Yan; Chen, Mengmeng; Chen, Longcong

    2013-04-01

    Objective evaluation of driver drowsiness is necessary toward suppression of fatigued driving and prevention of traffic accident. We have developed a new method in which we utilized pupillary diameter variability (PDV) under spontaneous pupillary fluctuation conditions. The method consists of three main steps. Firstly, we use a 90s long infrared video of pupillogram infrared-sensitive CCD camera. Secondly, we employed edge detection algorithm based on curvature characteristics of pupil boundary to extract a set of points of visible pupil boundary, and then we adopted these points to fit a circle to obtain the diameter of the pupil in current frame of video. Finally, the values of PDV in 90s long video is calculated. In an experimental pilot study, the values of PDV of two groups were measured. One group rated themselves as alert (12 men), the other group as sleepy (13 men). The results showed that significant differences could be found between the two groups, and the values were 0.06 +/- 0.005 and 0.141 +/- 0.042, respectively. Taking into account of the knowledge that spontaneous pupillary fluctuation is innervated by autonomic nervous system which activity is known to change in parallel with drowsiness and cannot be influenced by subjective motive of people. From the results of the experiments, we concluded that PDV could be used to evaluate driver fatigue objectively.

  18. Extraction of a group-pair relation: problem-solving relation from web-board documents.

    PubMed

    Pechsiri, Chaveevan; Piriyakul, Rapepun

    2016-01-01

    This paper aims to extract a group-pair relation as a Problem-Solving relation, for example a DiseaseSymptom-Treatment relation and a CarProblem-Repair relation, between two event-explanation groups, a problem-concept group as a symptom/CarProblem-concept group and a solving-concept group as a treatment-concept/repair concept group from hospital-web-board and car-repair-guru-web-board documents. The Problem-Solving relation (particularly Symptom-Treatment relation) including the graphical representation benefits non-professional persons by supporting knowledge of primarily solving problems. The research contains three problems: how to identify an EDU (an Elementary Discourse Unit, which is a simple sentence) with the event concept of either a problem or a solution; how to determine a problem-concept EDU boundary and a solving-concept EDU boundary as two event-explanation groups, and how to determine the Problem-Solving relation between these two event-explanation groups. Therefore, we apply word co-occurrence to identify a problem-concept EDU and a solving-concept EDU, and machine-learning techniques to solve a problem-concept EDU boundary and a solving-concept EDU boundary. We propose using k-mean and Naïve Bayes to determine the Problem-Solving relation between the two event-explanation groups involved with clustering features. In contrast to previous works, the proposed approach enables group-pair relation extraction with high accuracy.

  19. Identification of the heat transfer coefficient in the two-dimensional model of binary alloy solidification

    NASA Astrophysics Data System (ADS)

    Hetmaniok, Edyta; Hristov, Jordan; Słota, Damian; Zielonka, Adam

    2017-05-01

    The paper presents the procedure for solving the inverse problem for the binary alloy solidification in a two-dimensional space. This is a continuation of some previous works of the authors investigating a similar problem but in the one-dimensional domain. Goal of the problem consists in identification of the heat transfer coefficient on boundary of the region and in reconstruction of the temperature distribution inside the considered region in case when the temperature measurements in selected points of the alloy are known. Mathematical model of the problem is based on the heat conduction equation with the substitute thermal capacity and with the liquidus and solidus temperatures varying in dependance on the concentration of the alloy component. For describing this concentration the Scheil model is used. Investigated procedure involves also the parallelized Ant Colony Optimization algorithm applied for minimizing a functional expressing the error of approximate solution.

  20. Comparison of 3D ion velocity distribution measurements and models in the vicinity of an absorbing boundary oriented obliquely to a magnetic field

    NASA Astrophysics Data System (ADS)

    Henriquez, Miguel F.; Thompson, Derek S.; Kenily, Shane; Khaziev, Rinat; Good, Timothy N.; McIlvain, Julianne; Siddiqui, M. Umair; Curreli, Davide; Scime, Earl E.

    2016-10-01

    Understanding particle distributions in plasma boundary regions is critical to predicting plasma-surface interactions. Ions in the presheath exhibit complex behavior because of collisions and due to the presence of boundary-localized electric fields. Complete understanding of particle dynamics is necessary for understanding the critical problems of tokamak wall loading and Hall thruster channel wall erosion. We report measurements of 3D argon ion velocity distribution functions (IVDFs) in the vicinity of an absorbing boundary oriented obliquely to a background magnetic field. Measurements were obtained via argon ion laser induced fluorescence throughout a spatial volume upstream of the boundary. These distribution functions reveal kinetic details that provide a point-to-point check on particle-in-cell and 1D3V Boltzmann simulations. We present the results of this comparison and discuss some implications for plasma boundary interaction physics.

Top