Sample records for two-qubit quantum gate

  1. A two-qubit logic gate in silicon.

    PubMed

    Veldhorst, M; Yang, C H; Hwang, J C C; Huang, W; Dehollain, J P; Muhonen, J T; Simmons, S; Laucht, A; Hudson, F E; Itoh, K M; Morello, A; Dzurak, A S

    2015-10-15

    Quantum computation requires qubits that can be coupled in a scalable manner, together with universal and high-fidelity one- and two-qubit logic gates. Many physical realizations of qubits exist, including single photons, trapped ions, superconducting circuits, single defects or atoms in diamond and silicon, and semiconductor quantum dots, with single-qubit fidelities that exceed the stringent thresholds required for fault-tolerant quantum computing. Despite this, high-fidelity two-qubit gates in the solid state that can be manufactured using standard lithographic techniques have so far been limited to superconducting qubits, owing to the difficulties of coupling qubits and dephasing in semiconductor systems. Here we present a two-qubit logic gate, which uses single spins in isotopically enriched silicon and is realized by performing single- and two-qubit operations in a quantum dot system using the exchange interaction, as envisaged in the Loss-DiVincenzo proposal. We realize CNOT gates via controlled-phase operations combined with single-qubit operations. Direct gate-voltage control provides single-qubit addressability, together with a switchable exchange interaction that is used in the two-qubit controlled-phase gate. By independently reading out both qubits, we measure clear anticorrelations in the two-spin probabilities of the CNOT gate.

  2. Error budgeting single and two qubit gates in a superconducting qubit

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Chiaro, B.; Dunsworth, A.; Foxen, B.; Neill, C.; Quintana, C.; Wenner, J.; Martinis, John. M.; Google Quantum Hardware Team Team

    Superconducting qubits have shown promise as a platform for both error corrected quantum information processing and demonstrations of quantum supremacy. High fidelity quantum gates are crucial to achieving both of these goals, and superconducting qubits have demonstrated two qubit gates exceeding 99% fidelity. In order to improve gate fidelity further, we must understand the remaining sources of error. In this talk, I will demonstrate techniques for quantifying the contributions of control, decoherence, and leakage to gate error, for both single and two qubit gates. I will also discuss the near term outlook for achieving quantum supremacy using a gate-based approach in superconducting qubits. This work is supported Google Inc., and by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1605114.

  3. A two-qubit photonic quantum processor and its application to solving systems of linear equations

    PubMed Central

    Barz, Stefanie; Kassal, Ivan; Ringbauer, Martin; Lipp, Yannick Ole; Dakić, Borivoje; Aspuru-Guzik, Alán; Walther, Philip

    2014-01-01

    Large-scale quantum computers will require the ability to apply long sequences of entangling gates to many qubits. In a photonic architecture, where single-qubit gates can be performed easily and precisely, the application of consecutive two-qubit entangling gates has been a significant obstacle. Here, we demonstrate a two-qubit photonic quantum processor that implements two consecutive CNOT gates on the same pair of polarisation-encoded qubits. To demonstrate the flexibility of our system, we implement various instances of the quantum algorithm for solving of systems of linear equations. PMID:25135432

  4. Exact CNOT gates with a single nonlocal rotation for quantum-dot qubits

    NASA Astrophysics Data System (ADS)

    Pal, Arijeet; Rashba, Emmanuel I.; Halperin, Bertrand I.

    2015-09-01

    We investigate capacitively-coupled exchange-only two-qubit quantum gates based on quantum dots. For exchange-only coded qubits electron spin S and its projection Sz are exact quantum numbers. Capacitive coupling between qubits, as distinct from interqubit exchange, preserves these quantum numbers. We prove, both analytically and numerically, that conservation of the spins of individual qubits has a dramatic effect on the performance of two-qubit gates. By varying the level splittings of individual qubits, Ja and Jb, and the interqubit coupling time, t , we can find an infinite number of triples (Ja,Jb,t ) for which the two-qubit entanglement, in combination with appropriate single-qubit rotations, can produce an exact cnot gate. This statement is true for practically arbitrary magnitude and form of capacitive interqubit coupling. Our findings promise a large decrease in the number of nonlocal (two-qubit) operations in quantum circuits.

  5. Experimental investigation of a four-qubit linear-optical quantum logic circuit

    NASA Astrophysics Data System (ADS)

    Stárek, R.; Mičuda, M.; Miková, M.; Straka, I.; Dušek, M.; Ježek, M.; Fiurášek, J.

    2016-09-01

    We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C3Z gate and several two-qubit and single-qubit gates. The C3Z gate introduces a sign flip if and only if all four qubits are in the computational state |1>. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses.

  6. Experimental investigation of a four-qubit linear-optical quantum logic circuit.

    PubMed

    Stárek, R; Mičuda, M; Miková, M; Straka, I; Dušek, M; Ježek, M; Fiurášek, J

    2016-09-20

    We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C(3)Z gate and several two-qubit and single-qubit gates. The C(3)Z gate introduces a sign flip if and only if all four qubits are in the computational state |1〉. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses.

  7. Improving the gate fidelity of capacitively coupled spin qubits

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Barnes, Edwin

    2015-03-01

    Precise execution of quantum gates acting on two or multiple qubits is essential to quantum computation. For semiconductor spin qubits coupled via capacitive interaction, the best fidelity for a two-qubit gate demonstrated so far is around 70%, insufficient for fault-tolerant quantum computation. In this talk we present control protocols that may substantially improve the robustness of two-qubit gates against both nuclear noise and charge noise. Our pulse sequences incorporate simultaneous dynamical decoupling protocols and are simple enough for immediate experimental realization. Together with existing control protocols for single-qubit gates, our results constitute an important step toward scalable quantum computation using spin qubits. This work is done in collaboration with Sankar Das Sarma and supported by LPS-NSA-CMTC and IARPA-MQCO.

  8. Experimental investigation of a four-qubit linear-optical quantum logic circuit

    PubMed Central

    Stárek, R.; Mičuda, M.; Miková, M.; Straka, I.; Dušek, M.; Ježek, M.; Fiurášek, J.

    2016-01-01

    We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C3Z gate and several two-qubit and single-qubit gates. The C3Z gate introduces a sign flip if and only if all four qubits are in the computational state |1〉. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses. PMID:27647176

  9. Experimental superposition of orders of quantum gates

    PubMed Central

    Procopio, Lorenzo M.; Moqanaki, Amir; Araújo, Mateus; Costa, Fabio; Alonso Calafell, Irati; Dowd, Emma G.; Hamel, Deny R.; Rozema, Lee A.; Brukner, Časlav; Walther, Philip

    2015-01-01

    Quantum computers achieve a speed-up by placing quantum bits (qubits) in superpositions of different states. However, it has recently been appreciated that quantum mechanics also allows one to ‘superimpose different operations'. Furthermore, it has been shown that using a qubit to coherently control the gate order allows one to accomplish a task—determining if two gates commute or anti-commute—with fewer gate uses than any known quantum algorithm. Here we experimentally demonstrate this advantage, in a photonic context, using a second qubit to control the order in which two gates are applied to a first qubit. We create the required superposition of gate orders by using additional degrees of freedom of the photons encoding our qubits. The new resource we exploit can be interpreted as a superposition of causal orders, and could allow quantum algorithms to be implemented with an efficiency unlikely to be achieved on a fixed-gate-order quantum computer. PMID:26250107

  10. High-fidelity gates in quantum dot spin qubits

    PubMed Central

    Koh, Teck Seng; Coppersmith, S. N.; Friesen, Mark

    2013-01-01

    Several logical qubits and quantum gates have been proposed for semiconductor quantum dots controlled by voltages applied to top gates. The different schemes can be difficult to compare meaningfully. Here we develop a theoretical framework to evaluate disparate qubit-gating schemes on an equal footing. We apply the procedure to two types of double-dot qubits: the singlet–triplet and the semiconducting quantum dot hybrid qubit. We investigate three quantum gates that flip the qubit state: a DC pulsed gate, an AC gate based on logical qubit resonance, and a gate-like process known as stimulated Raman adiabatic passage. These gates are all mediated by an exchange interaction that is controlled experimentally using the interdot tunnel coupling g and the detuning ϵ, which sets the energy difference between the dots. Our procedure has two steps. First, we optimize the gate fidelity (f) for fixed g as a function of the other control parameters; this yields an that is universal for different types of gates. Next, we identify physical constraints on the control parameters; this yields an upper bound that is specific to the qubit-gate combination. We show that similar gate fidelities should be attainable for singlet-triplet qubits in isotopically purified Si, and for hybrid qubits in natural Si. Considerably lower fidelities are obtained for GaAs devices, due to the fluctuating magnetic fields ΔB produced by nuclear spins. PMID:24255105

  11. Compressed Sensing Quantum Process Tomography for Superconducting Quantum Gates

    NASA Astrophysics Data System (ADS)

    Rodionov, Andrey

    An important challenge in quantum information science and quantum computing is the experimental realization of high-fidelity quantum operations on multi-qubit systems. Quantum process tomography (QPT) is a procedure devised to fully characterize a quantum operation. We first present the results of the estimation of the process matrix for superconducting multi-qubit quantum gates using the full data set employing various methods: linear inversion, maximum likelihood, and least-squares. To alleviate the problem of exponential resource scaling needed to characterize a multi-qubit system, we next investigate a compressed sensing (CS) method for QPT of two-qubit and three-qubit quantum gates. Using experimental data for two-qubit controlled-Z gates, taken with both Xmon and superconducting phase qubits, we obtain estimates for the process matrices with reasonably high fidelities compared to full QPT, despite using significantly reduced sets of initial states and measurement configurations. We show that the CS method still works when the amount of data is so small that the standard QPT would have an underdetermined system of equations. We also apply the CS method to the analysis of the three-qubit Toffoli gate with simulated noise, and similarly show that the method works well for a substantially reduced set of data. For the CS calculations we use two different bases in which the process matrix is approximately sparse (the Pauli-error basis and the singular value decomposition basis), and show that the resulting estimates of the process matrices match with reasonably high fidelity. For both two-qubit and three-qubit gates, we characterize the quantum process by its process matrix and average state fidelity, as well as by the corresponding standard deviation defined via the variation of the state fidelity for different initial states. We calculate the standard deviation of the average state fidelity both analytically and numerically, using a Monte Carlo method. Overall, we show that CS QPT offers a significant reduction in the needed amount of experimental data for two-qubit and three-qubit quantum gates.

  12. Multi-target-qubit unconventional geometric phase gate in a multi-cavity system

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Cao, Xiao-Zhi; Su, Qi-Ping; Xiong, Shao-Jie; Yang, Chui-Ping

    2016-02-01

    Cavity-based large scale quantum information processing (QIP) may involve multiple cavities and require performing various quantum logic operations on qubits distributed in different cavities. Geometric-phase-based quantum computing has drawn much attention recently, which offers advantages against inaccuracies and local fluctuations. In addition, multiqubit gates are particularly appealing and play important roles in QIP. We here present a simple and efficient scheme for realizing a multi-target-qubit unconventional geometric phase gate in a multi-cavity system. This multiqubit phase gate has a common control qubit but different target qubits distributed in different cavities, which can be achieved using a single-step operation. The gate operation time is independent of the number of qubits and only two levels for each qubit are needed. This multiqubit gate is generic, e.g., by performing single-qubit operations, it can be converted into two types of significant multi-target-qubit phase gates useful in QIP. The proposal is quite general, which can be used to accomplish the same task for a general type of qubits such as atoms, NV centers, quantum dots, and superconducting qubits.

  13. Multi-target-qubit unconventional geometric phase gate in a multi-cavity system.

    PubMed

    Liu, Tong; Cao, Xiao-Zhi; Su, Qi-Ping; Xiong, Shao-Jie; Yang, Chui-Ping

    2016-02-22

    Cavity-based large scale quantum information processing (QIP) may involve multiple cavities and require performing various quantum logic operations on qubits distributed in different cavities. Geometric-phase-based quantum computing has drawn much attention recently, which offers advantages against inaccuracies and local fluctuations. In addition, multiqubit gates are particularly appealing and play important roles in QIP. We here present a simple and efficient scheme for realizing a multi-target-qubit unconventional geometric phase gate in a multi-cavity system. This multiqubit phase gate has a common control qubit but different target qubits distributed in different cavities, which can be achieved using a single-step operation. The gate operation time is independent of the number of qubits and only two levels for each qubit are needed. This multiqubit gate is generic, e.g., by performing single-qubit operations, it can be converted into two types of significant multi-target-qubit phase gates useful in QIP. The proposal is quite general, which can be used to accomplish the same task for a general type of qubits such as atoms, NV centers, quantum dots, and superconducting qubits.

  14. Single-photon three-qubit quantum logic using spatial light modulators.

    PubMed

    Kagalwala, Kumel H; Di Giuseppe, Giovanni; Abouraddy, Ayman F; Saleh, Bahaa E A

    2017-09-29

    The information-carrying capacity of a single photon can be vastly expanded by exploiting its multiple degrees of freedom: spatial, temporal, and polarization. Although multiple qubits can be encoded per photon, to date only two-qubit single-photon quantum operations have been realized. Here, we report an experimental demonstration of three-qubit single-photon, linear, deterministic quantum gates that exploit photon polarization and the two-dimensional spatial-parity-symmetry of the transverse single-photon field. These gates are implemented using a polarization-sensitive spatial light modulator that provides a robust, non-interferometric, versatile platform for implementing controlled unitary gates. Polarization here represents the control qubit for either separable or entangling unitary operations on the two spatial-parity target qubits. Such gates help generate maximally entangled three-qubit Greenberger-Horne-Zeilinger and W states, which is confirmed by tomographical reconstruction of single-photon density matrices. This strategy provides access to a wide range of three-qubit states and operations for use in few-qubit quantum information processing protocols.Photons are essential for quantum information processing, but to date only two-qubit single-photon operations have been realized. Here the authors demonstrate experimentally a three-qubit single-photon linear deterministic quantum gate by exploiting polarization along with spatial-parity symmetry.

  15. A modular design of molecular qubits to implement universal quantum gates

    PubMed Central

    Ferrando-Soria, Jesús; Moreno Pineda, Eufemio; Chiesa, Alessandro; Fernandez, Antonio; Magee, Samantha A.; Carretta, Stefano; Santini, Paolo; Vitorica-Yrezabal, Iñigo J.; Tuna, Floriana; Timco, Grigore A.; McInnes, Eric J.L.; Winpenny, Richard E.P.

    2016-01-01

    The physical implementation of quantum information processing relies on individual modules—qubits—and operations that modify such modules either individually or in groups—quantum gates. Two examples of gates that entangle pairs of qubits are the controlled NOT-gate (CNOT) gate, which flips the state of one qubit depending on the state of another, and the gate that brings a two-qubit product state into a superposition involving partially swapping the qubit states. Here we show that through supramolecular chemistry a single simple module, molecular {Cr7Ni} rings, which act as the qubits, can be assembled into structures suitable for either the CNOT or gate by choice of linker, and we characterize these structures by electron spin resonance spectroscopy. We introduce two schemes for implementing such gates with these supramolecular assemblies and perform detailed simulations, based on the measured parameters including decoherence, to demonstrate how the gates would operate. PMID:27109358

  16. High-fidelity gates towards a scalable superconducting quantum processor

    NASA Astrophysics Data System (ADS)

    Chow, Jerry M.; Corcoles, Antonio D.; Gambetta, Jay M.; Rigetti, Chad; Johnson, Blake R.; Smolin, John A.; Merkel, Seth; Poletto, Stefano; Rozen, Jim; Rothwell, Mary Beth; Keefe, George A.; Ketchen, Mark B.; Steffen, Matthias

    2012-02-01

    We experimentally explore the implementation of high-fidelity gates on multiple superconducting qubits coupled to multiple resonators. Having demonstrated all-microwave single and two qubit gates with fidelities > 90% on multi-qubit single-resonator systems, we expand the application to qubits across two resonators and investigate qubit coupling in this circuit. The coupled qubit-resonators are building blocks towards two-dimensional lattice networks for the application of surface code quantum error correction algorithms.

  17. High-fidelity gates in quantum dot spin qubits.

    PubMed

    Koh, Teck Seng; Coppersmith, S N; Friesen, Mark

    2013-12-03

    Several logical qubits and quantum gates have been proposed for semiconductor quantum dots controlled by voltages applied to top gates. The different schemes can be difficult to compare meaningfully. Here we develop a theoretical framework to evaluate disparate qubit-gating schemes on an equal footing. We apply the procedure to two types of double-dot qubits: the singlet-triplet and the semiconducting quantum dot hybrid qubit. We investigate three quantum gates that flip the qubit state: a DC pulsed gate, an AC gate based on logical qubit resonance, and a gate-like process known as stimulated Raman adiabatic passage. These gates are all mediated by an exchange interaction that is controlled experimentally using the interdot tunnel coupling g and the detuning [Symbol: see text], which sets the energy difference between the dots. Our procedure has two steps. First, we optimize the gate fidelity (f) for fixed g as a function of the other control parameters; this yields an f(opt)(g) that is universal for different types of gates. Next, we identify physical constraints on the control parameters; this yields an upper bound f(max) that is specific to the qubit-gate combination. We show that similar gate fidelities (~99:5%) should be attainable for singlet-triplet qubits in isotopically purified Si, and for hybrid qubits in natural Si. Considerably lower fidelities are obtained for GaAs devices, due to the fluctuating magnetic fields ΔB produced by nuclear spins.

  18. Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities

    PubMed Central

    Wei, Hai-Rui; Lu Long, Gui

    2015-01-01

    Hybrid quantum gates hold great promise for quantum information processing since they preserve the advantages of different quantum systems. Here we present compact quantum circuits to deterministically implement controlled-NOT, Toffoli, and Fredkin gates between a flying photon qubit and diamond nitrogen-vacancy (NV) centers assisted by microcavities. The target qubits of these universal quantum gates are encoded on the spins of the electrons associated with the diamond NV centers and they have long coherence time for storing information, and the control qubit is encoded on the polarizations of the flying photon and can be easily manipulated. Our quantum circuits are compact, economic, and simple. Moreover, they do not require additional qubits. The complexity of our schemes for universal three-qubit gates is much reduced, compared to the synthesis with two-qubit entangling gates. These schemes have high fidelities and efficiencies, and they are feasible in experiment. PMID:26271899

  19. Quantum entanglement properties of geometrical and topological quantum gates

    NASA Astrophysics Data System (ADS)

    Sezer, Hasan Cavit; Duy, Hoang Ngoc; Heydari, Hoshang

    2011-03-01

    In this paper we will investigate the action of holonomic and topological quantum gates on different classes of four qubit states. In particular, we review the construction of holonomic quantum gate based on geometric phase and topological quantum gate based on braid group. Then, we investigate the entanglement properties of three different classes of four-qubit states based on geometric invariants. The result shows that entanglement properties of the two most generic classes of four-qubit states can be controlled by holonomic and topological quantum gate..

  20. Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits.

    PubMed

    Chow, Jerry M; Gambetta, Jay M; Córcoles, A D; Merkel, Seth T; Smolin, John A; Rigetti, Chad; Poletto, S; Keefe, George A; Rothwell, Mary B; Rozen, J R; Ketchen, Mark B; Steffen, M

    2012-08-10

    We use quantum process tomography to characterize a full universal set of all-microwave gates on two superconducting single-frequency single-junction transmon qubits. All extracted gate fidelities, including those for Clifford group generators, single-qubit π/4 and π/8 rotations, and a two-qubit controlled-not, exceed 95% (98%), without (with) subtracting state preparation and measurement errors. Furthermore, we introduce a process map representation in the Pauli basis which is visually efficient and informative. This high-fidelity gate set serves as a critical building block towards scalable architectures of superconducting qubits for error correction schemes and pushes up on the known limits of quantum gate characterization.

  1. Universal Quantum Gate Set Approaching Fault-Tolerant Thresholds with Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Chow, Jerry M.; Gambetta, Jay M.; Córcoles, A. D.; Merkel, Seth T.; Smolin, John A.; Rigetti, Chad; Poletto, S.; Keefe, George A.; Rothwell, Mary B.; Rozen, J. R.; Ketchen, Mark B.; Steffen, M.

    2012-08-01

    We use quantum process tomography to characterize a full universal set of all-microwave gates on two superconducting single-frequency single-junction transmon qubits. All extracted gate fidelities, including those for Clifford group generators, single-qubit π/4 and π/8 rotations, and a two-qubit controlled-not, exceed 95% (98%), without (with) subtracting state preparation and measurement errors. Furthermore, we introduce a process map representation in the Pauli basis which is visually efficient and informative. This high-fidelity gate set serves as a critical building block towards scalable architectures of superconducting qubits for error correction schemes and pushes up on the known limits of quantum gate characterization.

  2. Quantum gates by inverse engineering of a Hamiltonian

    NASA Astrophysics Data System (ADS)

    Santos, Alan C.

    2018-01-01

    Inverse engineering of a Hamiltonian (IEH) from an evolution operator is a useful technique for the protocol of quantum control with potential applications in quantum information processing. In this paper we introduce a particular protocol to perform IEH and we show how this scheme can be used to implement a set of quantum gates by using minimal quantum resources (such as entanglement, interactions between more than two qubits or auxiliary qubits). Remarkably, while previous protocols request three-qubit interactions and/or auxiliary qubits to implement such gates, our protocol requires just two-qubit interactions and no auxiliary qubits. By using this approach we can obtain a large class of Hamiltonians that allow us to implement single and two-qubit gates necessary for quantum computation. To conclude this article we analyze the performance of our scheme against systematic errors related to amplitude noise, where we show that the free parameters introduced in our scheme can be useful for enhancing the robustness of the protocol against such errors.

  3. Universal non-adiabatic geometric manipulation of pseudo-spin charge qubits

    NASA Astrophysics Data System (ADS)

    Azimi Mousolou, Vahid

    2017-01-01

    Reliable quantum information processing requires high-fidelity universal manipulation of quantum systems within the characteristic coherence times. Non-adiabatic holonomic quantum computation offers a promising approach to implement fast, universal, and robust quantum logic gates particularly useful in nano-fabricated solid-state architectures, which typically have short coherence times. Here, we propose an experimentally feasible scheme to realize high-speed universal geometric quantum gates in nano-engineered pseudo-spin charge qubits. We use a system of three coupled quantum dots containing a single electron, where two computational states of a double quantum dot charge qubit interact through an intermediate quantum dot. The additional degree of freedom introduced into the qubit makes it possible to create a geometric model system, which allows robust and efficient single-qubit rotations through careful control of the inter-dot tunneling parameters. We demonstrate that a capacitive coupling between two charge qubits permits a family of non-adiabatic holonomic controlled two-qubit entangling gates, and thus provides a promising procedure to maintain entanglement in charge qubits and a pathway toward fault-tolerant universal quantum computation. We estimate the feasibility of the proposed structure by analyzing the gate fidelities to some extent.

  4. Entangling qubits by Heisenberg spin exchange and anyon braiding

    NASA Astrophysics Data System (ADS)

    Zeuch, Daniel

    As the discovery of quantum mechanics signified a revolution in the world of physics more than one century ago, the notion of a quantum computer in 1981 marked the beginning of a drastic change of our understanding of information and computability. In a quantum computer, information is stored using quantum bits, or qubits, which are described by a quantum-mechanical superposition of the quantum states 0 and 1. Computation then proceeds by acting with unitary operations on these qubits. These operations are referred to as quantum logic gates, in analogy to classical computation where bits are acted on by classical logic gates. In order to perform universal quantum computation it is, in principle, sufficient to carry out single-qubit gates and two-qubit gates, where the former act on individual qubits and the latter, acting on two qubits, are used to entangle qubits with each other. The present thesis is divided into two main parts. In the first, we are concerned with spin-based quantum computation. In a spin-based quantum computer, qubits are encoded into the Hilbert space spanned by spin-1/2 particles, such as electron spins trapped in semiconductor quantum dots. For a suitable qubit encoding, turning on-and-off, or "pulsing,'' the isotropic Heisenberg exchange Hamiltonian JSi · Sj allows for universal quantum computation and it is this scheme, known as exchange-only quantum computation, which we focus on. In the second part of this thesis, we consider a topological quantum computer in which qubits are encoded using so-called Fibonacci anyons, exotic quasiparticle excitations that obey non-Abelian statistics, and which may emerge in certain two-dimensional topological systems such as fractional quantum-Hall states. Quantum gates can then be carried out by moving these particles around one another, a process that can be viewed as braiding their 2+1 dimensional worldlines. The subject of the present thesis is the development and theoretical understanding of procedures used for entangling qubits. We begin by presenting analytical constructions of pulse sequences which can be used to carry out two-qubit gates that are locally equivalent to a controlled-PHASE gate. The corresponding phase can be arbitrarily chosen, and for one particular choice this gate is equivalent to controlled-NOT. While the constructions of these sequences are relatively lengthy and cumbersome, we further provide a straightforward and intuitive derivation of the shortest known two-qubit pulse sequence for carrying out a controlled-NOT gate. This derivation is carried out completely analytically through a novel "elevation'' of a simple three-spin pulse sequence to a more complicated five-spin pulse sequence. In the case of topological quantum computation with Fibonacci anyons, we present a new method for constructing entangling two-qubit braids. Our construction is based on an iterative procedure, established by Reichardt, which can be used to systematically generate braids whose corresponding operations quickly converge towards an operation that has a diagonal matrix representation in a particular natural basis. After describing this iteration procedure we show how the resulting braids can be used in two explicit constructions for two-qubit braids. Compared to two-qubit braids that can be found using other methods, the braids generated here are among the most efficient and can be obtained straightforwardly without computational overhead.

  5. Fast CNOT gate between two spatially separated atoms via shortcuts to adiabatic passage.

    PubMed

    Liang, Yan; Song, Chong; Ji, Xin; Zhang, Shou

    2015-09-07

    Quantum logic gate is indispensable to quantum computation. One of the important qubit operations is the quantum controlled-not (CNOT) gate that performs a NOT operation on a target qubit depending on the state of the control qubit. In this paper we present a scheme to realize the quantum CNOT gate between two spatially separated atoms via shortcuts to adiabatic passage. The influence of various decoherence processes on the fidelity is discussed. The strict numerical simulation results show that the fidelity for the CNOT gate is relatively high.

  6. Two-qubit logical operations in three quantum dots system.

    PubMed

    Łuczak, Jakub; Bułka, Bogdan R

    2018-06-06

    We consider a model of two interacting always-on, exchange-only qubits for which controlled phase (CPHASE), controlled NOT (CNOT), quantum Fourier transform (QFT) and SWAP operations can be implemented only in a few electrical pulses in a nanosecond time scale. Each qubit is built of three quantum dots (TQD) in a triangular geometry with three electron spins which are always kept coupled by exchange interactions only. The qubit states are encoded in a doublet subspace and are fully electrically controlled by a voltage applied to gate electrodes. The two qubit quantum gates are realized by short electrical pulses which change the triangular symmetry of TQD and switch on exchange interaction between the qubits. We found an optimal configuration to implement the CPHASE gate by a single pulse of the order 2.3 ns. Using this gate, in combination with single qubit operations, we searched for optimal conditions to perform the other gates: CNOT, QFT and SWAP. Our studies take into account environment effects and leakage processes as well. The results suggest that the system can be implemented for fault tolerant quantum computations.

  7. State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot

    NASA Astrophysics Data System (ADS)

    Ward, Daniel R.; Kim, Dohun; Savage, Donald E.; Lagally, Max G.; Foote, Ryan H.; Friesen, Mark; Coppersmith, Susan N.; Eriksson, Mark A.

    2016-10-01

    Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of double quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. We further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau-Zener-Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.

  8. State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Daniel R.; Kim, Dohun; Savage, Donald E.

    Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of doublemore » quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. Finally, we further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau–Zener–Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.« less

  9. State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot

    DOE PAGES

    Ward, Daniel R.; Kim, Dohun; Savage, Donald E.; ...

    2016-10-18

    Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of doublemore » quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. Finally, we further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau–Zener–Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.« less

  10. Tunable inter-qubit coupling as a resource for gate based quantum computing with superconducting circuits

    NASA Astrophysics Data System (ADS)

    Chiaro, B.; Neill, C.; Chen, Z.; Dunsworth, A.; Foxen, B.; Quintana, C.; Wenner, J.; Martinis, J. M.; Google Quantum Hardware Team

    Fast, high fidelity two qubit gates are an essential requirement of a quantum processor. In this talk, we discuss how the tunable coupling of the gmon architecture provides a pathway for an improved two qubit controlled-Z gate. The maximum inter-qubit coupling strength gmax = 60 MHz is sufficient for fast adiabatic two qubit gates to be performed as quickly as single qubit gates, reducing dephasing errors. Additionally, the ability to turn the coupling off allows all qubits to idle at low magnetic flux sensitivity, further reducing susceptibility to noise. However, the flexibility that this platform offers comes at the expense of increased control complexity. We describe our strategy for addressing the control challenges of the gmon architecture and show experimental progress toward fast, high fidelity controlled-Z gates with gmon qubits.

  11. Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities

    NASA Astrophysics Data System (ADS)

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-12-01

    Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.

  12. Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities.

    PubMed

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-12-18

    Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.

  13. A CMOS silicon spin qubit

    PubMed Central

    Maurand, R.; Jehl, X.; Kotekar-Patil, D.; Corna, A.; Bohuslavskyi, H.; Laviéville, R.; Hutin, L.; Barraud, S.; Vinet, M.; Sanquer, M.; De Franceschi, S.

    2016-01-01

    Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal–oxide–semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform. PMID:27882926

  14. A CMOS silicon spin qubit

    NASA Astrophysics Data System (ADS)

    Maurand, R.; Jehl, X.; Kotekar-Patil, D.; Corna, A.; Bohuslavskyi, H.; Laviéville, R.; Hutin, L.; Barraud, S.; Vinet, M.; Sanquer, M.; de Franceschi, S.

    2016-11-01

    Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal-oxide-semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform.

  15. A CMOS silicon spin qubit.

    PubMed

    Maurand, R; Jehl, X; Kotekar-Patil, D; Corna, A; Bohuslavskyi, H; Laviéville, R; Hutin, L; Barraud, S; Vinet, M; Sanquer, M; De Franceschi, S

    2016-11-24

    Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal-oxide-semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform.

  16. Implementing universal nonadiabatic holonomic quantum gates with transmons

    NASA Astrophysics Data System (ADS)

    Hong, Zhuo-Ping; Liu, Bao-Jie; Cai, Jia-Qi; Zhang, Xin-Ding; Hu, Yong; Wang, Z. D.; Xue, Zheng-Yuan

    2018-02-01

    Geometric phases are well known to be noise resilient in quantum evolutions and operations. Holonomic quantum gates provide us with a robust way towards universal quantum computation, as these quantum gates are actually induced by non-Abelian geometric phases. Here we propose and elaborate how to efficiently implement universal nonadiabatic holonomic quantum gates on simpler superconducting circuits, with a single transmon serving as a qubit. In our proposal, an arbitrary single-qubit holonomic gate can be realized in a single-loop scenario by varying the amplitudes and phase difference of two microwave fields resonantly coupled to a transmon, while nontrivial two-qubit holonomic gates may be generated with a transmission-line resonator being simultaneously coupled to the two target transmons in an effective resonant way. Moreover, our scenario may readily be scaled up to a two-dimensional lattice configuration, which is able to support large scalable quantum computation, paving the way for practically implementing universal nonadiabatic holonomic quantum computation with superconducting circuits.

  17. Electrically protected resonant exchange qubits in triple quantum dots.

    PubMed

    Taylor, J M; Srinivasa, V; Medford, J

    2013-08-02

    We present a modulated microwave approach for quantum computing with qubits comprising three spins in a triple quantum dot. This approach includes single- and two-qubit gates that are protected against low-frequency electrical noise, due to an operating point with a narrowband response to high frequency electric fields. Furthermore, existing double quantum dot advances, including robust preparation and measurement via spin-to-charge conversion, are immediately applicable to the new qubit. Finally, the electric dipole terms implicit in the high frequency coupling enable strong coupling with superconducting microwave resonators, leading to more robust two-qubit gates.

  18. Teleportation-based realization of an optical quantum two-qubit entangling gate

    PubMed Central

    Gao, Wei-Bo; Goebel, Alexander M.; Lu, Chao-Yang; Dai, Han-Ning; Wagenknecht, Claudia; Zhang, Qiang; Zhao, Bo; Peng, Cheng-Zhi; Chen, Zeng-Bing; Chen, Yu-Ao; Pan, Jian-Wei

    2010-01-01

    In recent years, there has been heightened interest in quantum teleportation, which allows for the transfer of unknown quantum states over arbitrary distances. Quantum teleportation not only serves as an essential ingredient in long-distance quantum communication, but also provides enabling technologies for practical quantum computation. Of particular interest is the scheme proposed by D. Gottesman and I. L. Chuang [(1999) Nature 402:390–393], showing that quantum gates can be implemented by teleporting qubits with the help of some special entangled states. Therefore, the construction of a quantum computer can be simply based on some multiparticle entangled states, Bell-state measurements, and single-qubit operations. The feasibility of this scheme relaxes experimental constraints on realizing universal quantum computation. Using two different methods, we demonstrate the smallest nontrivial module in such a scheme—a teleportation-based quantum entangling gate for two different photonic qubits. One uses a high-fidelity six-photon interferometer to realize controlled-NOT gates, and the other uses four-photon hyperentanglement to realize controlled-Phase gates. The results clearly demonstrate the working principles and the entangling capability of the gates. Our experiment represents an important step toward the realization of practical quantum computers and could lead to many further applications in linear optics quantum information processing. PMID:21098305

  19. Teleportation-based realization of an optical quantum two-qubit entangling gate.

    PubMed

    Gao, Wei-Bo; Goebel, Alexander M; Lu, Chao-Yang; Dai, Han-Ning; Wagenknecht, Claudia; Zhang, Qiang; Zhao, Bo; Peng, Cheng-Zhi; Chen, Zeng-Bing; Chen, Yu-Ao; Pan, Jian-Wei

    2010-12-07

    In recent years, there has been heightened interest in quantum teleportation, which allows for the transfer of unknown quantum states over arbitrary distances. Quantum teleportation not only serves as an essential ingredient in long-distance quantum communication, but also provides enabling technologies for practical quantum computation. Of particular interest is the scheme proposed by D. Gottesman and I. L. Chuang [(1999) Nature 402:390-393], showing that quantum gates can be implemented by teleporting qubits with the help of some special entangled states. Therefore, the construction of a quantum computer can be simply based on some multiparticle entangled states, Bell-state measurements, and single-qubit operations. The feasibility of this scheme relaxes experimental constraints on realizing universal quantum computation. Using two different methods, we demonstrate the smallest nontrivial module in such a scheme--a teleportation-based quantum entangling gate for two different photonic qubits. One uses a high-fidelity six-photon interferometer to realize controlled-NOT gates, and the other uses four-photon hyperentanglement to realize controlled-Phase gates. The results clearly demonstrate the working principles and the entangling capability of the gates. Our experiment represents an important step toward the realization of practical quantum computers and could lead to many further applications in linear optics quantum information processing.

  20. High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits.

    PubMed

    Ballance, C J; Harty, T P; Linke, N M; Sepiol, M A; Lucas, D M

    2016-08-05

    We demonstrate laser-driven two-qubit and single-qubit logic gates with respective fidelities 99.9(1)% and 99.9934(3)%, significantly above the ≈99% minimum threshold level required for fault-tolerant quantum computation, using qubits stored in hyperfine ground states of calcium-43 ions held in a room-temperature trap. We study the speed-fidelity trade-off for the two-qubit gate, for gate times between 3.8  μs and 520  μs, and develop a theoretical error model which is consistent with the data and which allows us to identify the principal technical sources of infidelity.

  1. Non-adiabatic holonomic quantum computation in linear system-bath coupling

    PubMed Central

    Sun, Chunfang; Wang, Gangcheng; Wu, Chunfeng; Liu, Haodi; Feng, Xun-Li; Chen, Jing-Ling; Xue, Kang

    2016-01-01

    Non-adiabatic holonomic quantum computation in decoherence-free subspaces protects quantum information from control imprecisions and decoherence. For the non-collective decoherence that each qubit has its own bath, we show the implementations of two non-commutable holonomic single-qubit gates and one holonomic nontrivial two-qubit gate that compose a universal set of non-adiabatic holonomic quantum gates in decoherence-free-subspaces of the decoupling group, with an encoding rate of . The proposed scheme is robust against control imprecisions and the non-collective decoherence, and its non-adiabatic property ensures less operation time. We demonstrate that our proposed scheme can be realized by utilizing only two-qubit interactions rather than many-qubit interactions. Our results reduce the complexity of practical implementation of holonomic quantum computation in experiments. We also discuss the physical implementation of our scheme in coupled microcavities. PMID:26846444

  2. Non-adiabatic holonomic quantum computation in linear system-bath coupling.

    PubMed

    Sun, Chunfang; Wang, Gangcheng; Wu, Chunfeng; Liu, Haodi; Feng, Xun-Li; Chen, Jing-Ling; Xue, Kang

    2016-02-05

    Non-adiabatic holonomic quantum computation in decoherence-free subspaces protects quantum information from control imprecisions and decoherence. For the non-collective decoherence that each qubit has its own bath, we show the implementations of two non-commutable holonomic single-qubit gates and one holonomic nontrivial two-qubit gate that compose a universal set of non-adiabatic holonomic quantum gates in decoherence-free-subspaces of the decoupling group, with an encoding rate of (N - 2)/N. The proposed scheme is robust against control imprecisions and the non-collective decoherence, and its non-adiabatic property ensures less operation time. We demonstrate that our proposed scheme can be realized by utilizing only two-qubit interactions rather than many-qubit interactions. Our results reduce the complexity of practical implementation of holonomic quantum computation in experiments. We also discuss the physical implementation of our scheme in coupled microcavities.

  3. Using quantum process tomography to characterize decoherence in an analog electronic device

    NASA Astrophysics Data System (ADS)

    Ostrove, Corey; La Cour, Brian; Lanham, Andrew; Ott, Granville

    The mathematical structure of a universal gate-based quantum computer can be emulated faithfully on a classical electronic device using analog signals to represent a multi-qubit state. We describe a prototype device capable of performing a programmable sequence of single-qubit and controlled two-qubit gate operations on a pair of voltage signals representing the real and imaginary parts of a two-qubit quantum state. Analog filters and true-RMS voltage measurements are used to perform unitary and measurement gate operations. We characterize the degradation of the represented quantum state with successive gate operations by formally performing quantum process tomography to estimate the equivalent decoherence channel. Experimental measurements indicate that the performance of the device may be accurately modeled as an equivalent quantum operation closely resembling a depolarizing channel with a fidelity of over 99%. This work was supported by the Office of Naval Research under Grant No. N00014-14-1-0323.

  4. Superconducting quantum circuits at the surface code threshold for fault tolerance.

    PubMed

    Barends, R; Kelly, J; Megrant, A; Veitia, A; Sank, D; Jeffrey, E; White, T C; Mutus, J; Fowler, A G; Campbell, B; Chen, Y; Chen, Z; Chiaro, B; Dunsworth, A; Neill, C; O'Malley, P; Roushan, P; Vainsencher, A; Wenner, J; Korotkov, A N; Cleland, A N; Martinis, John M

    2014-04-24

    A quantum computer can solve hard problems, such as prime factoring, database searching and quantum simulation, at the cost of needing to protect fragile quantum states from error. Quantum error correction provides this protection by distributing a logical state among many physical quantum bits (qubits) by means of quantum entanglement. Superconductivity is a useful phenomenon in this regard, because it allows the construction of large quantum circuits and is compatible with microfabrication. For superconducting qubits, the surface code approach to quantum computing is a natural choice for error correction, because it uses only nearest-neighbour coupling and rapidly cycled entangling gates. The gate fidelity requirements are modest: the per-step fidelity threshold is only about 99 per cent. Here we demonstrate a universal set of logic gates in a superconducting multi-qubit processor, achieving an average single-qubit gate fidelity of 99.92 per cent and a two-qubit gate fidelity of up to 99.4 per cent. This places Josephson quantum computing at the fault-tolerance threshold for surface code error correction. Our quantum processor is a first step towards the surface code, using five qubits arranged in a linear array with nearest-neighbour coupling. As a further demonstration, we construct a five-qubit Greenberger-Horne-Zeilinger state using the complete circuit and full set of gates. The results demonstrate that Josephson quantum computing is a high-fidelity technology, with a clear path to scaling up to large-scale, fault-tolerant quantum circuits.

  5. Molecular nanomagnets with switchable coupling for quantum simulation

    DOE PAGES

    Chiesa, Alessandro; Whitehead, George F. S.; Carretta, Stefano; ...

    2014-12-11

    Molecular nanomagnets are attractive candidate qubits because of their wide inter- and intra-molecular tunability. Uniform magnetic pulses could be exploited to implement one- and two-qubit gates in presence of a properly engineered pattern of interactions, but the synthesis of suitable and potentially scalable supramolecular complexes has proven a very hard task. Indeed, no quantum algorithms have ever been implemented, not even a proof-of-principle two-qubit gate. In this paper we show that the magnetic couplings in two supramolecular {Cr7Ni}-Ni-{Cr7Ni} assemblies can be chemically engineered to fit the above requisites for conditional gates with no need of local control. Microscopic parameters aremore » determined by a recently developed many-body ab-initio approach and used to simulate quantum gates. We find that these systems are optimal for proof-of-principle two-qubit experiments and can be exploited as building blocks of scalable architectures for quantum simulation.« less

  6. Photonic ququart logic assisted by the cavity-QED system.

    PubMed

    Luo, Ming-Xing; Deng, Yun; Li, Hui-Ran; Ma, Song-Ya

    2015-08-14

    Universal quantum logic gates are important elements for a quantum computer. In contrast to previous constructions of qubit systems, we investigate the possibility of ququart systems (four-dimensional states) dependent on two DOFs of photon systems. We propose some useful one-parameter four-dimensional quantum transformations for the construction of universal ququart logic gates. The interface between the spin of a photon and an electron spin confined in a quantum dot embedded in a microcavity is applied to build universal ququart logic gates on the photon system with two freedoms. Our elementary controlled-ququart gates cost no more than 8 CNOT gates in a qubit system, which is far less than the 104 CNOT gates required for a general four-qubit logic gate. The ququart logic is also used to generate useful hyperentanglements and hyperentanglement-assisted quantum error-correcting code, which may be available in modern physical technology.

  7. Photonic ququart logic assisted by the cavity-QED system

    PubMed Central

    Luo, Ming-Xing; Deng, Yun; Li, Hui-Ran; Ma, Song-Ya

    2015-01-01

    Universal quantum logic gates are important elements for a quantum computer. In contrast to previous constructions of qubit systems, we investigate the possibility of ququart systems (four-dimensional states) dependent on two DOFs of photon systems. We propose some useful one-parameter four-dimensional quantum transformations for the construction of universal ququart logic gates. The interface between the spin of a photon and an electron spin confined in a quantum dot embedded in a microcavity is applied to build universal ququart logic gates on the photon system with two freedoms. Our elementary controlled-ququart gates cost no more than 8 CNOT gates in a qubit system, which is far less than the 104 CNOT gates required for a general four-qubit logic gate. The ququart logic is also used to generate useful hyperentanglements and hyperentanglement-assisted quantum error-correcting code, which may be available in modern physical technology. PMID:26272869

  8. SCB Quantum Computers Using iSWAP and 1-Qubit Rotations

    NASA Technical Reports Server (NTRS)

    Williams, Colin; Echtemach, Pierre

    2005-01-01

    Units of superconducting circuitry that exploit the concept of the single- Cooper-pair box (SCB) have been built and are undergoing testing as prototypes of logic gates that could, in principle, constitute building blocks of clocked quantum computers. These units utilize quantized charge states as the quantum information-bearing degrees of freedom. An SCB is an artificial two-level quantum system that comprises a nanoscale superconducting electrode connected to a reservoir of Cooper-pair charges via a Josephson junction. The logical quantum states of the device, .0. and .1., are implemented physically as a pair of charge-number states that differ by 2e (where e is the charge of an electron). Typically, some 109 Cooper pairs are involved. Transitions between the logical states are accomplished by tunneling of Cooper pairs through the Josephson junction. Although the two-level system contains a macroscopic number of charges, in the superconducting regime, they behave collectively, as a Bose-Einstein condensate, making possible a coherent superposition of the two logical states. This possibility makes the SCB a candidate for the physical implementation of a qubit. A set of quantum logic operations and the gates that implement them is characterized as universal if, in principle, one can form combinations of the operations in the set to implement any desired quantum computation. To be able to design a practical quantum computer, one must first specify how to decompose any valid quantum computation into a sequence of elementary 1- and 2-qubit quantum gates that are universal and that can be realized in hardware that is feasible to fabricate. Traditionally, the set of universal gates has been taken to be the set of all 1-qubit quantum gates in conjunction with the controlled-NOT (CNOT) gate, which is a 2-qubit gate. Also, it has been known for some time that the SWAP gate, which implements square root of the simple 2-qubit exchange interaction, is as computationally universal as is the CNOT operation.

  9. Topologically protected gates for quantum computation with non-Abelian anyons in the Pfaffian quantum Hall state

    NASA Astrophysics Data System (ADS)

    Georgiev, Lachezar S.

    2006-12-01

    We extend the topological quantum computation scheme using the Pfaffian quantum Hall state, which has been recently proposed by Das Sarma , in a way that might potentially allow for the topologically protected construction of a universal set of quantum gates. We construct, for the first time, a topologically protected controlled-NOT gate, which is entirely based on quasihole braidings of Pfaffian qubits. All single-qubit gates, except for the π/8 gate, are also explicitly implemented by quasihole braidings. Instead of the π/8 gate we try to construct a topologically protected Toffoli gate, in terms of the controlled-phase gate and CNOT or by a braid-group-based controlled-controlled- Z precursor. We also give a topologically protected realization of the Bravyi-Kitaev two-qubit gate g3 .

  10. CNOT sequences for heterogeneous spin qubit architectures in a noisy environment

    NASA Astrophysics Data System (ADS)

    Ferraro, Elena; Fanciulli, Marco; de Michielis, Marco

    Explicit CNOT gate sequences for two-qubits mixed architectures are presented in view of applications for large-scale quantum computation. Different kinds of coded spin qubits are combined allowing indeed the favorable physical properties of each to be employed. The building blocks for such composite systems are qubit architectures based on the electronic spin in electrostatically defined semiconductor quantum dots. They are the single quantum dot spin qubit, the double quantum dot singlet-triplet qubit and the double quantum dot hybrid qubit. The effective Hamiltonian models expressed by only exchange interactions between pair of electrons are exploited in different geometrical configurations. A numerical genetic algorithm that takes into account the realistic physical parameters involved is adopted. Gate operations are addressed by modulating the tunneling barriers and the energy offsets between different couple of quantum dots. Gate infidelities are calculated considering limitations due to unideal control of gate sequence pulses, hyperfine interaction and unwanted charge coupling. Second affiliation: Dipartimento di Scienza dei Materiali, University of Milano Bicocca, Via R. Cozzi, 55, 20126 Milano, Italy.

  11. Quantum computing gates via optimal control

    NASA Astrophysics Data System (ADS)

    Atia, Yosi; Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2014-10-01

    We demonstrate the use of optimal control to design two entropy-manipulating quantum gates which are more complex than the corresponding, commonly used, gates, such as CNOT and Toffoli (CCNOT): A two-qubit gate called polarization exchange (PE) and a three-qubit gate called polarization compression (COMP) were designed using GRAPE, an optimal control algorithm. Both gates were designed for a three-spin system. Our design provided efficient and robust nuclear magnetic resonance (NMR) radio frequency (RF) pulses for 13C2-trichloroethylene (TCE), our chosen three-spin system. We then experimentally applied these two quantum gates onto TCE at the NMR lab. Such design of these gates and others could be relevant for near-future applications of quantum computing devices.

  12. Demonstration of two-qubit algorithms with a superconducting quantum processor.

    PubMed

    DiCarlo, L; Chow, J M; Gambetta, J M; Bishop, Lev S; Johnson, B R; Schuster, D I; Majer, J; Blais, A; Frunzio, L; Girvin, S M; Schoelkopf, R J

    2009-07-09

    Quantum computers, which harness the superposition and entanglement of physical states, could outperform their classical counterparts in solving problems with technological impact-such as factoring large numbers and searching databases. A quantum processor executes algorithms by applying a programmable sequence of gates to an initialized register of qubits, which coherently evolves into a final state containing the result of the computation. Building a quantum processor is challenging because of the need to meet simultaneously requirements that are in conflict: state preparation, long coherence times, universal gate operations and qubit readout. Processors based on a few qubits have been demonstrated using nuclear magnetic resonance, cold ion trap and optical systems, but a solid-state realization has remained an outstanding challenge. Here we demonstrate a two-qubit superconducting processor and the implementation of the Grover search and Deutsch-Jozsa quantum algorithms. We use a two-qubit interaction, tunable in strength by two orders of magnitude on nanosecond timescales, which is mediated by a cavity bus in a circuit quantum electrodynamics architecture. This interaction allows the generation of highly entangled states with concurrence up to 94 per cent. Although this processor constitutes an important step in quantum computing with integrated circuits, continuing efforts to increase qubit coherence times, gate performance and register size will be required to fulfil the promise of a scalable technology.

  13. A high-speed tunable beam splitter for feed-forward photonic quantum information processing.

    PubMed

    Ma, Xiao-Song; Zotter, Stefan; Tetik, Nuray; Qarry, Angie; Jennewein, Thomas; Zeilinger, Anton

    2011-11-07

    We realize quantum gates for path qubits with a high-speed, polarization-independent and tunable beam splitter. Two electro-optical modulators act in a Mach-Zehnder interferometer as high-speed phase shifters and rapidly tune its splitting ratio. We test its performance with heralded single photons, observing a polarization-independent interference contrast above 95%. The switching time is about 5.6 ns, and a maximal repetition rate is 2.5 MHz. We demonstrate tunable feed-forward operations of a single-qubit gate of path-encoded qubits and a two-qubit gate via measurement-induced interaction between two photons.

  14. Characterizing a four-qubit planar lattice for arbitrary error detection

    NASA Astrophysics Data System (ADS)

    Chow, Jerry M.; Srinivasan, Srikanth J.; Magesan, Easwar; Córcoles, A. D.; Abraham, David W.; Gambetta, Jay M.; Steffen, Matthias

    2015-05-01

    Quantum error correction will be a necessary component towards realizing scalable quantum computers with physical qubits. Theoretically, it is possible to perform arbitrarily long computations if the error rate is below a threshold value. The two-dimensional surface code permits relatively high fault-tolerant thresholds at the ~1% level, and only requires a latticed network of qubits with nearest-neighbor interactions. Superconducting qubits have continued to steadily improve in coherence, gate, and readout fidelities, to become a leading candidate for implementation into larger quantum networks. Here we describe characterization experiments and calibration of a system of four superconducting qubits arranged in a planar lattice, amenable to the surface code. Insights into the particular qubit design and comparison between simulated parameters and experimentally determined parameters are given. Single- and two-qubit gate tune-up procedures are described and results for simultaneously benchmarking pairs of two-qubit gates are given. All controls are eventually used for an arbitrary error detection protocol described in separate work [Corcoles et al., Nature Communications, 6, 2015].

  15. Resonantly driven CNOT gate for electron spins.

    PubMed

    Zajac, D M; Sigillito, A J; Russ, M; Borjans, F; Taylor, J M; Burkard, G; Petta, J R

    2018-01-26

    Single-qubit rotations and two-qubit CNOT operations are crucial ingredients for universal quantum computing. Although high-fidelity single-qubit operations have been achieved using the electron spin degree of freedom, realizing a robust CNOT gate has been challenging because of rapid nuclear spin dephasing and charge noise. We demonstrate an efficient resonantly driven CNOT gate for electron spins in silicon. Our platform achieves single-qubit rotations with fidelities greater than 99%, as verified by randomized benchmarking. Gate control of the exchange coupling allows a quantum CNOT gate to be implemented with resonant driving in ~200 nanoseconds. We used the CNOT gate to generate a Bell state with 78% fidelity (corrected for errors in state preparation and measurement). Our quantum dot device architecture enables multi-qubit algorithms in silicon. Copyright © 2018, The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. Implementation of a quantum controlled-SWAP gate with photonic circuits

    NASA Astrophysics Data System (ADS)

    Ono, Takafumi; Okamoto, Ryo; Tanida, Masato; Hofmann, Holger F.; Takeuchi, Shigeki

    2017-03-01

    Quantum information science addresses how the processing and transmission of information are affected by uniquely quantum mechanical phenomena. Combination of two-qubit gates has been used to realize quantum circuits, however, scalability is becoming a critical problem. The use of three-qubit gates may simplify the structure of quantum circuits dramatically. Among them, the controlled-SWAP (Fredkin) gates are essential since they can be directly applied to important protocols, e.g., error correction, fingerprinting, and optimal cloning. Here we report a realization of the Fredkin gate for photonic qubits. We achieve a fidelity of 0.85 in the computational basis and an output state fidelity of 0.81 for a 3-photon Greenberger-Horne-Zeilinger state. The estimated process fidelity of 0.77 indicates that our Fredkin gate can be applied to various quantum tasks.

  17. Error-Transparent Quantum Gates for Small Logical Qubit Architectures

    NASA Astrophysics Data System (ADS)

    Kapit, Eliot

    2018-02-01

    One of the largest obstacles to building a quantum computer is gate error, where the physical evolution of the state of a qubit or group of qubits during a gate operation does not match the intended unitary transformation. Gate error stems from a combination of control errors and random single qubit errors from interaction with the environment. While great strides have been made in mitigating control errors, intrinsic qubit error remains a serious problem that limits gate fidelity in modern qubit architectures. Simultaneously, recent developments of small error-corrected logical qubit devices promise significant increases in logical state lifetime, but translating those improvements into increases in gate fidelity is a complex challenge. In this Letter, we construct protocols for gates on and between small logical qubit devices which inherit the parent device's tolerance to single qubit errors which occur at any time before or during the gate. We consider two such devices, a passive implementation of the three-qubit bit flip code, and the author's own [E. Kapit, Phys. Rev. Lett. 116, 150501 (2016), 10.1103/PhysRevLett.116.150501] very small logical qubit (VSLQ) design, and propose error-tolerant gate sets for both. The effective logical gate error rate in these models displays superlinear error reduction with linear increases in single qubit lifetime, proving that passive error correction is capable of increasing gate fidelity. Using a standard phenomenological noise model for superconducting qubits, we demonstrate a realistic, universal one- and two-qubit gate set for the VSLQ, with error rates an order of magnitude lower than those for same-duration operations on single qubits or pairs of qubits. These developments further suggest that incorporating small logical qubits into a measurement based code could substantially improve code performance.

  18. An efficient quantum circuit analyser on qubits and qudits

    NASA Astrophysics Data System (ADS)

    Loke, T.; Wang, J. B.

    2011-10-01

    This paper presents a highly efficient decomposition scheme and its associated Mathematica notebook for the analysis of complicated quantum circuits comprised of single/multiple qubit and qudit quantum gates. In particular, this scheme reduces the evaluation of multiple unitary gate operations with many conditionals to just two matrix additions, regardless of the number of conditionals or gate dimensions. This improves significantly the capability of a quantum circuit analyser implemented in a classical computer. This is also the first efficient quantum circuit analyser to include qudit quantum logic gates.

  19. Gatemon Benchmarking and Two-Qubit Operation

    NASA Astrophysics Data System (ADS)

    Casparis, Lucas; Larsen, Thorvald; Olsen, Michael; Petersson, Karl; Kuemmeth, Ferdinand; Krogstrup, Peter; Nygard, Jesper; Marcus, Charles

    Recent experiments have demonstrated superconducting transmon qubits with semiconductor nanowire Josephson junctions. These hybrid gatemon qubits utilize field effect tunability singular to semiconductors to allow complete qubit control using gate voltages, potentially a technological advantage over conventional flux-controlled transmons. Here, we present experiments with a two-qubit gatemon circuit. We characterize qubit coherence and stability and use randomized benchmarking to demonstrate single-qubit gate errors of ~0.5 % for all gates, including voltage-controlled Z rotations. We show coherent capacitive coupling between two gatemons and coherent SWAP operations. Finally, we perform a two-qubit controlled-phase gate with an estimated fidelity of ~91 %, demonstrating the potential of gatemon qubits for building scalable quantum processors. We acknowledge financial support from Microsoft Project Q and the Danish National Research Foundation.

  20. Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities

    PubMed Central

    Hu, Shi; Cui, Wen-Xue; Wang, Dong-Yang; Bai, Cheng-Hua; Guo, Qi; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2015-01-01

    Teleportation of unitary operations can be viewed as a quantum remote control. The remote realization of robust multiqubit logic gates among distant long-lived qubit registers is a key challenge for quantum computation and quantum information processing. Here we propose a simple and deterministic scheme for teleportation of a Toffoli gate among three spatially separated electron spin qubits in optical microcavities by using local linear optical operations, an auxiliary electron spin, two circularly-polarized entangled photon pairs, photon measurements, and classical communication. We assess the feasibility of the scheme and show that the scheme can be achieved with high average fidelity under the current technology. The scheme opens promising perspectives for constructing long-distance quantum communication and quantum computation networks with solid-state qubits. PMID:26225781

  1. Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities.

    PubMed

    Hu, Shi; Cui, Wen-Xue; Wang, Dong-Yang; Bai, Cheng-Hua; Guo, Qi; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2015-07-30

    Teleportation of unitary operations can be viewed as a quantum remote control. The remote realization of robust multiqubit logic gates among distant long-lived qubit registers is a key challenge for quantum computation and quantum information processing. Here we propose a simple and deterministic scheme for teleportation of a Toffoli gate among three spatially separated electron spin qubits in optical microcavities by using local linear optical operations, an auxiliary electron spin, two circularly-polarized entangled photon pairs, photon measurements, and classical communication. We assess the feasibility of the scheme and show that the scheme can be achieved with high average fidelity under the current technology. The scheme opens promising perspectives for constructing long-distance quantum communication and quantum computation networks with solid-state qubits.

  2. Hybrid quantum logic and a test of Bell's inequality using two different atomic isotopes.

    PubMed

    Ballance, C J; Schäfer, V M; Home, J P; Szwer, D J; Webster, S C; Allcock, D T C; Linke, N M; Harty, T P; Aude Craik, D P L; Stacey, D N; Steane, A M; Lucas, D M

    2015-12-17

    Entanglement is one of the most fundamental properties of quantum mechanics, and is the key resource for quantum information processing (QIP). Bipartite entangled states of identical particles have been generated and studied in several experiments, and post-selected or heralded entangled states involving pairs of photons, single photons and single atoms, or different nuclei in the solid state, have also been produced. Here we use a deterministic quantum logic gate to generate a 'hybrid' entangled state of two trapped-ion qubits held in different isotopes of calcium, perform full tomography of the state produced, and make a test of Bell's inequality with non-identical atoms. We use a laser-driven two-qubit gate, whose mechanism is insensitive to the qubits' energy splittings, to produce a maximally entangled state of one (40)Ca(+) qubit and one (43)Ca(+) qubit, held 3.5 micrometres apart in the same ion trap, with 99.8 ± 0.6 per cent fidelity. We test the CHSH (Clauser-Horne-Shimony-Holt) version of Bell's inequality for this novel entangled state and find that it is violated by 15 standard deviations; in this test, we close the detection loophole but not the locality loophole. Mixed-species quantum logic is a powerful technique for the construction of a quantum computer based on trapped ions, as it allows protection of memory qubits while other qubits undergo logic operations or are used as photonic interfaces to other processing units. The entangling gate mechanism used here can also be applied to qubits stored in different atomic elements; this would allow both memory and logic gate errors caused by photon scattering to be reduced below the levels required for fault-tolerant quantum error correction, which is an essential prerequisite for general-purpose quantum computing.

  3. High-Fidelity Single-Shot Toffoli Gate via Quantum Control.

    PubMed

    Zahedinejad, Ehsan; Ghosh, Joydip; Sanders, Barry C

    2015-05-22

    A single-shot Toffoli, or controlled-controlled-not, gate is desirable for classical and quantum information processing. The Toffoli gate alone is universal for reversible computing and, accompanied by the Hadamard gate, forms a universal gate set for quantum computing. The Toffoli gate is also a key ingredient for (nontopological) quantum error correction. Currently Toffoli gates are achieved by decomposing into sequentially implemented single- and two-qubit gates, which require much longer times and yields lower overall fidelities compared to a single-shot implementation. We develop a quantum-control procedure to construct a single-shot Toffoli gate for three nearest-neighbor-coupled superconducting transmon systems such that the fidelity is 99.9% and is as fast as an entangling two-qubit gate under the same realistic conditions. The gate is achieved by a nongreedy quantum control procedure using our enhanced version of the differential evolution algorithm.

  4. Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions

    PubMed Central

    Rong, Xing; Geng, Jianpei; Shi, Fazhan; Liu, Ying; Xu, Kebiao; Ma, Wenchao; Kong, Fei; Jiang, Zhen; Wu, Yang; Du, Jiangfeng

    2015-01-01

    Quantum computation provides great speedup over its classical counterpart for certain problems. One of the key challenges for quantum computation is to realize precise control of the quantum system in the presence of noise. Control of the spin-qubits in solids with the accuracy required by fault-tolerant quantum computation under ambient conditions remains elusive. Here, we quantitatively characterize the source of noise during quantum gate operation and demonstrate strategies to suppress the effect of these. A universal set of logic gates in a nitrogen-vacancy centre in diamond are reported with an average single-qubit gate fidelity of 0.999952 and two-qubit gate fidelity of 0.992. These high control fidelities have been achieved at room temperature in naturally abundant 13C diamond via composite pulses and an optimized control method. PMID:26602456

  5. Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity.

    PubMed

    Wei, Hai-Rui; Deng, Fu-Guo

    2013-07-29

    We investigate the possibility of achieving scalable photonic quantum computing by the giant optical circular birefringence induced by a quantum-dot spin in a double-sided optical microcavity as a result of cavity quantum electrodynamics. We construct a deterministic controlled-not gate on two photonic qubits by two single-photon input-output processes and the readout on an electron-medium spin confined in an optical resonant microcavity. This idea could be applied to multi-qubit gates on photonic qubits and we give the quantum circuit for a three-photon Toffoli gate. High fidelities and high efficiencies could be achieved when the side leakage to the cavity loss rate is low. It is worth pointing out that our devices work in both the strong and the weak coupling regimes.

  6. Adiabatically-controlled two-qubit gates using quantum dot hybrid qubits

    NASA Astrophysics Data System (ADS)

    Frees, Adam; Gamble, John King; Friesen, Mark; Coppersmith, S. N.

    With its recent success in experimentally performing single-qubit gates, the quantum dot hybrid qubit is an excellent candidate for two-qubit gating. Here, we propose an operational scheme which exploits the electrostatic properties of such qubits to yield a tunable effective coupling in a system with a static capacitive coupling between the dots. We then use numerically calculated fidelities to demonstrate the effect of charge noise on single- and two-qubit gates with this scheme. Finally, we show steps towards optimizing the gates fidelities, and discuss ways that the scheme could be further improved. This work was supported in part by ARO (W911NF-12-0607) (W911NF-12-R-0012), NSF (PHY-1104660), ONR (N00014-15-1-0029). The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  7. Simple All-Microwave Entangling Gate for Fixed-Frequency Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Chow, Jerry M.; Córcoles, A. D.; Gambetta, Jay M.; Rigetti, Chad; Johnson, B. R.; Smolin, John A.; Rozen, J. R.; Keefe, George A.; Rothwell, Mary B.; Ketchen, Mark B.; Steffen, M.

    2011-08-01

    We demonstrate an all-microwave two-qubit gate on superconducting qubits which are fixed in frequency at optimal bias points. The gate requires no additional subcircuitry and is tunable via the amplitude of microwave irradiation on one qubit at the transition frequency of the other. We use the gate to generate entangled states with a maximal extracted concurrence of 0.88, and quantum process tomography reveals a gate fidelity of 81%.

  8. Simple all-microwave entangling gate for fixed-frequency superconducting qubits.

    PubMed

    Chow, Jerry M; Córcoles, A D; Gambetta, Jay M; Rigetti, Chad; Johnson, B R; Smolin, John A; Rozen, J R; Keefe, George A; Rothwell, Mary B; Ketchen, Mark B; Steffen, M

    2011-08-19

    We demonstrate an all-microwave two-qubit gate on superconducting qubits which are fixed in frequency at optimal bias points. The gate requires no additional subcircuitry and is tunable via the amplitude of microwave irradiation on one qubit at the transition frequency of the other. We use the gate to generate entangled states with a maximal extracted concurrence of 0.88, and quantum process tomography reveals a gate fidelity of 81%. © 2011 American Physical Society

  9. Single-shot readout of accumulation mode Si/SiGe spin qubits using RF reflectometry

    NASA Astrophysics Data System (ADS)

    Volk, Christian; Martins, Frederico; Malinowski, Filip; Marcus, Charles M.; Kuemmeth, Ferdinand

    Spin qubits based on gate-defined quantum dots are promising systems for realizing quantum computation. Due to their low concentration of nuclear-spin-carrying isotopes, Si/SiGe heterostructures are of particular interest. While high fidelities have been reported for single-qubit and two-qubit gate operations, qubit initialization and measurement times are relatively slow. In order to develop fast read-out techniques compatible with the operation of spin qubits, we characterize double and triple quantum dots confined in undoped Si/Si0.7Ge0.3 heterostructures using accumulation and depletion gates and a nearby RF charge sensor dot. We implement a RF reflectometry technique that allows single-shot charge read-out at integration times on the order of a few μs. We show our recent advancement towards implementing spin qubits in these structures, including spin-selective single-shot read-out.

  10. Measurement-free implementations of small-scale surface codes for quantum-dot qubits

    NASA Astrophysics Data System (ADS)

    Ercan, H. Ekmel; Ghosh, Joydip; Crow, Daniel; Premakumar, Vickram N.; Joynt, Robert; Friesen, Mark; Coppersmith, S. N.

    2018-01-01

    The performance of quantum-error-correction schemes depends sensitively on the physical realizations of the qubits and the implementations of various operations. For example, in quantum-dot spin qubits, readout is typically much slower than gate operations, and conventional surface-code implementations that rely heavily on syndrome measurements could therefore be challenging. However, fast and accurate reset of quantum-dot qubits, without readout, can be achieved via tunneling to a reservoir. Here we propose small-scale surface-code implementations for which syndrome measurements are replaced by a combination of Toffoli gates and qubit reset. For quantum-dot qubits, this enables much faster error correction than measurement-based schemes, but requires additional ancilla qubits and non-nearest-neighbor interactions. We have performed numerical simulations of two different coding schemes, obtaining error thresholds on the orders of 10-2 for a one-dimensional architecture that only corrects bit-flip errors and 10-4 for a two-dimensional architecture that corrects bit- and phase-flip errors.

  11. Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses.

    PubMed

    Clark, Susan M; Fu, Kai-Mei C; Ladd, Thaddeus D; Yamamoto, Yoshihisa

    2007-07-27

    We describe a fast quantum computer based on optically controlled electron spins in charged quantum dots that are coupled to microcavities. This scheme uses broadband optical pulses to rotate electron spins and provide the clock signal to the system. Nonlocal two-qubit gates are performed by phase shifts induced by electron spins on laser pulses propagating along a shared waveguide. Numerical simulations of this scheme demonstrate high-fidelity single-qubit and two-qubit gates with operation times comparable to the inverse Zeeman frequency.

  12. Ultrafast quantum computation in ultrastrongly coupled circuit QED systems.

    PubMed

    Wang, Yimin; Guo, Chu; Zhang, Guo-Qiang; Wang, Gangcheng; Wu, Chunfeng

    2017-03-10

    The latest technological progress of achieving the ultrastrong-coupling regime in circuit quantum electrodynamics (QED) systems has greatly promoted the developments of quantum physics, where novel quantum optics phenomena and potential computational benefits have been predicted. Here, we propose a scheme to accelerate the nontrivial two-qubit phase gate in a circuit QED system, where superconducting flux qubits are ultrastrongly coupled to a transmission line resonator (TLR), and two more TLRs are coupled to the ultrastrongly-coupled system for assistant. The nontrivial unconventional geometric phase gate between the two flux qubits is achieved based on close-loop displacements of the three-mode intracavity fields. Moreover, as there are three resonators contributing to the phase accumulation, the requirement of the coupling strength to realize the two-qubit gate can be reduced. Further reduction in the coupling strength to achieve a specific controlled-phase gate can be realized by adding more auxiliary resonators to the ultrastrongly-coupled system through superconducting quantum interference devices. We also present a study of our scheme with realistic parameters considering imperfect controls and noisy environment. Our scheme possesses the merits of ultrafastness and noise-tolerance due to the advantages of geometric phases.

  13. Ultrafast quantum computation in ultrastrongly coupled circuit QED systems

    PubMed Central

    Wang, Yimin; Guo, Chu; Zhang, Guo-Qiang; Wang, Gangcheng; Wu, Chunfeng

    2017-01-01

    The latest technological progress of achieving the ultrastrong-coupling regime in circuit quantum electrodynamics (QED) systems has greatly promoted the developments of quantum physics, where novel quantum optics phenomena and potential computational benefits have been predicted. Here, we propose a scheme to accelerate the nontrivial two-qubit phase gate in a circuit QED system, where superconducting flux qubits are ultrastrongly coupled to a transmission line resonator (TLR), and two more TLRs are coupled to the ultrastrongly-coupled system for assistant. The nontrivial unconventional geometric phase gate between the two flux qubits is achieved based on close-loop displacements of the three-mode intracavity fields. Moreover, as there are three resonators contributing to the phase accumulation, the requirement of the coupling strength to realize the two-qubit gate can be reduced. Further reduction in the coupling strength to achieve a specific controlled-phase gate can be realized by adding more auxiliary resonators to the ultrastrongly-coupled system through superconducting quantum interference devices. We also present a study of our scheme with realistic parameters considering imperfect controls and noisy environment. Our scheme possesses the merits of ultrafastness and noise-tolerance due to the advantages of geometric phases. PMID:28281654

  14. Controlled Quantum Operations of a Semiconductor Three-Qubit System

    NASA Astrophysics Data System (ADS)

    Li, Hai-Ou; Cao, Gang; Yu, Guo-Dong; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping

    2018-02-01

    In a specially designed semiconductor device consisting of three capacitively coupled double quantum dots, we achieve strong and tunable coupling between a target qubit and two control qubits. We demonstrate how to completely switch on and off the target qubit's coherent rotations by presetting two control qubits' states. A Toffoli gate is, therefore, possible based on these control effects. This research paves a way for realizing full quantum-logic operations in semiconductor multiqubit systems.

  15. Scalable uniform construction of highly conditional quantum gates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Svetoslav S.; Vitanov, Nikolay V.

    2011-08-15

    We present a scalable uniform technique for the construction of highly conditional multiply-controlled-not quantum gates of trapped ion qubits, such as the Toffoli gate, without using ancilla states and circuits of an exorbitant number of concatenated one- and two-qubit gates. Apart from the initial dressing of the internal qubit states with vibrational phonons and the final restoration of the phonon ground state, our technique requires the application of just a single composite pulse on the target qubit and is applicable both in and outside the Lamb-Dicke regime. We design special narrowband composite pulses, which suppress all transitions but the conditionalmore » transition of the target qubit; moreover, these composite pulses significantly improve the spatial addressing selectivity.« less

  16. High-fidelity quantum gates on quantum-dot-confined electron spins in low-Q optical microcavities

    NASA Astrophysics Data System (ADS)

    Li, Tao; Gao, Jian-Cun; Deng, Fu-Guo; Long, Gui-Lu

    2018-04-01

    We propose some high-fidelity quantum circuits for quantum computing on electron spins of quantum dots (QD) embedded in low-Q optical microcavities, including the two-qubit controlled-NOT gate and the multiple-target-qubit controlled-NOT gate. The fidelities of both quantum gates can, in principle, be robust to imperfections involved in a practical input-output process of a single photon by converting the infidelity into a heralded error. Furthermore, the influence of two different decay channels is detailed. By decreasing the quality factor of the present microcavity, we can largely increase the efficiencies of these quantum gates while their high fidelities remain unaffected. This proposal also has another advantage regarding its experimental feasibility, in that both quantum gates can work faithfully even when the QD-cavity systems are non-identical, which is of particular importance in current semiconductor QD technology.

  17. Topological Quantum Buses: Coherent Quantum Information Transfer between Topological and Conventional Qubits

    NASA Astrophysics Data System (ADS)

    Bonderson, Parsa; Lutchyn, Roman M.

    2011-04-01

    We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems.

  18. niSWAP and NTCP gates realized in a circuit QED system

    NASA Astrophysics Data System (ADS)

    Essammouni, K.; Chouikh, A.; Said, T.; Bennai, M.

    Based on superconducting qubit coupled to a resonator driven by a strong microwave field, we propose a method to implement two quantum logic gates (niSWAP and NTCP gates) of one qubit simultaneously controlling n qubits selected from N qubits in a circuit QED (1 < n < N) by introducing qubit-qubit interaction. The interaction between the qubits and the circuit QED can be achieved by tuning the gate voltage and the external flux. The operation times of the logic gates are much smaller than the decoherence time and dephasing time. Moreover, the numerical simulation under the influence of the gates operations shows that the scheme could be achieved efficiently with presently available techniques.

  19. Scheme for Quantum Computing Immune to Decoherence

    NASA Technical Reports Server (NTRS)

    Williams, Colin; Vatan, Farrokh

    2008-01-01

    A constructive scheme has been devised to enable mapping of any quantum computation into a spintronic circuit in which the computation is encoded in a basis that is, in principle, immune to quantum decoherence. The scheme is implemented by an algorithm that utilizes multiple physical spins to encode each logical bit in such a way that collective errors affecting all the physical spins do not disturb the logical bit. The scheme is expected to be of use to experimenters working on spintronic implementations of quantum logic. Spintronic computing devices use quantum-mechanical spins (typically, electron spins) to encode logical bits. Bits thus encoded (denoted qubits) are potentially susceptible to errors caused by noise and decoherence. The traditional model of quantum computation is based partly on the assumption that each qubit is implemented by use of a single two-state quantum system, such as an electron or other spin-1.2 particle. It can be surprisingly difficult to achieve certain gate operations . most notably, those of arbitrary 1-qubit gates . in spintronic hardware according to this model. However, ironically, certain 2-qubit interactions (in particular, spin-spin exchange interactions) can be achieved relatively easily in spintronic hardware. Therefore, it would be fortunate if it were possible to implement any 1-qubit gate by use of a spin-spin exchange interaction. While such a direct representation is not possible, it is possible to achieve an arbitrary 1-qubit gate indirectly by means of a sequence of four spin-spin exchange interactions, which could be implemented by use of four exchange gates. Accordingly, the present scheme provides for mapping any 1-qubit gate in the logical basis into an equivalent sequence of at most four spin-spin exchange interactions in the physical (encoded) basis. The complexity of the mathematical derivation of the scheme from basic quantum principles precludes a description within this article; it must suffice to report that the derivation provides explicit constructions for finding the exchange couplings in the physical basis needed to implement any arbitrary 1-qubit gate. These constructions lead to spintronic encodings of quantum logic that are more efficient than those of a previously published scheme that utilizes a universal but fixed set of gates.

  20. Quantum controlled-Z gate for weakly interacting qubits

    NASA Astrophysics Data System (ADS)

    Mičuda, Michal; Stárek, Robert; Straka, Ivo; Miková, Martina; Dušek, Miloslav; Ježek, Miroslav; Filip, Radim; Fiurášek, Jaromír

    2015-08-01

    We propose and experimentally demonstrate a scheme for the implementation of a maximally entangling quantum controlled-Z gate between two weakly interacting systems. We conditionally enhance the interqubit coupling by quantum interference. Both before and after the interqubit interaction, one of the qubits is coherently coupled to an auxiliary quantum system, and finally it is projected back onto qubit subspace. We experimentally verify the practical feasibility of this technique by using a linear optical setup with weak interferometric coupling between single-photon qubits. Our procedure is universally applicable to a wide range of physical platforms including hybrid systems such as atomic clouds or optomechanical oscillators coupled to light.

  1. Parallel Photonic Quantum Computation Assisted by Quantum Dots in One-Side Optical Microcavities

    PubMed Central

    Luo, Ming-Xing; Wang, Xiaojun

    2014-01-01

    Universal quantum logic gates are important elements for a quantum computer. In contrast to previous constructions on one degree of freedom (DOF) of quantum systems, we investigate the possibility of parallel quantum computations dependent on two DOFs of photon systems. We construct deterministic hyper-controlled-not (hyper-CNOT) gates operating on the spatial-mode and the polarization DOFs of two-photon or one-photon systems by exploring the giant optical circular birefringence induced by quantum-dot spins in one-sided optical microcavities. These hyper-CNOT gates show that the quantum states of two DOFs can be viewed as independent qubits without requiring auxiliary DOFs in theory. This result can reduce the quantum resources by half for quantum applications with large qubit systems, such as the quantum Shor algorithm. PMID:25030424

  2. Parallel photonic quantum computation assisted by quantum dots in one-side optical microcavities.

    PubMed

    Luo, Ming-Xing; Wang, Xiaojun

    2014-07-17

    Universal quantum logic gates are important elements for a quantum computer. In contrast to previous constructions on one degree of freedom (DOF) of quantum systems, we investigate the possibility of parallel quantum computations dependent on two DOFs of photon systems. We construct deterministic hyper-controlled-not (hyper-CNOT) gates operating on the spatial-mode and the polarization DOFs of two-photon or one-photon systems by exploring the giant optical circular birefringence induced by quantum-dot spins in one-sided optical microcavities. These hyper-CNOT gates show that the quantum states of two DOFs can be viewed as independent qubits without requiring auxiliary DOFs in theory. This result can reduce the quantum resources by half for quantum applications with large qubit systems, such as the quantum Shor algorithm.

  3. Realization of quantum gates with multiple control qubits or multiple target qubits in a cavity

    NASA Astrophysics Data System (ADS)

    Waseem, Muhammad; Irfan, Muhammad; Qamar, Shahid

    2015-06-01

    We propose a scheme to realize a three-qubit controlled phase gate and a multi-qubit controlled NOT gate of one qubit simultaneously controlling n-target qubits with a four-level quantum system in a cavity. The implementation time for multi-qubit controlled NOT gate is independent of the number of qubit. Three-qubit phase gate is generalized to n-qubit phase gate with multiple control qubits. The number of steps reduces linearly as compared to conventional gate decomposition method. Our scheme can be applied to various types of physical systems such as superconducting qubits coupled to a resonator and trapped atoms in a cavity. Our scheme does not require adjustment of level spacing during the gate implementation. We also show the implementation of Deutsch-Joza algorithm. Finally, we discuss the imperfections due to cavity decay and the possibility of physical implementation of our scheme.

  4. Coupling two spin qubits with a high-impedance resonator

    NASA Astrophysics Data System (ADS)

    Harvey, S. P.; Bøttcher, C. G. L.; Orona, L. A.; Bartlett, S. D.; Doherty, A. C.; Yacoby, A.

    2018-06-01

    Fast, high-fidelity single and two-qubit gates are essential to building a viable quantum information processor, but achieving both in the same system has proved challenging for spin qubits. We propose and analyze an approach to perform a long-distance two-qubit controlled phase (CPHASE) gate between two singlet-triplet qubits using an electromagnetic resonator to mediate their interaction. The qubits couple longitudinally to the resonator, and by driving the qubits near the resonator's frequency, they can be made to acquire a state-dependent geometric phase that leads to a CPHASE gate independent of the initial state of the resonator. Using high impedance resonators enables gate times of order 10 ns while maintaining long coherence times. Simulations show average gate fidelities of over 96% using currently achievable experimental parameters and over 99% using state-of-the-art resonator technology. After optimizing the gate fidelity in terms of parameters tuneable in situ, we find it takes a simple power-law form in terms of the resonator's impedance and quality and the qubits' noise bath.

  5. Counterfactual distributed controlled-phase gate for quantum-dot spin qubits in double-sided optical microcavities

    NASA Astrophysics Data System (ADS)

    Guo, Qi; Cheng, Liu-Yong; Chen, Li; Wang, Hong-Fu; Zhang, Shou

    2014-10-01

    The existing distributed quantum gates required physical particles to be transmitted between two distant nodes in the quantum network. We here demonstrate the possibility to implement distributed quantum computation without transmitting any particles. We propose a scheme for a distributed controlled-phase gate between two distant quantum-dot electron-spin qubits in optical microcavities. The two quantum-dot-microcavity systems are linked by a nested Michelson-type interferometer. A single photon acting as ancillary resource is sent in the interferometer to complete the distributed controlled-phase gate, but it never enters the transmission channel between the two nodes. Moreover, we numerically analyze the effect of experimental imperfections and show that the present scheme can be implemented with high fidelity in the ideal asymptotic limit. The scheme provides further evidence of quantum counterfactuality and opens promising possibilities for distributed quantum computation.

  6. Silicon based quantum dot hybrid qubits

    NASA Astrophysics Data System (ADS)

    Kim, Dohun

    2015-03-01

    The charge and spin degrees of freedom of an electron constitute natural bases for constructing quantum two level systems, or qubits, in semiconductor quantum dots. The quantum dot charge qubit offers a simple architecture and high-speed operation, but generally suffers from fast dephasing due to strong coupling of the environment to the electron's charge. On the other hand, quantum dot spin qubits have demonstrated long coherence times, but their manipulation is often slower than desired for important future applications. This talk will present experimental progress of a `hybrid' qubit, formed by three electrons in a Si/SiGe double quantum dot, which combines desirable characteristics (speed and coherence) in the past found separately in qubits based on either charge or spin degrees of freedom. Using resonant microwaves, we first discuss qubit operations near the `sweet spot' for charge qubit operation. Along with fast (>GHz) manipulation rates for any rotation axis on the Bloch sphere, we implement two independent tomographic characterization schemes in the charge qubit regime: traditional quantum process tomography (QPT) and gate set tomography (GST). We also present resonant qubit operations of the hybrid qubit performed on the same device, DC pulsed gate operations of which were recently demonstrated. We demonstrate three-axis control and the implementation of dynamic decoupling pulse sequences. Performing QPT on the hybrid qubit, we show that AC gating yields π rotation process fidelities higher than 93% for X-axis and 96% for Z-axis rotations, which demonstrates efficient quantum control of semiconductor qubits using resonant microwaves. We discuss a path forward for achieving fidelities better than the threshold for quantum error correction using surface codes. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), DOE (DE-FG02-03ER46028), and by the Laboratory Directed Research and Development program at Sandia National Laboratories under contract DE-AC04-94AL85000.

  7. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.

    PubMed

    Kim, Dohun; Shi, Zhan; Simmons, C B; Ward, D R; Prance, J R; Koh, Teck Seng; Gamble, John King; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, Mark A

    2014-07-03

    The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with π-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).

  8. Silicon quantum processor with robust long-distance qubit couplings.

    PubMed

    Tosi, Guilherme; Mohiyaddin, Fahd A; Schmitt, Vivien; Tenberg, Stefanie; Rahman, Rajib; Klimeck, Gerhard; Morello, Andrea

    2017-09-06

    Practical quantum computers require a large network of highly coherent qubits, interconnected in a design robust against errors. Donor spins in silicon provide state-of-the-art coherence and quantum gate fidelities, in a platform adapted from industrial semiconductor processing. Here we present a scalable design for a silicon quantum processor that does not require precise donor placement and leaves ample space for the routing of interconnects and readout devices. We introduce the flip-flop qubit, a combination of the electron-nuclear spin states of a phosphorus donor that can be controlled by microwave electric fields. Two-qubit gates exploit a second-order electric dipole-dipole interaction, allowing selective coupling beyond the nearest-neighbor, at separations of hundreds of nanometers, while microwave resonators can extend the entanglement to macroscopic distances. We predict gate fidelities within fault-tolerance thresholds using realistic noise models. This design provides a realizable blueprint for scalable spin-based quantum computers in silicon.Quantum computers will require a large network of coherent qubits, connected in a noise-resilient way. Tosi et al. present a design for a quantum processor based on electron-nuclear spins in silicon, with electrical control and coupling schemes that simplify qubit fabrication and operation.

  9. Topological quantum buses: coherent quantum information transfer between topological and conventional qubits.

    PubMed

    Bonderson, Parsa; Lutchyn, Roman M

    2011-04-01

    We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems. © 2011 American Physical Society

  10. Demonstration of universal parametric entangling gates on a multi-qubit lattice

    PubMed Central

    Reagor, Matthew; Osborn, Christopher B.; Tezak, Nikolas; Staley, Alexa; Prawiroatmodjo, Guenevere; Scheer, Michael; Alidoust, Nasser; Sete, Eyob A.; Didier, Nicolas; da Silva, Marcus P.; Acala, Ezer; Angeles, Joel; Bestwick, Andrew; Block, Maxwell; Bloom, Benjamin; Bradley, Adam; Bui, Catvu; Caldwell, Shane; Capelluto, Lauren; Chilcott, Rick; Cordova, Jeff; Crossman, Genya; Curtis, Michael; Deshpande, Saniya; El Bouayadi, Tristan; Girshovich, Daniel; Hong, Sabrina; Hudson, Alex; Karalekas, Peter; Kuang, Kat; Lenihan, Michael; Manenti, Riccardo; Manning, Thomas; Marshall, Jayss; Mohan, Yuvraj; O’Brien, William; Otterbach, Johannes; Papageorge, Alexander; Paquette, Jean-Philip; Pelstring, Michael; Polloreno, Anthony; Rawat, Vijay; Ryan, Colm A.; Renzas, Russ; Rubin, Nick; Russel, Damon; Rust, Michael; Scarabelli, Diego; Selvanayagam, Michael; Sinclair, Rodney; Smith, Robert; Suska, Mark; To, Ting-Wai; Vahidpour, Mehrnoosh; Vodrahalli, Nagesh; Whyland, Tyler; Yadav, Kamal; Zeng, William; Rigetti, Chad T.

    2018-01-01

    We show that parametric coupling techniques can be used to generate selective entangling interactions for multi-qubit processors. By inducing coherent population exchange between adjacent qubits under frequency modulation, we implement a universal gate set for a linear array of four superconducting qubits. An average process fidelity of ℱ = 93% is estimated for three two-qubit gates via quantum process tomography. We establish the suitability of these techniques for computation by preparing a four-qubit maximally entangled state and comparing the estimated state fidelity with the expected performance of the individual entangling gates. In addition, we prepare an eight-qubit register in all possible bitstring permutations and monitor the fidelity of a two-qubit gate across one pair of these qubits. Across all these permutations, an average fidelity of ℱ = 91.6 ± 2.6% is observed. These results thus offer a path to a scalable architecture with high selectivity and low cross-talk. PMID:29423443

  11. Universal Barenco quantum gates via a tunable noncollinear interaction

    NASA Astrophysics Data System (ADS)

    Shi, Xiao-Feng

    2018-03-01

    The Barenco gate (B ) is a type of two-qubit quantum gate based on which alone universal quantum computation can be achieved. Each B is characterized by three angles (α , θ , and ϕ ), though it works in a two-qubit Hilbert space. Here we design B via a noncollinear interaction V | r1r2>< r1r3|+H .c . , where | ri> is a state that can be excited from a qubit state and V is adjustable. We present two protocols for B . The first (second) protocol consists of two (six) pulses and one (two) wait period(s), where the former causes rotations between qubit states and excited states, and the latter induces gate transformation via the noncollinear interaction. In the first protocol, the variable ϕ can be tuned by varying the phases of external controls, and the other two variables α and θ , tunable via adjustment of the wait duration, have a linear dependence on each other. Meanwhile, the first protocol can give rise to cnot and controlled-y gates. In the second protocol, α ,θ , and ϕ can be varied by changing the interaction amplitudes and wait durations, and the latter two are dependent on α nonlinearly. Both protocols can also lead to another universal gate when {α ,ϕ }={1 /4 ,1 /2 }π with appropriate parameters. Implementation of these universal gates is analyzed based on the van der Waals interaction of neutral Rydberg atoms.

  12. Resonantly driven CNOT gate for electron spins

    NASA Astrophysics Data System (ADS)

    Zajac, D. M.; Sigillito, A. J.; Russ, M.; Borjans, F.; Taylor, J. M.; Burkard, G.; Petta, J. R.

    2018-01-01

    To build a universal quantum computer—the kind that can handle any computational task you throw at it—an essential early step is to demonstrate the so-called CNOT gate, which acts on two qubits. Zajac et al. built an efficient CNOT gate by using electron spin qubits in silicon quantum dots, an implementation that is especially appealing because of its compatibility with existing semiconductor-based electronics (see the Perspective by Schreiber and Bluhm). To showcase the potential, the authors used the gate to create an entangled quantum state called the Bell state.

  13. Towards optimizing two-qubit operations in three-electron double quantum dots

    NASA Astrophysics Data System (ADS)

    Frees, Adam; Gamble, John King; Mehl, Sebastian; Friesen, Mark; Coppersmith, S. N.

    The successful implementation of single-qubit gates in the quantum dot hybrid qubit motivates our interest in developing a high fidelity two-qubit gate protocol. Recently, extensive work has been done to characterize the theoretical limitations and advantages in performing two-qubit operations at an operation point located in the charge transition region. Additionally, there is evidence to support that single-qubit gate fidelities improve while operating in the so-called ``far-detuned'' region, away from the charge transition. Here we explore the possibility of performing two-qubit gates in this region, considering the challenges and the benefits that may present themselves while implementing such an operational paradigm. This work was supported in part by ARO (W911NF-12-0607) (W911NF-12-R-0012), NSF (PHY-1104660), ONR (N00014-15-1-0029). The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  14. Entangling distant resonant exchange qubits via circuit quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Srinivasa, V.; Taylor, J. M.; Tahan, Charles

    2016-11-01

    We investigate a hybrid quantum system consisting of spatially separated resonant exchange qubits, defined in three-electron semiconductor triple quantum dots, that are coupled via a superconducting transmission line resonator. Drawing on methods from circuit quantum electrodynamics and Hartmann-Hahn double resonance techniques, we analyze three specific approaches for implementing resonator-mediated two-qubit entangling gates in both dispersive and resonant regimes of interaction. We calculate entangling gate fidelities as well as the rate of relaxation via phonons for resonant exchange qubits in silicon triple dots and show that such an implementation is particularly well suited to achieving the strong coupling regime. Our approach combines the favorable coherence properties of encoded spin qubits in silicon with the rapid and robust long-range entanglement provided by circuit QED systems.

  15. Experimental Demonstration of a Resonator-Induced Phase Gate in a Multiqubit Circuit-QED System.

    PubMed

    Paik, Hanhee; Mezzacapo, A; Sandberg, Martin; McClure, D T; Abdo, B; Córcoles, A D; Dial, O; Bogorin, D F; Plourde, B L T; Steffen, M; Cross, A W; Gambetta, J M; Chow, Jerry M

    2016-12-16

    The resonator-induced phase (RIP) gate is an all-microwave multiqubit entangling gate that allows a high degree of flexibility in qubit frequencies, making it attractive for quantum operations in large-scale architectures. We experimentally realize the RIP gate with four superconducting qubits in a three-dimensional circuit-QED architecture, demonstrating high-fidelity controlled-z (cz) gates between all possible pairs of qubits from two different 4-qubit devices in pair subspaces. These qubits are arranged within a wide range of frequency detunings, up to as large as 1.8 GHz. We further show a dynamical multiqubit refocusing scheme in order to isolate out 2-qubit interactions, and combine them to generate a 4-qubit Greenberger-Horne-Zeilinger state.

  16. Experimental Demonstration of a Resonator-Induced Phase Gate in a Multiqubit Circuit-QED System

    NASA Astrophysics Data System (ADS)

    Paik, Hanhee; Mezzacapo, A.; Sandberg, Martin; McClure, D. T.; Abdo, B.; Córcoles, A. D.; Dial, O.; Bogorin, D. F.; Plourde, B. L. T.; Steffen, M.; Cross, A. W.; Gambetta, J. M.; Chow, Jerry M.

    2016-12-01

    The resonator-induced phase (RIP) gate is an all-microwave multiqubit entangling gate that allows a high degree of flexibility in qubit frequencies, making it attractive for quantum operations in large-scale architectures. We experimentally realize the RIP gate with four superconducting qubits in a three-dimensional circuit-QED architecture, demonstrating high-fidelity controlled-z (cz) gates between all possible pairs of qubits from two different 4-qubit devices in pair subspaces. These qubits are arranged within a wide range of frequency detunings, up to as large as 1.8 GHz. We further show a dynamical multiqubit refocusing scheme in order to isolate out 2-qubit interactions, and combine them to generate a 4-qubit Greenberger-Horne-Zeilinger state.

  17. A programmable five qubit quantum computer using trapped atomic ions

    NASA Astrophysics Data System (ADS)

    Debnath, Shantanu

    2017-04-01

    In order to harness the power of quantum information processing, several candidate systems have been investigated, and tailored to demonstrate only specific computations. In my thesis work, we construct a general-purpose multi-qubit device using a linear chain of trapped ion qubits, which in principle can be programmed to run any quantum algorithm. To achieve such flexibility, we develop a pulse shaping technique to realize a set of fully connected two-qubit rotations that entangle arbitrary pairs of qubits using multiple motional modes of the chain. Following a computation architecture, such highly expressive two-qubit gates along with arbitrary single-qubit rotations can be used to compile modular universal logic gates that are effected by targeted optical fields and hence can be reconfigured according to any algorithm circuit programmed in the software. As a demonstration, we run the Deutsch-Jozsa and Bernstein-Vazirani algorithm, and a fully coherent quantum Fourier transform, that we use to solve the `period finding' and `quantum phase estimation' problem. Combining these results with recent demonstrations of quantum fault-tolerance, Grover's search algorithm, and simulation of boson hopping establishes the versatility of such a computation module that can potentially be connected to other modules for future large-scale computations.

  18. Implementing N-quantum phase gate via circuit QED with qubit-qubit interaction

    NASA Astrophysics Data System (ADS)

    Said, T.; Chouikh, A.; Essammouni, K.; Bennai, M.

    2016-02-01

    We propose a method for realizing a quantum phase gate of one qubit simultaneously controlling N target qubits based on the qubit-qubit interaction. We show how to implement the proposed gate with one transmon qubit simultaneously controlling N transmon qubits in a circuit QED driven by a strong microwave field. In our scheme, the operation time of this phase gate is independent of the number N of qubits. On the other hand, this gate can be realized in a time of nanosecond-scale much smaller than the decoherence time and dephasing time both being the time of microsecond-scale. Numerical simulation of the occupation probabilities of the second excited lever shows that the scheme could be achieved efficiently within current technology.

  19. Integrated-optics heralded controlled-NOT gate for polarization-encoded qubits

    NASA Astrophysics Data System (ADS)

    Zeuner, Jonas; Sharma, Aditya N.; Tillmann, Max; Heilmann, René; Gräfe, Markus; Moqanaki, Amir; Szameit, Alexander; Walther, Philip

    2018-03-01

    Recent progress in integrated-optics technology has made photonics a promising platform for quantum networks and quantum computation protocols. Integrated optical circuits are characterized by small device footprints and unrivalled intrinsic interferometric stability. Here, we take advantage of femtosecond-laser-written waveguides' ability to process polarization-encoded qubits and present an implementation of a heralded controlled-NOT gate on chip. We evaluate the gate performance in the computational basis and a superposition basis, showing that the gate can create polarization entanglement between two photons. Transmission through the integrated device is optimized using thermally expanded core fibers and adiabatically reduced mode-field diameters at the waveguide facets. This demonstration underlines the feasibility of integrated quantum gates for all-optical quantum networks and quantum repeaters.

  20. Simultaneous deterministic control of distant qubits in two semiconductor quantum dots.

    PubMed

    Gamouras, A; Mathew, R; Freisem, S; Deppe, D G; Hall, K C

    2013-10-09

    In optimal quantum control (OQC), a target quantum state of matter is achieved by tailoring the phase and amplitude of the control Hamiltonian through femtosecond pulse-shaping techniques and powerful adaptive feedback algorithms. Motivated by recent applications of OQC in quantum information science as an approach to optimizing quantum gates in atomic and molecular systems, here we report the experimental implementation of OQC in a solid-state system consisting of distinguishable semiconductor quantum dots. We demonstrate simultaneous high-fidelity π and 2π single qubit gates in two different quantum dots using a single engineered infrared femtosecond pulse. These experiments enhance the scalability of semiconductor-based quantum hardware and lay the foundation for applications of pulse shaping to optimize quantum gates in other solid-state systems.

  1. Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin.

    PubMed

    Arroyo-Camejo, Silvia; Lazariev, Andrii; Hell, Stefan W; Balasubramanian, Gopalakrishnan

    2014-09-12

    At its most fundamental level, circuit-based quantum computation relies on the application of controlled phase shift operations on quantum registers. While these operations are generally compromised by noise and imperfections, quantum gates based on geometric phase shifts can provide intrinsically fault-tolerant quantum computing. Here we demonstrate the high-fidelity realization of a recently proposed fast (non-adiabatic) and universal (non-Abelian) holonomic single-qubit gate, using an individual solid-state spin qubit under ambient conditions. This fault-tolerant quantum gate provides an elegant means for achieving the fidelity threshold indispensable for implementing quantum error correction protocols. Since we employ a spin qubit associated with a nitrogen-vacancy colour centre in diamond, this system is based on integrable and scalable hardware exhibiting strong analogy to current silicon technology. This quantum gate realization is a promising step towards viable, fault-tolerant quantum computing under ambient conditions.

  2. Gate-Sensing the Potential Landscape of a GaAs Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Croot, Xanthe; Mahoney, Alice; Pauka, Sebastian; Colless, James; Reilly, David; Watson, John; Fallahi, Saeed; Gardner, Geoff; Manfra, Michael; Lu, Hong; Gossard, Arthur

    In situ dispersive gate sensors hold potential as a means of enabling the scalable readout of quantum dot arrays. Sensitive to quantum capacitance, dispersive sensors have been used to detect inter- and intra-dot transitions in GaAs double quantum dots, and can distinguish the spin states of singlet triplet qubits. In addition, the gate-sensing technique is likely of value in probing the physics of Majorana zero modes in nanowire devices. Beyond the readout signatures associated with charge and spin configurations of qubits, gate-sensing is sensitive to trapped charge in the potential landscape. Here, we report gate-sensing signals arising from tunnelling of electrons between puddles of trapped charge in a GaAs 2DEG. We examine these signals in a family of different devices with varying mobilities, and as a function of temperature and bias. Implications for qubit readout using the gate-sensing technique are discussed.

  3. Development of a Si/ SiO 2-based double quantum dot charge qubit with dispersive microwave readout

    NASA Astrophysics Data System (ADS)

    House, M. G.; Henry, E.; Schmidt, A.; Naaman, O.; Siddiqi, I.; Pan, H.; Xiao, M.; Jiang, H. W.

    2011-03-01

    Coupling of a high-Q microwave resonator to superconducting qubits has been successfully used to prepare, manipulate, and read out the state of a single qubit, and to mediate interactions between qubits. Our work is geared toward implementing this architecture in a semiconductor qubit. We present the design and development of a lateral quantum dot in which a superconducting microwave resonator is capacitively coupled to a double dot charge qubit. The device is a silicon MOSFET structure with a global gate which is used to accumulate electrons at a Si/ Si O2 interface. A set of smaller gates are used to deplete these electrons to define a double quantum dot and adjacent conduction channels. Two of these depletion gates connect directly to the conductors of a 6 GHz co-planar stripline resonator. We present measurements of transport and conventional charge sensing used to characterize the double quantum dot, and demonstrate that it is possible to reach the few-electron regime in this system. This work is supported by the DARPA-QuEST program.

  4. Implementing quantum gates through scattering between a static and a flying qubit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordourier-Maruri, G.; Coss, R. de; Ciccarello, F.

    2010-11-15

    We investigate whether a two-qubit quantum gate can be implemented in a scattering process involving a flying and a static qubit. To this end, we focus on a paradigmatic setup made out of a mobile particle and a quantum impurity, whose respective spin degrees of freedom couple to each other during a one-dimensional scattering process. Once a condition for the occurrence of quantum gates is derived in terms of spin-dependent transmission coefficients, we show that this can be actually fulfilled through the insertion of an additional narrow potential barrier. An interesting observation is that under resonance conditions this procedure enablesmore » a gate only for isotropic Heisenberg (exchange) interactions and fails for an XY interaction. We show the existence of parameter regimes for which gates able to establish a maximum amount of entanglement can be implemented. The gates are found to be robust to variations of the optimal parameters.« less

  5. Fermion-to-qubit mappings with varying resource requirements for quantum simulation

    NASA Astrophysics Data System (ADS)

    Steudtner, Mark; Wehner, Stephanie

    2018-06-01

    The mapping of fermionic states onto qubit states, as well as the mapping of fermionic Hamiltonian into quantum gates enables us to simulate electronic systems with a quantum computer. Benefiting the understanding of many-body systems in chemistry and physics, quantum simulation is one of the great promises of the coming age of quantum computers. Interestingly, the minimal requirement of qubits for simulating Fermions seems to be agnostic of the actual number of particles as well as other symmetries. This leads to qubit requirements that are well above the minimal requirements as suggested by combinatorial considerations. In this work, we develop methods that allow us to trade-off qubit requirements against the complexity of the resulting quantum circuit. We first show that any classical code used to map the state of a fermionic Fock space to qubits gives rise to a mapping of fermionic models to quantum gates. As an illustrative example, we present a mapping based on a nonlinear classical error correcting code, which leads to significant qubit savings albeit at the expense of additional quantum gates. We proceed to use this framework to present a number of simpler mappings that lead to qubit savings with a more modest increase in gate difficulty. We discuss the role of symmetries such as particle conservation, and savings that could be obtained if an experimental platform could easily realize multi-controlled gates.

  6. Nonuniform code concatenation for universal fault-tolerant quantum computing

    NASA Astrophysics Data System (ADS)

    Nikahd, Eesa; Sedighi, Mehdi; Saheb Zamani, Morteza

    2017-09-01

    Using transversal gates is a straightforward and efficient technique for fault-tolerant quantum computing. Since transversal gates alone cannot be computationally universal, they must be combined with other approaches such as magic state distillation, code switching, or code concatenation to achieve universality. In this paper we propose an alternative approach for universal fault-tolerant quantum computing, mainly based on the code concatenation approach proposed in [T. Jochym-O'Connor and R. Laflamme, Phys. Rev. Lett. 112, 010505 (2014), 10.1103/PhysRevLett.112.010505], but in a nonuniform fashion. The proposed approach is described based on nonuniform concatenation of the 7-qubit Steane code with the 15-qubit Reed-Muller code, as well as the 5-qubit code with the 15-qubit Reed-Muller code, which lead to two 49-qubit and 47-qubit codes, respectively. These codes can correct any arbitrary single physical error with the ability to perform a universal set of fault-tolerant gates, without using magic state distillation.

  7. Linear optical quantum computing in a single spatial mode.

    PubMed

    Humphreys, Peter C; Metcalf, Benjamin J; Spring, Justin B; Moore, Merritt; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Walmsley, Ian A

    2013-10-11

    We present a scheme for linear optical quantum computing using time-bin-encoded qubits in a single spatial mode. We show methods for single-qubit operations and heralded controlled-phase (cphase) gates, providing a sufficient set of operations for universal quantum computing with the Knill-Laflamme-Milburn [Nature (London) 409, 46 (2001)] scheme. Our protocol is suited to currently available photonic devices and ideally allows arbitrary numbers of qubits to be encoded in the same spatial mode, demonstrating the potential for time-frequency modes to dramatically increase the quantum information capacity of fixed spatial resources. As a test of our scheme, we demonstrate the first entirely single spatial mode implementation of a two-qubit quantum gate and show its operation with an average fidelity of 0.84±0.07.

  8. Proposal for quantum gates in permanently coupled antiferromagnetic spin rings without need of local fields.

    PubMed

    Troiani, Filippo; Affronte, Marco; Carretta, Stefano; Santini, Paolo; Amoretti, Giuseppe

    2005-05-20

    We propose a scheme for the implementation of quantum gates which is based on the qubit encoding in antiferromagnetic molecular rings. We show that a proper engineering of the intercluster link would result in an effective coupling that vanishes as far as the system is kept in the computational space, while it is turned on by a selective excitation of specific auxiliary states. These are also shown to allow the performing of single-qubit and two-qubit gates without an individual addressing of the rings by means of local magnetic fields.

  9. Quantum information processing with long-wavelength radiation

    NASA Astrophysics Data System (ADS)

    Murgia, David; Weidt, Sebastian; Randall, Joseph; Lekitsch, Bjoern; Webster, Simon; Navickas, Tomas; Grounds, Anton; Rodriguez, Andrea; Webb, Anna; Standing, Eamon; Pearce, Stuart; Sari, Ibrahim; Kiang, Kian; Rattanasonti, Hwanjit; Kraft, Michael; Hensinger, Winfried

    To this point, the entanglement of ions has predominantly been performed using lasers. Using long wavelength radiation with static magnetic field gradients provides an architecture to simplify construction of a large scale quantum computer. The use of microwave-dressed states protects against decoherence from fluctuating magnetic fields, with radio-frequency fields used for qubit manipulation. I will report the realisation of spin-motion entanglement using long-wavelength radiation, and a new method to efficiently prepare dressed-state qubits and qutrits, reducing experimental complexity of gate operations. I will also report demonstration of ground state cooling using long wavelength radiation, which may increase two-qubit entanglement fidelity. I will then report demonstration of a high-fidelity long-wavelength two-ion quantum gate using dressed states. Combining these results with microfabricated ion traps allows for scaling towards a large scale ion trap quantum computer, and provides a platform for quantum simulations of fundamental physics. I will report progress towards the operation of microchip ion traps with extremely high magnetic field gradients for multi-ion quantum gates.

  10. Quantum state matching of qubits via measurement-induced nonlinear transformations

    NASA Astrophysics Data System (ADS)

    Kálmán, Orsolya; Kiss, Tamás

    2018-03-01

    We consider the task of deciding whether an unknown qubit state falls in a prescribed neighborhood of a reference state. We assume that several copies of the unknown state are given and apply a unitary operation pairwise on them combined with a postselection scheme conditioned on the measurement result obtained on one of the qubits of the pair. The resulting transformation is a deterministic, nonlinear, chaotic map in the Hilbert space. We derive a class of these transformations capable of orthogonalizing nonorthogonal qubit states after a few iterations. These nonlinear maps orthogonalize states which correspond to the two different convergence regions of the nonlinear map. Based on the analysis of the border (the so-called Julia set) between the two regions of convergence, we show that it is always possible to find a map capable of deciding whether an unknown state is within a neighborhood of fixed radius around a desired quantum state. We analyze which one- and two-qubit operations would physically realize the scheme. It is possible to find a single two-qubit unitary gate for each map or, alternatively, a universal special two-qubit gate together with single-qubit gates in order to carry out the task. We note that it is enough to have a single physical realization of the required gates due to the iterative nature of the scheme.

  11. Trapped Ion Qubits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maunz, Peter; Wilhelm, Lukas

    Qubits can be encoded in clock states of trapped ions. These states are well isolated from the environment resulting in long coherence times [1] while enabling efficient high-fidelity qubit interactions mediated by the Coulomb coupled motion of the ions in the trap. Quantum states can be prepared with high fidelity and measured efficiently using fluorescence detection. State preparation and detection with 99.93% fidelity have been realized in multiple systems [1,2]. Single qubit gates have been demonstrated below rigorous fault-tolerance thresholds [1,3]. Two qubit gates have been realized with more than 99.9% fidelity [4,5]. Quantum algorithms have been demonstrated on systemsmore » of 5 to 15 qubits [6–8].« less

  12. Efficient eigenvalue determination for arbitrary Pauli products based on generalized spin-spin interactions

    NASA Astrophysics Data System (ADS)

    Leibfried, D.; Wineland, D. J.

    2018-03-01

    Effective spin-spin interactions between ? qubits enable the determination of the eigenvalue of an arbitrary Pauli product of dimension N with a constant, small number of multi-qubit gates that is independent of N and encodes the eigenvalue in the measurement basis states of an extra ancilla qubit. Such interactions are available whenever qubits can be coupled to a shared harmonic oscillator, a situation that can be realized in many physical qubit implementations. For example, suitable interactions have already been realized for up to 14 qubits in ion traps. It should be possible to implement stabilizer codes for quantum error correction with a constant number of multi-qubit gates, in contrast to typical constructions with a number of two-qubit gates that increases as a function of N. The special case of finding the parity of N qubits only requires a small number of operations that is independent of N. This compares favorably to algorithms for computing the parity on conventional machines, which implies a genuine quantum advantage.

  13. Silicon quantum processor with robust long-distance qubit couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tosi, Guilherme; Mohiyaddin, Fahd A.; Schmitt, Vivien

    Practical quantum computers require a large network of highly coherent qubits, interconnected in a design robust against errors. Donor spins in silicon provide state-of-the-art coherence and quantum gate fidelities, in a platform adapted from industrial semiconductor processing. Here we present a scalable design for a silicon quantum processor that does not require precise donor placement and leaves ample space for the routing of interconnects and readout devices. We introduce the flip-flop qubit, a combination of the electron-nuclear spin states of a phosphorus donor that can be controlled by microwave electric fields. Two-qubit gates exploit a second-order electric dipole-dipole interaction, allowingmore » selective coupling beyond the nearest-neighbor, at separations of hundreds of nanometers, while microwave resonators can extend the entanglement to macroscopic distances. We predict gate fidelities within fault-tolerance thresholds using realistic noise models. This design provides a realizable blueprint for scalable spin-based quantum computers in silicon.« less

  14. Qubit Architecture with High Coherence and Fast Tunable Coupling.

    PubMed

    Chen, Yu; Neill, C; Roushan, P; Leung, N; Fang, M; Barends, R; Kelly, J; Campbell, B; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Megrant, A; Mutus, J Y; O'Malley, P J J; Quintana, C M; Sank, D; Vainsencher, A; Wenner, J; White, T C; Geller, Michael R; Cleland, A N; Martinis, John M

    2014-11-28

    We introduce a superconducting qubit architecture that combines high-coherence qubits and tunable qubit-qubit coupling. With the ability to set the coupling to zero, we demonstrate that this architecture is protected from the frequency crowding problems that arise from fixed coupling. More importantly, the coupling can be tuned dynamically with nanosecond resolution, making this architecture a versatile platform with applications ranging from quantum logic gates to quantum simulation. We illustrate the advantages of dynamical coupling by implementing a novel adiabatic controlled-z gate, with a speed approaching that of single-qubit gates. Integrating coherence and scalable control, the introduced qubit architecture provides a promising path towards large-scale quantum computation and simulation.

  15. Scalable quantum computation scheme based on quantum-actuated nuclear-spin decoherence-free qubits

    NASA Astrophysics Data System (ADS)

    Dong, Lihong; Rong, Xing; Geng, Jianpei; Shi, Fazhan; Li, Zhaokai; Duan, Changkui; Du, Jiangfeng

    2017-11-01

    We propose a novel theoretical scheme of quantum computation. Nuclear spin pairs are utilized to encode decoherence-free (DF) qubits. A nitrogen-vacancy center serves as a quantum actuator to initialize, readout, and quantum control the DF qubits. The realization of CNOT gates between two DF qubits are also presented. Numerical simulations show high fidelities of all these processes. Additionally, we discuss the potential of scalability. Our scheme reduces the challenge of classical interfaces from controlling and observing complex quantum systems down to a simple quantum actuator. It also provides a novel way to handle complex quantum systems.

  16. Quantum Algorithms to Simulate Many-Body Physics of Correlated Fermions

    NASA Astrophysics Data System (ADS)

    Jiang, Zhang; Sung, Kevin J.; Kechedzhi, Kostyantyn; Smelyanskiy, Vadim N.; Boixo, Sergio

    2018-04-01

    Simulating strongly correlated fermionic systems is notoriously hard on classical computers. An alternative approach, as proposed by Feynman, is to use a quantum computer. We discuss simulating strongly correlated fermionic systems using near-term quantum devices. We focus specifically on two-dimensional (2D) or linear geometry with nearest-neighbor qubit-qubit couplings, typical for superconducting transmon qubit arrays. We improve an existing algorithm to prepare an arbitrary Slater determinant by exploiting a unitary symmetry. We also present a quantum algorithm to prepare an arbitrary fermionic Gaussian state with O (N2) gates and O (N ) circuit depth. Both algorithms are optimal in the sense that the numbers of parameters in the quantum circuits are equal to those describing the quantum states. Furthermore, we propose an algorithm to implement the 2D fermionic Fourier transformation on a 2D qubit array with only O (N1.5) gates and O (√{N }) circuit depth, which is the minimum depth required for quantum information to travel across the qubit array. We also present methods to simulate each time step in the evolution of the 2D Fermi-Hubbard model—again on a 2D qubit array—with O (N ) gates and O (√{N }) circuit depth. Finally, we discuss how these algorithms can be used to determine the ground-state properties and phase diagrams of strongly correlated quantum systems using the Hubbard model as an example.

  17. Dynamical decoupling of local transverse random telegraph noise in a two-qubit gate

    NASA Astrophysics Data System (ADS)

    D'Arrigo, A.; Falci, G.; Paladino, E.

    2015-10-01

    Achieving high-fidelity universal two-qubit gates is a central requisite of any implementation of quantum information processing. The presence of spurious fluctuators of various physical origin represents a limiting factor for superconducting nanodevices. Operating qubits at optimal points, where the qubit-fluctuator interaction is transverse with respect to the single qubit Hamiltonian, considerably improved single qubit gates. Further enhancement has been achieved by dynamical decoupling (DD). In this article we investigate DD of transverse random telegraph noise acting locally on each of the qubits forming an entangling gate. Our analysis is based on the exact numerical solution of the stochastic Schrödinger equation. We evaluate the gate error under local periodic, Carr-Purcell and Uhrig DD sequences. We find that a threshold value of the number, n, of pulses exists above which the gate error decreases with a sequence-specific power-law dependence on n. Below threshold, DD may even increase the error with respect to the unconditioned evolution, a behaviour reminiscent of the anti-Zeno effect.

  18. Spin-wave utilization in a quantum computer

    NASA Astrophysics Data System (ADS)

    Khitun, A.; Ostroumov, R.; Wang, K. L.

    2001-12-01

    We propose a quantum computer scheme using spin waves for quantum-information exchange. We demonstrate that spin waves in the antiferromagnetic layer grown on silicon may be used to perform single-qubit unitary transformations together with two-qubit operations during the cycle of computation. The most attractive feature of the proposed scheme is the possibility of random access to any qubit and, consequently, the ability to recognize two qubit gates between any two distant qubits. Also, spin waves allow us to eliminate the use of a strong external magnetic field and microwave pulses. By estimate, the proposed scheme has as high as 104 ratio between quantum system coherence time and the time of a single computational step.

  19. A Rout to Protect Quantum Gates constructed via quantum walks from Noises.

    PubMed

    Du, Yi-Mu; Lu, Li-Hua; Li, You-Quan

    2018-05-08

    The continuous-time quantum walk on a one-dimensional graph of odd number of sites with an on-site potential at the center is studied. We show that such a quantum-walk system can construct an X-gate of a single qubit as well as a control gate for two qubits, when the potential is much larger than the hopping strength. We investigate the decoherence effect and find that the coherence time can be enhanced by either increasing the number of sites on the graph or the ratio of the potential to the hopping strength, which is expected to motivate the design of the quantum gate with long coherence time. We also suggest several experimental proposals to realize such a system.

  20. High-Dimensional Single-Photon Quantum Gates: Concepts and Experiments.

    PubMed

    Babazadeh, Amin; Erhard, Manuel; Wang, Feiran; Malik, Mehul; Nouroozi, Rahman; Krenn, Mario; Zeilinger, Anton

    2017-11-03

    Transformations on quantum states form a basic building block of every quantum information system. From photonic polarization to two-level atoms, complete sets of quantum gates for a variety of qubit systems are well known. For multilevel quantum systems beyond qubits, the situation is more challenging. The orbital angular momentum modes of photons comprise one such high-dimensional system for which generation and measurement techniques are well studied. However, arbitrary transformations for such quantum states are not known. Here we experimentally demonstrate a four-dimensional generalization of the Pauli X gate and all of its integer powers on single photons carrying orbital angular momentum. Together with the well-known Z gate, this forms the first complete set of high-dimensional quantum gates implemented experimentally. The concept of the X gate is based on independent access to quantum states with different parities and can thus be generalized to other photonic degrees of freedom and potentially also to other quantum systems.

  1. Implementation of a three-qubit refined Deutsch Jozsa algorithm using SFG quantum logic gates

    NASA Astrophysics Data System (ADS)

    DelDuce, A.; Savory, S.; Bayvel, P.

    2006-05-01

    In this paper we present a quantum logic circuit which can be used for the experimental demonstration of a three-qubit solid state quantum computer based on a recent proposal of optically driven quantum logic gates. In these gates, the entanglement of randomly placed electron spin qubits is manipulated by optical excitation of control electrons. The circuit we describe solves the Deutsch problem with an improved algorithm called the refined Deutsch-Jozsa algorithm. We show that it is possible to select optical pulses that solve the Deutsch problem correctly, and do so without losing quantum information to the control electrons, even though the gate parameters vary substantially from one gate to another.

  2. Optimal quantum control of multimode couplings between trapped ion qubits for scalable entanglement.

    PubMed

    Choi, T; Debnath, S; Manning, T A; Figgatt, C; Gong, Z-X; Duan, L-M; Monroe, C

    2014-05-16

    We demonstrate entangling quantum gates within a chain of five trapped ion qubits by optimally shaping optical fields that couple to multiple collective modes of motion. We individually address qubits with segmented optical pulses to construct multipartite entangled states in a programmable way. This approach enables high-fidelity gates that can be scaled to larger qubit registers for quantum computation and simulation.

  3. Experimental teleportation of a quantum controlled-NOT gate.

    PubMed

    Huang, Yun-Feng; Ren, Xi-Feng; Zhang, Yong-Sheng; Duan, Lu-Ming; Guo, Guang-Can

    2004-12-10

    Teleportation of quantum gates is a critical step for the implementation of quantum networking and teleportation-based models of quantum computation. We report an experimental demonstration of teleportation of the prototypical quantum controlled-NOT (CNOT) gate. Assisted with linear optical manipulations, photon entanglement produced from parametric down-conversion, and postselection from the coincidence measurements, we teleport the quantum CNOT gate from acting on local qubits to acting on remote qubits. The quality of the quantum gate teleportation is characterized through the method of quantum process tomography, with an average fidelity of 0.84 demonstrated for the teleported gate.

  4. Efficient Nonlocal M-Control and N-Target Controlled Unitary Gate Using Non-symmetric GHZ States

    NASA Astrophysics Data System (ADS)

    Chen, Li-Bing; Lu, Hong

    2018-03-01

    Efficient local implementation of a nonlocal M-control and N-target controlled unitary gate is considered. We first show that with the assistance of two non-symmetric qubit(1)-qutrit(N) Greenberger-Horne-Zeilinger (GHZ) states, a nonlocal 2-control and N-target controlled unitary gate can be constructed from 2 local two-qubit CNOT gates, 2 N local two-qutrit conditional SWAP gates, N local qutrit-qubit controlled unitary gates, and 2 N single-qutrit gates. At each target node, the two third levels of the two GHZ target qutrits are used to expose one and only one initial computational state to the local qutrit-qubit controlled unitary gate, instead of being used to hide certain states from the conditional dynamics. This scheme can be generalized straightforwardly to implement a higher-order nonlocal M-control and N-target controlled unitary gate by using M non-symmetric qubit(1)-qutrit(N) GHZ states as quantum channels. Neither the number of the additional levels of each GHZ target particle nor that of single-qutrit gates needs to increase with M. For certain realistic physical systems, the total gate time may be reduced compared with that required in previous schemes.

  5. Quantum Logic Networks for Probabilistic and Controlled Teleportation of Unknown Quantum States

    NASA Astrophysics Data System (ADS)

    Gao, Ting

    2004-08-01

    We present simplification schemes for probabilistic and controlled teleportation of the unknown quantum states of both one particle and two particles and construct efficient quantum logic networks for implementing the new schemes by means of the primitive operations consisting of single-qubit gates, two-qubit controlled-not gates, Von Neumann measurement, and classically controlled operations. In these schemes the teleportation are not always successful but with certain probability. The project supported by National Natural Science Foundation of China under Grant No. 10271081 and the Natural Science Foundation of Hebei Province of China under Grant No. A2004000141

  6. Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities.

    PubMed

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-01-13

    We present some compact quantum circuits for a deterministic quantum computing on electron-spin qubits assisted by quantum dots inside single-side optical microcavities, including the CNOT, Toffoli, and Fredkin gates. They are constructed by exploiting the giant optical Faraday rotation induced by a single-electron spin in a quantum dot inside a single-side optical microcavity as a result of cavity quantum electrodynamics. Our universal quantum gates have some advantages. First, all the gates are accomplished with a success probability of 100% in principle. Second, our schemes require no additional electron-spin qubits and they are achieved by some input-output processes of a single photon. Third, our circuits for these gates are simple and economic. Moreover, our devices for these gates work in both the weak coupling and the strong coupling regimes, and they are feasible in experiment.

  7. Coupling a single electron spin to a microwave resonator: Part I: controlling transverse and longitudinal couplings

    NASA Astrophysics Data System (ADS)

    Lachance-Quirion, Dany; Beaudoin, Félix; Camirand Lemyre, Julien; Coish, William A.; Pioro-Ladrière, Michel

    Novel quantum technologies can be combined within hybrid systems to benefit from the complementary capabilities of individual components. For example, microwave-frequency superconducting resonators are ideally suited to perform qubit readout and to mediate two-qubit gates, while spin qubits offer long coherence times and high-fidelity single-qubit gates. In this talk, we consider strong coupling between a microwave resonator and an electron-spin qubit in a double quantum dot due to an inhomogeneous magnetic field generated by a nearby nanomagnet.. Considering realistic parameters, we estimate spin-resonator couplings of order 1 MHz. Further, we show that the position of the double dot relative to the nanomagnet allows us to select between purely longitudinal and transverse couplings. While the transverse coupling may be used for quantum state transfer between the spin qubit and the resonator, the longitudinal coupling could be used in a new qubit readout scheme recently introduced for superconducting qubits.

  8. Hybrid spin and valley quantum computing with singlet-triplet qubits.

    PubMed

    Rohling, Niklas; Russ, Maximilian; Burkard, Guido

    2014-10-24

    The valley degree of freedom in the electronic band structure of silicon, graphene, and other materials is often considered to be an obstacle for quantum computing (QC) based on electron spins in quantum dots. Here we show that control over the valley state opens new possibilities for quantum information processing. Combining qubits encoded in the singlet-triplet subspace of spin and valley states allows for universal QC using a universal two-qubit gate directly provided by the exchange interaction. We show how spin and valley qubits can be separated in order to allow for single-qubit rotations.

  9. Robust 2-Qubit Gates in a Linear Ion Crystal Using a Frequency-Modulated Driving Force

    NASA Astrophysics Data System (ADS)

    Leung, Pak Hong; Landsman, Kevin A.; Figgatt, Caroline; Linke, Norbert M.; Monroe, Christopher; Brown, Kenneth R.

    2018-01-01

    In an ion trap quantum computer, collective motional modes are used to entangle two or more qubits in order to execute multiqubit logical gates. Any residual entanglement between the internal and motional states of the ions results in loss of fidelity, especially when there are many spectator ions in the crystal. We propose using a frequency-modulated driving force to minimize such errors. In simulation, we obtained an optimized frequency-modulated 2-qubit gate that can suppress errors to less than 0.01% and is robust against frequency drifts over ±1 kHz . Experimentally, we have obtained a 2-qubit gate fidelity of 98.3(4)%, a state-of-the-art result for 2-qubit gates with five ions.

  10. Open Quantum Walks and Dissipative Quantum Computing

    NASA Astrophysics Data System (ADS)

    Petruccione, Francesco

    2012-02-01

    Open Quantum Walks (OQWs) have been recently introduced as quantum Markov chains on graphs [S. Attal, F. Petruccione, C. Sabot, and I. Sinayskiy, E-print: http://hal.archives-ouvertes.fr/hal-00581553/fr/]. The formulation of the OQWs is exclusively based upon the non-unitary dynamics induced by the environment. It will be shown that OQWs are a very useful tool for the formulation of dissipative quantum computing and quantum state preparation. In particular, it will be shown how to implement single qubit gates and the CNOT gate as OQWs on fully connected graphs. Also, OQWS make possible the dissipative quantum state preparation of arbitrary single qubit states and of all two-qubit Bell states. Finally, it will be shown how to reformulate efficiently a discrete time version of dissipative quantum computing in the language of OQWs.

  11. Quantum Computational Universality of the 2D Cai-Miyake-D"ur-Briegel Quantum State

    NASA Astrophysics Data System (ADS)

    Wei, Tzu-Chieh; Raussendorf, Robert; Kwek, Leong Chuan

    2012-02-01

    Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, D"ur, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. A 82, 052309 (2010)]. They showed that this state enables universal quantum computation by constructing single- and two-qubit universal gates. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain can be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. Furthermore, a two-dimensional cluster state can be distilled from the Cai-Miyake-D"ur-Briegel state.

  12. Gate Set Tomography on two qubits

    NASA Astrophysics Data System (ADS)

    Nielsen, Erik; Blume-Kohout, Robin; Gamble, John; Rudinger, Kenneth

    Gate set tomography (GST) is a method for characterizing quantum gates that does not require pre-calibrated operations, and has been used to both certify and improve the operation of single qubits. We analyze the performance of GST applied to a simulated two-qubit system, and show that Heisenberg scaling is achieved in this case. We present a GST analysis of preliminary two-qubit experimental data, and draw comparisons with the simulated data case. Finally, we will discuss recent theoretical developments that have improved the efficiency of GST estimation procedures, and which are particularly beneficial when characterizing two qubit systems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  13. High-fidelity operations in microfabricated surface ion traps

    NASA Astrophysics Data System (ADS)

    Maunz, Peter

    2017-04-01

    Trapped ion systems can be used to implement quantum computation as well as quantum simulation. To scale these systems to the number of qubits required to solve interesting problems in quantum chemistry or solid state physics, the use of large multi-zone ion traps has been proposed. Microfabrication enables the realization of surface electrode ion traps with complex electrode structures. While these traps may enable the scaling of trapped ion quantum information processing (QIP), microfabricated ion traps also pose several technical challenges. Here, we present Sandia's trap fabrication capabilities and characterize trap properties and shuttling operations in our most recent high optical access trap (HOA-2). To demonstrate the viability of Sandia's microfabricated ion traps for QIP we realize robust single and two-qubit gates and characterize them using gate set tomography (GST). In this way we are able to demonstrate the first single qubit gates with a diamond norm of less than 1 . 7 ×10-4 , below a rigorous fault tolerance threshold for general noise of 6 . 7 ×10-4. Furthermore, we realize Mølmer-Sørensen two qubit gates with a process fidelity of 99 . 58(6) % also characterized by GST. These results demonstrate the viability of microfabricated surface traps for state of the art quantum information processing demonstrations. This research was funded, in part, by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA).

  14. Ultrafast optical control of individual quantum dot spin qubits.

    PubMed

    De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa

    2013-09-01

    Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a 'flying' photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is entangled with the spin, and these photons are then interfered. We review recent work demonstrating entanglement between a stationary spin qubit and a flying photonic qubit. These experiments utilize the polarization- and frequency-dependent spontaneous emission from the lowest charged exciton state to single spin Zeeman sublevels.

  15. Hybrid quantum systems: Outsourcing superconducting qubits

    NASA Astrophysics Data System (ADS)

    Cleland, Andrew

    Superconducting qubits offer excellent prospects for manipulating quantum information, with good qubit lifetimes, high fidelity single- and two-qubit gates, and straightforward scalability (admittedly with multi-dimensional interconnect challenges). One interesting route for experimental development is the exploration of hybrid systems, i.e. coupling superconducting qubits to other systems. I will report on our group's efforts to develop approaches that will allow interfacing superconducting qubits in a quantum-coherent fashion to spin defects in solids, to optomechanical devices, and to resonant nanomechanical structures. The longer term goals of these efforts include transferring quantum states between different qubit systems; generating and receiving ``flying'' acoustic phonon-based as well as optical photon-based qubits; and ultimately developing systems that can be used for quantum memory, quantum computation and quantum communication, the last in both the microwave and fiber telecommunications bands. Work is supported by Grants from AFOSR, ARO, DOE and NSF.

  16. A quantum Fredkin gate.

    PubMed

    Patel, Raj B; Ho, Joseph; Ferreyrol, Franck; Ralph, Timothy C; Pryde, Geoff J

    2016-03-01

    Minimizing the resources required to build logic gates into useful processing circuits is key to realizing quantum computers. Although the salient features of a quantum computer have been shown in proof-of-principle experiments, difficulties in scaling quantum systems have made more complex operations intractable. This is exemplified in the classical Fredkin (controlled-SWAP) gate for which, despite theoretical proposals, no quantum analog has been realized. By adding control to the SWAP unitary, we use photonic qubit logic to demonstrate the first quantum Fredkin gate, which promises many applications in quantum information and measurement. We implement example algorithms and generate the highest-fidelity three-photon Greenberger-Horne-Zeilinger states to date. The technique we use allows one to add a control operation to a black-box unitary, something that is impossible in the standard circuit model. Our experiment represents the first use of this technique to control a two-qubit operation and paves the way for larger controlled circuits to be realized efficiently.

  17. Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities

    NASA Astrophysics Data System (ADS)

    Wei, Hai-Rui; Deng, Fu-Guo

    2013-10-01

    Constructing compact quantum circuits for universal quantum gates on solid-state systems is crucial for quantum computing. We present some compact quantum circuits for a deterministic solid-state quantum computing, including the cnot, Toffoli, and Fredkin gates on the diamond NV centers confined inside cavities, achieved by some input-output processes of a single photon. Our quantum circuits for these universal quantum gates are simple and economic. Moreover, additional electron qubits are not employed, but only a single-photon medium. These gates have a long coherent time. We discuss the feasibility of these universal solid-state quantum gates, concluding that they are feasible with current technology.

  18. Quantum Computation Based on Photons with Three Degrees of Freedom

    PubMed Central

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong; Wang, Xiaojun

    2016-01-01

    Quantum systems are important resources for quantum computer. Different from previous encoding forms using quantum systems with one degree of freedom (DoF) or two DoFs, we investigate the possibility of photon systems encoding with three DoFs consisting of the polarization DoF and two spatial DoFs. By exploring the optical circular birefringence induced by an NV center in a diamond embedded in the photonic crystal cavity, we propose several hybrid controlled-NOT (hybrid CNOT) gates operating on the two-photon or one-photon system. These hybrid CNOT gates show that three DoFs may be encoded as independent qubits without auxiliary DoFs. Our result provides a useful way to reduce quantum simulation resources by exploring complex quantum systems for quantum applications requiring large qubit systems. PMID:27174302

  19. Quantum Computation Based on Photons with Three Degrees of Freedom.

    PubMed

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong; Wang, Xiaojun

    2016-05-13

    Quantum systems are important resources for quantum computer. Different from previous encoding forms using quantum systems with one degree of freedom (DoF) or two DoFs, we investigate the possibility of photon systems encoding with three DoFs consisting of the polarization DoF and two spatial DoFs. By exploring the optical circular birefringence induced by an NV center in a diamond embedded in the photonic crystal cavity, we propose several hybrid controlled-NOT (hybrid CNOT) gates operating on the two-photon or one-photon system. These hybrid CNOT gates show that three DoFs may be encoded as independent qubits without auxiliary DoFs. Our result provides a useful way to reduce quantum simulation resources by exploring complex quantum systems for quantum applications requiring large qubit systems.

  20. Parallel Transport Quantum Logic Gates with Trapped Ions.

    PubMed

    de Clercq, Ludwig E; Lo, Hsiang-Yu; Marinelli, Matteo; Nadlinger, David; Oswald, Robin; Negnevitsky, Vlad; Kienzler, Daniel; Keitch, Ben; Home, Jonathan P

    2016-02-26

    We demonstrate single-qubit operations by transporting a beryllium ion with a controlled velocity through a stationary laser beam. We use these to perform coherent sequences of quantum operations, and to perform parallel quantum logic gates on two ions in different processing zones of a multiplexed ion trap chip using a single recycled laser beam. For the latter, we demonstrate individually addressed single-qubit gates by local control of the speed of each ion. The fidelities we observe are consistent with operations performed using standard methods involving static ions and pulsed laser fields. This work therefore provides a path to scalable ion trap quantum computing with reduced requirements on the optical control complexity.

  1. Complete hyperentangled-Bell-state analysis for photonic qubits assisted by a three-level Λ-type system

    NASA Astrophysics Data System (ADS)

    Wang, Tie-Jun; Wang, Chuan

    2016-01-01

    Hyperentangled Bell-state analysis (HBSA) is an essential method in high-capacity quantum communication and quantum information processing. Here by replacing the two-qubit controlled-phase gate with the two-qubit SWAP gate, we propose a scheme to distinguish the 16 hyperentangled Bell states completely in both the polarization and the spatial-mode degrees of freedom (DOFs) of two-photon systems. The proposed scheme reduces the use of two-qubit interaction which is fragile and cumbersome, and only one auxiliary particle is required. Meanwhile, it reduces the requirement for initializing the auxiliary particle which works as a temporary quantum memory, and does not have to be actively controlled or measured. Moreover, the state of the auxiliary particle remains unchanged after the HBSA operation, and within the coherence time, the auxiliary particle can be repeatedly used in the next HBSA operation. Therefore, the engineering complexity of our HBSA operation is greatly simplified. Finally, we discuss the feasibility of our scheme with current technologies.

  2. Gate control of quantum dot-based electron spin-orbit qubits

    NASA Astrophysics Data System (ADS)

    Wu, Shudong; Cheng, Liwen; Yu, Huaguang; Wang, Qiang

    2018-07-01

    We investigate theoretically the coherent spin dynamics of gate control of quantum dot-based electron spin-orbit qubits subjected to a tilted magnetic field under electric-dipole spin resonance (EDSR). Our results reveal that Rabi oscillation of qubit states can be manipulated electrically based on rapid gate control of SOC strength. The Rabi frequency is strongly dependent on the gate-induced electric field, the strength and orientation of the applied magnetic field. There are two major EDSR mechanisms. One arises from electric field-induced spin-orbit hybridization, and the other arises from magnetic field-induced energy-level crossing. The SOC introduced by the gate-induced electric field allows AC electric fields to drive coherent Rabi oscillations between spin-up and -down states. After the crossing of the energy-levels with the magnetic field, the spin-transfer crossing results in Rabi oscillation irrespective of whether or not the external electric field is present. The spin-orbit qubit is transferred into the orbit qubit. Rabi oscillation is anisotropic and periodic with respect to the tilted and in-plane orientation of the magnetic field originating from the interplay of the SOC, orbital, and Zeeman effects. The strong electrically-controlled SOC strength suggests the possibility for scalable applications of gate-controllable spin-orbit qubits.

  3. Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit.

    PubMed

    Song, Chao; Zheng, Shi-Biao; Zhang, Pengfei; Xu, Kai; Zhang, Libo; Guo, Qiujiang; Liu, Wuxin; Xu, Da; Deng, Hui; Huang, Keqiang; Zheng, Dongning; Zhu, Xiaobo; Wang, H

    2017-10-20

    Geometric phase, associated with holonomy transformation in quantum state space, is an important quantum-mechanical effect. Besides fundamental interest, this effect has practical applications, among which geometric quantum computation is a paradigm, where quantum logic operations are realized through geometric phase manipulation that has some intrinsic noise-resilient advantages and may enable simplified implementation of multi-qubit gates compared to the dynamical approach. Here we report observation of a continuous-variable geometric phase and demonstrate a quantum gate protocol based on this phase in a superconducting circuit, where five qubits are controllably coupled to a resonator. Our geometric approach allows for one-step implementation of n-qubit controlled-phase gates, which represents a remarkable advantage compared to gate decomposition methods, where the number of required steps dramatically increases with n. Following this approach, we realize these gates with n up to 4, verifying the high efficiency of this geometric manipulation for quantum computation.

  4. Fast quantum logic gates with trapped-ion qubits

    NASA Astrophysics Data System (ADS)

    Schäfer, V. M.; Ballance, C. J.; Thirumalai, K.; Stephenson, L. J.; Ballance, T. G.; Steane, A. M.; Lucas, D. M.

    2018-03-01

    Quantum bits (qubits) based on individual trapped atomic ions are a promising technology for building a quantum computer. The elementary operations necessary to do so have been achieved with the required precision for some error-correction schemes. However, the essential two-qubit logic gate that is used to generate quantum entanglement has hitherto always been performed in an adiabatic regime (in which the gate is slow compared with the characteristic motional frequencies of the ions in the trap), resulting in logic speeds of the order of 10 kilohertz. There have been numerous proposals of methods for performing gates faster than this natural ‘speed limit’ of the trap. Here we implement one such method, which uses amplitude-shaped laser pulses to drive the motion of the ions along trajectories designed so that the gate operation is insensitive to the optical phase of the pulses. This enables fast (megahertz-rate) quantum logic that is robust to fluctuations in the optical phase, which would otherwise be an important source of experimental error. We demonstrate entanglement generation for gate times as short as 480 nanoseconds—less than a single oscillation period of an ion in the trap and eight orders of magnitude shorter than the memory coherence time measured in similar calcium-43 hyperfine qubits. The power of the method is most evident at intermediate timescales, at which it yields a gate error more than ten times lower than can be attained using conventional techniques; for example, we achieve a 1.6-microsecond-duration gate with a fidelity of 99.8 per cent. Faster and higher-fidelity gates are possible at the cost of greater laser intensity. The method requires only a single amplitude-shaped pulse and one pair of beams derived from a continuous-wave laser. It offers the prospect of combining the unrivalled coherence properties, operation fidelities and optical connectivity of trapped-ion qubits with the submicrosecond logic speeds that are usually associated with solid-state devices.

  5. Fast quantum logic gates with trapped-ion qubits.

    PubMed

    Schäfer, V M; Ballance, C J; Thirumalai, K; Stephenson, L J; Ballance, T G; Steane, A M; Lucas, D M

    2018-02-28

    Quantum bits (qubits) based on individual trapped atomic ions are a promising technology for building a quantum computer. The elementary operations necessary to do so have been achieved with the required precision for some error-correction schemes. However, the essential two-qubit logic gate that is used to generate quantum entanglement has hitherto always been performed in an adiabatic regime (in which the gate is slow compared with the characteristic motional frequencies of the ions in the trap), resulting in logic speeds of the order of 10 kilohertz. There have been numerous proposals of methods for performing gates faster than this natural 'speed limit' of the trap. Here we implement one such method, which uses amplitude-shaped laser pulses to drive the motion of the ions along trajectories designed so that the gate operation is insensitive to the optical phase of the pulses. This enables fast (megahertz-rate) quantum logic that is robust to fluctuations in the optical phase, which would otherwise be an important source of experimental error. We demonstrate entanglement generation for gate times as short as 480 nanoseconds-less than a single oscillation period of an ion in the trap and eight orders of magnitude shorter than the memory coherence time measured in similar calcium-43 hyperfine qubits. The power of the method is most evident at intermediate timescales, at which it yields a gate error more than ten times lower than can be attained using conventional techniques; for example, we achieve a 1.6-microsecond-duration gate with a fidelity of 99.8 per cent. Faster and higher-fidelity gates are possible at the cost of greater laser intensity. The method requires only a single amplitude-shaped pulse and one pair of beams derived from a continuous-wave laser. It offers the prospect of combining the unrivalled coherence properties, operation fidelities and optical connectivity of trapped-ion qubits with the submicrosecond logic speeds that are usually associated with solid-state devices.

  6. Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigolin, Gustavo

    2005-03-01

    We explicitly show a protocol in which an arbitrary two qubit state vertical bar {phi}>=a vertical bar 00>+b vertical bar 01>+c vertical bar 10>+d vertical bar 11> is faithfully and deterministically teleported from Alice to Bob. We construct the 16 orthogonal generalized Bell states that can be used to teleport the two qubits. The local operations Bob must perform on his qubits in order to recover the teleported state are also constructed. They are restricted only to single-qubit gates. This means that a controlled-NOT gate is not necessary to complete the protocol. A generalization where N qubits are teleported ismore » also shown. We define a generalized magic basis, which possesses interesting properties. These properties help us to suggest a generalized concurrence from which we construct a measure of entanglement that has a clear physical interpretation: A multipartite state has maximum entanglement if it is a genuine quantum teleportation channel.« less

  7. A programmable two-qubit quantum processor in silicon

    NASA Astrophysics Data System (ADS)

    Watson, T. F.; Philips, S. G. J.; Kawakami, E.; Ward, D. R.; Scarlino, P.; Veldhorst, M.; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.; Vandersypen, L. M. K.

    2018-03-01

    Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch–Josza algorithm and the Grover search algorithm—canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85–89 per cent and concurrences of 73–82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.

  8. A programmable two-qubit quantum processor in silicon.

    PubMed

    Watson, T F; Philips, S G J; Kawakami, E; Ward, D R; Scarlino, P; Veldhorst, M; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, M A; Vandersypen, L M K

    2018-03-29

    Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch-Josza algorithm and the Grover search algorithm-canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85-89 per cent and concurrences of 73-82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.

  9. High fidelity quantum gates with vibrational qubits.

    PubMed

    Berrios, Eduardo; Gruebele, Martin; Shyshlov, Dmytro; Wang, Lei; Babikov, Dmitri

    2012-11-26

    Physical implementation of quantum gates acting on qubits does not achieve a perfect fidelity of 1. The actual output qubit may not match the targeted output of the desired gate. According to theoretical estimates, intrinsic gate fidelities >99.99% are necessary so that error correction codes can be used to achieve perfect fidelity. Here we test what fidelity can be accomplished for a CNOT gate executed by a shaped ultrafast laser pulse interacting with vibrational states of the molecule SCCl(2). This molecule has been used as a test system for low-fidelity calculations before. To make our test more stringent, we include vibrational levels that do not encode the desired qubits but are close enough in energy to interfere with population transfer by the laser pulse. We use two complementary approaches: optimal control theory determines what the best possible pulse can do; a more constrained physical model calculates what an experiment likely can do. Optimal control theory finds pulses with fidelity >0.9999, in excess of the quantum error correction threshold with 8 × 10(4) iterations. On the other hand, the physical model achieves only 0.9992 after 8 × 10(4) iterations. Both calculations converge as an inverse power law toward unit fidelity after >10(2) iterations/generations. In principle, the fidelities necessary for quantum error correction are reachable with qubits encoded by molecular vibrations. In practice, it will be challenging with current laboratory instrumentation because of slow convergence past fidelities of 0.99.

  10. Integrated photonic quantum gates for polarization qubits.

    PubMed

    Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto; Sansoni, Linda; Bongioanni, Irene; Sciarrino, Fabio; Vallone, Giuseppe; Mataloni, Paolo

    2011-11-29

    The ability to manipulate quantum states of light by integrated devices may open new perspectives both for fundamental tests of quantum mechanics and for novel technological applications. However, the technology for handling polarization-encoded qubits, the most commonly adopted approach, is still missing in quantum optical circuits. Here we demonstrate the first integrated photonic controlled-NOT (CNOT) gate for polarization-encoded qubits. This result has been enabled by the integration, based on femtosecond laser waveguide writing, of partially polarizing beam splitters on a glass chip. We characterize the logical truth table of the quantum gate demonstrating its high fidelity to the expected one. In addition, we show the ability of this gate to transform separable states into entangled ones and vice versa. Finally, the full accessibility of our device is exploited to carry out a complete characterization of the CNOT gate through a quantum process tomography.

  11. Pulsed dynamical decoupling for fast and robust two-qubit gates on trapped ions

    NASA Astrophysics Data System (ADS)

    Arrazola, I.; Casanova, J.; Pedernales, J. S.; Wang, Z.-Y.; Solano, E.; Plenio, M. B.

    2018-05-01

    We propose a pulsed dynamical decoupling protocol as the generator of tunable, fast, and robust quantum phase gates between two microwave-driven trapped-ion hyperfine qubits. The protocol consists of sequences of π pulses acting on ions that are oriented along an externally applied magnetic-field gradient. In contrast to existing approaches, in our design the two vibrational modes of the ion chain cooperate under the influence of the external microwave driving to achieve significantly increased gate speeds. Our scheme is robust against the dominant noise sources, which are errors on the magnetic-field and microwave pulse intensities, as well as motional heating, predicting two-qubit gates with fidelities above 99.9% in tens of microseconds.

  12. Leakage of The Quantum Dot Hybrid Qubit in The Strong Driving Regime

    NASA Astrophysics Data System (ADS)

    Yang, Yuan-Chi; Friesen, Mark; Coppersmith, S. N.

    Recent experimental demonstrations of high-fidelity single-qubit gates suggest that the quantum dot hybrid qubit is a promising candidate for large-scale quantum computing. The qubit is comprised of three electrons in a double quantum dot, and can be protected from charge noise by operating in an extended sweet-spot regime. Gate operations are based on exchange interactions mediated by an excited state. However, strong resonant driving causes unwanted leakage into the excited state. Here, we theoretically analyze leakage caused by strong driving, and explore methods for increasing gate fidelities. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), ONR (N00014-15-1-0029), and the University of Wisconsin-Madison.

  13. Efficient experimental design of high-fidelity three-qubit quantum gates via genetic programming

    NASA Astrophysics Data System (ADS)

    Devra, Amit; Prabhu, Prithviraj; Singh, Harpreet; Arvind; Dorai, Kavita

    2018-03-01

    We have designed efficient quantum circuits for the three-qubit Toffoli (controlled-controlled-NOT) and the Fredkin (controlled-SWAP) gate, optimized via genetic programming methods. The gates thus obtained were experimentally implemented on a three-qubit NMR quantum information processor, with a high fidelity. Toffoli and Fredkin gates in conjunction with the single-qubit Hadamard gates form a universal gate set for quantum computing and are an essential component of several quantum algorithms. Genetic algorithms are stochastic search algorithms based on the logic of natural selection and biological genetics and have been widely used for quantum information processing applications. We devised a new selection mechanism within the genetic algorithm framework to select individuals from a population. We call this mechanism the "Luck-Choose" mechanism and were able to achieve faster convergence to a solution using this mechanism, as compared to existing selection mechanisms. The optimization was performed under the constraint that the experimentally implemented pulses are of short duration and can be implemented with high fidelity. We demonstrate the advantage of our pulse sequences by comparing our results with existing experimental schemes and other numerical optimization methods.

  14. High-Fidelity Trapped-Ion Quantum Logic Using Near-Field Microwaves.

    PubMed

    Harty, T P; Sepiol, M A; Allcock, D T C; Ballance, C J; Tarlton, J E; Lucas, D M

    2016-09-30

    We demonstrate a two-qubit logic gate driven by near-field microwaves in a room-temperature microfabricated surface ion trap. We introduce a dynamically decoupled gate method, which stabilizes the qubits against fluctuating energy shifts and avoids the need to null the microwave field. We use the gate to produce a Bell state with fidelity 99.7(1)%, after accounting for state preparation and measurement errors. The gate is applied directly to ^{43}Ca^{+} hyperfine "atomic clock" qubits (coherence time T_{2}^{*}≈50  s) using the oscillating magnetic field gradient produced by an integrated microwave electrode.

  15. Dissipative production of a maximally entangled steady state of two quantum bits.

    PubMed

    Lin, Y; Gaebler, J P; Reiter, F; Tan, T R; Bowler, R; Sørensen, A S; Leibfried, D; Wineland, D J

    2013-12-19

    Entangled states are a key resource in fundamental quantum physics, quantum cryptography and quantum computation. Introduction of controlled unitary processes--quantum gates--to a quantum system has so far been the most widely used method to create entanglement deterministically. These processes require high-fidelity state preparation and minimization of the decoherence that inevitably arises from coupling between the system and the environment, and imperfect control of the system parameters. Here we combine unitary processes with engineered dissipation to deterministically produce and stabilize an approximate Bell state of two trapped-ion quantum bits (qubits), independent of their initial states. Compared with previous studies that involved dissipative entanglement of atomic ensembles or the application of sequences of multiple time-dependent gates to trapped ions, we implement our combined process using trapped-ion qubits in a continuous time-independent fashion (analogous to optical pumping of atomic states). By continuously driving the system towards the steady state, entanglement is stabilized even in the presence of experimental noise and decoherence. Our demonstration of an entangled steady state of two qubits represents a step towards dissipative state engineering, dissipative quantum computation and dissipative phase transitions. Following this approach, engineered coupling to the environment may be applied to a broad range of experimental systems to achieve desired quantum dynamics or steady states. Indeed, concurrently with this work, an entangled steady state of two superconducting qubits was demonstrated using dissipation.

  16. Efficient Measurement of Quantum Gate Error by Interleaved Randomized Benchmarking

    NASA Astrophysics Data System (ADS)

    Magesan, Easwar; Gambetta, Jay M.; Johnson, B. R.; Ryan, Colm A.; Chow, Jerry M.; Merkel, Seth T.; da Silva, Marcus P.; Keefe, George A.; Rothwell, Mary B.; Ohki, Thomas A.; Ketchen, Mark B.; Steffen, M.

    2012-08-01

    We describe a scalable experimental protocol for estimating the average error of individual quantum computational gates. This protocol consists of interleaving random Clifford gates between the gate of interest and provides an estimate as well as theoretical bounds for the average error of the gate under test, so long as the average noise variation over all Clifford gates is small. This technique takes into account both state preparation and measurement errors and is scalable in the number of qubits. We apply this protocol to a superconducting qubit system and find a bounded average error of 0.003 [0,0.016] for the single-qubit gates Xπ/2 and Yπ/2. These bounded values provide better estimates of the average error than those extracted via quantum process tomography.

  17. Microwave-driven coherent operation of a semiconductor quantum dot charge qubit

    DOE PAGES

    Kim, Dohun; Ward, D. R.; Simmons, C. B.; ...

    2015-02-16

    An intuitive realization of a qubit is an electron charge at two well-defined positions of a double quantum dot. The qubit is simple and has the potential for high-speed operation because of its strong coupling to electric fields. But, charge noise also couples strongly to this qubit, resulting in rapid dephasing at all but one special operating point called the ‘sweet spot’. In previous studies d.c. voltage pulses have been used to manipulate semiconductor charge qubits but did not achieve high-fidelity control, because d.c. gating requires excursions away from the sweet spot. Here, by using resonant a.c. microwave driving wemore » achieve fast (greater than gigahertz) and universal single qubit rotations of a semiconductor charge qubit. The Z-axis rotations of the qubit are well protected at the sweet spot, and we demonstrate the same protection for rotations about arbitrary axes in the X–Y plane of the qubit Bloch sphere. We characterize the qubit operation using two tomographic approaches: standard process tomography and gate set tomography. Moreover, both methods consistently yield process fidelities greater than 86% with respect to a universal set of unitary single-qubit operations.« less

  18. Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits.

    PubMed

    Rabl, P; DeMille, D; Doyle, J M; Lukin, M D; Schoelkopf, R J; Zoller, P

    2006-07-21

    We investigate a hybrid quantum circuit where ensembles of cold polar molecules serve as long-lived quantum memories and optical interfaces for solid state quantum processors. The quantum memory realized by collective spin states (ensemble qubit) is coupled to a high-Q stripline cavity via microwave Raman processes. We show that, for convenient trap-surface distances of a few microm, strong coupling between the cavity and ensemble qubit can be achieved. We discuss basic quantum information protocols, including a swap from the cavity photon bus to the molecular quantum memory, and a deterministic two qubit gate. Finally, we investigate coherence properties of molecular ensemble quantum bits.

  19. Complete quantum control of a single quantum dot spin using ultrafast optical pulses.

    PubMed

    Press, David; Ladd, Thaddeus D; Zhang, Bingyang; Yamamoto, Yoshihisa

    2008-11-13

    A basic requirement for quantum information processing systems is the ability to completely control the state of a single qubit. For qubits based on electron spin, a universal single-qubit gate is realized by a rotation of the spin by any angle about an arbitrary axis. Driven, coherent Rabi oscillations between two spin states can be used to demonstrate control of the rotation angle. Ramsey interference, produced by two coherent spin rotations separated by a variable time delay, demonstrates control over the axis of rotation. Full quantum control of an electron spin in a quantum dot has previously been demonstrated using resonant radio-frequency pulses that require many spin precession periods. However, optical manipulation of the spin allows quantum control on a picosecond or femtosecond timescale, permitting an arbitrary rotation to be completed within one spin precession period. Recent work in optical single-spin control has demonstrated the initialization of a spin state in a quantum dot, as well as the ultrafast manipulation of coherence in a largely unpolarized single-spin state. Here we demonstrate complete coherent control over an initialized electron spin state in a quantum dot using picosecond optical pulses. First we vary the intensity of a single optical pulse to observe over six Rabi oscillations between the two spin states; then we apply two sequential pulses to observe high-contrast Ramsey interference. Such a two-pulse sequence realizes an arbitrary single-qubit gate completed on a picosecond timescale. Along with the spin initialization and final projective measurement of the spin state, these results demonstrate a complete set of all-optical single-qubit operations.

  20. Quantum computation with trapped ions in an optical cavity.

    PubMed

    Pachos, Jiannis; Walther, Herbert

    2002-10-28

    Two-qubit logical gates are proposed on the basis of two atoms trapped in a cavity setup and commonly addressed by laser fields. Losses in the interaction by spontaneous transitions are efficiently suppressed by employing adiabatic transitions and the quantum Zeno effect. Dynamical and geometrical conditional phase gates are suggested. This method provides fidelity and a success rate of its gates very close to unity. Hence, it is suitable for performing quantum computation.

  1. Classical-processing and quantum-processing signal separation methods for qubit uncoupling

    NASA Astrophysics Data System (ADS)

    Deville, Yannick; Deville, Alain

    2012-12-01

    The Blind Source Separation problem consists in estimating a set of unknown source signals from their measured combinations. It was only investigated in a non-quantum framework up to now. We propose its first quantum extensions. We thus introduce the Quantum Source Separation field, investigating both its blind and non-blind configurations. More precisely, we show how to retrieve individual quantum bits (qubits) only from the global state resulting from their undesired coupling. We consider cylindrical-symmetry Heisenberg coupling, which e.g. occurs when two electron spins interact through exchange. We first propose several qubit uncoupling methods which typically measure repeatedly the coupled quantum states resulting from individual qubits preparations, and which then statistically process the classical data provided by these measurements. Numerical tests prove the effectiveness of these methods. We then derive a combination of quantum gates for performing qubit uncoupling, thus avoiding repeated qubit preparations and irreversible measurements.

  2. Adjustable Spin-Spin Interaction with 171Yb+ ions and Addressing of a Quantum Byte

    NASA Astrophysics Data System (ADS)

    Wunderlich, Christof

    2015-05-01

    Trapped atomic ions are a well-advanced physical system for investigating fundamental questions of quantum physics and for quantum information science and its applications. When contemplating the scalability of trapped ions for quantum information science one notes that the use of laser light for coherent operations gives rise to technical and also physical issues that can be remedied by replacing laser light by microwave (MW) and radio-frequency (RF) radiation employing suitably modified ion traps. Magnetic gradient induced coupling (MAGIC) makes it possible to coherently manipulate trapped ions using exclusively MW and RF radiation. After introducing the general concept of MAGIC, I shall report on recent experimental progress using 171Yb+ ions, confined in a suitable Paul trap, as effective spin-1/2 systems interacting via MAGIC. Entangling gates between non-neighbouring ions will be presented. The spin-spin coupling strength is variable and can be adjusted by variation of the secular trap frequency. In general, executing a quantum gate with a single qubit, or a subset of qubits, affects the quantum states of all other qubits. This reduced fidelity of the whole quantum register may preclude scalability. We demonstrate addressing of individual qubits within a quantum byte (eight qubits interacting via MAGIC) using MW radiation and measure the error induced in all non-addressed qubits (cross-talk) associated with the application of single-qubit gates. The measured cross-talk is on the order 10-5 and therefore below the threshold commonly agreed sufficient to efficiently realize fault-tolerant quantum computing. Furthermore, experimental results on continuous and pulsed dynamical decoupling (DD) for protecting quantum memories and quantum gates against decoherence will be briefly discussed. Finally, I report on using continuous DD to realize a broadband ultrasensitive single-atom magnetometer.

  3. A quantum Fredkin gate

    PubMed Central

    Patel, Raj B.; Ho, Joseph; Ferreyrol, Franck; Ralph, Timothy C.; Pryde, Geoff J.

    2016-01-01

    Minimizing the resources required to build logic gates into useful processing circuits is key to realizing quantum computers. Although the salient features of a quantum computer have been shown in proof-of-principle experiments, difficulties in scaling quantum systems have made more complex operations intractable. This is exemplified in the classical Fredkin (controlled-SWAP) gate for which, despite theoretical proposals, no quantum analog has been realized. By adding control to the SWAP unitary, we use photonic qubit logic to demonstrate the first quantum Fredkin gate, which promises many applications in quantum information and measurement. We implement example algorithms and generate the highest-fidelity three-photon Greenberger-Horne-Zeilinger states to date. The technique we use allows one to add a control operation to a black-box unitary, something that is impossible in the standard circuit model. Our experiment represents the first use of this technique to control a two-qubit operation and paves the way for larger controlled circuits to be realized efficiently. PMID:27051868

  4. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials.

    PubMed

    Ivić, Z; Lazarides, N; Tsironis, G P

    2016-07-12

    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980's, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound "quantum breather" that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey-Collard, Patrick; Jacobson, N. Tobias; Rudolph, Martin

    Individual donors in silicon chips are used as quantum bits with extremely low error rates. However, physical realizations have been limited to one donor because their atomic size causes fabrication challenges. Quantum dot qubits, in contrast, are highly adjustable using electrical gate voltages. This adjustability could be leveraged to deterministically couple donors to quantum dots in arrays of qubits. In this work, we demonstrate the coherent interaction of a 31P donor electron with the electron of a metal-oxide-semiconductor quantum dot. We form a logical qubit encoded in the spin singlet and triplet states of the two-electron system. We show thatmore » the donor nuclear spin drives coherent rotations between the electronic qubit states through the contact hyperfine interaction. This provides every key element for compact two-electron spin qubits requiring only a single dot and no additional magnetic field gradients, as well as a means to interact with the nuclear spin qubit.« less

  6. Compressed quantum computation using a remote five-qubit quantum computer

    NASA Astrophysics Data System (ADS)

    Hebenstreit, M.; Alsina, D.; Latorre, J. I.; Kraus, B.

    2017-05-01

    The notion of compressed quantum computation is employed to simulate the Ising interaction of a one-dimensional chain consisting of n qubits using the universal IBM cloud quantum computer running on log2(n ) qubits. The external field parameter that controls the quantum phase transition of this model translates into particular settings of the quantum gates that generate the circuit. We measure the magnetization, which displays the quantum phase transition, on a two-qubit system, which simulates a four-qubit Ising chain, and show its agreement with the theoretical prediction within a certain error. We also discuss the relevant point of how to assess errors when using a cloud quantum computer with a limited amount of runs. As a solution, we propose to use validating circuits, that is, to run independent controlled quantum circuits of similar complexity to the circuit of interest.

  7. A Quantum Non-Demolition Parity measurement in a mixed-species trapped-ion quantum processor

    NASA Astrophysics Data System (ADS)

    Marinelli, Matteo; Negnevitsky, Vlad; Lo, Hsiang-Yu; Flühmann, Christa; Mehta, Karan; Home, Jonathan

    2017-04-01

    Quantum non-demolition measurements of multi-qubit systems are an important tool in quantum information processing, in particular for syndrome extraction in quantum error correction. We have recently demonstrated a protocol for quantum non-demolition measurement of the parity of two beryllium ions by detection of a co-trapped calcium ion. The measurement requires a sequence of quantum gates between the three ions, using mixed-species gates between beryllium hyperfine qubits and a calcium optical qubit. Our work takes place in a multi-zone segmented trap setup in which we have demonstrated high fidelity control of both species and multi-well ion shuttling. The advantage of using two species of ion is that we can individually manipulate and read out the state of each ion species without disturbing the internal state of the other. The methods demonstrated here can be used for quantum error correcting codes as well as quantum metrology and are key ingredients for realizing a hybrid universal quantum computer based on trapped ions. Mixed-species control may also enable the investigation of new avenues in quantum simulation and quantum state control. left the group and working in a company now.

  8. A scalable quantum computer with ions in an array of microtraps

    PubMed

    Cirac; Zoller

    2000-04-06

    Quantum computers require the storage of quantum information in a set of two-level systems (called qubits), the processing of this information using quantum gates and a means of final readout. So far, only a few systems have been identified as potentially viable quantum computer models--accurate quantum control of the coherent evolution is required in order to realize gate operations, while at the same time decoherence must be avoided. Examples include quantum optical systems (such as those utilizing trapped ions or neutral atoms, cavity quantum electrodynamics and nuclear magnetic resonance) and solid state systems (using nuclear spins, quantum dots and Josephson junctions). The most advanced candidates are the quantum optical and nuclear magnetic resonance systems, and we expect that they will allow quantum computing with about ten qubits within the next few years. This is still far from the numbers required for useful applications: for example, the factorization of a 200-digit number requires about 3,500 qubits, rising to 100,000 if error correction is implemented. Scalability of proposed quantum computer architectures to many qubits is thus of central importance. Here we propose a model for an ion trap quantum computer that combines scalability (a feature usually associated with solid state proposals) with the advantages of quantum optical systems (in particular, quantum control and long decoherence times).

  9. Joint Remote State Preparation Schemes for Two Different Quantum States Selectively

    NASA Astrophysics Data System (ADS)

    Shi, Jin

    2018-05-01

    The scheme for joint remote state preparation of two different one-qubit states according to requirement is proposed by using one four-dimensional spatial-mode-entangled KLM state as quantum channel. The scheme for joint remote state preparation of two different two-qubit states according to requirement is also proposed by using one four-dimensional spatial-mode-entangled KLM state and one three-dimensional spatial-mode-entangled GHZ state as quantum channels. Quantum non-demolition measurement, Hadamard gate operation, projective measurement and unitary transformation are included in the schemes.

  10. Feedback-tuned, noise resilient gates for encoded spin qubits

    NASA Astrophysics Data System (ADS)

    Bluhm, Hendrik

    Spin 1/2 particles form native two level systems and thus lend themselves as a natural qubit implementation. However, encoding a single qubit in several spins entails benefits, such as reducing the resources necessary for qubit control and protection from certain decoherence channels. While several varieties of such encoded spin qubits have been implemented, accurate control remains challenging, and leakage out of the subspace of valid qubit states is a potential issue. Optimal performance typically requires large pulse amplitudes for fast control, which is prone to systematic errors and prohibits standard control approaches based on Rabi flopping. Furthermore, the exchange interaction typically used to electrically manipulate encoded spin qubits is inherently sensitive to charge noise. I will discuss all-electrical, high-fidelity single qubit operations for a spin qubit encoded in two electrons in a GaAs double quantum dot. Starting from a set of numerically optimized control pulses, we employ an iterative tuning procedure based on measured error syndromes to remove systematic errors.Randomized benchmarking yields an average gate fidelity exceeding 98 % and a leakage rate into invalid states of 0.2 %. These gates exhibit a certain degree of resilience to both slow charge and nuclear spin fluctuations due to dynamical correction analogous to a spin echo. Furthermore, the numerical optimization minimizes the impact of fast charge noise. Both types of noise make relevant contributions to gate errors. The general approach is also adaptable to other qubit encodings and exchange based two-qubit gates.

  11. Progress towards two double-dot qubits in Si/SiGe: quadruple quantum dots

    NASA Astrophysics Data System (ADS)

    Foote, Ryan H.; Ward, Daniel R.; Kim, Dohun; Thorgrimsson, Brandur; Smith, Luke; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.

    We present the fabrication and electrical characterization of two types of gate-defined quadruple quantum dot devices formed in Si/SiGe heterostructures. We compare two designs, one which uses three layers of tightly overlapping gates and is similar to the work found in, and one which uses only two layers of gates and has significantly more open space between neighboring gates. We demonstrate charge-state conditional quantum oscillations in the more open device, we compare the tunability of both devices with each other, and we discuss the implications of these measurements on a path towards larger numbers of coupled quantum dot qubits. This work is supported in part by ARO (W911NF-12-1-0607), NSF (DMR-1206915, PHY-1104660), ONR (N00014-15-1-0029) and the Department of Defense. Development and maintenance of the growth facilities used for fabricating samples supported by DOE (DE-FG02-03ER46028). DK acknowledges support from the Korea Institute of Science and Technology Institutional Program (Project No. 2E26681). This research utilized facilities supported by the NSF (DMR-0832760, DMR-1121288).

  12. Modal and polarization qubits in Ti:LiNbO3 photonic circuits for a universal quantum logic gate.

    PubMed

    Saleh, Mohammed F; Di Giuseppe, Giovanni; Saleh, Bahaa E A; Teich, Malvin Carl

    2010-09-13

    Lithium niobate photonic circuits have the salutary property of permitting the generation, transmission, and processing of photons to be accommodated on a single chip. Compact photonic circuits such as these, with multiple components integrated on a single chip, are crucial for efficiently implementing quantum information processing schemes.We present a set of basic transformations that are useful for manipulating modal qubits in Ti:LiNbO(3) photonic quantum circuits. These include the mode analyzer, a device that separates the even and odd components of a state into two separate spatial paths; the mode rotator, which rotates the state by an angle in mode space; and modal Pauli spin operators that effect related operations. We also describe the design of a deterministic, two-qubit, single-photon, CNOT gate, a key element in certain sets of universal quantum logic gates. It is implemented as a Ti:LiNbO(3) photonic quantum circuit in which the polarization and mode number of a single photon serve as the control and target qubits, respectively. It is shown that the effects of dispersion in the CNOT circuit can be mitigated by augmenting it with an additional path. The performance of all of these components are confirmed by numerical simulations. The implementation of these transformations relies on selective and controllable power coupling among single- and two-mode waveguides, as well as the polarization sensitivity of the Pockels coefficients in LiNbO(3).

  13. Model dynamics for quantum computing

    NASA Astrophysics Data System (ADS)

    Tabakin, Frank

    2017-08-01

    A model master equation suitable for quantum computing dynamics is presented. In an ideal quantum computer (QC), a system of qubits evolves in time unitarily and, by virtue of their entanglement, interfere quantum mechanically to solve otherwise intractable problems. In the real situation, a QC is subject to decoherence and attenuation effects due to interaction with an environment and with possible short-term random disturbances and gate deficiencies. The stability of a QC under such attacks is a key issue for the development of realistic devices. We assume that the influence of the environment can be incorporated by a master equation that includes unitary evolution with gates, supplemented by a Lindblad term. Lindblad operators of various types are explored; namely, steady, pulsed, gate friction, and measurement operators. In the master equation, we use the Lindblad term to describe short time intrusions by random Lindblad pulses. The phenomenological master equation is then extended to include a nonlinear Beretta term that describes the evolution of a closed system with increasing entropy. An external Bath environment is stipulated by a fixed temperature in two different ways. Here we explore the case of a simple one-qubit system in preparation for generalization to multi-qubit, qutrit and hybrid qubit-qutrit systems. This model master equation can be used to test the stability of memory and the efficacy of quantum gates. The properties of such hybrid master equations are explored, with emphasis on the role of thermal equilibrium and entropy constraints. Several significant properties of time-dependent qubit evolution are revealed by this simple study.

  14. Integrated System Technologies for Modular Trapped Ion Quantum Information Processing

    NASA Astrophysics Data System (ADS)

    Crain, Stephen G.

    Although trapped ion technology is well-suited for quantum information science, scalability of the system remains one of the main challenges. One of the challenges associated with scaling the ion trap quantum computer is the ability to individually manipulate the increasing number of qubits. Using micro-mirrors fabricated with micro-electromechanical systems (MEMS) technology, laser beams are focused on individual ions in a linear chain and steer the focal point in two dimensions. Multiple single qubit gates are demonstrated on trapped 171Yb+ qubits and the gate performance is characterized using quantum state tomography. The system features negligible crosstalk to neighboring ions (< 3e-4), and switching speeds comparable to typical single qubit gate times (< 2 mus). In a separate experiment, photons scattered from the 171Yb+ ion are coupled into an optical fiber with 63% efficiency using a high numerical aperture lens (0.6 NA). The coupled photons are directed to superconducting nanowire single photon detectors (SNSPD), which provide a higher detector efficiency (69%) compared to traditional photomultiplier tubes (35%). The total system photon collection efficiency is increased from 2.2% to 3.4%, which allows for fast state detection of the qubit. For a detection beam intensity of 11 mW/cm 2, the average detection time is 23.7 mus with 99.885(7)% detection fidelity. The technologies demonstrated in this thesis can be integrated to form a single quantum register with all of the necessary resources to perform local gates as well as high fidelity readout and provide a photon link to other systems.

  15. Demonstration of Qubit Operations Below a Rigorous Fault Tolerance Threshold With Gate Set Tomography (Open Access, Publisher’s Version)

    DTIC Science & Technology

    2017-02-15

    Maunz2 Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone...information processors have been demonstrated experimentally using superconducting circuits1–3, electrons in semiconductors4–6, trapped atoms and...qubit quantum information processor has been realized14, and single- qubit gates have demonstrated randomized benchmarking (RB) infidelities as low as 10

  16. Coherent coupling between a quantum dot and a donor in silicon

    DOE PAGES

    Harvey-Collard, Patrick; Jacobson, N. Tobias; Rudolph, Martin; ...

    2017-10-18

    Individual donors in silicon chips are used as quantum bits with extremely low error rates. However, physical realizations have been limited to one donor because their atomic size causes fabrication challenges. Quantum dot qubits, in contrast, are highly adjustable using electrical gate voltages. This adjustability could be leveraged to deterministically couple donors to quantum dots in arrays of qubits. In this work, we demonstrate the coherent interaction of a 31P donor electron with the electron of a metal-oxide-semiconductor quantum dot. We form a logical qubit encoded in the spin singlet and triplet states of the two-electron system. We show thatmore » the donor nuclear spin drives coherent rotations between the electronic qubit states through the contact hyperfine interaction. This provides every key element for compact two-electron spin qubits requiring only a single dot and no additional magnetic field gradients, as well as a means to interact with the nuclear spin qubit.« less

  17. Implementation of quantum logic gates using polar molecules in pendular states.

    PubMed

    Zhu, Jing; Kais, Sabre; Wei, Qi; Herschbach, Dudley; Friedrich, Bretislav

    2013-01-14

    We present a systematic approach to implementation of basic quantum logic gates operating on polar molecules in pendular states as qubits for a quantum computer. A static electric field prevents quenching of the dipole moments by rotation, thereby creating the pendular states; also, the field gradient enables distinguishing among qubit sites. Multi-target optimal control theory is used as a means of optimizing the initial-to-target transition probability via a laser field. We give detailed calculations for the SrO molecule, a favorite candidate for proposed quantum computers. Our simulation results indicate that NOT, Hadamard and CNOT gates can be realized with high fidelity, as high as 0.985, for such pendular qubit states.

  18. Quantum Simulation of Tunneling in Small Systems

    PubMed Central

    Sornborger, Andrew T.

    2012-01-01

    A number of quantum algorithms have been performed on small quantum computers; these include Shor's prime factorization algorithm, error correction, Grover's search algorithm and a number of analog and digital quantum simulations. Because of the number of gates and qubits necessary, however, digital quantum particle simulations remain untested. A contributing factor to the system size required is the number of ancillary qubits needed to implement matrix exponentials of the potential operator. Here, we show that a set of tunneling problems may be investigated with no ancillary qubits and a cost of one single-qubit operator per time step for the potential evolution, eliminating at least half of the quantum gates required for the algorithm and more than that in the general case. Such simulations are within reach of current quantum computer architectures. PMID:22916333

  19. Optimization of a solid-state electron spin qubit using Gate Set Tomography

    DOE PAGES

    Dehollain, Juan P.; Muhonen, Juha T.; Blume-Kohout, Robin J.; ...

    2016-10-13

    Here, state of the art qubit systems are reaching the gate fidelities required for scalable quantum computation architectures. Further improvements in the fidelity of quantum gates demands characterization and benchmarking protocols that are efficient, reliable and extremely accurate. Ideally, a benchmarking protocol should also provide information on how to rectify residual errors. Gate Set Tomography (GST) is one such protocol designed to give detailed characterization of as-built qubits. We implemented GST on a high-fidelity electron-spin qubit confined by a single 31P atom in 28Si. The results reveal systematic errors that a randomized benchmarking analysis could measure but not identify, whereasmore » GST indicated the need for improved calibration of the length of the control pulses. After introducing this modification, we measured a new benchmark average gate fidelity of 99.942(8)%, an improvement on the previous value of 99.90(2)%. Furthermore, GST revealed high levels of non-Markovian noise in the system, which will need to be understood and addressed when the qubit is used within a fault-tolerant quantum computation scheme.« less

  20. Implementation of adiabatic geometric gates with superconducting phase qubits.

    PubMed

    Peng, Z H; Chu, H F; Wang, Z D; Zheng, D N

    2009-01-28

    We present an adiabatic geometric quantum computation strategy based on the non-degenerate energy eigenstates in (but not limited to) superconducting phase qubit systems. The fidelity of the designed quantum gate was evaluated in the presence of simulated thermal fluctuations in a superconducting phase qubits circuit and was found to be quite robust against random errors. In addition, it was elucidated that the Berry phase in the designed adiabatic evolution may be detected directly via the quantum state tomography developed for superconducting qubits. We also analyze the effects of control parameter fluctuations on the experimental detection of the Berry phase.

  1. Universal quantum gates for Single Cooper Pair Box based quantum computing

    NASA Technical Reports Server (NTRS)

    Echternach, P.; Williams, C. P.; Dultz, S. C.; Braunstein, S.; Dowling, J. P.

    2000-01-01

    We describe a method for achieving arbitrary 1-qubit gates and controlled-NOT gates within the context of the Single Cooper Pair Box (SCB) approach to quantum computing. Such gates are sufficient to support universal quantum computation.

  2. Optimal control of quantum rings by terahertz laser pulses.

    PubMed

    Räsänen, E; Castro, A; Werschnik, J; Rubio, A; Gross, E K U

    2007-04-13

    Complete control of single-electron states in a two-dimensional semiconductor quantum-ring model is established, opening a path into coherent laser-driven single-gate qubits. The control scheme is developed in the framework of optimal-control theory for laser pulses of two-component polarization. In terms of pulse lengths and target-state occupations, the scheme is shown to be superior to conventional control methods that exploit Rabi oscillations generated by uniform circularly polarized pulses. Current-carrying states in a quantum ring can be used to manipulate a two-level subsystem at the ring center. Combining our results, we propose a realistic approach to construct a laser-driven single-gate qubit that has switching times in the terahertz regime.

  3. Simulating the performance of a distance-3 surface code in a linear ion trap

    NASA Astrophysics Data System (ADS)

    Trout, Colin J.; Li, Muyuan; Gutiérrez, Mauricio; Wu, Yukai; Wang, Sheng-Tao; Duan, Luming; Brown, Kenneth R.

    2018-04-01

    We explore the feasibility of implementing a small surface code with 9 data qubits and 8 ancilla qubits, commonly referred to as surface-17, using a linear chain of 171Yb+ ions. Two-qubit gates can be performed between any two ions in the chain with gate time increasing linearly with ion distance. Measurement of the ion state by fluorescence requires that the ancilla qubits be physically separated from the data qubits to avoid errors on the data due to scattered photons. We minimize the time required to measure one round of stabilizers by optimizing the mapping of the two-dimensional surface code to the linear chain of ions. We develop a physically motivated Pauli error model that allows for fast simulation and captures the key sources of noise in an ion trap quantum computer including gate imperfections and ion heating. Our simulations showed a consistent requirement of a two-qubit gate fidelity of ≥99.9% for the logical memory to have a better fidelity than physical two-qubit operations. Finally, we perform an analysis of the error subsets from the importance sampling method used to bound the logical error rates to gain insight into which error sources are particularly detrimental to error correction.

  4. Discrete Wigner formalism for qubits and noncontextuality of Clifford gates on qubit stabilizer states

    NASA Astrophysics Data System (ADS)

    Kocia, Lucas; Love, Peter

    2017-12-01

    We show that qubit stabilizer states can be represented by non-negative quasiprobability distributions associated with a Wigner-Weyl-Moyal formalism where Clifford gates are positive state-independent maps. This is accomplished by generalizing the Wigner-Weyl-Moyal formalism to three generators instead of two—producing an exterior, or Grassmann, algebra—which results in Clifford group gates for qubits that act as a permutation on the finite Weyl phase space points naturally associated with stabilizer states. As a result, a non-negative probability distribution can be associated with each stabilizer state's three-generator Wigner function, and these distributions evolve deterministically to one another under Clifford gates. This corresponds to a hidden variable theory that is noncontextual and local for qubit Clifford gates while Clifford (Pauli) measurements have a context-dependent representation. Equivalently, we show that qubit Clifford gates can be expressed as propagators within the three-generator Wigner-Weyl-Moyal formalism whose semiclassical expansion is truncated at order ℏ0 with a finite number of terms. The T gate, which extends the Clifford gate set to one capable of universal quantum computation, requires a semiclassical expansion of the propagator to order ℏ1. We compare this approach to previous quasiprobability descriptions of qubits that relied on the two-generator Wigner-Weyl-Moyal formalism and find that the two-generator Weyl symbols of stabilizer states result in a description of evolution under Clifford gates that is state-dependent, in contrast to the three-generator formalism. We have thus extended Wigner non-negative quasiprobability distributions from the odd d -dimensional case to d =2 qubits, which describe the noncontextuality of Clifford gates and contextuality of Pauli measurements on qubit stabilizer states.

  5. Characterizing quantum supremacy in near-term devices

    NASA Astrophysics Data System (ADS)

    Boixo, Sergio; Isakov, Sergei V.; Smelyanskiy, Vadim N.; Babbush, Ryan; Ding, Nan; Jiang, Zhang; Bremner, Michael J.; Martinis, John M.; Neven, Hartmut

    2018-06-01

    A critical question for quantum computing in the near future is whether quantum devices without error correction can perform a well-defined computational task beyond the capabilities of supercomputers. Such a demonstration of what is referred to as quantum supremacy requires a reliable evaluation of the resources required to solve tasks with classical approaches. Here, we propose the task of sampling from the output distribution of random quantum circuits as a demonstration of quantum supremacy. We extend previous results in computational complexity to argue that this sampling task must take exponential time in a classical computer. We introduce cross-entropy benchmarking to obtain the experimental fidelity of complex multiqubit dynamics. This can be estimated and extrapolated to give a success metric for a quantum supremacy demonstration. We study the computational cost of relevant classical algorithms and conclude that quantum supremacy can be achieved with circuits in a two-dimensional lattice of 7 × 7 qubits and around 40 clock cycles. This requires an error rate of around 0.5% for two-qubit gates (0.05% for one-qubit gates), and it would demonstrate the basic building blocks for a fault-tolerant quantum computer.

  6. Optimization and experimental realization of the quantum permutation algorithm

    NASA Astrophysics Data System (ADS)

    Yalçınkaya, I.; Gedik, Z.

    2017-12-01

    The quantum permutation algorithm provides computational speed-up over classical algorithms for determining the parity of a given cyclic permutation. For its n -qubit implementations, the number of required quantum gates scales quadratically with n due to the quantum Fourier transforms included. We show here for the n -qubit case that the algorithm can be simplified so that it requires only O (n ) quantum gates, which theoretically reduces the complexity of the implementation. To test our results experimentally, we utilize IBM's 5-qubit quantum processor to realize the algorithm by using the original and simplified recipes for the 2-qubit case. It turns out that the latter results in a significantly higher success probability which allows us to verify the algorithm more precisely than the previous experimental realizations. We also verify the algorithm for the first time for the 3-qubit case with a considerable success probability by taking the advantage of our simplified scheme.

  7. Universal Quantum Computing with Measurement-Induced Continuous-Variable Gate Sequence in a Loop-Based Architecture.

    PubMed

    Takeda, Shuntaro; Furusawa, Akira

    2017-09-22

    We propose a scalable scheme for optical quantum computing using measurement-induced continuous-variable quantum gates in a loop-based architecture. Here, time-bin-encoded quantum information in a single spatial mode is deterministically processed in a nested loop by an electrically programmable gate sequence. This architecture can process any input state and an arbitrary number of modes with almost minimum resources, and offers a universal gate set for both qubits and continuous variables. Furthermore, quantum computing can be performed fault tolerantly by a known scheme for encoding a qubit in an infinite-dimensional Hilbert space of a single light mode.

  8. Universal Quantum Computing with Measurement-Induced Continuous-Variable Gate Sequence in a Loop-Based Architecture

    NASA Astrophysics Data System (ADS)

    Takeda, Shuntaro; Furusawa, Akira

    2017-09-01

    We propose a scalable scheme for optical quantum computing using measurement-induced continuous-variable quantum gates in a loop-based architecture. Here, time-bin-encoded quantum information in a single spatial mode is deterministically processed in a nested loop by an electrically programmable gate sequence. This architecture can process any input state and an arbitrary number of modes with almost minimum resources, and offers a universal gate set for both qubits and continuous variables. Furthermore, quantum computing can be performed fault tolerantly by a known scheme for encoding a qubit in an infinite-dimensional Hilbert space of a single light mode.

  9. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials

    PubMed Central

    Ivić, Z.; Lazarides, N.; Tsironis, G. P.

    2016-01-01

    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980’s, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound ”quantum breather” that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing. PMID:27403780

  10. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials

    NASA Astrophysics Data System (ADS)

    Ivić, Z.; Lazarides, N.; Tsironis, G. P.

    2016-07-01

    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980’s, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound ”quantum breather” that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.

  11. A molecular orbital study of the energy spectrum, exchange interaction and gate crosstalk of a four-quantum-dot system

    NASA Astrophysics Data System (ADS)

    Yang, Xu-Chen; Wang, Xin

    The manipulation of coupled quantum dot devices is crucial to scalable, fault-tolerant quantum computation. We present a theoretical study of a four-electron four-quantum-dot system based on molecular orbital methods, which depicts a pair of singlet-triplet (S-T) qubits. We find that while the two S-T qubits are coupled by the capacitive interaction when they are sufficiently far away, the admixture of wave functions undergoes a substantial change as the two S-T qubits get closer. We find that in certain parameter regime the exchange interaction may only be defined in the sense of an effective one when the computational basis states no longer dominate the eigenstates. We further discuss the gate crosstalk as a consequence of this wave function mixing. This work was supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (No. CityU 21300116) and the National Natural Science Foundation of China (No. 11604277).

  12. Dynamically correcting two-qubit gates against any systematic logical error

    NASA Astrophysics Data System (ADS)

    Calderon Vargas, Fernando Antonio

    The reliability of quantum information processing depends on the ability to deal with noise and error in an efficient way. A significant source of error in many settings is coherent, systematic gate error. This work introduces a set of composite pulse sequences that generate maximally entangling gates and correct all systematic errors within the logical subspace to arbitrary order. These sequences are applica- ble for any two-qubit interaction Hamiltonian, and make no assumptions about the underlying noise mechanism except that it is constant on the timescale of the opera- tion. The prime use for our results will be in cases where one has limited knowledge of the underlying physical noise and control mechanisms, highly constrained control, or both. In particular, we apply these composite pulse sequences to the quantum system formed by two capacitively coupled singlet-triplet qubits, which is charac- terized by having constrained control and noise sources that are low frequency and of a non-Markovian nature.

  13. Circuit quantum electrodynamics with a spin qubit.

    PubMed

    Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R

    2012-10-18

    Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.

  14. Deterministic nonlinear phase gates induced by a single qubit

    NASA Astrophysics Data System (ADS)

    Park, Kimin; Marek, Petr; Filip, Radim

    2018-05-01

    We propose deterministic realizations of nonlinear phase gates by repeating a finite sequence of non-commuting Rabi interactions between a harmonic oscillator and only a single two-level ancillary qubit. We show explicitly that the key nonclassical features of the ideal cubic phase gate and the quartic phase gate are generated in the harmonic oscillator faithfully by our method. We numerically analyzed the performance of our scheme under realistic imperfections of the oscillator and the two-level system. The methodology is extended further to higher-order nonlinear phase gates. This theoretical proposal completes the set of operations required for continuous-variable quantum computation.

  15. Least significant qubit algorithm for quantum images

    NASA Astrophysics Data System (ADS)

    Sang, Jianzhi; Wang, Shen; Li, Qiong

    2016-11-01

    To study the feasibility of the classical image least significant bit (LSB) information hiding algorithm on quantum computer, a least significant qubit (LSQb) information hiding algorithm of quantum image is proposed. In this paper, we focus on a novel quantum representation for color digital images (NCQI). Firstly, by designing the three qubits comparator and unitary operators, the reasonability and feasibility of LSQb based on NCQI are presented. Then, the concrete LSQb information hiding algorithm is proposed, which can realize the aim of embedding the secret qubits into the least significant qubits of RGB channels of quantum cover image. Quantum circuit of the LSQb information hiding algorithm is also illustrated. Furthermore, the secrets extracting algorithm and circuit are illustrated through utilizing control-swap gates. The two merits of our algorithm are: (1) it is absolutely blind and (2) when extracting secret binary qubits, it does not need any quantum measurement operation or any other help from classical computer. Finally, simulation and comparative analysis show the performance of our algorithm.

  16. Quantum information processing with trapped ions

    NASA Astrophysics Data System (ADS)

    Gaebler, John

    2013-03-01

    Trapped ions are one promising architecture for scalable quantum information processing. Ion qubits are held in multizone traps created from segmented arrays of electrodes and transported between trap zones using time varying electric potentials applied to the electrodes. Quantum information is stored in the ions' internal hyperfine states and quantum gates to manipulate the internal states and create entanglement are performed with laser beams and microwaves. Recently we have made progress in speeding up the ion transport and cooling processes that were the limiting tasks for the operation speed in previous experiments. We are also exploring improved two-qubit gates and new methods for creating ion entanglement. This work was supported by IARPA, ARO contract No. EAO139840, ONR and the NIST Quantum Information Program

  17. Rolf Landauer and Charles H. Bennett Award Talk: Experimental development of spin qubits in silicon

    NASA Astrophysics Data System (ADS)

    Morello, Andrea

    The modern information era is built on silicon nanoelectronic devices. The future quantum information era might be built on silicon too, if we succeed in controlling the interactions between individual spins hosted in silicon nanostructures. Spins in silicon constitute excellent solid-state qubits, because of the weak spin-orbit coupling and the possibility to remove nuclear spins from the environment through 28Si isotopic enrichment. Substitutional 31P atoms in silicon behave approximately like hydrogen in vacuum, providing two spin 1/2 qubits - the donor-bound electron and the 31P nucleus - that can be coherently controlled, read out in single-shot, and are naturally coupled through the hyperfine interaction. In isotopically-enriched 28Si, these single-atom qubits have demonstrated outstanding coherence times, up to 35 seconds for the nuclear spin, and 1-qubit gate fidelities well above 99.9% for both the electron and the nucleus. The hyperfine coupling provides a built-in interaction to entangle the two qubits within one atom. The combined initialization, control and readout fidelities result in a violation of Bell's inequality with S = 2 . 70 , a record value for solid-state qubits. Despite being identical atomic systems, 31P atoms can be addressed individually by locally modifying the hyperfine interaction through electrostatic gating. Multi-qubit logic gates can be mediated either by the exchange interaction or by electric dipole coupling. Scaling up beyond a single atom presents formidable challenges, but provides a pathway to building quantum processors that are compatible with standard semiconductor fabrication, and retain a nanometric footprint, important for truly large-scale quantum computers. Work supported by US Army Research Office (W911NF-13-1-0024) and Australian Research Council (CE110001027).

  18. Experimental comparison of two quantum computing architectures.

    PubMed

    Linke, Norbert M; Maslov, Dmitri; Roetteler, Martin; Debnath, Shantanu; Figgatt, Caroline; Landsman, Kevin A; Wright, Kenneth; Monroe, Christopher

    2017-03-28

    We run a selection of algorithms on two state-of-the-art 5-qubit quantum computers that are based on different technology platforms. One is a publicly accessible superconducting transmon device (www. ibm.com/ibm-q) with limited connectivity, and the other is a fully connected trapped-ion system. Even though the two systems have different native quantum interactions, both can be programed in a way that is blind to the underlying hardware, thus allowing a comparison of identical quantum algorithms between different physical systems. We show that quantum algorithms and circuits that use more connectivity clearly benefit from a better-connected system of qubits. Although the quantum systems here are not yet large enough to eclipse classical computers, this experiment exposes critical factors of scaling quantum computers, such as qubit connectivity and gate expressivity. In addition, the results suggest that codesigning particular quantum applications with the hardware itself will be paramount in successfully using quantum computers in the future.

  19. Braiding by Majorana tracking and long-range CNOT gates with color codes

    NASA Astrophysics Data System (ADS)

    Litinski, Daniel; von Oppen, Felix

    2017-11-01

    Color-code quantum computation seamlessly combines Majorana-based hardware with topological error correction. Specifically, as Clifford gates are transversal in two-dimensional color codes, they enable the use of the Majoranas' non-Abelian statistics for gate operations at the code level. Here, we discuss the implementation of color codes in arrays of Majorana nanowires that avoid branched networks such as T junctions, thereby simplifying their realization. We show that, in such implementations, non-Abelian statistics can be exploited without ever performing physical braiding operations. Physical braiding operations are replaced by Majorana tracking, an entirely software-based protocol which appropriately updates the Majoranas involved in the color-code stabilizer measurements. This approach minimizes the required hardware operations for single-qubit Clifford gates. For Clifford completeness, we combine color codes with surface codes, and use color-to-surface-code lattice surgery for long-range multitarget CNOT gates which have a time overhead that grows only logarithmically with the physical distance separating control and target qubits. With the addition of magic state distillation, our architecture describes a fault-tolerant universal quantum computer in systems such as networks of tetrons, hexons, or Majorana box qubits, but can also be applied to nontopological qubit platforms.

  20. Physical realization of topological quantum walks on IBM-Q and beyond

    NASA Astrophysics Data System (ADS)

    Balu, Radhakrishnan; Castillo, Daniel; Siopsis, George

    2018-07-01

    We discuss an efficient physical realization of topological quantum walks on a one-dimensional finite lattice with periodic boundary conditions (circle). The N-point lattice is realized with {log}}2N qubits, and the quantum circuit utilizes a number of quantum gates that are polynomial in the number of qubits. In a certain scaling limit, we show that a large number of steps are implemented with a number of quantum gates which are independent of the number of steps. We ran the quantum algorithm on the IBM-Q five-qubit quantum computer, thus experimentally demonstrating topological features, such as boundary bound states, on a one-dimensional lattice with N = 4 points.

  1. Transversal Clifford gates on folded surface codes

    DOE PAGES

    Moussa, Jonathan E.

    2016-10-12

    Surface and color codes are two forms of topological quantum error correction in two spatial dimensions with complementary properties. Surface codes have lower-depth error detection circuits and well-developed decoders to interpret and correct errors, while color codes have transversal Clifford gates and better code efficiency in the number of physical qubits needed to achieve a given code distance. A formal equivalence exists between color codes and folded surface codes, but it does not guarantee the transferability of any of these favorable properties. However, the equivalence does imply the existence of constant-depth circuit implementations of logical Clifford gates on folded surfacemore » codes. We achieve and improve this result by constructing two families of folded surface codes with transversal Clifford gates. This construction is presented generally for qudits of any dimension. Lastly, the specific application of these codes to universal quantum computation based on qubit fusion is also discussed.« less

  2. Silicon CMOS architecture for a spin-based quantum computer.

    PubMed

    Veldhorst, M; Eenink, H G J; Yang, C H; Dzurak, A S

    2017-12-15

    Recent advances in quantum error correction codes for fault-tolerant quantum computing and physical realizations of high-fidelity qubits in multiple platforms give promise for the construction of a quantum computer based on millions of interacting qubits. However, the classical-quantum interface remains a nascent field of exploration. Here, we propose an architecture for a silicon-based quantum computer processor based on complementary metal-oxide-semiconductor (CMOS) technology. We show how a transistor-based control circuit together with charge-storage electrodes can be used to operate a dense and scalable two-dimensional qubit system. The qubits are defined by the spin state of a single electron confined in quantum dots, coupled via exchange interactions, controlled using a microwave cavity, and measured via gate-based dispersive readout. We implement a spin qubit surface code, showing the prospects for universal quantum computation. We discuss the challenges and focus areas that need to be addressed, providing a path for large-scale quantum computing.

  3. Pulse sequences for suppressing leakage in single-qubit gate operations

    NASA Astrophysics Data System (ADS)

    Ghosh, Joydip; Coppersmith, S. N.; Friesen, Mark

    2017-06-01

    Many realizations of solid-state qubits involve couplings to leakage states lying outside the computational subspace, posing a threat to high-fidelity quantum gate operations. Mitigating leakage errors is especially challenging when the coupling strength is unknown, e.g., when it is caused by noise. Here we show that simple pulse sequences can be used to strongly suppress leakage errors for a qubit embedded in a three-level system. As an example, we apply our scheme to the recently proposed charge quadrupole (CQ) qubit for quantum dots. These results provide a solution to a key challenge for fault-tolerant quantum computing with solid-state elements.

  4. Quantum information, oscillations and the psyche

    NASA Astrophysics Data System (ADS)

    Martin, F.; Carminati, F.; Galli Carminati, G.

    2010-05-01

    In this paper, taking the theory of quantum information as a model, we consider the human unconscious, pre-consciousness and consciousness as sets of quantum bits (qubits). We view how there can be communication between these various qubit sets. In doing this we are inspired by the theory of nuclear magnetic resonance. In this way we build a model of handling a mental qubit with the help of pulses of a mental field. Starting with an elementary interaction between two qubits we build two-qubit quantum logic gates that allow information to be transferred from one qubit to the other. In this manner we build a quantum process that permits consciousness to "read" the unconscious and vice versa. The elementary interaction, e.g. between a pre-consciousness qubit and a consciousness one, allows us to predict the time evolution of the pre-consciousness + consciousness system in which pre-consciousness and consciousness are quantum entangled. This time evolution exhibits Rabi oscillations that we name mental Rabi oscillations. This time evolution shows how for example the unconscious can influence consciousness. In a process like mourning the influence of the unconscious on consciousness, as the influence of consciousness on the unconscious, are in agreement with what is observed in psychiatry.

  5. Majorana fermion surface code for universal quantum computation

    DOE PAGES

    Vijay, Sagar; Hsieh, Timothy H.; Fu, Liang

    2015-12-10

    In this study, we introduce an exactly solvable model of interacting Majorana fermions realizing Z 2 topological order with a Z 2 fermion parity grading and lattice symmetries permuting the three fundamental anyon types. We propose a concrete physical realization by utilizing quantum phase slips in an array of Josephson-coupled mesoscopic topological superconductors, which can be implemented in a wide range of solid-state systems, including topological insulators, nanowires, or two-dimensional electron gases, proximitized by s-wave superconductors. Our model finds a natural application as a Majorana fermion surface code for universal quantum computation, with a single-step stabilizer measurement requiring no physicalmore » ancilla qubits, increased error tolerance, and simpler logical gates than a surface code with bosonic physical qubits. We thoroughly discuss protocols for stabilizer measurements, encoding and manipulating logical qubits, and gate implementations.« less

  6. Quantum gates controlled by spin chain soliton excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuccoli, Alessandro, E-mail: cuccoli@fi.infn.it; Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, I-50019 Sesto Fiorentino; Nuzzi, Davide

    2014-05-07

    Propagation of soliton-like excitations along spin chains has been proposed as a possible way for transmitting both classical and quantum information between two distant parties with negligible dispersion and dissipation. In this work, a somewhat different use of solitons is considered. Solitons propagating along a spin chain realize an effective magnetic field, well localized in space and time, which can be exploited as a means to manipulate the state of an external spin (i.e., a qubit) that is weakly coupled to the chain. We have investigated different couplings between the qubit and the chain, as well as different soliton shapes,more » according to a Heisenberg chain model. It is found that symmetry properties strongly affect the effectiveness of the proposed scheme, and the most suitable setups for implementing single qubit quantum gates are singled out.« less

  7. Demonstration of a small programmable quantum computer with atomic qubits.

    PubMed

    Debnath, S; Linke, N M; Figgatt, C; Landsman, K A; Wright, K; Monroe, C

    2016-08-04

    Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

  8. Demonstration of a small programmable quantum computer with atomic qubits

    NASA Astrophysics Data System (ADS)

    Debnath, S.; Linke, N. M.; Figgatt, C.; Landsman, K. A.; Wright, K.; Monroe, C.

    2016-08-01

    Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

  9. Implementing a strand of a scalable fault-tolerant quantum computing fabric.

    PubMed

    Chow, Jerry M; Gambetta, Jay M; Magesan, Easwar; Abraham, David W; Cross, Andrew W; Johnson, B R; Masluk, Nicholas A; Ryan, Colm A; Smolin, John A; Srinivasan, Srikanth J; Steffen, M

    2014-06-24

    With favourable error thresholds and requiring only nearest-neighbour interactions on a lattice, the surface code is an error-correcting code that has garnered considerable attention. At the heart of this code is the ability to perform a low-weight parity measurement of local code qubits. Here we demonstrate high-fidelity parity detection of two code qubits via measurement of a third syndrome qubit. With high-fidelity gates, we generate entanglement distributed across three superconducting qubits in a lattice where each code qubit is coupled to two bus resonators. Via high-fidelity measurement of the syndrome qubit, we deterministically entangle the code qubits in either an even or odd parity Bell state, conditioned on the syndrome qubit state. Finally, to fully characterize this parity readout, we develop a measurement tomography protocol. The lattice presented naturally extends to larger networks of qubits, outlining a path towards fault-tolerant quantum computing.

  10. Quantum rotation gates with controlled nonadiabatic evolutions

    NASA Astrophysics Data System (ADS)

    Abdelrahim, Abdelrahman A. H.; Benmachiche, Abderrahim; Subhi Mahmoud, Gharib; Messikh, Azeddine

    2018-04-01

    Quantum gates can be implemented adiabatically and nonadiabatically. Many schemes used at least two sequentially implemented gates to obtain an arbitrary one-qubit gate. Recently, it has been shown that nonadiabatic gates can be realized by single-shot implementation. It has also been shown that quantum gates can be implemented with controlled adiabatic evolutions. In this paper, we combine the advantage of single-shot implementation with controlled adiabatic evolutions to obtain controlled nonadiabatic evolutions. We also investigate the robustness to different types of errors. We find that the fidelity is close to unity for realistic decoherence rates.

  11. Weakly-tunable transmon qubits in a multi-qubit architecture

    NASA Astrophysics Data System (ADS)

    Hertzberg, Jared; Bronn, Nicholas; Corcoles, Antonio; Brink, Markus; Keefe, George; Takita, Maika; Hutchings, M.; Plourde, B. L. T.; Gambetta, Jay; Chow, Jerry

    Quantum error-correction employing a 2D lattice of qubits requires a strong coupling between adjacent qubits and consistently high gate fidelity among them. In such a system, all-microwave cross-resonance gates offer simplicity of setup and operation. However, the relative frequencies of adjacent qubits must be carefully arranged in order to optimize gate rates and eliminate unwanted couplings. We discuss the incorporation of weakly-flux-tunable transmon qubits into such an architecture. Using DC tuning through filtered flux-bias lines, we adjust qubit frequencies while minimizing the effects of flux noise on decoherence.

  12. Realization of optimized quantum controlled-logic gate based on the orbital angular momentum of light.

    PubMed

    Zeng, Qiang; Li, Tao; Song, Xinbing; Zhang, Xiangdong

    2016-04-18

    We propose and experimentally demonstrate an optimized setup to implement quantum controlled-NOT operation using polarization and orbital angular momentum qubits. This device is more adaptive to inputs with various polarizations, and can work both in classical and quantum single-photon regime. The logic operations performed by such a setup not only possess high stability and polarization-free character, they can also be easily extended to deal with multi-qubit input states. As an example, the experimental implementation of generalized three-qubit Toffoli gate has been presented.

  13. A surface code quantum computer in silicon

    PubMed Central

    Hill, Charles D.; Peretz, Eldad; Hile, Samuel J.; House, Matthew G.; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.

    2015-01-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel—posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited. PMID:26601310

  14. A surface code quantum computer in silicon.

    PubMed

    Hill, Charles D; Peretz, Eldad; Hile, Samuel J; House, Matthew G; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y; Hollenberg, Lloyd C L

    2015-10-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel-posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited.

  15. Qubits and quantum Hamiltonian computing performances for operating a digital Boolean 1/2-adder

    NASA Astrophysics Data System (ADS)

    Dridi, Ghassen; Faizy Namarvar, Omid; Joachim, Christian

    2018-04-01

    Quantum Boolean (1 + 1) digits 1/2-adders are designed with 3 qubits for the quantum computing (Qubits) and 4 quantum states for the quantum Hamiltonian computing (QHC) approaches. Detailed analytical solutions are provided to analyse the time operation of those different 1/2-adder gates. QHC is more robust to noise than Qubits and requires about the same amount of energy for running its 1/2-adder logical operations. QHC is faster in time than Qubits but its logical output measurement takes longer.

  16. A Programmable Five Qubit Quantum Computer Using Trapped Atomic Ions

    NASA Astrophysics Data System (ADS)

    Debnath, Shantanu

    Quantum computers can solve certain problems more efficiently compared to conventional classical methods. In the endeavor to build a quantum computer, several competing platforms have emerged that can implement certain quantum algorithms using a few qubits. However, the demonstrations so far have been done usually by tailoring the hardware to meet the requirements of a particular algorithm implemented for a limited number of instances. Although such proof of principal implementations are important to verify the working of algorithms on a physical system, they further need to have the potential to serve as a general purpose quantum computer allowing the flexibility required for running multiple algorithms and be scaled up to host more qubits. Here we demonstrate a small programmable quantum computer based on five trapped atomic ions each of which serves as a qubit. By optically resolving each ion we can individually address them in order to perform a complete set of single-qubit and fully connected two-qubit quantum gates and alsoperform efficient individual qubit measurements. We implement a computation architecture that accepts an algorithm from a user interface in the form of a standard logic gate sequence and decomposes it into fundamental quantum operations that are native to the hardware using a set of compilation instructions that are defined within the software. These operations are then effected through a pattern of laser pulses that perform coherent rotations on targeted qubits in the chain. The architecture implemented in the experiment therefore gives us unprecedented flexibility in the programming of any quantum algorithm while staying blind to the underlying hardware. As a demonstration we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms on the five-qubit processor and achieve average success rates of 95 and 90 percent, respectively. We also implement a five-qubit coherent quantum Fourier transform and examine its performance in the period finding and phase estimation protocol. We find fidelities of 84 and 62 percent, respectively. While maintaining the same computation architecture the system can be scaled to more ions using resources that scale favorably (O(N. 2)) with the numberof qubits N.

  17. Natural three-qubit interactions in one-way quantum computing

    NASA Astrophysics Data System (ADS)

    Tame, M. S.; Paternostro, M.; Kim, M. S.; Vedral, V.

    2006-02-01

    We address the effects of natural three-qubit interactions on the computational power of one-way quantum computation. A benefit of using more sophisticated entanglement structures is the ability to construct compact and economic simulations of quantum algorithms with limited resources. We show that the features of our study are embodied by suitably prepared optical lattices, where effective three-spin interactions have been theoretically demonstrated. We use this to provide a compact construction for the Toffoli gate. Information flow and two-qubit interactions are also outlined, together with a brief analysis of relevant sources of imperfection.

  18. Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking.

    PubMed

    Muhonen, J T; Laucht, A; Simmons, S; Dehollain, J P; Kalra, R; Hudson, F E; Freer, S; Itoh, K M; Jamieson, D N; McCallum, J C; Dzurak, A S; Morello, A

    2015-04-22

    Building upon the demonstration of coherent control and single-shot readout of the electron and nuclear spins of individual (31)P atoms in silicon, we present here a systematic experimental estimate of quantum gate fidelities using randomized benchmarking of 1-qubit gates in the Clifford group. We apply this analysis to the electron and the ionized (31)P nucleus of a single P donor in isotopically purified (28)Si. We find average gate fidelities of 99.95% for the electron and 99.99% for the nuclear spin. These values are above certain error correction thresholds and demonstrate the potential of donor-based quantum computing in silicon. By studying the influence of the shape and power of the control pulses, we find evidence that the present limitation to the gate fidelity is mostly related to the external hardware and not the intrinsic behaviour of the qubit.

  19. Photon-Mediated Quantum Gate between Two Neutral Atoms in an Optical Cavity

    NASA Astrophysics Data System (ADS)

    Welte, Stephan; Hacker, Bastian; Daiss, Severin; Ritter, Stephan; Rempe, Gerhard

    2018-02-01

    Quantum logic gates are fundamental building blocks of quantum computers. Their integration into quantum networks requires strong qubit coupling to network channels, as can be realized with neutral atoms and optical photons in cavity quantum electrodynamics. Here we demonstrate that the long-range interaction mediated by a flying photon performs a gate between two stationary atoms inside an optical cavity from which the photon is reflected. This single step executes the gate in 2 μ s . We show an entangling operation between the two atoms by generating a Bell state with 76(2)% fidelity. The gate also operates as a cnot. We demonstrate 74.1(1.6)% overlap between the observed and the ideal gate output, limited by the state preparation fidelity of 80.2(0.8)%. As the atoms are efficiently connected to a photonic channel, our gate paves the way towards quantum networking with multiqubit nodes and the distribution of entanglement in repeater-based long-distance quantum networks.

  20. A Novel Implementation of Efficient Algorithms for Quantum Circuit Synthesis

    NASA Astrophysics Data System (ADS)

    Zeller, Luke

    In this project, we design and develop a computer program to effectively approximate arbitrary quantum gates using the discrete set of Clifford Gates together with the T gate (π/8 gate). Employing recent results from Mosca et. al. and Giles and Selinger, we implement a decomposition scheme that outputs a sequence of Clifford, T, and Tt gates that approximate the input to within a specified error range ɛ. Specifically, the given gate is first rounded to an element of Z[1/2, i] with a precision determined by ɛ, and then exact synthesis is employed to produce the resulting gate. It is known that this procedure is optimal in approximating an arbitrary single qubit gate. Our program, written in Matlab and Python, can complete both approximate and exact synthesis of qubits. It can be used to assist in the experimental implementation of an arbitrary fault-tolerant single qubit gate, for which direct implementation isn't feasible.

  1. Noise-resilient quantum evolution steered by dynamical decoupling

    PubMed Central

    Liu, Gang-Qin; Po, Hoi Chun; Du, Jiangfeng; Liu, Ren-Bao; Pan, Xin-Yu

    2013-01-01

    Realistic quantum computing is subject to noise. Therefore, an important frontier in quantum computing is to implement noise-resilient quantum control over qubits. At the same time, dynamical decoupling can protect the coherence of qubits. Here we demonstrate non-trivial quantum evolution steered by dynamical decoupling control, which simultaneously suppresses noise effects. We design and implement a self-protected controlled-NOT gate on the electron spin of a nitrogen-vacancy centre and a nearby carbon-13 nuclear spin in diamond at room temperature, by employing an engineered dynamical decoupling control on the electron spin. Final state fidelity of 0.91(1) is observed in preparation of a Bell state using the gate. At the same time, the qubit coherence time is elongated at least 30 fold. The design scheme does not require the dynamical decoupling control to commute with the qubit interaction and therefore works for general qubit systems. This work marks a step towards implementing realistic quantum computing systems. PMID:23912335

  2. Noise-resilient quantum evolution steered by dynamical decoupling.

    PubMed

    Liu, Gang-Qin; Po, Hoi Chun; Du, Jiangfeng; Liu, Ren-Bao; Pan, Xin-Yu

    2013-01-01

    Realistic quantum computing is subject to noise. Therefore, an important frontier in quantum computing is to implement noise-resilient quantum control over qubits. At the same time, dynamical decoupling can protect the coherence of qubits. Here we demonstrate non-trivial quantum evolution steered by dynamical decoupling control, which simultaneously suppresses noise effects. We design and implement a self-protected controlled-NOT gate on the electron spin of a nitrogen-vacancy centre and a nearby carbon-13 nuclear spin in diamond at room temperature, by employing an engineered dynamical decoupling control on the electron spin. Final state fidelity of 0.91(1) is observed in preparation of a Bell state using the gate. At the same time, the qubit coherence time is elongated at least 30 fold. The design scheme does not require the dynamical decoupling control to commute with the qubit interaction and therefore works for general qubit systems. This work marks a step towards implementing realistic quantum computing systems.

  3. Adiabatic quantum computation with neutral atoms via the Rydberg blockade

    NASA Astrophysics Data System (ADS)

    Goyal, Krittika; Deutsch, Ivan

    2011-05-01

    We study a trapped-neutral-atom implementation of the adiabatic model of quantum computation whereby the Hamiltonian of a set of interacting qubits is changed adiabatically so that its ground state evolves to the desired output of the algorithm. We employ the ``Rydberg blockade interaction,'' which previously has been used to implement two-qubit entangling gates in the quantum circuit model. Here it is employed via off-resonant virtual dressing of the excited levels, so that atoms always remain in the ground state. The resulting dressed-Rydberg interaction is insensitive to the distance between the atoms within a certain blockade radius, making this process robust to temperature and vibrational fluctuations. Single qubit interactions are implemented with global microwaves and atoms are locally addressed with light shifts. With these ingredients, we study a protocol to implement the two-qubit Quadratic Unconstrained Binary Optimization (QUBO) problem. We model atom trapping, addressing, coherent evolution, and decoherence. We also explore collective control of the many-atom system and generalize the QUBO problem to multiple qubits. We study a trapped-neutral-atom implementation of the adiabatic model of quantum computation whereby the Hamiltonian of a set of interacting qubits is changed adiabatically so that its ground state evolves to the desired output of the algorithm. We employ the ``Rydberg blockade interaction,'' which previously has been used to implement two-qubit entangling gates in the quantum circuit model. Here it is employed via off-resonant virtual dressing of the excited levels, so that atoms always remain in the ground state. The resulting dressed-Rydberg interaction is insensitive to the distance between the atoms within a certain blockade radius, making this process robust to temperature and vibrational fluctuations. Single qubit interactions are implemented with global microwaves and atoms are locally addressed with light shifts. With these ingredients, we study a protocol to implement the two-qubit Quadratic Unconstrained Binary Optimization (QUBO) problem. We model atom trapping, addressing, coherent evolution, and decoherence. We also explore collective control of the many-atom system and generalize the QUBO problem to multiple qubits. We acknowledge funding from the AQUARIUS project, Sandia National Laboratories

  4. Complex Instruction Set Quantum Computing

    NASA Astrophysics Data System (ADS)

    Sanders, G. D.; Kim, K. W.; Holton, W. C.

    1998-03-01

    In proposed quantum computers, electromagnetic pulses are used to implement logic gates on quantum bits (qubits). Gates are unitary transformations applied to coherent qubit wavefunctions and a universal computer can be created using a minimal set of gates. By applying many elementary gates in sequence, desired quantum computations can be performed. This reduced instruction set approach to quantum computing (RISC QC) is characterized by serial application of a few basic pulse shapes and a long coherence time. However, the unitary matrix of the overall computation is ultimately a unitary matrix of the same size as any of the elementary matrices. This suggests that we might replace a sequence of reduced instructions with a single complex instruction using an optimally taylored pulse. We refer to this approach as complex instruction set quantum computing (CISC QC). One trades the requirement for long coherence times for the ability to design and generate potentially more complex pulses. We consider a model system of coupled qubits interacting through nearest neighbor coupling and show that CISC QC can reduce the time required to perform quantum computations.

  5. Robust quantum control using smooth pulses and topological winding

    NASA Astrophysics Data System (ADS)

    Barnes, Edwin; Wang, Xin

    2015-03-01

    Perhaps the greatest challenge in achieving control of microscopic quantum systems is the decoherence induced by the environment, a problem which pervades experimental quantum physics and is particularly severe in the context of solid state quantum computing and nanoscale quantum devices because of the inherently strong coupling to the surrounding material. We present an analytical approach to constructing intrinsically robust driving fields which automatically cancel the leading-order noise-induced errors in a qubit's evolution exactly. We address two of the most common types of non-Markovian noise that arise in qubits: slow fluctuations of the qubit energy splitting and fluctuations in the driving field itself. We demonstrate our method by constructing robust quantum gates for several types of spin qubits, including phosphorous donors in silicon and nitrogen-vacancy centers in diamond. Our results constitute an important step toward achieving robust generic control of quantum systems, bringing their novel applications closer to realization. Work supported by LPS-CMTC.

  6. Holonomic surface codes for fault-tolerant quantum computation

    NASA Astrophysics Data System (ADS)

    Zhang, Jiang; Devitt, Simon J.; You, J. Q.; Nori, Franco

    2018-02-01

    Surface codes can protect quantum information stored in qubits from local errors as long as the per-operation error rate is below a certain threshold. Here we propose holonomic surface codes by harnessing the quantum holonomy of the system. In our scheme, the holonomic gates are built via auxiliary qubits rather than the auxiliary levels in multilevel systems used in conventional holonomic quantum computation. The key advantage of our approach is that the auxiliary qubits are in their ground state before and after each gate operation, so they are not involved in the operation cycles of surface codes. This provides an advantageous way to implement surface codes for fault-tolerant quantum computation.

  7. Hybrid Toffoli gate on photons and quantum spins

    PubMed Central

    Luo, Ming-Xing; Ma, Song-Ya; Chen, Xiu-Bo; Wang, Xiaojun

    2015-01-01

    Quantum computation offers potential advantages in solving a number of interesting and difficult problems. Several controlled logic gates, the elemental building blocks of quantum computer, have been realized with various physical systems. A general technique was recently proposed that significantly reduces the realization complexity of multiple-control logic gates by harnessing multi-level information carriers. We present implementations of a key quantum circuit: the three-qubit Toffoli gate. By exploring the optical selection rules of one-sided optical microcavities, a Toffoli gate may be realized on all combinations of photon and quantum spins in the QD-cavity. The three general controlled-NOT gates are involved using an auxiliary photon with two degrees of freedom. Our results show that photons and quantum spins may be used alternatively in quantum information processing. PMID:26568078

  8. Hybrid Toffoli gate on photons and quantum spins.

    PubMed

    Luo, Ming-Xing; Ma, Song-Ya; Chen, Xiu-Bo; Wang, Xiaojun

    2015-11-16

    Quantum computation offers potential advantages in solving a number of interesting and difficult problems. Several controlled logic gates, the elemental building blocks of quantum computer, have been realized with various physical systems. A general technique was recently proposed that significantly reduces the realization complexity of multiple-control logic gates by harnessing multi-level information carriers. We present implementations of a key quantum circuit: the three-qubit Toffoli gate. By exploring the optical selection rules of one-sided optical microcavities, a Toffoli gate may be realized on all combinations of photon and quantum spins in the QD-cavity. The three general controlled-NOT gates are involved using an auxiliary photon with two degrees of freedom. Our results show that photons and quantum spins may be used alternatively in quantum information processing.

  9. Ultracoherent operation of spin qubits with superexchange coupling

    NASA Astrophysics Data System (ADS)

    Rančić, Marko J.; Burkard, Guido

    2017-11-01

    With the use of nuclear-spin-free materials such as silicon and germanium, spin-based quantum bits (qubits) have evolved to become among the most coherent systems for quantum information processing. The new frontier for spin qubits has therefore shifted to the ubiquitous charge noise and spin-orbit interaction, which are limiting the coherence times and gate fidelities of solid-state qubits. In this paper we investigate superexchange, as a means of indirect exchange interaction between two single electron spin qubits, each embedded in a single semiconductor quantum dot (QD), mediated by an intermediate, empty QD. Our results suggest the existence of "supersweet spots", in which the qubit operations implemented by superexchange interaction are simultaneously first-order-insensitive to charge noise and to errors due to spin-orbit interaction. The proposed spin-qubit architecture is scalable and within the manufacturing capabilities of semiconductor industry.

  10. Quantum State Transmission in a Superconducting Charge Qubit-Atom Hybrid

    PubMed Central

    Yu, Deshui; Valado, María Martínez; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2016-01-01

    Hybrids consisting of macroscopic superconducting circuits and microscopic components, such as atoms and spins, have the potential of transmitting an arbitrary state between different quantum species, leading to the prospective of high-speed operation and long-time storage of quantum information. Here we propose a novel hybrid structure, where a neutral-atom qubit directly interfaces with a superconducting charge qubit, to implement the qubit-state transmission. The highly-excited Rydberg atom located inside the gate capacitor strongly affects the behavior of Cooper pairs in the box while the atom in the ground state hardly interferes with the superconducting device. In addition, the DC Stark shift of the atomic states significantly depends on the charge-qubit states. By means of the standard spectroscopic techniques and sweeping the gate voltage bias, we show how to transfer an arbitrary quantum state from the superconducting device to the atom and vice versa. PMID:27922087

  11. Ultrafast coherent excitation of a trapped ion qubit for fast gates and photon frequency qubits.

    PubMed

    Madsen, M J; Moehring, D L; Maunz, P; Kohn, R N; Duan, L-M; Monroe, C

    2006-07-28

    We demonstrate ultrafast coherent excitation of an atomic qubit stored in the hyperfine levels of a single trapped cadmium ion. Such ultrafast excitation is crucial for entangling networks of remotely located trapped ions through the interference of photon frequency qubits, and is also a key component for realizing ultrafast quantum gates between Coulomb-coupled ions.

  12. Optimized pulse shaping for trapped ion quantum computing

    NASA Astrophysics Data System (ADS)

    Manning, T.; Debnath, Shantanu; Choi, Taeyoung; Figgatt, Caroline; Monroe, Chris

    2013-05-01

    We perform entangling phase gates between pairs of qubits in a chain of trapped atomic ytterbium ions. Beat notes between frequency comb lines of a pulsed laser coherently drive Raman transitions that couple the hyperfine qubits to multiple collective transverse modes of motion. By optimizing the phase and amplitude of segmented laser pulses, we demonstrate a five-segment scheme to entangle two qubits with high fidelity over a range of detunings. We compare this special case of full control of spin-motion entanglement to a traditional single-segment gate. We extend this scheme to selectively entangle pairs of qubits in larger chains using individual optical addressing, where we couple to all the motional modes. We show how these robust gates can achieve high fidelities for practical gate times in an approach that scales realistically to much larger numbers of qubits. This work is supported by grants from the U.S. Army Research Office with funding from the DARPA OLE program, IARPA, and the MURI program; and the NSF Physics Frontier Center at JQI.

  13. High coherence plane breaking packaging for superconducting qubits.

    PubMed

    Bronn, Nicholas T; Adiga, Vivekananda P; Olivadese, Salvatore B; Wu, Xian; Chow, Jerry M; Pappas, David P

    2018-04-01

    We demonstrate a pogo pin package for a superconducting quantum processor specifically designed with a nontrivial layout topology (e.g., a center qubit that cannot be accessed from the sides of the chip). Two experiments on two nominally identical superconducting quantum processors in pogo packages, which use commercially available parts and require modest machining tolerances, are performed at low temperature (10 mK) in a dilution refrigerator and both found to behave comparably to processors in standard planar packages with wirebonds where control and readout signals come in from the edges. Single- and two-qubit gate errors are also characterized via randomized benchmarking, exhibiting similar error rates as in standard packages, opening the possibility of integrating pogo pin packaging with extensible qubit architectures.

  14. High coherence plane breaking packaging for superconducting qubits

    NASA Astrophysics Data System (ADS)

    Bronn, Nicholas T.; Adiga, Vivekananda P.; Olivadese, Salvatore B.; Wu, Xian; Chow, Jerry M.; Pappas, David P.

    2018-04-01

    We demonstrate a pogo pin package for a superconducting quantum processor specifically designed with a nontrivial layout topology (e.g., a center qubit that cannot be accessed from the sides of the chip). Two experiments on two nominally identical superconducting quantum processors in pogo packages, which use commercially available parts and require modest machining tolerances, are performed at low temperature (10 mK) in a dilution refrigerator and both found to behave comparably to processors in standard planar packages with wirebonds where control and readout signals come in from the edges. Single- and two-qubit gate errors are also characterized via randomized benchmarking, exhibiting similar error rates as in standard packages, opening the possibility of integrating pogo pin packaging with extensible qubit architectures.

  15. Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet

    DOE PAGES

    Kawakami, Erika; Jullien, Thibaut; Scarlino, Pasquale; ...

    2016-10-03

    The gate fidelity and the coherence time of a quantum bit (qubit) are important benchmarks for quantum computation. We construct a qubit using a single electron spin in an Si/SiGe quantum dot and control it electrically via an artificial spin-orbit field from a micromagnet. We measure an average single-qubit gate fidelity of ~99% using randomized benchmarking, which is consistent with dephasing from the slowly evolving nuclear spins in the substrate. The coherence time measured using dynamical decoupling extends up to ~400 μs for 128 decoupling pulses, with no sign of saturation. We find evidence that the coherence time is limitedmore » by noise in the 10-kHz to 1-MHz range, possibly because charge noise affects the spin via the micromagnet gradient. Furthermore, this work shows that an electron spin in an Si/SiGe quantum dot is a good candidate for quantum information processing as well as for a quantum memory, even without isotopic purification.« less

  16. Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, Erika; Jullien, Thibaut; Scarlino, Pasquale

    The gate fidelity and the coherence time of a quantum bit (qubit) are important benchmarks for quantum computation. We construct a qubit using a single electron spin in an Si/SiGe quantum dot and control it electrically via an artificial spin-orbit field from a micromagnet. We measure an average single-qubit gate fidelity of ~99% using randomized benchmarking, which is consistent with dephasing from the slowly evolving nuclear spins in the substrate. The coherence time measured using dynamical decoupling extends up to ~400 μs for 128 decoupling pulses, with no sign of saturation. We find evidence that the coherence time is limitedmore » by noise in the 10-kHz to 1-MHz range, possibly because charge noise affects the spin via the micromagnet gradient. Furthermore, this work shows that an electron spin in an Si/SiGe quantum dot is a good candidate for quantum information processing as well as for a quantum memory, even without isotopic purification.« less

  17. Experimental comparison of two quantum computing architectures

    PubMed Central

    Linke, Norbert M.; Maslov, Dmitri; Roetteler, Martin; Debnath, Shantanu; Figgatt, Caroline; Landsman, Kevin A.; Wright, Kenneth; Monroe, Christopher

    2017-01-01

    We run a selection of algorithms on two state-of-the-art 5-qubit quantum computers that are based on different technology platforms. One is a publicly accessible superconducting transmon device (www.research.ibm.com/ibm-q) with limited connectivity, and the other is a fully connected trapped-ion system. Even though the two systems have different native quantum interactions, both can be programed in a way that is blind to the underlying hardware, thus allowing a comparison of identical quantum algorithms between different physical systems. We show that quantum algorithms and circuits that use more connectivity clearly benefit from a better-connected system of qubits. Although the quantum systems here are not yet large enough to eclipse classical computers, this experiment exposes critical factors of scaling quantum computers, such as qubit connectivity and gate expressivity. In addition, the results suggest that codesigning particular quantum applications with the hardware itself will be paramount in successfully using quantum computers in the future. PMID:28325879

  18. Fast non-Abelian geometric gates via transitionless quantum driving.

    PubMed

    Zhang, J; Kyaw, Thi Ha; Tong, D M; Sjöqvist, Erik; Kwek, Leong-Chuan

    2015-12-21

    A practical quantum computer must be capable of performing high fidelity quantum gates on a set of quantum bits (qubits). In the presence of noise, the realization of such gates poses daunting challenges. Geometric phases, which possess intrinsic noise-tolerant features, hold the promise for performing robust quantum computation. In particular, quantum holonomies, i.e., non-Abelian geometric phases, naturally lead to universal quantum computation due to their non-commutativity. Although quantum gates based on adiabatic holonomies have already been proposed, the slow evolution eventually compromises qubit coherence and computational power. Here, we propose a general approach to speed up an implementation of adiabatic holonomic gates by using transitionless driving techniques and show how such a universal set of fast geometric quantum gates in a superconducting circuit architecture can be obtained in an all-geometric approach. Compared with standard non-adiabatic holonomic quantum computation, the holonomies obtained in our approach tends asymptotically to those of the adiabatic approach in the long run-time limit and thus might open up a new horizon for realizing a practical quantum computer.

  19. Fast non-Abelian geometric gates via transitionless quantum driving

    PubMed Central

    Zhang, J.; Kyaw, Thi Ha; Tong, D. M.; Sjöqvist, Erik; Kwek, Leong-Chuan

    2015-01-01

    A practical quantum computer must be capable of performing high fidelity quantum gates on a set of quantum bits (qubits). In the presence of noise, the realization of such gates poses daunting challenges. Geometric phases, which possess intrinsic noise-tolerant features, hold the promise for performing robust quantum computation. In particular, quantum holonomies, i.e., non-Abelian geometric phases, naturally lead to universal quantum computation due to their non-commutativity. Although quantum gates based on adiabatic holonomies have already been proposed, the slow evolution eventually compromises qubit coherence and computational power. Here, we propose a general approach to speed up an implementation of adiabatic holonomic gates by using transitionless driving techniques and show how such a universal set of fast geometric quantum gates in a superconducting circuit architecture can be obtained in an all-geometric approach. Compared with standard non-adiabatic holonomic quantum computation, the holonomies obtained in our approach tends asymptotically to those of the adiabatic approach in the long run-time limit and thus might open up a new horizon for realizing a practical quantum computer. PMID:26687580

  20. Nonlinear optics quantum computing with circuit QED.

    PubMed

    Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M

    2013-02-08

    One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.

  1. Correcting low-frequency noise with continuous measurement.

    PubMed

    Tian, L

    2007-04-13

    Low-frequency noise presents a serious source of decoherence in solid-state qubits. When combined with a continuous weak measurement of the eigenstates, low-frequency noise induces a second-order relaxation between the qubit states. Here, we show that the relaxation provides a unique approach to calibrate the low-frequency noise in the time domain. By encoding one qubit with two physical qubits that are alternatively calibrated, quantum-logic gates with high fidelity can be performed.

  2. Quantum gate-set tomography

    NASA Astrophysics Data System (ADS)

    Blume-Kohout, Robin

    2014-03-01

    Quantum information technology is built on (1) physical qubits and (2) precise, accurate quantum logic gates that transform their states. Developing quantum logic gates requires good characterization - both in the development phase, where we need to identify a device's flaws so as to fix them, and in the production phase, where we need to make sure that the device works within specs and predict residual error rates and types. This task falls to quantum state and process tomography. But until recently, protocols for tomography relied on a pre-existing and perfectly calibrated reference frame comprising the measurements (and, for process tomography, input states) used to characterize the device. In practice, these measurements are neither independent nor perfectly known - they are usually implemented via exactly the same gates that we are trying to characterize! In the past year, several partial solutions to this self-consistency problem have been proposed. I will present a framework (gate set tomography, or GST) that addresses and resolves this problem, by self-consistently characterizing an entire set of quantum logic gates on a black-box quantum device. In particular, it contains an explicit closed-form protocol for linear-inversion gate set tomography (LGST), which is immune to both calibration error and technical pathologies like local maxima of the likelihood (which plagued earlier methods). GST also demonstrates significant (multiple orders of magnitude) improvements in efficiency over standard tomography by using data derived from long sequences of gates (much like randomized benchmarking). GST has now been applied to qubit devices in multiple technologies. I will present and discuss results of GST experiments in technologies including a single trapped-ion qubit and a silicon quantum dot qubit. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL850.

  3. Principles of control for decoherence-free subsystems.

    PubMed

    Cappellaro, P; Hodges, J S; Havel, T F; Cory, D G

    2006-07-28

    Decoherence-free subsystems (DFSs) are a powerful means of protecting quantum information against noise with known symmetry properties. Although Hamiltonians that can implement a universal set of logic gates on DFS encoded qubits without ever leaving the protected subsystem theoretically exist, the natural Hamiltonians that are available in specific implementations do not necessarily have this property. Here we describe some of the principles that can be used in such cases to operate on encoded qubits without losing the protection offered by the DFSs. In particular, we show how dynamical decoupling can be used to control decoherence during the unavoidable excursions outside of the DFS. By means of cumulant expansions, we show how the fidelity of quantum gates implemented by this method on a simple two physical qubit DFS depends on the correlation time of the noise responsible for decoherence. We further show by means of numerical simulations how our previously introduced "strongly modulating pulses" for NMR quantum information processing can permit high-fidelity operations on multiple DFS encoded qubits in practice, provided that the rate at which the system can be modulated is fast compared to the correlation time of the noise. The principles thereby illustrated are expected to be broadly applicable to many implementations of quantum information processors based on DFS encoded qubits.

  4. Simultaneous gates in frequency-crowded multilevel systems using fast, robust, analytic control shapes

    NASA Astrophysics Data System (ADS)

    Theis, L. S.; Motzoi, F.; Wilhelm, F. K.

    2016-01-01

    We present a few-parameter ansatz for pulses to implement a broad set of simultaneous single-qubit rotations in frequency-crowded multilevel systems. Specifically, we consider a system of two qutrits whose working and leakage transitions suffer from spectral crowding (detuned by δ ). In order to achieve precise controllability, we make use of two driving fields (each having two quadratures) at two different tones to simultaneously apply arbitrary combinations of rotations about axes in the X -Y plane to both qubits. Expanding the waveforms in terms of Hanning windows, we show how analytic pulses containing smooth and composite-pulse features can easily achieve gate errors less than 10-4 and considerably outperform known adiabatic techniques. Moreover, we find a generalization of the WAHWAH (Weak AnHarmonicity With Average Hamiltonian) method by Schutjens et al. [R. Schutjens, F. A. Dagga, D. J. Egger, and F. K. Wilhelm, Phys. Rev. A 88, 052330 (2013)], 10.1103/PhysRevA.88.052330 that allows precise separate single-qubit rotations for all gate times beyond a quantum speed limit. We find in all cases a quantum speed limit slightly below 2 π /δ for the gate time and show that our pulses are robust against variations in system parameters and filtering due to transfer functions, making them suitable for experimental implementations.

  5. Qubit Manipulations Techniques for Trapped-Ion Quantum Information Processing

    NASA Astrophysics Data System (ADS)

    Gaebler, John; Tan, Ting; Lin, Yiheng; Bowler, Ryan; Jost, John; Meier, Adam; Knill, Emanuel; Leibfried, Dietrich; Wineland, David; Ion Storage Team

    2013-05-01

    We report recent results on qubit manipulation techniques for trapped-ions towards scalable quantum information processing (QIP). We demonstrate a platform-independent benchmarking protocol for evaluating the performance of Clifford gates, which form a basis for fault-tolerant QIP. We report a demonstration of an entangling gate scheme proposed by Bermudez et al. [Phys. Rev. A. 85, 040302 (2012)] and achieve a fidelity of 0.974(4). This scheme takes advantage of dynamic decoupling which protects the qubit against dephasing errors. It can be applied directly on magnetic-field-insensitive states, and provides a number of simplifications in experimental implementation compared to some other entangling gates with trapped ions. We also report preliminary results on dissipative creation of entanglement with trapped-ions. Creation of an entangled pair does not require discrete logic gates and thus could reduce the level of quantum-coherent control needed for large-scale QIP. Supported by IARPA, ARO contract No. EAO139840, ONR, and the NIST Quantum Information Program.

  6. Scalable randomized benchmarking of non-Clifford gates

    NASA Astrophysics Data System (ADS)

    Cross, Andrew; Magesan, Easwar; Bishop, Lev; Smolin, John; Gambetta, Jay

    Randomized benchmarking is a widely used experimental technique to characterize the average error of quantum operations. Benchmarking procedures that scale to enable characterization of n-qubit circuits rely on efficient procedures for manipulating those circuits and, as such, have been limited to subgroups of the Clifford group. However, universal quantum computers require additional, non-Clifford gates to approximate arbitrary unitary transformations. We define a scalable randomized benchmarking procedure over n-qubit unitary matrices that correspond to protected non-Clifford gates for a class of stabilizer codes. We present efficient methods for representing and composing group elements, sampling them uniformly, and synthesizing corresponding poly (n) -sized circuits. The procedure provides experimental access to two independent parameters that together characterize the average gate fidelity of a group element. We acknowledge support from ARO under Contract W911NF-14-1-0124.

  7. Fan-out Estimation in Spin-based Quantum Computer Scale-up.

    PubMed

    Nguyen, Thien; Hill, Charles D; Hollenberg, Lloyd C L; James, Matthew R

    2017-10-17

    Solid-state spin-based qubits offer good prospects for scaling based on their long coherence times and nexus to large-scale electronic scale-up technologies. However, high-threshold quantum error correction requires a two-dimensional qubit array operating in parallel, posing significant challenges in fabrication and control. While architectures incorporating distributed quantum control meet this challenge head-on, most designs rely on individual control and readout of all qubits with high gate densities. We analysed the fan-out routing overhead of a dedicated control line architecture, basing the analysis on a generalised solid-state spin qubit platform parameterised to encompass Coulomb confined (e.g. donor based spin qubits) or electrostatically confined (e.g. quantum dot based spin qubits) implementations. The spatial scalability under this model is estimated using standard electronic routing methods and present-day fabrication constraints. Based on reasonable assumptions for qubit control and readout we estimate 10 2 -10 5 physical qubits, depending on the quantum interconnect implementation, can be integrated and fanned-out independently. Assuming relatively long control-free interconnects the scalability can be extended. Ultimately, the universal quantum computation may necessitate a much higher number of integrated qubits, indicating that higher dimensional electronics fabrication and/or multiplexed distributed control and readout schemes may be the preferredstrategy for large-scale implementation.

  8. Electrical control of a solid-state flying qubit.

    PubMed

    Yamamoto, Michihisa; Takada, Shintaro; Bäuerle, Christopher; Watanabe, Kenta; Wieck, Andreas D; Tarucha, Seigo

    2012-03-18

    Solid-state approaches to quantum information technology are attractive because they are scalable. The coherent transport of quantum information over large distances is a requirement for any practical quantum computer and has been demonstrated by coupling super-conducting qubits to photons. Single electrons have also been transferred between distant quantum dots in times shorter than their spin coherence time. However, until now, there have been no demonstrations of scalable 'flying qubit' architectures-systems in which it is possible to perform quantum operations on qubits while they are being coherently transferred-in solid-state systems. These architectures allow for control over qubit separation and for non-local entanglement, which makes them more amenable to integration and scaling than static qubit approaches. Here, we report the transport and manipulation of qubits over distances of 6 µm within 40 ps, in an Aharonov-Bohm ring connected to two-channel wires that have a tunable tunnel coupling between channels. The flying qubit state is defined by the presence of a travelling electron in either channel of the wire, and can be controlled without a magnetic field. Our device has shorter quantum gates (<1 µm), longer coherence lengths (∼86 µm at 70 mK) and higher operating frequencies (∼100 GHz) than other solid-state implementations of flying qubits.

  9. Dynamically protected cat-qubits: a new paradigm for universal quantum computation

    NASA Astrophysics Data System (ADS)

    Mirrahimi, Mazyar; Leghtas, Zaki; Albert, Victor V.; Touzard, Steven; Schoelkopf, Robert J.; Jiang, Liang; Devoret, Michel H.

    2014-04-01

    We present a new hardware-efficient paradigm for universal quantum computation which is based on encoding, protecting and manipulating quantum information in a quantum harmonic oscillator. This proposal exploits multi-photon driven dissipative processes to encode quantum information in logical bases composed of Schrödinger cat states. More precisely, we consider two schemes. In a first scheme, a two-photon driven dissipative process is used to stabilize a logical qubit basis of two-component Schrödinger cat states. While such a scheme ensures a protection of the logical qubit against the photon dephasing errors, the prominent error channel of single-photon loss induces bit-flip type errors that cannot be corrected. Therefore, we consider a second scheme based on a four-photon driven dissipative process which leads to the choice of four-component Schrödinger cat states as the logical qubit. Such a logical qubit can be protected against single-photon loss by continuous photon number parity measurements. Next, applying some specific Hamiltonians, we provide a set of universal quantum gates on the encoded qubits of each of the two schemes. In particular, we illustrate how these operations can be rendered fault-tolerant with respect to various decoherence channels of participating quantum systems. Finally, we also propose experimental schemes based on quantum superconducting circuits and inspired by methods used in Josephson parametric amplification, which should allow one to achieve these driven dissipative processes along with the Hamiltonians ensuring the universal operations in an efficient manner.

  10. Deterministic quantum teleportation with feed-forward in a solid state system.

    PubMed

    Steffen, L; Salathe, Y; Oppliger, M; Kurpiers, P; Baur, M; Lang, C; Eichler, C; Puebla-Hellmann, G; Fedorov, A; Wallraff, A

    2013-08-15

    Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science. At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates, the creation of complex entangled states and the demonstration of algorithms or error correction. Using different variants of low-noise parametric amplifiers, dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous and discrete feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture. We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to create complex networks with arbitrary connecting topology in a planar architecture. The deterministic teleportation process succeeds with order unit probability for any input state, as we prepare maximally entangled two-qubit states as a resource and distinguish all Bell states in a single two-qubit measurement with high efficiency and high fidelity. We teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10(4) s(-1), exceeding other reported implementations. The low transmission loss of superconducting waveguides is likely to enable the range of this and other schemes to be extended to significantly larger distances, enabling tests of non-locality and the realization of elements for quantum communication at microwave frequencies. The demonstrated feed-forward may also find application in error correction schemes.

  11. Efficient Z gates for quantum computing

    NASA Astrophysics Data System (ADS)

    McKay, David C.; Wood, Christopher J.; Sheldon, Sarah; Chow, Jerry M.; Gambetta, Jay M.

    2017-08-01

    For superconducting qubits, microwave pulses drive rotations around the Bloch sphere. The phase of these drives can be used to generate zero-duration arbitrary virtual Z gates, which, combined with two Xπ /2 gates, can generate any SU(2) gate. Here we show how to best utilize these virtual Z gates to both improve algorithms and correct pulse errors. We perform randomized benchmarking using a Clifford set of Hadamard and Z gates and show that the error per Clifford is reduced versus a set consisting of standard finite-duration X and Y gates. Z gates can correct unitary rotation errors for weakly anharmonic qubits as an alternative to pulse-shaping techniques such as derivative removal by adiabatic gate (DRAG). We investigate leakage and show that a combination of DRAG pulse shaping to minimize leakage and Z gates to correct rotation errors realizes a 13.3 ns Xπ /2 gate characterized by low error [1.95 (3 ) ×10-4] and low leakage [3.1 (6 ) ×10-6] . Ultimately leakage is limited by the finite temperature of the qubit, but this limit is two orders of magnitude smaller than pulse errors due to decoherence.

  12. Error rates and resource overheads of encoded three-qubit gates

    NASA Astrophysics Data System (ADS)

    Takagi, Ryuji; Yoder, Theodore J.; Chuang, Isaac L.

    2017-10-01

    A non-Clifford gate is required for universal quantum computation, and, typically, this is the most error-prone and resource-intensive logical operation on an error-correcting code. Small, single-qubit rotations are popular choices for this non-Clifford gate, but certain three-qubit gates, such as Toffoli or controlled-controlled-Z (ccz), are equivalent options that are also more suited for implementing some quantum algorithms, for instance, those with coherent classical subroutines. Here, we calculate error rates and resource overheads for implementing logical ccz with pieceable fault tolerance, a nontransversal method for implementing logical gates. We provide a comparison with a nonlocal magic-state scheme on a concatenated code and a local magic-state scheme on the surface code. We find the pieceable fault-tolerance scheme particularly advantaged over magic states on concatenated codes and in certain regimes over magic states on the surface code. Our results suggest that pieceable fault tolerance is a promising candidate for fault tolerance in a near-future quantum computer.

  13. Effect of diatomic molecular properties on binary laser pulse optimizations of quantum gate operations.

    PubMed

    Zaari, Ryan R; Brown, Alex

    2011-07-28

    The importance of the ro-vibrational state energies on the ability to produce high fidelity binary shaped laser pulses for quantum logic gates is investigated. The single frequency 2-qubit ACNOT(1) and double frequency 2-qubit NOT(2) quantum gates are used as test cases to examine this behaviour. A range of diatomics is sampled. The laser pulses are optimized using a genetic algorithm for binary (two amplitude and two phase parameter) variation on a discretized frequency spectrum. The resulting trends in the fidelities were attributed to the intrinsic molecular properties and not the choice of method: a discretized frequency spectrum with genetic algorithm optimization. This is verified by using other common laser pulse optimization methods (including iterative optimal control theory), which result in the same qualitative trends in fidelity. The results differ from other studies that used vibrational state energies only. Moreover, appropriate choice of diatomic (relative ro-vibrational state arrangement) is critical for producing high fidelity optimized quantum logic gates. It is also suggested that global phase alignment imposes a significant restriction on obtaining high fidelity regions within the parameter search space. Overall, this indicates a complexity in the ability to provide appropriate binary laser pulse control of diatomics for molecular quantum computing. © 2011 American Institute of Physics

  14. Demonstration of Weight-Four Parity Measurements in the Surface Code Architecture.

    PubMed

    Takita, Maika; Córcoles, A D; Magesan, Easwar; Abdo, Baleegh; Brink, Markus; Cross, Andrew; Chow, Jerry M; Gambetta, Jay M

    2016-11-18

    We present parity measurements on a five-qubit lattice with connectivity amenable to the surface code quantum error correction architecture. Using all-microwave controls of superconducting qubits coupled via resonators, we encode the parities of four data qubit states in either the X or the Z basis. Given the connectivity of the lattice, we perform a full characterization of the static Z interactions within the set of five qubits, as well as dynamical Z interactions brought along by single- and two-qubit microwave drives. The parity measurements are significantly improved by modifying the microwave two-qubit gates to dynamically remove nonideal Z errors.

  15. Adiabatic gate teleportation.

    PubMed

    Bacon, Dave; Flammia, Steven T

    2009-09-18

    The difficulty in producing precisely timed and controlled quantum gates is a significant source of error in many physical implementations of quantum computers. Here we introduce a simple universal primitive, adiabatic gate teleportation, which is robust to timing errors and many control errors and maintains a constant energy gap throughout the computation above a degenerate ground state space. This construction allows for geometric robustness based upon the control of two independent qubit interactions. Further, our piecewise adiabatic evolution easily relates to the quantum circuit model, enabling the use of standard methods from fault-tolerance theory for establishing thresholds.

  16. Magic informationally complete POVMs with permutations

    NASA Astrophysics Data System (ADS)

    Planat, Michel; Gedik, Zafer

    2017-09-01

    Eigenstates of permutation gates are either stabilizer states (for gates in the Pauli group) or magic states, thus allowing universal quantum computation (Planat, Rukhsan-Ul-Haq 2017 Adv. Math. Phys. 2017, 5287862 (doi:10.1155/2017/5287862)). We show in this paper that a subset of such magic states, when acting on the generalized Pauli group, define (asymmetric) informationally complete POVMs. Such informationally complete POVMs, investigated in dimensions 2-12, exhibit simple finite geometries in their projector products and, for dimensions 4 and 8 and 9, relate to two-qubit, three-qubit and two-qutrit contextuality.

  17. Photonic entanglement-assisted quantum low-density parity-check encoders and decoders.

    PubMed

    Djordjevic, Ivan B

    2010-05-01

    I propose encoder and decoder architectures for entanglement-assisted (EA) quantum low-density parity-check (LDPC) codes suitable for all-optical implementation. I show that two basic gates needed for EA quantum error correction, namely, controlled-NOT (CNOT) and Hadamard gates can be implemented based on Mach-Zehnder interferometer. In addition, I show that EA quantum LDPC codes from balanced incomplete block designs of unitary index require only one entanglement qubit to be shared between source and destination.

  18. Crosstalk error correction through dynamical decoupling of single-qubit gates in capacitively coupled singlet-triplet semiconductor spin qubits

    NASA Astrophysics Data System (ADS)

    Buterakos, Donovan; Throckmorton, Robert E.; Das Sarma, S.

    2018-01-01

    In addition to magnetic field and electric charge noise adversely affecting spin-qubit operations, performing single-qubit gates on one of multiple coupled singlet-triplet qubits presents a new challenge: crosstalk, which is inevitable (and must be minimized) in any multiqubit quantum computing architecture. We develop a set of dynamically corrected pulse sequences that are designed to cancel the effects of both types of noise (i.e., field and charge) as well as crosstalk to leading order, and provide parameters for these corrected sequences for all 24 of the single-qubit Clifford gates. We then provide an estimate of the error as a function of the noise and capacitive coupling to compare the fidelity of our corrected gates to their uncorrected versions. Dynamical error correction protocols presented in this work are important for the next generation of singlet-triplet qubit devices where coupling among many qubits will become relevant.

  19. Experimental realization of quantum cheque using a five-qubit quantum computer

    NASA Astrophysics Data System (ADS)

    Behera, Bikash K.; Banerjee, Anindita; Panigrahi, Prasanta K.

    2017-12-01

    Quantum cheques could be a forgery-free way to make transaction in a quantum networked banking system with perfect security against any no-signalling adversary. Here, we demonstrate the implementation of quantum cheque, proposed by Moulick and Panigrahi (Quantum Inf Process 15:2475-2486, 2016), using the five-qubit IBM quantum computer. Appropriate single qubit, CNOT and Fredkin gates are used in an optimized configuration. The accuracy of implementation is checked and verified through quantum state tomography by comparing results from the theoretical and experimental density matrices.

  20. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography

    DOE PAGES

    Blume-Kohout, Robin; Gamble, John King; Nielsen, Erik; ...

    2017-02-15

    Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone, they will depend on fault-tolerant quantum error correction (FTQEC) to compute reliably. Quantum error correction can protect against general noise if—and only if—the error in each physical qubit operation is smaller than a certain threshold. The threshold for general errors is quantified by their diamond norm. Until now, qubits have been assessed primarily by randomized benchmarking, which reports a different error rate that is not sensitive to all errors, and cannot be compared directly to diamond norm thresholds. Finally, we usemore » gate set tomography to completely characterize operations on a trapped-Yb +-ion qubit and demonstrate with greater than 95% confidence that they satisfy a rigorous threshold for FTQEC (diamond norm ≤6.7 × 10 -4).« less

  1. Deterministic Multi-hop Controlled Teleportation of Arbitrary Single-Qubit State

    NASA Astrophysics Data System (ADS)

    Peng, Jia-yin; Bai, Ming-qiang; Mo, Zhi-wen

    2017-10-01

    Multi-hop teleportation is of great significance due to long-distance delivery of quantum information and wireless quantum communication networks. In existing protocols of multi-hop teleportation, the more nodes, the smaller the success probability. In this paper, fusing the ideas of multi-hop teleportation and controlled teleportation, we put forward a scheme for implementing multi-hop controlled teleportation of single-qubit state. A set of ingenious three-qubit non-maximally entangled states are constructed to serve as the quantum channels. The information is perfectly transmitted hop by hop through teleportation under the control of the supervisors. Unit success probability can be achieved independent of channel's entanglement degree and the number of intermediate nodes. Only Pauli operations, single-qubit rotation, Hadamard gate, controlled-NOT gate, Bell-state measurement and single-qubit measurement are used in our scheme, so this scheme is easily realized in physical experiment.

  2. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography

    PubMed Central

    Blume-Kohout, Robin; Gamble, John King; Nielsen, Erik; Rudinger, Kenneth; Mizrahi, Jonathan; Fortier, Kevin; Maunz, Peter

    2017-01-01

    Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone, they will depend on fault-tolerant quantum error correction (FTQEC) to compute reliably. Quantum error correction can protect against general noise if—and only if—the error in each physical qubit operation is smaller than a certain threshold. The threshold for general errors is quantified by their diamond norm. Until now, qubits have been assessed primarily by randomized benchmarking, which reports a different error rate that is not sensitive to all errors, and cannot be compared directly to diamond norm thresholds. Here we use gate set tomography to completely characterize operations on a trapped-Yb+-ion qubit and demonstrate with greater than 95% confidence that they satisfy a rigorous threshold for FTQEC (diamond norm ≤6.7 × 10−4). PMID:28198466

  3. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blume-Kohout, Robin; Gamble, John King; Nielsen, Erik

    Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone, they will depend on fault-tolerant quantum error correction (FTQEC) to compute reliably. Quantum error correction can protect against general noise if—and only if—the error in each physical qubit operation is smaller than a certain threshold. The threshold for general errors is quantified by their diamond norm. Until now, qubits have been assessed primarily by randomized benchmarking, which reports a different error rate that is not sensitive to all errors, and cannot be compared directly to diamond norm thresholds. Finally, we usemore » gate set tomography to completely characterize operations on a trapped-Yb +-ion qubit and demonstrate with greater than 95% confidence that they satisfy a rigorous threshold for FTQEC (diamond norm ≤6.7 × 10 -4).« less

  4. Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot.

    PubMed

    Kawakami, E; Scarlino, P; Ward, D R; Braakman, F R; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, M A; Vandersypen, L M K

    2014-09-01

    Nanofabricated quantum bits permit large-scale integration but usually suffer from short coherence times due to interactions with their solid-state environment. The outstanding challenge is to engineer the environment so that it minimally affects the qubit, but still allows qubit control and scalability. Here, we demonstrate a long-lived single-electron spin qubit in a Si/SiGe quantum dot with all-electrical two-axis control. The spin is driven by resonant microwave electric fields in a transverse magnetic field gradient from a local micromagnet, and the spin state is read out in the single-shot mode. Electron spin resonance occurs at two closely spaced frequencies, which we attribute to two valley states. Thanks to the weak hyperfine coupling in silicon, a Ramsey decay timescale of 1 μs is observed, almost two orders of magnitude longer than the intrinsic timescales in GaAs quantum dots, whereas gate operation times are comparable to those reported in GaAs. The spin echo decay time is ~40 μs, both with one and four echo pulses, possibly limited by intervalley scattering. These advances strongly improve the prospects for quantum information processing based on quantum dots.

  5. Adding control to arbitrary unknown quantum operations

    PubMed Central

    Zhou, Xiao-Qi; Ralph, Timothy C.; Kalasuwan, Pruet; Zhang, Mian; Peruzzo, Alberto; Lanyon, Benjamin P.; O'Brien, Jeremy L.

    2011-01-01

    Although quantum computers promise significant advantages, the complexity of quantum algorithms remains a major technological obstacle. We have developed and demonstrated an architecture-independent technique that simplifies adding control qubits to arbitrary quantum operations—a requirement in many quantum algorithms, simulations and metrology. The technique, which is independent of how the operation is done, does not require knowledge of what the operation is, and largely separates the problems of how to implement a quantum operation in the laboratory and how to add a control. Here, we demonstrate an entanglement-based version in a photonic system, realizing a range of different two-qubit gates with high fidelity. PMID:21811242

  6. Controlling bi-partite entanglement in multi-qubit systems

    NASA Astrophysics Data System (ADS)

    Plesch, Martin; Novotný, Jaroslav; Dzuráková, Zuzana; Buzek, Vladimír

    2004-02-01

    Bi-partite entanglement in multi-qubit systems cannot be shared freely. The rules of quantum mechanics impose bounds on how multi-qubit systems can be correlated. In this paper, we utilize a concept of entangled graphs with weighted edges in order to analyse pure quantum states of multi-qubit systems. Here qubits are represented by vertexes of the graph, while the presence of bi-partite entanglement is represented by an edge between corresponding vertexes. The weight of each edge is defined to be the entanglement between the two qubits connected by the edge, as measured by the concurrence. We prove that each entangled graph with entanglement bounded by a specific value of the concurrence can be represented by a pure multi-qubit state. In addition, we present a logic network with O(N2) elementary gates that can be used for preparation of the weighted entangled graphs of N qubits.

  7. Quantum gates by periodic driving

    PubMed Central

    Shi, Z. C.; Wang, W.; Yi, X. X.

    2016-01-01

    Topological quantum computation has been extensively studied in the past decades due to its robustness against decoherence. One way to realize the topological quantum computation is by adiabatic evolutions—it requires relatively long time to complete a gate, so the speed of quantum computation slows down. In this work, we present a method to realize single qubit quantum gates by periodic driving. Compared to adiabatic evolution, the single qubit gates can be realized at a fixed time much shorter than that by adiabatic evolution. The driving fields can be sinusoidal or square-well field. With the sinusoidal driving field, we derive an expression for the total operation time in the high-frequency limit, and an exact analytical expression for the evolution operator without any approximations is given for the square well driving. This study suggests that the period driving could provide us with a new direction in regulations of the operation time in topological quantum computation. PMID:26911900

  8. Quantum gates by periodic driving.

    PubMed

    Shi, Z C; Wang, W; Yi, X X

    2016-02-25

    Topological quantum computation has been extensively studied in the past decades due to its robustness against decoherence. One way to realize the topological quantum computation is by adiabatic evolutions-it requires relatively long time to complete a gate, so the speed of quantum computation slows down. In this work, we present a method to realize single qubit quantum gates by periodic driving. Compared to adiabatic evolution, the single qubit gates can be realized at a fixed time much shorter than that by adiabatic evolution. The driving fields can be sinusoidal or square-well field. With the sinusoidal driving field, we derive an expression for the total operation time in the high-frequency limit, and an exact analytical expression for the evolution operator without any approximations is given for the square well driving. This study suggests that the period driving could provide us with a new direction in regulations of the operation time in topological quantum computation.

  9. Trapped-Ion Quantum Logic with Global Radiation Fields.

    PubMed

    Weidt, S; Randall, J; Webster, S C; Lake, K; Webb, A E; Cohen, I; Navickas, T; Lekitsch, B; Retzker, A; Hensinger, W K

    2016-11-25

    Trapped ions are a promising tool for building a large-scale quantum computer. However, the number of required radiation fields for the realization of quantum gates in any proposed ion-based architecture scales with the number of ions within the quantum computer, posing a major obstacle when imagining a device with millions of ions. Here, we present a fundamentally different approach for trapped-ion quantum computing where this detrimental scaling vanishes. The method is based on individually controlled voltages applied to each logic gate location to facilitate the actual gate operation analogous to a traditional transistor architecture within a classical computer processor. To demonstrate the key principle of this approach we implement a versatile quantum gate method based on long-wavelength radiation and use this method to generate a maximally entangled state of two quantum engineered clock qubits with fidelity 0.985(12). This quantum gate also constitutes a simple-to-implement tool for quantum metrology, sensing, and simulation.

  10. Stabilizing Entanglement via Symmetry-Selective Bath Engineering in Superconducting Qubits.

    PubMed

    Kimchi-Schwartz, M E; Martin, L; Flurin, E; Aron, C; Kulkarni, M; Tureci, H E; Siddiqi, I

    2016-06-17

    Bath engineering, which utilizes coupling to lossy modes in a quantum system to generate nontrivial steady states, is a tantalizing alternative to gate- and measurement-based quantum science. Here, we demonstrate dissipative stabilization of entanglement between two superconducting transmon qubits in a symmetry-selective manner. We utilize the engineered symmetries of the dissipative environment to stabilize a target Bell state; we further demonstrate suppression of the Bell state of opposite symmetry due to parity selection rules. This implementation is resource efficient, achieves a steady-state fidelity F=0.70, and is scalable to multiple qubits.

  11. Experimental limits on the fidelity of adiabatic geometric phase gates in a single solid-state spin qubit

    DOE PAGES

    Zhang, Kai; Nusran, N. M.; Slezak, B. R.; ...

    2016-05-17

    While it is often thought that the geometric phase is less sensitive to fluctuations in the control fields, a very general feature of adiabatic Hamiltonians is the unavoidable dynamic phase that accompanies the geometric phase. The effect of control field noise during adiabatic geometric quantum gate operations has not been probed experimentally, especially in the canonical spin qubit system that is of interest for quantum information. We present measurement of the Berry phase and carry out adiabatic geometric phase gate in a single solid-state spin qubit associated with the nitrogen-vacancy center in diamond. We manipulate the spin qubit geometrically bymore » careful application of microwave radiation that creates an effective rotating magnetic field, and observe the resulting Berry phase signal via spin echo interferometry. Our results show that control field noise at frequencies higher than the spin echo clock frequency causes decay of the quantum phase, and degrades the fidelity of the geometric phase gate to the classical threshold after a few (~10) operations. This occurs in spite of the geometric nature of the state preparation, due to unavoidable dynamic contributions. In conclusion, we have carried out systematic analysis and numerical simulations to study the effects of the control field noise and imperfect driving waveforms on the quantum phase gate.« less

  12. Experimental limits on the fidelity of adiabatic geometric phase gates in a single solid-state spin qubit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kai; Nusran, N. M.; Slezak, B. R.

    While it is often thought that the geometric phase is less sensitive to fluctuations in the control fields, a very general feature of adiabatic Hamiltonians is the unavoidable dynamic phase that accompanies the geometric phase. The effect of control field noise during adiabatic geometric quantum gate operations has not been probed experimentally, especially in the canonical spin qubit system that is of interest for quantum information. We present measurement of the Berry phase and carry out adiabatic geometric phase gate in a single solid-state spin qubit associated with the nitrogen-vacancy center in diamond. We manipulate the spin qubit geometrically bymore » careful application of microwave radiation that creates an effective rotating magnetic field, and observe the resulting Berry phase signal via spin echo interferometry. Our results show that control field noise at frequencies higher than the spin echo clock frequency causes decay of the quantum phase, and degrades the fidelity of the geometric phase gate to the classical threshold after a few (~10) operations. This occurs in spite of the geometric nature of the state preparation, due to unavoidable dynamic contributions. In conclusion, we have carried out systematic analysis and numerical simulations to study the effects of the control field noise and imperfect driving waveforms on the quantum phase gate.« less

  13. Logical qubit fusion

    NASA Astrophysics Data System (ADS)

    Moussa, Jonathan; Ryan-Anderson, Ciaran

    The canonical modern plan for universal quantum computation is a Clifford+T gate set implemented in a topological error-correcting code. This plan has the basic disparity that logical Clifford gates are natural for codes in two spatial dimensions while logical T gates are natural in three. Recent progress has reduced this disparity by proposing logical T gates in two dimensions with doubled, stacked, or gauge color codes, but these proposals lack an error threshold. An alternative universal gate set is Clifford+F, where a fusion (F) gate converts two logical qubits into a logical qudit. We show that logical F gates can be constructed by identifying compatible pairs of qubit and qudit codes that stabilize the same logical subspace, much like the original Bravyi-Kitaev construction of magic state distillation. The simplest example of high-distance compatible codes results in a proposal that is very similar to the stacked color code with the key improvement of retaining an error threshold. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corp, a wholly owned subsidiary of Lockheed Martin Corp, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Heralded entanglement between solid-state qubits separated by three metres.

    PubMed

    Bernien, H; Hensen, B; Pfaff, W; Koolstra, G; Blok, M S; Robledo, L; Taminiau, T H; Markham, M; Twitchen, D J; Childress, L; Hanson, R

    2013-05-02

    Quantum entanglement between spatially separated objects is one of the most intriguing phenomena in physics. The outcomes of independent measurements on entangled objects show correlations that cannot be explained by classical physics. As well as being of fundamental interest, entanglement is a unique resource for quantum information processing and communication. Entangled quantum bits (qubits) can be used to share private information or implement quantum logical gates. Such capabilities are particularly useful when the entangled qubits are spatially separated, providing the opportunity to create highly connected quantum networks or extend quantum cryptography to long distances. Here we report entanglement of two electron spin qubits in diamond with a spatial separation of three metres. We establish this entanglement using a robust protocol based on creation of spin-photon entanglement at each location and a subsequent joint measurement of the photons. Detection of the photons heralds the projection of the spin qubits onto an entangled state. We verify the resulting non-local quantum correlations by performing single-shot readout on the qubits in different bases. The long-distance entanglement reported here can be combined with recently achieved initialization, readout and entanglement operations on local long-lived nuclear spin registers, paving the way for deterministic long-distance teleportation, quantum repeaters and extended quantum networks.

  15. Entanglement distillation between solid-state quantum network nodes.

    PubMed

    Kalb, N; Reiserer, A A; Humphreys, P C; Bakermans, J J W; Kamerling, S J; Nickerson, N H; Benjamin, S C; Twitchen, D J; Markham, M; Hanson, R

    2017-06-02

    The impact of future quantum networks hinges on high-quality quantum entanglement shared between network nodes. Unavoidable imperfections necessitate a means to improve remote entanglement by local quantum operations. We realize entanglement distillation on a quantum network primitive of distant electron-nuclear two-qubit nodes. The heralded generation of two copies of a remote entangled state is demonstrated through single-photon-mediated entangling of the electrons and robust storage in the nuclear spins. After applying local two-qubit gates, single-shot measurements herald the distillation of an entangled state with increased fidelity that is available for further use. The key combination of generating, storing, and processing entangled states should enable the exploration of multiparticle entanglement on an extended quantum network. Copyright © 2017, American Association for the Advancement of Science.

  16. Holonomic Quantum Control by Coherent Optical Excitation in Diamond.

    PubMed

    Zhou, Brian B; Jerger, Paul C; Shkolnikov, V O; Heremans, F Joseph; Burkard, Guido; Awschalom, David D

    2017-10-06

    Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary single-qubit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.

  17. An addressable quantum dot qubit with fault-tolerant control-fidelity.

    PubMed

    Veldhorst, M; Hwang, J C C; Yang, C H; Leenstra, A W; de Ronde, B; Dehollain, J P; Muhonen, J T; Hudson, F E; Itoh, K M; Morello, A; Dzurak, A S

    2014-12-01

    Exciting progress towards spin-based quantum computing has recently been made with qubits realized using nitrogen-vacancy centres in diamond and phosphorus atoms in silicon. For example, long coherence times were made possible by the presence of spin-free isotopes of carbon and silicon. However, despite promising single-atom nanotechnologies, there remain substantial challenges in coupling such qubits and addressing them individually. Conversely, lithographically defined quantum dots have an exchange coupling that can be precisely engineered, but strong coupling to noise has severely limited their dephasing times and control fidelities. Here, we combine the best aspects of both spin qubit schemes and demonstrate a gate-addressable quantum dot qubit in isotopically engineered silicon with a control fidelity of 99.6%, obtained via Clifford-based randomized benchmarking and consistent with that required for fault-tolerant quantum computing. This qubit has dephasing time T2* = 120 μs and coherence time T2 = 28 ms, both orders of magnitude larger than in other types of semiconductor qubit. By gate-voltage-tuning the electron g*-factor we can Stark shift the electron spin resonance frequency by more than 3,000 times the 2.4 kHz electron spin resonance linewidth, providing a direct route to large-scale arrays of addressable high-fidelity qubits that are compatible with existing manufacturing technologies.

  18. Deterministic Remote Entanglement of Superconducting Circuits through Microwave Two-Photon Transitions

    NASA Astrophysics Data System (ADS)

    Campagne-Ibarcq, P.; Zalys-Geller, E.; Narla, A.; Shankar, S.; Reinhold, P.; Burkhart, L.; Axline, C.; Pfaff, W.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2018-05-01

    Large-scale quantum information processing networks will most probably require the entanglement of distant systems that do not interact directly. This can be done by performing entangling gates between standing information carriers, used as memories or local computational resources, and flying ones, acting as quantum buses. We report the deterministic entanglement of two remote transmon qubits by Raman stimulated emission and absorption of a traveling photon wave packet. We achieve a Bell state fidelity of 73%, well explained by losses in the transmission line and decoherence of each qubit.

  19. Deterministic Remote Entanglement of Superconducting Circuits through Microwave Two-Photon Transitions.

    PubMed

    Campagne-Ibarcq, P; Zalys-Geller, E; Narla, A; Shankar, S; Reinhold, P; Burkhart, L; Axline, C; Pfaff, W; Frunzio, L; Schoelkopf, R J; Devoret, M H

    2018-05-18

    Large-scale quantum information processing networks will most probably require the entanglement of distant systems that do not interact directly. This can be done by performing entangling gates between standing information carriers, used as memories or local computational resources, and flying ones, acting as quantum buses. We report the deterministic entanglement of two remote transmon qubits by Raman stimulated emission and absorption of a traveling photon wave packet. We achieve a Bell state fidelity of 73%, well explained by losses in the transmission line and decoherence of each qubit.

  20. Addressable single-spin control in multiple quantum dots coupled in series

    NASA Astrophysics Data System (ADS)

    Nakajima, Takashi

    2015-03-01

    Electron spin in semiconductor quantum dots (QDs) is promising building block of quantum computers for its controllability and potential scalability. Recent experiments on GaAs QDs have demonstrated necessary ingredients of universal quantum gate operations: single-spin rotations by electron spin resonance (ESR) which is virtually free from the effect of nuclear spin fluctuation, and pulsed control of two-spin entanglement. The scalability of this architecture, however, has remained to be demonstrated in the real world. In this talk, we will present our recent results on implementing single-spin-based qubits in triple, quadruple, and quintuple QDs based on a series coupled architecture defined by gate electrodes. Deterministic initialization of individual spin states and spin-state readout were performed by the pulse operation of detuning between two neighboring QDs. The spin state was coherently manipulated by ESR, where each spin in different QDs is addressed by the shift of the resonance frequency due to the inhomogeneous magnetic field induced by the micro magnet deposited on top of the QDs. Control of two-spin entanglement was also demonstrated. We will discuss key issues for implementing quantum algorithms based on three or more qubits, including the effect of a nuclear spin bath, single-shot readout fidelity, and tuning of multiple qubit devices. Our approaches to these issues will be also presented. This research is supported by Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) from JSPS, IARPA project ``Multi-Qubit Coherent Operations'' through Copenhagen University, and Grant-in-Aid for Scientific Research from JSPS.

  1. Optimized pulses for the control of uncertain qubits

    DOE PAGES

    Grace, Matthew D.; Dominy, Jason M.; Witzel, Wayne M.; ...

    2012-05-18

    The construction of high-fidelity control fields that are robust to control, system, and/or surrounding environment uncertainties is a crucial objective for quantum information processing. Using the two-state Landau-Zener model for illustrative simulations of a controlled qubit, we generate optimal controls for π/2 and π pulses and investigate their inherent robustness to uncertainty in the magnitude of the drift Hamiltonian. Next, we construct a quantum-control protocol to improve system-drift robustness by combining environment-decoupling pulse criteria and optimal control theory for unitary operations. By perturbatively expanding the unitary time-evolution operator for an open quantum system, previous analysis of environment-decoupling control pulses hasmore » calculated explicit control-field criteria to suppress environment-induced errors up to (but not including) third order from π/2 and π pulses. We systematically integrate this criteria with optimal control theory, incorporating an estimate of the uncertain parameter to produce improvements in gate fidelity and robustness, demonstrated via a numerical example based on double quantum dot qubits. For the qubit model used in this work, postfacto analysis of the resulting controls suggests that realistic control-field fluctuations and noise may contribute just as significantly to gate errors as system and environment fluctuations.« less

  2. How to Build a Quantum Computer

    NASA Astrophysics Data System (ADS)

    Sanders, Barry C.

    2017-11-01

    Quantum computer technology is progressing rapidly with dozens of qubits and hundreds of quantum logic gates now possible. Although current quantum computer technology is distant from being able to solve computational problems beyond the reach of non-quantum computers, experiments have progressed well beyond simply demonstrating the requisite components. We can now operate small quantum logic processors with connected networks of qubits and quantum logic gates, which is a great stride towards functioning quantum computers. This book aims to be accessible to a broad audience with basic knowledge of computers, electronics and physics. The goal is to convey key notions relevant to building quantum computers and to present state-of-the-art quantum-computer research in various media such as trapped ions, superconducting circuits, photonics and beyond.

  3. Fast Implementation of Quantum Phase Gates and Creation of Cluster States via Transitionless Quantum Driving

    NASA Astrophysics Data System (ADS)

    Zhang, Chun-Ling; Liu, Wen-Wu

    2018-05-01

    In this paper, combining transitionless quantum driving and quantum Zeno dynamics, we propose an efficient scheme to fast implement a two-qubit quantum phase gate which can be used to generate cluster state of atoms trapped in distant cavities. The influence of various of various error sources including spontaneous emission and photon loss on the fidelity is analyzed via numerical simulation. The results show that this scheme not only takes less time than adiabatic scheme but also is not sensitive to both error sources. Additionally, a creation of N-atom cluster states is put forward as a typical example of the applications of the phase gates.

  4. Optimization of a Solid-State Electron Spin Qubit Using Gate Set Tomography (Open Access, Publisher’s Version)

    DTIC Science & Technology

    2016-10-13

    enielse@sandia.gov and a.morello@unsw.edu.au Keywords: quantum computing , silicon, tomography Supplementarymaterial for this article is available online...Abstract State of the art qubit systems are reaching the gatefidelities required for scalable quantum computation architectures. Further improvements in...and addressedwhen the qubit is usedwithin a fault-tolerant quantum computation scheme. 1. Introduction One of themain challenges in the physical

  5. Two-channel spin-chain communication line and simple quantum gates

    NASA Astrophysics Data System (ADS)

    Stolze, J.; Zenchuk, A. I.

    2017-08-01

    We consider the remote creation of a mixed state in a one-qubit receiver connected to two two-qubit senders via different channels. Channels are assumed to be chains of spins (qubits) with nearest-neighbor interactions, no external fields are being applied. The problem of sharing the creatable region of the receiver's state-space between two senders is considered for a communication line with the receiver located asymmetrically with respect to these senders (asymmetric communication line). An example of a quantum register realizing simple functions is constructed on the basis of a symmetric communication line. In that setup, the initial states of the two senders serve as input and control signals, respectively, while the state of the receiver at a proper time instant is considered as the output signal.

  6. Adiabatic quantum computing with spin qubits hosted by molecules.

    PubMed

    Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji

    2015-01-28

    A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.

  7. Fault-tolerant quantum computation with nondeterministic entangling gates

    NASA Astrophysics Data System (ADS)

    Auger, James M.; Anwar, Hussain; Gimeno-Segovia, Mercedes; Stace, Thomas M.; Browne, Dan E.

    2018-03-01

    Performing entangling gates between physical qubits is necessary for building a large-scale universal quantum computer, but in some physical implementations—for example, those that are based on linear optics or networks of ion traps—entangling gates can only be implemented probabilistically. In this work, we study the fault-tolerant performance of a topological cluster state scheme with local nondeterministic entanglement generation, where failed entangling gates (which correspond to bonds on the lattice representation of the cluster state) lead to a defective three-dimensional lattice with missing bonds. We present two approaches for dealing with missing bonds; the first is a nonadaptive scheme that requires no additional quantum processing, and the second is an adaptive scheme in which qubits can be measured in an alternative basis to effectively remove them from the lattice, hence eliminating their damaging effect and leading to better threshold performance. We find that a fault-tolerance threshold can still be observed with a bond-loss rate of 6.5% for the nonadaptive scheme, and a bond-loss rate as high as 14.5% for the adaptive scheme.

  8. Demonstration of blind quantum computing.

    PubMed

    Barz, Stefanie; Kashefi, Elham; Broadbent, Anne; Fitzsimons, Joseph F; Zeilinger, Anton; Walther, Philip

    2012-01-20

    Quantum computers, besides offering substantial computational speedups, are also expected to preserve the privacy of a computation. We present an experimental demonstration of blind quantum computing in which the input, computation, and output all remain unknown to the computer. We exploit the conceptual framework of measurement-based quantum computation that enables a client to delegate a computation to a quantum server. Various blind delegated computations, including one- and two-qubit gates and the Deutsch and Grover quantum algorithms, are demonstrated. The client only needs to be able to prepare and transmit individual photonic qubits. Our demonstration is crucial for unconditionally secure quantum cloud computing and might become a key ingredient for real-life applications, especially when considering the challenges of making powerful quantum computers widely available.

  9. A photon-photon quantum gate based on a single atom in an optical resonator.

    PubMed

    Hacker, Bastian; Welte, Stephan; Rempe, Gerhard; Ritter, Stephan

    2016-08-11

    That two photons pass each other undisturbed in free space is ideal for the faithful transmission of information, but prohibits an interaction between the photons. Such an interaction is, however, required for a plethora of applications in optical quantum information processing. The long-standing challenge here is to realize a deterministic photon-photon gate, that is, a mutually controlled logic operation on the quantum states of the photons. This requires an interaction so strong that each of the two photons can shift the other's phase by π radians. For polarization qubits, this amounts to the conditional flipping of one photon's polarization to an orthogonal state. So far, only probabilistic gates based on linear optics and photon detectors have been realized, because "no known or foreseen material has an optical nonlinearity strong enough to implement this conditional phase shift''. Meanwhile, tremendous progress in the development of quantum-nonlinear systems has opened up new possibilities for single-photon experiments. Platforms range from Rydberg blockade in atomic ensembles to single-atom cavity quantum electrodynamics. Applications such as single-photon switches and transistors, two-photon gateways, nondestructive photon detectors, photon routers and nonlinear phase shifters have been demonstrated, but none of them with the ideal information carriers: optical qubits in discriminable modes. Here we use the strong light-matter coupling provided by a single atom in a high-finesse optical resonator to realize the Duan-Kimble protocol of a universal controlled phase flip (π phase shift) photon-photon quantum gate. We achieve an average gate fidelity of (76.2 ± 3.6) per cent and specifically demonstrate the capability of conditional polarization flipping as well as entanglement generation between independent input photons. This photon-photon quantum gate is a universal quantum logic element, and therefore could perform most existing two-photon operations. The demonstrated feasibility of deterministic protocols for the optical processing of quantum information could lead to new applications in which photons are essential, especially long-distance quantum communication and scalable quantum computing.

  10. Si/SiGe quadruple quantum dots with direct barrier gates

    NASA Astrophysics Data System (ADS)

    Ward, Daniel; Gamble, John; Foote, Ryan; Savage, Donald; Lagally, Max; Coppersmith, Susan; Eriksson, Mark

    2014-03-01

    We have fabricated a quadruple quantum dot in a Si/SiGe heterostructure with the aim of demonstrating a two-qubit quantum gate. This device makes use of direct barrier gates, in which individual gates are placed directly over the quantum dots and tunnel barriers. This design enables rational control of both energies and tunnel rates in coupled quantum dots. In this talk we discuss the design, fabrication, and initial characterization of the device. This work was supported in part by ARO (W911NF-12-0607), NSF (DMR-1206915), and the United States Department of Defense. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the US Government.

  11. Experimental demonstration of a quantum router

    PubMed Central

    Yuan, X. X.; Ma, J.-J.; Hou, P.-Y.; Chang, X.-Y.; Zu, C.; Duan, L.-M.

    2015-01-01

    The router is a key element for a network. We describe a scheme to realize genuine quantum routing of single-photon pulses based on cascading of conditional quantum gates in a Mach-Zehnder interferometer and report a proof-of-principle experiment for its demonstration using linear optics quantum gates. The polarization of the control photon routes in a coherent way the path of the signal photon while preserving the qubit state of the signal photon represented by its polarization. We demonstrate quantum nature of this router by showing entanglement generated between the initially unentangled control and signal photons, and confirm that the qubit state of the signal photon is well preserved by the router through quantum process tomography. PMID:26197928

  12. Coherent feedback control of a single qubit in diamond

    NASA Astrophysics Data System (ADS)

    Hirose, Masashi; Cappellaro, Paola

    2016-04-01

    Engineering desired operations on qubits subjected to the deleterious effects of their environment is a critical task in quantum information processing, quantum simulation and sensing. The most common approach relies on open-loop quantum control techniques, including optimal-control algorithms based on analytical or numerical solutions, Lyapunov design and Hamiltonian engineering. An alternative strategy, inspired by the success of classical control, is feedback control. Because of the complications introduced by quantum measurement, closed-loop control is less pervasive in the quantum setting and, with exceptions, its experimental implementations have been mainly limited to quantum optics experiments. Here we implement a feedback-control algorithm using a solid-state spin qubit system associated with the nitrogen vacancy centre in diamond, using coherent feedback to overcome the limitations of measurement-based feedback, and show that it can protect the qubit against intrinsic dephasing noise for milliseconds. In coherent feedback, the quantum system is connected to an auxiliary quantum controller (ancilla) that acquires information about the output state of the system (by an entangling operation) and performs an appropriate feedback action (by a conditional gate). In contrast to open-loop dynamical decoupling techniques, feedback control can protect the qubit even against Markovian noise and for an arbitrary period of time (limited only by the coherence time of the ancilla), while allowing gate operations. It is thus more closely related to quantum error-correction schemes, although these require larger and increasing qubit overheads. Increasing the number of fresh ancillas enables protection beyond their coherence time. We further evaluate the robustness of the feedback protocol, which could be applied to quantum computation and sensing, by exploring a trade-off between information gain and decoherence protection, as measurement of the ancilla-qubit correlation after the feedback algorithm voids the protection, even if the rest of the dynamics is unchanged.

  13. Single-qubit unitary gates by graph scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blumer, Benjamin A.; Underwood, Michael S.; Feder, David L.

    2011-12-15

    We consider the effects of plane-wave states scattering off finite graphs as an approach to implementing single-qubit unitary operations within the continuous-time quantum walk framework of universal quantum computation. Four semi-infinite tails are attached at arbitrary points of a given graph, representing the input and output registers of a single qubit. For a range of momentum eigenstates, we enumerate all of the graphs with up to n=9 vertices for which the scattering implements a single-qubit gate. As n increases, the number of new unitary operations increases exponentially, and for n>6 the majority correspond to rotations about axes distributed roughly uniformlymore » across the Bloch sphere. Rotations by both rational and irrational multiples of {pi} are found.« less

  14. Compressed quantum simulation of the Ising model.

    PubMed

    Kraus, B

    2011-12-16

    Jozsa et al. [Proc. R. Soc. A 466, 809 2009)] have shown that a match gate circuit running on n qubits can be compressed to a universal quantum computation on log(n)+3 qubits. Here, we show how this compression can be employed to simulate the Ising interaction of a 1D chain consisting of n qubits using a universal quantum computer running on log(n) qubits. We demonstrate how the adiabatic evolution can be realized on this exponentially smaller system and how the magnetization, which displays a quantum phase transition, can be measured. This shows that the quantum phase transition of very large systems can be observed experimentally with current technology. © 2011 American Physical Society

  15. Universal quantum gates for photon-atom hybrid systems assisted by bad cavities

    PubMed Central

    Wang, Guan-Yu; Liu, Qian; Wei, Hai-Rui; Li, Tao; Ai, Qing; Deng, Fu-Guo

    2016-01-01

    We present two deterministic schemes for constructing a CNOT gate and a Toffoli gate on photon-atom and photon-atom-atom hybrid quantum systems assisted by bad cavities, respectively. They are achieved by cavity-assisted photon scattering and work in the intermediate coupling region with bad cavities, which relaxes the difficulty of their implementation in experiment. Also, bad cavities are feasible for fast quantum operations and reading out information. Compared with previous works, our schemes do not need any auxiliary qubits and measurements. Moreover, the schematic setups for these gates are simple, especially that for our Toffoli gate as only a quarter wave packet is used to interact the photon with each of the atoms every time. These atom-cavity systems can be used as the quantum nodes in long-distance quantum communication as their relatively long coherence time is suitable for multi-time operations between the photon and the system. Our calculations show that the average fidelities and efficiencies of our two universal hybrid quantum gates are high with current experimental technology. PMID:27067992

  16. Quantum logic gates based on ballistic transport in graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dragoman, Daniela; Academy of Romanian Scientists, Splaiul Independentei 54, 050094 Bucharest; Dragoman, Mircea, E-mail: mircea.dragoman@imt.ro

    2016-03-07

    The paper presents various configurations for the implementation of graphene-based Hadamard, C-phase, controlled-NOT, and Toffoli gates working at room temperature. These logic gates, essential for any quantum computing algorithm, involve ballistic graphene devices for qubit generation and processing and can be fabricated using existing nanolithographical techniques. All quantum gate configurations are based on the very large mean-free-paths of carriers in graphene at room temperature.

  17. Cavity QED implementation of non-adiabatic holonomies for universal quantum gates in decoherence-free subspaces with nitrogen-vacancy centers.

    PubMed

    Zhou, Jian; Yu, Wei-Can; Gao, Yu-Mei; Xue, Zheng-Yuan

    2015-06-01

    A cavity QED implementation of the non-adiabatic holonomic quantum computation in decoherence-free subspaces is proposed with nitrogen-vacancy centers coupled commonly to the whispering-gallery mode of a microsphere cavity, where a universal set of quantum gates can be realized on the qubits. In our implementation, with the assistant of the appropriate driving fields, the quantum evolution is insensitive to the cavity field state, which is only virtually excited. The implemented non-adiabatic holonomies, utilizing optical transitions in the Λ type of three-level configuration of the nitrogen-vacancy centers, can be used to construct a universal set of quantum gates on the encoded logical qubits. Therefore, our scheme opens up the possibility of realizing universal holonomic quantum computation with cavity assisted interaction on solid-state spins characterized by long coherence times.

  18. Quantum computing with acceptor spins in silicon.

    PubMed

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-17

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time [Formula: see text] as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  19. Quantum computation based on photonic systems with two degrees of freedom assisted by the weak cross-Kerr nonlinearity

    PubMed Central

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong

    2016-01-01

    Most of previous quantum computations only take use of one degree of freedom (DoF) of photons. An experimental system may possess various DoFs simultaneously. In this paper, with the weak cross-Kerr nonlinearity, we investigate the parallel quantum computation dependent on photonic systems with two DoFs. We construct nearly deterministic controlled-not (CNOT) gates operating on the polarization spatial DoFs of the two-photon or one-photon system. These CNOT gates show that two photonic DoFs can be encoded as independent qubits without auxiliary DoF in theory. Only the coherent states are required. Thus one half of quantum simulation resources may be saved in quantum applications if more complicated circuits are involved. Hence, one may trade off the implementation complexity and simulation resources by using different photonic systems. These CNOT gates are also used to complete various applications including the quantum teleportation and quantum superdense coding. PMID:27424767

  20. Quantum computation based on photonic systems with two degrees of freedom assisted by the weak cross-Kerr nonlinearity.

    PubMed

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong

    2016-07-18

    Most of previous quantum computations only take use of one degree of freedom (DoF) of photons. An experimental system may possess various DoFs simultaneously. In this paper, with the weak cross-Kerr nonlinearity, we investigate the parallel quantum computation dependent on photonic systems with two DoFs. We construct nearly deterministic controlled-not (CNOT) gates operating on the polarization spatial DoFs of the two-photon or one-photon system. These CNOT gates show that two photonic DoFs can be encoded as independent qubits without auxiliary DoF in theory. Only the coherent states are required. Thus one half of quantum simulation resources may be saved in quantum applications if more complicated circuits are involved. Hence, one may trade off the implementation complexity and simulation resources by using different photonic systems. These CNOT gates are also used to complete various applications including the quantum teleportation and quantum superdense coding.

  1. Extending matchgates into universal quantum computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brod, Daniel J.; Galvao, Ernesto F.

    2011-08-15

    Matchgates are a family of two-qubit gates associated with noninteracting fermions. They are classically simulatable if acting only on nearest neighbors but become universal for quantum computation if we relax this restriction or use swap gates [Jozsa and Miyake, Proc. R. Soc. A 464, 3089 (2008)]. We generalize this result by proving that any nonmatchgate parity-preserving unitary is capable of extending the computational power of matchgates into universal quantum computation. We identify the single local invariant of parity-preserving unitaries responsible for this, and discuss related results in the context of fermionic systems.

  2. Protected Quantum Computation with Multiple Resonators in Ultrastrong Coupling Circuit QED

    NASA Astrophysics Data System (ADS)

    Nataf, Pierre; Ciuti, Cristiano

    2011-11-01

    We investigate theoretically the dynamical behavior of a qubit obtained with the two ground eigenstates of an ultrastrong coupling circuit-QED system consisting of a finite number of Josephson fluxonium atoms inductively coupled to a transmission line resonator. We show a universal set of quantum gates by using multiple transmission line resonators (each resonator represents a single qubit). We discuss the intrinsic “anisotropic” nature of noise sources for fluxonium artificial atoms. Through a master equation treatment with colored noise and many-level dynamics, we prove that, for a general class of anisotropic noise sources, the coherence time of the qubit and the fidelity of the quantum operations can be dramatically improved in an optimal regime of ultrastrong coupling, where the ground state is an entangled photonic “cat” state.

  3. Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits

    PubMed Central

    Chiesa, Alessandro; Santini, Paolo; Gerace, Dario; Raftery, James; Houck, Andrew A.; Carretta, Stefano

    2015-01-01

    Resolving quantum many-body problems represents one of the greatest challenges in physics and physical chemistry, due to the prohibitively large computational resources that would be required by using classical computers. A solution has been foreseen by directly simulating the time evolution through sequences of quantum gates applied to arrays of qubits, i.e. by implementing a digital quantum simulator. Superconducting circuits and resonators are emerging as an extremely promising platform for quantum computation architectures, but a digital quantum simulator proposal that is straightforwardly scalable, universal, and realizable with state-of-the-art technology is presently lacking. Here we propose a viable scheme to implement a universal quantum simulator with hybrid spin-photon qubits in an array of superconducting resonators, which is intrinsically scalable and allows for local control. As representative examples we consider the transverse-field Ising model, a spin-1 Hamiltonian, and the two-dimensional Hubbard model and we numerically simulate the scheme by including the main sources of decoherence. PMID:26563516

  4. Photonic qubits for remote quantum information processing

    NASA Astrophysics Data System (ADS)

    Maunz, P.; Olmschenk, S.; Hayes, D.; Matsukevich, D. N.; Duan, L.-M.; Monroe, C.

    2009-05-01

    Quantum information processing between remote quantum memories relies on a fast and faithful quantum channel. Recent experiments employed both, the photonic polarization and frequency qubits, in order to entangle remote atoms [1, 2], to teleport quantum information [3] and to operate a quantum gate between distant atoms. Here, we compare the dierent schemes used in these experiments and analyze the advantages of the dierent choices of atomic and photonic qubits and their coherence properties. [4pt] [1] D. L. Moehring et al. Nature 449, 68 (2007).[0pt] [2] D. N. Matsukevich et al. Phys. Rev. Lett. 100, 150404 2008).[0pt] [3] S. Olmschenk et al. Science, 323, 486 (2009).

  5. Photonic multipartite entanglement conversion using nonlocal operations

    NASA Astrophysics Data System (ADS)

    Tashima, T.; Tame, M. S.; Özdemir, Ş. K.; Nori, F.; Koashi, M.; Weinfurter, H.

    2016-11-01

    We propose a simple setup for the conversion of multipartite entangled states in a quantum network with restricted access. The scheme uses nonlocal operations to enable the preparation of states that are inequivalent under local operations and classical communication, but most importantly does not require full access to the states. It is based on a flexible linear optical conversion gate that uses photons, which are ideally suited for distributed quantum computation and quantum communication in extended networks. In order to show the basic working principles of the gate, we focus on converting a four-qubit entangled cluster state to other locally inequivalent four-qubit states, such as the Greenberger-Horne-Zeilinger and symmetric Dicke states. We also show how the gate can be incorporated into extended graph state networks and can be used to generate variable entanglement and quantum correlations without entanglement but nonvanishing quantum discord.

  6. Multi-element logic gates for trapped-ion qubits

    NASA Astrophysics Data System (ADS)

    Tan, T. R.; Gaebler, J. P.; Lin, Y.; Wan, Y.; Bowler, R.; Leibfried, D.; Wineland, D. J.

    2015-12-01

    Precision control over hybrid physical systems at the quantum level is important for the realization of many quantum-based technologies. In the field of quantum information processing (QIP) and quantum networking, various proposals discuss the possibility of hybrid architectures where specific tasks are delegated to the most suitable subsystem. For example, in quantum networks, it may be advantageous to transfer information from a subsystem that has good memory properties to another subsystem that is more efficient at transporting information between nodes in the network. For trapped ions, a hybrid system formed of different species introduces extra degrees of freedom that can be exploited to expand and refine the control of the system. Ions of different elements have previously been used in QIP experiments for sympathetic cooling, creation of entanglement through dissipation, and quantum non-demolition measurement of one species with another. Here we demonstrate an entangling quantum gate between ions of different elements which can serve as an important building block of QIP, quantum networking, precision spectroscopy, metrology, and quantum simulation. A geometric phase gate between a 9Be+ ion and a 25Mg+ ion is realized through an effective spin-spin interaction generated by state-dependent forces induced with laser beams. Combined with single-qubit gates and same-species entangling gates, this mixed-element entangling gate provides a complete set of gates over such a hybrid system for universal QIP. Using a sequence of such gates, we demonstrate a CNOT (controlled-NOT) gate and a SWAP gate. We further demonstrate the robustness of these gates against thermal excitation and show improved detection in quantum logic spectroscopy. We also observe a strong violation of a CHSH (Clauser-Horne-Shimony-Holt)-type Bell inequality on entangled states composed of different ion species.

  7. Multi-element logic gates for trapped-ion qubits.

    PubMed

    Tan, T R; Gaebler, J P; Lin, Y; Wan, Y; Bowler, R; Leibfried, D; Wineland, D J

    2015-12-17

    Precision control over hybrid physical systems at the quantum level is important for the realization of many quantum-based technologies. In the field of quantum information processing (QIP) and quantum networking, various proposals discuss the possibility of hybrid architectures where specific tasks are delegated to the most suitable subsystem. For example, in quantum networks, it may be advantageous to transfer information from a subsystem that has good memory properties to another subsystem that is more efficient at transporting information between nodes in the network. For trapped ions, a hybrid system formed of different species introduces extra degrees of freedom that can be exploited to expand and refine the control of the system. Ions of different elements have previously been used in QIP experiments for sympathetic cooling, creation of entanglement through dissipation, and quantum non-demolition measurement of one species with another. Here we demonstrate an entangling quantum gate between ions of different elements which can serve as an important building block of QIP, quantum networking, precision spectroscopy, metrology, and quantum simulation. A geometric phase gate between a (9)Be(+) ion and a (25)Mg(+) ion is realized through an effective spin-spin interaction generated by state-dependent forces induced with laser beams. Combined with single-qubit gates and same-species entangling gates, this mixed-element entangling gate provides a complete set of gates over such a hybrid system for universal QIP. Using a sequence of such gates, we demonstrate a CNOT (controlled-NOT) gate and a SWAP gate. We further demonstrate the robustness of these gates against thermal excitation and show improved detection in quantum logic spectroscopy. We also observe a strong violation of a CHSH (Clauser-Horne-Shimony-Holt)-type Bell inequality on entangled states composed of different ion species.

  8. Two new Controlled not Gate Based Quantum Secret Sharing Protocols without Entanglement Attenuation

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen-Chao; Hu, Ai-Qun; Fu, An-Min

    2016-05-01

    In this paper, we propose two new controlled not gate based quantum secret sharing protocols. In these two protocols, each photon only travels once, which guarantees the agents located in long distance can be able to derive the dealer's secret without suffering entanglement attenuation problem. The protocols are secure against trojan horse attack, intercept-resend attack, entangle-measure attack and entanglement-swapping attack. The theoretical efficiency for qubits of these two protocols can approach 100 %, except those used for eavesdropping checking, all entangled states can be used for final secret sharing.

  9. Notch filtering the nuclear environment of a spin qubit.

    PubMed

    Malinowski, Filip K; Martins, Frederico; Nissen, Peter D; Barnes, Edwin; Cywiński, Łukasz; Rudner, Mark S; Fallahi, Saeed; Gardner, Geoffrey C; Manfra, Michael J; Marcus, Charles M; Kuemmeth, Ferdinand

    2017-01-01

    Electron spins in gate-defined quantum dots provide a promising platform for quantum computation. In particular, spin-based quantum computing in gallium arsenide takes advantage of the high quality of semiconducting materials, reliability in fabricating arrays of quantum dots and accurate qubit operations. However, the effective magnetic noise arising from the hyperfine interaction with uncontrolled nuclear spins in the host lattice constitutes a major source of decoherence. Low-frequency nuclear noise, responsible for fast (10 ns) inhomogeneous dephasing, can be removed by echo techniques. High-frequency nuclear noise, recently studied via echo revivals, occurs in narrow-frequency bands related to differences in Larmor precession of the three isotopes 69 Ga, 71 Ga and 75 As (refs 15,16,17). Here, we show that both low- and high-frequency nuclear noise can be filtered by appropriate dynamical decoupling sequences, resulting in a substantial enhancement of spin qubit coherence times. Using nuclear notch filtering, we demonstrate a spin coherence time (T 2 ) of 0.87 ms, five orders of magnitude longer than typical exchange gate times, and exceeding the longest coherence times reported to date in Si/SiGe gate-defined quantum dots.

  10. Surface code architecture for donors and dots in silicon with imprecise and nonuniform qubit couplings

    DOE PAGES

    Pica, G.; Lovett, B. W.; Bhatt, R. N.; ...

    2016-01-14

    A scaled quantum computer with donor spins in silicon would benefit from a viable semiconductor framework and a strong inherent decoupling of the qubits from the noisy environment. Coupling neighboring spins via the natural exchange interaction according to current designs requires gate control structures with extremely small length scales. In this work, we present a silicon architecture where bismuth donors with long coherence times are coupled to electrons that can shuttle between adjacent quantum dots, thus relaxing the pitch requirements and allowing space between donors for classical control devices. An adiabatic SWAP operation within each donor/dot pair solves the scalabilitymore » issues intrinsic to exchange-based two-qubit gates, as it does not rely on subnanometer precision in donor placement and is robust against noise in the control fields. In conclusion, we use this SWAP together with well established global microwave Rabi pulses and parallel electron shuttling to construct a surface code that needs minimal, feasible local control.« less

  11. Scalable digital hardware for a trapped ion quantum computer

    NASA Astrophysics Data System (ADS)

    Mount, Emily; Gaultney, Daniel; Vrijsen, Geert; Adams, Michael; Baek, So-Young; Hudek, Kai; Isabella, Louis; Crain, Stephen; van Rynbach, Andre; Maunz, Peter; Kim, Jungsang

    2016-12-01

    Many of the challenges of scaling quantum computer hardware lie at the interface between the qubits and the classical control signals used to manipulate them. Modular ion trap quantum computer architectures address scalability by constructing individual quantum processors interconnected via a network of quantum communication channels. Successful operation of such quantum hardware requires a fully programmable classical control system capable of frequency stabilizing the continuous wave lasers necessary for loading, cooling, initialization, and detection of the ion qubits, stabilizing the optical frequency combs used to drive logic gate operations on the ion qubits, providing a large number of analog voltage sources to drive the trap electrodes, and a scheme for maintaining phase coherence among all the controllers that manipulate the qubits. In this work, we describe scalable solutions to these hardware development challenges.

  12. A single-atom quantum memory.

    PubMed

    Specht, Holger P; Nölleke, Christian; Reiserer, Andreas; Uphoff, Manuel; Figueroa, Eden; Ritter, Stephan; Rempe, Gerhard

    2011-05-12

    The faithful storage of a quantum bit (qubit) of light is essential for long-distance quantum communication, quantum networking and distributed quantum computing. The required optical quantum memory must be able to receive and recreate the photonic qubit; additionally, it must store an unknown quantum state of light better than any classical device. So far, these two requirements have been met only by ensembles of material particles that store the information in collective excitations. Recent developments, however, have paved the way for an approach in which the information exchange occurs between single quanta of light and matter. This single-particle approach allows the material qubit to be addressed, which has fundamental advantages for realistic implementations. First, it enables a heralding mechanism that signals the successful storage of a photon by means of state detection; this can be used to combat inevitable losses and finite efficiencies. Second, it allows for individual qubit manipulations, opening up avenues for in situ processing of the stored quantum information. Here we demonstrate the most fundamental implementation of such a quantum memory, by mapping arbitrary polarization states of light into and out of a single atom trapped inside an optical cavity. The memory performance is tested with weak coherent pulses and analysed using full quantum process tomography. The average fidelity is measured to be 93%, and low decoherence rates result in qubit coherence times exceeding 180  microseconds. This makes our system a versatile quantum node with excellent prospects for applications in optical quantum gates and quantum repeaters.

  13. Phase-modulated decoupling and error suppression in qubit-oscillator systems.

    PubMed

    Green, Todd J; Biercuk, Michael J

    2015-03-27

    We present a scheme designed to suppress the dominant source of infidelity in entangling gates between quantum systems coupled through intermediate bosonic oscillator modes. Such systems are particularly susceptible to residual qubit-oscillator entanglement at the conclusion of a gate period that reduces the fidelity of the target entangling operation. We demonstrate how the exclusive use of discrete shifts in the phase of the field moderating the qubit-oscillator interaction is sufficient to both ensure multiple oscillator modes are decoupled and to suppress the effects of fluctuations in the driving field. This approach is amenable to a wide variety of technical implementations including geometric phase gates in superconducting qubits and the Molmer-Sorensen gate for trapped ions. We present detailed example protocols tailored to trapped-ion experiments and demonstrate that our approach has the potential to enable multiqubit gate implementation with a significant reduction in technical complexity relative to previously demonstrated protocols.

  14. Construction of mutually unbiased bases with cyclic symmetry for qubit systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seyfarth, Ulrich; Ranade, Kedar S.

    2011-10-15

    For the complete estimation of arbitrary unknown quantum states by measurements, the use of mutually unbiased bases has been well established in theory and experiment for the past 20 years. However, most constructions of these bases make heavy use of abstract algebra and the mathematical theory of finite rings and fields, and no simple and generally accessible construction is available. This is particularly true in the case of a system composed of several qubits, which is arguably the most important case in quantum information science and quantum computation. In this paper, we close this gap by providing a simple andmore » straightforward method for the construction of mutually unbiased bases in the case of a qubit register. We show that our construction is also accessible to experiments, since only Hadamard and controlled-phase gates are needed, which are available in most practical realizations of a quantum computer. Moreover, our scheme possesses the optimal scaling possible, i.e., the number of gates scales only linearly in the number of qubits.« less

  15. Optimal Synthesis of the Joint Unitary Evolutions

    NASA Astrophysics Data System (ADS)

    Wei, Hai-Rui; Alsaedi, Ahmed; Hobiny, Aatef; Deng, Fu-Guo; Hu, Hui; Zhang, Dun

    2018-07-01

    Joint unitary operations play a central role in quantum communication and computation. We give a quantum circuit for implementing a type of unconstructed useful joint unitary evolutions in terms of controlled-NOT (CNOT) gates and single-qubit rotations. Our synthesis is optimal and possible in experiment. Two CNOT gates and seven R x , R y or R z rotations are required for our synthesis, and the arbitrary parameter contained in the evolutions can be controlled by local Hamiltonian or external fields.

  16. Optimal Synthesis of the Joint Unitary Evolutions

    NASA Astrophysics Data System (ADS)

    Wei, Hai-Rui; Alsaedi, Ahmed; Hobiny, Aatef; Deng, Fu-Guo; Hu, Hui; Zhang, Dun

    2018-03-01

    Joint unitary operations play a central role in quantum communication and computation. We give a quantum circuit for implementing a type of unconstructed useful joint unitary evolutions in terms of controlled-NOT (CNOT) gates and single-qubit rotations. Our synthesis is optimal and possible in experiment. Two CNOT gates and seven R x , R y or R z rotations are required for our synthesis, and the arbitrary parameter contained in the evolutions can be controlled by local Hamiltonian or external fields.

  17. Construction of high-dimensional universal quantum logic gates using a Λ system coupled with a whispering-gallery-mode microresonator.

    PubMed

    He, Ling Yan; Wang, Tie-Jun; Wang, Chuan

    2016-07-11

    High-dimensional quantum system provides a higher capacity of quantum channel, which exhibits potential applications in quantum information processing. However, high-dimensional universal quantum logic gates is difficult to achieve directly with only high-dimensional interaction between two quantum systems and requires a large number of two-dimensional gates to build even a small high-dimensional quantum circuits. In this paper, we propose a scheme to implement a general controlled-flip (CF) gate where the high-dimensional single photon serve as the target qudit and stationary qubits work as the control logic qudit, by employing a three-level Λ-type system coupled with a whispering-gallery-mode microresonator. In our scheme, the required number of interaction times between the photon and solid state system reduce greatly compared with the traditional method which decomposes the high-dimensional Hilbert space into 2-dimensional quantum space, and it is on a shorter temporal scale for the experimental realization. Moreover, we discuss the performance and feasibility of our hybrid CF gate, concluding that it can be easily extended to a 2n-dimensional case and it is feasible with current technology.

  18. Electrically driven spin qubit based on valley mixing

    NASA Astrophysics Data System (ADS)

    Huang, Wister; Veldhorst, Menno; Zimmerman, Neil M.; Dzurak, Andrew S.; Culcer, Dimitrie

    2017-02-01

    The electrical control of single spin qubits based on semiconductor quantum dots is of great interest for scalable quantum computing since electric fields provide an alternative mechanism for qubit control compared with magnetic fields and can also be easier to produce. Here we outline the mechanism for a drastic enhancement in the electrically-driven spin rotation frequency for silicon quantum dot qubits in the presence of a step at a heterointerface. The enhancement is due to the strong coupling between the ground and excited states which occurs when the electron wave function overcomes the potential barrier induced by the interface step. We theoretically calculate single qubit gate times tπ of 170 ns for a quantum dot confined at a silicon/silicon-dioxide interface. The engineering of such steps could be used to achieve fast electrical rotation and entanglement of spin qubits despite the weak spin-orbit coupling in silicon.

  19. Integrated devices for quantum information and quantum simulation with polarization encoded qubits

    NASA Astrophysics Data System (ADS)

    Sansoni, Linda; Sciarrino, Fabio; Mataloni, Paolo; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto

    2012-06-01

    The ability to manipulate quantum states of light by integrated devices may open new perspectives both for fundamental tests of quantum mechanics and for novel technological applications. The technology for handling polarization-encoded qubits, the most commonly adopted approach, was still missing in quantum optical circuits until the ultrafast laser writing (ULW) technique was adopted for the first time to realize integrated devices able to support and manipulate polarization encoded qubits.1 Thanks to this method, polarization dependent and independent devices can be realized. In particular the maintenance of polarization entanglement was demonstrated in a balanced polarization independent integrated beam splitter1 and an integrated CNOT gate for polarization qubits was realized and carachterized.2 We also exploited integrated optics for quantum simulation tasks: by adopting the ULW technique an integrated quantum walk circuit was realized3 and, for the first time, we investigate how the particle statistics, either bosonic or fermionic, influences a two-particle discrete quantum walk. Such experiment has been realized by adopting two-photon entangled states and an array of integrated symmetric directional couplers. The polarization entanglement was exploited to simulate the bunching-antibunching feature of non interacting bosons and fermions. To this scope a novel three-dimensional geometry for the waveguide circuit is introduced, which allows accurate polarization independent behaviour, maintaining a remarkable control on both phase and balancement of the directional couplers.

  20. Electro-Optic Frequency Beam Splitters and Tritters for High-Fidelity Photonic Quantum Information Processing

    DOE PAGES

    Lu, Hsuan-Hao; Lukens, Joseph M.; Peters, Nicholas A.; ...

    2018-01-18

    In this paper, we report the experimental realization of high-fidelity photonic quantum gates for frequency-encoded qubits and qutrits based on electro-optic modulation and Fourier-transform pulse shaping. Our frequency version of the Hadamard gate offers near-unity fidelity (0.99998±0.00003), requires only a single microwave drive tone for near-ideal performance, functions across the entire C band (1530–1570 nm), and can operate concurrently on multiple qubits spaced as tightly as four frequency modes apart, with no observable degradation in the fidelity. For qutrits, we implement a 3×3 extension of the Hadamard gate: the balanced tritter. This tritter—the first ever demonstrated for frequency modes—attains fidelitymore » 0.9989±0.0004. Finally, these gates represent important building blocks toward scalable, high-fidelity quantum information processing based on frequency encoding.« less

  1. Electro-Optic Frequency Beam Splitters and Tritters for High-Fidelity Photonic Quantum Information Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Hsuan-Hao; Lukens, Joseph M.; Peters, Nicholas A.

    In this paper, we report the experimental realization of high-fidelity photonic quantum gates for frequency-encoded qubits and qutrits based on electro-optic modulation and Fourier-transform pulse shaping. Our frequency version of the Hadamard gate offers near-unity fidelity (0.99998±0.00003), requires only a single microwave drive tone for near-ideal performance, functions across the entire C band (1530–1570 nm), and can operate concurrently on multiple qubits spaced as tightly as four frequency modes apart, with no observable degradation in the fidelity. For qutrits, we implement a 3×3 extension of the Hadamard gate: the balanced tritter. This tritter—the first ever demonstrated for frequency modes—attains fidelitymore » 0.9989±0.0004. Finally, these gates represent important building blocks toward scalable, high-fidelity quantum information processing based on frequency encoding.« less

  2. Dissipative quantum computing with open quantum walks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinayskiy, Ilya; Petruccione, Francesco

    An open quantum walk approach to the implementation of a dissipative quantum computing scheme is presented. The formalism is demonstrated for the example of an open quantum walk implementation of a 3 qubit quantum circuit consisting of 10 gates.

  3. Optimal Diabatic Dynamics of Majoarana-based Topological Qubits

    NASA Astrophysics Data System (ADS)

    Seradjeh, Babak; Rahmani, Armin; Franz, Marcel

    In topological quantum computing, unitary operations on qubits are performed by adiabatic braiding of non-Abelian quasiparticles such as Majorana zero modes and are protected from local environmental perturbations. This scheme requires slow operations. By using the Pontryagin's maximum principle, here we show the same quantum gates can be implemented in much shorter times through optimal diabatic pulses. While our fast diabatic gates no not enjoy topological protection, they provide significant practical advantages due to their optimal speed and remarkable robustness to calibration errors and noise. NSERC, CIfAR, NSF DMR- 1350663, BSF 2014345.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sciarrino, Fabio; De Martini, Francesco

    In several quantum information (QI) phenomena of large technological importance the information is carried by the phase of the quantum superposition states, or qubits. The phase-covariant cloning machine (PQCM) addresses precisely the problem of optimally copying these qubits with the largest attainable 'fidelity'. We present a general scheme which realizes the 1{yields}3 phase covariant cloning process by a combination of three different QI processes: the universal cloning, the NOT gate, and the projection over the symmetric subspace of the output qubits. The experimental implementation of a PQCM for polarization encoded qubits, the first ever realized with photons, is reported.

  5. Making hybrid [n]-rotaxanes as supramolecular arrays of molecular electron spin qubits.

    PubMed

    Fernandez, Antonio; Ferrando-Soria, Jesus; Pineda, Eufemio Moreno; Tuna, Floriana; Vitorica-Yrezabal, Iñigo J; Knappke, Christiane; Ujma, Jakub; Muryn, Christopher A; Timco, Grigore A; Barran, Perdita E; Ardavan, Arzhang; Winpenny, Richard E P

    2016-01-08

    Quantum information processing (QIP) would require that the individual units involved--qubits--communicate to other qubits while retaining their identity. In many ways this resembles the way supramolecular chemistry brings together individual molecules into interlocked structures, where the assembly has one identity but where the individual components are still recognizable. Here a fully modular supramolecular strategy has been to link hybrid organic-inorganic [2]- and [3]-rotaxanes into still larger [4]-, [5]- and [7]-rotaxanes. The ring components are heterometallic octanuclear [Cr7NiF8(O2C(t)Bu)16](-) coordination cages and the thread components template the formation of the ring about the organic axle, and are further functionalized to act as a ligand, which leads to large supramolecular arrays of these heterometallic rings. As the rings have been proposed as qubits for QIP, the strategy provides a possible route towards scalable molecular electron spin devices for QIP. Double electron-electron resonance experiments demonstrate inter-qubit interactions suitable for mediating two-qubit quantum logic gates.

  6. Encoding qubits into oscillators with atomic ensembles and squeezed light

    NASA Astrophysics Data System (ADS)

    Motes, Keith R.; Baragiola, Ben Q.; Gilchrist, Alexei; Menicucci, Nicolas C.

    2017-05-01

    The Gottesman-Kitaev-Preskill (GKP) encoding of a qubit within an oscillator provides a number of advantages when used in a fault-tolerant architecture for quantum computing, most notably that Gaussian operations suffice to implement all single- and two-qubit Clifford gates. The main drawback of the encoding is that the logical states themselves are challenging to produce. Here we present a method for generating optical GKP-encoded qubits by coupling an atomic ensemble to a squeezed state of light. Particular outcomes of a subsequent spin measurement of the ensemble herald successful generation of the resource state in the optical mode. We analyze the method in terms of the resources required (total spin and amount of squeezing) and the probability of success. We propose a physical implementation using a Faraday-based quantum nondemolition interaction.

  7. Noise filtering of composite pulses for singlet-triplet qubits

    PubMed Central

    Yang, Xu-Chen; Wang, Xin

    2016-01-01

    Semiconductor quantum dot spin qubits are promising candidates for quantum computing. In these systems, the dynamically corrected gates offer considerable reduction of gate errors and are therefore of great interest both theoretically and experimentally. They are, however, designed under the static-noise model and may be considered as low-frequency filters. In this work, we perform a comprehensive theoretical study of the response of a type of dynamically corrected gates, namely the supcode for singlet-triplet qubits, to realistic 1/f noises with frequency spectra 1/ωα. Through randomized benchmarking, we have found that supcode offers improvement of the gate fidelity for α  1 and the improvement becomes exponentially more pronounced with the increase of the noise exponent in the range 1  α ≤ 3 studied. On the other hand, for small α, supcode will not offer any improvement. The δJ-supcode, specifically designed for systems where the nuclear noise is absent, is found to offer additional error reduction than the full supcode for charge noises. The computed filter transfer functions of the supcode gates are also presented. PMID:27383129

  8. Processing multiphoton states through operation on a single photon: Methods and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin Qing; He Bing; Bergou, Janos A.

    2009-10-15

    Multiphoton states are widely applied in quantum information technology. By the methods presented in this paper, the structure of a multiphoton state in the form of multiple single-photon qubit products can be mapped to a single-photon qudit, which could also be in a separable product with other photons. This makes possible the manipulation of such multiphoton states by processing single-photon states. The optical realization of unknown qubit discrimination [B. He, J. A. Bergou, and Y.-H. Ren, Phys. Rev. A 76, 032301 (2007)] is simplified with the transformation methods. Another application is the construction of quantum logic gates, where the inversemore » transformations back to the input state spaces are also necessary. We especially show that the modified setups to implement the transformations can realize the deterministic multicontrol gates (including Toffoli gate) operating directly on the products of single-photon qubits.« less

  9. Extending matchgates into universal quantum computation

    NASA Astrophysics Data System (ADS)

    Brod, Daniel J.; Galvão, Ernesto F.

    2011-08-01

    Matchgates are a family of two-qubit gates associated with noninteracting fermions. They are classically simulatable if acting only on nearest neighbors but become universal for quantum computation if we relax this restriction or use swap gates [Jozsa and Miyake, Proc. R. Soc. ANATUAS1364-502110.1098/rspa.2008.0189 464, 3089 (2008)]. We generalize this result by proving that any nonmatchgate parity-preserving unitary is capable of extending the computational power of matchgates into universal quantum computation. We identify the single local invariant of parity-preserving unitaries responsible for this, and discuss related results in the context of fermionic systems.

  10. Qudit quantum computation on matrix product states with global symmetry

    NASA Astrophysics Data System (ADS)

    Wang, Dongsheng; Stephen, David; Raussendorf, Robert

    Resource states that contain nontrivial symmetry-protected topological order are identified for universal measurement-based quantum computation. Our resource states fall into two classes: one as the qudit generalizations of the qubit cluster state, and the other as the higher-symmetry generalizations of the spin-1 Affleck-Kennedy-Lieb-Tasaki (AKLT) state, namely, with unitary, orthogonal, or symplectic symmetry. The symmetry in cluster states protects information propagation (identity gate), while the higher symmetry in AKLT-type states enables nontrivial gate computation. This work demonstrates a close connection between measurement-based quantum computation and symmetry-protected topological order.

  11. Qudit quantum computation on matrix product states with global symmetry

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Sheng; Stephen, David T.; Raussendorf, Robert

    2017-03-01

    Resource states that contain nontrivial symmetry-protected topological order are identified for universal single-qudit measurement-based quantum computation. Our resource states fall into two classes: one as the qudit generalizations of the one-dimensional qubit cluster state, and the other as the higher-symmetry generalizations of the spin-1 Affleck-Kennedy-Lieb-Tasaki (AKLT) state, namely, with unitary, orthogonal, or symplectic symmetry. The symmetry in cluster states protects information propagation (identity gate), while the higher symmetry in AKLT-type states enables nontrivial gate computation. This work demonstrates a close connection between measurement-based quantum computation and symmetry-protected topological order.

  12. Entangling two transportable neutral atoms via local spin exchange.

    PubMed

    Kaufman, A M; Lester, B J; Foss-Feig, M; Wall, M L; Rey, A M; Regal, C A

    2015-11-12

    To advance quantum information science, physical systems are sought that meet the stringent requirements for creating and preserving quantum entanglement. In atomic physics, robust two-qubit entanglement is typically achieved by strong, long-range interactions in the form of either Coulomb interactions between ions or dipolar interactions between Rydberg atoms. Although such interactions allow fast quantum gates, the interacting atoms must overcome the associated coupling to the environment and cross-talk among qubits. Local interactions, such as those requiring substantial wavefunction overlap, can alleviate these detrimental effects; however, such interactions present a new challenge: to distribute entanglement, qubits must be transported, merged for interaction, and then isolated for storage and subsequent operations. Here we show how, using a mobile optical tweezer, it is possible to prepare and locally entangle two ultracold neutral atoms, and then separate them while preserving their entanglement. Ground-state neutral atom experiments have measured dynamics consistent with spin entanglement, and have detected entanglement with macroscopic observables; we are now able to demonstrate position-resolved two-particle coherence via application of a local gradient and parity measurements. This new entanglement-verification protocol could be applied to arbitrary spin-entangled states of spatially separated atoms. The local entangling operation is achieved via spin-exchange interactions, and quantum tunnelling is used to combine and separate atoms. These techniques provide a framework for dynamically entangling remote qubits via local operations within a large-scale quantum register.

  13. Quantum computational universality of the Cai-Miyake-Duer-Briegel two-dimensional quantum state from Affleck-Kennedy-Lieb-Tasaki quasichains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Tzu-Chieh; C. N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3840; Raussendorf, Robert

    2011-10-15

    Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, Duer, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. A 82, 052309 (2010)]. They showed that this state enables universal quantum computation by single-spin measurements. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain canmore » be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. We further argue that a two-dimensional cluster state can be distilled from the Cai-Miyake-Duer-Briegel state.« less

  14. Utilizing photon number parity measurements to demonstrate quantum computation with cat-states in a cavity

    NASA Astrophysics Data System (ADS)

    Petrenko, A.; Ofek, N.; Vlastakis, B.; Sun, L.; Leghtas, Z.; Heeres, R.; Sliwa, K. M.; Mirrahimi, M.; Jiang, L.; Devoret, M. H.; Schoelkopf, R. J.

    2015-03-01

    Realizing a working quantum computer requires overcoming the many challenges that come with coupling large numbers of qubits to perform logical operations. These include improving coherence times, achieving high gate fidelities, and correcting for the inevitable errors that will occur throughout the duration of an algorithm. While impressive progress has been made in all of these areas, the difficulty of combining these ingredients to demonstrate an error-protected logical qubit, comprised of many physical qubits, still remains formidable. With its large Hilbert space, superior coherence properties, and single dominant error channel (single photon loss), a superconducting 3D resonator acting as a resource for a quantum memory offers a hardware-efficient alternative to multi-qubit codes [Leghtas et.al. PRL 2013]. Here we build upon recent work on cat-state encoding [Vlastakis et.al. Science 2013] and photon-parity jumps [Sun et.al. 2014] by exploring the effects of sequential measurements on a cavity state. Employing a transmon qubit dispersively coupled to two superconducting resonators in a cQED architecture, we explore further the application of parity measurements to characterizing such a hybrid qubit/cat state architecture. In so doing, we demonstrate the promise of integrating cat states as central constituents of future quantum codes.

  15. Scalable quantum information processing with atomic ensembles and flying photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei Feng; Yu Yafei; Feng Mang

    2009-10-15

    We present a scheme for scalable quantum information processing with atomic ensembles and flying photons. Using the Rydberg blockade, we encode the qubits in the collective atomic states, which could be manipulated fast and easily due to the enhanced interaction in comparison to the single-atom case. We demonstrate that our proposed gating could be applied to generation of two-dimensional cluster states for measurement-based quantum computation. Moreover, the atomic ensembles also function as quantum repeaters useful for long-distance quantum state transfer. We show the possibility of our scheme to work in bad cavity or in weak coupling regime, which could muchmore » relax the experimental requirement. The efficient coherent operations on the ensemble qubits enable our scheme to be switchable between quantum computation and quantum communication using atomic ensembles.« less

  16. Photon extraction and conversion for scalable ion-trap quantum computing

    NASA Astrophysics Data System (ADS)

    Clark, Susan; Benito, Francisco; McGuinness, Hayden; Stick, Daniel

    2014-03-01

    Trapped ions represent one of the most mature and promising systems for quantum information processing. They have high-fidelity one- and two-qubit gates, long coherence times, and their qubit states can be reliably prepared and detected. Taking advantage of these inherent qualities in a system with many ions requires a means of entangling spatially separated ion qubits. One architecture achieves this entanglement through the use of emitted photons to distribute quantum information - a favorable strategy if photon extraction can be made efficient and reliable. Here I present results for photon extraction from an ion in a cavity formed by integrated optics on a surface trap, as well as results in frequency converting extracted photons for long distance transmission or interfering with photons from other types of optically active qubits. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Efficient quantum circuits for one-way quantum computing.

    PubMed

    Tanamoto, Tetsufumi; Liu, Yu-Xi; Hu, Xuedong; Nori, Franco

    2009-03-13

    While Ising-type interactions are ideal for implementing controlled phase flip gates in one-way quantum computing, natural interactions between solid-state qubits are most often described by either the XY or the Heisenberg models. We show an efficient way of generating cluster states directly using either the imaginary SWAP (iSWAP) gate for the XY model, or the sqrt[SWAP] gate for the Heisenberg model. Our approach thus makes one-way quantum computing more feasible for solid-state devices.

  18. All-electric control of donor nuclear spin qubits in silicon

    NASA Astrophysics Data System (ADS)

    Sigillito, Anthony J.; Tyryshkin, Alexei M.; Schenkel, Thomas; Houck, Andrew A.; Lyon, Stephen A.

    2017-10-01

    The electronic and nuclear spin degrees of freedom of donor impurities in silicon form ultra-coherent two-level systems that are potentially useful for applications in quantum information and are intrinsically compatible with industrial semiconductor processing. However, because of their smaller gyromagnetic ratios, nuclear spins are more difficult to manipulate than electron spins and are often considered too slow for quantum information processing. Moreover, although alternating current magnetic fields are the most natural choice to drive spin transitions and implement quantum gates, they are difficult to confine spatially to the level of a single donor, thus requiring alternative approaches. In recent years, schemes for all-electrical control of donor spin qubits have been proposed but no experimental demonstrations have been reported yet. Here, we demonstrate a scalable all-electric method for controlling neutral 31P and 75As donor nuclear spins in silicon. Using coplanar photonic bandgap resonators, we drive Rabi oscillations on nuclear spins exclusively using electric fields by employing the donor-bound electron as a quantum transducer, much in the spirit of recent works with single-molecule magnets. The electric field confinement leads to major advantages such as low power requirements, higher qubit densities and faster gate times. Additionally, this approach makes it possible to drive nuclear spin qubits either at their resonance frequency or at its first subharmonic, thus reducing device bandwidth requirements. Double quantum transitions can be driven as well, providing easy access to the full computational manifold of our system and making it convenient to implement nuclear spin-based qudits using 75As donors.

  19. Experimental demonstration of blind quantum computing

    NASA Astrophysics Data System (ADS)

    Barz, Stefanie; Kashefi, Elham; Broadbent, Anne; Fitzsimons, Joe; Zeilinger, Anton; Walther, Philip

    2012-02-01

    Quantum computers are among the most promising applications of quantum-enhanced technologies. Quantum effects such as superposition and entanglement enable computational speed-ups that are unattainable using classical computers. The challenges in realising quantum computers suggest that in the near future, only a few facilities worldwide will be capable of operating such devices. In order to exploit these computers, users would seemingly have to give up their privacy. It was recently shown that this is not the case and that, via the universal blind quantum computation protocol, quantum mechanics provides a way to guarantee that the user's data remain private. Here, we demonstrate the first experimental version of this protocol using polarisation-entangled photonic qubits. We demonstrate various blind one- and two-qubit gate operations as well as blind versions of the Deutsch's and Grover's algorithms. When the technology to build quantum computers becomes available, this will become an important privacy-preserving feature of quantum information processing.

  20. Effects of charge noise on a pulse-gated singlet-triplet S - T_ qubit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Zhenyi; Wu, X.; Ward, D. R.

    Here, we study the dynamics of a pulse-gated semiconductor double-quantum-dot qubit. In our experiments, the qubit coherence times are relatively long, but the visibility of the quantum oscillations is low. We also show that these observations are consistent with a theory that incorporates decoherence arising from charge noise that gives rise to detuning fluctuations of the double dot. Because effects from charge noise are largest near the singlet-triplet avoided level crossing, the visibility of the oscillations is low when the singlet-triplet avoided level crossing occurs in the vicinity of the charge degeneracy point crossed during the manipulation, but there ismore » only modest dephasing at the large detuning value at which the quantum phase accumulates. This theory also agrees with experimental data and predicts that the visibility can be increased greatly by appropriate tuning of the interdot tunneling rate.« less

  1. Cavity control as a new quantum algorithms implementation treatment

    NASA Astrophysics Data System (ADS)

    AbuGhanem, M.; Homid, A. H.; Abdel-Aty, M.

    2018-02-01

    Based on recent experiments [ Nature 449, 438 (2007) and Nature Physics 6, 777 (2010)], a new approach for realizing quantum gates for the design of quantum algorithms was developed. Accordingly, the operation times of such gates while functioning in algorithm applications depend on the number of photons present in their resonant cavities. Multi-qubit algorithms can be realized in systems in which the photon number is increased slightly over the qubit number. In addition, the time required for operation is considerably less than the dephasing and relaxation times of the systems. The contextual use of the photon number as a main control in the realization of any algorithm was demonstrated. The results indicate the possibility of a full integration into the realization of multi-qubit multiphoton states and its application in algorithm designs. Furthermore, this approach will lead to a successful implementation of these designs in future experiments.

  2. Effects of charge noise on a pulse-gated singlet-triplet S - T_ qubit

    DOE PAGES

    Qi, Zhenyi; Wu, X.; Ward, D. R.; ...

    2017-09-11

    Here, we study the dynamics of a pulse-gated semiconductor double-quantum-dot qubit. In our experiments, the qubit coherence times are relatively long, but the visibility of the quantum oscillations is low. We also show that these observations are consistent with a theory that incorporates decoherence arising from charge noise that gives rise to detuning fluctuations of the double dot. Because effects from charge noise are largest near the singlet-triplet avoided level crossing, the visibility of the oscillations is low when the singlet-triplet avoided level crossing occurs in the vicinity of the charge degeneracy point crossed during the manipulation, but there ismore » only modest dephasing at the large detuning value at which the quantum phase accumulates. This theory also agrees with experimental data and predicts that the visibility can be increased greatly by appropriate tuning of the interdot tunneling rate.« less

  3. Enhancing the performance of exchange-only qubits in triple-quantum-dots

    NASA Astrophysics Data System (ADS)

    Fei, Jianjia; Hung, Jo-Tzu; Koh, Teck Seng; Shim, Yun-Pil; Coppersmith, Susan; Hu, Xuedong; Friesen, Mark

    2014-03-01

    The exchange-only qubit has several potential advantages for quantum computation: all-electrical control, fast gate operations, and robustness against global magnetic noise. Such a device has recently been implemented in a GaAs triple-quantum-dot. In this talk, we discuss theoretical simulations of the fidelity of pulsed gate operations of the exchange-only qubit, based on a master equation approach. Our model accounts for several different dephasing mechanisms, including hyperfine interactions and charge noise arising from double-occupation errors and fluctuations of the detuning parameter. Our investigations indicate the optimal working regimes and maximum gate fidelities for these devices, in terms of experimentally tunable parameters. This work was supported by the Army Research Office, the National Science Foundation, and the United States Department of Defense. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the US Government. This work was supported by the Army Research Office, the National Science Foundation, and the United States Department of Defense.

  4. Arthur L. Schawlow Prize in Laser Science Talk: Trapped Ion Quantum Networks with Light

    NASA Astrophysics Data System (ADS)

    Monroe, Christopher

    2015-05-01

    Laser-cooled atomic ions are standards for quantum information science, acting as qubit memories with unsurpassed levels of quantum coherence while also allowing near-perfect measurement. When qubit state-dependent optical dipole forces are applied to a collection of trapped ions, their Coulomb interaction is modulated in a way that allows the entanglement of the qubits through quantum gates that can form the basis of a quantum computer. Similar optical forces allow the simulation of quantum many-body physics, where recent experiments are approaching a level of complexity that cannot be modelled with conventional computers. Scaling to much larger numbers of qubits can be accomplished by coupling trapped ion qubits through optical photons, where entanglement over remote distances can be used for quantum communication and large-scale distributed quantum computers. Laser sources and quantum optical techniques are the workhorse for such quantum networks, and will continue to lead the way as future quantum hardware is developed. This work is supported by the ARO with funding from the IARPA MQCO program, the DARPA Quiness Program, the ARO MURI on Hybrid Quantum Circuits, the AFOSR MURIs on Quantum Transduction and Quantum Verification, and the NSF Physics Frontier Center at JQI.

  5. Robust Deterministic Controlled Phase-Flip Gate and Controlled-Not Gate Based on Atomic Ensembles Embedded in Double-Sided Optical Cavities

    NASA Astrophysics Data System (ADS)

    Liu, A.-Peng; Cheng, Liu-Yong; Guo, Qi; Zhang, Shou

    2018-02-01

    We first propose a scheme for controlled phase-flip gate between a flying photon qubit and the collective spin wave (magnon) of an atomic ensemble assisted by double-sided cavity quantum systems. Then we propose a deterministic controlled-not gate on magnon qubits with parity-check building blocks. Both the gates can be accomplished with 100% success probability in principle. Atomic ensemble is employed so that light-matter coupling is remarkably improved by collective enhancement. We assess the performance of the gates and the results show that they can be faithfully constituted with current experimental techniques.

  6. Coherent Oscillations inside a Quantum Manifold Stabilized by Dissipation

    NASA Astrophysics Data System (ADS)

    Touzard, S.; Grimm, A.; Leghtas, Z.; Mundhada, S. O.; Reinhold, P.; Axline, C.; Reagor, M.; Chou, K.; Blumoff, J.; Sliwa, K. M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.

    2018-04-01

    Manipulating the state of a logical quantum bit (qubit) usually comes at the expense of exposing it to decoherence. Fault-tolerant quantum computing tackles this problem by manipulating quantum information within a stable manifold of a larger Hilbert space, whose symmetries restrict the number of independent errors. The remaining errors do not affect the quantum computation and are correctable after the fact. Here we implement the autonomous stabilization of an encoding manifold spanned by Schrödinger cat states in a superconducting cavity. We show Zeno-driven coherent oscillations between these states analogous to the Rabi rotation of a qubit protected against phase flips. Such gates are compatible with quantum error correction and hence are crucial for fault-tolerant logical qubits.

  7. Classical multiparty computation using quantum resources

    NASA Astrophysics Data System (ADS)

    Clementi, Marco; Pappa, Anna; Eckstein, Andreas; Walmsley, Ian A.; Kashefi, Elham; Barz, Stefanie

    2017-12-01

    In this work, we demonstrate a way to perform classical multiparty computing among parties with limited computational resources. Our method harnesses quantum resources to increase the computational power of the individual parties. We show how a set of clients restricted to linear classical processing are able to jointly compute a nonlinear multivariable function that lies beyond their individual capabilities. The clients are only allowed to perform classical xor gates and single-qubit gates on quantum states. We also examine the type of security that can be achieved in this limited setting. Finally, we provide a proof-of-concept implementation using photonic qubits that allows four clients to compute a specific example of a multiparty function, the pairwise and.

  8. High fidelity quantum teleportation assistance with quantum neural network

    NASA Astrophysics Data System (ADS)

    Huang, Chunhui; Wu, Bichun

    2014-09-01

    In this paper, a high fidelity scheme of quantum teleportation based on quantum neural network (QNN) is proposed. The QNN is composed of multi-bit control-not gates. The quantum teleportation of a qubit state via two-qubit entangled channels is investigated by solving the master equation in Lindblad operators with a noisy environment. To ensure the security of quantum teleportation, the indirect training of QNN is employed. Only 10% of teleported information is extracted for the training of QNN parameters. Then the outputs are corrected by the other QNN at Bob's side. We build a random series of numbers ranged in [0, π] as inputs and simulate the properties of our teleportation scheme. The results show that the fidelity of quantum teleportation system is significantly improved to approach 1 by the error-correction of QNN. It illustrates that the distortion can be eliminated perfectly and the high fidelity of quantum teleportation could be implemented.

  9. Characterization of addressability by simultaneous randomized benchmarking.

    PubMed

    Gambetta, Jay M; Córcoles, A D; Merkel, S T; Johnson, B R; Smolin, John A; Chow, Jerry M; Ryan, Colm A; Rigetti, Chad; Poletto, S; Ohki, Thomas A; Ketchen, Mark B; Steffen, M

    2012-12-14

    The control and handling of errors arising from cross talk and unwanted interactions in multiqubit systems is an important issue in quantum information processing architectures. We introduce a benchmarking protocol that provides information about the amount of addressability present in the system and implement it on coupled superconducting qubits. The protocol consists of randomized benchmarking experiments run both individually and simultaneously on pairs of qubits. A relevant figure of merit for the addressability is then related to the differences in the measured average gate fidelities in the two experiments. We present results from two similar samples with differing cross talk and unwanted qubit-qubit interactions. The results agree with predictions based on simple models of the classical cross talk and Stark shifts.

  10. Quantification and characterization of leakage errors

    NASA Astrophysics Data System (ADS)

    Wood, Christopher J.; Gambetta, Jay M.

    2018-03-01

    We present a general framework for the quantification and characterization of leakage errors that result when a quantum system is encoded in the subspace of a larger system. To do this we introduce metrics for quantifying the coherent and incoherent properties of the resulting errors and we illustrate this framework with several examples relevant to superconducting qubits. In particular, we propose two quantities, the leakage and seepage rates, which together with average gate fidelity allow for characterizing the average performance of quantum gates in the presence of leakage and show how the randomized benchmarking protocol can be modified to enable the robust estimation of all three quantities for a Clifford gate set.

  11. Control and Measurement of an Xmon with the Quantum Socket

    NASA Astrophysics Data System (ADS)

    McConkey, T. G.; Bejanin, J. H.; Earnest, C. T.; McRae, C. R. H.; Rinehart, J. R.; Weides, M.; Mariantoni, M.

    The implementation of superconducting quantum processors is rapidly reaching scalability limitations. Extensible electronics and wiring solutions for superconducting quantum bits (qubits) are among the most imminent issues to be tackled. The necessity to substitute planar electrical interconnects (e.g., wire bonds) with three-dimensional wires is emerging as a fundamental pillar towards scalability. In a previous work, we have shown that three-dimensional wires housed in a suitable package, named the quantum socket, can be utilized to measure high-quality superconducting resonators. In this work, we set out to test the quantum socket with actual superconducting qubits to verify its suitability as a wiring solution in the development of an extensible quantum computing architecture. To this end, we have designed and fabricated a series of Xmon qubits. The qubits range in frequency from about 6 to 7 GHz with anharmonicity of 200 MHz and can be tuned by means of Z pulses. Controlling tunable Xmons will allow us to verify whether the three-dimensional wires contact resistance is low enough for qubit operation. Qubit T1 and T2 times and single qubit gate fidelities are compared against current standards in the field.

  12. Bidirectional and Asymmetric Controlled Quantum Information Transmission via Five-qubit Brown State

    NASA Astrophysics Data System (ADS)

    Fang, Sheng-hui; Jiang, Min

    2017-05-01

    We put forward a new protocol of deterministic controlled bidirectional quantum information transmission, using a five-qubit Brown state. That is to say Alice wants to teleport an arbitrary single-qubit state to Bob and Bob wants to remotely prepare a known state for Alice via the control of the supervisor Charlie. In terms of physical implementations, only a CNOT gate, one Bell-state measurement and one qubit measurement are used in our protocol. Compared with previous study for solely bidirectional quantum teleportation and solely bidirectional remote state preparation schemes, our protocol is a kind of hybrid approach of information communication which makes the quantum channel multipurpose, i.e., no matter whether the transmitted state is known or unknown, the state information can be transmitted with each other via a five-qubit Brown state under the control of the third party as a supervisor.

  13. Making hybrid [n]-rotaxanes as supramolecular arrays of molecular electron spin qubits

    PubMed Central

    Fernandez, Antonio; Ferrando-Soria, Jesus; Pineda, Eufemio Moreno; Tuna, Floriana; Vitorica-Yrezabal, Iñigo J.; Knappke, Christiane; Ujma, Jakub; Muryn, Christopher A.; Timco, Grigore A.; Barran, Perdita E.; Ardavan, Arzhang; Winpenny, Richard E.P.

    2016-01-01

    Quantum information processing (QIP) would require that the individual units involved—qubits—communicate to other qubits while retaining their identity. In many ways this resembles the way supramolecular chemistry brings together individual molecules into interlocked structures, where the assembly has one identity but where the individual components are still recognizable. Here a fully modular supramolecular strategy has been to link hybrid organic–inorganic [2]- and [3]-rotaxanes into still larger [4]-, [5]- and [7]-rotaxanes. The ring components are heterometallic octanuclear [Cr7NiF8(O2CtBu)16]– coordination cages and the thread components template the formation of the ring about the organic axle, and are further functionalized to act as a ligand, which leads to large supramolecular arrays of these heterometallic rings. As the rings have been proposed as qubits for QIP, the strategy provides a possible route towards scalable molecular electron spin devices for QIP. Double electron–electron resonance experiments demonstrate inter-qubit interactions suitable for mediating two-qubit quantum logic gates. PMID:26742716

  14. Nanofabrication of Gate-defined GaAs/AlGaAs Lateral Quantum Dots

    PubMed Central

    Bureau-Oxton, Chloé; Camirand Lemyre, Julien; Pioro-Ladrière, Michel

    2013-01-01

    A quantum computer is a computer composed of quantum bits (qubits) that takes advantage of quantum effects, such as superposition of states and entanglement, to solve certain problems exponentially faster than with the best known algorithms on a classical computer. Gate-defined lateral quantum dots on GaAs/AlGaAs are one of many avenues explored for the implementation of a qubit. When properly fabricated, such a device is able to trap a small number of electrons in a certain region of space. The spin states of these electrons can then be used to implement the logical 0 and 1 of the quantum bit. Given the nanometer scale of these quantum dots, cleanroom facilities offering specialized equipment- such as scanning electron microscopes and e-beam evaporators- are required for their fabrication. Great care must be taken throughout the fabrication process to maintain cleanliness of the sample surface and to avoid damaging the fragile gates of the structure. This paper presents the detailed fabrication protocol of gate-defined lateral quantum dots from the wafer to a working device. Characterization methods and representative results are also briefly discussed. Although this paper concentrates on double quantum dots, the fabrication process remains the same for single or triple dots or even arrays of quantum dots. Moreover, the protocol can be adapted to fabricate lateral quantum dots on other substrates, such as Si/SiGe. PMID:24300661

  15. Measurement-based quantum teleportation on finite AKLT chains

    NASA Astrophysics Data System (ADS)

    Fujii, Akihiko; Feder, David

    In the measurement-based model of quantum computation, universal quantum operations are effected by making repeated local measurements on resource states which contain suitable entanglement. Resource states include two-dimensional cluster states and the ground state of the Affleck-Kennedy-Lieb-Tasaki (AKLT) state on the honeycomb lattice. Recent studies suggest that measurements on one-dimensional systems in the Haldane phase teleport perfect single-qubit gates in the correlation space, protected by the underlying symmetry. As laboratory realizations of symmetry-protected states will necessarily be finite, we investigate the potential for quantum gate teleportation in finite chains of a bilinear-biquadratic Hamiltonian which is a generalization of the AKLT model representing the full Haldane phase.

  16. Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits

    NASA Astrophysics Data System (ADS)

    Machnes, Shai; Assémat, Elie; Tannor, David; Wilhelm, Frank K.

    2018-04-01

    Quantum computation places very stringent demands on gate fidelities, and experimental implementations require both the controls and the resultant dynamics to conform to hardware-specific constraints. Superconducting qubits present the additional requirement that pulses must have simple parameterizations, so they can be further calibrated in the experiment, to compensate for uncertainties in system parameters. Other quantum technologies, such as sensing, require extremely high fidelities. We present a novel, conceptually simple and easy-to-implement gradient-based optimal control technique named gradient optimization of analytic controls (GOAT), which satisfies all the above requirements, unlike previous approaches. To demonstrate GOAT's capabilities, with emphasis on flexibility and ease of subsequent calibration, we optimize fast coherence-limited pulses for two leading superconducting qubits architectures—flux-tunable transmons and fixed-frequency transmons with tunable couplers.

  17. Frequency-encoded photonic qubits for scalable quantum information processing

    DOE PAGES

    Lukens, Joseph M.; Lougovski, Pavel

    2016-12-21

    Among the objectives for large-scale quantum computation is the quantum interconnect: a device that uses photons to interface qubits that otherwise could not interact. However, the current approaches require photons indistinguishable in frequency—a major challenge for systems experiencing different local environments or of different physical compositions altogether. Here, we develop an entirely new platform that actually exploits such frequency mismatch for processing quantum information. Labeled “spectral linear optical quantum computation” (spectral LOQC), our protocol offers favorable linear scaling of optical resources and enjoys an unprecedented degree of parallelism, as an arbitrary Ν-qubit quantum gate may be performed in parallel onmore » multiple Ν-qubit sets in the same linear optical device. Here, not only does spectral LOQC offer new potential for optical interconnects, but it also brings the ubiquitous technology of high-speed fiber optics to bear on photonic quantum information, making wavelength-configurable and robust optical quantum systems within reach.« less

  18. Frequency-encoded photonic qubits for scalable quantum information processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukens, Joseph M.; Lougovski, Pavel

    Among the objectives for large-scale quantum computation is the quantum interconnect: a device that uses photons to interface qubits that otherwise could not interact. However, the current approaches require photons indistinguishable in frequency—a major challenge for systems experiencing different local environments or of different physical compositions altogether. Here, we develop an entirely new platform that actually exploits such frequency mismatch for processing quantum information. Labeled “spectral linear optical quantum computation” (spectral LOQC), our protocol offers favorable linear scaling of optical resources and enjoys an unprecedented degree of parallelism, as an arbitrary Ν-qubit quantum gate may be performed in parallel onmore » multiple Ν-qubit sets in the same linear optical device. Here, not only does spectral LOQC offer new potential for optical interconnects, but it also brings the ubiquitous technology of high-speed fiber optics to bear on photonic quantum information, making wavelength-configurable and robust optical quantum systems within reach.« less

  19. Using concatenated quantum codes for universal fault-tolerant quantum gates.

    PubMed

    Jochym-O'Connor, Tomas; Laflamme, Raymond

    2014-01-10

    We propose a method for universal fault-tolerant quantum computation using concatenated quantum error correcting codes. The concatenation scheme exploits the transversal properties of two different codes, combining them to provide a means to protect against low-weight arbitrary errors. We give the required properties of the error correcting codes to ensure universal fault tolerance and discuss a particular example using the 7-qubit Steane and 15-qubit Reed-Muller codes. Namely, other than computational basis state preparation as required by the DiVincenzo criteria, our scheme requires no special ancillary state preparation to achieve universality, as opposed to schemes such as magic state distillation. We believe that optimizing the codes used in such a scheme could provide a useful alternative to state distillation schemes that exhibit high overhead costs.

  20. Trapped-ion quantum logic gates based on oscillating magnetic fields.

    PubMed

    Ospelkaus, C; Langer, C E; Amini, J M; Brown, K R; Leibfried, D; Wineland, D J

    2008-08-29

    Oscillating magnetic fields and field gradients can be used to implement single-qubit rotations and entangling multiqubit quantum gates for trapped-ion quantum information processing (QIP). With fields generated by currents in microfabricated surface-electrode traps, it should be possible to achieve gate speeds that are comparable to those of optically induced gates for realistic distances between the ion crystal and the electrode surface. Magnetic-field-mediated gates have the potential to significantly reduce the overhead in laser-beam control and motional-state initialization compared to current QIP experiments with trapped ions and will eliminate spontaneous scattering, a fundamental source of decoherence in laser-mediated gates.

  1. Electromechanical quantum simulators

    NASA Astrophysics Data System (ADS)

    Tacchino, F.; Chiesa, A.; LaHaye, M. D.; Carretta, S.; Gerace, D.

    2018-06-01

    Digital quantum simulators are among the most appealing applications of a quantum computer. Here we propose a universal, scalable, and integrated quantum computing platform based on tunable nonlinear electromechanical nano-oscillators. It is shown that very high operational fidelities for single- and two-qubits gates can be achieved in a minimal architecture, where qubits are encoded in the anharmonic vibrational modes of mechanical nanoresonators, whose effective coupling is mediated by virtual fluctuations of an intermediate superconducting artificial atom. An effective scheme to induce large single-phonon nonlinearities in nanoelectromechanical devices is explicitly discussed, thus opening the route to experimental investigation in this direction. Finally, we explicitly show the very high fidelities that can be reached for the digital quantum simulation of model Hamiltonians, by using realistic experimental parameters in state-of-the-art devices, and considering the transverse field Ising model as a paradigmatic example.

  2. Schemes generating entangled states and entanglement swapping between photons and three-level atoms inside optical cavities for quantum communication

    NASA Astrophysics Data System (ADS)

    Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Yang, Hyeon; Choi, Seong-Gon

    2017-01-01

    We propose quantum information processing schemes based on cavity quantum electrodynamics (QED) for quantum communication. First, to generate entangled states (Bell and Greenberger-Horne-Zeilinger [GHZ] states) between flying photons and three-level atoms inside optical cavities, we utilize a controlled phase flip (CPF) gate that can be implemented via cavity QED). Subsequently, we present an entanglement swapping scheme that can be realized using single-qubit measurements and CPF gates via optical cavities. These schemes can be directly applied to construct an entanglement channel for a communication system between two users. Consequently, it is possible for the trust center, having quantum nodes, to accomplish the linked channel (entanglement channel) between the two separate long-distance users via the distribution of Bell states and entanglement swapping. Furthermore, in our schemes, the main physical component is the CPF gate between the photons and the three-level atoms in cavity QED, which is feasible in practice. Thus, our schemes can be experimentally realized with current technology.

  3. Playing distributed two-party quantum games on quantum networks

    NASA Astrophysics Data System (ADS)

    Liu, Bo-Yang; Dai, Hong-Yi; Zhang, Ming

    2017-12-01

    This paper investigates quantum games between two remote players on quantum networks. We propose two schemes for distributed remote quantum games: the client-server scheme based on states transmission between nodes of the network and the peer-to-peer scheme devised upon remote quantum operations. Following these schemes, we construct two designs of the distributed prisoners' dilemma game on quantum entangling networks, where concrete methods are employed for teleportation and nonlocal two-qubits unitary gates, respectively. It seems to us that the requirement for playing distributed quantum games on networks is still an open problem. We explore this problem by comparing and characterizing the two schemes from the viewpoints of network structures, quantum and classical operations, experimental realization and simplification.

  4. Counterfactual quantum cloning without transmitting any physical particles

    NASA Astrophysics Data System (ADS)

    Guo, Qi; Zhai, Shuqin; Cheng, Liu-Yong; Wang, Hong-Fu; Zhang, Shou

    2017-11-01

    We propose a counterfactual 1 →2 economical phase-covariant cloning scheme. Compared with the existing protocols using flying qubits, the main difference of the presented scheme is that the cloning can be achieved without transmitting the photon between the two parties. In addition, this counterfactual scheme does not need to construct controlled quantum gates to perform joint logical operations between the cloned qubit and the blank copy. We also numerically evaluate the performance of the present scheme in the practical experiment, which shows this cloning scheme can be implemented with a high success of probability and the fidelity is close to the optimal value in the ideal asymptotic limit.

  5. Spin-1 models in the ultrastrong-coupling regime of circuit QED

    NASA Astrophysics Data System (ADS)

    Albarrán-Arriagada, F.; Lamata, L.; Solano, E.; Romero, G.; Retamal, J. C.

    2018-02-01

    We propose a superconducting circuit platform for simulating spin-1 models. To this purpose we consider a chain of N ultrastrongly coupled qubit-resonator systems interacting through a grounded superconducting quantum interference device (SQUID). The anharmonic spectrum of the qubit-resonator system and the selection rules imposed by the global parity symmetry allow us to activate well controlled two-body quantum gates via ac pulses applied to the SQUID. We show that our proposal has the same simulation time for any number of spin-1 interacting particles. This scheme may be implemented within the state-of-the-art circuit QED in the ultrastrong coupling regime.

  6. Protected quantum computing: interleaving gate operations with dynamical decoupling sequences.

    PubMed

    Zhang, Jingfu; Souza, Alexandre M; Brandao, Frederico Dias; Suter, Dieter

    2014-02-07

    Implementing precise operations on quantum systems is one of the biggest challenges for building quantum devices in a noisy environment. Dynamical decoupling attenuates the destructive effect of the environmental noise, but so far, it has been used primarily in the context of quantum memories. Here, we experimentally demonstrate a general scheme for combining dynamical decoupling with quantum logical gate operations using the example of an electron-spin qubit of a single nitrogen-vacancy center in diamond. We achieve process fidelities >98% for gate times that are 2 orders of magnitude longer than the unprotected dephasing time T2.

  7. Two-spectral Yang-Baxter operators in topological quantum computation

    NASA Astrophysics Data System (ADS)

    Sanchez, William F.

    2011-05-01

    One of the current trends in quantum computing is the application of algebraic topological methods in the design of new algorithms and quantum computers, giving rise to topological quantum computing. One of the tools used in it is the Yang-Baxter equation whose solutions are interpreted as universal quantum gates. Lately, more general Yang-Baxter equations have been investigated, making progress as two-spectral equations and Yang-Baxter systems. This paper intends to apply these new findings to the field of topological quantum computation, more specifically, the proposition of the two-spectral Yang-Baxter operators as universal quantum gates for 2 qubits and 2 qutrits systems, obtaining 4x4 and 9x9 matrices respectively, and further elaboration of the corresponding Hamiltonian by the use of computer algebra software Mathematica® and its Qucalc package. In addition, possible physical systems to which the Yang-Baxter operators obtained can be applied are considered. In the present work it is demonstrated the utility of the Yang-Baxter equation to generate universal quantum gates and the power of computer algebra to design them; it is expected that these mathematical studies contribute to the further development of quantum computers

  8. A magnetic field compatible graphene transmon

    NASA Astrophysics Data System (ADS)

    Kroll, James G.; Uilhoorn, Willemijn; de Jong, Damaz; Borsoi, Francesco; van der Enden, Kian; Goswami, Srijit; Cassidy, Maja; Kouwenhoven, Leo. P.

    Hybrid circuit QED is a key tool for readout and scaling of both semiconductor-based spin and topological quantum computing schemes. However, traditional approaches to circuit QED are incompatible with the strong external magnetic fields required for these qubits. Here we present measurements of a hybrid graphene-based transmon operating at 1 T. The device consists of coplanar waveguide resonators where the NbTiN thin film is patterned with a dense anti-dot lattice to trap Abriskov vortices, resulting in internal quality factors Qi >10^5 up to 6 T. Furthermore, the atomically thin nature of graphene in combination with the high critical field of its superconducting contacts makes it an ideal system for tolerating strong parallel magnetic fields. We combine these circuit elements to realize a magnetic field compatible transmon qubit. An external gate allows us to change the Josephson energy, and study the corresponding change in the resonator-qubit interaction in the dispersive regime. Two tone spectroscopy reveals a gate-tunable qubit peak at 1T. These experiments open up the possibility of fast charge parity measurements in high magnetic fields for readout of Majorana qubits..

  9. Controlled quantum perfect teleportation of multiple arbitrary multi-qubit states

    NASA Astrophysics Data System (ADS)

    Shi, Runhua; Huang, Liusheng; Yang, Wei; Zhong, Hong

    2011-12-01

    We present an efficient controlled quantum perfect teleportation scheme. In our scheme, multiple senders can teleport multiple arbitrary unknown multi-qubit states to a single receiver via a previously shared entanglement state with the help of one or more controllers. Furthermore, our scheme has a very good performance in the measurement and operation complexity, since it only needs to perform Bell state and single-particle measurements and to apply Controlled-Not gate and other single-particle unitary operations. In addition, compared with traditional schemes, our scheme needs less qubits as the quantum resources and exchanges less classical information, and thus obtains higher communication efficiency.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Erik; Blume-Kohout, Robin; Rudinger, Kenneth

    PyGSTi is an implementation of Gate Set Tomography in the python programming language. Gate Set Tomography (GST) is a theory and protocol for simultaneously estimating the state preparation, gate operations, and measurement effects of a physical system of one or many quantum bits (qubits). These estimates are based entirely on the statistics of experimental measurements, and their interpretation and analysis can provide a detailed understanding of the types of errors/imperfections in the physical system. In this way, GST provides not only a means of certifying the "goodness" of qubits but also a means of debugging (i.e. improving) them.

  11. Quantum computational universality of the Cai-Miyake-Dür-Briegel two-dimensional quantum state from Affleck-Kennedy-Lieb-Tasaki quasichains

    NASA Astrophysics Data System (ADS)

    Wei, Tzu-Chieh; Raussendorf, Robert; Kwek, Leong Chuan

    2011-10-01

    Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, Dür, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.052309 82, 052309 (2010)]. They showed that this state enables universal quantum computation by single-spin measurements. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain can be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. We further argue that a two-dimensional cluster state can be distilled from the Cai-Miyake-Dür-Briegel state.

  12. Deutsch, Toffoli, and cnot Gates via Rydberg Blockade of Neutral Atoms

    NASA Astrophysics Data System (ADS)

    Shi, Xiao-Feng

    2018-05-01

    Universal quantum gates and quantum error correction (QEC) lie at the heart of quantum-information science. Large-scale quantum computing depends on a universal set of quantum gates, in which some gates may be easily carried out, while others are restricted to certain physical systems. There is a unique three-qubit quantum gate called the Deutsch gate [D (θ )], from which a circuit can be constructed so that any feasible quantum computing is attainable. We design an easily realizable D (θ ) by using the Rydberg blockade of neutral atoms, where θ can be tuned to any value in [0 ,π ] by adjusting the strengths of external control fields. Using similar protocols, we further show that both the Toffoli and controlled-not gates can be achieved with only three laser pulses. The Toffoli gate, being universal for classical reversible computing, is also useful for QEC, which plays an important role in quantum communication and fault-tolerant quantum computation. The possibility and speed of realizing these gates shed light on the study of quantum information with neutral atoms.

  13. Two-qubit gates and coupling with low-impedance flux qubits

    NASA Astrophysics Data System (ADS)

    Chow, Jerry; Corcoles, Antonio; Rigetti, Chad; Rozen, Jim; Keefe, George; Rothwell, Mary-Beth; Rohrs, John; Borstelmann, Mark; Divincenzo, David; Ketchen, Mark; Steffen, Matthias

    2011-03-01

    We experimentally demonstrate the coupling of two low-impedance flux qubits mediated via a transmission line resonator. We explore the viability of experimental coupling protocols which involve selective microwave driving on the qubits independently as well as fast frequency tuning through on-chip flux-bias. Pulse-shaping techniques for single-qubit and two-qubit gates are employed for reducing unwanted leakage and phase errors. A joint readout through the transmission line resonator is used for characterizing single-qubit and two-qubit states.

  14. Optimal control of universal quantum gates in a double quantum dot

    NASA Astrophysics Data System (ADS)

    Castelano, Leonardo K.; de Lima, Emanuel F.; Madureira, Justino R.; Degani, Marcos H.; Maialle, Marcelo Z.

    2018-06-01

    We theoretically investigate electron spin operations driven by applied electric fields in a semiconductor double quantum dot (DQD) formed in a nanowire with longitudinal potential modulated by local gating. We develop a model that describes the process of loading and unloading the DQD taking into account the overlap between the electron wave function and the leads. Such a model considers the spatial occupation and the spin Pauli blockade in a time-dependent fashion due to the highly mixed states driven by the external electric field. Moreover, we present a road map based on the quantum optimal control theory (QOCT) to find a specific electric field that performs two-qubit quantum gates on a faster timescale and with higher possible fidelity. By employing the QOCT, we demonstrate the possibility of performing within high efficiency a universal set of quantum gates {cnot, H, and T } , where cnot is the controlled-not gate, H is the Hadamard gate, and T is the π /8 gate, even in the presence of the loading/unloading process and charge noise effects. Furthermore, by varying the intensity of the applied magnetic field B , the optimized fidelity of the gates oscillates with a period inversely proportional to the gate operation time tf. This behavior can be useful to attain higher fidelity for fast gate operations (>1 GHz) by appropriately choosing B and tf to produce a maximum of the oscillation.

  15. Methods for Quantum Circuit Design and Simulation

    DTIC Science & Technology

    2010-03-01

    cannot be deter- mined given the one output. Reversible gates, expressed mathematically, are unitary matrices. 16 3.3.1 PAULI Gates/Matrices Three...common single-qubit gates are expressed mathematically as Pauli matrices, which are 2x2 matrices. A 2x2 quantum gate can be applied to a single quantum...bit (a 2x1 column vector). The Pauli matrices are expressed as follows: X =   0 1 1 0   Y =   0 −i i 0   Z =   1 0 0 −1   (3.10) where i

  16. Single and pair-wise manipulation of atoms in a 3D optical lattice

    NASA Astrophysics Data System (ADS)

    Corcovilos, Theodore; Wang, Yang; Weiss, David

    2013-05-01

    We describe the hardware used in a quantum computing experiment using individual Cs atoms in a 5 μm -spaced 3D optical lattice as qubits. Far-off-resonance addressing beams can be steered to any site in the array using MEMS mirrors within 10 μs , allowing the translation of individual atoms between lattice sites, for example to remove vacancies in the atom array, and the manipulation of single atoms for single qubit gates in < 100 μs . Two-qubit gates on adjacent atoms can be performed via the Rydberg blockade mechanism using a second MEMS system and high-NA imaging objective. The lasers for the Rydberg excitation are built using a new extended cavity diode laser design utilizing an interference filter as the frequency selecting element following Baillard, et al. (Opt. Comm. 266: 609 (2009)), but using commercially available components. We gratefully acknowledge funding from ARO and DARPA.

  17. Parallelizing quantum circuit synthesis

    NASA Astrophysics Data System (ADS)

    Di Matteo, Olivia; Mosca, Michele

    2016-03-01

    Quantum circuit synthesis is the process in which an arbitrary unitary operation is decomposed into a sequence of gates from a universal set, typically one which a quantum computer can implement both efficiently and fault-tolerantly. As physical implementations of quantum computers improve, the need is growing for tools that can effectively synthesize components of the circuits and algorithms they will run. Existing algorithms for exact, multi-qubit circuit synthesis scale exponentially in the number of qubits and circuit depth, leaving synthesis intractable for circuits on more than a handful of qubits. Even modest improvements in circuit synthesis procedures may lead to significant advances, pushing forward the boundaries of not only the size of solvable circuit synthesis problems, but also in what can be realized physically as a result of having more efficient circuits. We present a method for quantum circuit synthesis using deterministic walks. Also termed pseudorandom walks, these are walks in which once a starting point is chosen, its path is completely determined. We apply our method to construct a parallel framework for circuit synthesis, and implement one such version performing optimal T-count synthesis over the Clifford+T gate set. We use our software to present examples where parallelization offers a significant speedup on the runtime, as well as directly confirm that the 4-qubit 1-bit full adder has optimal T-count 7 and T-depth 3.

  18. Photonic and Phononic Entanglement with Hybrid Species Ion Chains

    NASA Astrophysics Data System (ADS)

    Crocker, Clayton; Lichtman, Martin; Sosnova, Ksenia; Nguyen, Tuan; Carter, Allison; Inlek, Volkan; Ruth, Hanna; Monroe, Christopher

    2017-04-01

    Trapped atomic ions represent a leading platform for quantum information networks due to their long coherence times and diverse set of entangling operations. External fields can drive strong local entangling interactions via phonons, and remote qubits can be entangled via emitted photons. Unfortunately, resonant light from the photonic entanglement process can disrupt nearby memory qubits. We resolve this crosstalk by introducing a separate atomic species to the trap for use as a photonic entanglement qubit. We report successful demonstration of both entangling gates between the mixed species qubit pair through their collective motion, and entanglement between our remote entanglement qubit and emitted visible photons. We additionally report our progress on a new trapping apparatus that was implemented to improve these operations to a level required for scaling up the system size. This work is supported by the ARO with funding from the IARPA LogiQ program, the AFOSR, the ARO MURI on Modular Quantum Circuits, the AFOSR MURI on Quantum Transduction, and the ARL Center for Distributed Quantum Information.

  19. High-speed linear optics quantum computing using active feed-forward.

    PubMed

    Prevedel, Robert; Walther, Philip; Tiefenbacher, Felix; Böhi, Pascal; Kaltenbaek, Rainer; Jennewein, Thomas; Zeilinger, Anton

    2007-01-04

    As information carriers in quantum computing, photonic qubits have the advantage of undergoing negligible decoherence. However, the absence of any significant photon-photon interaction is problematic for the realization of non-trivial two-qubit gates. One solution is to introduce an effective nonlinearity by measurements resulting in probabilistic gate operations. In one-way quantum computation, the random quantum measurement error can be overcome by applying a feed-forward technique, such that the future measurement basis depends on earlier measurement results. This technique is crucial for achieving deterministic quantum computation once a cluster state (the highly entangled multiparticle state on which one-way quantum computation is based) is prepared. Here we realize a concatenated scheme of measurement and active feed-forward in a one-way quantum computing experiment. We demonstrate that, for a perfect cluster state and no photon loss, our quantum computation scheme would operate with good fidelity and that our feed-forward components function with very high speed and low error for detected photons. With present technology, the individual computational step (in our case the individual feed-forward cycle) can be operated in less than 150 ns using electro-optical modulators. This is an important result for the future development of one-way quantum computers, whose large-scale implementation will depend on advances in the production and detection of the required highly entangled cluster states.

  20. A Simple Encryption Algorithm for Quantum Color Image

    NASA Astrophysics Data System (ADS)

    Li, Panchi; Zhao, Ya

    2017-06-01

    In this paper, a simple encryption scheme for quantum color image is proposed. Firstly, a color image is transformed into a quantum superposition state by employing NEQR (novel enhanced quantum representation), where the R,G,B values of every pixel in a 24-bit RGB true color image are represented by 24 single-qubit basic states, and each value has 8 qubits. Then, these 24 qubits are respectively transformed from a basic state into a balanced superposition state by employed the controlled rotation gates. At this time, the gray-scale values of R, G, B of every pixel are in a balanced superposition of 224 multi-qubits basic states. After measuring, the whole image is an uniform white noise, which does not provide any information. Decryption is the reverse process of encryption. The experimental results on the classical computer show that the proposed encryption scheme has better security.

  1. Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Wang, Xin; Miranowicz, Adam; Zhong, Zhirong; Nori, Franco

    2017-07-01

    Heralded near-deterministic multiqubit controlled-phase gates with integrated error detection have recently been proposed by Borregaard et al. [Phys. Rev. Lett. 114, 110502 (2015), 10.1103/PhysRevLett.114.110502]. This protocol is based on a single four-level atom (a heralding quartit) and N three-level atoms (operational qutrits) coupled to a single-resonator mode acting as a cavity bus. Here we generalize this method for two distant resonators without the cavity bus between the heralding and operational atoms. Specifically, we analyze the two-qubit controlled-Z gate and its multiqubit-controlled generalization (i.e., a Toffoli-like gate) acting on the two-lowest levels of N qutrits inside one resonator, with their successful actions being heralded by an auxiliary microwave-driven quartit inside the other resonator. Moreover, we propose a circuit-quantum-electrodynamics realization of the protocol with flux and phase qudits in linearly coupled transmission-line resonators with dissipation. These methods offer a quadratic fidelity improvement compared to cavity-assisted deterministic gates.

  2. Room-temperature storage of quantum entanglement using decoherence-free subspace in a solid-state spin system

    NASA Astrophysics Data System (ADS)

    Wang, F.; Huang, Y.-Y.; Zhang, Z.-Y.; Zu, C.; Hou, P.-Y.; Yuan, X.-X.; Wang, W.-B.; Zhang, W.-G.; He, L.; Chang, X.-Y.; Duan, L.-M.

    2017-10-01

    We experimentally demonstrate room-temperature storage of quantum entanglement using two nuclear spins weakly coupled to the electronic spin carried by a single nitrogen-vacancy center in diamond. We realize universal quantum gate control over the three-qubit spin system and produce entangled states in the decoherence-free subspace of the two nuclear spins. By injecting arbitrary collective noise, we demonstrate that the decoherence-free entangled state has coherence time longer than that of other entangled states by an order of magnitude in our experiment.

  3. Nonadiabatic holonomic quantum computation in decoherence-free subspaces.

    PubMed

    Xu, G F; Zhang, J; Tong, D M; Sjöqvist, Erik; Kwek, L C

    2012-10-26

    Quantum computation that combines the coherence stabilization virtues of decoherence-free subspaces and the fault tolerance of geometric holonomic control is of great practical importance. Some schemes of adiabatic holonomic quantum computation in decoherence-free subspaces have been proposed in the past few years. However, nonadiabatic holonomic quantum computation in decoherence-free subspaces, which avoids a long run-time requirement but with all the robust advantages, remains an open problem. Here, we demonstrate how to realize nonadiabatic holonomic quantum computation in decoherence-free subspaces. By using only three neighboring physical qubits undergoing collective dephasing to encode one logical qubit, we realize a universal set of quantum gates.

  4. Interaction-induced decay of a heteronuclear two-atom system

    PubMed Central

    Xu, Peng; Yang, Jiaheng; Liu, Min; He, Xiaodong; Zeng, Yong; Wang, Kunpeng; Wang, Jin; Papoular, D. J.; Shlyapnikov, G. V.; Zhan, Mingsheng

    2015-01-01

    Two-atom systems in small traps are of fundamental interest for understanding the role of interactions in degenerate cold gases and for the creation of quantum gates in quantum information processing with single-atom traps. One of the key quantities is the inelastic relaxation (decay) time when one of the atoms or both are in a higher hyperfine state. Here we measure this quantity in a heteronuclear system of 87Rb and 85Rb in a micro optical trap and demonstrate experimentally and theoretically the presence of both fast and slow relaxation processes, depending on the choice of the initial hyperfine states. This experimental method allows us to single out a particular relaxation process thus provides an extremely clean platform for collisional physics studies. Our results have also implications for engineering of quantum states via controlled collisions and creation of two-qubit quantum gates. PMID:26199051

  5. Digital-analog quantum simulation of generalized Dicke models with superconducting circuits

    NASA Astrophysics Data System (ADS)

    Lamata, Lucas

    2017-03-01

    We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits.

  6. Digital-analog quantum simulation of generalized Dicke models with superconducting circuits

    PubMed Central

    Lamata, Lucas

    2017-01-01

    We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits. PMID:28256559

  7. Design of magnetic coordination complexes for quantum computing.

    PubMed

    Aromí, Guillem; Aguilà, David; Gamez, Patrick; Luis, Fernando; Roubeau, Olivier

    2012-01-21

    A very exciting prospect in coordination chemistry is to manipulate spins within magnetic complexes for the realization of quantum logic operations. An introduction to the requirements for a paramagnetic molecule to act as a 2-qubit quantum gate is provided in this tutorial review. We propose synthetic methods aimed at accessing such type of functional molecules, based on ligand design and inorganic synthesis. Two strategies are presented: (i) the first consists in targeting molecules containing a pair of well-defined and weakly coupled paramagnetic metal aggregates, each acting as a carrier of one potential qubit, (ii) the second is the design of dinuclear complexes of anisotropic metal ions, exhibiting dissimilar environments and feeble magnetic coupling. The first systems obtained from this synthetic program are presented here and their properties are discussed.

  8. Single qubit operations using microwave hyperbolic secant pulses

    NASA Astrophysics Data System (ADS)

    Ku, H. S.; Long, J. L.; Wu, X.; Bal, M.; Lake, R. E.; Barnes, Edwin; Economou, Sophia E.; Pappas, D. P.

    2017-10-01

    It has been known since the early days of quantum mechanics that hyperbolic secant pulses possess the unique property that they can perform full-cycle Rabi oscillations on two-level quantum systems independently of the pulse detuning. More recently, it was realized that they induce detuning-controlled phases without changing state populations. Here, we experimentally demonstrate the properties of hyperbolic secant pulses on superconducting transmon qubits and contrast them with the more commonly used Gaussian and square waves. We further show that these properties can be exploited to implement phase gates, nominally without exiting the computational subspace. This enables us to demonstrate a microwave-driven Z rotation with a single control parameter, the detuning.

  9. Optimized cross-resonance gate for coupled transmon systems

    NASA Astrophysics Data System (ADS)

    Kirchhoff, Susanna; Keßler, Torsten; Liebermann, Per J.; Assémat, Elie; Machnes, Shai; Motzoi, Felix; Wilhelm, Frank K.

    2018-04-01

    The cross-resonance (CR) gate is an entangling gate for fixed-frequency superconducting qubits. While being simple and extensible, it is comparatively slow, at 160 ns, and thus of limited fidelity due to on-going incoherent processes. Using two different optimal control algorithms, we estimate the quantum speed limit for a controlled-not cnot gate in this system to be 10 ns, indicating a potential for great improvements. We show that the ability to approach this limit depends strongly on the choice of ansatz used to describe optimized control pulses and limitations placed on their complexity. Using a piecewise-constant ansatz, with a single carrier and bandwidth constraints, we identify an experimentally feasible 70-ns pulse shape. Further, an ansatz based on the two dominant frequencies involved in the optimal control problem allows for an optimal solution more than twice as fast again, at under 30 ns, with smooth features and limited complexity. This is twice as fast as gate realizations using tunable-frequency, resonantly coupled qubits. Compared to current CR-gate implementations, we project our scheme will provide a sixfold speed-up and thus a sixfold reduction in fidelity loss due to incoherent effects.

  10. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%

    NASA Astrophysics Data System (ADS)

    Yoneda, Jun; Takeda, Kenta; Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Allison, Giles; Honda, Takumu; Kodera, Tetsuo; Oda, Shunri; Hoshi, Yusuke; Usami, Noritaka; Itoh, Kohei M.; Tarucha, Seigo

    2018-02-01

    The isolation of qubits from noise sources, such as surrounding nuclear spins and spin-electric susceptibility1-4, has enabled extensions of quantum coherence times in recent pivotal advances towards the concrete implementation of spin-based quantum computation. In fact, the possibility of achieving enhanced quantum coherence has been substantially doubted for nanostructures due to the characteristic high degree of background charge fluctuations5-7. Still, a sizeable spin-electric coupling will be needed in realistic multiple-qubit systems to address single-spin and spin-spin manipulations8-10. Here, we realize a single-electron spin qubit with an isotopically enriched phase coherence time (20 μs)11,12 and fast electrical control speed (up to 30 MHz) mediated by extrinsic spin-electric coupling. Using rapid spin rotations, we reveal that the free-evolution dephasing is caused by charge noise—rather than conventional magnetic noise—as highlighted by a 1/f spectrum extended over seven decades of frequency. The qubit exhibits superior performance with single-qubit gate fidelities exceeding 99.9% on average, offering a promising route to large-scale spin-qubit systems with fault-tolerant controllability.

  11. Multi-qubit gates protected by adiabaticity and dynamical decoupling applicable to donor qubits in silicon

    DOE PAGES

    Witzel, Wayne; Montano, Ines; Muller, Richard P.; ...

    2015-08-19

    In this paper, we present a strategy for producing multiqubit gates that promise high fidelity with minimal tuning requirements. Our strategy combines gap protection from the adiabatic theorem with dynamical decoupling in a complementary manner. Energy-level transition errors are protected by adiabaticity and remaining phase errors are mitigated via dynamical decoupling. This is a powerful way to divide and conquer the various error channels. In order to accomplish this without violating a no-go theorem regarding black-box dynamically corrected gates [Phys. Rev. A 80, 032314 (2009)], we require a robust operating point (sweet spot) in control space where the qubits interactmore » with little sensitivity to noise. There are also energy gap requirements for effective adiabaticity. We apply our strategy to an architecture in Si with P donors where we assume we can shuttle electrons between different donors. Electron spins act as mobile ancillary qubits and P nuclear spins act as long-lived data qubits. Furthermore, this system can have a very robust operating point where the electron spin is bound to a donor in the quadratic Stark shift regime. High fidelity single qubit gates may be performed using well-established global magnetic resonance pulse sequences. Single electron-spin preparation and measurement has also been demonstrated. Thus, putting this all together, we present a robust universal gate set for quantum computation.« less

  12. Hardware for dynamic quantum computing.

    PubMed

    Ryan, Colm A; Johnson, Blake R; Ristè, Diego; Donovan, Brian; Ohki, Thomas A

    2017-10-01

    We describe the hardware, gateware, and software developed at Raytheon BBN Technologies for dynamic quantum information processing experiments on superconducting qubits. In dynamic experiments, real-time qubit state information is fed back or fed forward within a fraction of the qubits' coherence time to dynamically change the implemented sequence. The hardware presented here covers both control and readout of superconducting qubits. For readout, we created a custom signal processing gateware and software stack on commercial hardware to convert pulses in a heterodyne receiver into qubit state assignments with minimal latency, alongside data taking capability. For control, we developed custom hardware with gateware and software for pulse sequencing and steering information distribution that is capable of arbitrary control flow in a fraction of superconducting qubit coherence times. Both readout and control platforms make extensive use of field programmable gate arrays to enable tailored qubit control systems in a reconfigurable fabric suitable for iterative development.

  13. Combining Topological Hardware and Topological Software: Color-Code Quantum Computing with Topological Superconductor Networks

    NASA Astrophysics Data System (ADS)

    Litinski, Daniel; Kesselring, Markus S.; Eisert, Jens; von Oppen, Felix

    2017-07-01

    We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture, including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and we present protocols for realizing topologically protected Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but it could also be realized in alternative settings such as quantum-Hall-superconductor hybrids.

  14. Quantum Approaches to Logic Circuit Synthesis and Testing

    DTIC Science & Technology

    2006-06-01

    with n qubits using Octave (Oct), MATLAB (MAT), Blitz++ (B++) and QuIDDPro (QP) with Oracle Design 1. 42 Table 4: Simulating Grover’s...algorithm with n qubits using Octave (Oct), MATLAB (MAT), Blitz++ (B++) and QuIDDPro (QP) with Oracle Design 2. 43 Table 5: Number of Grover iterations...to accurately characterize the effects of gate and systematic error in a quantum circuit that generates remotely entangled EPR pairs. An

  15. Driving qubit phase gates with sech shaped pulses

    NASA Astrophysics Data System (ADS)

    Long, Junling; Ku, Hsiang-Sheng; Wu, Xian; Lake, Russell; Barnes, Edwin; Economou, Sophia; Pappas, David

    As shown in 1932 by Rozen and Zener, the Rabi model has a unique solution whereby, for a given pulse length or amplitude, a sech(t/sigma) shaped pulse can be used to drive complete oscillations around the Bloch sphere that are independent of detuning with only a resultant detuning-dependent phase accumulation. Using this property, single qubit phase gates and two-qubit CZ gates have been proposed. In this work we explore the effect of different drive pulse shapes, i.e. square, Gaussian, and sech, as a function of detuning for Rabi oscillations of a superconducting transmon qubit. An arbitrary, single-qubit phase gate is demonstrated with the sech(t/sigma) pulse, and full tomography is performed to extract the fidelity. This is the first step towards high fidelity, low leakage two qubit CZ gates, and illustrates the efficacy of using analytic solutions of the qubit drive prior to optimal pulse shaping.

  16. Bidirectional Teleportation Protocol in Quantum Wireless Multi-hop Network

    NASA Astrophysics Data System (ADS)

    Cai, Rui; Yu, Xu-Tao; Zhang, Zai-Chen

    2018-06-01

    We propose a bidirectional quantum teleportation protocol based on a composite GHZ-Bell state. In this protocol, the composite GHZ-Bell state channel is transformed into two-Bell state channel through gate operations and single qubit measurements. The channel transformation will lead to different kinds of quantum channel states, so a method is proposed to help determine the unitary matrices effectively under different quantum channels. Furthermore, we discuss the bidirectional teleportation protocol in the quantum wireless multi-hop network. This paper is aimed to provide a bidirectional teleportation protocol and study the bidirectional multi-hop teleportation in the quantum wireless communication network.

  17. Bidirectional Teleportation Protocol in Quantum Wireless Multi-hop Network

    NASA Astrophysics Data System (ADS)

    Cai, Rui; Yu, Xu-Tao; Zhang, Zai-Chen

    2018-02-01

    We propose a bidirectional quantum teleportation protocol based on a composite GHZ-Bell state. In this protocol, the composite GHZ-Bell state channel is transformed into two-Bell state channel through gate operations and single qubit measurements. The channel transformation will lead to different kinds of quantum channel states, so a method is proposed to help determine the unitary matrices effectively under different quantum channels. Furthermore, we discuss the bidirectional teleportation protocol in the quantum wireless multi-hop network. This paper is aimed to provide a bidirectional teleportation protocol and study the bidirectional multi-hop teleportation in the quantum wireless communication network.

  18. Single-Shot Quantum Nondemolition Detection of Individual Itinerant Microwave Photons

    NASA Astrophysics Data System (ADS)

    Besse, Jean-Claude; Gasparinetti, Simone; Collodo, Michele C.; Walter, Theo; Kurpiers, Philipp; Pechal, Marek; Eichler, Christopher; Wallraff, Andreas

    2018-04-01

    Single-photon detection is an essential component in many experiments in quantum optics, but it remains challenging in the microwave domain. We realize a quantum nondemolition detector for propagating microwave photons and characterize its performance using a single-photon source. To this aim, we implement a cavity-assisted conditional phase gate between the incoming photon and a superconducting artificial atom. By reading out the state of this atom in a single shot, we reach an external (internal) photon-detection fidelity of 50% (71%), limited by transmission efficiency between the source and the detector (75%) and the coherence properties of the qubit. By characterizing the coherence and average number of photons in the field reflected off the detector, we demonstrate its quantum nondemolition nature. We envisage applications in generating heralded remote entanglement between qubits and for realizing logic gates between propagating microwave photons.

  19. Non-deterministic quantum CNOT gate with double encoding

    NASA Astrophysics Data System (ADS)

    Gueddana, Amor; Attia, Moez; Chatta, Rihab

    2013-09-01

    We define an Asymmetric Partially Polarizing Beam Splitter (APPBS) to be a linear optical component having different reflectivity (transmittance) coefficients, on the upper and the lower arms, for horizontally and vertically Polarized incident photons. Our CNOT model is composed by two APPBSs, one Half Wave Plate (HWP), two Polarizing Beam Splitters (PBSs), a Beam Splitter (BS) and a -phase rotator for specific wavelength. Control qubit operates with dual rail encoding while target qubit is based on polarization encoding. To perform CNOT operation in 4/27 of the cases, input and target incoming photons are injected with different wavelengths.

  20. Tunable Superconducting Qubits with Flux-Independent Coherence

    NASA Astrophysics Data System (ADS)

    Hutchings, M. D.; Hertzberg, J. B.; Liu, Y.; Bronn, N. T.; Keefe, G. A.; Brink, Markus; Chow, Jerry M.; Plourde, B. L. T.

    2017-10-01

    We study the impact of low-frequency magnetic flux noise upon superconducting transmon qubits with various levels of tunability. We find that qubits with weaker tunability exhibit dephasing that is less sensitive to flux noise. This insight is used to fabricate qubits where dephasing due to flux noise is suppressed below other dephasing sources, leading to flux-independent dephasing times T2*˜15 μ s over a tunable range of approximately 340 MHz. Such tunable qubits have the potential to create high-fidelity, fault-tolerant qubit gates and to fundamentally improve scalability for a quantum processor.

  1. Compiling Quantum Algorithms for Architectures with Multi-qubit Gates (Open Access, Publisher’s Version)

    DTIC Science & Technology

    2016-06-24

    degrees of freedomper qubit [6], so the decompositionmust have at least N3 free parameters. During the sequence at least -N 1of the qubitsmust eventually...possiblemust include at leastN global operations, for a total of -N3 1 free parameters. One additional degree of freedom remains, so wemust add a last gate...adjustedmust only be specified up to a collective Z rotation afterwards, since this rotation can be absorbed into the phase. This removes one free parameter

  2. Many-body strategies for multiqubit gates: Quantum control through Krawtchouk-chain dynamics

    NASA Astrophysics Data System (ADS)

    Groenland, Koen; Schoutens, Kareljan

    2018-04-01

    We propose a strategy for engineering multiqubit quantum gates. As a first step, it employs an eigengate to map states in the computational basis to eigenstates of a suitable many-body Hamiltonian. The second step employs resonant driving to enforce a transition between a single pair of eigenstates, leaving all others unchanged. The procedure is completed by mapping back to the computational basis. We demonstrate the strategy for the case of a linear array with an even number N of qubits, with specific X X +Y Y couplings between nearest neighbors. For this so-called Krawtchouk chain, a two-body driving term leads to the iSWAPN gate, which we numerically test for N =4 and 6.

  3. Universal non-adiabatic holonomic quantum computation in decoherence-free subspaces with quantum dots inside a cavity

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Dong, Ping; Zhou, Jian; Cao, Zhuo-Liang

    2017-05-01

    A scheme for implementing the non-adiabatic holonomic quantum computation in decoherence-free subspaces is proposed with the interactions between a microcavity and quantum dots. A universal set of quantum gates can be constructed on the encoded logical qubits with high fidelities. The current scheme can suppress both local and collective noises, which is very important for achieving universal quantum computation. Discussions about the gate fidelities with the experimental parameters show that our schemes can be implemented in current experimental technology. Therefore, our scenario offers a method for universal and robust solid-state quantum computation.

  4. Error correction in short time steps during the application of quantum gates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, L.A. de, E-mail: leonardo.castro@usp.br; Napolitano, R.D.J.

    2016-04-15

    We propose a modification of the standard quantum error-correction method to enable the correction of errors that occur due to the interaction with a noisy environment during quantum gates without modifying the codification used for memory qubits. Using a perturbation treatment of the noise that allows us to separate it from the ideal evolution of the quantum gate, we demonstrate that in certain cases it is necessary to divide the logical operation in short time steps intercalated by correction procedures. A prescription of how these gates can be constructed is provided, as well as a proof that, even for themore » cases when the division of the quantum gate in short time steps is not necessary, this method may be advantageous for reducing the total duration of the computation.« less

  5. OpenFlow Extensions for Programmable Quantum Networks

    DTIC Science & Technology

    2017-06-19

    Extensions for Programmable Quantum Networks by Venkat Dasari, Nikolai Snow, and Billy Geerhart Computational and Information Sciences Directorate...distribution is unlimited. 1 1. Introduction Quantum networks and quantum computing have been receiving a surge of interest recently.1–3 However, there has...communicate using entangled particles and perform calculations using quantum logic gates. Additionally, quantum computing uses a quantum bit (qubit

  6. Arbitrary photonic wave plate operations on chip: Realizing Hadamard, Pauli-X, and rotation gates for polarisation qubits

    PubMed Central

    Heilmann, René; Gräfe, Markus; Nolte, Stefan; Szameit, Alexander

    2014-01-01

    Chip-based photonic quantum computing is an emerging technology that promises much speedup over conventional computers at small integration volumes. Particular interest is thereby given to polarisation-encoded photonic qubits, and many protocols have been developed for this encoding. However, arbitrary wave plate operation on chip are not available so far, preventing from the implementation of integrated universal quantum computing algorithms. In our work we close this gap and present Hadamard, Pauli-X, and rotation gates of high fidelity for photonic polarisation qubits on chip by employing a reorientation of the optical axis of birefringent waveguides. The optical axis of the birefringent waveguide is rotated due to the impact of an artificial stress field created by an additional modification close to the waveguide. By adjusting this length of the defect along the waveguide, the retardation between ordinary and extraordinary field components is precisely tunable including half-wave plate and quarter-wave plate operations. Our approach demonstrates the full range control of orientation and strength of the induced birefringence and thus allows arbitrary wave plate operations without affecting the degree of polarisation or introducing additional losses to the waveguides. The implemented gates are tested with classical and quantum light. PMID:24534893

  7. Whispering galleries and the control of artificial atoms.

    PubMed

    Forrester, Derek Michael; Kusmartsev, Feodor V

    2016-04-28

    Quantum computation using artificial-atoms, such as novel superconducting circuits, can be sensitively controlled by external electromagnetic fields. These fields and the self-fields attributable to the coupled artificial-atoms influence the amount of quantum correlation in the system. However, control elements that can operate without complete destruction of the entanglement of the quantum-bits are difficult to engineer. Here we investigate the possibility of using closely-spaced-linear arrays of metallic-elliptical discs as whispering gallery waveguides to control artificial-atoms. The discs confine and guide radiation through the array with small notches etched into their sides that act as scatterers. We focus on π-ring artificial-atoms, which can generate their own spontaneous fluxes. We find that the micro-discs of the waveguides can be excited by terahertz frequency fields to exhibit whispering-modes and that a quantum-phase-gate composed of π-rings can be operated under their influence. Furthermore, we gauge the level of entanglement through the concurrence measure and show that under certain magnetic conditions a series of entanglement sudden-deaths and revivals occur between the two qubits. This is important for understanding the stability and life-time of qubit operations using, for example, a phase gate in a hybrid of quantum technologies composed of control elements and artificial-atoms.

  8. Spin measurement in an undoped Si/SiGe double quantum dot incorporating a micromagnet

    NASA Astrophysics Data System (ADS)

    Wu, Xian; Ward, Daniel; Prance, Jonathan; Kim, Dohun; Shi, Zhan; Mohr, Robert; Gamble, John; Savage, Donald; Lagally, Max; Friesen, Mark; Coppersmith, Susan; Eriksson, Mark

    2014-03-01

    We present measurements on a double dot formed in an accumulation-mode undoped Si/SiGe heterostructure. The double dot incorporates a proximal micromagnet to generate a stable magnetic field difference between the quantum dots. The gate design incorporates two layers of gates, and the upper layer of gates is split into five different sections to decrease crosstalk between different gates. A novel pattern of the lower layer gates enhances the tunability of tunnel rates. We will describe our attempts to create a singlet-triplet qubit in this device. This work was supported in part by ARO(W911NF-12-0607), NSF(DMR-1206915), and the United States Department of Defense. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the US Government. Now works at Lancaster University, UK.

  9. Harvard-Lead Phase of Multi- Qubit Systems Based on Electron Spins in Coupled Quantum Dots Project Meeting

    DTIC Science & Technology

    2014-03-24

    8.00 9.00 T. Hatano, T. Kubo , Y. Tokura, S. Amaha, S. Teraoka, S. Tarucha. Aharonov-Bohm Oscillations Changed by Indirect Interdot Tunneling via...M. Pioro-Ladrière, T. Kubo , K. Yoshida, T. Taniyama, Y. Tokura, S. Tarucha. Two-Qubit Gate of Combined Single-Spin Rotation and Interdot Spin...1 2012): 0. doi: 10.1103/PhysRevB.85.035306 S. Amaha, T. Hatano, H. Tamura, S. Teraoka, T. Kubo , Y. Tokura, D. G. Austing, S. Tarucha. Resonance

  10. Quantum logic between remote quantum registers

    NASA Astrophysics Data System (ADS)

    Yao, N. Y.; Gong, Z.-X.; Laumann, C. R.; Bennett, S. D.; Duan, L.-M.; Lukin, M. D.; Jiang, L.; Gorshkov, A. V.

    2013-02-01

    We consider two approaches to dark-spin-mediated quantum computing in hybrid solid-state spin architectures. First, we review the notion of eigenmode-mediated unpolarized spin-chain state transfer and extend the analysis to various experimentally relevant imperfections: quenched disorder, dynamical decoherence, and uncompensated long-range coupling. In finite-length chains, the interplay between disorder-induced localization and decoherence yields a natural optimal channel fidelity, which we calculate. Long-range dipolar couplings induce a finite intrinsic lifetime for the mediating eigenmode; extensive numerical simulations of dipolar chains of lengths up to L=12 show remarkably high fidelity despite these decay processes. We further briefly consider the extension of the protocol to bosonic systems of coupled oscillators. Second, we introduce a quantum mirror based architecture for universal quantum computing that exploits all of the dark spins in the system as potential qubits. While this dramatically increases the number of qubits available, the composite operations required to manipulate dark-spin qubits significantly raise the error threshold for robust operation. Finally, we demonstrate that eigenmode-mediated state transfer can enable robust long-range logic between spatially separated nitrogen-vacancy registers in diamond; disorder-averaged numerics confirm that high-fidelity gates are achievable even in the presence of moderate disorder.

  11. Ancilla-driven quantum computation for qudits and continuous variables

    NASA Astrophysics Data System (ADS)

    Proctor, Timothy; Giulian, Melissa; Korolkova, Natalia; Andersson, Erika; Kendon, Viv

    2017-05-01

    Although qubits are the leading candidate for the basic elements in a quantum computer, there are also a range of reasons to consider using higher-dimensional qudits or quantum continuous variables (QCVs). In this paper, we use a general "quantum variable" formalism to propose a method of quantum computation in which ancillas are used to mediate gates on a well-isolated "quantum memory" register and which may be applied to the setting of qubits, qudits (for d >2 ), or QCVs. More specifically, we present a model in which universal quantum computation may be implemented on a register using only repeated applications of a single fixed two-body ancilla-register interaction gate, ancillas prepared in a single state, and local measurements of these ancillas. In order to maintain determinism in the computation, adaptive measurements via a classical feed forward of measurement outcomes are used, with the method similar to that in measurement-based quantum computation (MBQC). We show that our model has the same hybrid quantum-classical processing advantages as MBQC, including the power to implement any Clifford circuit in essentially one layer of quantum computation. In some physical settings, high-quality measurements of the ancillas may be highly challenging or not possible, and hence we also present a globally unitary model which replaces the need for measurements of the ancillas with the requirement for ancillas to be prepared in states from a fixed orthonormal basis. Finally, we discuss settings in which these models may be of practical interest.

  12. Numerical characteristics of quantum computer simulation

    NASA Astrophysics Data System (ADS)

    Chernyavskiy, A.; Khamitov, K.; Teplov, A.; Voevodin, V.; Voevodin, Vl.

    2016-12-01

    The simulation of quantum circuits is significantly important for the implementation of quantum information technologies. The main difficulty of such modeling is the exponential growth of dimensionality, thus the usage of modern high-performance parallel computations is relevant. As it is well known, arbitrary quantum computation in circuit model can be done by only single- and two-qubit gates, and we analyze the computational structure and properties of the simulation of such gates. We investigate the fact that the unique properties of quantum nature lead to the computational properties of the considered algorithms: the quantum parallelism make the simulation of quantum gates highly parallel, and on the other hand, quantum entanglement leads to the problem of computational locality during simulation. We use the methodology of the AlgoWiki project (algowiki-project.org) to analyze the algorithm. This methodology consists of theoretical (sequential and parallel complexity, macro structure, and visual informational graph) and experimental (locality and memory access, scalability and more specific dynamic characteristics) parts. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia). We show that the simulation of quantum gates is a good base for the research and testing of the development methods for data intense parallel software, and considered methodology of the analysis can be successfully used for the improvement of the algorithms in quantum information science.

  13. Tunable, Flexible and Efficient Optimization of Control Pulses for Superconducting Qubits, part I - Theory

    NASA Astrophysics Data System (ADS)

    Machnes, Shai; AsséMat, Elie; Tannor, David; Wilhelm, Frank

    Quantum computation places very stringent demands on gate fidelities, and experimental implementations require both the controls and the resultant dynamics to conform to hardware-specific ansatzes and constraints. Superconducting qubits present the additional requirement that pulses have simple parametrizations, so they can be further calibrated in the experiment, to compensate for uncertainties in system characterization. We present a novel, conceptually simple and easy-to-implement gradient-based optimal control algorithm, GOAT, which satisfies all the above requirements. In part II we shall demonstrate the algorithm's capabilities, by using GOAT to optimize fast high-accuracy pulses for two leading superconducting qubits architectures - Xmons and IBM's flux-tunable couplers.

  14. Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Heo, Jino; Hong, Chang-Ho; Lim, Jong-In; Yang, Hyung-Jin

    2015-05-01

    We propose an arbitrary controlled-unitary (CU) gate and a bidirectional quantum teleportation (BQTP) scheme. The proposed CU gate utilizes photonic qubits (photons) with cross-Kerr nonlinearities (XKNLs), X-homodyne detectors, and linear optical elements, and consists of the consecutive operation of a controlled-path (C-path) gate and a gathering-path (G-path) gate. It is almost deterministic and feasible with current technology when a strong coherent state and weak XKNLs are employed. Based on the CU gate, we present a BQTP scheme that simultaneously teleports two unknown photons between distant users by transmitting only one photon in a path-polarization intra-particle hybrid entangled state. Consequently, it is possible to experimentally implement BQTP with a certain success probability using the proposed CU gate. Project supported by the Ministry of Science, ICT&Future Planning, Korea, under the C-ITRC (Convergence Information Technology Research Center) Support program (NIPA-2013-H0301-13-3007) supervised by the National IT Industry Promotion Agency.

  15. Restless Tuneup of High-Fidelity Qubit Gates

    NASA Astrophysics Data System (ADS)

    Rol, M. A.; Bultink, C. C.; O'Brien, T. E.; de Jong, S. R.; Theis, L. S.; Fu, X.; Luthi, F.; Vermeulen, R. F. L.; de Sterke, J. C.; Bruno, A.; Deurloo, D.; Schouten, R. N.; Wilhelm, F. K.; DiCarlo, L.

    2017-04-01

    We present a tuneup protocol for qubit gates with tenfold speedup over traditional methods reliant on qubit initialization by energy relaxation. This speedup is achieved by constructing a cost function for Nelder-Mead optimization from real-time correlation of nondemolition measurements interleaving gate operations without pause. Applying the protocol on a transmon qubit achieves 0.999 average Clifford fidelity in one minute, as independently verified using randomized benchmarking and gate-set tomography. The adjustable sensitivity of the cost function allows the detection of fractional changes in the gate error with a nearly constant signal-to-noise ratio. The restless concept demonstrated can be readily extended to the tuneup of two-qubit gates and measurement operations.

  16. Two-electron spin correlations in precision placed donors in silicon.

    PubMed

    Broome, M A; Gorman, S K; House, M G; Hile, S J; Keizer, J G; Keith, D; Hill, C D; Watson, T F; Baker, W J; Hollenberg, L C L; Simmons, M Y

    2018-03-07

    Substitutional donor atoms in silicon are promising qubits for quantum computation with extremely long relaxation and dephasing times demonstrated. One of the critical challenges of scaling these systems is determining inter-donor distances to achieve controllable wavefunction overlap while at the same time performing high fidelity spin readout on each qubit. Here we achieve such a device by means of scanning tunnelling microscopy lithography. We measure anti-correlated spin states between two donor-based spin qubits in silicon separated by 16 ± 1 nm. By utilising an asymmetric system with two phosphorus donors at one qubit site and one on the other (2P-1P), we demonstrate that the exchange interaction can be turned on and off via electrical control of two in-plane phosphorus doped detuning gates. We determine the tunnel coupling between the 2P-1P system to be 200 MHz and provide a roadmap for the observation of two-electron coherent exchange oscillations.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proctor, Timothy; Giulian, Melissa; Korolkova, Natalia

    Although qubits are the leading candidate for the basic elements in a quantum computer, there are also a range of reasons to consider using higher-dimensional qudits or quantum continuous variables (QCVs). In this paper, we use a general “quantum variable” formalism to propose a method of quantum computation in which ancillas are used to mediate gates on a well-isolated “quantum memory” register and which may be applied to the setting of qubits, qudits (for d>2), or QCVs. More specifically, we present a model in which universal quantum computation may be implemented on a register using only repeated applications of amore » single fixed two-body ancilla-register interaction gate, ancillas prepared in a single state, and local measurements of these ancillas. In order to maintain determinism in the computation, adaptive measurements via a classical feed forward of measurement outcomes are used, with the method similar to that in measurement-based quantum computation (MBQC). We show that our model has the same hybrid quantum-classical processing advantages as MBQC, including the power to implement any Clifford circuit in essentially one layer of quantum computation. In some physical settings, high-quality measurements of the ancillas may be highly challenging or not possible, and hence we also present a globally unitary model which replaces the need for measurements of the ancillas with the requirement for ancillas to be prepared in states from a fixed orthonormal basis. In conclusion, we discuss settings in which these models may be of practical interest.« less

  18. Three-electron spin qubits

    NASA Astrophysics Data System (ADS)

    Russ, Maximilian; Burkard, Guido

    2017-10-01

    The goal of this article is to review the progress of three-electron spin qubits from their inception to the state of the art. We direct the main focus towards the exchange-only qubit (Bacon et al 2000 Phys. Rev. Lett. 85 1758-61, DiVincenzo et al 2000 Nature 408 339) and its derived versions, e.g. the resonant exchange (RX) qubit, but we also discuss other qubit implementations using three electron spins. For each three-spin qubit we describe the qubit model, the envisioned physical realization, the implementations of single-qubit operations, as well as the read-out and initialization schemes. Two-qubit gates and decoherence properties are discussed for the RX qubit and the exchange-only qubit, thereby completing the list of requirements for quantum computation for a viable candidate qubit implementation. We start by describing the full system of three electrons in a triple quantum dot, then discuss the charge-stability diagram, restricting ourselves to the relevant subsystem, introduce the qubit states, and discuss important transitions to other charge states (Russ et al 2016 Phys. Rev. B 94 165411). Introducing the various qubit implementations, we begin with the exchange-only qubit (DiVincenzo et al 2000 Nature 408 339, Laird et al 2010 Phys. Rev. B 82 075403), followed by the RX qubit (Medford et al 2013 Phys. Rev. Lett. 111 050501, Taylor et al 2013 Phys. Rev. Lett. 111 050502), the spin-charge qubit (Kyriakidis and Burkard 2007 Phys. Rev. B 75 115324), and the hybrid qubit (Shi et al 2012 Phys. Rev. Lett. 108 140503, Koh et al 2012 Phys. Rev. Lett. 109 250503, Cao et al 2016 Phys. Rev. Lett. 116 086801, Thorgrimsson et al 2016 arXiv:1611.04945). The main focus will be on the exchange-only qubit and its modification, the RX qubit, whose single-qubit operations are realized by driving the qubit at its resonant frequency in the microwave range similar to electron spin resonance. Two different types of two-qubit operations are presented for the exchange-only qubits which can be divided into short-ranged and long-ranged interactions. Both of these interaction types are expected to be necessary in a large-scale quantum computer. The short-ranged interactions use the exchange coupling by placing qubits next to each other and applying exchange-pulses (DiVincenzo et al 2000 Nature 408 339, Fong and Wandzura 2011 Quantum Inf. Comput. 11 1003, Setiawan et al 2014 Phys. Rev. B 89 085314, Zeuch et al 2014 Phys. Rev. B 90 045306, Doherty and Wardrop 2013 Phys. Rev. Lett. 111 050503, Shim and Tahan 2016 Phys. Rev. B 93 121410), while the long-ranged interactions use the photons of a superconducting microwave cavity as a mediator in order to couple two qubits over long distances (Russ and Burkard 2015 Phys. Rev. B 92 205412, Srinivasa et al 2016 Phys. Rev. B 94 205421). The nature of the three-electron qubit states each having the same total spin and total spin in z-direction (same Zeeman energy) provides a natural protection against several sources of noise (DiVincenzo et al 2000 Nature 408 339, Taylor et al 2013 Phys. Rev. Lett. 111 050502, Kempe et al 2001 Phys. Rev. A 63 042307, Russ and Burkard 2015 Phys. Rev. B 91 235411). The price to pay for this advantage is an increase in gate complexity. We also take into account the decoherence of the qubit through the influence of magnetic noise (Ladd 2012 Phys. Rev. B 86 125408, Mehl and DiVincenzo 2013 Phys. Rev. B 87 195309, Hung et al 2014 Phys. Rev. B 90 045308), in particular dephasing due to the presence of nuclear spins, as well as dephasing due to charge noise (Medford et al 2013 Phys. Rev. Lett. 111 050501, Taylor et al 2013 Phys. Rev. Lett. 111 050502, Shim and Tahan 2016 Phys. Rev. B 93 121410, Russ and Burkard 2015 Phys. Rev. B 91 235411, Fei et al 2015 Phys. Rev. B 91 205434), fluctuations of the energy levels on each dot due to noisy gate voltages or the environment. Several techniques are discussed which partly decouple the qubit from magnetic noise (Setiawan et al 2014 Phys. Rev. B 89 085314, West and Fong 2012 New J. Phys. 14 083002, Rohling and Burkard 2016 Phys. Rev. B 93 205434) while for charge noise it is shown that it is favorable to operate the qubit on the so-called ‘(double) sweet spots’ (Taylor et al 2013 Phys. Rev. Lett. 111 050502, Shim and Tahan 2016 Phys. Rev. B 93 121410, Russ and Burkard 2015 Phys. Rev. B 91 235411, Fei et al 2015 Phys. Rev. B 91 205434, Malinowski et al 2017 arXiv: 1704.01298), which are least susceptible to noise, thus providing a longer lifetime of the qubit.

  19. A single-atom quantum memory in silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freer, Solomon; Simmons, Stephanie; Laucht, Arne

    Long coherence times and fast gate operations are desirable but often conflicting requirements for physical qubits. This conflict can be resolved by resorting to fast qubits for operations, and by storing their state in a ‘quantum memory’ while idle. The 31P donor in silicon comes naturally equipped with a fast qubit (the electron spin) and a long-lived qubit (the 31P nuclear spin), coexisting in a bound state at cryogenic temperatures. Here, we demonstrate storage and retrieval of quantum information from a single donor electron spin to its host phosphorus nucleus in isotopically-enriched 28Si. The fidelity of the memory process ismore » characterised via both state and process tomography. We report an overall process fidelity Fp ! 81%, a memory fidelity Fm ! 92%, and memory storage times up to 80 ms. These values are limited by a transient shift of the electron spin resonance frequency following highpower radiofrequency pulses.« less

  20. A single-atom quantum memory in silicon

    DOE PAGES

    Freer, Solomon; Simmons, Stephanie; Laucht, Arne; ...

    2017-03-20

    Long coherence times and fast gate operations are desirable but often conflicting requirements for physical qubits. This conflict can be resolved by resorting to fast qubits for operations, and by storing their state in a ‘quantum memory’ while idle. The 31P donor in silicon comes naturally equipped with a fast qubit (the electron spin) and a long-lived qubit (the 31P nuclear spin), coexisting in a bound state at cryogenic temperatures. Here, we demonstrate storage and retrieval of quantum information from a single donor electron spin to its host phosphorus nucleus in isotopically-enriched 28Si. The fidelity of the memory process ismore » characterised via both state and process tomography. We report an overall process fidelity Fp ! 81%, a memory fidelity Fm ! 92%, and memory storage times up to 80 ms. These values are limited by a transient shift of the electron spin resonance frequency following highpower radiofrequency pulses.« less

  1. Data-driven gradient algorithm for high-precision quantum control

    NASA Astrophysics Data System (ADS)

    Wu, Re-Bing; Chu, Bing; Owens, David H.; Rabitz, Herschel

    2018-04-01

    In the quest to achieve scalable quantum information processing technologies, gradient-based optimal control algorithms (e.g., grape) are broadly used for implementing high-precision quantum gates, but their performance is often hindered by deterministic or random errors in the system model and the control electronics. In this paper, we show that grape can be taught to be more effective by jointly learning from the design model and the experimental data obtained from process tomography. The resulting data-driven gradient optimization algorithm (d-grape) can in principle correct all deterministic gate errors, with a mild efficiency loss. The d-grape algorithm may become more powerful with broadband controls that involve a large number of control parameters, while other algorithms usually slow down due to the increased size of the search space. These advantages are demonstrated by simulating the implementation of a two-qubit controlled-not gate.

  2. Model of a programmable quantum processing unit based on a quantum transistor effect

    NASA Astrophysics Data System (ADS)

    Ablayev, Farid; Andrianov, Sergey; Fetisov, Danila; Moiseev, Sergey; Terentyev, Alexandr; Urmanchev, Andrey; Vasiliev, Alexander

    2018-02-01

    In this paper we propose a model of a programmable quantum processing device realizable with existing nano-photonic technologies. It can be viewed as a basis for new high performance hardware architectures. Protocols for physical implementation of device on the controlled photon transfer and atomic transitions are presented. These protocols are designed for executing basic single-qubit and multi-qubit gates forming a universal set. We analyze the possible operation of this quantum computer scheme. Then we formalize the physical architecture by a mathematical model of a Quantum Processing Unit (QPU), which we use as a basis for the Quantum Programming Framework. This framework makes it possible to perform universal quantum computations in a multitasking environment.

  3. Optimal control of hybrid qubits: Implementing the quantum permutation algorithm

    NASA Astrophysics Data System (ADS)

    Rivera-Ruiz, C. M.; de Lima, E. F.; Fanchini, F. F.; Lopez-Richard, V.; Castelano, L. K.

    2018-03-01

    The optimal quantum control theory is employed to determine electric pulses capable of producing quantum gates with a fidelity higher than 0.9997, when noise is not taken into account. Particularly, these quantum gates were chosen to perform the permutation algorithm in hybrid qubits in double quantum dots (DQDs). The permutation algorithm is an oracle based quantum algorithm that solves the problem of the permutation parity faster than a classical algorithm without the necessity of entanglement between particles. The only requirement for achieving the speedup is the use of a one-particle quantum system with at least three levels. The high fidelity found in our results is closely related to the quantum speed limit, which is a measure of how fast a quantum state can be manipulated. Furthermore, we model charge noise by considering an average over the optimal field centered at different values of the reference detuning, which follows a Gaussian distribution. When the Gaussian spread is of the order of 5 μ eV (10% of the correct value), the fidelity is still higher than 0.95. Our scheme also can be used for the practical realization of different quantum algorithms in DQDs.

  4. The use of 133 Ba+ as a new candidate for trapped atomic ion qubits

    NASA Astrophysics Data System (ADS)

    Hucul, David; Christiansen, Justin; Campbell, Wesley; Hudson, Eric

    2016-05-01

    Trapped atomic ions are qubit standards in quantum information science because of their long coherence times and high fidelity entangling gates. Many different atomic ions have been used as qubits, each with strengths and weaknesses dictated by its atomic structure. We propose to use 133 Ba+ as an atomic qubit. 133 Ba+ is a nearly ideal, all-purpose candidate by combining many of the strengths of different workhorse atomic ions. 133 Ba+, like 171 Yb+, has a nuclear spin 1/2, allowing for a robust hyperfine qubit with simple state preparation and readout via differential fluorescence. The lack of a low-lying F-state, like in Ca+, simplifies high-fidelity qubit state detection that relies on shelving a qubit level to a meta-stable excited state. In addition, 133 Ba+ can be used for background-free qubit state detection where the wavelength of the qubit detection light differs from all excitation light by at least 50 THz. Unlike all other ions in use, the optical transitions of barium are in the visible spectrum, enabling the use of high power lasers, low-loss fibers, high quantum efficiency detectors, and other technologies developed for visible wavelengths of light to ease some requirements toward scaling a quantum system.

  5. Restless Tuneup of High-Fidelity Qubit Gates

    NASA Astrophysics Data System (ADS)

    Rol, M. A.; Bultink, C. C.; O'Brien, T. E.; de Jong, S. R.; Theis, L. S.; Fu, X.; Luthi, F.; Vermeulen, R. F. L.; de Sterke, J. C.; Bruno, A.; Deurloo, D.; Schouten, R. N.; Wilhelm, F. K.; Dicarlo, L.

    We present a tuneup protocol for qubit gates with tenfold speedup over traditional methods reliant on qubit initialization by energy relax- ation. This speedup is achieved by constructing a cost function for Nelder-Mead optimization from real-time correlation of non-demolition measurements interleaving gate operations without pause. Applying the protocol on a transmon qubit achieves 0.999 average Clifford fidelity in one minute, as independently verified using randomized benchmarking and gate set tomography. The adjustable sensitivity of the cost function allows detecting fractional reductions in gate error with constant signal- to-noise ratio. The restless concept here demonstrated can be readily extended to the tuneup of two-qubit gates and measurement operations. Research funded by IARPA, an ERC Synergy Grant, Microsoft Research, and the China Scholarship Council.

  6. Quantum non-demolition detection of an itinerant microwave photon

    NASA Astrophysics Data System (ADS)

    Kono, S.; Koshino, K.; Tabuchi, Y.; Noguchi, A.; Nakamura, Y.

    2018-06-01

    Photon detectors are an elementary tool to measure electromagnetic waves at the quantum limit1,2 and are heavily demanded in the emerging quantum technologies such as communication3, sensing4 and computing5. Of particular interest is a quantum non-demolition (QND)-type detector, which projects an electromagnetic wave onto the photon-number basis6-10. This is in stark contrast to conventional photon detectors2 that absorb a photon to trigger a `click'. The long-sought QND detection of a flying photon was recently demonstrated in the optical domain using a single atom in a cavity11,12. However, the counterpart for microwaves has been elusive despite the recent progress in microwave quantum optics using superconducting circuits13-19. Here, we implement a deterministic entangling gate between a superconducting qubit and an itinerant microwave photon reflected by a cavity containing the qubit. Using the entanglement and the high-fidelity qubit readout, we demonstrate a QND detection of a single photon with the quantum efficiency of 0.84 and the photon survival probability of 0.87. Our scheme can serve as a building block for quantum networks connecting distant qubit modules as well as a microwave-photon-counting device for multiple-photon signals.

  7. Demonstration of Two-Atom Entanglement with Ultrafast Optical Pulses

    NASA Astrophysics Data System (ADS)

    Wong-Campos, J. D.; Moses, S. A.; Johnson, K. G.; Monroe, C.

    2017-12-01

    We demonstrate quantum entanglement of two trapped atomic ion qubits using a sequence of ultrafast laser pulses. Unlike previous demonstrations of entanglement mediated by the Coulomb interaction, this scheme does not require confinement to the Lamb-Dicke regime and can be less sensitive to ambient noise due to its speed. To elucidate the physics of an ultrafast phase gate, we generate a high entanglement rate using just ten pulses, each of ˜20 ps duration, and demonstrate an entangled Bell state with (76 ±1 )% fidelity. These results pave the way for entanglement operations within a large collection of qubits by exciting only local modes of motion.

  8. Demonstration of Two-Atom Entanglement with Ultrafast Optical Pulses.

    PubMed

    Wong-Campos, J D; Moses, S A; Johnson, K G; Monroe, C

    2017-12-08

    We demonstrate quantum entanglement of two trapped atomic ion qubits using a sequence of ultrafast laser pulses. Unlike previous demonstrations of entanglement mediated by the Coulomb interaction, this scheme does not require confinement to the Lamb-Dicke regime and can be less sensitive to ambient noise due to its speed. To elucidate the physics of an ultrafast phase gate, we generate a high entanglement rate using just ten pulses, each of ∼20  ps duration, and demonstrate an entangled Bell state with (76±1)% fidelity. These results pave the way for entanglement operations within a large collection of qubits by exciting only local modes of motion.

  9. Storing quantum information for 30 seconds in a nanoelectronic device.

    PubMed

    Muhonen, Juha T; Dehollain, Juan P; Laucht, Arne; Hudson, Fay E; Kalra, Rachpon; Sekiguchi, Takeharu; Itoh, Kohei M; Jamieson, David N; McCallum, Jeffrey C; Dzurak, Andrew S; Morello, Andrea

    2014-12-01

    The spin of an electron or a nucleus in a semiconductor naturally implements the unit of quantum information--the qubit. In addition, because semiconductors are currently used in the electronics industry, developing qubits in semiconductors would be a promising route to realize scalable quantum information devices. The solid-state environment, however, may provide deleterious interactions between the qubit and the nuclear spins of surrounding atoms, or charge and spin fluctuations arising from defects in oxides and interfaces. For materials such as silicon, enrichment of the spin-zero (28)Si isotope drastically reduces spin-bath decoherence. Experiments on bulk spin ensembles in (28)Si crystals have indeed demonstrated extraordinary coherence times. However, it remained unclear whether these would persist at the single-spin level, in gated nanostructures near amorphous interfaces. Here, we present the coherent operation of individual (31)P electron and nuclear spin qubits in a top-gated nanostructure, fabricated on an isotopically engineered (28)Si substrate. The (31)P nuclear spin sets the new benchmark coherence time (>30 s with Carr-Purcell-Meiboom-Gill (CPMG) sequence) of any single qubit in the solid state and reaches >99.99% control fidelity. The electron spin CPMG coherence time exceeds 0.5 s, and detailed noise spectroscopy indicates that--contrary to widespread belief--it is not limited by the proximity to an interface. Instead, decoherence is probably dominated by thermal and magnetic noise external to the device, and is thus amenable to further improvement.

  10. Precise single-qubit control of the reflection phase of a photon mediated by a strongly-coupled ancilla–cavity system

    NASA Astrophysics Data System (ADS)

    Motzoi, F.; Mølmer, K.

    2018-05-01

    We propose to use the interaction between a single qubit atom and a surrounding ensemble of three level atoms to control the phase of light reflected by an optical cavity. Our scheme employs an ensemble dark resonance that is perturbed by the qubit atom to yield a single-atom single photon gate. We show here that off-resonant excitation towards Rydberg states with strong dipolar interactions offers experimentally-viable regimes of operations with low errors (in the 10‑3 range) as required for fault-tolerant optical-photon, gate-based quantum computation. We also propose and analyze an implementation within microwave circuit-QED, where a strongly-coupled ancilla superconducting qubit can be used in the place of the atomic ensemble to provide high-fidelity coupling to microwave photons.

  11. Suppression of Pauli Spin Blockade in Few Hole Laterally Gated Double Quantum Dots

    NASA Astrophysics Data System (ADS)

    Gaudreau, Louis; Bogan, Alex; Studenikin, Sergei; Korkusinski, Marek; Aers, Geof; Zawadzki, Piotr; Sachrajda, Andy; Tracy, Lisa; Reno, John; Hargett, Terry; National Research Council Team; Sandia Labs Team

    Hole spins have attracted increasing attention as candidates for qubits in quantum information applications. The p-type character of their wavefunction leads to smaller hyperfine interaction with the nuclei resulting in longer coherence times. Additionally, strong spin-orbit interaction allows for enhanced all-electrical manipulation of spin qubit states. Single hole spins have been electrically studied in InSb and Si nanowire quantum dots, however, electrostatically confined hole spins in a 2D hole gas have thus far been limited to the many hole regime. In this talk we will present a full description of the two-hole spin spectrum in a lateral GaAs/AlGaAs double quantum. High-bias magneto-transport spectroscopy reveals all four states of the spectrum (singlet and triplets) in both the (1,1) and (2,0) configurations, essential for spin readout based on Pauli spin blockade. We show that spin-flip tunneling between dots is as strong as spin conserving tunneling, a consequence of the strong spin-orbit interaction. This suppresses the Pauli spin blockade. Our results suggest that alternate techniques for single hole spin qubit readout need to be explored.

  12. Superadiabatic Controlled Evolutions and Universal Quantum Computation.

    PubMed

    Santos, Alan C; Sarandy, Marcelo S

    2015-10-29

    Adiabatic state engineering is a powerful technique in quantum information and quantum control. However, its performance is limited by the adiabatic theorem of quantum mechanics. In this scenario, shortcuts to adiabaticity, such as provided by the superadiabatic theory, constitute a valuable tool to speed up the adiabatic quantum behavior. Here, we propose a superadiabatic route to implement universal quantum computation. Our method is based on the realization of piecewise controlled superadiabatic evolutions. Remarkably, they can be obtained by simple time-independent counter-diabatic Hamiltonians. In particular, we discuss the implementation of fast rotation gates and arbitrary n-qubit controlled gates, which can be used to design different sets of universal quantum gates. Concerning the energy cost of the superadiabatic implementation, we show that it is dictated by the quantum speed limit, providing an upper bound for the corresponding adiabatic counterparts.

  13. Superadiabatic Controlled Evolutions and Universal Quantum Computation

    PubMed Central

    Santos, Alan C.; Sarandy, Marcelo S.

    2015-01-01

    Adiabatic state engineering is a powerful technique in quantum information and quantum control. However, its performance is limited by the adiabatic theorem of quantum mechanics. In this scenario, shortcuts to adiabaticity, such as provided by the superadiabatic theory, constitute a valuable tool to speed up the adiabatic quantum behavior. Here, we propose a superadiabatic route to implement universal quantum computation. Our method is based on the realization of piecewise controlled superadiabatic evolutions. Remarkably, they can be obtained by simple time-independent counter-diabatic Hamiltonians. In particular, we discuss the implementation of fast rotation gates and arbitrary n-qubit controlled gates, which can be used to design different sets of universal quantum gates. Concerning the energy cost of the superadiabatic implementation, we show that it is dictated by the quantum speed limit, providing an upper bound for the corresponding adiabatic counterparts. PMID:26511064

  14. Low-control and robust quantum refrigerator and applications with electronic spins in diamond

    NASA Astrophysics Data System (ADS)

    Mohammady, M. Hamed; Choi, Hyeongrak; Trusheim, Matthew E.; Bayat, Abolfazl; Englund, Dirk; Omar, Yasser

    2018-04-01

    We propose a general protocol for low-control refrigeration and thermometry of thermal qubits, which can be implemented using electronic spins in diamond. The refrigeration is implemented by a probe, consisting of a network of interacting spins. The protocol involves two operations: (i) free evolution of the probe; and (ii) a swap gate between one spin in the probe and the thermal qubit we wish to cool. We show that if the initial state of the probe falls within a suitable range, and the free evolution of the probe is both unital and conserves the excitation in the z direction, then the cooling protocol will always succeed, with an efficiency that depends on the rate of spin dephasing and the swap-gate fidelity. Furthermore, measuring the probe after it has cooled many qubits provides an estimate of their temperature. We provide a specific example where the probe is a Heisenberg spin chain, and suggest a physical implementation using electronic spins in diamond. Here, the probe is constituted of nitrogen vacancy (NV) centers, while the thermal qubits are dark spins. By using a novel pulse sequence, a chain of NV centers can be made to evolve according to a Heisenberg Hamiltonian. This proposal allows for a range of applications, such as NV-based nuclear magnetic resonance of photosensitive molecules kept in a dark spot on a sample, and it opens up possibilities for the study of quantum thermodynamics, environment-assisted sensing, and many-body physics.

  15. Verification of hypergraph states

    NASA Astrophysics Data System (ADS)

    Morimae, Tomoyuki; Takeuchi, Yuki; Hayashi, Masahito

    2017-12-01

    Hypergraph states are generalizations of graph states where controlled-Z gates on edges are replaced with generalized controlled-Z gates on hyperedges. Hypergraph states have several advantages over graph states. For example, certain hypergraph states, such as the Union Jack states, are universal resource states for measurement-based quantum computing with only Pauli measurements, while graph state measurement-based quantum computing needs non-Clifford basis measurements. Furthermore, it is impossible to classically efficiently sample measurement results on hypergraph states unless the polynomial hierarchy collapses to the third level. Although several protocols have been proposed to verify graph states with only sequential single-qubit Pauli measurements, there was no verification method for hypergraph states. In this paper, we propose a method for verifying a certain class of hypergraph states with only sequential single-qubit Pauli measurements. Importantly, no i.i.d. property of samples is assumed in our protocol: any artificial entanglement among samples cannot fool the verifier. As applications of our protocol, we consider verified blind quantum computing with hypergraph states, and quantum computational supremacy demonstrations with hypergraph states.

  16. Superconducting quantum circuits theory and application

    NASA Astrophysics Data System (ADS)

    Deng, Xiuhao

    Superconducting quantum circuit models are widely used to understand superconducting devices. This thesis consists of four studies wherein the superconducting quantum circuit is used to illustrate challenges related to quantum information encoding and processing, quantum simulation, quantum signal detection and amplification. The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades. Scalar AB phase, defined as time integral of electric potential, gives rises to an extra phase factor in wavefunction. We proposed a superconducting quantum Faraday cage to detect temporal interference effect as a consequence of scalar AB phase. Using the superconducting quantum circuit model, the physical system is solved and resulting AB effect is predicted. Further discussion in this chapter shows that treating the experimental apparatus quantum mechanically, spatial scalar AB effect, proposed by Aharanov-Bohm, can't be observed. Either a decoherent interference apparatus is used to observe spatial scalar AB effect, or a quantum Faraday cage is used to observe temporal scalar AB effect. The second study involves protecting a quantum system from losing coherence, which is crucial to any practical quantum computation scheme. We present a theory to encode any qubit, especially superconducting qubits, into a universal quantum degeneracy point (UQDP) where low frequency noise is suppressed significantly. Numerical simulations for superconducting charge qubit using experimental parameters show that its coherence time is prolong by two orders of magnitude using our universal degeneracy point approach. With this improvement, a set of universal quantum gates can be performed at high fidelity without losing too much quantum coherence. Starting in 2004, the use of circuit QED has enabled the manipulation of superconducting qubits with photons. We applied quantum optical approach to model coupled resonators and obtained a four-wave mixing toolbox to operate photons states. The model and toolbox are engineered with a superconducting quantum circuit where two superconducting resonators are coupled via the UQDP circuit. Using fourth order perturbation theory one can realize a complete set of quantum operations between these two photon modes. This helps open a new field to treat photon modes as qubits. Additional, a three-wave mixing scheme using phase qubits permits one to engineer the coupling Hamiltonian using a phase qubit as a tunable coupler. Along with Feynman's idea using quantum to simulate quantum, superconducting quantum simulators have been studied intensively recently. Taking the advantage of mesoscopic size of superconducting circuit and local tunability, we came out the idea to simulate quantum phase transition due to disorder. Our first paper was to propose a superconducting quantum simulator of Bose-Hubbard model to do site-wise manipulation and observe Mott-insulator to superfluid phase transition. The side-band cooling of an array of superconducting resonators is solved after the paper was published. In light of the developed technology in manipulating quantum information with superconducting circuit, one can couple other quantum oscillator system to superconducting resonators in order manipulation of its quantum states or parametric amplification of weak quantum signal. A theory that works for different coupling schemes has been studied in chapter 5. This will be a platform for further research.

  17. Optimizing Teleportation Cost in Distributed Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Zomorodi-Moghadam, Mariam; Houshmand, Mahboobeh; Houshmand, Monireh

    2018-03-01

    The presented work provides a procedure for optimizing the communication cost of a distributed quantum circuit (DQC) in terms of the number of qubit teleportations. Because of technology limitations which do not allow large quantum computers to work as a single processing element, distributed quantum computation is an appropriate solution to overcome this difficulty. Previous studies have applied ad-hoc solutions to distribute a quantum system for special cases and applications. In this study, a general approach is proposed to optimize the number of teleportations for a DQC consisting of two spatially separated and long-distance quantum subsystems. To this end, different configurations of locations for executing gates whose qubits are in distinct subsystems are considered and for each of these configurations, the proposed algorithm is run to find the minimum number of required teleportations. Finally, the configuration which leads to the minimum number of teleportations is reported. The proposed method can be used as an automated procedure to find the configuration with the optimal communication cost for the DQC. This cost can be used as a basic measure of the communication cost for future works in the distributed quantum circuits.

  18. Low-Latency Digital Signal Processing for Feedback and Feedforward in Quantum Computing and Communication

    NASA Astrophysics Data System (ADS)

    Salathé, Yves; Kurpiers, Philipp; Karg, Thomas; Lang, Christian; Andersen, Christian Kraglund; Akin, Abdulkadir; Krinner, Sebastian; Eichler, Christopher; Wallraff, Andreas

    2018-03-01

    Quantum computing architectures rely on classical electronics for control and readout. Employing classical electronics in a feedback loop with the quantum system allows us to stabilize states, correct errors, and realize specific feedforward-based quantum computing and communication schemes such as deterministic quantum teleportation. These feedback and feedforward operations are required to be fast compared to the coherence time of the quantum system to minimize the probability of errors. We present a field-programmable-gate-array-based digital signal processing system capable of real-time quadrature demodulation, a determination of the qubit state, and a generation of state-dependent feedback trigger signals. The feedback trigger is generated with a latency of 110 ns with respect to the timing of the analog input signal. We characterize the performance of the system for an active qubit initialization protocol based on the dispersive readout of a superconducting qubit and discuss potential applications in feedback and feedforward algorithms.

  19. Ancilla-driven quantum computation for qudits and continuous variables

    DOE PAGES

    Proctor, Timothy; Giulian, Melissa; Korolkova, Natalia; ...

    2017-05-10

    Although qubits are the leading candidate for the basic elements in a quantum computer, there are also a range of reasons to consider using higher-dimensional qudits or quantum continuous variables (QCVs). In this paper, we use a general “quantum variable” formalism to propose a method of quantum computation in which ancillas are used to mediate gates on a well-isolated “quantum memory” register and which may be applied to the setting of qubits, qudits (for d>2), or QCVs. More specifically, we present a model in which universal quantum computation may be implemented on a register using only repeated applications of amore » single fixed two-body ancilla-register interaction gate, ancillas prepared in a single state, and local measurements of these ancillas. In order to maintain determinism in the computation, adaptive measurements via a classical feed forward of measurement outcomes are used, with the method similar to that in measurement-based quantum computation (MBQC). We show that our model has the same hybrid quantum-classical processing advantages as MBQC, including the power to implement any Clifford circuit in essentially one layer of quantum computation. In some physical settings, high-quality measurements of the ancillas may be highly challenging or not possible, and hence we also present a globally unitary model which replaces the need for measurements of the ancillas with the requirement for ancillas to be prepared in states from a fixed orthonormal basis. In conclusion, we discuss settings in which these models may be of practical interest.« less

  20. Generation of large scale GHZ states with the interactions of photons and quantum-dot spins

    NASA Astrophysics Data System (ADS)

    Miao, Chun; Fang, Shu-Dong; Dong, Ping; Yang, Ming; Cao, Zhuo-Liang

    2018-03-01

    We present a deterministic scheme for generating large scale GHZ states in a cavity-quantum dot system. A singly charged quantum dot is embedded in a double-sided optical microcavity with partially reflective top and bottom mirrors. The GHZ-type Bell spin state can be created and two n-spin GHZ states can be perfectly fused to a 2n-spin GHZ state with the help of n ancilla single-photon pulses. The implementation of the current scheme only depends on the photon detection and its need not to operate multi-qubit gates and multi-qubit measurements. Discussions about the effect of the cavity loss, side leakage and exciton cavity coupling strength for the fidelity of generated states show that the fidelity can remain high enough by controlling system parameters. So the current scheme is simple and feasible in experiment.

  1. Conditional Dispersive Readout of a CMOS Single-Electron Memory Cell

    NASA Astrophysics Data System (ADS)

    Schaal, S.; Barraud, S.; Morton, J. J. L.; Gonzalez-Zalba, M. F.

    2018-05-01

    Quantum computers require interfaces with classical electronics for efficient qubit control, measurement, and fast data processing. Fabricating the qubit and the classical control layer using the same technology is appealing because it will facilitate the integration process, improving feedback speeds and offering potential solutions to wiring and layout challenges. Integrating classical and quantum devices monolithically, using complementary metal-oxide-semiconductor (CMOS) processes, enables the processor to profit from the most mature industrial technology for the fabrication of large-scale circuits. We demonstrate a CMOS single-electron memory cell composed of a single quantum dot and a transistor that locks charge on the quantum-dot gate. The single-electron memory cell is conditionally read out by gate-based dispersive sensing using a lumped-element L C resonator. The control field-effect transistor (FET) and quantum dot are fabricated on the same chip using fully depleted silicon-on-insulator technology. We obtain a charge sensitivity of δ q =95 ×10-6e Hz-1 /2 when the quantum-dot readout is enabled by the control FET, comparable to results without the control FET. Additionally, we observe a single-electron retention time on the order of a second when storing a single-electron charge on the quantum dot at millikelvin temperatures. These results demonstrate first steps towards time-based multiplexing of gate-based dispersive readout in CMOS quantum devices opening the path for the development of an all-silicon quantum-classical processor.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omkar, S.; Srikanth, R., E-mail: srik@poornaprajna.org; Banerjee, Subhashish

    A protocol based on quantum error correction based characterization of quantum dynamics (QECCD) is developed for quantum process tomography on a two-qubit system interacting dissipatively with a vacuum bath. The method uses a 5-qubit quantum error correcting code that corrects arbitrary errors on the first two qubits, and also saturates the quantum Hamming bound. The dissipative interaction with a vacuum bath allows for both correlated and independent noise on the two-qubit system. We study the dependence of the degree of the correlation of the noise on evolution time and inter-qubit separation.

  3. Impossibility of Classically Simulating One-Clean-Qubit Model with Multiplicative Error

    NASA Astrophysics Data System (ADS)

    Fujii, Keisuke; Kobayashi, Hirotada; Morimae, Tomoyuki; Nishimura, Harumichi; Tamate, Shuhei; Tani, Seiichiro

    2018-05-01

    The one-clean-qubit model (or the deterministic quantum computation with one quantum bit model) is a restricted model of quantum computing where all but a single input qubits are maximally mixed. It is known that the probability distribution of measurement results on three output qubits of the one-clean-qubit model cannot be classically efficiently sampled within a constant multiplicative error unless the polynomial-time hierarchy collapses to the third level [T. Morimae, K. Fujii, and J. F. Fitzsimons, Phys. Rev. Lett. 112, 130502 (2014), 10.1103/PhysRevLett.112.130502]. It was open whether we can keep the no-go result while reducing the number of output qubits from three to one. Here, we solve the open problem affirmatively. We also show that the third-level collapse of the polynomial-time hierarchy can be strengthened to the second-level one. The strengthening of the collapse level from the third to the second also holds for other subuniversal models such as the instantaneous quantum polynomial model [M. Bremner, R. Jozsa, and D. J. Shepherd, Proc. R. Soc. A 467, 459 (2011), 10.1098/rspa.2010.0301] and the boson sampling model [S. Aaronson and A. Arkhipov, STOC 2011, p. 333]. We additionally study the classical simulatability of the one-clean-qubit model with further restrictions on the circuit depth or the gate types.

  4. Multi-frequency modes in superconducting resonators: Bridging frequency gaps in off-resonant couplings

    NASA Astrophysics Data System (ADS)

    Andersen, Christian Kraglund; Mølmer, Klaus

    2015-03-01

    A SQUID inserted in a superconducting waveguide resonator imposes current and voltage boundary conditions that makes it suitable as a tuning element for the resonator modes. If such a SQUID element is subject to a periodically varying magnetic flux, the resonator modes acquire frequency side bands. We calculate the multi-frequency eigenmodes and these can couple resonantly to physical systems with different transition frequencies and this makes the resonator an efficient quantum bus for state transfer and coherent quantum operations in hybrid quantum systems. As an example of the application, we determine their coupling to transmon qubits with different frequencies and we present a bi-chromatic scheme for entanglement and gate operations. In this calculation, we obtain a maximally entangled state with a fidelity F = 95 % . Our proposal is competitive with the achievements of other entanglement-gates with superconducting devices and it may offer some advantages: (i) There is no need for additional control lines and dephasing associated with the conventional frequency tuning of qubits. (ii) When our qubits are idle, they are far detuned with respect to each other and to the resonator, and hence they are immune to cross talk and Purcell-enhanced decay.

  5. Development of a Silicon Metal-Oxide-Semiconductor-Based Qubit Using Spin Exchange Interactions Alone

    DTIC Science & Technology

    2016-03-31

    Electron spin resonance and spin–valley physics in a silicon double quantum dot, Nature Communications, (05 2014): 0. doi: 10.1038/ncomms4860 Ming...new scheme to better manipulate the exchange-only qubit using a pulsed RF source [5], known as a resonant -exchange-qubit [6,7], in GaAs further...triple points into a quadruple point [10], as shown in Fig. 1. We can also gate control the tunnel coupling over a broad energy range. The

  6. Demonstrating real-time feedback that enhances the performance of measurement sequence with cat states in a cavity

    NASA Astrophysics Data System (ADS)

    Ofek, N.; Petrenko, A.; Liu, Y.; Vlastakis, B.; Sun, L.; Leghtas, Z.; Heeres, R.; Sliwa, K. M.; Mirrahimi, M.; Jiang, L.; Devoret, M. H.; Schoelkopf, R. J.

    2015-03-01

    Real-time feedback offers not just the convenience of streamlined data acquisition, but is an essential element in any quantum computational architecture that requires branching based on measurement outcomes. State-preparation, mitigating the effects of qubit decoherence, and recording the trajectories of quantum systems are just a few of the many potential applications of real-time feedback. Photon number parity measurements of cat states in superconducting resonators are a particularly useful platform for demonstrating the clear advantages of having sophisticated feedback schemes to enhance the performance a proposed error-correction protocol [Leghtas et.al. PRL 2013]. In a cQED architecture, where a transmon qubit is coupled to two superconducting cavities, we present a field-programmable gate array (FPGA) device capable of making decisions and calculations with latency times far shorter than the lifetimes of any of the system's constituents. This level of performance opens the door to realizing many complex, previously unfeasible, experiments in superconducting qubit systems.

  7. Semiconducting double-dot exchange-only qubit dynamics in the presence of magnetic and charge noises

    NASA Astrophysics Data System (ADS)

    Ferraro, E.; Fanciulli, M.; De Michielis, M.

    2018-06-01

    The effects of magnetic and charge noises on the dynamical evolution of the double-dot exchange-only qubit (DEOQ) is theoretically investigated. The DEOQ consisting of three electrons arranged in an electrostatically defined double quantum dot deserves special interest in quantum computation applications. Its advantages are in terms of fabrication, control and manipulation in view of implementation of fast single and two-qubit operations through only electrical tuning. The presence of the environmental noise due to nuclear spins and charge traps, in addition to fluctuations in the applied magnetic field and charge fluctuations on the electrostatic gates adopted to confine the electrons, is taken into account including random magnetic field and random coupling terms in the Hamiltonian. The behavior of the return probability as a function of time for initial conditions of interest is presented. Moreover, through an envelope-fitting procedure on the return probabilities, coherence times are extracted when model parameters take values achievable experimentally in semiconducting devices.

  8. Microfabricated Microwave-Integrated Surface Ion Trap

    NASA Astrophysics Data System (ADS)

    Revelle, Melissa C.; Blain, Matthew G.; Haltli, Raymond A.; Hollowell, Andrew E.; Nordquist, Christopher D.; Maunz, Peter

    2017-04-01

    Quantum information processing holds the key to solving computational problems that are intractable with classical computers. Trapped ions are a physical realization of a quantum information system in which qubits are encoded in hyperfine energy states. Coupling the qubit states to ion motion, as needed for two-qubit gates, is typically accomplished using Raman laser beams. Alternatively, this coupling can be achieved with strong microwave gradient fields. While microwave radiation is easier to control than a laser, it is challenging to precisely engineer the radiated microwave field. Taking advantage of Sandia's microfabrication techniques, we created a surface ion trap with integrated microwave electrodes with sub-wavelength dimensions. This multi-layered device permits co-location of the microwave antennae and the ion trap electrodes to create localized microwave gradient fields and necessary trapping fields. Here, we characterize the trap design and present simulated microwave performance with progress towards experimental results. This research was funded, in part, by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA).

  9. Robust quantum logic in neutral atoms via adiabatic Rydberg dressing

    DOE PAGES

    Keating, Tyler; Cook, Robert L.; Hankin, Aaron M.; ...

    2015-01-28

    We study a scheme for implementing a controlled-Z (CZ) gate between two neutral-atom qubits based on the Rydberg blockade mechanism in a manner that is robust to errors caused by atomic motion. By employing adiabatic dressing of the ground electronic state, we can protect the gate from decoherence due to random phase errors that typically arise because of atomic thermal motion. In addition, the adiabatic protocol allows for a Doppler-free configuration that involves counterpropagating lasers in a σ +/σ - orthogonal polarization geometry that further reduces motional errors due to Doppler shifts. The residual motional error is dominated by dipole-dipolemore » forces acting on doubly-excited Rydberg atoms when the blockade is imperfect. As a result, for reasonable parameters, with qubits encoded into the clock states of 133Cs, we predict that our protocol could produce a CZ gate in < 10 μs with error probability on the order of 10 -3.« less

  10. Entanglement of atomic qubits using an optical frequency comb.

    PubMed

    Hayes, D; Matsukevich, D N; Maunz, P; Hucul, D; Quraishi, Q; Olmschenk, S; Campbell, W; Mizrahi, J; Senko, C; Monroe, C

    2010-04-09

    We demonstrate the use of an optical frequency comb to coherently control and entangle atomic qubits. A train of off-resonant ultrafast laser pulses is used to efficiently and coherently transfer population between electronic and vibrational states of trapped atomic ions and implement an entangling quantum logic gate with high fidelity. This technique can be extended to the high field regime where operations can be performed faster than the trap frequency. This general approach can be applied to more complex quantum systems, such as large collections of interacting atoms or molecules.

  11. Dynamically corrected gates for singlet-triplet spin qubits with control-dependent errors

    NASA Astrophysics Data System (ADS)

    Jacobson, N. Tobias; Witzel, Wayne M.; Nielsen, Erik; Carroll, Malcolm S.

    2013-03-01

    Magnetic field inhomogeneity due to random polarization of quasi-static local magnetic impurities is a major source of environmentally induced error for singlet-triplet double quantum dot (DQD) spin qubits. Moreover, for singlet-triplet qubits this error may depend on the applied controls. This effect is significant when a static magnetic field gradient is applied to enable full qubit control. Through a configuration interaction analysis, we observe that the dependence of the field inhomogeneity-induced error on the DQD bias voltage can vary systematically as a function of the controls for certain experimentally relevant operating regimes. To account for this effect, we have developed a straightforward prescription for adapting dynamically corrected gate sequences that assume control-independent errors into sequences that compensate for systematic control-dependent errors. We show that accounting for such errors may lead to a substantial increase in gate fidelities. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Bravyi-Kitaev Superfast simulation of electronic structure on a quantum computer.

    PubMed

    Setia, Kanav; Whitfield, James D

    2018-04-28

    Present quantum computers often work with distinguishable qubits as their computational units. In order to simulate indistinguishable fermionic particles, it is first required to map the fermionic state to the state of the qubits. The Bravyi-Kitaev Superfast (BKSF) algorithm can be used to accomplish this mapping. The BKSF mapping has connections to quantum error correction and opens the door to new ways of understanding fermionic simulation in a topological context. Here, we present the first detailed exposition of the BKSF algorithm for molecular simulation. We provide the BKSF transformed qubit operators and report on our implementation of the BKSF fermion-to-qubits transform in OpenFermion. In this initial study of a hydrogen molecule we have compared BKSF, Jordan-Wigner, and Bravyi-Kitaev transforms under the Trotter approximation. The gate count to implement BKSF is lower than Jordan-Wigner but higher than Bravyi-Kitaev. We considered different orderings of the exponentiated terms and found lower Trotter errors than the previously reported for Jordan-Wigner and Bravyi-Kitaev algorithms. These results open the door to the further study of the BKSF algorithm for quantum simulation.

  13. Towards the simulation of molecular collisions with a superconducting quantum computer

    NASA Astrophysics Data System (ADS)

    Geller, Michael

    2013-05-01

    I will discuss the prospects for the use of large-scale, error-corrected quantum computers to simulate complex quantum dynamics such as molecular collisions. This will likely require millions qubits. I will also discuss an alternative approach [M. R. Geller et al., arXiv:1210.5260] that is ideally suited for today's superconducting circuits, which uses the single-excitation subspace (SES) of a system of n tunably coupled qubits. The SES method allows many operations in the unitary group SU(n) to be implemented in a single step, bypassing the need for elementary gates, thereby making large computations possible without error correction. The method enables universal quantum simulation, including simulation of the time-dependent Schrodinger equation, and we argue that a 1000-qubit SES processor should be capable of achieving quantum speedup relative to a petaflop supercomputer. We speculate on the utility and practicality of such a simulator for atomic and molecular collision physics. Work supported by the US National Science Foundation CDI program.

  14. Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators

    NASA Astrophysics Data System (ADS)

    Wei, Hai-Rui; Long, Gui Lu

    2015-03-01

    We propose two compact, economic, and scalable schemes for implementing optical controlled-phase-flip and controlled-controlled-phase-flip gates by using the input-output process of a single-sided cavity strongly coupled to a single nitrogen-vacancy-center defect in diamond. Additional photonic qubits, necessary for procedures based on the parity-check measurement or controlled-path and merging gates, are not employed in our schemes. In the controlled-path gate, the paths of the target photon are conditionally controlled by the control photon, and these two paths can be merged back into one by using a merging gate. Only one half-wave plate is employed in our scheme for the controlled-phase-flip gate. Compared with the conventional synthesis procedures for constructing a controlled-controlled-phase-flip gate, the cost of which is two controlled-path gates and two merging gates, or six controlled-not gates, our scheme is more compact and simpler. Our schemes could be performed with a high fidelity and high efficiency with current achievable experimental techniques.

  15. Accurate quantum Z rotations with less magic

    NASA Astrophysics Data System (ADS)

    Landahl, Andrew; Cesare, Chris

    2013-03-01

    We present quantum protocols for executing arbitrarily accurate π /2k rotations of a qubit about its Z axis. Unlike reduced instruction set computing (RISC) protocols which use a two-step process of synthesizing high-fidelity ``magic'' states from which T = Z (π / 4) gates can be teleported and then compiling a sequence of adaptive stabilizer operations and T gates to approximate Z (π /2k) , our complex instruction set computing (CISC) protocol distills magic states for the Z (π /2k) gates directly. Replacing this two-step process with a single step results in substantial reductions in the number of gates needed. The key to our construction is a family of shortened quantum Reed-Muller codes of length 2 k + 2 - 1 , whose distillation threshold shrinks with k but is greater than 0.85% for k <= 6 . AJL and CC were supported in part by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Rashba effect in an asymmetric quantum dot in a magnetic field

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, S.; Cahay, M.

    2002-12-01

    We derive an expression for the total spin-splitting energy in an asymmetric quantum dot with ferromagnetic contacts, subjected to a transverse electric field. Such a structure has been shown by one of us to act as a spintronic quantum gate with in-built qubit readers and writers (Phys. Rev. B61, 13813 (2000)). The ferromagnetic contacts result in a magnetic field that causes a Zeeman splitting of the electronic states in the quantum dot. We show that this Zeeman splitting can be finely tuned with a transverse electric field as a result of nonvanishing Rashba spin-orbit coupling in an asymmetric quantum dot. This feature is critical for implementing a quantum gate.

  17. Fault-tolerance thresholds for the surface code with fabrication errors

    NASA Astrophysics Data System (ADS)

    Auger, James M.; Anwar, Hussain; Gimeno-Segovia, Mercedes; Stace, Thomas M.; Browne, Dan E.

    2017-10-01

    The construction of topological error correction codes requires the ability to fabricate a lattice of physical qubits embedded on a manifold with a nontrivial topology such that the quantum information is encoded in the global degrees of freedom (i.e., the topology) of the manifold. However, the manufacturing of large-scale topological devices will undoubtedly suffer from fabrication errors—permanent faulty components such as missing physical qubits or failed entangling gates—introducing permanent defects into the topology of the lattice and hence significantly reducing the distance of the code and the quality of the encoded logical qubits. In this work we investigate how fabrication errors affect the performance of topological codes, using the surface code as the test bed. A known approach to mitigate defective lattices involves the use of primitive swap gates in a long sequence of syndrome extraction circuits. Instead, we show that in the presence of fabrication errors the syndrome can be determined using the supercheck operator approach and the outcome of the defective gauge stabilizer generators without any additional computational overhead or use of swap gates. We report numerical fault-tolerance thresholds in the presence of both qubit fabrication and gate fabrication errors using a circuit-based noise model and the minimum-weight perfect-matching decoder. Our numerical analysis is most applicable to two-dimensional chip-based technologies, but the techniques presented here can be readily extended to other topological architectures. We find that in the presence of 8 % qubit fabrication errors, the surface code can still tolerate a computational error rate of up to 0.1 % .

  18. Electrical Manipulation of Spin Qubits in Li-doped Si

    NASA Astrophysics Data System (ADS)

    Petukhov, Andre; Pendo, Luke; Handberg, Erin; Smelyanskiy, Vadim

    2011-03-01

    We propose a complete quantum computing scheme based on Li donors in Si under external biaxial stress. The qubits are encoded on the ground state Zeeman doublets and coupled via long-range spin-spin interaction mediated by acoustic phonons. This interaction is unique for Li donors in Si due to their inverted electronic structure. Our scheme takes advantage of the fact that the energy level spacing in 1 s Li-donor manifold is comparable with the magnitude of the spin-orbit interaction. As a result the Li spin qubits can be placed 100 nm apart and manipulated by a combination of external electric field and microwave field impulses. We present a specially-designed sequence of the electric field impulses which allows for a typical time of a two-qubit gate ~ ~1~ μ s and a quality factor ~10-6 . These estimates are derived from detailed microscopic calculations of the quadratic Stark effect and electron-phonon decoherence times.

  19. Optimal diabatic dynamics of Majorana-based quantum gates

    NASA Astrophysics Data System (ADS)

    Rahmani, Armin; Seradjeh, Babak; Franz, Marcel

    2017-08-01

    In topological quantum computing, unitary operations on qubits are performed by adiabatic braiding of non-Abelian quasiparticles, such as Majorana zero modes, and are protected from local environmental perturbations. In the adiabatic regime, with timescales set by the inverse gap of the system, the errors can be made arbitrarily small by performing the process more slowly. To enhance the performance of quantum information processing with Majorana zero modes, we apply the theory of optimal control to the diabatic dynamics of Majorana-based qubits. While we sacrifice complete topological protection, we impose constraints on the optimal protocol to take advantage of the nonlocal nature of topological information and increase the robustness of our gates. By using the Pontryagin's maximum principle, we show that robust equivalent gates to perfect adiabatic braiding can be implemented in finite times through optimal pulses. In our implementation, modifications to the device Hamiltonian are avoided. Focusing on thermally isolated systems, we study the effects of calibration errors and external white and 1 /f (pink) noise on Majorana-based gates. While a noise-induced antiadiabatic behavior, where a slower process creates more diabatic excitations, prohibits indefinite enhancement of the robustness of the adiabatic scheme, our fast optimal protocols exhibit remarkable stability to noise and have the potential to significantly enhance the practical performance of Majorana-based information processing.

  20. Fast ion swapping for quantum-information processing

    NASA Astrophysics Data System (ADS)

    Kaufmann, H.; Ruster, T.; Schmiegelow, C. T.; Luda, M. A.; Kaushal, V.; Schulz, J.; von Lindenfels, D.; Schmidt-Kaler, F.; Poschinger, U. G.

    2017-05-01

    We demonstrate a swap gate between laser-cooled ions in a segmented microtrap via fast physical swapping of the ion positions. This operation is used in conjunction with qubit initialization, manipulation, and readout and with other types of shuttling operations such as linear transport and crystal separation and merging. Combining these operations, we perform quantum process tomography of the swap gate, obtaining a mean process fidelity of 99.5(5)%. The swap operation is demonstrated with motional excitations below 0.05(1) quantum for all six collective modes of a two-ion crystal for a process duration of 42 μ s . Extending these techniques to three ions, we reverse the order of a three-ion crystal and reconstruct the truth table for this operation, resulting in a mean process fidelity of 99.96(13)% in the logical basis.

  1. Quantum dynamics of a two-atom-qubit system

    NASA Astrophysics Data System (ADS)

    Van Hieu, Nguyen; Bich Ha, Nguyen; Linh, Le Thi Ha

    2009-09-01

    A physical model of the quantum information exchange between two qubits is studied theoretically. The qubits are two identical two-level atoms, the physical mechanism of the quantum information exchange is the mutual dependence of the reduced density matrices of two qubits generated by their couplings with a multimode radiation field. The Lehmberg-Agarwal master equation is exactly solved. The explicit form of the mutual dependence of two reduced density matrices is established. The application to study the entanglement of two qubits is discussed.

  2. Scalable Creation of Long-Lived Multipartite Entanglement

    NASA Astrophysics Data System (ADS)

    Kaufmann, H.; Ruster, T.; Schmiegelow, C. T.; Luda, M. A.; Kaushal, V.; Schulz, J.; von Lindenfels, D.; Schmidt-Kaler, F.; Poschinger, U. G.

    2017-10-01

    We demonstrate the deterministic generation of multipartite entanglement based on scalable methods. Four qubits are encoded in 40Ca+, stored in a microstructured segmented Paul trap. These qubits are sequentially entangled by laser-driven pairwise gate operations. Between these, the qubit register is dynamically reconfigured via ion shuttling operations, where ion crystals are separated and merged, and ions are moved in and out of a fixed laser interaction zone. A sequence consisting of three pairwise entangling gates yields a four-ion Greenberger-Horne-Zeilinger state |ψ ⟩=(1 /√{2 })(|0000 ⟩+|1111 ⟩) , and full quantum state tomography reveals a state fidelity of 94.4(3)%. We analyze the decoherence of this state and employ dynamic decoupling on the spatially distributed constituents to maintain 69(5)% coherence at a storage time of 1.1 sec.

  3. Leakage and sweet spots in triple-quantum-dot spin qubits: A molecular-orbital study

    NASA Astrophysics Data System (ADS)

    Zhang, Chengxian; Yang, Xu-Chen; Wang, Xin

    2018-04-01

    A triple-quantum-dot system can be operated as either an exchange-only qubit or a resonant-exchange qubit. While it is generally believed that the decisive advantage of the resonant-exchange qubit is the suppression of charge noise because it is operated at a sweet spot, we show that the leakage is also an important factor. Through molecular-orbital-theoretic calculations, we show that when the system is operated in the exchange-only scheme, the leakage to states with double electron occupancy in quantum dots is severe when rotations around the axis 120∘ from z ̂ is performed. While this leakage can be reduced by either shrinking the dots or separating them further, the exchange interactions are also suppressed at the same time, making the gate operations unfavorably slow. When the system is operated as a resonant-exchange qubit, the leakage is three to five orders of magnitude smaller. We have also calculated the optimal detuning point which minimizes the leakage for the resonant-exchange qubit, and have found that although it does not coincide with the double sweet spot for the charge noise, they are rather close. Our results suggest that the resonant-exchange qubit has another advantage, that leakage can be greatly suppressed compared to the exchange-only qubit, and operating at the double sweet spot point should be optimal both for reducing charge noise and suppressing leakage.

  4. Simulation of n-qubit quantum systems. V. Quantum measurements

    NASA Astrophysics Data System (ADS)

    Radtke, T.; Fritzsche, S.

    2010-02-01

    The FEYNMAN program has been developed during the last years to support case studies on the dynamics and entanglement of n-qubit quantum registers. Apart from basic transformations and (gate) operations, it currently supports a good number of separability criteria and entanglement measures, quantum channels as well as the parametrizations of various frequently applied objects in quantum information theory, such as (pure and mixed) quantum states, hermitian and unitary matrices or classical probability distributions. With the present update of the FEYNMAN program, we provide a simple access to (the simulation of) quantum measurements. This includes not only the widely-applied projective measurements upon the eigenspaces of some given operator but also single-qubit measurements in various pre- and user-defined bases as well as the support for two-qubit Bell measurements. In addition, we help perform generalized and POVM measurements. Knowing the importance of measurements for many quantum information protocols, e.g., one-way computing, we hope that this update makes the FEYNMAN code an attractive and versatile tool for both, research and education. New version program summaryProgram title: FEYNMAN Catalogue identifier: ADWE_v5_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v5_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 27 210 No. of bytes in distributed program, including test data, etc.: 1 960 471 Distribution format: tar.gz Programming language: Maple 12 Computer: Any computer with Maple software installed Operating system: Any system that supports Maple; the program has been tested under Microsoft Windows XP and Linux Classification: 4.15 Catalogue identifier of previous version: ADWE_v4_0 Journal reference of previous version: Comput. Phys. Commun. 179 (2008) 647 Does the new version supersede the previous version?: Yes Nature of problem: During the last decade, the field of quantum information science has largely contributed to our understanding of quantum mechanics, and has provided also new and efficient protocols that are used on quantum entanglement. To further analyze the amount and transfer of entanglement in n-qubit quantum protocols, symbolic and numerical simulations need to be handled efficiently. Solution method: Using the computer algebra system Maple, we developed a set of procedures in order to support the definition, manipulation and analysis of n-qubit quantum registers. These procedures also help to deal with (unitary) logic gates and (nonunitary) quantum operations and measurements that act upon the quantum registers. All commands are organized in a hierarchical order and can be used interactively in order to simulate and analyze the evolution of n-qubit quantum systems, both in ideal and noisy quantum circuits. Reasons for new version: Until the present, the FEYNMAN program supported the basic data structures and operations of n-qubit quantum registers [1], a good number of separability and entanglement measures [2], quantum operations (noisy channels) [3] as well as the parametrizations of various frequently applied objects, such as (pure and mixed) quantum states, hermitian and unitary matrices or classical probability distributions [4]. With the current extension, we here add all necessary features to simulate quantum measurements, including the projective measurements in various single-qubit and the two-qubit Bell basis, and POVM measurements. Together with the previously implemented functionality, this greatly enhances the possibilities of analyzing quantum information protocols in which measurements play a central role, e.g., one-way computation. Running time: Most commands require ⩽10 seconds of processor time on a Pentium 4 processor with ⩾2 GHz RAM or newer, if they work with quantum registers with five or less qubits. Moreover, about 5-20 MB of working memory is typically needed (in addition to the memory for the Maple environment itself). However, especially when working with symbolic expressions, the requirements on the CPU time and memory critically depend on the size of the quantum registers owing to the exponential growth of the dimension of the associated Hilbert space. For example, complex (symbolic) noise models, i.e. with several Kraus operators, may result in very large expressions that dramatically slow down the evaluation of e.g. distance measures or the final-state entropy, etc. In these cases, Maple's assume facility sometimes helps to reduce the complexity of the symbolic expressions, but more often than not only a numerical evaluation is feasible. Since the various commands can be applied to quite different scenarios, no general scaling rule can be given for the CPU time or the request of memory. References:[1] T. Radtke, S. Fritzsche, Comput. Phys. Commun. 173 (2005) 91.[2] T. Radtke, S. Fritzsche, Comput. Phys. Commun. 175 (2006) 145.[3] T. Radtke, S. Fritzsche, Comput. Phys. Commun. 176 (2007) 617.[4] T. Radtke, S. Fritzsche, Comput. Phys. Commun. 179 (2008) 647.

  5. Fast Single-Shot Hold Spin Readout in Double Quantum Dots

    NASA Astrophysics Data System (ADS)

    Bogan, Alexander; Studenikin, Sergei; Korkusinski, Marek; Aers, Geof; Gaudreau, Louis; Zawadzki, Piotr; Sachrajda, Andy; Tracy, Lisa; Reno, John; Hargett, Terry

    Solid state spin qubits in quantum dots hold promise as scalable, high-density qubits in quantum information processing architectures. While much of the experimental investigation of these devices and their physics has focused on confined electron spins, hole spins in III-V semiconductors are attractive alternatives to electrons due to the reduced hyperfine coupling between the spin and the incoherent nuclear environment. In this talk, we will discuss a measurement protocol of the hole spin relaxation time T1 in a gated lateral GaAs double quantum dot tuned to the one and two-hole regimes, as well as a new technique for single-shot projective measurement of a single spin in tens of nanoseconds or less. The technique makes use of fast non-spin-conserving inter-dot transitions permitted by strong spin-orbit interactions for holes, as well as the latching of the charge state of the second quantum dot for enhanced sensitivity. This technique allows a direct measurement of the single spin relaxation time on time-scales set by physical device rather than by limitations of the measurement circuit.

  6. CALL FOR PAPERS: Optical implementation of quantum computers

    NASA Astrophysics Data System (ADS)

    Rarity, John; Weinfurter, Harald

    2004-09-01

    A topical issue of Journal of Optics B: Quantum and Semiclassical Optics will be devoted to recent advances in optical implementation of quantum computers. The topics to be covered will include, but are not limited to: bullet Linear optics quantum gates bullet Progress towards nonlinear optics quantum gates bullet Interface between optical qubits and atomic/solid state qubits bullet Novel architectures bullet Single-photon sources and detectors bullet Photonic quantum networks bullet Few-qubit applications The DEADLINE for submission of contributions is 15 January 2005 to allow the topical issue to be published in about October 2005. All contributions will be peer-reviewed in accordance with the normal refereeing procedures and standards of Journal of Optics B: Quantum and Semiclassical Optics. Submissions should preferably be in either standard LaTeX form or Microsoft Word. Advice on publishing your work in the journal may be found at www.iop.org/journals/authors/jopb. There are no page charges for publication. The corresponding author of each paper published will receive a complimentary copy of the topical issue. Contributions to the topical issue should preferably be submitted electronically at www.iop.org/journals/authors/jopb or by e-mail to jopb@iop.org. Authors unable to submit online or by e-mail may send hard copy contributions (enclosing the electronic code) to: Dr Claire Bedrock (Publisher), Journal of Optics B: Quantum and Semiclassical Optics, Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK. All contributions should be accompanied by a readme file or covering letter, quoting `JOPB Topical Issue - Optical implementation of quantum computers', giving the postal and e-mail addresses for correspondence. Any subsequent change of address should be notified to the publishing office. We look forward to receiving your contribution to this topical issue.

  7. Topics in linear optical quantum computation

    NASA Astrophysics Data System (ADS)

    Glancy, Scott Charles

    This thesis covers several topics in optical quantum computation. A quantum computer is a computational device which is able to manipulate information by performing unitary operations on some physical system whose state can be described as a vector (or mixture of vectors) in a Hilbert space. The basic unit of information, called the qubit, is considered to be a system with two orthogonal states, which are assigned logical values of 0 and 1. Photons make excellent candidates to serve as qubits. They have little interactions with the environment. Many operations can be performed using very simple linear optical devices such as beam splitters and phase shifters. Photons can easily be processed through circuit-like networks. Operations can be performed in very short times. Photons are ideally suited for the long-distance communication of quantum information. The great difficulty in constructing an optical quantum computer is that photons naturally interact weakly with one another. This thesis first gives a brief review of two early approaches to optical quantum computation. It will describe how any discrete unitary operation can be performed using a single photon and a network of beam splitters, and how the Kerr effect can be used to construct a two photon logic gate. Second, this work provides a thorough introduction to the linear optical quantum computer developed by Knill, Laflamme, and Milburn. It then presents this author's results on the reliability of this scheme when implemented using imperfect photon detectors. This author finds that quantum computers of this sort cannot be built using current technology. Third, this dissertation describes a method for constructing a linear optical quantum computer using nearly orthogonal coherent states of light as the qubits. It shows how a universal set of logic operations can be performed, including calculations of the fidelity with which these operations may be accomplished. It discusses methods for reducing and correcting errors and recovering from failed operations. Lastly it describes an analysis of the long distance transmission of the coherent state qubits and shows how transmission errors can be corrected.

  8. Gate Set Tomography on a trapped ion qubit

    NASA Astrophysics Data System (ADS)

    Nielsen, Erik; Blume-Kohout, Robin; Gamble, John; Rundinger, Kenneth; Mizrahi, Jonathan; Sterk, Johathan; Maunz, Peter

    2015-03-01

    We present enhancements to gate-set tomography (GST), which is a framework in which an entire set of quantum logic gates (including preparation and measurement) can be fully characterized without need for pre-calibrated operations. Our new method, ``extended Linear GST'' (eLGST) uses fast, reliable analysis of structured long gate sequences to deliver tomographic precision at the Heisenberg limit with GST's calibration-free framework. We demonstrate this precision on a trapped-ion qubit, and show significant (orders of magnitude) advantage over both standard process tomography and randomized benchmarking. This work was supported by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  9. Quantum Computation using Arrays of N Polar Molecules in Pendular States.

    PubMed

    Wei, Qi; Cao, Yudong; Kais, Sabre; Friedrich, Bretislav; Herschbach, Dudley

    2016-11-18

    We investigate several aspects of realizing quantum computation using entangled polar molecules in pendular states. Quantum algorithms typically start from a product state |00⋯0⟩ and we show that up to a negligible error, the ground states of polar molecule arrays can be considered as the unentangled qubit basis state |00⋯0⟩ . This state can be prepared by simply allowing the system to reach thermal equilibrium at low temperature (<1 mK). We also evaluate entanglement, characterized by concurrence of pendular state qubits in dipole arrays as governed by the external electric field, dipole-dipole coupling and number N of molecules in the array. In the parameter regime that we consider for quantum computing, we find that qubit entanglement is modest, typically no greater than 10 -4 , confirming the negligible entanglement in the ground state. We discuss methods for realizing quantum computation in the gate model, measurement-based model, instantaneous quantum polynomial time circuits and the adiabatic model using polar molecules in pendular states. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Evolution of Nanowire Transmon Qubits and Their Coherence in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Luthi, F.; Stavenga, T.; Enzing, O. W.; Bruno, A.; Dickel, C.; Langford, N. K.; Rol, M. A.; Jespersen, T. S.; Nygârd, J.; Krogstrup, P.; DiCarlo, L.

    2018-03-01

    We present an experimental study of flux- and gate-tunable nanowire transmons with state-of-the-art relaxation time allowing quantitative extraction of flux and charge noise coupling to the Josephson energy. We evidence coherence sweet spots for charge, tuned by voltage on a proximal side gate, where first order sensitivity to switching two-level systems and background 1 /f noise is minimized. Next, we investigate the evolution of a nanowire transmon in a parallel magnetic field up to 70 mT, the upper bound set by the closing of the induced gap. Several features observed in the field dependence of qubit energy relaxation and dephasing times are not fully understood. Using nanowires with a thinner, partially covering Al shell will enable operation of these circuits up to 0.5 T, a regime relevant for topological quantum computation and other applications.

  11. Matrix Results and Techniques in Quantum Information Science and Related Topics

    NASA Astrophysics Data System (ADS)

    Pelejo, Diane Christine

    In this dissertation, we present several matrix-related problems and results motivated by quantum information theory. Some background material of quantum information science will be discussed in chapter 1, while chapter 7 gives a summary of results and concluding remarks. In chapter 2, we look at 2n x 2 n unitary matrices, which describe operations on a closed n-qubit system. We define a set of simple quantum gates, called controlled single qubit gates, and their associated operational cost. We then present a recurrence scheme to decompose a general 2n x 2n unitary matrix to the product of no more than 2n-12n-1 single qubit gates with small number of controls. In chapter 3, we address the problem of finding a specific element phi among a given set of quantum channels S that will produce the optimal value of a scalar function D(rho 1,phi(rho2)), on two fixed quantum states rho 1 and rho2. Some of the functions we considered for D(·,·) are the trace distance, quantum fidelity and quantum relative entropy. We discuss the optimal solution when S is the set of unitary quantum channels, the set of mixed unitary channels, the set of unital quantum channels, and the set of all quantum channels. In chapter 4, we focus on the spectral properties of qubit-qudit bipartite states with a maximally mixed qudit subsystem. More specifically, given positive numbers a1 ≥ ... ≥ a 2n ≥ 0, we want to determine if there exist a 2n x 2n density matrix rho having eigenvalues a1,..., a2n and satisfying tr 1(rho)=1/n In. This problem is a special case of the more general quantum marginal problem. We give the minimal necessary and sufficient conditions on a1,..., a2n for n ≤ 6 and state some observations on general values of n.. In chapter 5, we discuss the numerical method of alternating projections and illustrate its usefulness in: (a) constructing a quantum channel, if it exists, such that phi(rho(1))=sigma(1),...,phi(rho (k))=sigma(k) for given rho (1),...,rho(k) ∈ Dn and sigma(1),...,sigma (k) ∈ Dm, (b) constructing a multipartite state rho having a prescribed set of reduced states rho1,..., rhor on r of its subsystems, (c) constructing a multipartite staterho having prescribed reduced states and additional properties such as having prescribed eigenvalues, prescribed rank or low von Neuman entropy; and (d) determining if a square matrix A can be written as a product of two positive semidefinite contractions. In chapter 6, we examine the shape of the Minkowski product of convex subsets K1 and K2 of C given by K1K 2 = {ab: a ∈ K1, b ∈ K2}, which has applications in the study of the product numerical range and quantum error-correction. In Karol, it was conjectured that K1K 2 is star-shaped when K1 and K2 are convex. We give counterexamples to show that this conjecture does not hold in general but we show that the set K 1K2 is star-shaped if K 1 is a line segment or a circular disk.

  12. Local Random Quantum Circuits are Approximate Polynomial-Designs

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Harrow, Aram W.; Horodecki, Michał

    2016-09-01

    We prove that local random quantum circuits acting on n qubits composed of O( t 10 n 2) many nearest neighbor two-qubit gates form an approximate unitary t-design. Previously it was unknown whether random quantum circuits were a t-design for any t > 3. The proof is based on an interplay of techniques from quantum many-body theory, representation theory, and the theory of Markov chains. In particular we employ a result of Nachtergaele for lower bounding the spectral gap of frustration-free quantum local Hamiltonians; a quasi-orthogonality property of permutation matrices; a result of Oliveira which extends to the unitary group the path-coupling method for bounding the mixing time of random walks; and a result of Bourgain and Gamburd showing that dense subgroups of the special unitary group, composed of elements with algebraic entries, are ∞-copy tensor-product expanders. We also consider pseudo-randomness properties of local random quantum circuits of small depth and prove that circuits of depth O( t 10 n) constitute a quantum t-copy tensor-product expander. The proof also rests on techniques from quantum many-body theory, in particular on the detectability lemma of Aharonov, Arad, Landau, and Vazirani. We give applications of the results to cryptography, equilibration of closed quantum dynamics, and the generation of topological order. In particular we show the following pseudo-randomness property of generic quantum circuits: Almost every circuit U of size O( n k ) on n qubits cannot be distinguished from a Haar uniform unitary by circuits of size O( n ( k-9)/11) that are given oracle access to U.

  13. Error characterization and quantum control benchmarking in liquid state NMR using quantum information processing techniques

    NASA Astrophysics Data System (ADS)

    Laforest, Martin

    Quantum information processing has been the subject of countless discoveries since the early 1990's. It is believed to be the way of the future for computation: using quantum systems permits one to perform computation exponentially faster than on a regular classical computer. Unfortunately, quantum systems that not isolated do not behave well. They tend to lose their quantum nature due to the presence of the environment. If key information is known about the noise present in the system, methods such as quantum error correction have been developed in order to reduce the errors introduced by the environment during a given quantum computation. In order to harness the quantum world and implement the theoretical ideas of quantum information processing and quantum error correction, it is imperative to understand and quantify the noise present in the quantum processor and benchmark the quality of the control over the qubits. Usual techniques to estimate the noise or the control are based on quantum process tomography (QPT), which, unfortunately, demands an exponential amount of resources. This thesis presents work towards the characterization of noisy processes in an efficient manner. The protocols are developed from a purely abstract setting with no system-dependent variables. To circumvent the exponential nature of quantum process tomography, three different efficient protocols are proposed and experimentally verified. The first protocol uses the idea of quantum error correction to extract relevant parameters about a given noise model, namely the correlation between the dephasing of two qubits. Following that is a protocol using randomization and symmetrization to extract the probability that a given number of qubits are simultaneously corrupted in a quantum memory, regardless of the specifics of the error and which qubits are affected. Finally, a last protocol, still using randomization ideas, is developed to estimate the average fidelity per computational gates for single and multi qubit systems. Even though liquid state NMR is argued to be unsuitable for scalable quantum information processing, it remains the best test-bed system to experimentally implement, verify and develop protocols aimed at increasing the control over general quantum information processors. For this reason, all the protocols described in this thesis have been implemented in liquid state NMR, which then led to further development of control and analysis techniques.

  14. Enhancing non-local correlations in the bipartite partitions of two qubit-system with non-mutual interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, A.-B.A., E-mail: abdelbastm@yahoo.com; Faculty of Science, Assiut University, Assiut; Joshi, A., E-mail: mcbamji@gmail.com

    2016-03-15

    Several quantum-mechanical correlations, notably, quantum entanglement, measurement-induced nonlocality and Bell nonlocality are studied for a two qubit-system having no mutual interaction. Analytical expressions for the measures of these quantum-mechanical correlations of different bipartite partitions of the system are obtained, for initially two entangled qubits and the two photons are in their vacuum states. It is found that the qubits-fields interaction leads to the loss and gain of the initial quantum correlations. The lost initial quantum correlations transfer from the qubits to the cavity fields. It is found that the maximal violation of Bell’s inequality is occurring when the quantum correlationsmore » of both the logarithmic negativity and measurement-induced nonlocality reach particular values. The maximal violation of Bell’s inequality occurs only for certain bipartite partitions of the system. The frequency detuning leads to quick oscillations of the quantum correlations and inhibits their transfer from the qubits to the cavity modes. It is also found that the dynamical behavior of the quantum correlation clearly depends on the qubit distribution angle.« less

  15. Optimal entangling operations between deterministic blocks of qubits encoded into single photons

    NASA Astrophysics Data System (ADS)

    Smith, Jake A.; Kaplan, Lev

    2018-01-01

    Here, we numerically simulate probabilistic elementary entangling operations between rail-encoded photons for the purpose of scalable universal quantum computation or communication. We propose grouping logical qubits into single-photon blocks wherein single-qubit rotations and the controlled-not (cnot) gate are fully deterministic and simple to implement. Interblock communication is then allowed through said probabilistic entangling operations. We find a promising trend in the increasing probability of successful interblock communication as we increase the number of optical modes operated on by our elementary entangling operations.

  16. Ultrafast, high repetition rate, ultraviolet, fiber-laser-based source: application towards Yb+ fast quantum-logic.

    PubMed

    Hussain, Mahmood Irtiza; Petrasiunas, Matthew Joseph; Bentley, Christopher D B; Taylor, Richard L; Carvalho, André R R; Hope, Joseph J; Streed, Erik W; Lobino, Mirko; Kielpinski, David

    2016-07-25

    Trapped ions are one of the most promising approaches for the realization of a universal quantum computer. Faster quantum logic gates could dramatically improve the performance of trapped-ion quantum computers, and require the development of suitable high repetition rate pulsed lasers. Here we report on a robust frequency upconverted fiber laser based source, able to deliver 2.5 ps ultraviolet (UV) pulses at a stabilized repetition rate of 300.00000 MHz with an average power of 190 mW. The laser wavelength is resonant with the strong transition in Ytterbium (Yb+) at 369.53 nm and its repetition rate can be scaled up using high harmonic mode locking. We show that our source can produce arbitrary pulse patterns using a programmable pulse pattern generator and fast modulating components. Finally, simulations demonstrate that our laser is capable of performing resonant, temperature-insensitive, two-qubit quantum logic gates on trapped Yb+ ions faster than the trap period and with fidelity above 99%.

  17. Digital-analog quantum simulation of generalized Dicke models with superconducting circuits

    NASA Astrophysics Data System (ADS)

    Lamata, Lucas

    We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi-Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits. The author wishes to acknowledge discussions with I. Arrazola, A. Mezzacapo, J. S. Pedernales, and E. Solano, and support from Ramon y Cajal Grant RYC-2012-11391, Spanish MINECO/FEDER FIS2015-69983-P, UPV/EHU UFI 11/55 and Project EHUA14/04.

  18. Distribution of hybrid entanglement and hyperentanglement with time-bin for secure quantum channel under noise via weak cross-Kerr nonlinearity.

    PubMed

    Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Yang, Hyung-Jin; Choi, Seong-Gon; Hong, Jong-Phil

    2017-08-31

    We design schemes to generate and distribute hybrid entanglement and hyperentanglement correlated with degrees of freedom (polarization and time-bin) via weak cross-Kerr nonlinearities (XKNLs) and linear optical devices (including time-bin encoders). In our scheme, the multi-photon gates (which consist of XKNLs, quantum bus [qubus] beams, and photon-number-resolving [PNR] measurement) with time-bin encoders can generate hyperentanglement or hybrid entanglement. And we can also purify the entangled state (polarization) of two photons using only linear optical devices and time-bin encoders under a noisy (bit-flip) channel. Subsequently, through local operations (using a multi-photon gate via XKNLs) and classical communications, it is possible to generate a four-qubit hybrid entangled state (polarization and time-bin). Finally, we discuss how the multi-photon gate using XKNLs, qubus beams, and PNR measurement can be reliably performed under the decoherence effect.

  19. A computational workflow for designing silicon donor qubits

    DOE PAGES

    Humble, Travis S.; Ericson, M. Nance; Jakowski, Jacek; ...

    2016-09-19

    Developing devices that can reliably and accurately demonstrate the principles of superposition and entanglement is an on-going challenge for the quantum computing community. Modeling and simulation offer attractive means of testing early device designs and establishing expectations for operational performance. However, the complex integrated material systems required by quantum device designs are not captured by any single existing computational modeling method. We examine the development and analysis of a multi-staged computational workflow that can be used to design and characterize silicon donor qubit systems with modeling and simulation. Our approach integrates quantum chemistry calculations with electrostatic field solvers to performmore » detailed simulations of a phosphorus dopant in silicon. We show how atomistic details can be synthesized into an operational model for the logical gates that define quantum computation in this particular technology. In conclusion, the resulting computational workflow realizes a design tool for silicon donor qubits that can help verify and validate current and near-term experimental devices.« less

  20. The Bravyi-Kitaev transformation for quantum computation of electronic structure

    NASA Astrophysics Data System (ADS)

    Seeley, Jacob T.; Richard, Martin J.; Love, Peter J.

    2012-12-01

    Quantum simulation is an important application of future quantum computers with applications in quantum chemistry, condensed matter, and beyond. Quantum simulation of fermionic systems presents a specific challenge. The Jordan-Wigner transformation allows for representation of a fermionic operator by O(n) qubit operations. Here, we develop an alternative method of simulating fermions with qubits, first proposed by Bravyi and Kitaev [Ann. Phys. 298, 210 (2002), 10.1006/aphy.2002.6254; e-print arXiv:quant-ph/0003137v2], that reduces the simulation cost to O(log n) qubit operations for one fermionic operation. We apply this new Bravyi-Kitaev transformation to the task of simulating quantum chemical Hamiltonians, and give a detailed example for the simplest possible case of molecular hydrogen in a minimal basis. We show that the quantum circuit for simulating a single Trotter time step of the Bravyi-Kitaev derived Hamiltonian for H2 requires fewer gate applications than the equivalent circuit derived from the Jordan-Wigner transformation. Since the scaling of the Bravyi-Kitaev method is asymptotically better than the Jordan-Wigner method, this result for molecular hydrogen in a minimal basis demonstrates the superior efficiency of the Bravyi-Kitaev method for all quantum computations of electronic structure.

  1. Mapping from multiple-control Toffoli circuits to linear nearest neighbor quantum circuits

    NASA Astrophysics Data System (ADS)

    Cheng, Xueyun; Guan, Zhijin; Ding, Weiping

    2018-07-01

    In recent years, quantum computing research has been attracting more and more attention, but few studies on the limited interaction distance between quantum bits (qubit) are deeply carried out. This paper presents a mapping method for transforming multiple-control Toffoli (MCT) circuits into linear nearest neighbor (LNN) quantum circuits instead of traditional decomposition-based methods. In order to reduce the number of inserted SWAP gates, a novel type of gate with the optimal LNN quantum realization was constructed, namely NNTS gate. The MCT gate with multiple control bits could be better cascaded by the NNTS gates, in which the arrangement of the input lines was LNN arrangement of the MCT gate. Then, the communication overhead measurement model on inserted SWAP gate count from the original arrangement to the new arrangement was put forward, and we selected one of the LNN arrangements with the minimum SWAP gate count. Moreover, the LNN arrangement-based mapping algorithm was given, and it dealt with the MCT gates in turn and mapped each MCT gate into its LNN form by inserting the minimum number of SWAP gates. Finally, some simplification rules were used, which can further reduce the final quantum cost of the LNN quantum circuit. Experiments on some benchmark MCT circuits indicate that the direct mapping algorithm results in fewer additional SWAP gates in about 50%, while the average improvement rate in quantum cost is 16.95% compared to the decomposition-based method. In addition, it has been verified that the proposed method has greater superiority for reversible circuits cascaded by MCT gates with more control bits.

  2. Two-qubit correlations via a periodic plasmonic nanostructure

    NASA Astrophysics Data System (ADS)

    Iliopoulos, Nikos; Terzis, Andreas F.; Yannopapas, Vassilios; Paspalakis, Emmanuel

    2016-02-01

    We theoretically investigate the generation of quantum correlations by using two distant qubits in free space or mediated by a plasmonic nanostructure. We report both entanglement of formation as well as quantum discord and classical correlations. We have found that for proper initial state of the two-qubit system and distance between the two qubits we can produce quantum correlations taking significant value for a relatively large time interval so that it can be useful in quantum information and computation processes.

  3. Two-qubit correlations via a periodic plasmonic nanostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iliopoulos, Nikos; Terzis, Andreas F.; Yannopapas, Vassilios

    2016-02-15

    We theoretically investigate the generation of quantum correlations by using two distant qubits in free space or mediated by a plasmonic nanostructure. We report both entanglement of formation as well as quantum discord and classical correlations. We have found that for proper initial state of the two-qubit system and distance between the two qubits we can produce quantum correlations taking significant value for a relatively large time interval so that it can be useful in quantum information and computation processes.

  4. Demonstration of Quantum Entanglement between a Single Electron Spin Confined to an InAs Quantum Dot and a Photon

    NASA Astrophysics Data System (ADS)

    Schaibley, J. R.; Burgers, A. P.; McCracken, G. A.; Duan, L.-M.; Berman, P. R.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J.

    2013-04-01

    The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot’s excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×103s-1. This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.

  5. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon.

    PubMed

    Schaibley, J R; Burgers, A P; McCracken, G A; Duan, L-M; Berman, P R; Steel, D G; Bracker, A S; Gammon, D; Sham, L J

    2013-04-19

    The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot's excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×10(3) s(-1). This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.

  6. Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm

    DOE PAGES

    Colless, J. I.; Ramasesh, V. V.; Dahlen, D.; ...

    2018-02-12

    Harnessing the full power of nascent quantum processors requires the efficient management of a limited number of quantum bits with finite coherent lifetimes. Hybrid algorithms, such as the variational quantum eigensolver (VQE), leverage classical resources to reduce the required number of quantum gates. Experimental demonstrations of VQE have resulted in calculation of Hamiltonian ground states, and a new theoretical approach based on a quantum subspace expansion (QSE) has outlined a procedure for determining excited states that are central to dynamical processes. Here, we use a superconducting-qubit-based processor to apply the QSE approach to the H 2 molecule, extracting both groundmore » and excited states without the need for auxiliary qubits or additional minimization. Further, we show that this extended protocol can mitigate the effects of incoherent errors, potentially enabling larger-scale quantum simulations without the need for complex error-correction techniques.« less

  7. Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm

    NASA Astrophysics Data System (ADS)

    Colless, J. I.; Ramasesh, V. V.; Dahlen, D.; Blok, M. S.; Kimchi-Schwartz, M. E.; McClean, J. R.; Carter, J.; de Jong, W. A.; Siddiqi, I.

    2018-02-01

    Harnessing the full power of nascent quantum processors requires the efficient management of a limited number of quantum bits with finite coherent lifetimes. Hybrid algorithms, such as the variational quantum eigensolver (VQE), leverage classical resources to reduce the required number of quantum gates. Experimental demonstrations of VQE have resulted in calculation of Hamiltonian ground states, and a new theoretical approach based on a quantum subspace expansion (QSE) has outlined a procedure for determining excited states that are central to dynamical processes. We use a superconducting-qubit-based processor to apply the QSE approach to the H2 molecule, extracting both ground and excited states without the need for auxiliary qubits or additional minimization. Further, we show that this extended protocol can mitigate the effects of incoherent errors, potentially enabling larger-scale quantum simulations without the need for complex error-correction techniques.

  8. Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colless, J. I.; Ramasesh, V. V.; Dahlen, D.

    Harnessing the full power of nascent quantum processors requires the efficient management of a limited number of quantum bits with finite coherent lifetimes. Hybrid algorithms, such as the variational quantum eigensolver (VQE), leverage classical resources to reduce the required number of quantum gates. Experimental demonstrations of VQE have resulted in calculation of Hamiltonian ground states, and a new theoretical approach based on a quantum subspace expansion (QSE) has outlined a procedure for determining excited states that are central to dynamical processes. Here, we use a superconducting-qubit-based processor to apply the QSE approach to the H 2 molecule, extracting both groundmore » and excited states without the need for auxiliary qubits or additional minimization. Further, we show that this extended protocol can mitigate the effects of incoherent errors, potentially enabling larger-scale quantum simulations without the need for complex error-correction techniques.« less

  9. Entangling distant solid-state spins via thermal phonons

    NASA Astrophysics Data System (ADS)

    Cao, Puhao; Betzholz, Ralf; Zhang, Shaoliang; Cai, Jianming

    2017-12-01

    The implementation of quantum entangling gates between qubits is essential to achieve scalable quantum computation. Here, we propose a robust scheme to realize an entangling gate for distant solid-state spins via a mechanical oscillator in its thermal equilibrium state. By appropriate Hamiltonian engineering and usage of a protected subspace, we show that the proposed scheme is able to significantly reduce the thermal effect of the mechanical oscillator on the spins. In particular, we demonstrate that a high entangling gate fidelity can be achieved even for a relatively high thermal occupation. Our scheme can thus relax the requirement for ground-state cooling of the mechanical oscillator, and may find applications in scalable quantum information processing in hybrid solid-state architectures.

  10. Heat amplification and negative differential thermal conductance in a strongly coupled nonequilibrium spin-boson system

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Chen, Xu-Min; Sun, Ke-Wei; Ren, Jie

    2018-05-01

    We investigate the nonequilibrium quantum heat transfer in a quantum thermal transistor, constructed by a triangle-coupled spin-boson system in a three-terminal setup. By exploiting the nonequilibrium noninteracting blip approximation approach combined with full counting statistics, we obtain the steady-state thermal transport, such as heat currents. We identify the giant heat amplification feature in a strong coupling regime, which results from the negative differential thermal conductance with respect to the gate temperature. Analysis shows that the strong coupling between the gate qubit and corresponding gate thermal bath plays the crucial role in exhibiting these far-from-equilibrium features. These results would have potential implications in designing efficient quantum thermal transistors in the future.

  11. Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source.

    PubMed

    Gazzano, O; Almeida, M P; Nowak, A K; Portalupi, S L; Lemaître, A; Sagnes, I; White, A G; Senellart, P

    2013-06-21

    We demonstrate the unambiguous entangling operation of a photonic quantum-logic gate driven by an ultrabright solid-state single-photon source. Indistinguishable single photons emitted by a single semiconductor quantum dot in a micropillar optical cavity are used as target and control qubits. For a source brightness of 0.56 photons per pulse, the measured truth table has an overlap with the ideal case of 68.4±0.5%, increasing to 73.0±1.6% for a source brightness of 0.17 photons per pulse. The gate is entangling: At a source brightness of 0.48, the Bell-state fidelity is above the entangling threshold of 50% and reaches 71.0±3.6% for a source brightness of 0.15.

  12. An improved quantum watermarking scheme using small-scale quantum circuits and color scrambling

    NASA Astrophysics Data System (ADS)

    Li, Panchi; Zhao, Ya; Xiao, Hong; Cao, Maojun

    2017-05-01

    In order to solve the problem of embedding the watermark into the quantum color image, in this paper, an improved scheme of using small-scale quantum circuits and color scrambling is proposed. Both color carrier image and color watermark image are represented using novel enhanced quantum representation. The image sizes for carrier and watermark are assumed to be 2^{n+1}× 2^{n+2} and 2n× 2n, respectively. At first, the color of pixels in watermark image is scrambled using the controlled rotation gates, and then, the scrambled watermark with 2^n× 2^n image size and 24-qubit gray scale is expanded to an image with 2^{n+1}× 2^{n+2} image size and 3-qubit gray scale. Finally, the expanded watermark image is embedded into the carrier image by the controlled-NOT gates. The extraction of watermark is the reverse process of embedding it into carrier image, which is achieved by applying operations in the reverse order. Simulation-based experimental results show that the proposed scheme is superior to other similar algorithms in terms of three items, visual quality, scrambling effect of watermark image, and noise resistibility.

  13. A Novel Scheme for Bidirectional and Hybrid Quantum Information Transmission via a Seven-Qubit State

    NASA Astrophysics Data System (ADS)

    Fang, Sheng-hui; Jiang, Min

    2018-02-01

    In this paper, we present a novel scheme for bidirectional and hybrid quantum information transmission via a seven-qubit state. We demonstrate that under the control of the supervisor two distant participants can simultaneously and deterministically exchange their states with each other no matter whether they know the states or not. In our scheme, Alice can teleport an arbitrary single-qubit state (two-qubit state) to Bob and Bob can prepare a known two-qubit state (single-qubit state) for Alice simultaneously via the control of the supervisor Charlie. Compared with previous studies for single bidirectional quantum teleportation or single bidirectional remote state preparation schemes, our protocol is a kind of hybrid approach for quantum information transmission. Furthermore, it achieves success with unit probability. Notably, since only pauli operations and two-qubit and single-qubit measurements are used in our schemes, it is flexible in physical experiments.

  14. Clean Quantum and Classical Communication Protocols.

    PubMed

    Buhrman, Harry; Christandl, Matthias; Perry, Christopher; Zuiddam, Jeroen

    2016-12-02

    By how much must the communication complexity of a function increase if we demand that the parties not only correctly compute the function but also return all registers (other than the one containing the answer) to their initial states at the end of the communication protocol? Protocols that achieve this are referred to as clean and the associated cost as the clean communication complexity. Here we present clean protocols for calculating the inner product of two n-bit strings, showing that (in the absence of preshared entanglement) at most n+3 qubits or n+O(sqrt[n]) bits of communication are required. The quantum protocol provides inspiration for obtaining the optimal method to implement distributed cnot gates in parallel while minimizing the amount of quantum communication. For more general functions, we show that nearly all Boolean functions require close to 2n bits of classical communication to compute and close to n qubits if the parties have access to preshared entanglement. Both of these values are maximal for their respective paradigms.

  15. Demonstration of a quantum error detection code using a square lattice of four superconducting qubits

    PubMed Central

    Córcoles, A.D.; Magesan, Easwar; Srinivasan, Srikanth J.; Cross, Andrew W.; Steffen, M.; Gambetta, Jay M.; Chow, Jerry M.

    2015-01-01

    The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code. PMID:25923200

  16. Demonstration of a quantum error detection code using a square lattice of four superconducting qubits.

    PubMed

    Córcoles, A D; Magesan, Easwar; Srinivasan, Srikanth J; Cross, Andrew W; Steffen, M; Gambetta, Jay M; Chow, Jerry M

    2015-04-29

    The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code.

  17. A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide

    PubMed Central

    Wang, S. M.; Cheng, Q. Q.; Gong, Y. X.; Xu, P.; Sun, C.; Li, L.; Li, T.; Zhu, S. N.

    2016-01-01

    Photonic quantum information processing system has been widely used in communication, metrology and lithography. The recent emphasis on the miniaturized photonic platform is thus motivated by the urgent need for realizing large-scale information processing and computing. Although the integrated quantum logic gates and quantum algorithms based on path encoding have been successfully demonstrated, the technology for handling another commonly used polarization-encoded qubits has yet to be fully developed. Here, we show the implementation of a polarization-dependent beam-splitter in the hybrid waveguide system. With precisely design, the polarization-encoded controlled-NOT gate can be implemented using only single such polarization-dependent beam-splitter with the significant size reduction of the overall device footprint to 14 × 14 μm2. The experimental demonstration of the highly integrated controlled-NOT gate sets the stage to develop large-scale quantum information processing system. Our hybrid design also establishes the new capabilities in controlling the polarization modes in integrated photonic circuits. PMID:27142992

  18. Coulomb Oscillations in a Gate-Controlled Few-Layer Graphene Quantum Dot.

    PubMed

    Song, Yipu; Xiong, Haonan; Jiang, Wentao; Zhang, Hongyi; Xue, Xiao; Ma, Cheng; Ma, Yulin; Sun, Luyan; Wang, Haiyan; Duan, Luming

    2016-10-12

    Graphene quantum dots could be an ideal host for spin qubits and thus have been extensively investigated based on graphene nanoribbons and etched nanostructures; however, edge and substrate-induced disorders severely limit device functionality. Here, we report the confinement of quantum dots in few-layer graphene with tunable barriers, defined by local strain and electrostatic gating. Transport measurements unambiguously reveal that confinement barriers are formed by inducing a band gap via the electrostatic gating together with local strain induced constriction. Numerical simulations according to the local top-gate geometry confirm the band gap opening by a perpendicular electric field. We investigate the magnetic field dependence of the energy-level spectra in these graphene quantum dots. Experimental results reveal a complex evolution of Coulomb oscillations with the magnetic field, featuring kinks at level crossings. The simulation of energy spectrum shows that the kink features and the magnetic field dependence are consistent with experimental observations, implying the hybridized nature of energy-level spectrum of these graphene quantum dots.

  19. A 14 × 14 μm(2) footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide.

    PubMed

    Wang, S M; Cheng, Q Q; Gong, Y X; Xu, P; Sun, C; Li, L; Li, T; Zhu, S N

    2016-05-04

    Photonic quantum information processing system has been widely used in communication, metrology and lithography. The recent emphasis on the miniaturized photonic platform is thus motivated by the urgent need for realizing large-scale information processing and computing. Although the integrated quantum logic gates and quantum algorithms based on path encoding have been successfully demonstrated, the technology for handling another commonly used polarization-encoded qubits has yet to be fully developed. Here, we show the implementation of a polarization-dependent beam-splitter in the hybrid waveguide system. With precisely design, the polarization-encoded controlled-NOT gate can be implemented using only single such polarization-dependent beam-splitter with the significant size reduction of the overall device footprint to 14 × 14 μm(2). The experimental demonstration of the highly integrated controlled-NOT gate sets the stage to develop large-scale quantum information processing system. Our hybrid design also establishes the new capabilities in controlling the polarization modes in integrated photonic circuits.

  20. Scalable Creation of Long-Lived Multipartite Entanglement.

    PubMed

    Kaufmann, H; Ruster, T; Schmiegelow, C T; Luda, M A; Kaushal, V; Schulz, J; von Lindenfels, D; Schmidt-Kaler, F; Poschinger, U G

    2017-10-13

    We demonstrate the deterministic generation of multipartite entanglement based on scalable methods. Four qubits are encoded in ^{40}Ca^{+}, stored in a microstructured segmented Paul trap. These qubits are sequentially entangled by laser-driven pairwise gate operations. Between these, the qubit register is dynamically reconfigured via ion shuttling operations, where ion crystals are separated and merged, and ions are moved in and out of a fixed laser interaction zone. A sequence consisting of three pairwise entangling gates yields a four-ion Greenberger-Horne-Zeilinger state |ψ⟩=(1/sqrt[2])(|0000⟩+|1111⟩), and full quantum state tomography reveals a state fidelity of 94.4(3)%. We analyze the decoherence of this state and employ dynamic decoupling on the spatially distributed constituents to maintain 69(5)% coherence at a storage time of 1.1 sec.

Top