Sample records for two-roll electrostatic separator

  1. A new two-roll electrostatic separator for recycling of metals and nonmetals from waste printed circuit board.

    PubMed

    Jiang, Wu; Jia, Li; Zhen-Ming, Xu

    2009-01-15

    The electrostatic separation is an effective method for recycling waste electrical and electronic equipment (WEEE). The efficiency of electrostatic separation processes depends on the ability of the separator. As a classical one, the roll-type corona-electrostatic separator has some advantages in recycling metals and plastics from waste printed circuit board (PCB). However, its industry application still faces some problems, such as: the further disposal of the middling products of the separation process; the balance of the production capacity and the good separation efficiency; the separation of the fine granular mixture and the stability of the separation process. A new "two-roll-type corona-electrostatic separator" was built to overcome the limitation of the classical one. The experimental data were discussed and the results showed that the outcome of the separation process was improved by using the new separator. Compared with the classical machine, the mass of conductive products increases 8.9% (groups 2 and 3) and10.2% (group 4) while the mass of the middling products decreases 45% (groups 2 and 3) and 31.7% (group 4), respectively. The production capacity of the new machine increases, and the stability of the separation process is enhanced.

  2. Electrostatic separation for recycling silver, silicon and polyethylene terephthalate from waste photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zhang, Zisheng; Sun, Bo; Yang, Jie; Wei, Yusheng; He, Shoujie

    2017-04-01

    Electrostatic separation technology has been proven to be an effective and environmentally friendly way of recycling electronic waste. In this study, this technology was applied to recycle waste solar panels. Mixed particles of silver and polyethylene terephthalate, silicon and polyethylene terephthalate, and silver and silicon were separated with a single-roll-type electrostatic separator. The influence of high voltage level, roll speed, radial position corona electrode and angular position of the corona electrode on the separation efficiency was studied. The experimental data showed that separation of silver/polyethylene terephthalate and silicon/polyethylene terephthalate needed a higher voltage level, while separation of silver and silicon needed a smaller angular position for the corona electrode and a higher roll speed. The change of the high voltage level, roll speed, radial position of the corona electrode, and angular position of the corona electrode has more influence on silicon separation efficiency than silver separation efficiency. An integrated process is proposed using a two-roll-type corona separator for multistage separation of a mixture of these three materials. The separation efficiency for silver and silicon were found to reach 96% and 98%, respectively.

  3. Electrostatic separation for recovering metals and nonmetals from waste printed circuit board: problems and improvements.

    PubMed

    Wu, Jiang; Li, Jia; Xu, Zhenming

    2008-07-15

    Electrostatic separation is an effective and environmentally friendly method for recycling comminuted waste printed circuit boards (PCB). As a classical separator, the roll-type corona-electrostatic separator (RTS) has some advantages in this field. However, there are still some notable problems, such as the middling products and their further treatment, impurity of nonconductive products because of the aggregation of fine particles, and stability of the separation process and balance between the production capacity and the separation quality. To overcome these problems, a conception of two-step separation is presented, and a new two-roll type corona-electrostatic separator (T-RTS) was built As compared to RTS, the conductive products increase by 8.9%, the middling products decrease by 45%, and the production capacity increases by 50% in treating comminuted PCB wastes by T-RTS. In addition, the separation process in T-RTS is more stable. Therefore, T-RTS is a promising separator for recycling comminuted PCB.

  4. An improved model for computing the trajectories of conductive particles in roll-type electrostatic separator for recycling metals from WEEE.

    PubMed

    Wu, Jiang; Li, Jia; Xu, Zhenming

    2009-08-15

    Electrostatic separation presents an effective and environmentally friendly way for recycling metals and nonmetals from ground waste electrical and electronic equipment (WEEE). For this process, the trajectory of conductive particle is significant and some models have been established. However, the results of previous researches are limited by some simplifying assumptions and lead to a notable discrepancy between the model prediction and the experimental results. In the present research, a roll-type corona-electrostatic separator and ground printed circuit board (PCB) wastes were used to investigate the trajectory of the conductive particle. Two factors, the air drag force and the different charging situation, were introduced into the improved model. Their effects were analyzed and an improved model for the theoretical trajectory of conductive particle was established. Compared with the previous one, the improved model shows a good agreement with the experimental results. It provides a positive guidance for designing of separator and makes a progress for recycling the metals and nonmetals from WEEE.

  5. Electrostatic separation for recycling conductors, semiconductors, and nonconductors from electronic waste.

    PubMed

    Xue, Mianqiang; Yan, Guoqing; Li, Jia; Xu, Zhenming

    2012-10-02

    Electrostatic separation has been widely used to separate conductors and nonconductors for recycling e-waste. However, the components of e-waste are complex, which can be classified as conductors, semiconductors, and nonconductors according to their conducting properties. In this work, we made a novel attempt to recover the mixtures containing conductors (copper), semiconductors (extrinsic silicon), and nonconductors (woven glass reinforced resin) by electrostatic separation. The results of binary mixtures separation show that the separation of conductor and nonconductor, semiconductor and nonconductor need a higher voltage level while the separation of conductor and semiconductor needs a higher roll speed. Furthermore, the semiconductor separation efficiency is more sensitive to the high voltage level and the roll speed than the conductor separation efficiency. An integrated process was proposed for the multiple mixtures separation. The separation efficiency of conductors and semiconductors can reach 82.5% and 88%, respectively. This study contributes to the efficient recycling of valuable resources from e-waste.

  6. Effective solutions for monitoring the electrostatic separation of metal and plastic granular waste from electric and electronic equipment.

    PubMed

    Senouci, Khouira; Medles, Karim; Dascalescu, Lucian

    2013-02-01

    The variability of the quantity and purity of the recovered materials is a serious drawback for the application of electrostatic separation technologies to the recycling of granular wastes. In a series of previous articles we have pointed out how capability and classic control chart concepts could be employed for better mastering the outcome of such processes. In the present work, the multiple exponentially weighted moving average (MEWMA) control chart is introduced and shown to be more effective than the Hotelling T2 chart for monitoring slow varying changes in the electrostatic separation of granular mixtures originating from electric and electronic equipment waste. The operation of the industrial process was simulated by using a laboratory roll-type electrostatic separator and granular samples resulting from shredded electric cable wastes. The 25 tests carried out during the observation phase enabled the calculation of the upper and lower control limits for the two control charts considered in the present study. The 11 additional tests that simulated the monitoring phase pointed out that the MEWMA chart is more effective than Hotelling's T(2) chart in detecting slow varying changes in the outcome of a process. As the reverse is true in the case of abrupt alterations of monitored process performances, simultaneous usage of the two control charts is strongly recommended. While this study focused on a specific electrostatic separation process, using the MEWMA chart together with the well known Hotelling's T(2) chart should be applicable to the statistical control of other complex processes in the field of waste processing.

  7. Linear electrostatic micromotors for nano- and micro-positioning

    NASA Astrophysics Data System (ADS)

    Baginsky, I. L.; Kostsov, Edvard G.

    2004-05-01

    The functioning of the linear step electrostatic film micromotors with the short controlling pulse (less then 100-200 ´s) is studied to create nano- and micro-positioners. The theoretical study of the step movement of the given mass in this time frame is carried out. The results of the experimental studies of the multipetal reciprocal micromotors created on the basis of La modified Ba0.5Sr0.5Nb2O6 ferroelectric films with 1-3 μm thickness are shown. The petals were made of beryllium bronze. It is shown that the electrostatic rolling can last less than 50 μs, and the process of separating two surfaces (the metal and the ferroelectric) can last less than 1 μs. These parameters allow one to operate the micromotor at 1-10 kHz frequency, and the propulsion force in the beginning (the first 20-100 μs) of the electrostatic rolling can be as high as 1-10 N per 1 mm2 of the rolling surface with the voltage pulse amplitude of 40-50 V. The possibility of obtaining moving plate (MP) step in the nanometer range is studied, as well as the precision of these steps during the continuous MP movement with the different clock frequencies and durations of the voltage pulses. The recommendations are given to improve the accuracy and the speed of the positioning in the nano- and micro-movement range. Possible fields of micromotor application are micromechanics, including precision micromechanics, microelectronics, microrobots, microoptics, microscanners, micropumps (e.g. in the jet printers), micro flying vehicles etc.

  8. Critical rotational speed model of the rotating roll electrode in corona electrostatic separation for recycling waste printed circuit boards.

    PubMed

    Li, Jia; Lu, Hongzhou; Xu, Zhenming; Zhou, Yaohe

    2008-06-15

    Waste printed circuit board (PCB) is increasing worldwide. The corona electrostatic separation (CES) was an effective and environmental protection way to recycle resource from waste PCBs. The aim of this paper is to analyze the main factor (rotational speed) that affects the efficiency of CES from the point of view of electrostatics and mechanics. A quantitative method for analyzing the affection of rotational speed was studied and the model for separating flat nonmetal particles in waste PCBs was established. The conception of "charging critical rotational speed" and "detaching critical rotational speed" were presented. Experiments with the waste PCBs verified the theoretical model, and the experimental results were in good agreement with the theoretical model. The results indicated that the purity and recycle percentage of materials got a good level when the rotational speed was about 70 rpm and the critical rotational speed of small particles was higher than big particles. The model can guide the definition of operator parameter and the design of CES, which are needed for the development of any new application of the electrostatic separation method.

  9. Theoretic model and computer simulation of separating mixture metal particles from waste printed circuit board by electrostatic separator.

    PubMed

    Li, Jia; Xu, Zhenming; Zhou, Yaohe

    2008-05-30

    Traditionally, the mixture metals from waste printed circuit board (PCB) were sent to the smelt factory to refine pure copper. Some valuable metals (aluminum, zinc and tin) with low content in PCB were lost during smelt. A new method which used roll-type electrostatic separator (RES) to recovery low content metals in waste PCB was presented in this study. The theoretic model which was established from computing electric field and the analysis of forces on the particles was used to write a program by MATLAB language. The program was design to simulate the process of separating mixture metal particles. Electrical, material and mechanical factors were analyzed to optimize the operating parameters of separator. The experiment results of separating copper and aluminum particles by RES had a good agreement with computer simulation results. The model could be used to simulate separating other metal (tin, zinc, etc.) particles during the process of recycling waste PCBs by RES.

  10. Optimizing the operating parameters of corona electrostatic separation for recycling waste scraped printed circuit boards by computer simulation of electric field.

    PubMed

    Li, Jia; Lu, Hongzhou; Liu, Shushu; Xu, Zhenming

    2008-05-01

    The printed circuit board (PCB) has a metal content of nearly 28% metal, including an abundance of nonferrous metals such as copper, lead, and tin. The purity of precious metals in PCBs is more than 10 times that of rich-content minerals. Therefore, the recycling of PCBs is an important subject, not only from the viewpoint of waste treatment, but also with respect to the recovery of valuable materials. Compared with traditional process the corona electrostatic separation (CES) had no waste water or gas during the process and it had high productivity with a low-energy cost. In this paper, the roll-type corona electrostatic separator was used to separate metals and nonmetals from scraped waste PCBs. The software MATLAB was used to simulate the distribution of electric field in separating space. It was found that, the variations of parameters of electrodes and applied voltages directly influenced the distribution of electric field. Through the correlation of simulated and experimental results, the good separation results were got under the optimized operating parameter: U=20-30 kV, L=L(1)=L(2)=0.21 m, R(1)=0.114, R(2)=0.019 m, theta(1)=20 degrees and theta(2)=60 degrees .

  11. The insulation of copper wire by the electrostatic coating process

    NASA Astrophysics Data System (ADS)

    Wells, M. G. H.

    1983-06-01

    A review of the fluidized bed electrostatic coating process and materials available for application to flat copper conductor has been made. Lengths of wire were rolled and electrostatically coated with two epoxy insulations. Electrical tests were made in air on coated samples at room and elevated temperatures. Compatibility tests in the cooling/lubricating turbine oil at temperatures up to 220 deg. C were also made. Recommendations for additional work are provided.

  12. High-energy capacitance electrostatic micromotors

    NASA Astrophysics Data System (ADS)

    Baginsky, I. L.; Kostsov, E. G.

    2003-03-01

    The design and parameters of a new electrostatic micromotor with high energy output are described. The motor is created by means of microelectronic technology. Its operation is based on the electromechanic energy conversion during the electrostatic rolling of the metallic films (petals) on the ferroelectric film surface. The mathematical simulation of the main characteristics of the rolling process is carried out. The experimentally measured parameters of the petal step micromotors are shown. The motor operation and its efficiency are investigated.

  13. Electron Debye scale Kelvin-Helmholtz instability: Electrostatic particle-in-cell simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Yun; Lee, Ensang, E-mail: eslee@khu.ac.kr; Kim, Khan-Hyuk

    2015-12-15

    In this paper, we investigated the electron Debye scale Kelvin-Helmholtz (KH) instability using two-dimensional electrostatic particle-in-cell simulations. We introduced a velocity shear layer with a thickness comparable to the electron Debye length and examined the generation of the KH instability. The KH instability occurs in a similar manner as observed in the KH instabilities in fluid or ion scales producing surface waves and rolled-up vortices. The strength and growth rate of the electron Debye scale KH instability is affected by the structure of the velocity shear layer. The strength depends on the magnitude of the velocity and the growth ratemore » on the velocity gradient of the shear layer. However, the development of the electron Debye scale KH instability is mainly determined by the electric field generated by charge separation. Significant mixing of electrons occurs across the shear layer, and a fraction of electrons can penetrate deeply into the opposite side fairly far from the vortices across the shear layer.« less

  14. Electrostatic micromotor based on ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Baginsky, I. L.; Kostsov, E. G.

    2004-11-01

    A new electrostatic micromotor is described that utilizes the electromechanical energy conversion principle earlier described by the authors. The electromechanical energy conversion is based on reversible electrostatic rolling of thin metallic films (petals) on a ferroelectric surface. The motor's active media are layers of ferroelectric ceramics (about 100 µm in thickness). The characteristics of the electrostatic rolling of the petals on different ceramic surfaces are studied, as well as the dynamic characteristics of the micromotors. It is shown that the use of antiferroelectric material allows one to reach a specific energy capacitance comparable to that of the micromotors based on ferroelectric films and to achieve a specific power of 30-300 µW mm-2.

  15. Rolling Process Modeling Report: Finite-Element Prediction of Roll Separating Force and Rolling Defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soulami, Ayoub; Lavender, Curt A.; Paxton, Dean M.

    2014-04-23

    Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum (U-10Mo) alloy plate-type fuel for the U.S. high-performance research reactors. This work supports the Convert Program of the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) Global Threat Reduction Initiative. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll separating forces and rolling defects. Simulations were performed using a finite-element model developed using the commercial code LS-Dyna. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel have been conducted following two different schedules. Model predictions ofmore » the roll-separation force and roll-pack thicknesses at different stages of the rolling process were compared with experimental measurements. This report discusses various attributes of the rolled coupons revealed by the model (e.g., dog-boning and thickness non-uniformity).« less

  16. Characterizing the Performance of the Wheel Electrostatic Spectrometer

    NASA Technical Reports Server (NTRS)

    Johansen, Michael R.; Mackey, P. J.; Holbert, E.; Calle, C. I.; Clements, J. S.

    2013-01-01

    Insulators need to be discharged after each wheel revolution. Sensor responses repeatable within one standard deviation in the noise of the signal. Insulators may not need to be cleaned after each revolution. Parent Technology- Mars Environmental Compatibility Assessment/Electrometer Electrostatic sensors with dissimilar cover insulators Protruding insulators tribocharge against regolith simulant Developed for use on the scoop for the 2001 Mars Odyssey lander Wheel Electrostatic Spectrometer Embedded electrostatic sensors in prototype Martian rover wheel If successful, this technology will enable constant electrostatic testing on Mars Air ionizing fan used to neutralize the surface charge on cover insulators . WES rolled on JSClA lunar simulant Control experiment -Static elimination not conducted between trials -Capacitor discharged after each experiment Charge neutralization experiment -Static elimination conducted between trials -Capacitor discharged after each experiment. Air ionizing fan used on insulators after each wheel revolution Capacitor discharged after each trial Care was taken to roll WES with same speed/pressure Error bars represent one standard deviation in the noise of e ach sensor

  17. Machined electrostatic sector for mass spectrometer

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P. (Inventor)

    2001-01-01

    An electrostatic sector device for a mass spectrometer is formed from a single piece of machinable ceramic. The machined ceramic is coated with a nickel coating, and a notch is etched in the nickel coating to form two separated portions. The sector can be covered by a cover formed from a separate piece of machined ceramic.

  18. Grain-grain interaction in stationary dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lampe, Martin; Joyce, Glenn

    We present a particle-in-cell simulation study of the steady-state interaction between two stationary dust grains in uniform stationary plasma. Both the electrostatic force and the shadowing force on the grains are calculated explicitly. The electrostatic force is always repulsive. For two grains of the same size, the electrostatic force is very nearly equal to the shielded electric field due to a single isolated grain, acting on the charge of the other grain. For two grains of unequal size, the electrostatic force on the smaller grain is smaller than the isolated-grain field, and the force on the larger grain is largermore » than the isolated-grain field. In all cases, the attractive shadowing force exceeds the repulsive electrostatic force when the grain separation d is greater than an equilibrium separation d{sub 0}. d{sub 0} is found to be between 6λ{sub D} and 9λ{sub D} in all cases. The binding energy is estimated to be between 19 eV and 900 eV for various cases.« less

  19. Factors that influence the efficiency of a fluidized-bed-type tribo-electrostatic separator for mixed granular plastics

    NASA Astrophysics Data System (ADS)

    Dascalescu, L.; Fati, O.; Bilici, M.; Rahou, F.; Dragan, C.; Samuila, A.; Iuga, A.

    2011-06-01

    Fluidized bed devices have already been used as tribochargers for various industrial electrostatic separation processes. In the present paper, the authors investigate the behaviour of polyamide - polycarbonate granular plastic mixtures in a parallelepiped bed, the height of which is roughly 2 times its length or width, so that the collisions between granules become the prevailing tribocharging mechanism. Two of the opposite walls of the tribocharging chamber consist of metallic plates connected to two DC high-voltage supplies of opposite polarities, so that the charged particles are attracted to the electrodes and separated while still in the fluidized state. The collecting hoppers are designed as Faraday cups connected to two electrometers, thus allowing the instantaneous measurement of the charge carried by the separated particles. Experimental design methodology was employed for the optimization of the tribo-aero-electrostatic separation process, the input variables being the high-voltage applied to the electrodes and the duration of the tribocharging. Higher voltages applied to the electrode system do not necessarily lead to larger quantities of collected products but improve the purity of the concentrates. The composition of the mixture influences the outcome of the process.

  20. Optimization of metals and plastics recovery from electric cable wastes using a plate-type electrostatic separator.

    PubMed

    Richard, Gontran; Touhami, Seddik; Zeghloul, Thami; Dascalescu, Lucien

    2017-02-01

    Plate-type electrostatic separators are commonly employed for the selective sorting of conductive and non-conductive granular materials. The aim of this work is to identify the optimal operating conditions of such equipment, when employed for separating copper and plastics from either flexible or rigid electric wire wastes. The experiments are performed according to the response surface methodology, on samples composed of either "calibrated" particles, obtained by manually cutting of electric wires at a predefined length (4mm), or actual machine-grinded scraps, characterized by a relatively-wide size distribution (1-4mm). The results point out the effect of particle size and shape on the effectiveness of the electrostatic separation. Different optimal operating conditions are found for flexible and rigid wires. A separate processing of the two classes of wire wastes is recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Strip casting with fluxing agent applied to casting roll

    DOEpatents

    Williams, R.S.; O`Malley, R.J.; Sussman, R.C.

    1997-07-29

    A strip caster for producing a continuous strip includes a tundish for containing a melt, a pair of horizontally disposed water cooled casting rolls and devices for electrostatically coating the outer peripheral chill surfaces of the casting rolls with a powder flux material. The casting rolls are juxtaposed relative to one another for forming a pouting basin for receiving the melt through a teeming tube thereby establishing a meniscus between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line to a sealing chamber. A preferred flux is boron oxide having a melting point of about 550 C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll. 3 figs.

  2. Mirror mount

    DOEpatents

    Humpal, H.H.

    1987-11-10

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors. 5 figs.

  3. Mirror mount

    DOEpatents

    Humpal, H.H.

    1986-03-21

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors.

  4. Strip casting with fluxing agent applied to casting roll

    DOEpatents

    Williams, Robert S.; O'Malley, Ronald J.; Sussman, Richard C.

    1997-01-01

    A strip caster (10) for producing a continuous strip (24) includes a tundish (12) for containing a melt (14), a pair of horizontally disposed water cooled casting rolls (22) and devices (29) for electrostatically coating the outer peripheral chill surfaces (44) of the casting rolls with a powder flux material (56). The casting rolls are juxtaposed relative to one another for forming a pouting basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). A preferred flux is boron oxide having a melting point of about 550.degree. C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll.

  5. Separability of electrostatic and hydrodynamic forces in particle electrophoresis

    NASA Astrophysics Data System (ADS)

    Todd, Brian A.; Cohen, Joel A.

    2011-09-01

    By use of optical tweezers we explicitly measure the electrostatic and hydrodynamic forces that determine the electrophoretic mobility of a charged colloidal particle. We test the ansatz of O'Brien and White [J. Chem. Soc. Faraday IIJCFTBS0300-923810.1039/f29787401607 74, 1607 (1978)] that the electrostatically and hydrodynamically coupled electrophoresis problem is separable into two simpler problems: (1) a particle held fixed in an applied electric field with no flow field and (2) a particle held fixed in a flow field with no applied electric field. For a system in the Helmholtz-Smoluchowski and Debye-Hückel regimes, we find that the electrostatic and hydrodynamic forces measured independently accurately predict the electrophoretic mobility within our measurement precision of 7%; the O'Brien and White ansatz holds under the conditions of our experiment.

  6. A small-gap electrostatic micro-actuator for large deflections

    PubMed Central

    Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam

    2015-01-01

    Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance. PMID:26655557

  7. Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.

    This study used a finite element code, LSDYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated:  hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling.

  8. Histidine in Continuum Electrostatics Protonation State Calculations

    PubMed Central

    Couch, Vernon; Stuchebruckhov, Alexei

    2014-01-01

    A modification to the standard continuum electrostatics approach to calculate protein pKas which allows for the decoupling of histidine tautomers within a two state model is presented. Histidine with four intrinsically coupled protonation states cannot be easily incorporated into a two state formalism because the interaction between the two protonatable sites of the imidazole ring is not purely electrostatic. The presented treatment, based on a single approximation of the interrelation between histidine’s charge states, allows for a natural separation of the two protonatable sites associated with the imidazole ring as well as the inclusion of all protonation states within the calculation. PMID:22072521

  9. Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys

    NASA Astrophysics Data System (ADS)

    Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean

    2017-10-01

    A major goal of the Convert Program of the U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) is to enable high-performance research reactors to operate with low-enriched uranium rather than the high-enriched uranium currently used. To this end, uranium alloyed with 10 wt% molybdenum (U-10Mo) represents an ideal candidate because of its stable gamma phase, low neutron caption cross section, acceptable swelling response, and predictable irradiation behavior. However, because of the complexities of the fuel design and the need for rolled monolithic U-10Mo foils, new developments in processing and fabrication are necessary. This study used a finite-element code, LS-DYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog-boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated: hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling. Simulation results demonstrated that reducing the mismatch in strength between the coupon and can material improves the quality of the rolled sheet. Bare-rolling simulation results showed a defect-free rolled coupon. The finite-element model developed and presented in this study can be used to conduct parametric studies of several process parameters (e.g., rolling speed, roll diameter, can material, and reduction).

  10. Recycle technology for recovering resources and products from waste printed circuit boards.

    PubMed

    Li, Jia; Lu, Hongzhou; Guo, Jie; Xu, Zhenming; Zhou, Yaohe

    2007-03-15

    The printed circuit board (PCB) contains nearly 28% metals that are abundant non-ferrous metals such as Cu, Al, Sn, etc. The purity of precious metals in PCBs is more than 10 times higher than that of rich-content minerals. Therefore, recycling of PCBs is an important subject not only from the treatment of waste but also from the recovery of valuable materials. Chemical and mechanical methods are two traditional recycling processes for waste PCBs. However, the prospect of chemical methods will be limited since the emission of toxic liquid or gas brings secondary pollution to the environment during the process. Mechanical processes, such as shape separation, jigging, density-based separation, and electrostatic separation have been widely utilized in the recycling industry. But, recycling of waste PCBs is only beginning. In this study, a total of 400 kg of waste PCBs was processed by a recycle technology without negative impact to the environment. The technology contained mechanical two-step crushing, corona electrostatic separating, and recovery. The results indicated that (i) two-step crushing was an effect process to strip metals from base plates completely; (ii) the size of particles between 0.6 and 1.2 mm was suitable for corona electrostatic separating during industrial application; and (iii) the nonmetal of waste PCBs attained 80% weight of a kind of nonmetallic plate that expanded the applying prospect of waste nonmetallic materials.

  11. Electrostatic orientation of the electron-transfer complex between plastocyanin and cytochrome c.

    PubMed

    Roberts, V A; Freeman, H C; Olson, A J; Tainer, J A; Getzoff, E D

    1991-07-15

    To understand the specificity and efficiency of protein-protein interactions promoting electron transfer, we evaluated the role of electrostatic forces in precollision orientation by the development of two new methods, computer graphics alignment of protein electrostatic fields and a systematic orientational search of intermolecular electrostatic energies for two proteins at present separation distances. We applied these methods to the plastocyanin/cytochrome c interaction, which is faster than random collision, but too slow for study by molecular dynamics techniques. Significant electrostatic potentials were concentrated on one-fourth (969 A2) of the plastocyanin surface, with the greatest negative potential centered on the Tyr-83 hydroxyl within the acidic patch, and on one-eighth (632 A2) of the cytochrome c surface, with the greatest positive potential centered near the exposed heme edge. Coherent electrostatic fields occurred only over these regions, suggesting that local, rather than global, charge complementarity controls productive recognition. The three energetically favored families of pre-collision orientations all directed the positive region surrounding the heme edge of cytochrome c toward the acidic patch of plastocyanin but differed in heme plane orientation. Analysis of electrostatic fields, electrostatic energies of precollision orientations with 12 and 6 A separation distances, and surface topographies suggested that the favored orientations should converge to productive complexes promoting a single electron-transfer pathway from the cytochrome c heme edge to Tyr-83 of plastocyanin. Direct interactions of the exposed Cu ligand in plastocyanin with the cytochrome c heme edge are not unfavorable sterically or electrostatically but should occur no faster than randomly, indicating that this is not the primary pathway for electron transfer.

  12. Coupled thermal-fluid-mechanics analysis of twin roll casting of A7075 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Lee, Yun-Soo; Kim, Hyoung-Wook; Cho, Jae-Hyung; Chun, Se-Hwan

    2017-09-01

    Better understanding of temperature distribution and roll separation force during twin roll casting of aluminum alloys is critical to successfully fabricate good quality of aluminum strips. Therefore, the simulation techniques are widely applied to understand the twin roll casting process in a comprehensive way and to reduce the experimental time and cost of trial and error. However, most of the conventional approaches are considered thermally coupled flow, or thermally coupled mechanical behaviors. In this study, a fully coupled thermal-fluid-mechanical analysis of twin roll casting of A7075 aluminum strips was carried out using the finite element method. Temperature profile, liquid fraction and metal flow of aluminum strips with different thickness were predicted. Roll separation force and roll temperatures were experimentally obtained from a pilot-scale twin roll caster, and those results were compared with model predictions. Coupling the fluid of the liquid melt to the thermal and mechanical modeling reasonably predicted roll temperature distribution and roll separation force during twin roll casting.

  13. Liberation characteristic and physical separation of printed circuit board (PCB).

    PubMed

    Guo, Chao; Wang, Hui; Liang, Wei; Fu, Jiangang; Yi, Xin

    2011-01-01

    Recycling of printed circuit board (PCB) is an important subject and to which increasing attention is paid, both in treatment of waste as well as recovery of valuable material terms. Precede physical and mechanical method, a good liberation is the premise to further separation. In this study, two-step crushing process is employed, and standard sieve is applied to screen crushed material to different size fractions, moreover, the liberation situation and particles shape in different size are observed. Then metal of the PCB is separated by physical methods, including pneumatic separation, electrostatic separation and magnetic separation, and major metal contents are characterized by inductively coupled plasma emission spectrometry (ICP-AES). Results show that the metal and nonmetal particles of PCB are dissociated completely under the crush size 0.6mm; metal is mainly enriched in the four size fractions between 0.15 and 1.25 mm; relatively, pneumatic separation is suitable for 0.6-0.9 mm size fraction, while the electrostatic separation is suitable for three size fractions that are 0.15-0.3mm, 0.3-0.6mm and 0.9-1.25 mm. The whole process that involves crushing, electrostatic and magnetic separation has formed a closed cycle that can return material and provide salable product. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  14. Mirror mount

    DOEpatents

    Humpal, Harold H.

    1987-01-01

    A mirror mount (10) is provided that allows free pitch, yaw and roll motion of the mirror (28) while keeping the location of a point (56) on the surface of the mirror (28) fixed in the rest frame of reference of the mount (10). Yaw movement is provided by two yaw cylinders (30,32) that are bearing (52) mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell (42) that is air bearing (72,74) mounted to move between a clamp (60) and an upper pedestal bearing (44). The centers of curvature of the spherical surfaces of the shell (42) lie upon the point (56). Pitch motion and roll motion are separately and independently imparted to mirror (28) by a pair of pitch paddles (34) and a pair of roll paddles (36) that are independently and separately moved by control rods (76,80) driven by motors (78,82).

  15. A multiple-orbit time-of-flight mass spectrometer based on a low energy electrostatic storage ring

    NASA Astrophysics Data System (ADS)

    Sullivan, M. R.; Spanjers, T. L.; Thorn, P. A.; Reddish, T. J.; Hammond, P.

    2012-11-01

    The results are presented for an electrostatic storage ring, consisting of two hemispherical deflector analyzers (HDA) connected by two separate sets of cylindrical lenses, used as a time-of-flight mass spectrometer. Based on the results of charged particle simulations and formal matrix model, the Ion Storage Ring is capable of operating with multiple stable orbits, for both single and multiply charged ions simultaneously.

  16. Study of talcum charging status in parallel plate electrostatic separator based on particle trajectory analysis

    NASA Astrophysics Data System (ADS)

    Yunxiao, CAO; Zhiqiang, WANG; Jinjun, WANG; Guofeng, LI

    2018-05-01

    Electrostatic separation has been extensively used in mineral processing, and has the potential to separate gangue minerals from raw talcum ore. As for electrostatic separation, the particle charging status is one of important influence factors. To describe the talcum particle charging status in a parallel plate electrostatic separator accurately, this paper proposes a modern images processing method. Based on the actual trajectories obtained from sequence images of particle movement and the analysis of physical forces applied on a charged particle, a numerical model is built, which could calculate the charge-to-mass ratios represented as the charging status of particle and simulate the particle trajectories. The simulated trajectories agree well with the experimental results obtained by images processing. In addition, chemical composition analysis is employed to reveal the relationship between ferrum gangue mineral content and charge-to-mass ratios. Research results show that the proposed method is effective for describing the particle charging status in electrostatic separation.

  17. Separation and Purification of Mineral Salts from Spacecraft Wastewater Processing via Electrostatic Beneficiation

    NASA Technical Reports Server (NTRS)

    Miles, John D., II; Lunn, Griffin

    2013-01-01

    Electrostatic separation is a class of material processing technologies commonly used for the sorting of coarse mixtures by means of electrical forces acting on charged or polarized particles. Most if not all of the existing tribo-electrostatic separators had been initially developed for mineral ores beneficiation. It is a well-known process that has been successfully used to separate coal from minerals. Potash (potassium) enrichment where underground salt mines containing large amounts of sodium is another use of this techno logy. Through modification this technology can be used for spacecraft wastewater brine beneficiation. This will add in closing the gap beeen traveling around Earth's Gravity well and long-term space explorations. Food has been brought on all man missions, which is why plant growth for food crops continues to be of interest to NASA. For long-term mission considerations food productions is one of the top priorities. Nutrient recovery is essential for surviving in or past low earth orbit. In our advance bio-regenerative process instead of nitrogen gas produced; soluble nitrate salts that can be recovered for plant fertilizer would be produced instead. The only part missing is the beneficiation of brine to separate the potassium from the sodium. The use of electrostatic beneficiation in this experiment utilizes the electrical charge differences between aluminum and dried brine by surface contact. The helixes within the aluminum tribocharger allows for more surface contact when being agitated. When two materials are in contact, the material with the highest affinity for electrons becomes negatively charged, while the other becomes positively charged. This contact exchange of charge may cause the particles to agglomerate depending on their residence time within the tribocharger, compromising the efficiency of separation. The aim of this experiment is to further the development in electrostatic beneficiation by optimizing the separation of ersatz and possibly real wastewater brine residues. In doing so, ideally it will yield a high potassium enrichment for use in spacecraft plant systems.

  18. Pressures Around an Inclined Ogive Cylinder with Laminar, Transitional, or Turbulent Separation

    NASA Technical Reports Server (NTRS)

    Lamont, P. J.

    1982-01-01

    This paper reports results From comprehensive pressure tests on an ogive cylinder in the low-turbulence 12-ft pressure wind tunnel at Ames Research Center. The results consist of detailed pressure distributions over a wide range of Reynolds numbers (0.2 x 10(exp 6) to 4.0 x 10(exp 6)) and angles of attack (20 to 90 deg). Most important, the tests encompassed a complete coverage of different roll orientations. This variation of roll orientation is shown to be essential in order to fully define all the possible flow conditions. When the various roll-angle results are combined, it is possible to interpret correctly the effects of changing angle of attack or Reynolds number. Two basic mechanisms for producing asymmetric flow are identified. One mechanism operates in both the laminar and the fully turbulent separation regimes; this mechanism Is the one qualitatively described by the impulsive flow analogy. The other mechanism occurs only in the transitional separation regime. This asymmetric flow has the same form as that found in the two-dimensional cross flow on a circular cylinder in the transitional flow regime. Finally, these results make it possible to draw up critical Reynolds number boundaries between the laminar, transitional, and fully turbulent separation regimes throughout the angle-of-attack range from 20 to 90 deg.

  19. Computer-aided roll pass design in rolling of airfoil shapes

    NASA Technical Reports Server (NTRS)

    Akgerman, N.; Lahoti, G. D.; Altan, T.

    1980-01-01

    This paper describes two computer-aided design (CAD) programs developed for modeling the shape rolling process for airfoil sections. The first program, SHPROL, uses a modular upper-bound method of analysis and predicts the lateral spread, elongation, and roll torque. The second program, ROLPAS, predicts the stresses, roll separating force, the roll torque and the details of metal flow by simulating the rolling process, using the slab method of analysis. ROLPAS is an interactive program; it offers graphic display capabilities and allows the user to interact with the computer via a keyboard, CRT, and a light pen. The accuracy of the computerized models was evaluated by (a) rolling a selected airfoil shape at room temperature from 1018 steel and isothermally at high temperature from Ti-6Al-4V, and (b) comparing the experimental results with computer predictions. The comparisons indicated that the CAD systems, described here, are useful for practical engineering purposes and can be utilized in roll pass design and analysis for airfoil and similar shapes.

  20. Contamination enhanced electrostatic discharge mechanisms

    NASA Technical Reports Server (NTRS)

    Jeffrey, J. A.; Maag, C. R.

    1979-01-01

    The two problems of enhanced electrostatic discharge (ESD) and contamination are discussed. It is shown that there is a synergistic relationship between them such that one enhances the probability of occurance of the other. The action of both provides substantially more deleterious affects than the effects of both separately. Mechanisms for such a relationship are discussed as well as application to large advanced technology systems.

  1. Swelling of biological and semiflexible polyelectrolytes.

    PubMed

    Dobrynin, Andrey V; Carrillo, Jan-Michael Y

    2009-10-21

    We have developed a theoretical model of swelling of semiflexible (biological) polyelectrolytes in salt solutions. Our approach is based on separation of length scales which allowed us to split a chain's electrostatic energy into two parts that describe local and remote electrostatic interactions along the polymer backbone. The local part takes into account interactions between charged monomers that are separated by distances along the polymer backbone shorter than the chain's persistence length. These electrostatic interactions renormalize chain persistence length. The second part includes electrostatic interactions between remote charged pairs along the polymer backbone located at distances larger than the chain persistence length. These interactions are responsible for chain swelling. In the framework of this approach we calculated effective chain persistence length and chain size as a function of the Debye screening length, chain degree of ionization, bare persistence length and chain degree of polymerization. Our crossover expression for the effective chain's persistence length is in good quantitative agreement with the experimental data on DNA. We have been able to fit experimental datasets by using two adjustable parameters: DNA ionization degree (α = 0.15-0.17) and a bare persistence length (l(p) = 40-44 nm).

  2. Dynamics of spherical metallic particles in cylinder electrostatic separators/purifiers.

    PubMed

    Lu, Hong-Zhou; Li, Jia; Guo, Jie; Xu, Zhen-Ming

    2008-08-15

    This paper presents a theoretical analysis of the dynamics of spherical metallic particles in electrostatic separators/purifiers (ESPs). The particle equations of motion are numerically solved in two dimensions using a computational algorithm. The ESPs consist of a pair of conductor cylinder electrodes. The upper cylinder is energized by HVdc, while the lower one is grounded and fixed horizontally on a revolvable axis. Some phenomena and aspects of separation process are explained and depicted including lifting off, impact, "motion collapse" and "sudden bouncing". The results reveal that the several phenomena depend on initial position, radius and density of the particle, curvature of the cylinder electrodes, distance between the electrodes and amplitude of the applied voltage. Optimization of the parameters is presented in order to get better separation/purification processes.

  3. Coherent structures and flow topology of transitional separated-reattached flow over two and three dimensional geometrical shapes

    NASA Astrophysics Data System (ADS)

    Diabil, Hayder Azeez; Li, Xin Kai; Abdalla, Ibrahim Elrayah

    2017-09-01

    Large-scale organized motions (commonly referred to coherent structures) and flow topology of a transitional separated-reattached flow have been visualised and investigated using flow visualisation techniques. Two geometrical shapes including two-dimensional flat plate with rectangular leading edge and three-dimensional square cylinder are chosen to shed a light on the flow topology and present coherent structures of the flow over these shapes. For both geometries and in the early stage of the transition, two-dimensional Kelvin-Helmholtz rolls are formed downstream of the leading edge. They are observed to be twisting around the square cylinder while they stay flat in the case of the two-dimensional flat plate. For both geometrical shapes, the two-dimensional Kelvin-Helmholtz rolls move downstream of the leading edge and they are subjected to distortion to form three-dimensional hairpin structures. The flow topology in the flat plate is different from that in the square cylinder. For the flat plate, there is a merging process by a pairing of the Kelvin-Helmholtz rolls to form a large structure that breaks down directly into many hairpin structures. For the squire cylinder case, the Kelvin-Helmholtz roll evolves topologically to form a hairpin structure. In the squire cylinder case, the reattachment length is much shorter and a forming of the three-dimensional structures is closer to the leading edge than that in the flat plate case.

  4. Dislocation structure in textured zirconium tensile-deformed along rolling and transverse directions determined by X-ray diffraction line profile analysis

    NASA Astrophysics Data System (ADS)

    Fan, Zhijian; Jóni, Bertalan; Xie, Lei; Ribárik, Gábor; Ungár, Tamás

    2018-04-01

    Specimens of cold-rolled zirconium were tensile-deformed along the rolling (RD) and the transverse (TD) directions. The stress-strain curves revealed a strong texture dependence. High resolution X-ray line profile analysis was used to determine the prevailing active slip-systems in the specimens with different textures. The reflections in the X-ray diffraction patterns were separated into two groups. One group corresponds to the major and the other group to the random texture component, respectively. The dislocation densities, the subgrain size and the prevailing active slip-systems were evaluated by using the convolutional multiple whole profile (CMWP) procedure. These microstructure parameters were evaluated separately in the two groups of reflections corresponding to the two different texture components. Significant differences were found in both, the evolution of dislocation densities and the development of the fractions of and type slip systems in the RD and TD specimens during tensile deformation. The differences between the RD and TD stress-strain curves are discussed in terms of the differences of the microstructure evolution.

  5. Electrostatic separation for recycling waste printed circuit board: a study on external factor and a robust design for optimization.

    PubMed

    Hou, Shibing; Wu, Jiang; Qin, Yufei; Xu, Zhenming

    2010-07-01

    Electrostatic separation is an effective and environmentally friendly method for recycling waste printed circuit board (PCB) by several kinds of electrostatic separators. However, some notable problems have been detected in its applications and cannot be efficiently resolved by optimizing the separation process. Instead of the separator itself, these problems are mainly caused by some external factors such as the nonconductive powder (NP) and the superficial moisture of feeding granule mixture. These problems finally lead to an inefficient separation. In the present research, the impacts of these external factors were investigated and a robust design was built to optimize the process and to weaken the adverse impact. A most robust parameter setting (25 kv, 80 rpm) was concluded from the experimental design. In addition, some theoretical methods, including cyclone separation, were presented to eliminate these problems substantially. This will contribute to efficient electrostatic separation of waste PCB and make remarkable progress for industrial applications.

  6. Sparsity-optimized separation of body waves and ground-roll by constructing dictionaries using tunable Q-factor wavelet transforms with different Q-factors

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Chen, Wenchao; Wang, Xiaokai; Wang, Wei

    2017-10-01

    Low-frequency oscillatory ground-roll is regarded as one of the main regular interference waves, which obscures primary reflections in land seismic data. Suppressing the ground-roll can reasonably improve the signal-to-noise ratio of seismic data. Conventional suppression methods, such as high-pass and various f-k filtering, usually cause waveform distortions and loss of body wave information because of their simple cut-off operation. In this study, a sparsity-optimized separation of body waves and ground-roll, which is based on morphological component analysis theory, is realized by constructing dictionaries using tunable Q-factor wavelet transforms with different Q-factors. Our separation model is grounded on the fact that the input seismic data are composed of low-oscillatory body waves and high-oscillatory ground-roll. Two different waveform dictionaries using a low Q-factor and a high Q-factor, respectively, are confirmed as able to sparsely represent each component based on their diverse morphologies. Thus, seismic data including body waves and ground-roll can be nonlinearly decomposed into low-oscillatory and high-oscillatory components. This is a new noise attenuation approach according to the oscillatory behaviour of the signal rather than the scale or frequency. We illustrate the method using both synthetic and field shot data. Compared with results from conventional high-pass and f-k filtering, the results of the proposed method prove this method to be effective and advantageous in preserving the waveform and bandwidth of reflections.

  7. Impact of nonconductive powder on electrostatic separation for recycling crushed waste printed circuit board.

    PubMed

    Wu, Jiang; Qin, Yufei; Zhou, Quan; Xu, Zhenming

    2009-05-30

    The electrostatic separation is an effective and environmentally friendly method for recycling metals and nonmetals from crushed printed circuit board (PCB) wastes. However, it still confronts some problems brought by nonconductive powder (NP). Firstly, the NP is fine and liable to aggregate. This leads to an increase of middling products and loss of metals. Secondly, the stability of separation process is influenced by NP. Finally, some NPs accumulate on the surface of the corona and electrostatic electrodes during the process. These problems lead to an inefficient separation. In the present research, the impacts of NP on electrostatic separation are investigated. The experimental results show that: the separation is notably influenced when the NP content is more than 10%. With the increase of NP content, the middling products sharply increase from 1.4 g to 4.3g (increase 207.1%), while the conductive products decrease from 24.0 g to 19.1g (decrease 20.4%), and the separation process become more instable.

  8. Slow-roll corrections in multi-field inflation: a separate universes approach

    NASA Astrophysics Data System (ADS)

    Karčiauskas, Mindaugas; Kohri, Kazunori; Mori, Taro; White, Jonathan

    2018-05-01

    In view of cosmological parameters being measured to ever higher precision, theoretical predictions must also be computed to an equally high level of precision. In this work we investigate the impact on such predictions of relaxing some of the simplifying assumptions often used in these computations. In particular, we investigate the importance of slow-roll corrections in the computation of multi-field inflation observables, such as the amplitude of the scalar spectrum Pζ, its spectral tilt ns, the tensor-to-scalar ratio r and the non-Gaussianity parameter fNL. To this end we use the separate universes approach and δ N formalism, which allows us to consider slow-roll corrections to the non-Gaussianity of the primordial curvature perturbation as well as corrections to its two-point statistics. In the context of the δ N expansion, we divide slow-roll corrections into two categories: those associated with calculating the correlation functions of the field perturbations on the initial flat hypersurface and those associated with determining the derivatives of the e-folding number with respect to the field values on the initial flat hypersurface. Using the results of Nakamura & Stewart '96, corrections of the first kind can be written in a compact form. Corrections of the second kind arise from using different levels of slow-roll approximation in solving for the super-horizon evolution, which in turn corresponds to using different levels of slow-roll approximation in the background equations of motion. We consider four different levels of approximation and apply the results to a few example models. The various approximations are also compared to exact numerical solutions.

  9. Laplace Boundary-Value Problem in Paraboloidal Coordinates

    ERIC Educational Resources Information Center

    Duggen, L.; Willatzen, M.; Voon, L. C. Lew Yan

    2012-01-01

    This paper illustrates both a problem in mathematical physics, whereby the method of separation of variables, while applicable, leads to three ordinary differential equations that remain fully coupled via two separation constants and a five-term recurrence relation for series solutions, and an exactly solvable problem in electrostatics, as a…

  10. MASS SEPARATION OF HIGH ENERGY PARTICLES

    DOEpatents

    Marshall, L.

    1962-09-25

    An apparatus and method are described for separating charged, high energy particles of equal momentum forming a beam where the particles differ slightly in masses. Magnetic lenses are utilized to focus the beam and maintain that condition while electrostatic fields located between magnetic lenses are utilized to cause transverse separation of the particles into two beams separated by a sufficient amount to permit an aperture to block one beam. (AEC)

  11. Ground roll attenuation using polarization analysis in the t-f-k domain

    NASA Astrophysics Data System (ADS)

    Wang, C.; Wang, Y.

    2017-07-01

    S waves travel slower than P waves and have a lower dominant frequency. Therefore, applying common techniques such as time-frequency filtering and f-k filtering to separate S waves from ground roll is difficult because ground roll is also characterized by slow velocity and low frequency. In this study, we present a method for attenuating ground roll using a polarization filtering method based on the t-f-k transform. We describe the particle motion of the waves by complex vector signals. Each pair of frequency components, whose frequencies have the same absolute value but different signs, of the complex signal indicate an elliptical or linear motion. The polarization parameters of the elliptical or linear motion are explicitly related to the two Fourier coefficients. We then extend these concepts to the t-f-k domain and propose a polarization filtering method for ground roll attenuation based on the t-f-k transform. The proposed approach can define automatically the time-varying reject zones on the f-k panel at different times as a function of the reciprocal ellipticity. Four attributes, time, frequency, apparent velocity and polarization are used to identify and extract the ground roll simultaneously. Thus, the ground roll and body waves can be separated as long as they are dissimilar in one of these attributes. We compare our method with commonly used filtering techniques by applying the methods to synthetic and real seismic data. The results indicate that our method can attenuate ground roll while preserving body waves more effectively than the other methods.

  12. Electrostatic attraction between overall neutral surfaces.

    PubMed

    Adar, Ram M; Andelman, David; Diamant, Haim

    2016-08-01

    Two overall neutral surfaces with positively and negatively charged domains ("patches") have been shown in recent experiments to exhibit long-range attraction when immersed in an ionic solution. Motivated by the experiments, we calculate analytically the osmotic pressure between such surfaces within the Poisson-Boltzmann framework, using a variational principle for the surface-averaged free energy. The electrostatic potential, calculated beyond the linear Debye-Hückel theory, yields an overall attraction at large intersurface separations, over a wide range of the system's controlled length scales. In particular, the attraction is stronger and occurs at smaller separations for surface patches of larger size and charge density. In this large patch limit, we find that the attraction-repulsion crossover separation is inversely proportional to the square of the patch-charge density and to the Debye screening length.

  13. Method for separating biological cells. [suspended in aqueous polymer systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. E. (Inventor)

    1980-01-01

    A method for separating biological cells by suspending a mixed cell population in a two-phase polymer system is described. The polymer system consists of droplet phases with different surface potentials for which the cell populations exhibit different affinities. The system is subjected to an electrostatic field of sufficient intensity to cause migration of the droplets with an attendant separation of cells.

  14. Implementation and verification of a four-probe motion error measurement system for a large-scale roll lathe used in hybrid manufacturing

    NASA Astrophysics Data System (ADS)

    Chen, Yuan-Liu; Niu, Zengyuan; Matsuura, Daiki; Lee, Jung Chul; Shimizu, Yuki; Gao, Wei; Oh, Jeong Seok; Park, Chun Hong

    2017-10-01

    In this paper, a four-probe measurement system is implemented and verified for the carriage slide motion error measurement of a large-scale roll lathe used in hybrid manufacturing where a laser machining probe and a diamond cutting tool are placed on two sides of a roll workpiece for manufacturing. The motion error of the carriage slide of the roll lathe is composed of two straightness motion error components and two parallelism motion error components in the vertical and horizontal planes. Four displacement measurement probes, which are mounted on the carriage slide with respect to four opposing sides of the roll workpiece, are employed for the measurement. Firstly, based on the reversal technique, the four probes are moved by the carriage slide to scan the roll workpiece before and after a 180-degree rotation of the roll workpiece. Taking into consideration the fact that the machining accuracy of the lathe is influenced by not only the carriage slide motion error but also the gravity deformation of the large-scale roll workpiece due to its heavy weight, the vertical motion error is thus characterized relating to the deformed axis of the roll workpiece. The horizontal straightness motion error can also be synchronously obtained based on the reversal technique. In addition, based on an error separation algorithm, the vertical and horizontal parallelism motion error components are identified by scanning the rotating roll workpiece at the start and the end positions of the carriage slide, respectively. The feasibility and reliability of the proposed motion error measurement system are demonstrated by the experimental results and the measurement uncertainty analysis.

  15. Antibody-immobilized column for quick cell separation based on cell rolling.

    PubMed

    Mahara, Atsushi; Yamaoka, Tetsuji

    2010-01-01

    Cell separation using methodological standards that ensure high purity is a very important step in cell transplantation for regenerative medicine and for stem cell research. A separation protocol using magnetic beads has been widely used for cell separation to isolate negative and positive cells. However, not only the surface marker pattern, e.g., negative or positive, but also the density of a cell depends on its developmental stage and differentiation ability. Rapid and label-free separation procedures based on surface marker density are the focus of our interest. In this study, we have successfully developed an antiCD34 antibody-immobilized cell-rolling column, that can separate cells depending on the CD34 density of the cell surfaces. Various conditions for the cell-rolling column were optimized including graft copolymerization, and adjustment of the column tilt angle, and medium flow rate. Using CD34-positive and -negative cell lines, the cell separation potential of the column was established. We observed a difference in the rolling velocities between CD34-positive and CD34-negative cells on antibody-immobilized microfluidic device. Cell separation was achieved by tilting the surface 20 degrees and the increasing medium flow. Surface marker characteristics of the isolated cells in each fraction were analyzed using a cell-sorting system, and it was found that populations containing high density of CD34 were eluted in the delayed fractions. These results demonstrate that cells with a given surface marker density can be continuously separated using the cell rolling column.

  16. Electrical torques on the electrostatic gyro in the gyro relativity experiment

    NASA Technical Reports Server (NTRS)

    Eby, P.; Darbo, W.

    1980-01-01

    A comprehensive discussion and calculation of electrical torques on an electrostatic gyro as they relate to the gyroscope experiment to test general relativity is presented. Drift rates were computed for some typical state of the art rotors, including higher harmonics in the rotor shape. The effect of orbital averaging of gravity gradient forces, roll averaging of torques, and the effect of spin averaging on the effective shape of the rotor were considered. The electrical torques are reduced sufficiently in a low g environment to permit a measurement of the relativistic drifts predicted by general relativity.

  17. An aerodynamic model for one and two degree of freedom wing rock of slender delta wings

    NASA Technical Reports Server (NTRS)

    Hong, John

    1993-01-01

    The unsteady aerodynamic effects due to the separated flow around slender delta wings in motion were analyzed. By combining the unsteady flow field solution with the rigid body Euler equations of motion, self-induced wing rock motion is simulated. The aerodynamic model successfully captures the qualitative characteristics of wing rock observed in experiments. For the one degree of freedom in roll case, the model is used to look into the mechanisms of wing rock and to investigate the effects of various parameters, like angle of attack, yaw angle, displacement of the separation point, and wing inertia. To investigate the roll and yaw coupling for the delta wing, an additional degree of freedom is added. However, no limit cycle was observed in the two degree of freedom case. Nonetheless, the model can be used to apply various control laws to actively control wing rock using, for example, the displacement of the leading edge vortex separation point by inboard span wise blowing.

  18. Engineering nanoscale surface features to sustain microparticle rolling in flow.

    PubMed

    Kalasin, Surachate; Santore, Maria M

    2015-05-26

    Nanoscopic features of channel walls are often engineered to facilitate microfluidic transport, for instance when surface charge enables electro-osmosis or when grooves drive mixing. The dynamic or rolling adhesion of flowing microparticles on a channel wall holds potential to accomplish particle sorting or to selectively transfer reactive species or signals between the wall and flowing particles. Inspired by cell rolling under the direction of adhesion molecules called selectins, we present an engineered platform in which the rolling of flowing microparticles is sustained through the incorporation of entirely synthetic, discrete, nanoscale, attractive features into the nonadhesive (electrostatically repulsive) surface of a flow channel. Focusing on one example or type of nanoscale feature and probing the impact of broad systematic variations in surface feature loading and processing parameters, this study demonstrates how relatively flat, weakly adhesive nanoscale features, positioned with average spacings on the order of tens of nanometers, can produce sustained microparticle rolling. We further demonstrate how the rolling velocity and travel distance depend on flow and surface design. We identify classes of related surfaces that fail to support rolling and present a state space that identifies combinations of surface and processing variables corresponding to transitions between rolling, free particle motion, and arrest. Finally we identify combinations of parameters (surface length scales, particle size, flow rates) where particles can be manipulated with size-selectivity.

  19. Shoulder and hip roll changes during 200-m front crawl swimming.

    PubMed

    Psycharakis, Stelios G; Sanders, Ross H

    2008-12-01

    To determine accurately the magnitude and changes in shoulder roll (SR) and hip roll (HR) throughout a 200-m maximum front crawl swim and whether SR and HR were associated with swimming velocity (V). Bilateral roll asymmetries and timing differences between SR and HR were also investigated. Ten male swimmers of national/international level performed a maximum 200-m front crawl swim. Performance was recorded with four below- and two above-water synchronized cameras and four nonbreathing stroke cycles (SC) were analyzed (one for each 50 m). SR and HR were calculated separately. Swimmers rolled their shoulders significantly more than their hips (P < 0.001). V generally decreased during the test, and HR was significantly higher in SC4 than in SC1 (P = 0.001). SR had a negative and significant correlation with V in each SC (-0.663

  20. Determination Of Slitting Criterion Parameter During The Multi Slit Rolling Process

    NASA Astrophysics Data System (ADS)

    Stefanik, Andrzej; Mróz, Sebastian; Szota, Piotr; Dyja, Henryk

    2007-05-01

    The rolling of rods with slitting of the strip calls for the use of special mathematical models that would allow for the separating of metal. A theoretical analysis of the effect of the gap of slitting rollers on the process of band slitting during the rolling of 20 mm and 16 mm-diameter ribbed rods rolled according to the two-strand technology was carried out within this study. For the numerical modeling of strip slitting the Forge3® computer program was applied. The strip slitting in the simulation is implemented by the algorithm of removing elements in which the critical value of the normalized Cockroft - Latham criterion has been exceeded. To determine the value of the criterion the inverse method was applied. Distance between a point, where crack begins, and point of contact metal with the slitting rollers was the parameter for analysis. Power and rolling torque during slit rolling were presented. Distribution and change of the stress in strand while slitting were presented.

  1. Lubricant effects on bearing life

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1986-01-01

    Lubricant considerations for rolling-element bearings have within the last two decades taken on added importance in the design and operation of mechanical systems. The phenomenon which limits the useful life of bearings is rolling-element or surface pitting fatigue. The elastohydrodynamic (EHD) film thickness which separates the ball or roller surface from those of the raceways of the bearing directly affects bearing life. Chemical additives added to the lubricant can also significantly affect bearings life and reliability. The interaction of these physical and chemical effects is important to the design engineer and user of these systems. Design methods and lubricant selection for rolling-element bearings are presented and discussed.

  2. Characterization of compounds by time-of-flight measurement utilizing random fast ions

    DOEpatents

    Conzemius, R.J.

    1989-04-04

    An apparatus is described for characterizing the mass of sample and daughter particles, comprising a source for providing sample ions; a fragmentation region wherein a fraction of the sample ions may fragment to produce daughter ion particles; an electrostatic field region held at a voltage level sufficient to effect ion-neutral separation and ion-ion separation of fragments from the same sample ion and to separate ions of different kinetic energy; a detector system for measuring the relative arrival times of particles; and processing means operatively connected to the detector system to receive and store the relative arrival times and operable to compare the arrival times with times detected at the detector when the electrostatic field region is held at a different voltage level and to thereafter characterize the particles. Sample and daughter particles are characterized with respect to mass and other characteristics by detecting at a particle detector the relative time of arrival for fragments of a sample ion at two different electrostatic voltage levels. The two sets of particle arrival times are used in conjunction with the known altered voltage levels to mathematically characterize the sample and daughter fragments. In an alternative embodiment the present invention may be used as a detector for a conventional mass spectrometer. In this embodiment, conventional mass spectrometry analysis is enhanced due to further mass resolving of the detected ions. 8 figs.

  3. Characterization of compounds by time-of-flight measurement utilizing random fast ions

    DOEpatents

    Conzemius, Robert J.

    1989-01-01

    An apparatus for characterizing the mass of sample and daughter particles, comprising a source for providing sample ions; a fragmentation region wherein a fraction of the sample ions may fragment to produce daughter ion particles; an electrostatic field region held at a voltage level sufficient to effect ion-neutral separation and ion-ion separation of fragments from the same sample ion and to separate ions of different kinetic energy; a detector system for measuring the relative arrival times of particles; and processing means operatively connected to the detector system to receive and store the relative arrival times and operable to compare the arrival times with times detected at the detector when the electrostatic field region is held at a different voltage level and to thereafter characterize the particles. Sample and daughter particles are characterized with respect to mass and other characteristics by detecting at a particle detector the relative time of arrival for fragments of a sample ion at two different electrostatic voltage levels. The two sets of particle arrival times are used in conjunction with the known altered voltage levels to mathematically characterize the sample and daughter fragments. In an alternative embodiment the present invention may be used as a detector for a conventional mass spectrometer. In this embodiment, conventional mass spectrometry analysis is enhanced due to further mass resolving of the detected ions.

  4. Vibration response of spalled rolling element bearings: Observations, simulations and signal processing techniques to track the spall size

    NASA Astrophysics Data System (ADS)

    Sawalhi, N.; Randall, R. B.

    2011-04-01

    Fatigue in rolling element bearings, resulting in spalling of the races and/or rolling elements, is the most common cause of bearing failure. The useful life of the bearing may extend considerably beyond the appearance of the first spall and a premature removal of the bearing from service can be very expensive, but on the other hand chances cannot be taken with safety of machines or personnel. Previous studies indicated that there might be two parts to the defect vibration signal of a spalled bearing, the first part being originating from the entry of the rolling element into the fault (de-stress) and the second part being due to the departure of the rolling element from the fault (re-stress). This is investigated in this paper using vibration signatures of seeded faults at different speeds. The acceleration signals resulting from the entry of the rolling element into the spall and exit from it were found to be of different natures. The entry into the fault can be described as a step response, with mainly low frequency content, while the impact excites a much broader frequency impulse response. The latter is the most noticeable and prominent event, especially when examining the high pass filtered response or the enveloped signal. In order to enable a clear separation of the two events, and produce an averaged estimate of the size of the fault, two approaches are proposed to enhance the entry event while keeping the impulse response. The first approach (joint treatment) utilizes pre-whitening to balance the low and high frequency energy, then octave band wavelet analysis to allow selection of the best band (or scale) to balance the two pulses with similar frequency content. In the second approach, a separate treatment is applied to the step and the impulse responses, so that they can be equally represented in the signal. Cepstrum analysis can be used to give an average estimate of the spacing between the entry and impact events, but the latter can also be assessed by an arithmetic estimation of the mean and standard deviation of the event separation for a number of realizations, in particular for the second approach. In order to determine the effects of various simulations and signal processing parameters on the estimated delay times, the entry and exit events were simulated as modified step and impulse responses with precisely known starting times. The simulation was also found useful in pointing to artefacts associated with the cepstrum calculation, which affect even the simulated signals, and have thus prompted modifications of the processing of real signals. The results presented for the two approaches give a reasonable approximation of the measured fault widths (double the spacing between the entry and impact events) under different speed conditions, but the method of separate treatment is somewhat better and is thus recommended.

  5. Microencapsulation and Electrostatic Processing Device

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor); Cassanto, John M. (Inventor)

    2001-01-01

    A microencapsulation and electrostatic processing (MEP) device is provided for forming microcapsules. In one embodiment, the device comprises a chamber having a filter which separates a first region in the chamber from a second region in the chamber. An aqueous solution is introduced into the first region through an inlet port, and a hydrocarbon/ polymer solution is introduced into the second region through another inlet port. The filter acts to stabilize the interface and suppress mixing between the two immiscible solutions as they are being introduced into their respective regions. After the solutions have been introduced and have become quiescent, the interface is gently separated from the filter. At this point, spontaneous formation of microcapsules at the interface may begin to occur, or some fluid motion may be provided to induce microcapsule formation. In any case, the fluid shear force at the interface is limited to less than 100 dynes/sq cm. This low-shear approach to microcapsule formation yields microcapsules with good sphericity and desirable size distribution. The MEP device is also capable of downstream processing of microcapsules, including rinsing, re-suspension in tertiary fluids, electrostatic deposition of ancillary coatings, and free-fluid electrophoretic separation of charged microcapsules.

  6. Computer simulation of the pneumatic separator in the pneumatic-electrostatic separation system for recycling waste printed circuit boards with electronic components.

    PubMed

    Xue, Mianqiang; Xu, Zhenming

    2013-05-07

    Technologies could be integrated in different ways into automatic recycling lines for a certain kind of electronic waste according to practical requirements. In this study, a new kind of pneumatic separator with openings at the dust hooper was applied combing with electrostatic separation for recycling waste printed circuit boards. However, the flow pattern and the particles' movement behavior could not be obtained by experimental methods. To better control the separation quantity and the material size distribution, computational fluid dynamics was used to model the new pneumatic separator giving a detailed understanding of the mechanisms. Simulated results showed that the tangential velocity direction reversed with a relatively small value. Axial velocity exhibited two sharp decreases at the x axis. It is indicated that the bottom openings at the dust hopper resulted in an enormous change in the velocity profile. A new phenomenon that was named dusting was observed, which would mitigate the effect of particles with small diameter on the following electrostatic separation and avoid materials plugging caused by the waste printed circuit boards special properties effectively. The trapped materials were divided into seven grades. Experimental results showed that the mass fraction of grade 5, grade 6, and grade 7 materials were 27.54%, 15.23%, and 17.38%, respectively. Grade 1 particles' mass fraction was reduced by 80.30% compared with a traditional separator. Furthermore, the monocrystalline silicon content in silicon element in particles with a diameter of -0.091 mm was 18.9%, higher than that in the mixed materials. This study could serve as guidance for the future material flow control, automation control, waste recycling, and semiconductor storage medium destruction.

  7. Time-resolved energy transfer in DNA sequence detection using water-soluble conjugated polymers: the role of electrostatic and hydrophobic interactions.

    PubMed

    Xu, Qing-Hua; Gaylord, Brent S; Wang, Shu; Bazan, Guillermo C; Moses, Daniel; Heeger, Alan J

    2004-08-10

    We have investigated the energy transfer processes in DNA sequence detection by using cationic conjugated polymers and peptide nucleic acid (PNA) probes with ultrafast pump-dump-emission spectroscopy. Pump-dump-emission spectroscopy provides femtosecond temporal resolution and high sensitivity and avoids interference from the solvent response. The energy transfer from donor (the conjugated polymer) to acceptor (a fluorescent molecule attached to a PNA terminus) has been time resolved. The results indicate that both electrostatic and hydrophobic interactions contribute to the formation of cationic conjugated polymers/PNA-C/DNA complexes. The two interactions result in two different binding conformations. This picture is supported by the average donor-acceptor separations as estimated from time-resolved and steady-state measurements. Electrostatic interactions dominate at low concentrations and in mixed solvents.

  8. Time-resolved energy transfer in DNA sequence detection using water-soluble conjugated polymers: The role of electrostatic and hydrophobic interactions

    PubMed Central

    Xu, Qing-Hua; Gaylord, Brent S.; Wang, Shu; Bazan, Guillermo C.; Moses, Daniel; Heeger, Alan J.

    2004-01-01

    We have investigated the energy transfer processes in DNA sequence detection by using cationic conjugated polymers and peptide nucleic acid (PNA) probes with ultrafast pump-dump-emission spectroscopy. Pump-dump-emission spectroscopy provides femtosecond temporal resolution and high sensitivity and avoids interference from the solvent response. The energy transfer from donor (the conjugated polymer) to acceptor (a fluorescent molecule attached to a PNA terminus) has been time resolved. The results indicate that both electrostatic and hydrophobic interactions contribute to the formation of cationic conjugated polymers/PNA-C/DNA complexes. The two interactions result in two different binding conformations. This picture is supported by the average donor–acceptor separations as estimated from time-resolved and steady-state measurements. Electrostatic interactions dominate at low concentrations and in mixed solvents. PMID:15282375

  9. 40 CFR Table 2 to Subpart Uuu of... - Operating Limits for Metal HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... daily average liquid-to-gas ratio above the limit established in the performance test. 4. Option 3: Ni.... Electrostatic precipitator Maintain the daily average Ni operating value no higher than the limit established...; maintain the monthly rolling average of the equilibrium catalyst Ni concentration no higher than the limit...

  10. 40 CFR Table 2 to Subpart Uuu of... - Operating Limits for Metal HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... daily average liquid-to-gas ratio above the limit established in the performance test. 4. Option 3: Ni.... Electrostatic precipitator Maintain the daily average Ni operating value no higher than the limit established...; maintain the monthly rolling average of the equilibrium catalyst Ni concentration no higher than the limit...

  11. Accelerating Electrostatic Surface Potential Calculation with Multiscale Approximation on Graphics Processing Units

    PubMed Central

    Anandakrishnan, Ramu; Scogland, Tom R. W.; Fenley, Andrew T.; Gordon, John C.; Feng, Wu-chun; Onufriev, Alexey V.

    2010-01-01

    Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed up these types of electrostatic computations are approximations based on multi-scale coarse-graining and parallelization across multiple processors. This paper demonstrates that for the computation of electrostatic surface potential, these two techniques can be combined to deliver significantly greater speed-up than either one separately, something that is in general not always possible. Specifically, the electrostatic potential computation, using an analytical linearized Poisson Boltzmann (ALPB) method, is approximated using the hierarchical charge partitioning (HCP) multiscale method, and parallelized on an ATI Radeon 4870 graphical processing unit (GPU). The implementation delivers a combined 934-fold speed-up for a 476,040 atom viral capsid, compared to an equivalent non-parallel implementation on an Intel E6550 CPU without the approximation. This speed-up is significantly greater than the 42-fold speed-up for the HCP approximation alone or the 182-fold speed-up for the GPU alone. PMID:20452792

  12. Silver and gold nanoparticle separation using asymmetrical flow-field flow fractionation: Influence of run conditions and of particle and membrane charges.

    PubMed

    Meisterjahn, Boris; Wagner, Stephan; von der Kammer, Frank; Hennecke, Dieter; Hofmann, Thilo

    2016-04-01

    Flow-Field Flow Fractionation (Flow-FFF), coupled with online detection systems is one of the most promising tools available for the separation and quantification of engineered nanoparticles (ENPs) in complex matrices. To correctly relate the retention of nanoparticles in the Flow-FFF-channel to the particle size, ideal separation conditions must be met. This requires optimization of the parameters that influence the separation behavior. The aim of this study was therefore to systematically investigate and evaluate the influence of parameters such as the carrier liquid, the cross flow, and the membrane material, on the separation behavior of two metallic ENPs. For this purpose the retention, recovery, and separation efficiency of sterically stabilized silver nanoparticles (AgNPs) and electrostatically stabilized gold nanoparticles (AuNPs), which represent two materials widely used in investigations on environmental fate and ecotoxicology, were investigated against a parameter matrix of three different cross-flow densities, four representative carrier solutions, and two membrane materials. The use of a complex mixture of buffers, ionic and non-ionic surfactants (FL-70 solution) together with a medium cross-flow density provided an acceptable compromise in peak quality and recovery for both types of ENPs. However, these separation conditions do not represent a perfect match for both particle types at the same time (maximized recovery at maximized retention). It could be shown that the behavior of particles within Flow-FFF channels cannot be predicted or explained purely in terms of electrostatic interactions. Particles were irreversibly lost under conditions where the measured zeta potentials suggested that there should have been sufficient electrostatic repulsion to ensure stabilization of the particles in the Flow-FFF channel resulting in good recoveries. The wide variations that we observed in ENP behavior under different conditions, together with the different behavior that has been reported in published literature for the same NPs under similar conditions, indicate a need for improvement in the membrane materials used for Flow-FFF analysis of NPs. This research has shown that careful adjustment of separation conditions can result in acceptable, but not ideal, separation conditions for two fundamentally different stabilized materials, and that it may not be possible to separate a set of different particles under ideal conditions for each particle type. This therefore needs to be taking into account in method development and when interpreting FFF results from complex samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Characteristics of wake vortex generated by a Boeing 727 jet transport during two-segment and normal ILS approach flight paths

    NASA Technical Reports Server (NTRS)

    Kurkowski, R. L.; Barber, M. R.; Garodz, L. J.

    1976-01-01

    A series of flight tests was conducted to evaluate the vortex wake characteristics of a Boeing 727 (B727-200) aircraft during conventional and two-segment ILS approaches. Twelve flights of the B727, which was equipped with smoke generators for vortex marking, were flown and its vortex wake was intentionally encountered by a Lear Jet model 23 (LR-23) and a Piper Twin Comanche (PA-30). Location of the B727 vortex during landing approach was measured using a system of photo-theodolites. The tests showed that at a given separation distance there were no readily apparent differences in the upsets resulting from deliberate vortex encounters during the two types of approaches. Timed mappings of the position of the landing configuration vortices showed that they tended to descend approximately 91 m(300 ft) below the flight path of the B727. The flaps of the B727 have a dominant effect on the character of the trailed wake vortex. The clean wing produces a strong, concentrated vortex but as the flaps are lowered, the vortex system becomes more diffuse. Pilot opinion and roll acceleration data indicate that 4.5 n.mi. would be a minimum separation distance at which roll control of light aircraft (less than 5,670 kg (12,500 lb) could be maintained during parallel encounters of the B727's landing configuration wake. This minimum separation distance is generally in scale with results determined from previous tests of other aircraft using the small roll control criteria.

  14. Mass spectrometer and methods of increasing dispersion between ion beams

    DOEpatents

    Appelhans, Anthony D.; Olson, John E.; Delmore, James E.

    2006-01-10

    A mass spectrometer includes a magnetic sector configured to separate a plurality of ion beams, and an electrostatic sector configured to receive the plurality of ion beams from the magnetic sector and increase separation between the ion beams, the electrostatic sector being used as a dispersive element following magnetic separation of the plurality of ion beams. Other apparatus and methods are provided.

  15. Effective Electrostatic Interactions Between Two Overall Neutral Surfaces with Quenched Charge Heterogeneity Over Atomic Length Scale

    NASA Astrophysics Data System (ADS)

    Zhou, S.

    2017-12-01

    Using Monte Carlo results as a reference, a classical density functional theory ( CDFT) is shown to reliably predict the forces between two heterogeneously charged surfaces immersed in an electrolyte solution, whereas the Poisson-Boltzmann ( PB) theory is demonstrated to deteriorate obviously for the same system even if the system parameters considered fall within the validity range of the PB theory in the homogeneously charged surfaces. By applying the tested CDFT, we study the effective electrostatic potential of mean force ( EPMF) between two face-face planar and hard surfaces of zero net charge on which positive and negative charges are separated and considered to present as discontinuous spots on the inside edges of the two surfaces. Main conclusions are summarized as follows: (i) strength of the EPMF in the surface charge separation case is very sensitively and positively correlated with the surface charge separation level and valency of the salt ion. Particularly, the charge separation level and the salt ion valency have a synergistic effect, which makes high limit of the EPMF strength in the surface charge separation case significantly go beyond that of the ideal homogeneously charged surface counterpart at average surface charge density similar to the average surface positive or negative charge density in the charge separation case. (ii) The surface charge distribution patterns mainly influence sign of the EPMF: symmetrical and asymmetrical patterns induce repulsive and attractive (at small distances) EPMF, respectively; but with low valency salt ions and low charge separation level the opposite may be the case. With simultaneous presence of both higher valency cation and anion, the EPMF can be repulsive at intermediate distances for asymmetrical patterns. (iii) Salt ion size has a significant impact, which makes the EPMF tend to become more and more repulsive with the ion diameter regardless of the surface charge distribution patterns and the valency of the salt ion; whereas if the 1:1 type electrolyte and the symmetrical patterns are considered, then the opposite may be the case. All of these findings can be explained self-consistently from several perspectives: an excess adsorption of the salt ions (induced by the surface charge separation) serving to raise the osmotic pressure between the plates, configuration fine-tuning in the thinner ion adsorption layer driven by the energy decrease principle, direct Coulombic interactions operating between charged objects on the two face-to-face plates involved, and net charge strength in the ion adsorption layer responsible for the net electrostatic repulsion.

  16. Electrostatic Hellmann-Feynman theorem applied to long-range interatomic forces - The hydrogen molecule.

    NASA Technical Reports Server (NTRS)

    Steiner, E.

    1973-01-01

    The use of the electrostatic Hellmann-Feynman theorem for the calculation of the leading term in the 1/R expansion of the force of interaction between two well-separated hydrogen atoms is discussed. Previous work has suggested that whereas this term is determined wholly by the first-order wavefunction when calculated by perturbation theory, the use of the Hellmann-Feynman theorem apparently requires the wavefunction through second order. It is shown how the two results may be reconciled and that the Hellmann-Feynman theorem may be reformulated in such a way that only the first-order wavefunction is required.

  17. Use of an adjustable hand plate in studying the perceived horizontal plane during simulated flight.

    PubMed

    Tribukait, Arne; Eiken, Ola; Lemming, Dag; Levin, Britta

    2013-07-01

    Quantitative data on spatial orientation would be valuable not only in assessing the fidelity of flight simulators, but also in evaluation of spatial orientation training. In this study a manual indicator was used for recording the subjective horizontal plane during simulated flight. In a six-degrees-of-freedom hexapod hydraulic motion platform simulator, simulating an F-16 aircraft, seven fixed-wing student pilots were passively exposed to two flight sequences. The first consisted in a number of coordinated turns with visual contact with the landscape below. The visually presented roll tilt was up to a maximum 670. The second was a takeoff with a cabin pitch up of 100, whereupon external visual references were lost. The subjects continuously indicated, with the left hand on an adjustable plate, what they perceived as horizontal in roll and pitch. There were two test occasions separated by a 3-d course on spatial disorientation. Responses to changes in simulated roll were, in general, instantaneous. The indicated roll tilt was approximately 30% of the visually presented roll. There was a considerable interindividual variability. However, for the roll response there was a correlation between the two occasions. The amplitude of the response to the pitch up of the cabin was approximately 75%; the response decayed much more slowly than the stimulus. With a manual indicator for recording the subjective horizontal plane, individual characteristics in the response to visual tilt stimuli may be detected, suggesting a potential for evaluation of simulation algorithms or training programs.

  18. A Scalable Route to Nanoporous Large-Area Atomically Thin Graphene Membranes by Roll-to-Roll Chemical Vapor Deposition and Polymer Support Casting.

    PubMed

    Kidambi, Piran R; Mariappan, Dhanushkodi D; Dee, Nicholas T; Vyatskikh, Andrey; Zhang, Sui; Karnik, Rohit; Hart, A John

    2018-03-28

    Scalable, cost-effective synthesis and integration of graphene is imperative to realize large-area applications such as nanoporous atomically thin membranes (NATMs). Here, we report a scalable route to the production of NATMs via high-speed, continuous synthesis of large-area graphene by roll-to-roll chemical vapor deposition (CVD), combined with casting of a hierarchically porous polymer support. To begin, we designed and built a two zone roll-to-roll graphene CVD reactor, which sequentially exposes the moving foil substrate to annealing and growth atmospheres, with a sharp, isothermal transition between the zones. The configurational flexibility of the reactor design allows for a detailed evaluation of key parameters affecting graphene quality and trade-offs to be considered for high-rate roll-to-roll graphene manufacturing. With this system, we achieve synthesis of uniform high-quality monolayer graphene ( I D / I G < 0.065) at speeds ≥5 cm/min. NATMs fabricated from the optimized graphene, via polymer casting and postprocessing, show size-selective molecular transport with performance comparable to that of membranes made from conventionally synthesized graphene. Therefore, this work establishes the feasibility of a scalable manufacturing process of NATMs, for applications including protein desalting and small-molecule separations.

  19. Metallurgical Aspects of Layered Cracks in Hot-Rolled Plates

    NASA Astrophysics Data System (ADS)

    Farber, V. M.; Arabey, A. B.; Khotinov, V. A.; Morozova, A. N.; Karabanalov, M. S.

    2018-03-01

    The nature of separations arising in hot-rolled plates from high-toughness steels of the new generation like 05G2B and of cleavages arising in traditional building steels of type 09G2S is studied. Like and unlike features of separations and cleavages are determined. The concept of "critical stress σb^{cr} " describing the strength of the interlayer boundaries responsible for formation of layered cracks is used to analyze various factors responsible for the susceptibility of rolled plates to layered fracture.

  20. Separation of non-ferrous metals from ASR by corona electrostatic separation

    NASA Astrophysics Data System (ADS)

    Kim, Yang-soo; Choi, Jin-Young; Jeon, Ho-Seok; Han, Oh-Hyung; Park, Chul-Hyun

    2016-04-01

    Automotive shredder residue (ASR), the residual fraction of approximate 25% obtained after dismantling and shredding from waste car, consists of polymers (plastics and rubber), metals (ferrous and non-ferrous), wood, glass and fluff (textile and fiber). ASR cannot be effectively separated due to its heterogeneous materials and coated or laminated complexes and then largely deposited in land-fill sites as waste. Thus reducing a pollutant release before disposal, techniques that can improve the liberation of coated (or laminated) complexes and the recovery of valuable metals from the shredder residue are needed. ASR may be separated by a series of physical processing operations such as comminution, air, magnetic and electrostatic separations. The work deals with the characterization of the shredder residue coming from an industrial plant in korea and focuses on estimating the optimal conditions of corona electrostatic separation for improving the separation efficiency of valuable non-ferrous metals such as aluminum, copper and etc. From the results of test, the maximum separation achievable for non-ferrous metals using a corona electrostatic separation has been shown to be recovery of 92.5% at a grade of 75.8%. The recommended values of the process variables, particle size, electrode potential, drum speed, splitter position and relative humidity are -6mm, 50 kV, 35rpm, 20° and less 40%, respectively. Acknowledgments This study was supported by the R&D Center for Valuable Recycling (Global-Top R&BD Program) of the Ministry of Environment. (Project No. GT-11-C-01-170-0)

  1. Electrostatic interaction between dissimilar colloids at fluid interfaces

    NASA Astrophysics Data System (ADS)

    Majee, Arghya; Schmetzer, Timo; Bier, Markus

    2018-04-01

    The electrostatic interaction between two nonidentical, moderately charged colloids situated in close proximity of each other at a fluid interface is studied. By resorting to a well-justified model system, this problem is analytically solved within the framework of linearized Poisson-Boltzmann density functional theory. The resulting interaction comprises a surface and a line part, both of which, as functions of the interparticle separation, show a rich behavior including monotonic as well as nonmonotonic variations. In almost all cases, these variations cannot be captured correctly by using the superposition approximation. Moreover, expressions for the surface tensions, the line tensions and the fluid-fluid interfacial tension, which are all independent of the interparticle separation, are obtained. Our results are expected to be particularly useful for emulsions stabilized by oppositely charged particles.

  2. Computational modeling of electrostatic charge and fields produced by hypervelocity impact

    DOE PAGES

    Crawford, David A.

    2015-05-19

    Following prior experimental evidence of electrostatic charge separation, electric and magnetic fields produced by hypervelocity impact, we have developed a model of electrostatic charge separation based on plasma sheath theory and implemented it into the CTH shock physics code. Preliminary assessment of the model shows good qualitative and quantitative agreement between the model and prior experiments at least in the hypervelocity regime for the porous carbonate material tested. The model agrees with the scaling analysis of experimental data performed in the prior work, suggesting that electric charge separation and the resulting electric and magnetic fields can be a substantial effectmore » at larger scales, higher impact velocities, or both.« less

  3. Ceramic Rail-Race Ball Bearings

    NASA Technical Reports Server (NTRS)

    Balzer, Mark A.; Mungas, Greg S.; Peters, Gregory H.

    2010-01-01

    Non-lubricated ball bearings featuring rail races have been proposed for use in mechanisms that are required to function in the presence of mineral dust particles in very low-pressure, dry environments with extended life. Like a conventional ball bearing, the proposed bearing would include an inner and an outer ring separated by balls in rolling contact with the races. However, unlike a conventional ball bearing, the balls would not roll in semi-circular or gothic arch race grooves in the rings: instead, the races would be shaped to form two or more rails (see figure). During operation, the motion of the balls would push dust particles into the spaces between the rails where the particles could not generate rolling resistance for the balls

  4. Measured Aerodynamic Interaction of Two Tiltrotors

    NASA Technical Reports Server (NTRS)

    Yamauchi, Gloria K.; Wadcock, Alan J.; Derby, Michael R.

    2003-01-01

    The aerodynamic interaction of two model tilrotors in helicopter-mode formation flight is investigated. Three cenarios representing tandem level flight, tandem operations near the ground, and a single tiltrotor operating above thc ground for varying winds are examined. The effect of aircraft separation distance on the thrust and rolling moment of the trailing aircraft with and without the presence of a ground plane are quantified. Without a ground plane, the downwind aircraft experiences a peak rolling moment when the right (left) roto- of the upwind aircraft is laterally aligned with the left (right) rotor of the downwind aircraft. The presence of the ground plane causes the peak rolling moment on the downwind aircraft to occur when the upwind aircraft is further outboard of the downwind aircraft. Ground plane surface flow visualization images obtained using rufts and oil are used to understand mutual interaction between the two aircraft. These data provide guidance in determining tiltrotor flight formations which minimize disturbance to the trailing aircraft.

  5. Long-range interaction between heterogeneously charged membranes.

    PubMed

    Jho, Y S; Brewster, R; Safran, S A; Pincus, P A

    2011-04-19

    Despite their neutrality, surfaces or membranes with equal amounts of positive and negative charge can exhibit long-range electrostatic interactions if the surface charge is heterogeneous; this can happen when the surface charges form finite-size domain structures. These domains can be formed in lipid membranes where the balance of the different ranges of strong but short-ranged hydrophobic interactions and longer-ranged electrostatic repulsion result in a finite, stable domain size. If the domain size is large enough, oppositely charged domains in two opposing surfaces or membranes can be strongly correlated by the electrostatic interactions; these correlations give rise to an attractive interaction of the two membranes or surfaces over separations on the order of the domain size. We use numerical simulations to demonstrate the existence of strong attractions at separations of tens of nanometers. Large line tensions result in larger domains but also increase the charge density within the domain. This promotes correlations and, as a result, increases the intermembrane attraction. On the other hand, increasing the salt concentration increases both the domain size and degree of domain anticorrelation, but the interactions are ultimately reduced due to increased screening. The result is a decrease in the net attraction as salt concentration is increased. © 2011 American Chemical Society

  6. Graphene nanoplatelet composite 'paper' as an electrostatic actuator.

    PubMed

    Yu, Zeyang; Drzal, Lawrence T

    2018-08-03

    Graphene nanoplatelets (GnP) can be made into a thin 'paper' through vacuum filtration of GnP suspension. Electrodes were fabricated from the compressed GnP paper and then by coating the surface with epoxy. The electrostatic actuator was constructed from two parallel-aligned composite papers fixed at the anode and a cathode connected to ground. The two composite papers would then separate when a voltage was applied. The GnP paper was also modified to increase surface area by introducing porosity or adding ∼10 wt% C750 (GnP with diameter less than 1 μm); or changing the relative permittivity by adding barium titanate particles; or combining these two effects by adding CNCs. Overall the output work could be significantly improved to over 400%.

  7. Accelerating electrostatic surface potential calculation with multi-scale approximation on graphics processing units.

    PubMed

    Anandakrishnan, Ramu; Scogland, Tom R W; Fenley, Andrew T; Gordon, John C; Feng, Wu-chun; Onufriev, Alexey V

    2010-06-01

    Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed-up these types of electrostatic computations are approximations based on multi-scale coarse-graining and parallelization across multiple processors. This paper demonstrates that for the computation of electrostatic surface potential, these two techniques can be combined to deliver significantly greater speed-up than either one separately, something that is in general not always possible. Specifically, the electrostatic potential computation, using an analytical linearized Poisson-Boltzmann (ALPB) method, is approximated using the hierarchical charge partitioning (HCP) multi-scale method, and parallelized on an ATI Radeon 4870 graphical processing unit (GPU). The implementation delivers a combined 934-fold speed-up for a 476,040 atom viral capsid, compared to an equivalent non-parallel implementation on an Intel E6550 CPU without the approximation. This speed-up is significantly greater than the 42-fold speed-up for the HCP approximation alone or the 182-fold speed-up for the GPU alone. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  8. A universal approach to fabricate ordered colloidal crystals arrays based on electrostatic self-assembly.

    PubMed

    Zhang, Xun; Zhang, Junhu; Zhu, Difu; Li, Xiao; Zhang, Xuemin; Wang, Tieqiang; Yang, Bai

    2010-12-07

    We present a novel and simple method to fabricate two-dimensional (2D) poly(styrene sulfate) (PSS, negatively charged) colloidal crystals on a positively charged substrate. Our strategy contains two separate steps: one is the three-dimensional (3D) assembly of PSS particles in ethanol, and the other is electrostatic adsorption in water. First, 3D assembly in ethanol phase eliminates electrostatic attractions between colloids and the substrate. As a result, high-quality colloidal crystals are easily generated, for electrostatic attractions are unfavorable for the movement of colloidal particles during convective self-assembly. Subsequently, top layers of colloidal spheres are washed away in the water phase, whereas well-packed PSS colloids that are in contact with the substrate are tightly linked due to electrostatic interactions, resulting in the formation of ordered arrays of 2D colloidal spheres. Cycling these processes leads to the layer-by-layer assembly of 3D colloidal crystals with controllable layers. In addition, this strategy can be extended to the fabrication of patterned 2D colloidal crystals on patterned polyelectrolyte surfaces, not only on planar substrates but also on nonplanar substrates. This straightforward method may open up new possibilities for practical use of colloidal crystals of excellent quality, various patterns, and controllable fashions.

  9. Plasma cleaning of nanoparticles from EUV mask materials by electrostatics

    NASA Astrophysics Data System (ADS)

    Lytle, W. M.; Raju, R.; Shin, H.; Das, C.; Neumann, M. J.; Ruzic, D. N.

    2008-03-01

    Particle contamination on surfaces used in extreme ultraviolet (EUV) mask blank deposition, mask fabrication, and patterned mask handling must be avoided since the contamination can create significant distortions and loss of reflectivity. Particles on the order of 10nm are problematic during MLM mirror fabrication, since the introduced defects disrupt the local Bragg planes. The most serious problem is the accumulation of particles on surfaces of patterned blanks during EUV light exposure, since > 25nm particles will be printed without an out-of-focus pellicle. Particle contaminants are also a problem with direct imprint processes since defects are printed every time. Plasma Assisted Cleaning by Electrostatics (PACE) works by utilizing a helicon plasma as well as a pulsed DC substrate bias to charge particle and repel them electrostatically from the surface. Removal of this nature is a dry cleaning method and removes contamination perpendicular from the surface instead of rolling or sweeping the particles off the surface, a benefit when cleaning patterned surfaces where contamination can be rolled or trapped between features. Also, an entire mask can be cleaned at once since the plasma can cover the entire surface, thus there is no need to focus in on an area to clean. Sophisticated particle contamination detection system utilizing high power laser called DEFCON is developed to analyze the particle removal after PACE cleaning process. PACE has shown greater than 90 % particle removal efficiencies for 30 to 220 nm PSL particles on ruthenium capped quartz. Removal results for silicon surfaces and quartz surfaces show similar removal efficiencies. Results of cleaning 80 nm PSL spheres from silicon substrates will be shown.

  10. A Paramagnetic Molecular Voltmeter

    PubMed Central

    Surek, Jack T.; Thomas, David D.

    2008-01-01

    We have developed a general electron paramagnetic resonance (EPR) method to measure electrostatic potential at spin labels on proteins to millivolt accuracy. Electrostatic potential is fundamental to energy-transducing proteins like myosin, because molecular energy storage and retrieval is primarily electrostatic. Quantitative analysis of protein electrostatics demands a site-specific spectroscopic method sensitive to millivolt changes. Previous electrostatic potential studies on macromolecules fell short in sensitivity, accuracy and/or specificity. Our approach uses fast-relaxing charged and neutral paramagnetic relaxation agents (PRAs) to increase nitroxide spin label relaxation rate solely through collisional spin exchange. These PRAs were calibrated in experiments on small nitroxides of known structure and charge to account for differences in their relaxation efficiency. Nitroxide longitudinal (R1) and transverse (R2) relaxation rates were separated by applying lineshape analysis to progressive saturation spectra. The ratio of measured R1 increases for each pair of charged and neutral PRAs measures the shift in local PRA concentration due to electrostatic potential. Voltage at the spin label is then calculated using the Boltzmann equation. Measured voltages for two small charged nitroxides agree with Debye-Hückel calculations. Voltage for spin-labeled myosin fragment S1 also agrees with calculation based on the pK shift of the reacted cysteine. PMID:17964835

  11. Rolling Process Modeling Report. Finite-Element Model Validation and Parametric Study on various Rolling Process parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soulami, Ayoub; Lavender, Curt A.; Paxton, Dean M.

    2015-06-15

    Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum alloy plate-type fuel for high-performance research reactors in the United States. This work supports the U.S. Department of Energy National Nuclear Security Administration’s Office of Material Management and Minimization Reactor Conversion Program. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll-separating forces for various rolling mill geometries for PNNL, Babcock & Wilcox Co., Y-12 National Security Complex, Los Alamos National Laboratory, and Idaho National Laboratory. The model developed and presented in a previous report has been subjected to further validationmore » study using new sets of experimental data generated from a rolling mill at PNNL. Simulation results of both hot rolling and cold rolling of uranium-10% molybdenum coupons have been compared with experimental results. The model was used to predict roll-separating forces at different temperatures and reductions for five rolling mills within the National Nuclear Security Administration Fuel Fabrication Capability project. This report also presents initial results of a finite-element model microstructure-based approach to study the surface roughness at the interface between zirconium and uranium-10% molybdenum.« less

  12. Preparation of a novel dual-function strong cation exchange/hydrophobic interaction chromatography stationary phase for protein separation.

    PubMed

    Zhao, Kailou; Yang, Li; Wang, Xuejiao; Bai, Quan; Yang, Fan; Wang, Fei

    2012-08-30

    We have explored a novel dual-function stationary phase which combines both strong cation exchange (SCX) and hydrophobic interaction chromatography (HIC) characteristics. The novel dual-function stationary phase is based on porous and spherical silica gel functionalized with ligand containing sulfonic and benzyl groups capable of electrostatic and hydrophobic interaction functionalities, which displays HIC character in a high salt concentration, and IEC character in a low salt concentration in mobile phase employed. As a result, it can be employed to separate proteins with SCX and HIC modes, respectively. The resolution and selectivity of the dual-function stationary phase were evaluated under both HIC and SCX modes with standard proteins and can be comparable to that of conventional IEC and HIC columns. More than 96% of mass and bioactivity recoveries of proteins can be achieved in both HIC and SCX modes, respectively. The results indicated that the novel dual-function column could replace two individual SCX and HIC columns for protein separation. Mixed retention mechanism of proteins on this dual-function column based on stoichiometric displacement theory (SDT) in LC was investigated to find the optimal balance of the magnitude of electrostatic and hydrophobic interactions between protein and the ligand on the silica surface in order to obtain high resolution and selectivity for protein separation. In addition, the effects of the hydrophobicity of the ligand of the dual-function packings and pH of the mobile phase used on protein separation were also investigated in detail. The results show that the ligand with suitable hydrophobicity to match the electrostatic interaction is very important to prepare the dual-function stationary phase, and a better resolution and selectivity can be obtained at pH 6.5 in SCX mode. Therefore, the dual-function column can replace two individual SCX and HIC columns for protein separation and be used to set up two-dimensional liquid chromatography with a single column (2DLC-1C), which can also be employed to separate three kinds of active proteins completely, such as lysozyme, ovotransferrin and ovalbumin from egg white. The result is very important not only to the development of new 2DLC technology with a single column for proteomics, but also to recombinant protein drug production for saving column expense and simplifying the process in biotechnology. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Wall effects in continuous microfluidic magneto-affinity cell separation.

    PubMed

    Wu, Liqun; Zhang, Yong; Palaniapan, Moorthi; Roy, Partha

    2010-05-01

    Continuous microfluidic magneto-affinity cell separator combines unique microscale flow phenomenon with advantageous nanobead properties, to isolate cells with high specificity. Owing to the comparable size of the cell-bead complexes and the microchannels, the walls of the microchannel exert a strong influence on the separation of cells by this method. We present a theoretical and experimental study that provides a quantitative description of hydrodynamic wall interactions and wall rolling velocity of cells. A transient convection model describes the transport of cells in two-phase microfluidic flow under the influence of an external magnetic field. Transport of cells along the microchannel walls is also considered via an additional equation. Results show the variation of cell flux in the fluid phases and the wall as a function of a dimensionless parameter arising in the equations. Our results suggest that conditions may be optimized to maximize cell separation while minimizing contact with the wall surfaces. Experimentally measured cell rolling velocities on the wall indicate the presence of other near-wall forces in addition to fluid shear forces. Separation of a human colon carcinoma cell line from a mixture of red blood cells, with folic acid conjugated 1 microm and 200 nm beads, is reported.

  14. New technology for separating resin powder and fiberglass powder from fiberglass-resin powder of waste printed circuit boards.

    PubMed

    Li, Jia; Gao, Bei; Xu, Zhenming

    2014-05-06

    New recycling technologies have been developed lately to enhance the value of the fiberglass powder-resin powder fraction (FRP) from waste printed circuit boards. The definite aim of the present paper is to present some novel methods that use the image forces for the separation of the resin powder and fiberglass powder generated from FRP during the corona electrostatic separating process. The particle shape charactization and particle trajectory simulation were performed on samples of mixed non-metallic particles. The simulation results pointed out that particles of resin powder and particles of fiberglass powder had different detach trajectories at the conditions of the same size and certain device parameters. An experiment carried out using a corona electrostatic separator validated the possibility of sorting these particles based on the differences in their shape characteristics. The differences in the physical properties of the different types of particles provided the technical basis for the development of electrostatic separation technologies for the recycling industry.

  15. Biased optimal guidance for a bank-to-turn missile

    NASA Astrophysics Data System (ADS)

    Stallard, D. V.

    A practical terminal-phase guidance law for controlling the pitch acceleration and roll rate of a bank-to-turn missile with zero autopilot lags was derived and tested, so as to minimize squared miss distance without requiring overly large commands. An acceleration bias is introduced to prevent excessive roll commands due to noise. The Separation Theorem is invoked and the guidance (control) law is derived by applying optimal control theory, linearizing the nonlinear plant equation around the present missile orientation, and obtaining a closed-form solution. The optimal pitch-acceleration and roll-rate commands are respectively proportional to two components of the projected, constant-bias, miss distance, with a resemblance to earlier derivations and proportional navigation. Simulaiation results and other related work confirm the suitability of the guidance law.

  16. Friction coefficient dependence on electrostatic tribocharging

    PubMed Central

    Burgo, Thiago A. L.; Silva, Cristiane A.; Balestrin, Lia B. S.; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers. PMID:23934227

  17. Phenylboronate chromatography selectively separates glycoproteins through the manipulation of electrostatic, charge transfer, and cis-diol interactions.

    PubMed

    Carvalho, Rimenys J; Woo, James; Aires-Barros, M Raquel; Cramer, Steven M; Azevedo, Ana M

    2014-10-01

    Phenylboronate chromatography (PBC) has been applied for several years, however details regarding the mechanisms of interactions between the ligand and biomolecules are still scarce. The goal of this work is to investigate the various chemical interactions between proteins and their ligands, using a protein library containing both glycosylated and nonglycosylated proteins. Differences in the adsorption of these proteins over a pH range from 4 to 9 were related to two main properties: charge and presence of glycans. Acidic or neutral proteins were strongly adsorbed below pH 8 although the uncharged trigonal form of phenylboronate (PB) is less susceptible to forming electrostatic and cis-diol interactions with proteins. The glycosylated proteins were only adsorbed above pH 8 when the electrostatic repulsion between the boronate anion and the protein surface was mitigated (at 200 mM NaCl). All basic proteins were highly adsorbed above pH 8 with PB also acting as a cation-exchanger with binding occurring through electrostatic interactions. Batch adsorption performed at acidic conditions in the presence of Lewis base showed that charge-transfer interactions are critical for protein retention. This study demonstrates the multimodal interaction of PBC, which can be a selective tool for separation of different classes of proteins. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Interaction between two point-like charges in nonlinear electrostatics

    NASA Astrophysics Data System (ADS)

    Breev, A. I.; Shabad, A. E.

    2018-01-01

    We consider two point-like charges in electrostatic interaction within the framework of a nonlinear model, associated with QED, that provides finiteness of their field energy. We find the common field of the two charges in a dipole-like approximation, where the separation between them R is much smaller than the observation distance r : with the linear accuracy with respect to the ratio R / r, and in the opposite approximation, where R≫ r, up to the term quadratic in the ratio r / R. The consideration proposes the law a+b R^{1/3} for the energy, when the charges are close to one another, R→ 0. This leads to the singularity of the force between them to be R^{-2/3}, which is weaker than the Coulomb law, R^{-2}.

  19. Mimicking the Interfacial Dynamics of Flowing White Blood Cells

    NASA Astrophysics Data System (ADS)

    Santore, Maria

    2015-03-01

    The rolling of particles on surfaces, facilitated by hydrodynamic forces combined with localized surface interactions of the appropriate strengths, spatial arrangements, and ranges, is a technologically useful means of transporting and manipulating particles. One's intuition for the rolling of a marble or a car tire cannot be extrapolated down to microparticle length scales because the microparticle interactions are dominated by electrostatic, van der Waals, and hydrogen bonding interactions rather than a friction that depends on an imposed normal force. Indeed, our microparticle rolling systems are inspired by the rolling of white blood cells on the inner walls of venules as part of the innate immune response: Selectin molecules engage with their counterparts on the opposing surfaces to slow cell motion relative to that for freely flowing cells. In the resulting rolling signature, ligand-receptor binding and crack closing on the front of the cell are balanced with molecular dis-bonding and crack opening at the rear. The contact region is relatively static, allowing other interactions (for instance signaling) to occur for a finite duration. Thus, achieving particle rolling in synthetic systems is important because it facilitates particle-surface interactions in a continuous nonfouling fashion where the contact surface is continually renewed. In developing a synthetic model for this system, we employ polymers to modify flowing particles and /or planar collectors, producing heterogeneous interfaces which can support rolling or produce other motion signatures such as skipping, arrest, or free flow. We identify, in the synthetic system, combinations of variables that produce rolling and demonstrate how the distinction between rolling and arrest is not a simple matter of the adhesion strength between the particles and the collector. Rolling is a cooperative process and the coordination of binding in one location with dis-bonding in another requires appropriate length scales in the design of the interface and in the processing parameters as well.

  20. Electrostatic Explorations.

    ERIC Educational Resources Information Center

    Gallai, Ditta; Stewart, Gay

    1998-01-01

    Presents a set of hands-on electrostatics experiments in the form of an activity guide and worksheet through which students discover the different types of electric charge, Coulomb's Law, induced charge separation, and grounding. (DDR)

  1. Computer-aided analysis and design of the shape rolling process for producing turbine engine airfoils

    NASA Technical Reports Server (NTRS)

    Lahoti, G. D.; Akgerman, N.; Altan, T.

    1978-01-01

    Mild steel (AISI 1018) was selected as model cold rolling material and Ti-6A1-4V and Inconel 718 were selected as typical hot rolling and cold rolling alloys, respectively. The flow stress and workability of these alloys were characterized and friction factor at the roll/workpiece interface was determined at their respective working conditions by conducting ring tests. Computer-aided mathematical models for predicting metal flow and stresses, and for simulating the shape rolling process were developed. These models utilized the upper bound and the slab methods of analysis, and were capable of predicting the lateral spread, roll separating force, roll torque, and local stresses, strains and strain rates. This computer-aided design system was also capable of simulating the actual rolling process, and thereby designing the roll pass schedule in rolling of an airfoil or a similar shape.

  2. Measurements of the Casimir-Lifshitz force in fluids: The effect of electrostatic forces and Debye screening

    NASA Astrophysics Data System (ADS)

    Munday, J. N.; Capasso, Federico; Parsegian, V. Adrian; Bezrukov, Sergey M.

    2008-09-01

    We present detailed measurements of the Casimir-Lifshitz force between two gold surfaces (a sphere and a plate) immersed in ethanol and study the effect of residual electrostatic forces, which are dominated by static fields within the apparatus and can be reduced with proper shielding. Electrostatic forces are further reduced by Debye screening through the addition of salt ions to the liquid. Additionally, the salt leads to a reduction of the Casimir-Lifshitz force by screening the zero-frequency contribution to the force; however, the effect is small between gold surfaces at the measured separations and within experimental error. An improved calibration procedure is described and compared with previous methods. Finally, the experimental results are compared with Lifshitz’s theory and found to be consistent for the materials used in the experiment.

  3. Children's behavioral pain reactions during local anesthetic injection using cotton-roll vibration method compared with routine topical anesthesia: A randomized controlled trial.

    PubMed

    Bagherian, Ali; Sheikhfathollahi, Mahmood

    2016-01-01

    Topical anesthesia has been widely advocated as an important component of atraumatic administration of intraoral local anesthesia. The aim of this study was to use direct observation of children's behavioral pain reactions during local anesthetic injection using cotton-roll vibration method compared with routine topical anesthesia. Forty-eight children participated in this randomized controlled clinical trial. They received two separate inferior alveolar nerve block or primary maxillary molar infiltration injections on contralateral sides of the jaws by both cotton-roll vibration (a combination of topical anesthesia gel, cotton roll, and vibration for physical distraction) and control (routine topical anesthesia) methods. Behavioral pain reactions of children were measured according to the author-developed face, head, foot, hand, trunk, and cry (FHFHTC) scale, resulting in total scores between 0 and 18. The total scores on the FHFHTC scale ranged between 0-5 and 0-10 in the cotton-roll vibration and control methods, respectively. The mean ± standard deviation values of total scores on FHFHTC scale were lower in the cotton-roll vibration method (1.21 ± 1.38) than in control method (2.44 ± 2.18), and this was statistically significant (P < 0.001). It may be concluded that the cotton-roll vibration method can be more helpful than the routine topical anesthesia in reducing behavioral pain reactions in children during local anesthesia administration.

  4. Visualizing the Positive-Negative Interface of Molecular Electrostatic Potentials as an Educational Tool for Assigning Chemical Polarity

    ERIC Educational Resources Information Center

    Schonborn, Konrad; Host, Gunnar; Palmerius, Karljohan

    2010-01-01

    To help in interpreting the polarity of a molecule, charge separation can be visualized by mapping the electrostatic potential at the van der Waals surface using a color gradient or by indicating positive and negative regions of the electrostatic potential using different colored isosurfaces. Although these visualizations capture the molecular…

  5. KSC-2009-1530

    NASA Image and Video Library

    2009-02-10

    CAPE CANAVERAL, Fla. – The Ares I-X roll control system module, comprising two modules and four thrusters, is being prepared for a fit check on the Ares I-X rocket upper stage simulator. The hardware is in high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I-X is targeted for launch in summer of 2009. Photo credit: NASA/Tim Jacobs

  6. KSC-2009-1533

    NASA Image and Video Library

    2009-02-10

    CAPE CANAVERAL, Fla. – The Ares I-X roll control system module, comprising two modules and four thrusters, is being moved toward the upper stage simulator for a fit check. The hardware is in high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I-X is targeted for launch in summer of 2009. Photo credit: NASA/Tim Jacobs

  7. KSC-2009-1531

    NASA Image and Video Library

    2009-02-10

    CAPE CANAVERAL, Fla. – The Ares I-X roll control system module, comprising two modules and four thrusters, is being prepared for a fit check on the Ares I-X rocket upper stage simulator. The hardware is in high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I-X is targeted for launch in summer of 2009. Photo credit: NASA/Tim Jacobs

  8. KSC-2009-1532

    NASA Image and Video Library

    2009-02-10

    CAPE CANAVERAL, Fla. – The Ares I-X roll control system module, comprising two modules and four thrusters, is being prepared for a fit check on the Ares I-X rocket upper stage simulator. The hardware is in high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I-X is targeted for launch in summer of 2009. Photo credit: NASA/Tim Jacobs

  9. Recovery of ferrous and nonferrous metal from ASR by physical separation

    NASA Astrophysics Data System (ADS)

    Kim, Min-gyu; Han, Oh-hyung; Park, Chul-hyun

    2017-04-01

    A recycle ratio of waste automobiles in Korea is low, compared to that of the advanced countries. Especially in its recycle, separation of automotive shredder residue (ASR), the residual fraction of approximate 25% obtained after dismantling and shredding from waste car, is needed. However ASR is cannot be effectively separated due to its heterogeneous materials and coated or laminated complexes and then is largely deposited in land-fill sites as waste. In this study ASR was separated by a series of physical processing operations such as comminution, air classification and magnetic separation and electrostatic separations. In particular it focuses on estimating the optimal conditions of magnetic and electrostatic separations for improving the separation efficiency of valuable ferrous and non-ferrous metals such as iron (Fe), aluminum, copper and etc. In magnetic separation, 91.5% Fe grade and 91% recovery could be obtained at conditions of particle size under 10mm and magnetic intensity of 400 gauss. In corona electrostatic separation for recovering nonferrous metals, a grade of 79.2% and recovery of 90.7% could be successfully achieved under conditions of -6mm particle size, 50kV electrode potential, 35rpm drum speed and 20 degree splitter position, respectively. Acknowledgments This study was supported by the R&D Center for Valuable Recycling (Global-Top R&BD Program) of the Ministry of Environment. (Project No. 2016002250001)

  10. Continuous-flow separation of nanoparticles by electrostatic sieving at a micro-nanofluidic interface.

    PubMed

    Regtmeier, Jan; Käsewieter, Jörg; Everwand, Martina; Anselmetti, Dario

    2011-05-01

    Continuous-flow separation of nanoparticles (NPs) (15 and 39 nm) is demonstrated based on electrostatic sieving at a micro-nanofluidic interface. The interface is realized in a poly(dimethylsiloxane) device with a nanoslit of 525 nm laterally spanning the microfluidic channel (aspect ratio of 540:1). Within this nanoslit, the Debye layers overlap and generate an electrostatic sieve. This was exploited to selectively deflect and sort NPs with a sorting purity of up to 97%. Because of the continuous-flow operation, the sample is continuously fed into the device, immediately separated, and the parameters can be adapted in real time. For bioanalytical purposes, we also demonstrate the deflection of proteins (longest axis 6.8 nm). The continuous operation mode and the general applicability of this separation concept make this method a valuable addition to the current Lab-on-a-Chip devices for continuous sorting of NPs and macromolecules. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation.

    PubMed

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Liao, Xiaofeng; Wang, Jing; Chen, Zhonghua; He, Jie; Zeng, Xingrong

    2018-01-31

    Superhydrophobic surfaces with tunable adhesion from lotus-leaf to rose-petal states have generated much attention for their potential applications in self-cleaning, anti-icing, oil-water separation, microdroplet transportation, and microfluidic devices. Herein we report a facile magnetic-field-manipulation strategy to fabricate dual-functional superhydrophobic textiles with asymmetric roll-down/pinned states on the two surfaces of the textile simultaneously. Upon exposure to a static magnetic field, fluoroalkylsilane-modified iron oxide (F-Fe 3 O 4 ) nanoparticles in polydimethylsiloxane (PDMS) moved along the magnetic field to construct discrepant hierarchical structures and roughnesses on the two sides of the textile. The positive surface (closer to the magnet, or P-surface) showed a water contact angle up to 165°, and the opposite surface (or O-surface) had a water contact angle of 152.5°. The P-surface where water droplets easily slid off with a sliding angle of 7.5° appeared in the "roll-down" state as Cassie mode, while the O-surface was in the "pinned" state as Wenzel mode, where water droplets firmly adhered even at vertical (90°) and inverted (180°) angles. The surface morphology and wetting mode were adjustable by varying the ratios of F-Fe 3 O 4 nanoparticles and PDMS. By taking advantage of the asymmetric adhesion behaviors, the as-fabricated superhydrophobic textile was successfully applied in no-loss microdroplet transportation and oil-water separation. Our method is simple and cost-effective. The fabricated textile has the characteristics of superhydrophobicity, magnetic responsiveness, excellent chemical stability, adjustable surface morphology, and controllable adhesion. Our findings conceivably stand out as a new tool to fabricate functional superhydrophobic materials with asymmetric surface properties for various potential applications.

  12. Computational Study of the Effect of Slot Orientation on Synthetic Jet-Based Separation Control

    DTIC Science & Technology

    2012-01-01

    Wind Turbine Blades,” Journal of Wind Energy, Vol. 13, Issue 2-3, 2009, pp. 221 – 237. [10] Crook, A. and Wood, N. J., “Measurements and...by these hairpin structures could be desirable for separation control. Roll-up of jets into vortex ring followed by tilting and stretching occurred...at an intermediate Reynolds number and velocity ratio. By increasing these two flow parameters, rapid penetration of the tilted vortex ring up to the

  13. Electrostatic Rate Enhancement and Transient Complex of Protein-Protein Association

    PubMed Central

    Alsallaq, Ramzi; Zhou, Huan-Xiang

    2012-01-01

    The association of two proteins is bounded by the rate at which they, via diffusion, find each other while in appropriate relative orientations. Orientational constraints restrict this rate to ~105 – 106 M−1s−1. Proteins with higher association rates generally have complementary electrostatic surfaces; proteins with lower association rates generally are slowed down by conformational changes upon complex formation. Previous studies (Zhou, Biophys. J. 1997;73:2441–2445) have shown that electrostatic enhancement of the diffusion-limited association rate can be accurately modeled by kD = kD0 exp(−*/ kBT), where kD and kD0 are the rates in the presence and absence of electrostatic interactions, respectively, * is the average electrostatic interaction energy in a “transient-complex” ensemble, and kBT is thermal energy. The transient-complex ensemble separates the bound state from the unbound state. Predictions of the transient-complex theory on four protein complexes were found to agree well with experiment when the electrostatic interaction energy was calculated with the linearized Poisson-Boltzmann (PB) equation (Alsallaq and Zhou, Structure 2007, 15:215–224). Here we show that the agreement is further improved when the nonlinear PB equation is used. These predictions are obtained with the dielectric boundary defined as the protein van der Waals surface. When the dielectric boundary is instead specified as the molecular surface, electrostatic interactions in the transient complex become repulsive and are thus predicted to retard association. Together these results demonstrate that the transient-complex theory is predictive of electrostatic rate enhancement and can help parameterize PB calculations. PMID:17932929

  14. Electrostatic dispersion lenses and ion beam dispersion methods

    DOEpatents

    Dahl, David A [Idaho Falls, ID; Appelhans, Anthony D [Idaho Falls, ID

    2010-12-28

    An EDL includes a case surface and at least one electrode surface. The EDL is configured to receive through the EDL a plurality of ion beams, to generate an electrostatic field between the one electrode surface and either the case surface or another electrode surface, and to increase the separation between the beams using the field. Other than an optional mid-plane intended to contain trajectories of the beams, the electrode surface or surfaces do not exhibit a plane of symmetry through which any beam received through the EDL must pass. In addition or in the alternative, the one electrode surface and either the case surface or the other electrode surface have geometries configured to shape the field to exhibit a less abrupt entrance and/or exit field transition in comparison to another electrostatic field shaped by two nested, one-quarter section, right cylindrical electrode surfaces with a constant gap width.

  15. ACUTE EFFECTS OF DIFFERENT ANTERIOR THIGH SELF-MASSAGE ON HIP RANGE-OF-MOTION IN TRAINED MEN.

    PubMed

    Monteiro, Estêvão Rios; Vigotsky, Andrew D; Novaes, Jefferson da Silva; Škarabot, Jakob

    2018-02-01

    Self-massage is a ubiquitous intervention similar to massage, but performed by the recipient him- or herself rather than by a therapist, most often using a tool (e.g., foam roller, roller massager). Self-massage has been found to have a wide range of effects. It is particularly known for increasing flexibility acutely, although not always. The variability of the results in previous studies may potentially be a function of the tool used. Recent findings also suggest that self-massage exerts global effects. Therefore, increased flexibility should be expected in the areas adjacent to the ones treated. To investigate the acute effects of foam rolling and rolling massage of anterior thigh on hip range-of-motion (ROM) - i.e., hip extension and hip flexion - in trained men. Eighteen recreationally active, resistance trained males visited the lab on two occasions over a 4-day period separated by at least a day. Each session included two baseline ROM measures of passive hip flexion and extension taken in a randomized fashion. Recording of baseline measures was followed by the intervention of the day, which was either foam rolling or rolling massage of the anterior thigh as per randomization. Immediately post intervention, passive hip flexion and hip extension ROM were reassessed. In order to assess the time course of improvements in ROM, hip flexion and hip extension ROM were reevaluated at 10, 20, and 30 minutes post-intervention. Hip flexion and hip extension ROM increased immediately following both interventions (foam rolling or roller massager) and remained increased for 30 minutes post intervention. Foam rolling was statistically superior in improving hip flexion and hip extension ROM immediately post intervention. However, immediately post-intervention was the only time point that measurements exceeded the minimum detectable change for both interventions. Both foam rolling and rolling massage appear to be effective interventions for improving hip flexion and extension ROM when applied to the anterior thigh, but the observed effects are transient in nature. 2b.

  16. Electrostatic Interactions Between Glycosaminoglycan Molecules

    NASA Astrophysics Data System (ADS)

    Song, Fan; Moyne, Christian; Bai, Yi-Long

    2005-02-01

    The electrostatic interactions between nearest-neighbouring chondroitin sulfate glycosaminoglycan (CS-GAG) molecular chains are obtained on the bottle brush conformation of proteoglycan aggrecan based on an asymptotic solution of the Poisson-Boltzmann equation the CS-GAGs satisfy under the physiological conditions of articular cartilage. The present results show that the interactions are associated intimately with the minimum separation distance and mutual angle between the molecular chains themselves. Further analysis indicates that the electrostatic interactions are not only expressed to be purely exponential in separation distance and decrease with the increasing mutual angle but also dependent sensitively on the saline concentration in the electrolyte solution within the tissue, which is in agreement with the existed relevant conclusions.

  17. Rolled-up transmission line structure for a radiofrequency integrated circuit (RFIC)

    DOEpatents

    Li, Xiuling; Huang, Wen

    2015-04-28

    A rolled-up transmission line structure for a radiofrequency integrated circuit (RFIC) comprises a multilayer sheet in a rolled configuration comprising multiple turns about a longitudinal axis, where the multilayer sheet comprises a conductive pattern layer on a strain-relieved layer. The conductive pattern layer comprises a first conductive film and a second conductive film separated from the first conductive film in a rolling direction. In the rolled configuration, the first conductive film surrounds the longitudinal axis, and the second conductive film surrounds the first conductive film. The first conductive film serves as a signal line and the second conductive film serves as a conductive shield for the rolled-up transmission line structure.

  18. Computer-aided analysis and design of the shape rolling process for producing turbine engine airfoils

    NASA Technical Reports Server (NTRS)

    Lahoti, G. D.; Akgerman, N.; Altan, T.

    1978-01-01

    Mild steel (AISI 1018) was selected as model cold-rolling material and Ti-6Al-4V and INCONEL 718 were selected as typical hot-rolling and cold-rolling alloys, respectively. The flow stress and workability of these alloys were characterized and friction factor at the roll/workpiece interface was determined at their respective working conditions by conducting ring tests. Computer-aided mathematical models for predicting metal flow and stresses, and for simulating the shape-rolling process were developed. These models utilize the upper-bound and the slab methods of analysis, and are capable of predicting the lateral spread, roll-separating force, roll torque and local stresses, strains and strain rates. This computer-aided design (CAD) system is also capable of simulating the actual rolling process and thereby designing roll-pass schedule in rolling of an airfoil or similar shape. The predictions from the CAD system were verified with respect to cold rolling of mild steel plates. The system is being applied to cold and hot isothermal rolling of an airfoil shape, and will be verified with respect to laboratory experiments under controlled conditions.

  19. A numerical study on liquid charging inside electrostatic atomizers

    NASA Astrophysics Data System (ADS)

    Kashir, Babak; Perri, Anthony; Sankaran, Abhilash; Staszel, Christopher; Yarin, Alexander; Mashayek, Farzad

    2016-11-01

    The charging of the dielectric liquid inside an electrostatic atomizer is studied numerically by developing codes based on the OpenFOAM platform. Electrostatic atomization is an appealing technology in painting, fuel injection and oil coating systems due to improved particle-size distribution, enhanced controlability of droplets' trajectories and lower power consumption. The numerical study is conducted concurrently to an experimental investigation to facilitate the validation and deliver feedback for further development. The atomizer includes a pin electrode that is placed at the center of a converging chamber. The chamber orifice is located at a known distance from the electrode tip. The pin electrode is connected to a high voltage that leads to the charging of the liquid. In the present work, the theoretical foundations of separated treatment of the polarized layer and the electronuetral bulk flow are set by describing the governing equations, relevant boundary conditions and the matching condition between these two domains. The resulting split domains are solved numerically to find the distribution of velocity and electrostatic fields over the specified regions. National Science Foundation Award Number: 1505276.

  20. ELECTROSTATIC SURFACE STRUCTURES OF COAL AND MINERAL PARTICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    It is the purpose of this research to study electrostatic charging mechanisms related to electrostatic beneficiation of coal with the goal of improving models of separation and the design of electrostatic separators. Areas addressed in this technical progress report are (a) electrostatic beneficiation of Pittsburgh #8 coal powders as a function of grind size and processing atmosphere; (b) the use of fluorescent micro-spheres to probe the charge distribution on the surfaces of coal particles; (c) the use of electrostatic beneficiation to recover unburned carbon from flyash; (d) the development of research instruments for investigation of charging properties of coal. Pittsburghmore » #8 powders were beneficiated as a function of grind size and under three atmosphere conditions: fresh ground in air , after 24 hours of air exposure, or under N2 atmosphere. The feed and processed powders were analyzed by a variety of methods including moisture, ash, total sulfur, and pyritic sulfur content. Mass distribution and cumulative charge of the processed powders were also measured. Fresh ground coal performed the best in electrostatic beneficiation. Results are compared with those of similar studies conducted on Pittsburgh #8 powders last year (April 1, 1997 to September 30, 1997). Polystyrene latex spheres were charged and deposited onto coal particles that had been passed through the electrostatic separator and collected onto insulating filters. The observations suggest bipolar charging of individual particles and patches of charge on the particles which may be associated with particular maceral types or with mineral inclusions. A preliminary investigation was performed on eletrostatic separation of unburned carbon particles from flyash. Approximately 25% of the flyash acquired positive charge in the copper tribocharger. This compares with 75% of fresh ground coal. The negatively charged material had a slightly reduced ash content suggesting some enrichment of carbonaceous material. There was also evidence that the carbon is present at a higher ratio in larger particles than in small particles. An ultraviolet photoelectron counter for use in ambient atmosphere is nearing completion. The counter will be used to measure work functions of different maceral and mineral types in the coal matrix. A Particle Image Analyzer for measuring size and charge of airborne particles is also under contruction and its current status is presented. A charged, monodisperse, droplet generator is also being constructed for calibration of the Particle Image Analyzer and other airborne particle analyzers in our labs.« less

  1. Characteristic Exponent of Normal and Oblique Rolls in Homeotropically Aligned Nematic Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Saraswati, V.; Nugroho, F.

    2018-04-01

    Soft-mode turbulence (SMT) is one of an experimental example of spatiotemporal chaos, observed in electroconvection system of homeotropically aligned nematic liquid crystal (NLC), due to a non-linear interaction between Nambu-Goldstone mode denoted by the C(r)- director and the convective mode q(r). There are two types of stripe patterns in the SMT, namely normal rolls (NR) and oblique rolls (OR) which separated by a point of applied frequency, called the Lifshitz frequency (f L ). We report a study of the phase transition from normal to oblique rolls by observing the patterns with an applied frequency below and beyond of fL . The temporal fluctuations of the pattern images had been analyzed using autocorrelation function. It fits with Kohlrausch Williams Watts (KWW) function, showing there is a dynamical glass-forming liquid in the transition of NR-OR regime. Also, we found a new type of defect in the NR regime which never been reported before, a dynamic defect which takes the shape of a ring first to a spot in the end.

  2. Understanding the mechanism of LCST phase separation of mixed ionic liquids in water by MD simulations.

    PubMed

    Zhao, Yuling; Wang, Huiyong; Pei, Yuanchao; Liu, Zhiping; Wang, Jianji

    2016-08-17

    Recently, it has been found experimentally that two different amino acid ionic liquids (ILs) can be mixed to show unique lowest critical solution temperature (LCST) phase separation in water. However, little is known about the mechanism of phase separation in these IL/water mixtures at the molecular level. In this work, five kinds of amino acid ILs were chosen to study the mechanism of LCST-type phase separation by molecular dynamics (MD) simulations. Toward this end, a series of all-atom MD simulations were carried out on the ternary mixtures consisting of two different ILs and water at different temperatures. The various interaction energies and radial distribution functions (RDFs) were calculated and analyzed for these mixed systems. It was found that for amino acid ILs, the -NH2 or -COOH group of one anion could have a hydrogen bonding interaction with the -COO(-) group of another anion. With the increase of temperature, this kind of hydrogen bonding interaction between anions was strengthened and then the anion-H2O electrostatic interaction was weakened, which led to the LCST-type phase separation of the mixed ILs in water. In addition, a series of MD simulations for [P6668]1[Lys]n[Asp]1-n/H2O systems were also performed to study the effect of the mixing ratio of ILs on phase separation. It was also noted that the experimental critical composition corresponding to the lowest critical solution temperature was well predicted from the total electrostatic interaction energies as a function of mole fraction of [P6668][Lys] in these systems. The conclusions drawn from this study may provide new insight into the LCST-type phase behavior of ILs in water, and motivate further studies on practical applications.

  3. Do surfaces of positive electrostatic potential on different halogen derivatives in molecules attract? like attracting like!

    PubMed

    Varadwaj, Arpita; Varadwaj, Pradeep R; Yamashita, Koichi

    2018-03-15

    Coulomb's law states that like charges repel, and unlike charges attract. However, it has recently been theoretically revealed that two similarly charged conducting spheres will almost always attract each other when both are in close proximity. Using multiscale first principles calculations, we illustrate practical examples of several intermolecular complexes that are formed by the consequences of attraction between positive atomic sites of similar or dissimilar electrostatic surface potential on interacting molecules. The results of the quantum theory of atoms in molecules and symmetry adapted perturbation theory support the attraction between the positive sites, characterizing the F•••X (X = F, Cl, Br) intermolecular interactions in a series of 20 binary complexes as closed-shell type, although the molecular electrostatic surface potential approach does not (a failure!). Dispersion that has an r -6 dependence, where r is the equilibrium distance of separation, is found to be the sole driving force pushing the two positive sites to attract. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Environmentally friendly power generator based on moving liquid dielectric and double layer effect.

    PubMed

    Huynh, D H; Nguyen, T C; Nguyen, P D; Abeyrathne, C D; Hossain, Md S; Evans, R; Skafidas, E

    2016-06-03

    An electrostatic power generator converts mechanical energy to electrical energy by utilising the principle of variable capacitance. This change in capacitance is usually achieved by varying the gap or overlap between two parallel metallic plates. This paper proposes a novel electrostatic micro power generator where the change in capacitance is achieved by the movement of an aqueous solution of NaCl. A significant change in capacitance is achieved due to the higher than air dielectric constant of water and the Helmholtz double layer capacitor formed by ion separation at the electrode interfaces. The proposed device has significant advantages over traditional electrostatic devices which include low bias voltage and low mechanical frequency of operation. This is critical if the proposed device is to have utility in harvesting power from the environment. A figure of merit exceeding 10000(10(8)μW)/(mm(2)HzV(2)) which is two orders of magnitude greater than previous devices, is demonstrated for a prototype operating at a bias voltage of 1.2 V and a droplet frequency of 6 Hz. Concepts are presented for large scale power harvesting.

  5. The record of iceberg roll generated waves from sediments and seismics

    NASA Astrophysics Data System (ADS)

    Rosser, N. J.; Szczucinski, W.; Strzelecki, M.; Long, A. J.; Norman, E. C.; Dunning, S.; Drewniak, M.

    2013-12-01

    Iceberg-roll tsunamis in coastal settings have been observed to generate significant local waves, that hold potential to be recorded in coastal depositional records. Capturing the past magnitude and frequency of such events remains challenging, hindered by a lack of a good understanding of the nature, recurrence and scale of iceberg rolls, and more specifically those rolls that generate waves. Here we consider the sedimentary evidence for iceberg rolls in West Central Greenland, based upon survey of depositional environments in a range of open and confined coastal environments. We examine both an open 80 km fjord setting, and a series of confined ice-marginal beaches. We combine a detailed interpretation of sediment deposits from shore-normal transects with wider-scale high-resolution terrestrial laser scanning of sediments. Our sites - Vaigat, which separates Disko Island from the Nussuaq Peninsular, and the northern shore of Icefjord - both have a recent history of tsunamis, triggered variously by large rock avalanches, landslides and iceberg rolls. Icebergs in Vaigat and Icefjord are observed to undergo frequent failure and roll, generating - where circumstances permit - nearshore waves of meter-scale. To obtain a more detailed understanding of the likely recurrence of such iceberg roll waves and to consider their influence upon the preserved sedimentary record, we undertook an intensive 2-month monitoring campaign during sea-ice free conditions in summer 2013 to determine the patterns in the location, magnitude, frequency and timing of iceberg roll waves. Innovatively, using microseismic monitoring combined with time-lapse photography and weather monitoring, we derive a first-order model of the occurrence of iceberg roll waves. We then use this to inform our interpretation of deposits in these two environments, and consider the presence and absence of records of iceberg roll deposits in such settings. The study was funded by Polish National Science Centre grant No. 2011/01/B/ST10/01553.

  6. Food waste management using an electrostatic separator with corona discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Koonchun; Teh, Pehchiong; Lim, Sooking

    In Malaysia, municipal solid waste contains a high portion of organic matters, typically contributed by food waste. It is estimated that about 45% of the municipal waste are food waste, followed by the non-food waste such as plastics, metals, glass and others. Food waste, while being properly sorted and contamination free from non-food waste, can be reused (e.g. fertiliser) instead of being landfilled. Therefore, recycling of food waste is crucial not only from the view point of waste management, but also with respect to the reduction of resource losses and greenhouse gases emission. A new waste separation process involved foodmore » particles, non-food particles and electrostatic discharge was investigated in this study. The empirical results reveal that the corona electrostatic separation is an environmental-friendly way in recovering foods from municipal waste. The efficiency of the separator, under same operating conditions, varies with the particle size of the food and non-food particles. The highest efficiency of 82% is recorded for the particle sizes between 1.5 and 3.0 mm.« less

  7. Food waste management using an electrostatic separator with corona discharge

    NASA Astrophysics Data System (ADS)

    Lai, Koonchun; Lim, Sooking; Teh, Pehchiong

    2015-05-01

    In Malaysia, municipal solid waste contains a high portion of organic matters, typically contributed by food waste. It is estimated that about 45% of the municipal waste are food waste, followed by the non-food waste such as plastics, metals, glass and others. Food waste, while being properly sorted and contamination free from non-food waste, can be reused (e.g. fertiliser) instead of being landfilled. Therefore, recycling of food waste is crucial not only from the view point of waste management, but also with respect to the reduction of resource losses and greenhouse gases emission. A new waste separation process involved food particles, non-food particles and electrostatic discharge was investigated in this study. The empirical results reveal that the corona electrostatic separation is an environmental-friendly way in recovering foods from municipal waste. The efficiency of the separator, under same operating conditions, varies with the particle size of the food and non-food particles. The highest efficiency of 82% is recorded for the particle sizes between 1.5 and 3.0 mm.

  8. Electrostatically confined quantum rings in bilayer graphene.

    PubMed

    Zarenia, M; Pereira, J M; Peeters, F M; Farias, G A

    2009-12-01

    We propose a new system where electron and hole states are electrostatically confined into a quantum ring in bilayer graphene. These structures can be created by tuning the gap of the graphene bilayer using nanostructured gates or by position-dependent doping. The energy levels have a magnetic field (B(0)) dependence that is strikingly distinct from that of usual semiconductor quantum rings. In particular, the eigenvalues are not invariant under a B(0) --> -B(0) transformation and, for a fixed total angular momentum index m, their field dependence is not parabolic, but displays two minima separated by a saddle point. The spectra also display several anticrossings, which arise due to the overlap of gate-confined and magnetically confined states.

  9. Microstructure based procedure for process parameter control in rolling of aluminum thin foils

    NASA Astrophysics Data System (ADS)

    Johannes, Kronsteiner; Kabliman, Evgeniya; Klimek, Philipp-Christoph

    2018-05-01

    In present work, a microstructure based procedure is used for a numerical prediction of strength properties for Al-Mg-Sc thin foils during a hot rolling process. For this purpose, the following techniques were developed and implemented. At first, a toolkit for a numerical analysis of experimental stress-strain curves obtained during a hot compression testing by a deformation dilatometer was developed. The implemented techniques allow for the correction of a temperature increase in samples due to adiabatic heating and for the determination of a yield strength needed for the separation of the elastic and plastic deformation regimes during numerical simulation of multi-pass hot rolling. At the next step, an asymmetric Hot Rolling Simulator (adjustable table inlet/outlet height as well as separate roll infeed) was developed in order to match the exact processing conditions of a semi-industrial rolling procedure. At each element of a finite element mesh the total strength is calculated by in-house Flow Stress Model based on evolution of mean dislocation density. The strength values obtained by numerical modelling were found in a reasonable agreement with results of tensile tests for thin Al-Mg-Sc foils. Thus, the proposed simulation procedure might allow to optimize the processing parameters with respect to the microstructure development.

  10. Direction-Finding Measurements of Heliospheric 2-3 kHz Radio Emissions

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.

    1998-01-01

    Using data from the Voyager 1 plasma wave instrument, a series of direction-finding measurements is presented for the intense 1992-93 heliospheric 2- to 3-kHz radio emission event, and several weaker events extending into 1994. Direction-finding measurements can only be obtained during roll maneuvers, which are performed about once every three months. Two parameters can be determined from the roll-induced intensity modulation, the azimuthal direction of arrival (measured around the roll axis), and the modulation index (the peak-to-peak amplitude divided by the peak amplitude). Measurements were made at two frequencies, 1.78 and 3.11 kHz. No roll modulation was observed at 1.78 kHz, which is consistent with an isotropic source at this frequency. In most cases an easily measurable roll modulation was detectable at 3.11 kHz. Although the azimuth angles have considerable scatter, the directions of arrival at 3.11 kHz can be organized into three groups, each of which appears to be associated with a separate upward drifting feature in the radio emission spectrum. The first group, which is associated with the main 1992-93 event, is consistent with a source located near the nose of the heliosphere. The remaining two groups, which occur after the main 1992-93 event, have azimuth angles well away from the nose of the heliosphere. The modulation indexes vary over a large range, from 0.06 to 0.61, with no obvious trend. Although the variations in the directions of arrival and modulation indicies appear to reflect changes in the position and angular size of the source, it is also possible that they could be caused by refraction or scattering due to density structures in the solar wind.

  11. Electrostatic rate enhancement and transient complex of protein-protein association.

    PubMed

    Alsallaq, Ramzi; Zhou, Huan-Xiang

    2008-04-01

    The association of two proteins is bounded by the rate at which they, via diffusion, find each other while in appropriate relative orientations. Orientational constraints restrict this rate to approximately 10(5)-10(6) M(-1) s(-1). Proteins with higher association rates generally have complementary electrostatic surfaces; proteins with lower association rates generally are slowed down by conformational changes upon complex formation. Previous studies (Zhou, Biophys J 1997;73:2441-2445) have shown that electrostatic enhancement of the diffusion-limited association rate can be accurately modeled by $k_{\\bf D}$ = $k_{D}0\\ {exp} ( - \\langle U_{el} \\rangle;{\\star}/k_{B} T),$ where k(D) and k(D0) are the rates in the presence and absence of electrostatic interactions, respectively, U(el) is the average electrostatic interaction energy in a "transient-complex" ensemble, and k(B)T is the thermal energy. The transient-complex ensemble separates the bound state from the unbound state. Predictions of the transient-complex theory on four protein complexes were found to agree well with the experiment when the electrostatic interaction energy was calculated with the linearized Poisson-Boltzmann (PB) equation (Alsallaq and Zhou, Structure 2007;15:215-224). Here we show that the agreement is further improved when the nonlinear PB equation is used. These predictions are obtained with the dielectric boundary defined as the protein van der Waals surface. When the dielectric boundary is instead specified as the molecular surface, electrostatic interactions in the transient complex become repulsive and are thus predicted to retard association. Together these results demonstrate that the transient-complex theory is predictive of electrostatic rate enhancement and can help parameterize PB calculations. (c) 2007 Wiley-Liss, Inc.

  12. Optically pumped lasing in a rolled-up dot-in-a-well (DWELL) microtube via the support of Au pad

    NASA Astrophysics Data System (ADS)

    Chai, Zhaoer; Wang, Qi; Cao, Jiawei; Mao, Guoming; Liu, Hao; Ren, Xiaomin; Maleev, Nikolai A.; Vasil'ev, Alexey P.; Zhukov, Alexey E.; Ustinov, Victor M.

    2018-02-01

    We report the observation of optically pumped continuous wave lasing in a self-rolled-up InGaAs/GaAs quantum dot microtube at room temperature. Single layer of InAs quantum dots ( 2.6 ML coverage) in a GaAs well sandwiched by two AlGaAs barriers are incorporated into the tube wall as the gain media. As-fabricated microtube is supported by a 300-nm-thick Au pad, aiming to separate the tube from GaAs substrate and thus to decrease the substrate loss, which finally enables lasing with ultralow threshold power ( 4 µW) from an microtube ring resonator.

  13. Evaluating the Use of Tribocharging in the Electrostatic Beneficiation of Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Trigwell, S.; Captain, J. G.; Arens, E. E.; Captain, J. E.; Quinn, J. W.; Calle, C. I.

    2007-01-01

    Any future lunar base needs materials to provide thermal and radiation protection. Many factors point to the use of lunar materials as industrial feedstocks. Sintering of full-scale bricks using whole lunar dust has been accomplished. Refinement of soil beneficial before processing means less energy. Triboelectric separation of coal from minerals, quartz from feldspar, and phosphorous from silica and iron ore successively achieved. The Lunar environment ideal for electrostatic separation (1) lack of moisture (2) lower gravitational pull (3) higher voltages in vacuum

  14. Numerically simulated two-dimensional auroral double layers

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.; Joyce, G.

    1983-01-01

    A magnetized 2 1/2-dimensional particle-in-cell system which is periodic in one direction and bounded by reservoirs of Maxwellian plasma in the other is used to numerically simulate electrostatic plasma double layers. For the cases of both oblique and two-dimensional double layers, the present results indicate periodic instability, Debye length rather than gyroradii scaling, and low frequency electrostatic turbulence together with electron beam-excited electrostatatic electron-cyclotron waves. Estimates are given for the thickness of auroral doule layers, as well as the separations within multiple auroral arcs. Attention is given to the temporal modulation of accelerated beams, and the possibilities for ion precipitation and ion conic production by the double layer are hypothesized. Simulations which include the atmospheric backscattering of electrons imply the action of an ionospheric sheath which accelerates ionospheric ions upward.

  15. Magnetic suspension and pointing system. [on a carrier vehicle

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Groom, N. J. (Inventor)

    1979-01-01

    Apparatus for providing accurate pointing of instruments on a carrier vehicle and for providing isolation of the instruments from the vehicle's motion disturbances is presented. The apparatus includes two assemblies, with connecting interfaces, each assembly having a separate function. The first assembly is attached to the carrier vehicle and consists of an azimuth gimbal and an elevation gimbal which provide coarse pointing of the instruments by allowing two rotations of the instruments relative to the carrier vehicle. The second or vernier pointing assembly is made up of magnetic suspension and fine pointing actuators, roll motor segments, and an instrument mounting plate around which a continuous annular rim is attached which provides appropriate magnetic circuits for the actuators and the roll motor segments. The vernier pointing assembly provides six degree-of-freedom isolation from carrier motion disturbances.

  16. Versatile organic (fullerene)-inorganic (CdTe nanoparticle) nanoensembles.

    PubMed

    Guldi, Dirk M; Zilbermann, Israel; Anderson, Greg; Kotov, Nicholas A; Tagmatarchis, Nikos; Prato, Maurizio

    2004-11-10

    Novel organic (positively charged fullerene)-inorganic (negatively charged CdTe nanoparticle) nanoensembles were devised through electrostatic interactions and probed as versatile donor-acceptor hybrids. Photoirradiation of their homogeneous solutions, containing the electrostatically packed components, let to very long-lived (1.3 ms) charge separated states.

  17. Photocurrent spectroscopy of exciton and free particle optical transitions in suspended carbon nanotube pn-junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Shun-Wen; Theiss, Jesse; Hazra, Jubin

    2015-08-03

    We study photocurrent generation in individual, suspended carbon nanotube pn-junction diodes formed by electrostatic doping using two gate electrodes. Photocurrent spectra collected under various electrostatic doping concentrations reveal distinctive behaviors for free particle optical transitions and excitonic transitions. In particular, the photocurrent generated by excitonic transitions exhibits a strong gate doping dependence, while that of the free particle transitions is gate independent. Here, the built-in potential of the pn-junction is required to separate the strongly bound electron-hole pairs of the excitons, while free particle excitations do not require this field-assisted charge separation. We observe a sharp, well defined E{sub 11}more » free particle interband transition in contrast with previous photocurrent studies. Several steps are taken to ensure that the active charge separating region of these pn-junctions is suspended off the substrate in a suspended region that is substantially longer than the exciton diffusion length and, therefore, the photocurrent does not originate from a Schottky junction. We present a detailed model of the built-in fields in these pn-junctions, which, together with phonon-assistant exciton dissociation, predicts photocurrents on the same order of those observed experimentally.« less

  18. Coarse-grained electrostatic interactions of coronene: Towards the crystalline phase

    NASA Astrophysics Data System (ADS)

    Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H. L.

    2015-11-01

    In this article, we present and compare two different, coarse-grained approaches to model electrostatic interactions of disc-shaped aromatic molecules, specifically coronene. Our study builds on our previous work [T. Heinemann et al., J. Chem. Phys. 141, 214110 (2014)], where we proposed, based on a systematic coarse-graining procedure starting from the atomistic level, an anisotropic effective (Gay-Berne-like) potential capable of describing van der Waals contributions to the interaction energy. To take into account electrostatics, we introduce, first, a linear quadrupole moment along the symmetry axis of the coronene disc. The second approach takes into account the fact that the partial charges within the molecules are distributed in a ring-like fashion. We then reparametrize the effective Gay-Berne-like potential such that it matches, at short distances, the ring-ring potential. To investigate the validity of these two approaches, we perform many-particle molecular dynamics simulations, focusing on the crystalline phase (karpatite) where electrostatic interaction effects are expected to be particularly relevant for the formation of tilted stacked columns. Specifically, we investigate various structural parameters as well as the melting transition. We find that the second approach yields consistent results with those from experiments despite the fact that the underlying potential decays with the wrong distance dependence at large molecule separations. Our strategy can be transferred to a broader class of molecules, such as benzene or hexabenzocoronene.

  19. Coarse-grained electrostatic interactions of coronene: Towards the crystalline phase.

    PubMed

    Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H L

    2015-11-07

    In this article, we present and compare two different, coarse-grained approaches to model electrostatic interactions of disc-shaped aromatic molecules, specifically coronene. Our study builds on our previous work [T. Heinemann et al., J. Chem. Phys. 141, 214110 (2014)], where we proposed, based on a systematic coarse-graining procedure starting from the atomistic level, an anisotropic effective (Gay-Berne-like) potential capable of describing van der Waals contributions to the interaction energy. To take into account electrostatics, we introduce, first, a linear quadrupole moment along the symmetry axis of the coronene disc. The second approach takes into account the fact that the partial charges within the molecules are distributed in a ring-like fashion. We then reparametrize the effective Gay-Berne-like potential such that it matches, at short distances, the ring-ring potential. To investigate the validity of these two approaches, we perform many-particle molecular dynamics simulations, focusing on the crystalline phase (karpatite) where electrostatic interaction effects are expected to be particularly relevant for the formation of tilted stacked columns. Specifically, we investigate various structural parameters as well as the melting transition. We find that the second approach yields consistent results with those from experiments despite the fact that the underlying potential decays with the wrong distance dependence at large molecule separations. Our strategy can be transferred to a broader class of molecules, such as benzene or hexabenzocoronene.

  20. Rolled-up transformer structure for a radiofrequency integrated circuit (RFIC)

    DOEpatents

    Li, Xiuling; Huang, Wen

    2016-05-03

    A rolled-up transformer structure comprises a multilayer sheet having a rolled configuration comprising multiple turns about a longitudinal axis. The multilayer sheet comprises more than one conductive pattern layer on a strain-relieved layer, including a first conductive film and a second conductive film separated from the first conductive film in a thickness direction. The first conductive film comprises an even number of primary conductive strips, where each primary conductive strip has a length extending in the rolling direction, and the second conductive film comprises an even number of secondary conductive strips, where each secondary conductive strip has a length extending in the rolling direction. In the rolled configuration, turns of the primary conductive strips and turns of the secondary conductive strips wrap around the longitudinal axis. The primary conductive strips serve as a primary winding and the secondary conductive strips serve as a secondary winding of the rolled-up transformer structure.

  1. Vortex shedding within laminar separation bubbles forming over an airfoil

    NASA Astrophysics Data System (ADS)

    Kirk, Thomas M.; Yarusevych, Serhiy

    2017-05-01

    Vortex shedding within laminar separation bubbles forming over the suction side of a NACA 0018 airfoil is studied through a combination of high-speed flow visualization and boundary layer measurements. Wind tunnel experiments are performed at a chord-based Reynolds number of 100,000 and four angles of attack. The high-speed flow visualization is complemented by quantitative velocity and surface pressure measurements. The structures are shown to originate from the natural amplification of small-amplitude disturbances, and the shear layer roll-up is found to occur coherently across the span. However, significant cycle-to-cycle variations are observed in vortex characteristics, including shedding period and roll-up location. The formation of the roll-up vortices precedes the later stages of transition, during which these structures undergo significant deformations and breakdown to smaller scales. During this stage of flow development, vortex merging is also observed. The results provide new insight into the development of coherent structures in separation bubbles and their relation to the overall bubble dynamics and mean bubble topology.

  2. The chemical enhancement of the triboelectric separation of coal from pyrite and ash: A novel approach for electrostatic separation of mineral matter from coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, R.M.; DiMare, S.; Sabatini, J.

    1992-02-01

    Arthur D. Little, Inc., under contract to the US DOE Pittsburgh Energy Technology Center, has developed a triboelectric separation device for coal beneficiation, that employs an entrained-flow, rotating-cylinder concept. The described apparatus has been used to test the efficacy of chemical pretreatment and in-situ treatment of coal on separation efficiency. Coal particle entrainment is achieved with gaseous carbon dioxide and particle collection is accomplished by an electrostatic plate separator. The triboelectric separation device incorporates instrumentation for the direct measurement of charge in the dilute-phase particle stream. Some of the pretreatment materials investigated under this project to modify the surface chargingmore » characteristics of the coal included oleic acid, sodium oleate, quinoline and dicyclohexylamine. Ammonia and sulfur dioxide at a concentration up to 1000 ppM was used for in-situ treatment of the coal, with carbon dioxide as the carrier/inerting gas. Nitrogen was used earlier in the test program as the carrier/inerting gas for the coal, but a severe arcing problem was encountered in the electrostatic collector with nitrogen as the carrier gas. This problem did not occur when carbon dioxide was used. The report covers the chemical treatment employed, and summarizes and interprets the results achieved. In addition, an economic analysis of a full scale system based on this concept is presented.« less

  3. Control system adds to precipitator efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurrole, G.

    1978-02-01

    An electrostatic precipitator in use at Lion Oil Co., Martinez, Calif., in a fluid catalytic cracking and CO boiler application, was upgraded by mechanical sectionalization of the gas passage and a new electronic control system. The electrostatic precipitator is installed upstream of the CO boiler to handle gas flow up to 4.77 ft/sec, and pressure to 4.5 psi. The independent gas chambers in the electrostatic precipitator were divided by installing gas-tight partition walls to form a total of four electrostatic fields. The precipitator was also equipped with adjustable inlet gas flow-control baffles for even gas distribution. Rows of grounded collectingmore » electrodes are parallel with the flow of gas. The emitting electrode system, powered by separate high-energy transformers for each collecting field, uses silicon-controlled rectifiers and analog electronic networks for rapid response to changing gas and dust conditions. Regulatory requirements call for efficient collection of catalyst fines with no more than 40 lb/hr escaping through the boiler stack. Currently, stack losses average about 38 lb/hr. The installation of two additional control systems with transformers and rectifiers should reduce stack losses to 34 lb/hr.« less

  4. Experiment Research on Hot-Rolling Processing of Nonsmooth Pit Surface.

    PubMed

    Gu, Yun-Qing; Fan, Tian-Xing; Mou, Jie-Gang; Yu, Wei-Bo; Zhao, Gang; Wang, Evan

    2016-01-01

    In order to achieve the nonsmooth surface drag reduction structure on the inner polymer coating of oil and gas pipelines and improve the efficiency of pipeline transport, a structural model of the machining robot on the pipe inner coating is established. Based on machining robot, an experimental technique is applied to research embossing and coating problems of rolling-head, and then the molding process rules under different conditions of rolling temperatures speeds and depth are analyzed. Also, an orthogonal experiment analysis method is employed to analyze the different effects of hot-rolling process apparatus on the embossed pits morphology and quality of rolling. The results also reveal that elevating the rolling temperature or decreasing the rolling speed can also improve the pit structure replication rates of the polymer coating surface, and the rolling feed has little effect on replication rates. After the rolling-head separates from the polymer coating, phenomenon of rebounding and refluxing of the polymer coating occurs, which is the reason of inability of the process. A continuous hot-rolling method for processing is used in the robot and the hot-rolling process of the processing apparatus is put in a dynamics analysis.

  5. Experiment Research on Hot-Rolling Processing of Nonsmooth Pit Surface

    PubMed Central

    Gu, Yun-qing; Fan, Tian-xing; Mou, Jie-gang; Yu, Wei-bo; Zhao, Gang; Wang, Evan

    2016-01-01

    In order to achieve the nonsmooth surface drag reduction structure on the inner polymer coating of oil and gas pipelines and improve the efficiency of pipeline transport, a structural model of the machining robot on the pipe inner coating is established. Based on machining robot, an experimental technique is applied to research embossing and coating problems of rolling-head, and then the molding process rules under different conditions of rolling temperatures speeds and depth are analyzed. Also, an orthogonal experiment analysis method is employed to analyze the different effects of hot-rolling process apparatus on the embossed pits morphology and quality of rolling. The results also reveal that elevating the rolling temperature or decreasing the rolling speed can also improve the pit structure replication rates of the polymer coating surface, and the rolling feed has little effect on replication rates. After the rolling-head separates from the polymer coating, phenomenon of rebounding and refluxing of the polymer coating occurs, which is the reason of inability of the process. A continuous hot-rolling method for processing is used in the robot and the hot-rolling process of the processing apparatus is put in a dynamics analysis. PMID:27022235

  6. Roll-to-Roll printed large-area all-polymer solar cells with 5% efficiency based on a low crystallinity conjugated polymer blend

    NASA Astrophysics Data System (ADS)

    Gu, Xiaodan; Zhou, Yan; Gu, Kevin; Kurosawa, Tadanori; Yan, Hongping; Wang, Cheng; Toney, Micheal; Bao, Zhenan

    The challenge of continuous printing in high efficiency large-area organic solar cells is a key limiting factor for their widespread adoption. We present a materials design concept for achieving large-area, solution coated all-polymer bulk heterojunction (BHJ) solar cells with stable phase separation morphology between the donor and acceptor. The key concept lies in inhibiting strong crystallization of donor and acceptor polymers, thus forming intermixed, low crystallinity and mostly amorphous blends. Based on experiments using donors and acceptors with different degree of crystallinity, our results showed that microphase separated donor and acceptor domain sizes are inversely proportional to the crystallinity of the conjugated polymers. This methodology of using low crystallinity donors and acceptors has the added benefit of forming a consistent and robust morphology that is insensitive to different processing conditions, allowing one to easily scale up the printing process from a small scale solution shearing coater to a large-scale continuous roll-to-roll (R2R) printer. We were able to continuously roll-to-roll slot die print large area all-polymer solar cells with power conversion efficiencies of 5%, with combined cell area up to 10 cm2. This is among the highest efficiencies realized with R2R coated active layer organic materials on flexible substrate. DOE BRIDGE sunshot program. Office of Naval Research.

  7. Roll-to-Roll Printed Large-Area All-Polymer Solar Cells with 5% Efficiency Based on a Low Crystallinity Conjugated Polymer Blend

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Xiaodan; Zhou, Yan; Gu, Kevin

    The challenge of continuous printing in high-efficiency large-area organic solar cells is a key limiting factor for their widespread adoption. We present a materials design concept for achieving large-area, solution-coated all-polymer bulk heterojunction solar cells with stable phase separation morphology between the donor and acceptor. The key concept lies in inhibiting strong crystallization of donor and acceptor polymers, thus forming intermixed, low crystallinity, and mostly amorphous blends. Based on experiments using donors and acceptors with different degree of crystallinity, the results show that microphase separated donor and acceptor domain sizes are inversely proportional to the crystallinity of the conjugated polymers.more » This particular methodology of using low crystallinity donors and acceptors has the added benefit of forming a consistent and robust morphology that is insensitive to different processing conditions, allowing one to easily scale up the printing process from a small-scale solution shearing coater to a large-scale continuous roll-to-roll (R2R) printer. Large-area all-polymer solar cells are continuously roll-to-roll slot die printed with power conversion efficiencies of 5%, with combined cell area up to 10 cm 2. This is among the highest efficiencies realized with R2R-coated active layer organic materials on flexible substrate.« less

  8. Roll-to-Roll Printed Large-Area All-Polymer Solar Cells with 5% Efficiency Based on a Low Crystallinity Conjugated Polymer Blend

    DOE PAGES

    Gu, Xiaodan; Zhou, Yan; Gu, Kevin; ...

    2017-03-07

    The challenge of continuous printing in high-efficiency large-area organic solar cells is a key limiting factor for their widespread adoption. We present a materials design concept for achieving large-area, solution-coated all-polymer bulk heterojunction solar cells with stable phase separation morphology between the donor and acceptor. The key concept lies in inhibiting strong crystallization of donor and acceptor polymers, thus forming intermixed, low crystallinity, and mostly amorphous blends. Based on experiments using donors and acceptors with different degree of crystallinity, the results show that microphase separated donor and acceptor domain sizes are inversely proportional to the crystallinity of the conjugated polymers.more » This particular methodology of using low crystallinity donors and acceptors has the added benefit of forming a consistent and robust morphology that is insensitive to different processing conditions, allowing one to easily scale up the printing process from a small-scale solution shearing coater to a large-scale continuous roll-to-roll (R2R) printer. Large-area all-polymer solar cells are continuously roll-to-roll slot die printed with power conversion efficiencies of 5%, with combined cell area up to 10 cm 2. This is among the highest efficiencies realized with R2R-coated active layer organic materials on flexible substrate.« less

  9. The binding energies of one and two water molecules to the first transition-row metal positive ions

    NASA Technical Reports Server (NTRS)

    Rosi, Marzio; Bauschlicher, Charles W., Jr.

    1989-01-01

    The bonding of water to the transition metal positive ions is electrostatic in origin. The electrostatic bonding is enhanced by a variety of mechanisms: mixing in 4p character, 4s-3d hybridization, and 4s promotion into the compact 3d orbital. The importance of these effects varies between the different metal ions due to changes in the separation of the metal ion atomic states. Furthermore, the change in the metal-water repulsion when a second water is added also changes the relative importance of the different metal asymptotes. The second water binding energy varies from being 11 kcal/mol smaller than the first for Mn(+) to 3 kcal/mol larger for V(+) and Fe(+).

  10. KSC-2009-1445

    NASA Image and Video Library

    2009-01-31

    CAPE CANAVERAL, Fla. – The Ares I-X roll control system module is revealed after removal of the plastic wrap. The module is in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. Part of the upper stage simulator, the system module is composed to two modules and four thrusters. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller

  11. KSC-2009-1442

    NASA Image and Video Library

    2009-01-31

    CAPE CANAVERAL, Fla. – The Ares I-X roll control system module has been placed on the floor of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida after its arrival. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. Part of the upper stage simulator, the system module is composed to two modules and four thrusters. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller

  12. KSC-2009-1444

    NASA Image and Video Library

    2009-01-31

    CAPE CANAVERAL, Fla. – On the floor of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, workers start removing the plastic wrap from the Ares I-X roll control system module. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. Part of the upper stage simulator, the system module is composed to two modules and four thrusters. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller

  13. KSC-2009-1443

    NASA Image and Video Library

    2009-01-31

    CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, workers look at the Ares I-X roll control system module before removing the plastic wrap. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. Part of the upper stage simulator, the system module is composed to two modules and four thrusters. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller

  14. KSC-2009-1441

    NASA Image and Video Library

    2009-01-31

    CAPE CANAVERAL, Fla. – The Ares I-X roll control system module arrives in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. Part of the upper stage simulator, the system module is composed to two modules and four thrusters. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller

  15. Environmentally friendly power generator based on moving liquid dielectric and double layer effect

    PubMed Central

    Huynh, D. H.; Nguyen, T. C.; Nguyen, P. D.; Abeyrathne, C. D.; Hossain, Md. S.; Evans, R.; Skafidas, E.

    2016-01-01

    An electrostatic power generator converts mechanical energy to electrical energy by utilising the principle of variable capacitance. This change in capacitance is usually achieved by varying the gap or overlap between two parallel metallic plates. This paper proposes a novel electrostatic micro power generator where the change in capacitance is achieved by the movement of an aqueous solution of NaCl. A significant change in capacitance is achieved due to the higher than air dielectric constant of water and the Helmholtz double layer capacitor formed by ion separation at the electrode interfaces. The proposed device has significant advantages over traditional electrostatic devices which include low bias voltage and low mechanical frequency of operation. This is critical if the proposed device is to have utility in harvesting power from the environment. A figure of merit exceeding 10000(108μW)/(mm2HzV2) which is two orders of magnitude greater than previous devices, is demonstrated for a prototype operating at a bias voltage of 1.2 V and a droplet frequency of 6 Hz. Concepts are presented for large scale power harvesting. PMID:27255577

  16. Investigation of coal properties and airborne respirable dust generation. Report of investigations/1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Organiscak, J.A.; Page, S.J.

    1998-10-01

    Laboratory crushing experiments were conducted on a range of low- to high-volatile bituminous coals to investigate the various factors influencing airborne respirable dust (ARD) generation. This research was conducted to identify the principles of ARD liberation from the coal product. Five U.S. bituminous coals were uniformly prepared and processed through a double roll crusher located in a low-velocity wind tunnel. Experimental factors studied included inherent coal seam constituents, coal grindability, specific energy of crushing, product size characteristics, dust cloud electrostatic field, and specific ARD generated. The results of this investigation indicate that a combination of several factors are associated withmore » ARD generation. One factor is the effect of coal rank, described by the inherent moist fuel ratio, on the product size characteristics, defined by Schuhmann size function parameters. Another key factor is the effect of air dry loss (ADL) moisture in the coal seam on the breakage-induced electrostatic field of airborne dust. The effect of these factors is that different percentages of <10-micrometers coal particles are dispersed as ARD. A discussion of electrostatic field principles, coal ADL, and its effect on ARD generation is presented.« less

  17. Separation of Electric Fields Into Potential and Inductive Parts, and Implications for Radial Diffusion

    NASA Astrophysics Data System (ADS)

    Chan, A. A.; Ilie, R.; Elkington, S. R.; Albert, J.; Huie, W.

    2017-12-01

    It has been traditional to separate radiation belt radial-diffusion coefficients into two contributions: an "electrostatic" diffusion coefficient, which is assumed to be due to a potential (non-inductive) electric field, and an "electromagnetic" diffusion coefficient , which is assumed to be due to the combined effect of an inductive electric field and the corresponding time-dependent magnetic field. One difficulty in implementing this separation when using magnetospheric fields obtained from measurements, or from MHD simulations, is that only the total electric field is given; the separation of the electric field into potential and inductive parts is not readily available. In this work we separate the electric field using a numerical method based on the Helmholtz decomposition of the total motional electric field calculated by the BATS-R-US MHD code. The inner boundary for the electric potential is based on the Ridley Ionospheric Model solution and we assume floating boundary conditions in the solar wind. Using different idealized solar wind drivers, including a solar wind density that is oscillating at a single frequency or with a broad spectrum of frequencies, we calculate potential and inductive electric fields, electric and magnetic power spectral densities, and corresponding radial diffusion coefficients. Simulations driven by idealized solar wind conditions show a clear separation of the potential and inductive contributions to the power spectral densities and diffusion coefficients. Simulations with more realistic solar wind drivers are underway to better assess the use of electrostatic and electromagnetic diffusion coefficients in understanding ULF wave-particle interactions in Earth's radiation belts.

  18. High voltage isolation transformer

    NASA Technical Reports Server (NTRS)

    Clatterbuck, C. H.; Ruitberg, A. P. (Inventor)

    1985-01-01

    A high voltage isolation transformer is provided with primary and secondary coils separated by discrete electrostatic shields from the surfaces of insulating spools on which the coils are wound. The electrostatic shields are formed by coatings of a compound with a low electrical conductivity which completely encase the coils and adhere to the surfaces of the insulating spools adjacent to the coils. Coatings of the compound also line axial bores of the spools, thereby forming electrostatic shields separating the spools from legs of a ferromagnetic core extending through the bores. The transformer is able to isolate a high constant potential applied to one of its coils, without the occurrence of sparking or corona, by coupling the coatings, lining the axial bores to the ferromagnetic core and by coupling one terminal of each coil to the respective coating encasing the coil.

  19. High voltage isolation transformer

    NASA Astrophysics Data System (ADS)

    Clatterbuck, C. H.; Ruitberg, A. P.

    1985-04-01

    A high voltage isolation transformer is provided with primary and secondary coils separated by discrete electrostatic shields from the surfaces of insulating spools on which the coils are wound. The electrostatic shields are formed by coatings of a compound with a low electrical conductivity which completely encase the coils and adhere to the surfaces of the insulating spools adjacent to the coils. Coatings of the compound also line axial bores of the spools, thereby forming electrostatic shields separating the spools from legs of a ferromagnetic core extending through the bores. The transformer is able to isolate a high constant potential applied to one of its coils, without the occurrence of sparking or corona, by coupling the coatings, lining the axial bores to the ferromagnetic core and by coupling one terminal of each coil to the respective coating encasing the coil.

  20. The chemical enhancement of the triboelectric separation of coal from pyrite and ash: A novel approach for electrostatic separation of mineral matter from coal. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, R.M.; DiMare, S.; Sabatini, J.

    1992-02-01

    Arthur D. Little, Inc., under contract to the US DOE Pittsburgh Energy Technology Center, has developed a triboelectric separation device for coal beneficiation, that employs an entrained-flow, rotating-cylinder concept. The described apparatus has been used to test the efficacy of chemical pretreatment and in-situ treatment of coal on separation efficiency. Coal particle entrainment is achieved with gaseous carbon dioxide and particle collection is accomplished by an electrostatic plate separator. The triboelectric separation device incorporates instrumentation for the direct measurement of charge in the dilute-phase particle stream. Some of the pretreatment materials investigated under this project to modify the surface chargingmore » characteristics of the coal included oleic acid, sodium oleate, quinoline and dicyclohexylamine. Ammonia and sulfur dioxide at a concentration up to 1000 ppM was used for in-situ treatment of the coal, with carbon dioxide as the carrier/inerting gas. Nitrogen was used earlier in the test program as the carrier/inerting gas for the coal, but a severe arcing problem was encountered in the electrostatic collector with nitrogen as the carrier gas. This problem did not occur when carbon dioxide was used. The report covers the chemical treatment employed, and summarizes and interprets the results achieved. In addition, an economic analysis of a full scale system based on this concept is presented.« less

  1. Rolled-up transformer structure for a radiofrequency integrated circuit (RFIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiuling; Huang, Wen

    A rolled-up transformer structure comprises a multilayer sheet having a rolled configuration comprising multiple turns about a longitudinal axis. The multilayer sheet comprises more than one conductive pattern layer on a strain-relieved layer, including a first conductive film and a second conductive film separated from the first conductive film in a thickness direction. The first conductive film comprises an even number of primary conductive strips, where each primary conductive strip has a length extending in the rolling direction, and the second conductive film comprises an even number of secondary conductive strips, where each secondary conductive strip has a length extendingmore » in the rolling direction. In the rolled configuration, turns of the primary conductive strips and turns of the secondary conductive strips wrap around the longitudinal axis. The primary conductive strips serve as a primary winding and the secondary conductive strips serve as a secondary winding of the rolled-up transformer structure.« less

  2. Real-time modulated nanoparticle separation with an ultra-large dynamic range.

    PubMed

    Zeming, Kerwin Kwek; Thakor, Nitish V; Zhang, Yong; Chen, Chia-Hung

    2016-01-07

    Nanoparticles exhibit size-dependent properties which make size-selective purification of proteins, DNA or synthetic nanoparticles essential for bio-analytics, clinical medicine, nano-plasmonics and nano-material sciences. Current purification methods of centrifugation, column chromatography and continuous-flow techniques suffer from particle aggregation, multi-stage process, complex setups and necessary nanofabrication. These increase process costs and time, reduce efficiency and limit dynamic range. Here, we achieve an unprecedented real-time nanoparticle separation (51-1500 nm) using a large-pore (2 μm) deterministic lateral displacement (DLD) device. No external force fields or nanofabrication are required. Instead, we investigated innate long-range electrostatic influences on nanoparticles within a fluid medium at different NaCl ionic concentrations. In this study we account for the electrostatic forces beyond Debye length and showed that they cannot be assumed as negligible especially for precise nanoparticle separation methods such as DLD. Our findings have enabled us to develop a model to simultaneously quantify and modulate the electrostatic force interactions between nanoparticle and micropore. By simply controlling buffer solutions, we achieve dynamic nanoparticle size separation on a single device with a rapid response time (<20 s) and an enlarged dynamic range (>1200%), outperforming standard benchtop centrifuge systems. This novel method and model combines device simplicity, isolation precision and dynamic flexibility, opening opportunities for high-throughput applications in nano-separation for industrial and biological applications.

  3. PFB coal fired combined cycle development program. Advanced hot gas cleanup concept evaluation (Task 4. 3). Volume A. Aerodyne cyclone evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report summarizes the results of testing of a rotary flow cyclone, manufactured by Aerodyne Development Corporation under license by Siemens Kraftwerk Union. This cyclone was selected for evaluation due to the unusually high separative efficiencies claimed by the manufacturer (based on developer data), and relative lack of open literature data. The most significant finding of this work was the observation that electrostatic forces could enhance or, in fact, dominate the separation process. Separative efficiencies, with electrostatic forces present, were found to be substantially independent of flow rate and, by inference, could be independent of unit size. This finding suggestsmore » that large cyclones with natural or augmented electrostatic forces employed in the hot gas cleanup train of the CFCC system may not suffer the performance degradation compared to small cyclones, as projected from conventional inertial theory. This is of special importance since the use of many small cyclones in parallel, or multicyclones, commonly suffers from fouling and this approach is not recommended in the CFCC application. The original objective of this investigation was to assess the relative merits of the Aerodyne cyclone separator. It was found from both the cold flow and the hot flow tests that its separative efficiencies are disappointingly poorer than expectations (in agreement with Westinghouse results), and even poorer than conventional cyclones.« less

  4. Ground roll attenuation by synchrosqueezed curvelet transform

    NASA Astrophysics Data System (ADS)

    Liu, Zhao; Chen, Yangkang; Ma, Jianwei

    2018-04-01

    Ground roll is a type of coherent noise in land seismic data that has low frequency, low velocity and high amplitude. It damages reflection events that contain important information about subsurface structures, hence the removal of ground roll is a crucial step in seismic data processing. A suitable transform is needed for removal of ground roll. Curvelet transform is an effective sparse transform that optimally represents seismic events. In addition, the curvelets can provide a multiscale and multidirectional decomposition of the input data in time-frequency and angular domain, which can help distinguish between ground roll and useful signals. In this paper, we apply synchrosqueezed curvelet transform (SSCT) for ground roll attenuation. The synchrosqueezing technique in SSCT is used to precisely reallocate the energy of local wave vectors in order to separate ground roll from the original data with higher resolution and higher fidelity. Examples of synthetic and field seismic data reveal that SSCT performs well in the suppression of aliased and non-aliased ground roll while preserving reflection waves, in comparison with high-pass filtering, wavelet and curvelet methods.

  5. Comparison of the thermomechanical characteristics of porcher carbon fabric-based composites for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Molchanov, E. S.; Yudin, V. E.; Kydralieva, K. A.; Elokhovskii, V. Yu.

    2012-07-01

    Prepregs of fiber-reinforced plastics based on a PORCHER-43200 carbon twill-weave fabric and two types of binders — thermoreactive and thermoplastic — were fabricated using electrostatic spraying, followed by rolling the prepregs in temperature-controlled calenders. A solid epoxy olygomer with dicyandiamine as a hardener and Fortron® polyphenylene sulfide were used as the thermoreactive and thermoplastic binders. The thermomechanical properties of carbon-fiber-reinforced plastics processed from these prepregs, as well as commercial Sigranex® PREPREGCE8201-200-45 S prepregs as model ones, and composites manufactured from them were investigated for comparison. The latter ones are being used for the design of orthopaedic products. It is shown that the composites based on polyphenylene sulfide are characterized by higher values of flexural strength, flexural and shear moduli, and interlaminar fracture toughness ( G IC), the latter being the most important parameter.

  6. Means for the focusing and acceleration of parallel beams of charged particles. [Patent application

    DOEpatents

    Maschke, A.W.

    1980-09-23

    Apparatus for focusing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The array may be assembled from a single component which comprises a support plate containing uniform rows of poles. Each pole is separated by a hole through the plate designed to pass a beam. Two such plates may be positioned with their poles intermeshed to form a plurality of quadrupoles.

  7. Ewald Electrostatics for Mixtures of Point and Continuous Line Charges.

    PubMed

    Antila, Hanne S; Tassel, Paul R Van; Sammalkorpi, Maria

    2015-10-15

    Many charged macro- or supramolecular systems, such as DNA, are approximately rod-shaped and, to the lowest order, may be treated as continuous line charges. However, the standard method used to calculate electrostatics in molecular simulation, the Ewald summation, is designed to treat systems of point charges. We extend the Ewald concept to a hybrid system containing both point charges and continuous line charges. We find the calculated force between a point charge and (i) a continuous line charge and (ii) a discrete line charge consisting of uniformly spaced point charges to be numerically equivalent when the separation greatly exceeds the discretization length. At shorter separations, discretization induces deviations in the force and energy, and point charge-point charge correlation effects. Because significant computational savings are also possible, the continuous line charge Ewald method presented here offers the possibility of accurate and efficient electrostatic calculations.

  8. Electrostatic MEMS devices with high reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldsmith, Charles L; Auciello, Orlando H; Sumant, Anirudha V

    The present invention provides for an electrostatic microelectromechanical (MEMS) device comprising a dielectric layer separating a first conductor and a second conductor. The first conductor is moveable towards the second conductor, when a voltage is applied to the MEMS device. The dielectric layer recovers from dielectric charging failure almost immediately upon removal of the voltage from the MEMS device.

  9. Inviscid Analysis of Extended Formation Flight

    NASA Technical Reports Server (NTRS)

    Kless, James; Aftosmis, Michael J.; Ning, Simeon Andrew; Nemec, Marian

    2012-01-01

    Flying airplanes in extended formations, with separation distances of tens of wingspans, significantly improves safety while maintaining most of the fuel savings achieved in close formations. The present study investigates the impact of roll trim and compressibility at fixed lift coefficient on the benefits of extended formation flight. An Euler solver with adjoint-based mesh refinement combined with a wake propagation model is used to analyze a two-body echelon formation at a separation distance of 30 spans. Two geometries are examined: a simple wing and a wing-body geometry. Energy savings, quantified by both formation drag fraction and span efficiency factor, are investigated at subsonic and transonic speeds for a matrix of vortex locations. The results show that at fixed lift and trimmed for roll, the optimal location of vortex impingement is about 10% inboard of the trailing airplane s wing-tip. Interestingly, early results show the variation in drag fraction reduction is small in the neighborhood of the optimal position. Over 90% of energy benefits can be obtained with a 5% variation in transverse and 10% variation in crossflow directions. Early results suggest control surface deflections required to achieve trim reduce the benefits of formation flight by 3-5% at subsonic speeds. The final paper will include transonic effects and trim on extended formation flight drag benefits.

  10. Leading edge flap system for aircraft control augmentation

    NASA Technical Reports Server (NTRS)

    Rao, D. M. (Inventor)

    1984-01-01

    Traditional roll control systems such as ailerons, elevons or spoilers are least effective at high angles of attack due to boundary layer separation over the wing. This invention uses independently deployed leading edge flaps on the upper surfaces of vortex stabilized wings to shift the center of lift outboard. A rolling moment is created that is used to control roll in flight at high angles of attack. The effectiveness of the rolling moment increases linearly with angle of attack. No adverse yaw effects are induced. In an alternate mode of operation, both leading edge flaps are deployed together at cruise speeds to create a very effective airbrake without appreciable modification in pitching moment. Little trim change is required.

  11. Environmental Data Collection Using Autonomous Wave Gliders

    DTIC Science & Technology

    2014-12-01

    Observing System IMU Inertial Measurement Unit LRI Liquid Robotics, Inc. MASFlux Marine-Air-Sea-Flux METOC meteorological and oceanographic...position, velocity, heading, pitch, roll , and six-axis acceleration rates (Figure 11). A separate temperature probe also provides sea surface...Position, Velocity, and Magnetic declination True North Revolution Technologies GS Gyro Stabilized Electronic Compass Heading, Pitch, and Roll

  12. A new method for measuring the rotational accuracy of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Chen, Ye; Zhao, Xiangsong; Gao, Weiguo; Hu, Gaofeng; Zhang, Shizhen; Zhang, Dawei

    2016-12-01

    The rotational accuracy of a machine tool spindle has critical influence upon the geometric shape and surface roughness of finished workpiece. The rotational performance of the rolling element bearings is a main factor which affects the spindle accuracy, especially in the ultra-precision machining. In this paper, a new method is developed to measure the rotational accuracy of rolling element bearings of machine tool spindles. Variable and measurable axial preload is applied to seat the rolling elements in the bearing races, which is used to simulate the operating conditions. A high-precision (radial error is less than 300 nm) and high-stiffness (radial stiffness is 600 N/μm) hydrostatic reference spindle is adopted to rotate the inner race of the test bearing. To prevent the outer race from rotating, a 2-degrees of freedom flexure hinge mechanism (2-DOF FHM) is designed. Correction factors by using stiffness analysis are adopted to eliminate the influences of 2-DOF FHM in the radial direction. Two capacitive displacement sensors with nano-resolution (the highest resolution is 9 nm) are used to measure the radial error motion of the rolling element bearing, without separating the profile error as the traditional rotational accuracy metrology of the spindle. Finally, experimental measurements are performed at different spindle speeds (100-4000 rpm) and axial preloads (75-780 N). Synchronous and asynchronous error motion values are evaluated to demonstrate the feasibility and repeatability of the developed method and instrument.

  13. Analytic model of a laser-accelerated composite plasma target and its stability

    NASA Astrophysics Data System (ADS)

    Khudik, Vladimir; Shvets, Gennady

    2013-10-01

    A self-consistent analytical model of monoenergetic acceleration of a one and two-species ultrathin target irradiated by a circularly polarized laser pulse is developed. In the accelerated reference frame, the bulk plasma in the target is neutral and its parameters are assumed to be stationary. It is found that the structure of the target depends strongly on the temperatures of electrons and ions, which are both strongly influenced by the laser pulse pedestal. When the electron temperature is large, the hot electrons bounce back and forth inside the potential well formed by ponderomotive and electrostatic potentials while the heavy and light ions are forced-balanced by the electrostatic and non-inertial fields forming two separated layers. In the opposite limiting case when the ion temperature is large, the hot ions are trapped in the potential well formed by the ion-sheath's electric and non-inertial potentials while the cold electrons are forced-balanced by the electrostatic and ponderomotive fields. Using PIC simulations we have determined which scenario is realized in practice depending on the initial target structure and laser intensity. Target stability with respect to Rayleigh-Taylor instability will also be discussed. This work is supported by the US DOE grants DE-FG02-04ER41321 and DE-FG02-07ER54945.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Vineet V.; Paxton, Dean M.; Lavender, Curt A.

    Over the past several years Pacific Northwest National Laboratory (PNNL) has been actively involved in supporting the U.S. Department of Energy National Nuclear Security Administration Office of Material Management and Minimization (formerly Global Threat Reduction Initiative). The U.S. High- Power Research Reactor (USHPRR) project is developing alternatives to existing highly enriched uranium alloy fuel to reduce the proliferation threat. One option for a high-density metal fuel is uranium alloyed with 10 wt% molybdenum (U-10Mo). Forming the U-10Mo fuel plates/foils via rolling is an effective technique and is actively being pursued as part of the baseline manufacturing process. The processing ofmore » these fuel plates requires systematic investigation/understanding of the pre- and post-rolling microstructure, end-state mechanical properties, residual stresses, and defects, their effect on the mill during processing, and eventually, their in-reactor performance. In the work documented herein, studies were conducted to determine the effect of cold and hot rolling the as-cast and homogenized U-10Mo on its microstructure and hardness. The samples were homogenized at 900°C for 48 h, then later annealed for several durations and temperatures to investigate the effect on the material’s microstructure and hardness. The rolling of the as-cast plate, both hot and cold, was observed to form a molybdenum-rich and -lean banded structure. The cold rolling was ineffective, and in some cases exacerbated the as-cast defects. The grains elongated along the rolling direction and formed a pancake shape, while the carbides fractured perpendicularly to the rolling direction and left porosity between fractured particles of UC. The subsequent annealing of these samples at sub-eutectoid temperatures led to rapid precipitation of the ' lamellar phase, mainly in the molybdenum-lean regions. Annealing the samples above the eutectoid temperature did not refine the grain size or the banded microstructure. However, annealing the samples led to quick recovery in hardness as evidenced by a drop in Vickers hardness of 20%. Hot rolling was performed at 650 and 800°C. The hot-rolling mill loads (load separation force) were approximately 40 to 50% less than the cold-rolling for the same reduction and thickness. It was observed that hot rolling the samples with 50% or more reduction in thickness were responsible for dynamic recrystallization in the hot-rolled samples and led to grain refinement. Unlike the cold-rolled samples, the hot-rolled samples did not fracture the carbides and appeared to heal the casting defects. The recovery phenomenon was similar to the cold-rolled samples above the eutectoid temperatures, but owing to the refined grain size, the precipitation of the lamellar phase was far more rapid in these samples and the hardness increased more rapidly than in the cold rolled sample when heated below the eutectoid temperature. The data generated from these rolling efforts has been used to make the process modeling efforts more robust and applicable to all USHPRR partner rolling mills. The flow stress for cold rolling the samples was determined to be between 170-190 ksi, with frictional forces between 0.2 and 0.4 for the PNNL mill. The measured roll separation forces and those simulated using finite element methods for hot and cold rolling for the PNNL rolling mill were in good agreement.« less

  15. Design of a TW-SLIM Module for Dual Polarity Confinement, Transport, and Reactions

    NASA Astrophysics Data System (ADS)

    Garimella, Sandilya V. B.; Webb, Ian K.; Prabhakaran, Aneesh; Attah, Isaac K.; Ibrahim, Yehia M.; Smith, Richard D.

    2017-07-01

    Here we describe instrumental approaches for performing dual polarity ion confinement, transport, ion mobility separations, and reactions in structures for lossless ion manipulations (SLIM). Previous means of ion confinement in SLIM, based upon rf-generated pseudopotentials and DC fields for lateral confinement, cannot trap ions of opposite polarity simultaneously. Here we explore alternative approaches to provide simultaneous lateral confinement of both ion polarities. Traveling wave ion mobility (IM) separations experienced in such SLIM cause ions of both polarities to migrate in the same directions and exhibit similar separations. The ion motion (and relative motion of the two polarities) under both surfing and IM separation conditions are discussed. In surfing conditions the two polarities are transported losslessly and non-reactively in their respective potential minima (higher absolute voltage regions confine negative polarities, and lower absolute potential regions are populated by positive polarities). In separation mode, where ions roll over an overtaking traveling wave, the two polarities can interact during the rollovers. Strategies to minimize overlap of the two ion populations to prevent reactive losses during separations are presented. A theoretical treatment of the time scales over which two populations (injected into a DC field-free region of the dual polarity SLIM device) interact is considered, and SLIM designs for allowing ion/ion interactions and other manipulations with dual polarities at 4 Torr are presented.

  16. Tribo-charging properties of waste plastic granules in process of tribo-electrostatic separation.

    PubMed

    Li, Jia; Wu, Guiqing; Xu, Zhenming

    2015-01-01

    Plastic products can be found everywhere in people's daily life. With the consistent growth of plastic consumption, more and more plastic waste is generated. Considering the stable chemical and physics characteristics of plastic, regular waste management methods are not suitable for recycling economic strategy of each government, which has become a serious environmental problem. Recycling plastic waste is considered to be the best way to treat it, because it cannot only deduce the waste but also save the energy to produce new virgin plastic. Tribo-electrostatic separation is strongly recommended for plastic separation as it can preserve the original properties of plastic and has little additional pollution. In this study, plastic granules are generated by crushing plastic waste in waste electric and electronic equipment. The tribo-charging properties of plastic waste were studied by vibrating tribo-charging and cyclone tribo-charging. The triboelectric series obtained by vibrating was: (-)-PE-PS-PC-PVC-ABS-PP-(+), while the triboelectric series obtained by cyclone was (-)-PE-PS-PC-PVC-ABS-PP-(+). Further, the cyclone charging was more effective and stable than vibrating charging. The impact factors experiments showed that small particle size was better changed than large ones and were more suitable recycled by tribo-electrostatic separation. High relative humidity was identified as impede charging effect. The results of this study will help defining the operating parameters of subsequent separator. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Microstructure anisotropy of nanocrystalline titanium produced by cryomechanical grain fragmentation

    NASA Astrophysics Data System (ADS)

    Pohribnaya, Yu. M.; Moskalenko, V. A.; Braude, I. S.

    2018-05-01

    Using X-ray diffraction analysis, a systematic study was undertaken of the parameters of the deformation microstructure formed in commercially pure VT1-0 titanium as a result of cryogenic rolling at a temperature of 77 K at different degrees of compression. In order to ascertain the anisotropy of the microstructure, a comparative analysis of diffraction patterns, dimensions of crystallites (coherent scattering regions) L and microdeformation values ⟨" separators="| ɛ2 ⟩ 1 / 2 in the rolling plane and in a plane perpendicular to the rolling direction was performed by comparison with the relative activity of deformation modes. As a result, anisotropy was detected in the distribution of integral intensities of diffraction peaks for mutually perpendicular planes. The established difference in the dimensions of crystallites in the rolling plane and in the plane perpendicular to the rolling direction indicates the shape anisotropy of the crystallites. The effect of morphological anisotropy of crystallites/grains is most pronounced for the nanocrystalline state. The observed complex variation in the microdeformation values ⟨" separators="| ɛ2 ⟩ 1 / 2 ( e ) with compression deformation is well correlated with relative slip and twinning activity, which affect the level of local internal stresses and the possibility of their relaxation. The observed anisotropy with respect to the magnitude of microdeformations may be attributed to the presence of oriented grain boundaries associated with the shape anisotropy of crystallites/grains.

  18. Electrostatic Model Applied to ISS Charged Water Droplet Experiment

    NASA Technical Reports Server (NTRS)

    Stevenson, Daan; Schaub, Hanspeter; Pettit, Donald R.

    2015-01-01

    The electrostatic force can be used to create novel relative motion between charged bodies if it can be isolated from the stronger gravitational and dissipative forces. Recently, Coulomb orbital motion was demonstrated on the International Space Station by releasing charged water droplets in the vicinity of a charged knitting needle. In this investigation, the Multi-Sphere Method, an electrostatic model developed to study active spacecraft position control by Coulomb charging, is used to simulate the complex orbital motion of the droplets. When atmospheric drag is introduced, the simulated motion closely mimics that seen in the video footage of the experiment. The electrostatic force's inverse dependency on separation distance near the center of the needle lends itself to analytic predictions of the radial motion.

  19. Theoretical studies on rapid fluctuations in solar flares

    NASA Technical Reports Server (NTRS)

    Vlahos, Loukas

    1986-01-01

    Rapid fluctuations in the emission of solar bursts may have many different origins e.g., the acceleration process can have a pulsating structure, the propagation of energetic electrons and ions can be interrupted from plasma instabilities and finally the electromagnetic radiation produced by the interaction of electrostatic and electromagnetic waves may have a pulsating behavior in time. In two separate studies the conditions for rapid fluctuations in solar flare driven emission were analyzed.

  20. Skylab program payload integration. Skylab film environmental effects

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The effects of the Skylab environments on the 22 types of film used for data recording on Skylab were evaluated. Environmental histories and sensitometric curves for 114 rolls of film used for this evaluation are presented. Photographic parameters evaluated in detail were film fogging of black and white films, changes in maximum density of color film, latent image fading, and changes in film sensitivity. Other photographic and film physical anomalies such as electrostatic exposure, emulsion cracking, and reciprocity failure were also documented. Results based upon comparison of film sensitometric data for flight film with ground control film and ground test film are presented independently for each film type. The study showed that photographic film fulfilled the requirements of the Skylab applications in which it was used. Environmental film degradation, although present on almost every roll, did not preclude recording sufficient data to meet experiment requirements for all film, except film type SC-5. Specific conclusions are provided in the areas of further analyses, tests, and developments.

  1. Microfluidic pressure amplifier circuits and electrostatic gates for pneumatic microsystems

    DOEpatents

    Tice, Joshua D.; Bassett, Thomas A.; Desai, Amit V.; Apblett, Christopher A.; Kenis, Paul J. A.

    2016-09-20

    An electrostatic actuator is provide that can include a fluidic line, a first electrode, and a second electrode such that a gate chamber portion of the fluidic line is sandwiched between the first electrode and the second electrode. The electrostatic actuator can also include a pressure-balancing channel in fluid communication with the gate chamber portion where the first electrode is sandwiched between the pressure-balancing channel and the gate chamber portion. A pneumatic valve system is provided which includes an electrostatic gate and a fluidic channel fluidly separate from a fluidic control line. A pneumatic valve portion of the fluidic control line can be positioned relative to a portion of the fluidic channel such that expansion of the pneumatic valve portion restricts fluid flow through the fluidic channel. Methods of using an electrostatic actuator and a pneumatic valve system are also provided.

  2. Electrostatic potential of B-DNA: effect of interionic correlations.

    PubMed Central

    Gavryushov, S; Zielenkiewicz, P

    1998-01-01

    Modified Poisson-Boltzmann (MPB) equations have been numerically solved to study ionic distributions and mean electrostatic potentials around a macromolecule of arbitrarily complex shape and charge distribution. Results for DNA are compared with those obtained by classical Poisson-Boltzmann (PB) calculations. The comparisons were made for 1:1 and 2:1 electrolytes at ionic strengths up to 1 M. It is found that ion-image charge interactions and interionic correlations, which are neglected by the PB equation, have relatively weak effects on the electrostatic potential at charged groups of the DNA. The PB equation predicts errors in the long-range electrostatic part of the free energy that are only approximately 1.5 kJ/mol per nucleotide even in the case of an asymmetrical electrolyte. In contrast, the spatial correlations between ions drastically affect the electrostatic potential at significant separations from the macromolecule leading to a clearly predicted effect of charge overneutralization. PMID:9826596

  3. Combined process "helical rolling-pressing" and its effect on the microstructure of ferrous and non-ferrous materials

    NASA Astrophysics Data System (ADS)

    Naizabekov, Abdrakhman; Lezhnev, Sergey; Arbuz, Alexandr; Panin, Evgeniy

    2018-02-01

    Ultrafine-grained materials are one of the most promising structural and functional materials. However, the known methods of obtaining them are not enough powerful and technologically advanced for profitable industrial applications. Development of the combined process "helical rolling-pressing" is an attempt to bring technology to produce ultrafine-grained materials to the industry. The combination of intense processing of the surface by helical rolling and the entire cross section of workpiece in equal channel angular matrix, with intense deformation by torsion between rolls and matrix will increase the degree of deformation per pass and allows to mutually compensate disadvantages of these methods in the case of their separate use. This paper describes the development of a laboratory stand and study of influence of combined process "helical rolling-pressing"on the microstructure of tool steel, technical copper and high alloy stainless high-temperature steel.

  4. Phosphorus Segregation in Meta-Rapidly Solidified Carbon Steels

    NASA Astrophysics Data System (ADS)

    Li, Na; Qiao, Jun; Zhang, Junwei; Sha, Minghong; Li, Shengli

    2017-09-01

    Twin-roll strip casters for near-net-shape manufacture of steels have received increased attention in the steel industry. Although negative segregation of phosphorus occurred in twin-roll strip casting (TRSC) steels in our prior work, its mechanism is still unclear. In this work, V-shaped molds were designed and used to simulate a meta-rapid solidification process without roll separating force during twin roll casting of carbon steels. Experimental results show that no obvious phosphorus segregation exist in the V-shaped mold casting (VMC) steels. By comparing TRSC and the VMC, it is proposed that the negative phosphorus segregation during TRSC results from phosphorus redistribution driven by recirculating and vortex flow in the molten pool. Meanwhile, solute atoms near the advancing interface are overtaken and incorporated into the solid because of the high solidification speed. The high rolling force could promote the negative segregation of alloying elements in TRSC.

  5. Are electrostatic potentials between regions of different chemical composition measurable? The Gibbs-Guggenheim Principle reconsidered, extended and its consequences revisited.

    PubMed

    Pethica, Brian A

    2007-12-21

    As indicated by Gibbs and made explicit by Guggenheim, the electrical potential difference between two regions of different chemical composition cannot be measured. The Gibbs-Guggenheim Principle restricts the use of classical electrostatics in electrochemical theories as thermodynamically unsound with some few approximate exceptions, notably for dilute electrolyte solutions and concomitant low potentials where the linear limit for the exponential of the relevant Boltzmann distribution applies. The Principle invalidates the widespread use of forms of the Poisson-Boltzmann equation which do not include the non-electrostatic components of the chemical potentials of the ions. From a thermodynamic analysis of the parallel plate electrical condenser, employing only measurable electrical quantities and taking into account the chemical potentials of the components of the dielectric and their adsorption at the surfaces of the condenser plates, an experimental procedure to provide exceptions to the Principle has been proposed. This procedure is now reconsidered and rejected. No other related experimental procedures circumvent the Principle. Widely-used theoretical descriptions of electrolyte solutions, charged surfaces and colloid dispersions which neglect the Principle are briefly discussed. MD methods avoid the limitations of the Poisson-Bolzmann equation. Theoretical models which include the non-electrostatic components of the inter-ion and ion-surface interactions in solutions and colloid systems assume the additivity of dispersion and electrostatic forces. An experimental procedure to test this assumption is identified from the thermodynamics of condensers at microscopic plate separations. The available experimental data from Kelvin probe studies are preliminary, but tend against additivity. A corollary to the Gibbs-Guggenheim Principle is enunciated, and the Principle is restated that for any charged species, neither the difference in electrostatic potential nor the sum of the differences in the non-electrostatic components of the thermodynamic potential difference between regions of different chemical compositions can be measured.

  6. The Six Track Scherzer Rolling Lift Bridge…Two double track spans ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    The Six Track Scherzer Rolling Lift Bridge…Two double track spans closed. One double-track span open. Photocopy of plate xvi in Scherzer Rolling Lift Bridge Company, Scherzer Rolling Lift Bridges. - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  7. The evaluation of the rolling moments induced by wraparound fins

    NASA Technical Reports Server (NTRS)

    Seginer, A.; Bar-Haim, B.

    1983-01-01

    A possible reason is suggested for the induced rolling moments occurring on wraparound-fin configurations in subsonic flight at zero angle of attack. The subsonic potential flow over the configuration at zero incidence is solved numerically. The body is simulated by a distribution of sources along its axis, and the fins are described by a vortex-lattice method. It is shown that rolling moments can be induced on the antisymmetric fins by the radial flow generated at the base of the configuration, either over the converging separated wake, or over the diverging plume of a rocket motor.

  8. Effects of non-Gaussian Brownian motion on direct force optical tweezers measurements of the electrostatic forces between pairs of colloidal particles.

    PubMed

    Raudsepp, Allan; A K Williams, Martin; B Hall, Simon

    2016-07-01

    Measurements of the electrostatic force with separation between a fixed and an optically trapped colloidal particle are examined with experiment, simulation and analytical calculation. Non-Gaussian Brownian motion is observed in the position of the optically trapped particle when particles are close and traps weak. As a consequence of this motion, a simple least squares parameterization of direct force measurements, in which force is inferred from the displacement of an optically trapped particle as separation is gradually decreased, contains forces generated by the rectification of thermal fluctuations in addition to those originating directly from the electrostatic interaction between the particles. Thus, when particles are close and traps weak, simply fitting the measured direct force measurement to DLVO theory extracts parameters with modified meanings when compared to the original formulation. In such cases, however, physically meaningful DLVO parameters can be recovered by comparing the measured non-Gaussian statistics to those predicted by solutions to Smoluchowski's equation for diffusion in a potential.

  9. The Rolling with Slipping Experiment in the Virtual Physics Laboratory--Context-Based Teaching Material

    ERIC Educational Resources Information Center

    Maidana, Nora L.; da Fonseca, Monaliza; Barros, Suelen F.; Vanin, Vito R.

    2016-01-01

    The Virtual Laboratory was created as a complementary educational activity, with the aim of working abstract concepts from an experimental point of view. In this work, the motion of a ring rolling and slipping in front of a grid printed panel was recorded. The frames separated from this video received a time code, and the resulting set of images…

  10. A contribution to the expansion of the applicability of electrostatic forces in micro transducers

    NASA Astrophysics Data System (ADS)

    Schenk, Harald; Conrad, Holger; Gaudet, Matthieu; Uhlig, Sebastian; Kaiser, Bert; Langa, Sergiu; Stolz, Michael; Schimmanz, Klaus

    2017-02-01

    Electrostatic actuation is highly efficient at micro and nanoscale. However, large deflection in common electrostatically driven MEMS requires large electrode separation and thus high driving voltages. To offer a solution to this problem we developed a novel electrostatic actuator class, which is based on a force-to-stress transformation in the periodically patterned upper layer of a silicon cantilever beam. We report on advances in the development of such electrostatic bending actuators. Several variants of a CMOS compatible and RoHS-directive compliant fabrication processes to fabricate vertical deflecting beams with a thickness of 30 μm are presented. A concept to extend the actuation space towards lateral deflecting elements is introduced. The fabricated and characterized vertical deflecting cantilever beam variants make use of a 0.2 μm electrode gap and achieve deflections of up to multiples of this value. Simulation results based on an FE-model applied to calculate the voltage dependent curvature for various actuator cell designs are presented. The calculated values show very good agreement with the experimentally determined voltage controlled actuation curvatures. Particular attention was paid to parasitic effects induced by small, sub micrometer, electrode gaps. This includes parasitic currents between the two electrode layers. No experimental hint was found that such effects significantly influence the curvature for a control voltage up to 45 V. The paper provides an outlook for the applicability of the technology based on specifically designed and fabricated actuators which allow for a large variety of motion patterns including out-of-plane and in-plane motion as well as membrane deformation and linear motion.

  11. Beneficiation of lunar ilmenite

    NASA Technical Reports Server (NTRS)

    Ruiz, Joaquin

    1991-01-01

    One of the most important commodities lacking in the moon is free oxygen which is required for life and used extensively for propellent. Free oxygen, however, can be obtained by liberating it from the oxides and silicates that form the lunar rocks and regolith. Ilmenite (FeTiO3) is considered one of the leading candidates for production of oxygen because it can be reduced with a reasonable amount of energy and it is an abundant mineral in the lunar regolith and many mare basalts. In order to obtain oxygen from ilmenite, a method must be developed to beneficiate ilmenite from lunar material. Two possible techniques are electrostatic or magnetic methods. Both methods have complications because lunar ilmenite completely lacks Fe(3+). Magnetic methods were tested on eucrite meteorites, which are a good chemical simulant for low Ti mare basalts. The ilmenite yields in the experiments were always very low and the eucrite had to be crushed to xxxx. These data suggest that magnetic separation of ilmenite from fine grain lunar basalts would not be cost effective. Presently, experiments are being performed with electrostatic separators, and lunar regolith is being waited for so that simulants do not have to be employed.

  12. Free energy landscapes of encounter complexes in protein-protein association.

    PubMed

    Camacho, C J; Weng, Z; Vajda, S; DeLisi, C

    1999-03-01

    We report the computer generation of a high-density map of the thermodynamic properties of the diffusion-accessible encounter conformations of four receptor-ligand protein pairs, and use it to study the electrostatic and desolvation components of the free energy of association. Encounter complex conformations are generated by sampling the translational/rotational space of the ligand around the receptor, both at 5-A and zero surface-to-surface separations. We find that partial desolvation is always an important effect, and it becomes dominant for complexes in which one of the reactants is neutral or weakly charged. The interaction provides a slowly varying attractive force over a small but significant region of the molecular surface. In complexes with no strong charge complementarity this region surrounds the binding site, and the orientation of the ligand in the encounter conformation with the lowest desolvation free energy is similar to the one observed in the fully formed complex. Complexes with strong opposite charges exhibit two types of behavior. In the first group, represented by barnase/barstar, electrostatics exerts strong orientational steering toward the binding site, and desolvation provides some added adhesion within the local region of low electrostatic energy. In the second group, represented by the complex of kallikrein and pancreatic trypsin inhibitor, the overall stability results from the rather nonspecific electrostatic attraction, whereas the affinity toward the binding region is determined by desolvation interactions.

  13. Measurement of interfacial thermal conductance in Lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Gaitonde, Aalok; Nimmagadda, Amulya; Marconnet, Amy

    2017-03-01

    Increasing usage and recent accidents due to Lithium ion (Li-ion) batteries exploding or catching on fire has inspired research on the thermal management of these batteries. In cylindrical 18650 cells, heat generated during the charge/discharge cycle must dissipate to the surrounding through its metallic case due to the poor thermal conductivity of the jelly roll, which is spirally wound with many interfaces between electrodes and the polymeric separator. This work develops a technique to measure the thermal resistance across the case-separator interface, which ultimately limits heat transfer out of the jelly roll. Commercial 18650 batteries are discharged and opened using a battery disassembly tool, and the 25 μm thick separator and the 200 μm thick metallic case are harvested to make samples. A miniaturized version of the conventional reference bar method (ASTM astm:D5470)

  14. Adaptive attenuation of aliased ground roll using the shearlet transform

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Abolfazl; Javaherian, Abdolrahim; Hassani, Hossien; Torabi, Siyavash; Sadri, Maryam

    2015-01-01

    Attenuation of ground roll is an essential step in seismic data processing. Spatial aliasing of the ground roll may cause the overlap of the ground roll with reflections in the f-k domain. The shearlet transform is a directional and multidimensional transform that separates the events with different dips and generates subimages in different scales and directions. In this study, the shearlet transform was used adaptively to attenuate aliased and non-aliased ground roll. After defining a filtering zone, an input shot record is divided into segments. Each segment overlaps adjacent segments. To apply the shearlet transform on each segment, the subimages containing aliased and non-aliased ground roll, the locations of these events on each subimage are selected adaptively. Based on these locations, mute is applied on the selected subimages. The filtered segments are merged together, using the Hanning function, after applying the inverse shearlet transform. This adaptive process of ground roll attenuation was tested on synthetic data, and field shot records from west of Iran. Analysis of the results using the f-k spectra revealed that the non-aliased and most of the aliased ground roll were attenuated using the proposed adaptive attenuation procedure. Also, we applied this method on shot records of a 2D land survey, and the data sets before and after ground roll attenuation were stacked and compared. The stacked section after ground roll attenuation contained less linear ground roll noise and more continuous reflections in comparison with the stacked section before the ground roll attenuation. The proposed method has some drawbacks such as more run time in comparison with traditional methods such as f-k filtering and reduced performance when the dip and frequency content of aliased ground roll are the same as those of the reflections.

  15. Separation and Concentration without Clogging Using a High-Throughput Tunable Filter

    NASA Astrophysics Data System (ADS)

    Mossige, E. J.; Jensen, A.; Mielnik, M. M.

    2018-05-01

    We present a detailed experimental study of a hydrodynamic filtration microchip and show how chip performance can be tuned and clogging avoided by adjusting the flow rates. We demonstrate concentration and separation of microspheres at throughputs as high as 29 ml /min and with 96% pureness. Results of streakline visualizations show that the thickness of a tunable filtration layer dictates the cutoff size and that two different concentration mechanisms exist. Particles larger than pores are concentrated by low-velocity rolling over the filtration pillars, while particles smaller than pores are concentrated by lateral drift across the filtration layer. Results of microscopic particle image velocimetry and particle-tracking velocimetry show that the degree of lateral migration can be quantified by the slip velocity between the particle and the surrounding fluid. Finally, by utilizing differences in inertia and separation mode, we demonstrate size-based separation of particles in a mixture.

  16. Two-scale modeling of joining of the aluminum alloys by a cohesive zone element technique

    NASA Astrophysics Data System (ADS)

    Zuo, Yinan; Wulfinghoff, Stephan; Reese, Stefanie

    2016-10-01

    The roll bonding of aluminum sheets is numerically investigated. In the first part of the paper, a cohesive zone element formulation in the framework of zero-thickness interface elements is developed. Based on a traction-separation law, this enables the modeling of bonding and debonding on both macroscale and microscale. Simulations on microscale are done to show the mechanism of bonding and the influence of different factors on the bonding strength.

  17. Phase-field modeling of liquids splitting between separating surfaces and its application to high-resolution roll-based printing technologies

    NASA Astrophysics Data System (ADS)

    Hizir, F. E.; Hardt, D. E.

    2017-05-01

    An in-depth understanding of the liquid transport in roll-based printing systems is essential for advancing the roll-based printing technology and enhancing the performance of the printed products. In this study, phase-field simulations are performed to characterize the liquid transport in roll-based printing systems, and the phase-field method is shown to be an effective tool to simulate the liquid transport. In the phase-field simulations, the liquid transport through the ink transfer rollers is approximated as the stretching and splitting of liquid bridges with pinned or moving contact lines between vertically separating surfaces. First, the effect of the phase-field parameters and the mesh characteristics on the simulation results is examined. The simulation results show that a sharp interface limit is approached as the capillary width decreases while keeping the mobility proportional to the capillary width squared. Close to the sharp interface limit, the mobility changes over a specified range are observed to have no significant influence on the simulation results. Next, the ink transfer from the cells on the surface of an ink-metering roller to the surface of stamp features is simulated. Under negligible inertial effects and in the absence of gravity, the amount of liquid ink transferred from an axisymmetric cell with low surface wettability to a stamp with high surface wettability is found to increase as the cell sidewall steepness and the cell surface wettability decrease and the stamp surface wettability and the capillary number increase. Strategies for improving the resolution and quality of roll-based printing are derived based on an analysis of the simulation results. The application of novel materials that contain cells with irregular surface topography to stamp inking in high-resolution roll-based printing is assessed.

  18. Diffuse-charge dynamics of ionic liquids in electrochemical systems.

    PubMed

    Zhao, Hui

    2011-11-01

    We employ a continuum theory of solvent-free ionic liquids accounting for both short-range electrostatic correlations and steric effects (finite ion size) [Bazant et al., Phys. Rev. Lett. 106, 046102 (2011)] to study the response of a model microelectrochemical cell to a step voltage. The model problem consists of a 1-1 symmetric ionic liquid between two parallel blocking electrodes, neglecting any transverse transport phenomena. Matched asymptotic expansions in the limit of thin double layers are applied to analyze the resulting one-dimensional equations and study the overall charge-time relation in the weakly nonlinear regime. One important conclusion is that our simple scaling analysis suggests that the length scale √(λ*(D)l*(c)) accurately characterizes the double-layer structure of ionic liquids with strong electrostatic correlations where l*(c) is the electrostatic correlation length (in contrast, the Debye screening length λ*(D) is the primary double-layer length for electrolytes) and the response time of λ(D)(*3/2)L*/(D*l(c)(1/2)) (not λ*(D)L*/D* that is the primary charging time of electrolytes) is the correct charging time scale of ionic liquids with strong electrostatic correlations where D* is the diffusivity and L* is the separation length of the cell. With these two new scales, data of both electric potential versus distance from the electrode and the total diffuse charge versus time collapse onto each individual master curve in the presence of strong electrostatic correlations. In addition, the dependance of the total diffuse charge on steric effects, short-range correlations, and driving voltages is thoroughly examined. The results from the asymptotic analysis are compared favorably with those from full numerical simulations. Finally, the absorption of excess salt by the double layer creates a depletion region outside the double layer. Such salt depletion may bring a correction to the leading order terms and break down the weakly nonlinear analysis. A criterion which justifies the weakly nonlinear analysis is verified with numerical simulations.

  19. Recalibrated Equations for Determining Effect of Oil Filtration on Rolling Bearing Life

    NASA Technical Reports Server (NTRS)

    Needelman, William M.; Zaretsky, Erwin V.

    2014-01-01

    In 1991, Needelman and Zaretsky presented a set of empirically derived equations for bearing fatigue life (adjustment) factors (LFs) as a function of oil filter ratings. These equations for life factors were incorporated into the reference book, "STLE Life Factors for Rolling Bearings." These equations were normalized (LF = 1) to a 10-micrometer filter rating at Beta(sub x) = 200 (normal cleanliness) as it was then defined. Over the past 20 years, these life factors based on oil filtration have been used in conjunction with ANSI/ABMA standards and bearing computer codes to predict rolling bearing life. Also, additional experimental studies have been made by other investigators into the relationship between rolling bearing life and the size, number, and type of particle contamination. During this time period filter ratings have also been revised and improved, and they now use particle counting calibrated to a new National Institute of Standards and Technology (NIST) reference material, NIST SRM 2806, 1997. This paper reviews the relevant bearing life studies and describes the new filter ratings. New filter ratings, Beta(sub x(c)) = 200 and Beta(sub x(c)) = 1000, are benchmarked to old filter ratings, Beta(sub x) = 200, and vice versa. Two separate sets of filter LF values were derived based on the new filter ratings for roller bearings and ball bearings, respectively. Filter LFs can be calculated for the new filter ratings.

  20. Four-dimensional analysis by high-speed holographic imaging reveals a chiral memory of sperm flagella.

    PubMed

    Muschol, Michael; Wenders, Caroline; Wennemuth, Gunther

    2018-01-01

    Here high-speed Digital Holographic Microscopy (DHM) records sperm flagellar waveforms and swimming paths in 4 dimensions (X, Z, and t). We find flagellar excursions into the Z-plane nearly as large as the envelope of the flagellar waveform projected onto the XY-plane. These Z-plane excursions travel as waves down the flagellum each beat cycle. DHM also tracks the heads of free-swimming sperm and the dynamics and chirality of rolling of sperm around their long axis. We find that mouse sperm roll CW at the maximum positive Z-plane excursion of the head, then roll CCW at the subsequent maximum negative Z-plane excursion. This alternating chirality of rolling indicates sperm have a chiral memory. Procrustes alignments of path trajectories for sequences of roll-counterroll cycles show that path chirality is always CW for the cells analyzed in this study. Human and bull sperm lack distinguishable left and right surfaces, but DHM still indicates coordination of Z-plane excursions and rolling events. We propose that sperm have a chiral memory that resides in a hypothetical elastic linkage within the flagellar machinery, which stores some of the torque required for a CW or CCW roll to reuse in the following counter-roll. Separate mechanisms control path chirality.

  1. Vertical phase separation of 6,13-bis(triisopropylsilylethynyl) pentacene/poly(methyl methacrylate) blends prepared by electrostatic spray deposition for organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Onojima, Norio; Hara, Kazuhiro; Nakamura, Ayato

    2017-05-01

    Blend films composed of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene) and poly(methyl methacrylate) (PMMA) were prepared by electrostatic spray deposition (ESD). ESD is considered as an intermediate process between dry and wet processes since the solvent present in small droplets can almost be evaporated before arriving at the substrate. Post-drying treatments with the time-consuming evaporation of residual solvents can be omitted. However, it is still not clear that a vertically phase-separated structure can be formed in the ESD process since the vertical phase separation of the blend films is associated with the solvent evaporation. In this study, we fabricated bottom-gate, top-contact organic field-effect transistors based on the blend films prepared by ESD and the devices exhibited transistor behavior with small hysteresis. This result demonstrates that the vertical phase separation of a blend film (upper TIPS pentacene active layer/bottom PMMA gate insulator) can occur in the facile one-step ESD process.

  2. Separable requirements for cytoplasmic domain of PSGL-1 in leukocyte rolling and signaling under flow

    PubMed Central

    Miner, Jonathan J.; Xia, Lijun; Yago, Tadayuki; Kappelmayer, János; Liu, Zhenghui; Klopocki, Arkadiusz G.; Shao, Bojing; McDaniel, J. Michael; Setiadi, Hendra; Schmidtke, David W.

    2008-01-01

    In inflamed venules, leukocytes use P-selectin glycoprotein ligand-1 (PSGL-1) to roll on P-selectin and E-selectin and to activate integrin αLβ2 (lymphocyte function-associated antigen-1, LFA-1) to slow rolling on intercellular adhesion molecule-1 (ICAM-1). Studies in cell lines have suggested that PSGL-1 requires its cytoplasmic domain to localize in membrane domains, to support rolling on P-selectin, and to signal through spleen tyrosine kinase (Syk). We generated “ΔCD” mice that express PSGL-1 without the cytoplasmic domain. Unexpectedly, neutrophils from these mice localized PSGL-1 normally in microvilli, uropods, and lipid rafts. ΔCD neutrophils expressed less PSGL-1 on their surfaces because of inefficient export from the endoplasmic reticulum. Limited digestion of wild-type neutrophils with O-sialoglycoprotein endopeptidase was used to reduce the PSGL-1 density to that on ΔCD neutrophils. At matched PSGL-1 densities, both ΔCD and wild-type neutrophils rolled similarly on P-selectin. However, ΔCD neutrophils rolling on P-selectin did not trigger Syk-dependent activation of LFA-1 to slow rolling on ICAM-1. These data demonstrate that the PSGL-1 cytoplasmic domain is dispensable for leukocyte rolling on P-selectin but is essential to activate β2 integrins to slow rolling on ICAM-1. PMID:18550846

  3. A Novel Concept for a Deformable Membrane Mirror for Correction of Large Amplitude Aberrations

    NASA Technical Reports Server (NTRS)

    Moore, Jim; Patrick, Brian

    2006-01-01

    Very large, light weight mirrors are being developed for applications in space. Due to launch mass and volume restrictions these mirrors will need to be much more flexible than traditional optics. The use of primary mirrors with these characteristics will lead to requirements for adaptive optics capable of correcting wave front errors with large amplitude relatively low spatial frequency aberrations. The use of low modulus membrane mirrors actuated with electrostatic attraction forces is a potential solution for this application. Several different electrostatic membrane mirrors are now available commercially. However, as the dynamic range requirement of the adaptive mirror is increased the separation distance between the membrane and the electrodes must increase to accommodate the required face sheet deformations. The actuation force applied to the mirror decreases inversely proportional to the square of the separation distance; thus for large dynamic ranges the voltage requirement can rapidly increase into the high voltage regime. Experimentation with mirrors operating in the KV range has shown that at the higher voltages a serious problem with electrostatic field cross coupling between actuators can occur. Voltage changes on individual actuators affect the voltage of other actuators making the system very difficult to control. A novel solution has been proposed that combines high voltage electrodes with mechanical actuation to overcome this problem. In this design an array of electrodes are mounted to a backing structure via light weight large dynamic range flextensional actuators. With this design the control input becomes the separation distance between the electrode and the mirror. The voltage on each of the actuators is set to a uniform relatively high voltage, thus the problem of cross talk between actuators is avoided and the favorable distributed load characteristic of electrostatic actuation is retained. Initial testing and modeling of this concept demonstrates that this is an attractive concept for increasing the dynamic range capability of electrostatic deformable mirrors.

  4. PFB Coal Fired Combined Cycle Development Program. Advanced hot gas cleanup concept evaluation (Task 4. 3). Volume A. Aerodyne cyclone evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report summarizes the results of testing of a rotary flow cyclone, manufactured by Aerodyne Development Corporation under license by Siemens Kraftwerk Union. This cyclone was selected for evaluation due to the unusually high separative efficiencies claimed by the manufacturer (based on developer data), and relative lack of open literature data. The most significant finding of this work was the observation that electrostatic forces could enhance or, in fact, dominate the separation process. Separative efficiencies, with electrostatic forces present, were found to be substantially independent of flow rate and, by inference, could be independent of unit size. Hence this findingmore » offers a major hope that large cyclones employed in the hot gas cleanup train of the CFCC system may not suffer the performance degradation compared to small cyclones, as projected from conventional inertial theory. The separative efficiencies of the Aerodyne cyclone separator were found from both the cold flow and the hot flow tests to be disappointingly poorer than expectations (in agreement with Westinghouse results), and even poorer than conventional cyclones. (LTN)« less

  5. Method of texturing a superconductive oxide precursor

    DOEpatents

    DeMoranville, Kenneth L.; Li, Qi; Antaya, Peter D.; Christopherson, Craig J.; Riley, Jr., Gilbert N.; Seuntjens, Jeffrey M.

    1999-01-01

    A method of forming a textured superconductor wire includes constraining an elongated superconductor precursor between two constraining elongated members placed in contact therewith on opposite sides of the superconductor precursor, and passing the superconductor precursor with the two constraining members through flat rolls to form the textured superconductor wire. The method includes selecting desired cross-sectional shape and size constraining members to control the width of the formed superconductor wire. A textured superconductor wire formed by the method of the invention has regular-shaped, curved sides and is free of flashing. A rolling assembly for single-pass rolling of the elongated precursor superconductor includes two rolls, two constraining members, and a fixture for feeding the precursor superconductor and the constraining members between the rolls. In alternate embodiments of the invention, the rolls can have machined regions which will contact only the elongated constraining members and affect the lateral deformation and movement of those members during the rolling process.

  6. Defining Protein Electrostatic Recognition Processes

    DTIC Science & Technology

    1989-11-30

    of the electrostatic potentiai on the molecular surface of negatively charged Asp-101 in the fifth residue of JH1. the hapten and the V regions of...making and aligning expanded molecular dot surfaces for each molecule and checking these surfaces for interpenetration. The program TURNIP used these...the molecular surfaces are separated by 6 and 12A. All orientations have the exposed heme edge of cytochrome c facing the acidic patch of plastocyanin

  7. Interplay between Rolling and Firm Adhesion Elucidated with a Cell-Free System Engineered with Two Distinct Receptor-Ligand Pairs

    PubMed Central

    Eniola, A. Omolola; Willcox, P. Jeanene; Hammer, Daniel A.

    2003-01-01

    The firm arrest of leukocytes to the endothelium during inflammation is known to be mediated by endothelial intercellular adhesion molecules (ICAMs) binding to activated integrins displayed on leukocyte surface. Selectin-ligand interactions, which mediate rolling, are believed to be important for facilitating firm adhesion, either by activating integrins or by facilitating the transition to firm adhesion by making it easier for integrins to bind. Although leukocytes employ two distinct adhesion molecules that mediate different states of adhesion, the fundamental biophysical mechanisms by which two pairs of adhesion molecules facilitate cell adhesion is not well understood. In this work, we attempt to understand the interaction between two molecular systems using a cell-free system in which polystyrene microspheres functionalized with the selectin ligand, sialyl LewisX (sLeX), and an antibody against ICAM-1, aICAM-1, are perfused over P-selectin/ICAM-1 coated surfaces in a parallel plate flow chamber. Separately, sLeX/P-selectin interactions support rolling and aICAM-1/ICAM-1 interactions mediate firm adhesion. Our results show that sLeX/aICAM-1 microspheres will firmly adhere to P-selectin/ICAM-1 coated surfaces, and that the extent of firm adhesion of microspheres is dependent on wall shear stress within the flow chamber, sLeX/aICAM-1 microsphere site density, and P-selectin/ICAM-1 surface density ratio. We show that P-selectin's interaction with sLeX mechanistically facilitates firm adhesion mediated by antibody binding to ICAM-1: the extent of firm adhesion for the same concentration of aICAM-1/ICAM-1 interaction is greater when sLeX/P-selectin interactions are present. aICAM-1/ICAM-1 interactions also stabilize rolling by increasing pause times and decreasing average rolling velocities. Although aICAM-1 is a surrogate for β2-integrin, the kinetics of association between aICAM-1 and ICAM-1 is within a factor of 1.5 of activated integrin binding ICAM-1, suggesting the findings from this model system may be insightful to the mechanism of leukocyte firm adhesion. In particular, these experimental results show how two molecule systems can interact to produce an effect not achievable by either system alone, a fundamental mechanism that may pervade leukocyte adhesion biology. PMID:14507735

  8. Phase Separation from Electron Confinement at Oxide Interfaces

    NASA Astrophysics Data System (ADS)

    Scopigno, N.; Bucheli, D.; Caprara, S.; Biscaras, J.; Bergeal, N.; Lesueur, J.; Grilli, M.

    2016-01-01

    Oxide heterostructures are of great interest for both fundamental and applicative reasons. In particular, the two-dimensional electron gas at the LaAlO3/SrTiO3 or LaTiO3/SrTiO3 interfaces displays many different properties and functionalities. However, there are clear experimental indications that the interface electronic state is strongly inhomogeneous and therefore it is crucial to investigate possible intrinsic mechanisms underlying this inhomogeneity. Here, the electrostatic potential confining the electron gas at the interface is calculated self-consistently, finding that such confinement may induce phase separation, to avoid a thermodynamically unstable state with a negative compressibility. This provides a robust mechanism for the inhomogeneous character of these interfaces.

  9. STS-95 Day 04 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this forth day of the STS-95 mission, the flight crew, Cmdr. Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn, are seen performing an evaluation of bone cell activity under microgravity conditions. Glenn then provides blood samples as part of the Protein Turnover Experiment, which is looking at the balance between the building and breakdown of muscle. He also works with the Advanced Organic Separations (ADSEP) experiment, to provides the capability to separate and purify biological materials in microgravity; and with the Microencapsulation Electrostatic Processing System (MEPS), that studies the formation of anti-tumor capsules containing two kinds of drugs.

  10. Charge sniffer for electrostatics demonstrations

    NASA Astrophysics Data System (ADS)

    Dinca, Mihai P.

    2011-02-01

    An electronic electroscope with a special design for demonstrations and experiments on static electricity is described. It operates as an electric charge sniffer by detecting slightly charged objects when they are brought to the front of its sensing electrode. The sniffer has the advantage of combining high directional sensitivity with a logarithmic bar display. It allows for the identification of electric charge polarity during charge separation by friction, peeling, electrostatic induction, batteries, or secondary coils of power transformers. Other experiments in electrostatics, such as observing the electric field of an oscillating dipole and the distance dependence of the electric field generated by simple charge configurations, are also described.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinemann, Thomas, E-mail: thomas.heinemann@tu-berlin.de; Klapp, Sabine H. L., E-mail: klapp@physik.tu-berlin.de; Palczynski, Karol, E-mail: karol.palczynski@helmholtz-berlin.de

    In this article, we present and compare two different, coarse-grained approaches to model electrostatic interactions of disc-shaped aromatic molecules, specifically coronene. Our study builds on our previous work [T. Heinemann et al., J. Chem. Phys. 141, 214110 (2014)], where we proposed, based on a systematic coarse-graining procedure starting from the atomistic level, an anisotropic effective (Gay-Berne-like) potential capable of describing van der Waals contributions to the interaction energy. To take into account electrostatics, we introduce, first, a linear quadrupole moment along the symmetry axis of the coronene disc. The second approach takes into account the fact that the partial chargesmore » within the molecules are distributed in a ring-like fashion. We then reparametrize the effective Gay-Berne-like potential such that it matches, at short distances, the ring-ring potential. To investigate the validity of these two approaches, we perform many-particle molecular dynamics simulations, focusing on the crystalline phase (karpatite) where electrostatic interaction effects are expected to be particularly relevant for the formation of tilted stacked columns. Specifically, we investigate various structural parameters as well as the melting transition. We find that the second approach yields consistent results with those from experiments despite the fact that the underlying potential decays with the wrong distance dependence at large molecule separations. Our strategy can be transferred to a broader class of molecules, such as benzene or hexabenzocoronene.« less

  12. Upper-Division Student Difficulties with Separation of Variables

    ERIC Educational Resources Information Center

    Wilcox, Bethany R.; Pollock, Steven J.

    2015-01-01

    Separation of variables can be a powerful technique for solving many of the partial differential equations that arise in physics contexts. Upper-division physics students encounter this technique in multiple topical areas including electrostatics and quantum mechanics. To better understand the difficulties students encounter when utilizing the…

  13. The Effect of Salt on the Complex Coacervation of Vinyl Polyelectrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, Sarah; Li, Yue; Priftis, Dimitrios

    2014-06-01

    Complex coacervation is an electrostatically-driven phase separation phenomenon that is utilized in a wide range of everyday applications and is of great interest for the creation of self-assembled materials. Here, we utilized turbidity to characterize the effect of salt type on coacervate formation using two vinyl polyelectrolytes, poly(acrylic acid sodium salt) (pAA) and poly(allylamine hydrochloride) (pAH), as simple models for industrial and biological coacervates. We confirmed the dominant role of salt valence on the extent of coacervate formation, while demonstrating the presence of significant secondary effects, which can be described by Hofmeister-like behavior. These results revealed the importance of ion-specificmore » interactions, which are crucial for the informed design of coacervate-based materials for use in complex ionic environments, and can enable more detailed theoretical investigations on the role of subtle electrostatic and thermodynamic effects in complex coacervation.« less

  14. Electrostatic contribution to the persistence length of a semiflexible dipolar chain.

    PubMed

    Podgornik, Rudi

    2004-09-01

    We investigate the electrostatic contribution to the persistence length of a semiflexible polymer chain whose segments interact via a screened Debye-Hückel dipolar interaction potential. We derive the expressions for the renormalized persistence length on the level of a 1/D-expansion method already successfully used in other contexts of polyelectrolye physics. We investigate different limiting forms of the renormalized persistence length of the dipolar chain and show that, in, general, it depends less strongly on the screening length than in the context of a monopolar chain. We show that for a dipolar chain the electrostatic persistence length in the same regime of the parameter phase space as the original Odijk-Skolnick-Fixman (OSF) form for a monopolar chain depends logarithmically on the screening length rather than quadratically. This can be understood solely on the basis of a swifter decay of the dipolar interactions with separation compared to the monopolar electrostatic interactions. We comment also on the general contribution of higher multipoles to the electrostatic renormalization of the bending rigidity.

  15. Combined Effect of Heating Rate and Microalloying Elements on Recrystallization During Annealing of Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Bellavoine, Marion; Dumont, Myriam; Drillet, Josée; Hébert, Véronique; Maugis, Philippe

    2018-05-01

    Adjusting ferrite recrystallization kinetics during annealing is a way to control the final microstructure and thus the mechanical properties of advanced cold-rolled high-strength steels. Two strategies are commonly used for this purpose: adjusting heating rates and/or adding microalloying elements. The present work investigates the effect of heating rate and microalloying elements Ti, Nb, and Mo on recrystallization kinetics during annealing in various cold-rolled Dual-Phase steel grades. The use of combined experimental and modeling approaches allows a deeper understanding of the separate influence of heating rate and the addition of microalloying elements. The comparative effect of Ti, Nb, and Mo as solute elements and as precipitates on ferrite recrystallization is also clarified. It is shown that solute drag has the largest delaying effect on recrystallization in the present case and that the order of solute drag effectiveness of microalloying elements is Nb > Mo > Ti.

  16. Combined Effect of Heating Rate and Microalloying Elements on Recrystallization During Annealing of Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Bellavoine, Marion; Dumont, Myriam; Drillet, Josée; Hébert, Véronique; Maugis, Philippe

    2018-07-01

    Adjusting ferrite recrystallization kinetics during annealing is a way to control the final microstructure and thus the mechanical properties of advanced cold-rolled high-strength steels. Two strategies are commonly used for this purpose: adjusting heating rates and/or adding microalloying elements. The present work investigates the effect of heating rate and microalloying elements Ti, Nb, and Mo on recrystallization kinetics during annealing in various cold-rolled Dual-Phase steel grades. The use of combined experimental and modeling approaches allows a deeper understanding of the separate influence of heating rate and the addition of microalloying elements. The comparative effect of Ti, Nb, and Mo as solute elements and as precipitates on ferrite recrystallization is also clarified. It is shown that solute drag has the largest delaying effect on recrystallization in the present case and that the order of solute drag effectiveness of microalloying elements is Nb > Mo > Ti.

  17. Evolution of fNL to the adiabatic limit

    NASA Astrophysics Data System (ADS)

    Elliston, Joseph; Mulryne, David J.; Seery, David; Tavakol, Reza

    2011-11-01

    We study inflationary perturbations in multiple-field models, for which ζ typically evolves until all isocurvature modes decay — the "adiabatic limit". We use numerical methods to explore the sensitivity of the local-shape bispectrum to the process by which this limit is achieved, finding an appreciable dependence on model-specific data such as the time at which slow-roll breaks down or the timescale of reheating. In models with a sum-separable potential where the isocurvature modes decay before the end of the slow-roll phase we give an analytic criterion for the asymptotic value of fNL to be large. Other examples can be constructed using a waterfall field to terminate inflation while fNL is transiently large, caused by descent from a ridge or convergence into a valley. We show that these two types of evolution are distinguished by the sign of the bispectrum, and give approximate expressions for the peak fNL.

  18. An experiment to study energetic particle fluxes in and beyond the earth's outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Lin, R. P.; Paoli, R. J.; Parks, G. K.; Lin, C. S.; Reme, H.; Bosqued, J. M.; Martel, F.; Cotin, F.; Cros, A.

    1978-01-01

    This experiment is designed to take advantage of the ISEE Mother/Daughter dual spacecraft system to study energetic particle phenomena in the earth's outer magnetosphere and beyond. Large geometric factor fixed voltage electrostatic analyzers and passively cooled semiconductor detector telescopes provide high time resolution coverage of the energy range from 1.5 to 300 keV for both ions and electrons. Essentially identical instrumentation is placed on the two spacecraft to separate temporal from spatial effects in the observed particle phenomena.

  19. Highly reliable wind-rolling triboelectric nanogenerator operating in a wide wind speed range

    PubMed Central

    Yong, Hyungseok; Chung, Jihoon; Choi, Dukhyun; Jung, Daewoong; Cho, Minhaeng; Lee, Sangmin

    2016-01-01

    Triboelectric nanogenerators are aspiring energy harvesting methods that generate electricity from the triboelectric effect and electrostatic induction. This study demonstrates the harvesting of wind energy by a wind-rolling triboelectric nanogenerator (WR-TENG). The WR-TENG generates electricity from wind as a lightweight dielectric sphere rotates along the vortex whistle substrate. Increasing the kinetic energy of a dielectric converted from the wind energy is a key factor in fabricating an efficient WR-TENG. Computation fluid dynamics (CFD) analysis is introduced to estimate the precise movements of wind flow and to create a vortex flow by adjusting the parameters of the vortex whistle shape to optimize the design parameters to increase the kinetic energy conversion rate. WR-TENG can be utilized as both a self-powered wind velocity sensor and a wind energy harvester. A single unit of WR-TENG produces open-circuit voltage of 11.2 V and closed-circuit current of 1.86 μA. Additionally, findings reveal that the electrical power is enhanced through multiple electrode patterns in a single device and by increasing the number of dielectric spheres inside WR-TENG. The wind-rolling TENG is a novel approach for a sustainable wind-driven TENG that is sensitive and reliable to wind flows to harvest wasted wind energy in the near future. PMID:27653976

  20. CONTROL FOR ROLLING MILL

    DOEpatents

    Shuck, A.B.; Shaw, W.C.

    1961-06-20

    A plutonium-rolling apparatus is patented that has two sets of feed rolls, shaping rolls between the feed rolls, and grippers beyond the feed rolls, which ready a workpiece for a new pass through the shaping rolls by angularly shifting the workpiece about its axis or transversely moving it on a line parallel to the axes of the shaping rolls. Actuation of each gripper for gripping or releasing the workpiece is produced by the relative positions assumed by the feed rolls adjacent to the gripper as the workpiece enters or leaves the feed rolls.

  1. Estimates of the initial vortex separation distance, bo, of commercial aircraft from pulsed lidar data

    DOT National Transportation Integrated Search

    2013-01-07

    An aircraft in flight generates multiple wake vortices, the largest of which are a result of : the lift on the wings. These vortices rapidly roll up into a counter-rotating vortex pair : behind the aircraft. The initial separation between the centroi...

  2. Evaluation and application of a mixed-mode chromatographic stationary phase in two-dimensional liquid chromatography for the separation of traditional Chinese medicine.

    PubMed

    Wei, Zhishen; Fu, Qing; Cai, Jianfeng; Huan, Liyun; Zhao, Jianchao; Shi, Hui; Jin, Yu; Liang, Xinmiao

    2016-06-01

    In this study, two mixed-mode chromatography stationary phases (C8SAX and C8SCX) were evaluated and used to establish a two-dimensional liquid chromatography system for the separation of traditional Chinese medicine. The chromatographic properties of the mixed-mode columns were systematically evaluated by comparing with other three columns of C8, strong anion exchanger, and strong cation exchanger. The result showed that C8SAX and C8SCX had a mixed-mode retention mechanism including electrostatic interaction and hydrophobic interaction. Especially, they were suitable for separating acidic and/or basic compounds and their separation selectivities could be easily adjusted by changing pH value. Then, several off-line 2D-LC systems based on the C8SAX in the first dimension and C8SAX, C8SCX, or C8 columns in the second dimension were developed to analyze a traditional Chinese medicine-Uncaria rhynchophylla. The two-dimensional liquid chromatography system of C8SAX (pH 3.0) × C8SAX (pH 6.0) exhibited the most effective peak distribution. Finally, fractions of U. rhynchophylla prepared from the first dimension were successfully separated on the C8SAX column with a gradient pH. Thus, the mixed-mode stationary phase could provide a platform to separate the traditional Chinese medicine in practical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Store Separation Simulation of the Penguin Missile from Helicopters

    DTIC Science & Technology

    2006-05-01

    Fin Sections – Parent Aircraft Aerodynamic Modeling • Fuselage • Wing and Pylon – Flight Simulation Features • Eqns. Of Motion • Ejectors , Thrust ...model – Lanyard model – Models for ejectors , thrust , mass, etc… – Helicopter rotor wake model – Penguin wing deployment dynamics – Penguin wing roll...umbilical, wing roll tabs, time dependent thrust and mass properties, and the incorporation of a realistic autopilot. The modeling of the unique

  4. Advanced coal cleaning meets acid rain emission limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boron, D.J.; Matoney, J.P.; Albrecht, M.C.

    1987-03-01

    The following processes were selected for study: fine-coal, heavy-medium cyclone separation/flotation, advanced flotation, Dow true heavy liquid separation, Advanced Energy Dynamics (AED) electrostatic separation, and National Research Council of Canada oil agglomeration. Advanced coal cleaning technology was done for the state of New York to investigate methods to use high sulfur coal in view of anticipated lower SO/sub 2/ emission limits.

  5. Discrete Element Modeling (DEM) of Triboelectrically Charged Particles: Revised Experiments

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Calle, Carlos I.; Curry, D. R.; Weitzman, P. S.

    2008-01-01

    In a previous work, the addition of basic screened Coulombic electrostatic forces to an existing commercial discrete element modeling (DEM) software was reported. Triboelectric experiments were performed to charge glass spheres rolling on inclined planes of various materials. Charge generation constants and the Q/m ratios for the test materials were calculated from the experimental data and compared to the simulation output of the DEM software. In this paper, we will discuss new values of the charge generation constants calculated from improved experimental procedures and data. Also, planned work to include dielectrophoretic, Van der Waals forces, and advanced mechanical forces into the software will be discussed.

  6. Single-crystalline cubic structured InP nanosprings

    NASA Astrophysics Data System (ADS)

    Shen, G. Z.; Bando, Y.; Zhi, C. Y.; Yuan, X. L.; Sekiguchi, T.; Golberg, D.

    2006-06-01

    Cubic structured nanosprings, InP nanosprings, have been synthesized via a simple thermochemical process using InP and ZnS as the source materials. Each InP nanospring is formed by rolling up a single InP nanobelt with the growth direction along the ⟨111⟩ orientation. The formation of these novel nanostructures is mainly attributed to the minimization of the electrostatic energy due to the polar charges on the ±(002) side surfaces of cubic InP. Cathodoluminescence properties were also studied, which reveal that the InP nanosprings have three emission bands centered at ˜736, ˜920, and ˜980nm.

  7. Tribo-charging properties of waste plastic granules in process of tribo-electrostatic separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jia, E-mail: weee@sjtu.edu.cn; Wu, Guiqing; Xu, Zhenming

    Highlights: • The cyclone charging was more effective and stable than vibrating charging. • The small particle size was better changed than large ones and was more suitable recycled by TES. • The drying pretreatment is good for improving the short-term charging effect. - Abstract: Plastic products can be found everywhere in people’s daily life. With the consistent growth of plastic consumption, more and more plastic waste is generated. Considering the stable chemical and physics characteristics of plastic, regular waste management methods are not suitable for recycling economic strategy of each government, which has become a serious environmental problem. Recyclingmore » plastic waste is considered to be the best way to treat it, because it cannot only deduce the waste but also save the energy to produce new virgin plastic. Tribo-electrostatic separation is strongly recommended for plastic separation as it can preserve the original properties of plastic and has little additional pollution. In this study, plastic granules are generated by crushing plastic waste in waste electric and electronic equipment. The tribo-charging properties of plastic waste were studied by vibrating tribo-charging and cyclone tribo-charging. The triboelectric series obtained by vibrating was: (−)-PE–PS–PC–PVC–ABS–PP-(+), while the triboelectric series obtained by cyclone was (−)-PE–PS–PC–PVC–ABS–PP-(+). Further, the cyclone charging was more effective and stable than vibrating charging. The impact factors experiments showed that small particle size was better changed than large ones and were more suitable recycled by tribo-electrostatic separation. High relative humidity was identified as impede charging effect. The results of this study will help defining the operating parameters of subsequent separator.« less

  8. The 2.3-Angstrom Structure of Porcine Circovirus 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khayat, Reza; Brunn, Nicholas; Speir, Jeffrey A.

    Porcine circovirus 2 (PCV2) is a T = 1 nonenveloped icosahedral virus that has had severe impact on the swine industry. Here we report the crystal structure of an N-terminally truncated PCV2 virus-like particle at 2.3-{angstrom} resolution, and the cryo-electron microscopy (cryo-EM) image reconstruction of a full-length PCV2 virus-like particle at 9.6-{angstrom} resolution. This is the first atomic structure of a circovirus. The crystal structure revealed that the capsid protein fold is a canonical viral jelly roll. The loops connecting the strands of the jelly roll define the limited features of the surface. Sulfate ions interacting with the surface andmore » electrostatic potential calculations strongly suggest a heparan sulfate binding site that allows PCV2 to gain entry into the cell. The crystal structure also allowed previously determined epitopes of the capsid to be visualized. The cryo-EM image reconstruction showed that the location of the N terminus, absent in the crystal structure, is inside the capsid. As the N terminus was previously shown to be antigenic, it may externalize through viral 'breathing'.« less

  9. Enhanced tumor cell isolation by a biomimetic combination of E-selectin and anti-EpCAM: implications for the effective separation of circulating tumor cells (CTCs).

    PubMed

    Myung, Ja Hye; Launiere, Cari A; Eddington, David T; Hong, Seungpyo

    2010-06-01

    The selective detection of circulating tumor cells (CTCs) is of significant clinical importance for the clinical diagnosis and prognosis of cancer metastasis. However, largely because of the extremely low number of CTCs (as low as 1 in 10(9) hematologic cells) in the blood of patients, effective detection and separation of the rare cells remain a tremendous challenge. Cell rolling is known to play a key role in physiological processes such as the recruitment of leukocytes to sites of inflammation and selectin-mediated CTC metastasis. Furthermore, because CTCs typically express the epithelial-cell adhesion molecule (EpCAM) on the surface whereas normal hematologic cells do not, substrates with immobilized antibody against EpCAM may specifically interact with CTCs. In this article, we created biomimetic surfaces functionalized with P- and E-selectin and anti-EpCAM that induce different responses in HL-60 (used as a model of leukocytes in this study) and MCF-7 (a model of CTCs) cells. HL-60 and MCF-7 cells showed different degrees of interaction with P-/E-selectin and anti-EpCAM at a shear stress of 0.32 dyn/cm(2). HL-60 cells exhibited rolling on P-selectin-immobilized substrates at a velocity of 2.26 +/- 0.28 microm/s whereas MCF-7 cells had no interaction with the surface. Both cell lines, however, had interactions with E-selectin, and the rolling velocity of MCF-7 cells (4.24 +/- 0.31 microm/s) was faster than that of HL-60 cells (2.12 +/- 0.15 microm/s). However, only MCF-7 cells interacted with anti-EpCAM-coated surfaces, forming stationary binding under flow. More importantly, the combination of the rolling (E-selectin) and stationary binding (anti-EpCAM) resulted in substantially enhanced separation capacity and capture efficiency (more than 3-fold enhancement), as compared to a surface functionalized solely with anti-EpCAM that has been commonly used for CTC capture. Our results indicate that cell-specific detection and separation may be achieved through mimicking the biological processes of combined dynamic cell rolling and stationary binding, which will likely lead to a CTC detection device with significantly enhanced specificity and sensitivity without a complex fabrication process.

  10. Role of electrostatic interactions during protein ultrafiltration.

    PubMed

    Rohani, Mahsa M; Zydney, Andrew L

    2010-10-15

    A number of studies over the last decade have clearly demonstrated the importance of electrostatic interactions on the transport of charged proteins through semipermeable ultrafiltration membranes. This paper provides a review of recent developments in this field with a focus on the role of both protein and membrane charge on the rate of protein transport. Experimental results are analyzed using available theoretical models developed from the solution of the Poisson-Boltzmann equation for the partitioning of a charged particle into a charged pore. The potential of exploiting these electrostatic interactions for selective protein separations and for the development of ultrafiltration membranes with enhanced performance characteristics is also examined. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Electrostatically tunable lateral MoTe2 p-n junction for use in high-performance optoelectronics.

    PubMed

    Wang, Zhenxing; Wang, Feng; Yin, Lei; Huang, Yun; Xu, Kai; Wang, Fengmei; Zhan, Xueying; He, Jun

    2016-07-21

    Because of their ultimate thickness, layered structure and high flexibility, pn junctions based on layered two-dimensional semiconductors have been attracting increasing attention recently. In this study, for the first time, we fabricated lateral pn junctions (LPNJs) based on ultrathin MoTe2 by introducing two separated electrostatic back gates, and investigated their electronic and photovoltaic performance. Pn, np, nn, and pp junctions can be easily realized by modulating the conductive channel type using gate voltages with different polarities. Strong rectification effects were observed in the pn and np junctions and the rectification ratio reached ∼5 × 10(4). Importantly, we find a unique phenomenon that the parameters for MoTe2 LPNJs experience abrupt changes during the transition from p to n or n to p. Furthermore, a high performance photovoltaic device with a filling factor of above 51% and electrical conversion efficiency (η) of around 0.5% is achieved. Our findings are of importance to comprehensively understand the electronic and optoelectronic properties of MoTe2 and may further open up novel electronic and optoelectronic device applications.

  12. Life stages of wall-bounded decay of Taylor-Couette turbulence

    NASA Astrophysics Data System (ADS)

    Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Spandan, Vamsi; Verzicco, Roberto; Lohse, Detlef

    2017-11-01

    The decay of Taylor-Couette turbulence, i.e., the flow between two coaxial and independently rotating cylinders, is numerically studied by instantaneously stopping the forcing from an initially statistically stationary flow field at a Reynolds number of Re=3.5 ×104 . The effect of wall friction is analyzed by comparing three separate cases, in which the cylinders are either suddenly made no-slip or stress-free. Different life stages are observed during the decay. In the first stage, the decay is dominated by large-scale rolls. Counterintuitively, when these rolls fade away, if the flow inertia is small a redistribution of energy occurs and the energy of the azimuthal velocity behaves nonmonotonically, first decreasing by almost two orders of magnitude and then increasing during the redistribution. The second stage is dominated by non-normal transient growth of perturbations in the axial (spanwise) direction. Once this mechanism is exhausted, the flow enters the final life stage, viscous decay, which is dominated by wall friction. We show that this stage can be modeled by a one-dimensional heat equation, and that self-similar velocity profiles collapse onto the theoretical solution.

  13. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-10-17

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  14. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-06-27

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  15. A Compound Fault Diagnosis for Rolling Bearings Method Based on Blind Source Separation and Ensemble Empirical Mode Decomposition

    PubMed Central

    Wang, Huaqing; Li, Ruitong; Tang, Gang; Yuan, Hongfang; Zhao, Qingliang; Cao, Xi

    2014-01-01

    A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envelope detection, wavelet transform or empirical mode decomposition individually. In order to improve the compound faults diagnose of rolling bearings via signals’ separation, the present paper proposes a new method to identify compound faults from measured mixed-signals, which is based on ensemble empirical mode decomposition (EEMD) method and independent component analysis (ICA) technique. With the approach, a vibration signal is firstly decomposed into intrinsic mode functions (IMF) by EEMD method to obtain multichannel signals. Then, according to a cross correlation criterion, the corresponding IMF is selected as the input matrix of ICA. Finally, the compound faults can be separated effectively by executing ICA method, which makes the fault features more easily extracted and more clearly identified. Experimental results validate the effectiveness of the proposed method in compound fault separating, which works not only for the outer race defect, but also for the rollers defect and the unbalance fault of the experimental system. PMID:25289644

  16. Applicability of a panel method, which includes nonlinear effects, to a forward-swept-wing aircraft

    NASA Technical Reports Server (NTRS)

    Ross, J. C.

    1984-01-01

    The ability of a lower order panel method VSAERO, to accurately predict the lift and pitching moment of a complete forward-swept-wing/canard configuration was investigated. The program can simulate nonlinear effects including boundary-layer displacement thickness, wake roll up, and to a limited extent, separated wakes. The predictions were compared with experimental data obtained using a small-scale model in the 7- by 10- Foot Wind Tunnel at NASA Ames Research Center. For the particular configuration under investigation, wake roll up had only a small effect on the force and moment predictions. The effect of the displacement thickness modeling was to reduce the lift curve slope slightly, thus bringing the predicted lift into good agreement with the measured value. Pitching moment predictions were also improved by the boundary-layer simulation. The separation modeling was found to be sensitive to user inputs, but appears to give a reasonable representation of a separated wake. In general, the nonlinear capabilities of the code were found to improve the agreement with experimental data. The usefullness of the code would be enhanced by improving the reliability of the separated wake modeling and by the addition of a leading edge separation model.

  17. Passive membrane penetration by ZnO nanoparticles is driven by the interplay of electrostatic and phase boundary conditions.

    PubMed

    Tiwari, Anuj; Prince, Ashutosh; Arakha, Manoranjan; Jha, Suman; Saleem, Mohammed

    2018-02-15

    The internalization of nanoparticles through the biological membrane is of immense importance for biomedical applications. A fundamental understanding of the lipid specificity and the role of the membrane biochemical and physical forces at play in modulating penetration are lacking. The current understanding of nanoparticle-membrane interaction is drawn mostly from computational studies and lacks sufficient experimental evidence. Herein, using confocal fluorescence imaging and potentiometric dye-based fluorimetry, we first investigated the interaction of ZnONP in both multi-component and individual lipid membranes using cell-like giant unilamellar vesicles to dissect the lipid specificity; also, we investigated the changes in membrane order, anisotropy and hydrophobicity. ZnONP was found to interact with phosphatidylinositol and phosphatidylcholine head-group-containing lipids specifically. We further investigated the interaction of ZnONP with three physiologically relevant membrane conditions varying in composition and dipole potential. We found that ZnONP interaction leads to a photoinduced enhancement of the partial-to-complete phase separation depending upon the membrane composition and cholesterol content. Interestingly, while the lipid order of a partially-phase-separated membrane remained unchanged upon ZnONP crowding, a fully-phase-separated membrane showed an increase in the lipid order. Strikingly, ZnONP crowding induced a contrasting effect on the fluorescence anisotropy of the membrane upon binding to the two membrane conditions, in line with the measured diffusion coefficient. ZnONP seems to preferentially penetrate through the liquid disordered areas of the membrane and the boundaries of the phase-separated regions driven by the interplay between the electrostatics and phase boundary conditions, which are collectively dictated by the composition and ZnONP-induced lipid reorganization. The results may lead to a greater understanding of the interplay of membrane parameters and ZnONP interaction in driving passive penetration.

  18. Evaluation of effects of pH and ionic strength on colloidal stability of IgG solutions by PEG-induced liquid-liquid phase separation.

    PubMed

    Thompson, Ronald W; Latypov, Ramil F; Wang, Ying; Lomakin, Aleksey; Meyer, Julie A; Vunnum, Suresh; Benedek, George B

    2016-11-14

    Colloidal stability of IgG antibody solutions is important for pharmaceutical and medicinal applications. Solution pH and ionic strength are two key factors that affect the colloidal stability of protein solutions. In this work, we use a method based on the PEG-induced liquid-liquid phase separation to examine the effects of pH and ionic strength on the colloidal stability of IgG solutions. We found that at high ionic strength (≥0.25M), the colloidal stability of most of our IgGs is insensitive to pH, and at low ionic strength (≤0.15M), all IgG solutions are much more stable at pH 5 than at pH 7. In addition, the PEG-induced depletion force is less efficient in causing phase separation at pH 5 than at pH 7. In contrast to the native inter-protein interaction of IgGs, the effect of depletion force on phase separation of the antibody solutions is insensitive to ionic strength. Our results suggest that the long-range electrostatic inter-protein repulsion at low ionic strength stabilizes the IgG solutions at low pH. At high ionic strength, the short-range electrostatic interactions do not make a significant contribution to the colloidal stability for most IgGs with a few exceptions. The weaker effect of depletion force at lower pH indicates a reduction of protein concentration in the condensed phase. This work advances our basic understanding of the colloidal stability of IgG solutions and also introduces a practical approach to measuring protein colloidal stability under various solution conditions.

  19. Real-time monitoring system for improving corona electrostatic separation in the process of recovering waste printed circuit boards.

    PubMed

    Li, Jia; Zhou, Quan; Xu, Zhenming

    2014-12-01

    Although corona electrostatic separation is successfully used in recycling waste printed circuit boards in industrial applications, there are problems that cannot be resolved completely, such as nonmetal particle aggregation and spark discharge. Both of these problems damage the process of separation and are not easy to identify during the process of separation in industrial applications. This paper provides a systematic study on a real-time monitoring system. Weight monitoring systems were established to continuously monitor the separation process. A Virtual Instrumentation program written by LabVIEW was utilized to sample and analyse the mass increment of the middling product. It includes four modules: historical data storage, steady-state analysis, data computing and alarm. Three kinds of operating conditions were used to verify the applicability of the monitoring system. It was found that the system achieved the goal of monitoring during the separation process and realized the function of real-time analysis of the received data. The system also gave comprehensible feedback on the accidents of material blockages in the feed inlet and high-voltage spark discharge. With the warning function of the alarm system, the whole monitoring system could save the human cost and help the new technology to be more easily applied in industry. © The Author(s) 2014.

  20. Evaluating the point of separation, during carcass fabrication, between the beef wholesale rib and the beef wholesale chuck.

    PubMed

    Reuter, B J; Wulf, D M; Shanks, B C; Maddock, R J

    2002-01-01

    This study determined whether there is a logical point of value change, related to either tenderness or consumer acceptance, at which to separate the beef carcass within the rib/chuck region. Rib/chuck rolls (RCR); (n = 30) consisting of the ribeye roll and chuck eye roll subprimals (2nd through 12th rib locations) were cut into 22 steaks each (two steaks per rib location), and Warner-Bratzler shear force and consumer purchase preference were evaluated for steaks at each rib location. Steaks from different locations of the RCR were composed of differing proportions of several muscles: longissimus muscle (LM), spinalis dorsi and multifidus dorsi (SM), and complexus (CO). The LM (4th to 12th rib) contained three tenderness regions: 7th through 12th rib, 5th and 6th ribs, and 4th rib regions (lowest, intermediate, and highest shear force values, respectively; P < 0.01). Shear force differed (P < 0.05) among rib locations for the SM (2nd to 9th rib), but no logical pattern was evident. The CO (2nd to 7th rib) was more tender toward the anterior end (P < 0.05). The region of the RCR represented by the 4th through 6th rib locations had steaks with higher weighted-average shear force (average shear force of each steak, weighted for surface area of each muscle) values than the remainder of the RCR (P < 0.05). Animal-to-animal variation in shear force was 36% greater than rib-to-rib variation in shear force; thus, statistically significant differences in tenderness among rib locations may be undetectable by consumers. Steaks (n = 330) were offered for sale at a retail supermarket and case time was monitored on each steak to determine consumer purchase preference. Steaks from the 2nd through 4th rib locations required more time to sell (P < 0.01) than steaks from the 5th through 12th rib locations. Two alternative locations for the rib/chuck separation point could be between the 6th and 7th ribs, yielding a ribeye subprimal useful in marketing a "premium quality" product, or between the 4th and 5th ribs, which would yield four more 2.5-cm ribeye steaks per carcass.

  1. Ion extraction capabilities of two-grid accelerator systems. [for spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1984-01-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. A large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current is presented. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high.

  2. Chiral recognition and selection during the self-assembly process of protein-mimic macroanions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Panchao; Zhang, Zhi-Ming; Lv, Hongjin

    The research on chiral recognition and chiral selection is not only fundamental in resolving the puzzle of homochirality, but also instructive in chiral separation and stereoselective catalysis. Here we report the chiral recognition and chiral selection during the self-assembly process of two enantiomeric wheel-shaped macroanions, [Fe28(μ3-O)8(Tart)16(HCOO)24]20- (Tart=D- or L-tartaric acid tetra-anion). The enantiomers are observed to remain self-sorted and self-assemble into their individual assemblies in their racemic mixture solution. The addition of chiral co-anions can selectively suppress the self-assembly process of the enantiomeric macroanions, which is further used to separate the two enantiomers from their mixtures on the basis ofmore » the size difference between the monomers and the assemblies. We believe that delicate long-range electrostatic interactions could be responsible for such high-level chiral recognition and selection.« less

  3. Fluidic emergency roll control system. [for emergency aircraft control following failure of primary roll control system

    NASA Technical Reports Server (NTRS)

    Haefner, K. B.; Honda, T. S.

    1973-01-01

    A fluidic emergency roll control system for aircraft stabilization in the event of primary flight control failure was evaluated. The fluidic roll control units were designed to provide roll torque proportional to an electrical command as operated by two diametrically opposed thrust nozzles located in the wing tips. The control package consists of a solid propellant gas generator, two diametrically opposed vortex valve modulated thrust nozzles, and an electromagnetic torque motor. The procedures for the design, development, and performance testing of the system are described.

  4. Mathematical analysis of the boundary-integral based electrostatics estimation approximation for molecular solvation: exact results for spherical inclusions.

    PubMed

    Bardhan, Jaydeep P; Knepley, Matthew G

    2011-09-28

    We analyze the mathematically rigorous BIBEE (boundary-integral based electrostatics estimation) approximation of the mixed-dielectric continuum model of molecular electrostatics, using the analytically solvable case of a spherical solute containing an arbitrary charge distribution. Our analysis, which builds on Kirkwood's solution using spherical harmonics, clarifies important aspects of the approximation and its relationship to generalized Born models. First, our results suggest a new perspective for analyzing fast electrostatic models: the separation of variables between material properties (the dielectric constants) and geometry (the solute dielectric boundary and charge distribution). Second, we find that the eigenfunctions of the reaction-potential operator are exactly preserved in the BIBEE model for the sphere, which supports the use of this approximation for analyzing charge-charge interactions in molecular binding. Third, a comparison of BIBEE to the recent GBε theory suggests a modified BIBEE model capable of predicting electrostatic solvation free energies to within 4% of a full numerical Poisson calculation. This modified model leads to a projection-framework understanding of BIBEE and suggests opportunities for future improvements. © 2011 American Institute of Physics

  5. Effect of the ordered interfacial water layer in protein complex formation: A nonlocal electrostatic approach

    NASA Astrophysics Data System (ADS)

    Rubinstein, A.; Sabirianov, R. F.; Mei, W. N.; Namavar, F.; Khoynezhad, A.

    2010-08-01

    Using a nonlocal electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an ordered interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.

  6. Effect of the ordered interfacial water layer in protein complex formation: A nonlocal electrostatic approach.

    PubMed

    Rubinstein, A; Sabirianov, R F; Mei, W N; Namavar, F; Khoynezhad, A

    2010-08-01

    Using a nonlocal electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an ordered interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.

  7. Evaluation of roll designs on a roll-crusher/ crusher/splitter biomass harvester: test bench results

    Treesearch

    Colin Ashmore; Donald L. Sirois; Bryce J. Stokes

    1987-01-01

    Four different roll designs were evaluated on a test bench roll crusher/splitter to determine feeding and crushing efficiencies. For each design, different gap settings for the primary and secondary rolls were tested at two hydraulic cylinder pressures on the primary crush roll to determine their ability to crush and/or feed tree bolts. Seven different diameter classes...

  8. Separation of aromatic carboxylic acids using quaternary ammonium salts on reversed-phase HPLC. 1. Separation behavior of aromatic carboxylic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, K.; Okuwaki, A.; Verheyen, T.

    In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt has been investigated. The retention mechanism of aromatic carboxylic acids was discussed on the basis of both ion-pair partition model and ion-exchange model. The retention behavior of aromatic carboxylic acids possessing one (or two) carboxylic acid group(s) followed the ion-pair partition model, where linear free energy relationship was observed between the capacity factor and the extraction equilibrium constants of benzoic acid and naphthalene carboxylic acid.more » Besides, the retention behavior followed ion-exchange model with increasing the number of carboxylic acids, where the capacity factor of benzene polycarboxylic acids is proportional to the association constants between aromatic acids and quaternary ammonium ions calculated on the basis of an electrostatic interaction model.« less

  9. Electrostatic complementarity at protein/protein interfaces.

    PubMed

    McCoy, A J; Chandana Epa, V; Colman, P M

    1997-05-02

    Calculation of the electrostatic potential of protein-protein complexes has led to the general assertion that protein-protein interfaces display "charge complementarity" and "electrostatic complementarity". In this study, quantitative measures for these two terms are developed and used to investigate protein-protein interfaces in a rigorous manner. Charge complementarity (CC) was defined using the correlation of charges on nearest neighbour atoms at the interface. All 12 protein-protein interfaces studied had insignificantly small CC values. Therefore, the term charge complementarity is not appropriate for the description of protein-protein interfaces when used in the sense measured by CC. Electrostatic complementarity (EC) was defined using the correlation of surface electrostatic potential at protein-protein interfaces. All twelve protein-protein interfaces studied had significant EC values, and thus the assertion that protein-protein association involves surfaces with complementary electrostatic potential was substantially confirmed. The term electrostatic complementarity can therefore be used to describe protein-protein interfaces when used in the sense measured by EC. Taken together, the results for CC and EC demonstrate the relevance of the long-range effects of charges, as described by the electrostatic potential at the binding interface. The EC value did not partition the complexes by type such as antigen-antibody and proteinase-inhibitor, as measures of the geometrical complementarity at protein-protein interfaces have done. The EC value was also not directly related to the number of salt bridges in the interface, and neutralisation of these salt bridges showed that other charges also contributed significantly to electrostatic complementarity and electrostatic interactions between the proteins. Electrostatic complementarity as defined by EC was extended to investigate the electrostatic similarity at the surface of influenza virus neuraminidase where the epitopes of two monoclonal antibodies, NC10 and NC41, overlap. Although NC10 and NC41 both have quite high values of EC for their interaction with neuraminidase, the similarity in electrostatic potential generated by the two on the overlapping region of the epitopes is insignificant. Thus, it is possible for two antibodies to recognise the electrostatic surface of a protein in dissimilar ways.

  10. Aerodynamic characteristics of a Sparrow 3 missile model in the flow field of a generalized parent body at Mach 2.86

    NASA Technical Reports Server (NTRS)

    Stallings, R. L., Jr.

    1984-01-01

    Longitudinal aerodynamic characteristics of a Sparrow 3 wing control missile model were measured through a range of separation distances relative to a flat plate surface that represented the parent-body configuration. Measurements were obtained with and without two dimensional circular arc protuberances attached to the flat plate surface. The tests were conducted at a Mach number of 2.86 and a Reynolds number per meter of 6.56 million. The behavior of these longitudinal characteristics with varying separation distance in the flow field created by the flat plate and protuberance was generally as would be expected on the basis of flow field boundaries determined from the second order approximation of Friedrich. In general, varying roll angle from 0 deg to 45 deg caused no significant effect on the store separation characteristics.

  11. Toward large-area roll-to-roll printed nanophotonic sensors

    NASA Astrophysics Data System (ADS)

    Karioja, Pentti; Hiltunen, Jussi; Aikio, Sanna M.; Alajoki, Teemu; Tuominen, Jarkko; Hiltunen, Marianne; Siitonen, Samuli; Kontturi, Ville; Böhlen, Karl; Hauser, Rene; Charlton, Martin; Boersma, Arjen; Lieberzeit, Peter; Felder, Thorsten; Eustace, David; Haskal, Eliav

    2014-05-01

    Polymers have become an important material group in fabricating discrete photonic components and integrated optical devices. This is due to their good properties: high optical transmittance, versatile processability at relative low temperatures and potential for low-cost production. Recently, nanoimprinting or nanoimprint lithography (NIL) has obtained a plenty of research interest. In NIL, a mould is pressed against a substrate coated with a moldable material. After deformation of the material, the mold is separated and a replica of the mold is formed. Compared with conventional lithographic methods, imprinting is simple to carry out, requires less-complicated equipment and can provide high-resolution with high throughput. Nanoimprint lithography has shown potential to become a method for low-cost and high-throughput fabrication of nanostructures. We show the development process of nano-structured, large-area multi-parameter sensors using Photonic Crystal (PC) and Surface Enhanced Raman Scattering (SERS) methodologies for environmental and pharmaceutical applications. We address these challenges by developing roll-to-roll (R2R) UV-nanoimprint fabrication methods. Our development steps are the following: Firstly, the proof of concept structures are fabricated by the use of wafer-level processes in Si-based materials. Secondly, the master molds of successful designs are fabricated, and they are used to transfer the nanophotonic structures into polymer materials using sheet-level UV-nanoimprinting. Thirdly, the sheet-level nanoimprinting processes are transferred to roll-to-roll fabrication. In order to enhance roll-to-roll manufacturing capabilities, silicone-based polymer material development was carried out. In the different development phases, Photonic Crystal and SERS sensor structures with increasing complexities were fabricated using polymer materials in order to enhance sheet-level and roll-to-roll manufacturing processes. In addition, chemical and molecular imprint (MIP) functionalization methods were applied in the sensor demonstrators. In this paper, the process flow in fabricating large-area nanophotonic structures by the use of sheet-level and roll-to-roll UV- nanoimprinting is reported.

  12. A Simplified Finite Element Simulation for Straightening Process of Thin-Walled Tube

    NASA Astrophysics Data System (ADS)

    Zhang, Ziqian; Yang, Huilin

    2017-12-01

    The finite element simulation is an effective way for the study of thin-walled tube in the two cross rolls straightening process. To determine the accurate radius of curvature of the roll profile more efficiently, a simplified finite element model based on the technical parameters of an actual two cross roll straightening machine, was developed to simulate the complex straightening process. Then a dynamic simulation was carried out using ANSYS LS-DYNA program. The result implied that the simplified finite element model was reasonable for simulate the two cross rolls straightening process, and can be obtained the radius of curvature of the roll profile with the tube’s straightness 2 mm/m.

  13. Fingerprinting of traditional Chinese medicines on the C18-Diol mixed-mode column in online or offline two-dimensional liquid chromatography on the single column modes.

    PubMed

    Wang, Qing; Tong, Ling; Yao, Lin; Zhang, Peng; Xu, Li

    2016-06-05

    In the present study, a mixed-mode stationary phase, C18-Diol, was applied for fingerprint analysis of traditional Chinese medicines. Hydrophobic, hydrogen bonding and electrostatic interactions were demonstrated to contribute the retention separately or jointly, which endowed the C18-Diol stationary phase with distinct selectivity compared to the bare C18 one. The separation of total alkaloids extracted from Fritillaria hupehensis was compared on the C18-Diol and conventional C18 column with the greater resolving power and better symmetry responses on the former one. Besides, a novel two-dimensional liquid chromatography on the single column (2D-LC-1C) was realized on C18-Diol with the offline mode for the alcohol extract of Fritillaria hupehensis and online mode for Ligusticum chuanxiong Hort. The early co-eluted extracted components with great polarity on the first dimension were reinjected on the same column and well separated on the second dimension. The results exhibited that the two complementary RPLC and HILIC modes on C18-Diol stationary phase enhanced the separation capacity and revealed more abundant chemical information of the sample, which was a powerful tool in analyzing complex herbal medicines. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Functional wettability in carbonate reservoirs

    DOE PAGES

    Brady, Patrick V.; Thyne, Geoffrey

    2016-10-11

    Oil adsorbs to carbonate reservoirs indirectly through a relatively thick separating water layer, and directly to the surface through a relatively thin intervening water layer. Whereas directly sorbed oil desorbs slowly and incompletely in response to changes in reservoir conditions, indirectly sorbed oil can be rapidly desorbed by changing the chemistry of the separating water layer. The additional recovery might be as much as 30% original oil in place (OOIP) above the ~30% OOIP recovered from carbonates through reservoir depressurization (primary production) and viscous displacement (waterflooding). Electrostatic adhesive forces are the dominant control over carbonate reservoir wettability. A surface complexationmore » model that quantifies electrostatic adhesion accurately predicts oil recovery trends for carbonates. Furthermore, the approach should therefore be useful for estimating initial wettability and designing fluids that improve oil recovery.« less

  15. Temperature-responsive chromatography for the separation of biomolecules.

    PubMed

    Kanazawa, Hideko; Okano, Teruo

    2011-12-09

    Temperature-responsive chromatography for the separation of biomolecules utilizing poly(N-isopropylacrylamide) (PNIPAAm) and its copolymer-modified stationary phase is performed with an aqueous mobile phase without using organic solvent. The surface properties and function of the stationary phase are controlled by external temperature changes without changing the mobile-phase composition. This analytical system is based on nonspecific adsorption by the reversible transition of a hydrophilic-hydrophobic PNIPAAm-grafted surface. The driving force for retention is hydrophobic interaction between the solute molecules and the hydrophobized polymer chains on the stationary phase surface. The separation of the biomolecules, such as nucleotides and proteins was achieved by a dual temperature- and pH-responsive chromatography system. The electrostatic and hydrophobic interactions could be modulated simultaneously with the temperature in an aqueous mobile phase, thus the separation system would have potential applications in the separation of biomolecules. Additionally, chromatographic matrices prepared by a surface-initiated atom transfer radical polymerization (ATRP) exhibit a strong interaction with analytes, because the polymerization procedure forms a densely packed polymer, called a polymer brush, on the surfaces. The copolymer brush grafted surfaces prepared by ATRP was an effective tool for separating basic biomolecules by modulating the electrostatic and hydrophobic interactions. Applications of thermally responsive columns for the separations of biomolecules are reviewed here. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. 75 FR 17832 - Pricing for 2010 Lincoln One-Cent Coin Two-Roll Set

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... DEPARTMENT OF THE TREASURY United States Mint Pricing for 2010 Lincoln One-Cent Coin Two-Roll Set AGENCY: United States Mint, Department of the Treasury. ACTION: Notice. SUMMARY: The United States Mint is announcing the price of the 2010 Lincoln One-Cent Coin Two-Roll Set. The 2010 Lincoln One-Cent...

  17. The physics of charge separation preceding lightning strokes in thunderclouds

    NASA Technical Reports Server (NTRS)

    Kyrala, Ali

    1987-01-01

    The physics of charge separation preceding lightning strokes in thunderclouds is presented by three types of arguments: An explanation is given for the aggregation of electrical charges of like sign overcoming Coulomb repulsion by attraction due to exchange interaction. The latter is well known in quantum mechanics from the theories of the nuclear bond and the covalent bond. A classical electrostatic model of charge balls of segregated positive and negative charges in the thundercloud is presented. These charge balls can only be maintained in temporarily stable locations by a containing vortex. Because they will be of different sizes and masses, they will stabilize at different altitudes when drag forces are included with the given electrostatic force. The question of how the charges become concentrated again after lightning discharges is approached by means of the collisional Boltzmann transport equation to explain quasi-periodic recharging. It is shown that solutions cannot be separable in both position and time if they are to represent aggregation.

  18. Shearlet transform in aliased ground roll attenuation and its comparison with f-k filtering and curvelet transform

    NASA Astrophysics Data System (ADS)

    Abolfazl Hosseini, Seyed; Javaherian, Abdolrahim; Hassani, Hossien; Torabi, Siyavash; Sadri, Maryam

    2015-06-01

    Ground roll, which is a Rayleigh surface wave that exists in land seismic data, may mask reflections. Sometimes ground roll is spatially aliased. Attenuation of aliased ground roll is of importance in seismic data processing. Different methods have been developed to attenuate ground roll. The shearlet transform is a directional and multidimensional transform that generates subimages of an input image in different directions and scales. Events with different dips are separated in these subimages. In this study, the shearlet transform is used to attenuate the aliased ground roll. To do this, a shot record is divided into several segments, and the appropriate mute zone is defined for all segments. The shearlet transform is applied to each segment. The subimages related to the non-aliased and aliased ground roll are identified by plotting the energy distributions of subimages with visual checking. Then, muting filters are used on selected subimages. The inverse shearlet transform is applied to the filtered segment. This procedure is repeated for all segments. Finally, all filtered segments are merged using the Hanning window. This method of aliased ground roll attenuation was tested on a synthetic dataset and a field shot record from the west of Iran. The synthetic shot record included strong aliased ground roll, whereas the field shot record did not. To produce the strong aliased ground roll on the field shot record, the data were resampled in the offset direction from 30 to 60 m. To show the performance of the shearlet transform in attenuating the aliased ground roll, we compared the shearlet transform with the f-k filtering and curvelet transform. We showed that the performance of the shearlet transform in the aliased ground roll attenuation is better than that of the f-k filtering and curvelet transform in both the synthetic and field shot records. However, when the dip and frequency content of the aliased ground roll are the same as the reflections, ability of the shearlet transform is limited in attenuating the aliased ground roll.

  19. A DIM model for sodium cluster-ions interacting with a charged conducting sphere

    NASA Astrophysics Data System (ADS)

    Kuntz, P. J.

    A diatomics-in-molecules (DIM) model for the energy, shape and charge distribution of metal cluster ions in the presence of a charged insulated conducting sphere is presented. The electrostatic interaction between the sphere and the cluster-ion is introduced in a self-consistent manner which allows the sphere to be polarized by the ion and the ion by the sphere. This interaction appears in the diagonal elements of the model Hamiltonian matrix in such a way that the lowest eigenvalue includes the correct electrostatic energy for the charge distribution in the ground state. The model is applied to the calculation of fusion barriers for Na+2 and Na+3 ions. When both the charge distribution and the geometric configuration of the cluster-ion are allowed to relax freely, the energy as a function of distance from the sphere is nearly the same as that calculated from the electrostatic energy alone, which implies that details of the molecular structure of the cluster-ion can be neglected in calculating fusion barriers from charge polarization alone. That the fusion barriers lie sufficiently far away from the sphere so that the molecule does not dissociate under the influence of the Coulomb interaction confirms that it is meaningful to speak of two separate entities at the barrier position.

  20. Electrostatic Solvation Energy for Two Oppositely Charged Ions in a Solvated Protein System: Salt Bridges Can Stabilize Proteins

    PubMed Central

    Gong, Haipeng; Freed, Karl F.

    2010-01-01

    Abstract Born-type electrostatic continuum methods have been an indispensable ingredient in a variety of implicit-solvent methods that reduce computational effort by orders of magnitude compared to explicit-solvent MD simulations and thus enable treatment using larger systems and/or longer times. An analysis of the limitations and failures of the Born approaches serves as a guide for fundamental improvements without diminishing the importance of prior works. One of the major limitations of the Born theory is the lack of a liquidlike description of the response of solvent dipoles to the electrostatic field of the solute and the changes therein, a feature contained in the continuum Langevin-Debye (LD) model applied here to investigate how Coulombic interactions depend on the location of charges relative to the protein/water boundary. This physically more realistic LD model is applied to study the stability of salt bridges. When compared head to head using the same (independently measurable) physical parameters (radii, dielectric constants, etc.), the LD model is in good agreement with observations, whereas the Born model is grossly in error. Our calculations also suggest that a salt bridge on the protein's surface can be stabilizing when the charge separation is ≤4 Å. PMID:20141761

  1. An undergraduate laboratory experiment for measuring ɛ 0, μ 0 and speed of light c with do-it-yourself catastrophe machines: electrostatic and magnetostatic pendula

    NASA Astrophysics Data System (ADS)

    Mishonov, Todor M.; Varonov, Albert M.; Maksimovski, Dejan D.; Manolev, Stojan G.; Gourev, Vassil N.; Yordanov, Vasil G.

    2017-03-01

    An experimental set-up for electrostatic measurement of {\\varepsilon }0, separate magnetostatic measurement of {μ }0 and determination of the speed of light c=1/\\sqrt{{\\varepsilon }0{μ }0} according to Maxwell’s theory with percent accuracy is described. No forces are measured with the experimental set-up, therefore there is no need for a scale, and the experiment cost of less than £20 is mainly due to the batteries used. Multiplied 137 times, this experimental set-up was given at the Fourth Open International Experimental Physics Olympiad (EPO4) and a dozen high school students performed successful experiments. The experimental set-up actually contains two different pendula for electric and magnetic measurements. In the magnetic experiment the pendulum is constituted by a magnetic coil attracted to a fixed one. In the electrostatic pendulum when the distance between the plates becomes shorter than a critical value the suspended plate catastrophically sticks to the fixed one, while in the magnetic pendulum the same occurs when the current in the coils becomes greater than a certain critical value. The basic idea of the methodology is to use the loss of stability as a tool for the determination of fundamental constants.

  2. Finite Element Creep-Fatigue Analysis of a Welded Furnace Roll for Identifying Failure Root Cause

    NASA Astrophysics Data System (ADS)

    Yang, Y. P.; Mohr, W. C.

    2015-11-01

    Creep-fatigue induced failures are often observed in engineering components operating under high temperature and cyclic loading. Understanding the creep-fatigue damage process and identifying failure root cause are very important for preventing such failures and improving the lifetime of engineering components. Finite element analyses including a heat transfer analysis and a creep-fatigue analysis were conducted to model the cyclic thermal and mechanical process of a furnace roll in a continuous hot-dip coating line. Typically, the roll has a short life, <1 year, which has been a problem for a long time. The failure occurred in the weld joining an end bell to a roll shell and resulted in the complete 360° separation of the end bell from the roll shell. The heat transfer analysis was conducted to predict the temperature history of the roll by modeling heat convection from hot air inside the furnace. The creep-fatigue analysis was performed by inputting the predicted temperature history and applying mechanical loads. The analysis results showed that the failure was resulted from a creep-fatigue mechanism rather than a creep mechanism. The difference of material properties between the filler metal and the base metal is the root cause for the roll failure, which induces higher creep strain and stress in the interface between the weld and the HAZ.

  3. Simulation study of the ionizing front in the critical ionization velocity phenomenon

    NASA Technical Reports Server (NTRS)

    Machida, S.; Goertz, C. K.; Lu, G.

    1988-01-01

    The simulation of the critical ionization velocity for a neutral gas cloud moving across the static magnetic field is presented. A low-beta plasma is studied, using a two and a half-dimensional electrostatic code linked with the Plasma and Neutral Interaction Code (Goertz and Machida, 1987). The physics of the ionizing front and the instabilities which occur there are discussed. Results are presented from four numerical runs designed so that the effects of the charge separation field can be distinguished from the wave heating.

  4. FAST TRACK COMMUNICATION: Interlayer exchange coupling across a ferroelectric barrier

    NASA Astrophysics Data System (ADS)

    Zhuravlev, M. Ye; Vedyayev, A. V.; Tsymbal, E. Y.

    2010-09-01

    A new magnetoelectric effect is predicted originating from the interlayer exchange coupling between two ferromagnetic layers separated by an ultrathin ferroelectric barrier. It is demonstrated that ferroelectric polarization switching driven by an external electric field leads to a sizable change in the interlayer exchange coupling. The effect occurs in asymmetric ferromagnet/ferroelectric/ferromagnet junctions due to a change in the electrostatic potential profile across the junction affecting the interlayer coupling. The predicted phenomenon indicates the possibility of switching the magnetic configuration by reversing the polarization of the ferroelectric barrier layer.

  5. The kinetic energy spectrum of protons produced by the dissociative ionization of H2 by electron impact

    NASA Technical Reports Server (NTRS)

    Khakoo, M. A.; Srivastava, S. K.

    1985-01-01

    The kinetic energy spectra of protons resulting from the dissociative ionization of H2 by electron impact have been measured for electron impact energies from threshold (approximately 17 eV) to 160 eV at 90 deg and 30 deg detection angles, using a crossed-beam experimental arrangement. To check reliability, two separate proton energy analysis methods have been employed, i.e., a time-of-flight proton energy analysis and an electrostatic hemispherical energy analyzer. The present results are compared with previous measurements.

  6. Modeling the Electric Potential and Surface Charge Density near Charged Thunderclouds

    ERIC Educational Resources Information Center

    Neel, Matthew Stephen

    2018-01-01

    Thundercloud charge separation, or the process by which the bottom portion of a cloud gathers charge and the top portion of the cloud gathers the opposite charge, is still not thoroughly understood. Whatever the mechanism, though, a charge separation definitely exists and can lead to electrostatic discharge via cloud-to-cloud lightning and…

  7. New design studies for TRIUMF's ARIEL High Resolution Separator

    NASA Astrophysics Data System (ADS)

    Maloney, J. A.; Baartman, R.; Marchetto, M.

    2016-06-01

    As part of its new Advanced Rare IsotopE Laboratory (ARIEL), TRIUMF is designing a novel High Resolution Separator (HRS) (Maloney et al., 2015) to separate rare isotopes. The HRS has a 180° bend, separated into two 90° magnetic dipoles, bend radius 1.2 m, with an electrostatic multipole corrector between them. Second order correction comes mainly from the dipole edge curvatures, but is intended to be fine-tuned with a sextupole component and a small octupole component in the multipole. This combination is designed to achieve 1:20,000 resolution for a 3 μm (horizontal) and 6 μm (vertical) emittance. A design for the HRS dipole magnets achieves both radial and integral flatness goals of <10-5. A review of the optical design for the HRS is presented, including the study of limiting factors affecting separation, matching and aberration correction. Field simulations from the OPERA-3D (OPERA) [2] models of the dipole magnets are used in COSY Infinity (COSY) (Berz and Makino, 2005) [3] to find and optimize the transfer maps to 3rd order and study residual nonlinearities to 8th order.

  8. Effect of the ordered interfacial water layer in protein complex formation: a non-local electrostatic approach

    NASA Astrophysics Data System (ADS)

    Rubinstein, Alexander; Sabirianov, Renat

    2011-03-01

    Using a non-local electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an low-dielectric interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.

  9. Copper foils with gradient structure in thickness direction and different roughnesses on two surfaces fabricated by double rolling

    NASA Astrophysics Data System (ADS)

    Wang, Xi-yong; Liu, Xue-feng; Zou, Wen-jiang; Xie, Jian-xin

    2013-12-01

    Copper foils with gradient structure in thickness direction and different roughnesses on two surfaces were fabricated by double rolling. The two surface morphologies of double-rolled copper foils are quite different, and the surface roughness values are 61 and 1095 nm, respectively. The roughness value of matt surface can meet the requirement for bonding the resin matrix with copper foils used for flexible printed circuit boards, thus may omit traditional roughening treatment; the microstructure of double-rolled copper foils demonstrates an obviously asymmetric gradient feature. From bright surface to matt surface in thickness direction, the average grain size first increases from 2.3 to 7.4 μm and then decreases to 3.6 μm; compared with conventional rolled copper foils, the double-rolled copper foils exhibit a remarkably increased bending fatigue life, and the increased range is about 16.2%.

  10. The Real-Time Wall Interference Correction System of the NASA Ames 12-Foot Pressure Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert

    1998-01-01

    An improved version of the Wall Signature Method was developed to compute wall interference effects in three-dimensional subsonic wind tunnel testing of aircraft models in real-time. The method may be applied to a full-span or a semispan model. A simplified singularity representation of the aircraft model is used. Fuselage, support system, propulsion simulator, and separation wake volume blockage effects are represented by point sources and sinks. Lifting effects are represented by semi-infinite line doublets. The singularity representation of the test article is combined with the measurement of wind tunnel test reference conditions, wall pressure, lift force, thrust force, pitching moment, rolling moment, and pre-computed solutions of the subsonic potential equation to determine first order wall interference corrections. Second order wall interference corrections for pitching and rolling moment coefficient are also determined. A new procedure is presented that estimates a rolling moment coefficient correction for wings with non-symmetric lift distribution. Experimental data obtained during the calibration of the Ames Bipod model support system and during tests of two semispan models mounted on an image plane in the NASA Ames 12 ft. Pressure Wind Tunnel are used to demonstrate the application of the wall interference correction method.

  11. Comparison of Rolling Moment Characteristics During Roll Oscillations for a Low and a High Aspect Ratio Configuration

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Foster, John V.; Shah, Gautam H.; Gato, William; Wilborn, James E.

    2004-01-01

    Improvements in testing and modeling of nonlinear and unsteady aerodynamic effects for flight dynamics predictions of vehicle performance is critical to enable the design and implementation of new, innovative vehicle concepts. Any configuration which exhibits significant flow separation, nonlinear aerodynamics, control interactions or attempts maneuvering through one or more conditions such as these is, at present, a challenge to test, model or predict flight dynamic responses prior to flight. Even in flight test experiments, adequate models are not available to study and characterize the complex nonlinear and time-dependent flow effects occurring during portions of the maneuvering envelope. Traditionally, airplane designs have been conducted to avoid these areas of the flight envelope. Better understanding and characterization of these flight regimes may not only reduce risk and cost of flight test development programs, but also may pave the way for exploitation of those characteristics that increase airplane capabilities. One of the hurdles is that the nonlinear/unsteady effects appear to be configuration dependent. This paper compares some of the dynamic aerodynamic stability characteristics of two very different configurations - representative of a fighter and a transport airplane - during dynamic body-axis roll wind tunnel tests. The fighter model shows significant effects of oscillation frequency which are not as apparent for the transport configuration.

  12. Experimental investigation of anisotropy evolution of AZ31 magnesium alloy sheets under tensile loading

    NASA Astrophysics Data System (ADS)

    Tari, D. Ghaffari; Worswick, M. J.

    2011-05-01

    Increasing demand for lighter final products has created new opportunities for the application of new light weight materials. Due to high strength to density ratio and good magnetic resistance properties, magnesium alloys are good candidates to replace steel and aluminum for same application. However, limited numbers of active slip deformation mechanisms, result in a decreased formability at room temperature. Furthermore, wrought magnesium alloys have an initial crystallographic texture, remained from the prior rolling operations, which makes them highly anisotropic. In this paper, tensile tests are performed at room temperature and 200° C at different strain rates and orientations relative to the rolling direction, including rolling, 30°, 45°, 60° and transverse orientation. The strain rates adopted for these experiments varied from 0.001 to 1.0. The testing results show the effect of temperature on the strain rate sensitivity of AZ31 sheets. The extent of deformation is continuously recorded using two separate high temperature extensometers. The results of testing show an increase in the r-values with the plastic deformation. The strain rate sensitivity of AZ31 increased as the temperature was elevated. At higher strain rates the measured r-values are larger and the slope of its evolution with the plastic strain is steeper.

  13. Effect of environmental torques on short-term attitude prediction for a rolling-wheel spacecraft in a sun-synchronous orbit

    NASA Technical Reports Server (NTRS)

    Hodge, W. F.

    1972-01-01

    A numerical evaluation and an analysis of the effects of environmental disturbance torques on the attitude of a hexagonal cylinder rolling wheel spacecraft were performed. The resulting perturbations caused by five such torques were found to be very small and exhibited linearity such that linearized equations of motion yielded accurate results over short periods and the separate perturbations contributed by each torque were additive in the sense of superposition. Linearity of the torque perturbations was not affected by moderate system design changes and persisted for torque-to-angular momentum ratios up to 100 times the nominal expected value. As these conditions include many possible applications, similar linear behavior might be anticipated for other rolling-wheel spacecraft.

  14. A model for prediction of profile and flatness of hot and cold rolled flat products in four-high mills

    NASA Astrophysics Data System (ADS)

    Overhagen, Christian; Mauk, Paul Josef

    2018-05-01

    For flat rolled products, the thickness profile in the transversal direction is one of the most important product properties. For further processing, a defined crown of the product is necessary. In the rolling process, several mechanical and thermal influences interact with each other to form the strip shape at the roll gap exit. In the present analysis, a process model for rolling of strip and sheet is presented. The core feature of the process model is a two-dimensional stress distribution model based on von Karman's differential equation. Sub models for the mechanical influences of work roll flattening as well as work and backup roll deflection and the thermal influence of work roll expansion have been developed or extended. The two-dimensional stress distribution serves as an input parameter for the roll deformation models. For work roll flattening, a three-dimensional model based on the Boussinesq problem is adopted, while the work and backup roll deflection, including contact flattening is calculated by means of finite beam elements. The thermal work roll crown is calculated with help of an axisymmetric numerical solution of the heat equation for the work roll, considering azimuthal averaging for the boundary conditions at the work roll surface. Results are presented for hot rolling of a strip in a seven-stand finishing train of a hot strip mill, showing the calculated evolution of the strip profile. A variation of the strip profile from the first to the 20th rolled strip is shown. This variation is addressed to the progressive increase of work roll temperature during the first 20 strips. It is shown that a CVC® system can lead to improvements in strip profile and therefore flatness.

  15. Controlled-force end seal arrangement for an air press of a papermaking machine

    DOEpatents

    Beck, David A.

    2003-07-08

    An air press for pressing a fiber web includes a plurality of rolls and a pair of end seal arrangements. Of the plurality of rolls, each pair of adjacent rolls forms a nip therebetween. Further, each roll has a pair of roll ends, the plurality of rolls together forming two sets of roll ends. Each end seal arrangement coacts with one set of roll ends, the plurality of rolls and the pair of end seal arrangements together defining an air press chamber having an air chamber pressure. Each end seal arrangement is composed of at least one roll seal, including a first roll seal, and an adjustable bias mechanism. Each roll seal forms a seal with at least one roll end, and one side of the first roll seal being exposed to the air chamber pressure. The adjustable bias mechanism is configured for controlling a position of each roll seal relative to a respective at least one roll end and for adjusting a seal force between the roll seal and the respective at least one roll end.

  16. Electrostatic Radionuclide Separation: A New Version of Rutherford's "Thorium Cow".

    ERIC Educational Resources Information Center

    Eiswirth, Marcus; And Others

    1982-01-01

    Describes three experiments (also useful as demonstrations) using a "thorium cow," a device which concentrates the daughter products from thorium compounds by precipitation on a charged electrode. (JN)

  17. A master equation for strongly interacting dipoles

    NASA Astrophysics Data System (ADS)

    Stokes, Adam; Nazir, Ahsan

    2018-04-01

    We consider a pair of dipoles such as Rydberg atoms for which direct electrostatic dipole–dipole interactions may be significantly larger than the coupling to transverse radiation. We derive a master equation using the Coulomb gauge, which naturally enables us to include the inter-dipole Coulomb energy within the system Hamiltonian rather than the interaction. In contrast, the standard master equation for a two-dipole system, which depends entirely on well-known gauge-invariant S-matrix elements, is usually derived using the multipolar gauge, wherein there is no explicit inter-dipole Coulomb interaction. We show using a generalised arbitrary-gauge light-matter Hamiltonian that this master equation is obtained in other gauges only if the inter-dipole Coulomb interaction is kept within the interaction Hamiltonian rather than the unperturbed part as in our derivation. Thus, our master equation depends on different S-matrix elements, which give separation-dependent corrections to the standard matrix elements describing resonant energy transfer and collective decay. The two master equations coincide in the large separation limit where static couplings are negligible. We provide an application of our master equation by finding separation-dependent corrections to the natural emission spectrum of the two-dipole system.

  18. Influence of electrostatic forces on particle propulsion in the evanescent field of silver ion-exchanged waveguides.

    PubMed

    Gebennikov, Dmytro; Mittler, Silvia

    2013-02-26

    The effect of electrostatic interaction between carboxylate- and amino-functionalized polystyrene particles and a charged waveguide surface on the propulsion speed in optical tweezers is considered to be a function of the pH and ionic strength. It was shown that with the variation of the pH of the aqueous solution in which the particles were immersed, a systematic change in propulsion speed with a maximum speed could be achieved. The appearance of a maximum speed was ascribed to changes in the particle-waveguide separation as a result of the combination of two forces: Coulomb repulsion/attraction and induced dipole forces. The highest maximum speed at low ionic strength was around 12 μm/s. Changes in the ionic strength of the solution influenced the gradient of the dielectric constant near the involved surfaces and also led to a slightly reduced hydrodynamic radius of the particles. The combination of these effects subsequently increased the maximum speed to about 23 μm/s.

  19. Experimental detection of long-distance interactions between biomolecules through their diffusion behavior: numerical study.

    PubMed

    Nardecchia, Ilaria; Spinelli, Lionel; Preto, Jordane; Gori, Matteo; Floriani, Elena; Jaeger, Sebastien; Ferrier, Pierre; Pettini, Marco

    2014-08-01

    The dynamical properties and diffusive behavior of a collection of mutually interacting particles are numerically investigated for two types of long-range interparticle interactions: Coulomb-electrostatic and dipole-electrodynamic. It is shown that when the particles are uniformly distributed throughout the accessible space, the self-diffusion coefficient is always lowered by the considered interparticle interactions, irrespective of their attractive or repulsive character. This fact is also confirmed by a simple model to compute the correction to the Brownian diffusion coefficient due to the interactions among the particles. These interactions are also responsible for the onset of dynamical chaos and an associated chaotic diffusion which still follows an Einstein-Fick-like law for the mean-square displacement as a function of time. Transitional phenomena are observed for Coulomb-electrostatic (repulsive) and dipole-electrodynamic (attractive) interactions considered both separately and in competition. The outcomes reported in this paper clearly indicate a feasible experimental method to probe the activation of resonant electrodynamic interactions among biomolecules.

  20. Strong coupling electrostatics for randomly charged surfaces: antifragility and effective interactions.

    PubMed

    Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf

    2015-05-07

    We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to the (equal) mean charges on the two surfaces and the osmotic pressure of monovalent ions residing between them. These effects can be quite significant even with a small degree of surface charge disorder relative to the mean surface charge. The strong coupling, disorder-induced attraction is typically much stronger than the van der Waals interaction between the surfaces, especially within a range of several nanometers for the inter-surface separation, where such effects are predicted to be most pronounced.

  1. Energetics and kinetics of primary charge separation in bacterial photosynthesis.

    PubMed

    LeBard, David N; Kapko, Vitaliy; Matyushov, Dmitry V

    2008-08-21

    We report the results of molecular dynamics (MD) simulations and formal modeling of the free-energy surfaces and reaction rates of primary charge separation in the reaction center of Rhodobacter sphaeroides. Two simulation protocols were used to produce MD trajectories. Standard force-field potentials were employed in the first protocol. In the second protocol, the special pair was made polarizable to reproduce a high polarizability of its photoexcited state observed by Stark spectroscopy. The charge distribution between covalent and charge-transfer states of the special pair was dynamically adjusted during the simulation run. We found from both protocols that the breadth of electrostatic fluctuations of the protein/water environment far exceeds previous estimates, resulting in about 1.6 eV reorganization energy of electron transfer in the first protocol and 2.5 eV in the second protocol. Most of these electrostatic fluctuations become dynamically frozen on the time scale of primary charge separation, resulting in much smaller solvation contributions to the activation barrier. While water dominates solvation thermodynamics on long observation times, protein emerges as the major thermal bath coupled to electron transfer on the picosecond time of the reaction. Marcus parabolas were obtained for the free-energy surfaces of electron transfer by using the first protocol, while a highly asymmetric surface was obtained in the second protocol. A nonergodic formulation of the diffusion-reaction electron-transfer kinetics has allowed us to reproduce the experimental results for both the temperature dependence of the rate and the nonexponential decay of the population of the photoexcited special pair.

  2. Simulation of the hot rolling of steel with direct iteration

    NASA Astrophysics Data System (ADS)

    Hanoglu, Umut; Šarler, Božidar

    2017-10-01

    In this study a simulation system based on the meshless Local Radial Basis Function Collocation Method (LRBFCM) is applied for the hot rolling of steel. Rolling is a complex, 3D, thermo-mechanical problem; however, 2D cross-sectional slices are used as computational domains that are aligned with the rolling direction and no heat flow or strain is considered in the direction that is orthogonal to the slices. For each predefined position with respect to the rolling direction, the solution procedure is repeated until the slice reaches the final rolling position. Collocation nodes are initially distributed over the domain and boundaries of the initial slice. A local solution is achieved by considering the overlapping influence domains with either 5 or 7 nodes. Radial Basis Functions (RBFs) are used for the temperature discretization in the thermal model and displacement discretization in the mechanical model. The meshless solution procedure does not require a mesh-generation algorithm in the classic sense. Strong-form mechanical and thermal models are run for each slice regarding the contact with the roll's surface. Ideal plastic material behavior is considered for the mechanical results, where the nonlinear stress-strain relation is solved with a direct iteration. The majority of the Finite Element Model (FEM) simulations, including commercial software, use a conventional Newton-Raphson algorithm. However, direct iteration is chosen here due to its better compatibility with meshless methods. In order to overcome any unforeseen stability issues, the redistribution of the nodes by Elliptic Node Generation (ENG) is applied to one or more slices throughout the simulation. The rolling simulation presented here helps the user to design, test and optimize different rolling schedules. The results can be seen minutes after the simulation's start in terms of temperature, displacement, stress and strain fields as well as important technological parameters, like the roll-separating forces, roll toque, etc. An example of a rolling simulation, in which an initial size of 110x110 mm steel is rolled to a round bar with 80 mm diameter, is shown in Fig. 3. A user-friendly computer application for industrial use is created by using the C# and .NET frameworks.

  3. Starvation effects on the hydrodynamic lubrication of rigid nonconformal contacts in combined rolling and normal motion

    NASA Technical Reports Server (NTRS)

    Ghosh, M. K.; Hamrock, B. J.; Brewe, D. E.

    1986-01-01

    The effect of inlet starvation on the hydrodynamic lubrication of lightly loaded rigid nonconformal contacts in combined rolling and normal motion is determined through a numerical solution of the Reynolds' equation for an isoviscous, incompressible lubricant. Starvation is effected by systematically reducing the fluid inlet level. The pressures are taken to be ambient at the inlet meniscus boundary and Reynolds' boundary condition is applied for film rupture in the exit region. Results are presented for the dynamic performance of the starved contacts in combined rolling and normal motion for both normal approach and separation. During normal approach the dynamic load ratio (i.e. ratio of dynamic to steady state load capacity) increases considerably with increase in the inlet starvation. The effect of starvation on the dynamic peak pressure ratio is relatively small. Further, it has been observed that with increasing starvation, film thickness effects become significant in the dynamic behavior of the nonconformal contacts. For significantly starved contacts the dynamic load ratio increases with increase in film thickness during normal approach and a similar reduction is observed during separation. A similar effect is noted for the dynamic peak pressure ratio.

  4. Control of aqueous droplets using magnetic and electrostatic forces.

    PubMed

    Ohashi, Tetsuo; Kuyama, Hiroki; Suzuki, Koichi; Nakamura, Shin

    2008-04-07

    Basic control operations were successfully performed on an aqueous droplet using both magnetic and electrostatic forces. In our droplet-based microfluidics, magnetic beads were incorporated in an aqueous droplet as a force mediator. This report describes droplet anchoring and separation of the beads from the droplet using a combination of magnetic and electrostatic forces. When an aqueous droplet is placed in an oil-filled reservoir, the droplet sinks to the bottom, under which an electrode had been placed. The droplet was adsorbed (or anchored) to the bottom surface on the electrode when a DC voltage was applied to the electrode. The magnetic beads were removed with magnetic force after the droplet had been anchored. Surfactant addition into droplet solution was very effective for the elimination of electric charge, which resulted in the stable adsorption of a droplet to hydrophobic substrate under an applied voltage of DC 0.5-3 kV. In a sequential process, small volume of aqueous liquid was successfully transferred using both magnetic and electrostatic forces.

  5. Effect of externally applied electrostatic fields on the surface topography of ceramide-enriched domains in mixed monolayers with sphingomyelin.

    PubMed

    Wilke, Natalia; Maggio, Bruno

    2006-06-20

    Lipid and protein molecules anisotropically oriented at a hydrocarbon-aqueous interface configure a dynamic array of self-organized molecular dipoles. Electrostatic fields applied to lipid monolayers have been shown to induce in-plane migration of domains or phase separation in a homogeneous system. In this work, we have investigated the effect of externally applied electrostatic fields on the distribution of the condensed ceramide-enriched domains in mixed monolayers with sphingomyelin. In these monolayers, the lipids segregate in different phases at all pressures. This allows analyzing by epifluorescence microscopy the effect of the electrostatic field at all lateral pressure because coexistence of lipid domains in condensed state are always present. Our observations indicate that a positive potential applied to an electrode placed over the monolayer promotes a repulsion of the ceramide-enriched domains which is rather insensitive to the film composition, depends inversely on the lateral pressure and exhibits threshold dependence on the in-plane elasticity.

  6. Combining experimental design and orthogonal projections to latent structures to study the influence of microcrystalline cellulose properties on roll compaction.

    PubMed

    Dumarey, Melanie; Wikström, Håkan; Fransson, Magnus; Sparén, Anders; Tajarobi, Pirjo; Josefson, Mats; Trygg, Johan

    2011-09-15

    Roll compaction is gaining importance in pharmaceutical industry for the dry granulation of heat or moisture sensitive powder blends with poor flowing properties prior to tabletting. We studied the influence of microcrystalline cellulose (MCC) properties on the roll compaction process and the consecutive steps in tablet manufacturing. Four dissimilar MCC grades, selected by subjecting their physical characteristics to principal components analysis, and three speed ratios, i.e. the ratio of the feed screw speed and the roll speed of the roll compactor, were included in a full factorial design. Orthogonal projection to latent structures was then used to model the properties of the resulting roll compacted products (ribbons, granules and tablets) as a function of the physical MCC properties and the speed ratio. This modified version of partial least squares regression separates variation in the design correlated to the considered response from the variation orthogonal to that response. The contributions of the MCC properties and the speed ratio to the predictive and orthogonal components of the models were used to evaluate the effect of the design variation. The models indicated that several MCC properties, e.g. bulk density and compressibility, affected all granule and tablet properties, but only one studied ribbon property: porosity. After roll compaction, Ceolus KG 1000 resulted in tablets with obvious higher tensile strength and lower disintegration time compared to the other MCC grades. This study confirmed that the particle size increase caused by roll compaction is highly responsible for the tensile strength decrease of the tablets. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Highly tunable local gate controlled complementary graphene device performing as inverter and voltage controlled resistor.

    PubMed

    Kim, Wonjae; Riikonen, Juha; Li, Changfeng; Chen, Ya; Lipsanen, Harri

    2013-10-04

    Using single-layer CVD graphene, a complementary field effect transistor (FET) device is fabricated on the top of separated back-gates. The local back-gate control of the transistors, which operate with low bias at room temperature, enables highly tunable device characteristics due to separate control over electrostatic doping of the channels. Local back-gating allows control of the doping level independently of the supply voltage, which enables device operation with very low VDD. Controllable characteristics also allow the compensation of variation in the unintentional doping typically observed in CVD graphene. Moreover, both p-n and n-p configurations of FETs can be achieved by electrostatic doping using the local back-gate. Therefore, the device operation can also be switched from inverter to voltage controlled resistor, opening new possibilities in using graphene in logic circuitry.

  8. Usage of the Upgraded Vassilissa Separator for Synthesis of Super-Heavy Elements

    NASA Astrophysics Data System (ADS)

    Yeremin, A. V.; Malyshev, O. N.; Popeko, A. G.; Sagaidak, R. N.; Chepigin, V. I.; Kabachenko, A. P.; Belozerov, A. V.; Chelnokov, M. L.; Gorshkov, V. A.; Svirikhin, A. I.; Korotkov, S. P.; Rohach, J.; Brida, I.; Berek, G.

    2002-12-01

    Electrostatic separator VASSILISSA is used for exploring complete fussion nuclear reactions. The magnetic analyzer, based on D37 dipole magnet, was installed after the second triplet of quadrupole lenses of the separator for the mass identification of evaporation residues. Mass identification is an powerful tool for identification of recoil atoms of super-heavy elements. The new detection system consisting of the time-of-fiight system and 32-strips position-sensitive detector array was installed in the focal plane of the separator. The mass resolution of the separator after upgrade was found to be about 2.5 %.

  9. Numerical Investigation of Two-Phase Flows With Charged Droplets in Electrostatic Field

    NASA Technical Reports Server (NTRS)

    Kim, Sang-Wook

    1996-01-01

    A numerical method to solve two-phase turbulent flows with charged droplets in an electrostatic field is presented. The ensemble-averaged Navier-Stokes equations and the electrostatic potential equation are solved using a finite volume method. The transitional turbulence field is described using multiple-time-scale turbulence equations. The equations of motion of droplets are solved using a Lagrangian particle tracking scheme, and the inter-phase momentum exchange is described by the Particle-In-Cell scheme. The electrostatic force caused by an applied electrical potential is calculated using the electrostatic field obtained by solving a Laplacian equation and the force exerted by charged droplets is calculated using the Coulombic force equation. The method is applied to solve electro-hydrodynamic sprays. The calculated droplet velocity distributions for droplet dispersions occurring in a stagnant surrounding are in good agreement with the measured data. For droplet dispersions occurring in a two-phase flow, the droplet trajectories are influenced by aerodynamic forces, the Coulombic force, and the applied electrostatic potential field.

  10. Bench-scale performance testing and economic analyses of electrostatic dry coal cleaning. Final report, October 1980-July 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rich, S.R.

    1987-02-01

    The report gives results of preliminary performance evaluations and economic analyses of the Advanced Energy Dynamics (AED) electrostatic dry coal-cleaning process. Grab samples of coal-feed-product coals were obtained from 25 operating physical coal-cleaning (PCC) plants. These samples were analyzed for ash, sulfur, and energy content and splits of the original samples of feed run-of-mine coal were provided for bench-scale testing in an electrostatic separation apparatus. The process showed superior sulfur-removal performance at equivalent cost and energy-recovery levels. The ash-removal capability of the process was not evaluated completely: overall, ash-removal results indicated that the process did not perform as well asmore » the PCC plants.« less

  11. Electrostatic antenna space environment interaction study

    NASA Technical Reports Server (NTRS)

    Katz, I.

    1981-01-01

    The interactions of the electrostatic antenna with the space environment in both low Earth orbit and geosynchronous orbit are investigated. It is concluded that the electrostatically controlled membrane mirror is a viable concept for space applications. However, great care must be taken to enclose the high voltage electrodes in a Faraday cage structure to separate the high voltage region from the ambient plasma. For this reason, metallized cloth is not acceptable as a membrane material. Conventional spacecraft charging at geosynchronous orbit should not be a problem provided ancillary structures (such as booms) are given nonnegligible conductivity and adequate grounding. Power loss due to plasma electrons entering the high field region is a potentially serious problem. In low earth orbit any opening whatever in the Faraday cage is likely to produce an unacceptable power drain.

  12. Electron backscatter diffraction study of deformation and recrystallization textures of individual phases in a cross-rolled duplex steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaid, Md; Bhattacharjee, P.P., E-mail: pinakib@iith.ac.in

    2014-10-15

    The evolution of microstructure and texture during cross-rolling and annealing was investigated by electron backscatter diffraction in a ferritic–austenitic duplex stainless steel. For this purpose an alloy with nearly equal volume fraction of the two phases was deformed by multi-pass cross-rolling process up to 90% reduction in thickness. The rolling and transverse directions were mutually interchanged in each pass by rotating the sample by 90° around the normal direction. In order to avoid deformation induced phase transformation and dynamic strain aging, the rolling was carried out at an optimized temperature of 898 K (625 °C) at the warm-deformation range. Themore » microstructure after cross warm-rolling revealed a lamellar structure with alternate arrangement of the bands of two phases. Strong brass and rotated brass components were observed in austenite in the steel after processing by cross warm-rolling. The ferrite in the cross warm-rolling processed steel showed remarkably strong RD-fiber (RD//< 011 >) component (001)< 011 >. The development of texture in the two phases after processing by cross warm-rolling could be explained by the stability of the texture components. During isothermal annealing of the 90% cross warm-rolling processed material the lamellar morphology was retained before collapse of the lamellar structure to the mutual interpenetration of the phase bands. Ferrite showed recovery resulting in annealing texture similar to the deformation texture. In contrast, the austenite showed primary recrystallization without preferential orientation selection leading to the retention of deformation texture. The evolution of deformation and annealing texture in the two phases of the steel was independent of one another. - Highlights: • Effect of cross warm-rolling on texture formation is studied in duplex steel. • Brass texture in austenite and (001)<110 > in ferrite are developed. • Ferrite shows recovery during annealing retaining the (001)<110 > component. • Austenite shows recrystallization during annealing retaining the deformation texture. • The deformation of recrystallization of two phases is independent of one other.« less

  13. Electrostatically confined nanoparticle interactions and dynamics.

    PubMed

    Eichmann, Shannon L; Anekal, Samartha G; Bevan, Michael A

    2008-02-05

    We report integrated evanescent wave and video microscopy measurements of three-dimensional trajectories of 50, 100, and 250 nm gold nanoparticles electrostatically confined between parallel planar glass surfaces separated by 350 and 600 nm silica colloid spacers. Equilibrium analyses of single and ensemble particle height distributions normal to the confining walls produce net electrostatic potentials in excellent agreement with theoretical predictions. Dynamic analyses indicate lateral particle diffusion coefficients approximately 30-50% smaller than expected from predictions including the effects of the equilibrium particle distribution within the gap and multibody hydrodynamic interactions with the confining walls. Consistent analyses of equilibrium and dynamic information in each measurement do not indicate any roles for particle heating or hydrodynamic slip at the particle or wall surfaces, which would both increase diffusivities. Instead, lower than expected diffusivities are speculated to arise from electroviscous effects enhanced by the relative extent (kappaa approximately 1-3) and overlap (kappah approximately 2-4) of electrostatic double layers on the particle and wall surfaces. These results demonstrate direct, quantitative measurements and a consistent interpretation of metal nanoparticle electrostatic interactions and dynamics in a confined geometry, which provides a basis for future similar measurements involving other colloidal forces and specific biomolecular interactions.

  14. Transient rolling friction model for discrete element simulations of sphere assemblies

    NASA Astrophysics Data System (ADS)

    Kuhn, Matthew R.

    2014-03-01

    The rolling resistance between a pair of contacting particles can be modeled with two mechanisms. The first mechanism, already widely addressed in the DEM literature, involves a contact moment between the particles. The second mechanism involves a reduction of the tangential contact force, but without a contact moment. This type of rotational resistance, termed creep-friction, is the subject of the paper. Within the creep-friction literature, the term “creep” does not mean a viscous mechanism, but rather connotes a slight slip that accompanies rolling. Two extremes of particle motions bound the range of creep-friction behaviors: a pure tangential translation is modeled as a Cattaneo-Mindlin interaction, whereas prolonged steady-state rolling corresponds to the traditional wheel-rail problem described by Carter, Poritsky, and others. DEM simulations, however, are dominated by the transient creep-friction rolling conditions that lie between these two extremes. A simplified model is proposed for the three-dimensional transient creep-friction rolling of two spheres. The model is an extension of the work of Dahlberg and Alfredsson, who studied the two-dimensional interactions of disks. The proposed model is applied to two different systems: a pair of spheres and a large dense assembly of spheres. Although creep-friction can reduce the tangential contact force that would otherwise be predicted with Cattaneo-Mindlin theory, a significant force reduction occurs only when the rate of rolling is much greater than the rate of translational sliding and only after a sustained period of rolling. When applied to the deviatoric loading of an assembly of spheres, the proposed creep-friction model has minimal effect on macroscopic strength or stiffness. At the micro-scale of individual contacts, creep-friction does have a modest influence on the incremental contact behavior, although the aggregate effect on the assembly's behavior is minimal.

  15. The effects of patch-potentials on the gravity probe B gyroscopes.

    PubMed

    Buchman, S; Turneaure, J P

    2011-07-01

    Gravity probe B (GP-B) was designed to measure the geodetic and frame dragging precessions of gyroscopes in the near field of the Earth using a drag-free satellite in a 642 km polar orbit. Four electrostatically suspended cryogenic gyroscopes were designed to measure the precession of the local inertial frame of reference with a disturbance drift of about 0.1 marc sec/yr-0.2 marc sec/yr. A number of unexpected gyro disturbance effects were observed during the mission: spin-speed and polhode damping, misalignment and roll-polhode resonance torques, forces acting on the gyroscopes, and anomalies in the measurement of the gyro potentials. We show that all these effects except possibly polhode damping can be accounted for by electrostatic patch potentials on both the gyro rotors and the gyro housing suspension and ground-plane electrodes. We express the rotor and housing patch potentials as expansions in spherical harmonics Y(l,m)(θ,φ). Our analysis demonstrates that these disturbance effects are approximated by a power spectrum for the coefficients of the spherical harmonics of the form V(0)(2)/l(r) with V(0) ≈ 100 mV and r ≈ 1.7.

  16. Modeling of roll/pitch determination with horizon sensors - Oblate Earth

    NASA Astrophysics Data System (ADS)

    Hablani, Hari B.

    Model calculations are presented of roll/pitch determinations for oblate Earth, with horizon sensors. Two arrangements of a pair of horizon sensors are considered: left and right of the velocity vactor (i.e., along the pitch axis), and aft and forward (along the roll axis). Two approaches are used to obtain the roll/pitch oblateness corrections: (1) the crossing point approach, where the two crossings of the horizon sensor's scan and the earth's horizon are determined, and (2) by decomposing the angular deviation of the geocentric normal from the geodetic normal into roll and pitch components. It is shown that the two approaches yield essentially the same corrections if two sensors are used simultaneously. However, if the spacecraft is outfitted with only one sensor, the oblateness correction about one axis is far different from that predicted by the geocentric/geodetic angular deviation approach. In this case, the corrections may be calculated on ground for the sensor location under consideration and stored in the flight computer, using the crossing point approach.

  17. A Bridge between Two Important Problems in Optics and Electrostatics

    ERIC Educational Resources Information Center

    Capelli, R.; Pozzi, G.

    2008-01-01

    It is shown how the same physically appealing method can be applied to find analytic solutions for two difficult and apparently unrelated problems in optics and electrostatics. They are: (i) the diffraction of a plane wave at a perfectly conducting thin half-plane and (ii) the electrostatic field associated with a parallel array of stripes held at…

  18. Toward Intelligent Synthetic Neural Circuits: Directing and Accelerating Neuron Cell Growth by Self-Rolled-Up Silicon Nitride Microtube Array

    PubMed Central

    2015-01-01

    In neural interface platforms, cultures are often carried out on a flat, open, rigid, and opaque substrate, posing challenges to reflecting the native microenvironment of the brain and precise engagement with neurons. Here we present a neuron cell culturing platform that consists of arrays of ordered microtubes (2.7–4.4 μm in diameter), formed by strain-induced self-rolled-up nanomembrane (s-RUM) technology using ultrathin (<40 nm) silicon nitride (SiNx) film on transparent substrates. These microtubes demonstrated robust physical confinement and unprecedented guidance effect toward outgrowth of primary cortical neurons, with a coaxially confined configuration resembling that of myelin sheaths. The dynamic neural growth inside the microtube, evaluated with continuous live-cell imaging, showed a marked increase (20×) of the growth rate inside the microtube compared to regions outside the microtubes. We attribute the dramatic accelerating effect and precise guiding of the microtube array to three-dimensional (3D) adhesion and electrostatic interaction with the SiNx microtubes, respectively. This work has clear implications toward building intelligent synthetic neural circuits by arranging the size, site, and patterns of the microtube array, for potential treatment of neurological disorders. PMID:25329686

  19. Automatic graphene transfer system for improved material quality and efficiency

    PubMed Central

    Boscá, Alberto; Pedrós, Jorge; Martínez, Javier; Palacios, Tomás; Calle, Fernando

    2016-01-01

    In most applications based on chemical vapor deposition (CVD) graphene, the transfer from the growth to the target substrate is a critical step for the final device performance. Manual procedures are time consuming and depend on handling skills, whereas existing automatic roll-to-roll methods work well for flexible substrates but tend to induce mechanical damage in rigid ones. A new system that automatically transfers CVD graphene to an arbitrary target substrate has been developed. The process is based on the all-fluidic manipulation of the graphene to avoid mechanical damage, strain and contamination, and on the combination of capillary action and electrostatic repulsion between the graphene and its container to ensure a centered sample on top of the target substrate. The improved carrier mobility and yield of the automatically transferred graphene, as compared to that manually transferred, is demonstrated by the optical and electrical characterization of field-effect transistors fabricated on both materials. In particular, 70% higher mobility values, with a 30% decrease in the unintentional doping and a 10% strain reduction are achieved. The system has been developed for lab-scale transfer and proved to be scalable for industrial applications. PMID:26860260

  20. Impact of electrostatic and conventional sprayers characteristics on dispersion of barrier spray

    USDA-ARS?s Scientific Manuscript database

    A study was conducted to analyze the performance of three electrostatic (Electrolon BP-2.5TM, Spectrum Electrostatic 4010, and Spectrum Electrostatic head on a Stihl 420) and two conventional (Buffalo Turbine CSM2 and Stihl 420) sprayers for barrier sprays to suppress an adult mosquito population in...

  1. Slow-roll k-essence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiba, Takeshi; Dutta, Sourish; Scherrer, Robert J.

    We derive slow-roll conditions for thawing k-essence with a separable Lagrangian p(X,{phi})=F(X)V({phi}). We examine the evolution of the equation of state parameter, w, as a function of the scale factor a, for the case where w is close to -1. We find two distinct cases, corresponding to X{approx_equal}0 and F{sub X}{approx_equal}0, respectively. For the case where X{approx_equal}0 the evolution of {phi} and hence w is described by only two parameters, and w(a) is model independent and coincides with similar behavior seen in thawing quintessence models. This result also extends to nonseparable Lagrangians where X{approx_equal}0. For the case F{sub X}{approx_equal}0, anmore » expression is derived for w(a), but this expression depends on the potential V({phi}), so there is no model-independent limiting behavior. For the X{approx_equal}0 case, we derive observational constraints on the two parameters of the model, w{sub 0} (the present-day value of w), and the K, which parametrizes the curvature of the potential. We find that the observations sharply constrain w{sub 0} to be close to -1, but provide very poor constraints on K.« less

  2. KSC-2009-1536

    NASA Image and Video Library

    2009-02-10

    CAPE CANAVERAL, Fla. – Inside the Ares I-X upper stage simulator, workers check the fit of the roll control system module. The hardware is in high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I-X is targeted for launch in summer of 2009. Photo credit: NASA/Tim Jacobs

  3. KSC-2009-1535

    NASA Image and Video Library

    2009-02-10

    CAPE CANAVERAL, Fla. – One of the Ares I-X roll control system modules is moved into place on the upper stage simulator for a fit check. The hardware is in high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I-X is targeted for launch in summer of 2009. Photo credit: NASA/Tim Jacobs

  4. KSC-2009-1534

    NASA Image and Video Library

    2009-02-10

    CAPE CANAVERAL, Fla. – One of the Ares I-X roll control system modules is moved into place on the upper stage simulator for a fit check. The hardware is in high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I-X is targeted for launch in summer of 2009. Photo credit: NASA/Tim Jacobs

  5. Double-exponential decay of orientational correlations in semiflexible polyelectrolytes.

    PubMed

    Bačová, P; Košovan, P; Uhlík, F; Kuldová, J; Limpouchová, Z; Procházka, K

    2012-06-01

    In this paper we revisited the problem of persistence length of polyelectrolytes. We performed a series of Molecular Dynamics simulations using the Debye-Hückel approximation for electrostatics to test several equations which go beyond the classical description of Odijk, Skolnick and Fixman (OSF). The data confirm earlier observations that in the limit of large contour separations the decay of orientational correlations can be described by a single-exponential function and the decay length can be described by the OSF relation. However, at short countour separations the behaviour is more complex. Recent equations which introduce more complicated expressions and an additional length scale could describe the results very well on both the short and the long length scale. The equation of Manghi and Netz when used without adjustable parameters could capture the qualitative trend but deviated in a quantitative comparison. Better quantitative agreement within the estimated error could be obtained using three equations with one adjustable parameter: 1) the equation of Manghi and Netz; 2) the equation proposed by us in this paper; 3) the equation proposed by Cannavacciuolo and Pedersen. Two characteristic length scales can be identified in the data: the intrinsic or bare persistence length and the electrostatic persistence length. All three equations use a single parameter to describe a smooth crossover from the short-range behaviour dominated by the intrinsic stiffness of the chain to the long-range OSF-like behaviour.

  6. Induced vibrations facilitate traversal of cluttered obstacles

    NASA Astrophysics Data System (ADS)

    Thoms, George; Yu, Siyuan; Kang, Yucheng; Li, Chen

    When negotiating cluttered terrains such as grass-like beams, cockroaches and legged robots with rounded body shapes most often rolled their bodies to traverse narrow gaps between beams. Recent locomotion energy landscape modeling suggests that this locomotor pathway overcomes the lowest potential energy barriers. Here, we tested the hypothesis that body vibrations induced by intermittent leg-ground contact facilitate obstacle traversal by allowing exploration of locomotion energy landscape to find this lowest barrier pathway. To mimic a cockroach / legged robot pushing against two adjacent blades of grass, we developed an automated robotic system to move an ellipsoidal body into two adjacent beams, and varied body vibrations by controlling an oscillation actuator. A novel gyroscope mechanism allowed the body to freely rotate in response to interaction with the beams, and an IMU and cameras recorded the motion of the body and beams. We discovered that body vibrations facilitated body rolling, significantly increasing traversal probability and reducing traversal time (P <0.0001, ANOVA). Traversal probability increased with and traversal time decreased with beam separation. These results confirmed our hypothesis and support the plausibility of locomotion energy landscapes for understanding the formation of locomotor pathways in complex 3-D terrains.

  7. Temperature Evolution During Plane Strain Compression Of Tertiary Oxide Scale On Steel

    NASA Astrophysics Data System (ADS)

    Suarez, L.; Vanden Eynde, X.; Lamberigts, M.; Houbaert, Y.

    2007-04-01

    An oxide scale layer always forms at the steel surface during hot rolling. This scale layer separates the work roll from the metal substrate. Understanding the deformation behaviour and mechanical properties of the scale is of great interest because it affects the frictional conditions during hot rolling and the heat-transfer behaviour at the strip-roll interface. A thin wustite scale layer (<20 μm) was created under controlled conditions in an original laboratory device adequately positioned in a compression testing machine to investigate plane strain compression. Oxidation tests were performed on an ULC steel grade. After the oxide growth at 1050°C, plane strain compression (PSC) was performed immediately to simulate the hot rolling process. PSC experiments were performed at a deformation temperature of 1050°C, with reduction ratios from 5 to 70%, and strain rates of 10s-1 under controlled gas atmospheres. Results show that for wustite, ductility is obvious at 1050°C. Even after deformation oxide layers exhibit good adhesion to the substrate and homogeneity over the thickness. The tool/sample temperature difference seems to be the reason for the unexpected ductile behaviour of the scale layer.

  8. Development of a Dirigible Bomb

    DTIC Science & Technology

    1943-04-15

    X - ¥ control for all future high-angle dirigible bombs in spite of the instrumental complications involved. /. two gyro system consisting of t...ts found thet the bomb wos in roll equilibrium £.t aero roll orientetion . Moreover, these roll equilibrium positions ire stt-ble ss indicated by...tirflow giving rise to voll torques in the seme direction fcs roll dis- placements from the «ero orientetion , the roll equilibrium found for equel pitch

  9. SMA Foils for MEMS: From Material Properties to the Engineering of Microdevices

    NASA Astrophysics Data System (ADS)

    Kohl, Manfred; Ossmer, Hinnerk; Gueltig, Marcel; Megnin, Christof

    2018-03-01

    In the early nineties, microelectromechanical systems (MEMS) technology has been still in its infancy. As silicon (Si) is not a transducer material, it was clear at the very beginning that mechanically active materials had to be introduced to MEMS in order to enable functional microdevices with actuation capability beyond electrostatics. At that time, shape memory alloys (SMAs) have been available in bulk form, mainly as SMA wires and SMA plates. On the macro scale, these materials show highest work densities compared to other actuation principles in the order of 107 J/m3, which stimulated research on the integration of SMA to MEMS. Subsequently, two approaches for producing planar materials have been initiated (1) magnetron sputtering of SMA thin films and (2) the integration of rolled SMA foils, which both turned out to be very successful creating a paradigm change in microactuation technology. The following review covers important milestones of the research and development of SMA foil-based microactuators including materials characterization, design engineering, technology, and demonstrator development as well as first commercial products.

  10. SMA Foils for MEMS: From Material Properties to the Engineering of Microdevices

    NASA Astrophysics Data System (ADS)

    Kohl, Manfred; Ossmer, Hinnerk; Gueltig, Marcel; Megnin, Christof

    2017-12-01

    In the early nineties, microelectromechanical systems (MEMS) technology has been still in its infancy. As silicon (Si) is not a transducer material, it was clear at the very beginning that mechanically active materials had to be introduced to MEMS in order to enable functional microdevices with actuation capability beyond electrostatics. At that time, shape memory alloys (SMAs) have been available in bulk form, mainly as SMA wires and SMA plates. On the macro scale, these materials show highest work densities compared to other actuation principles in the order of 107 J/m3, which stimulated research on the integration of SMA to MEMS. Subsequently, two approaches for producing planar materials have been initiated (1) magnetron sputtering of SMA thin films and (2) the integration of rolled SMA foils, which both turned out to be very successful creating a paradigm change in microactuation technology. The following review covers important milestones of the research and development of SMA foil-based microactuators including materials characterization, design engineering, technology, and demonstrator development as well as first commercial products.

  11. Impact of vertical wind shear on roll structure in idealized hurricane boundary layers

    NASA Astrophysics Data System (ADS)

    Wang, Shouping; Jiang, Qingfang

    2017-03-01

    Quasi-two-dimensional roll vortices are frequently observed in hurricane boundary layers. It is believed that this highly coherent structure, likely caused by the inflection-point instability, plays an important role in organizing turbulent transport. Large-eddy simulations are conducted to investigate the impact of wind shear characteristics, such as the shear strength and inflection-point level, on the roll structure in terms of its spectral characteristics and turbulence organization. A mean wind nudging approach is used in the simulations to maintain the specified mean wind shear without directly affecting turbulent motions. Enhancing the radial wind shear expands the roll horizontal scale and strengthens the roll's kinetic energy. Increasing the inflection-point level tends to produce a narrow and sharp peak in the power spectrum at the wavelength consistent with the roll spacing indicated by the instantaneous turbulent fields. The spectral tangential momentum flux, in particular, reaches a strong peak value at the roll wavelength. In contrast, the spectral radial momentum flux obtains its maximum at the wavelength that is usually shorter than the roll's, suggesting that the roll radial momentum transport is less efficient than the tangential because of the quasi-two-dimensionality of the roll structure. The most robust rolls are produced in a simulation with the highest inflection-point level and relatively strong radial wind shear. Based on the spectral analysis, the roll-scale contribution to the turbulent momentum flux can reach 40 % in the middle of the boundary layer.

  12. Application of linear regression analysis in accuracy assessment of rolling force calculations

    NASA Astrophysics Data System (ADS)

    Poliak, E. I.; Shim, M. K.; Kim, G. S.; Choo, W. Y.

    1998-10-01

    Efficient operation of the computational models employed in process control systems require periodical assessment of the accuracy of their predictions. Linear regression is proposed as a tool which allows separate systematic and random prediction errors from those related to measurements. A quantitative characteristic of the model predictive ability is introduced in addition to standard statistical tests for model adequacy. Rolling force calculations are considered as an example for the application. However, the outlined approach can be used to assess the performance of any computational model.

  13. Survey of flue gas desulfurization systems: Dickerson Station, Potomac Electric Power Co. Final report, Feb--Aug 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, G.A.

    1975-09-01

    Results are given of a survey of a flue gas desulfurization system, utilizing the Chemico/Basic MgO-SO2 removal/recovery process, that has been retrofitted to handle approximately half of the exhaust gas from the 190 MW unit 3 at Potomac Electric Power Company's Dickerson Station. The system was installed at a cost of SO.5 million. The boiler burns 2% sulfur coal and is equipped with a 94% efficient electrostatic precipitator. A single two-stage scrubber/absorber is used. The liquor streams for the two stages are separate, both operating in a closed-loop mode. Magnesium oxide (MgO) is regenerated off-site. (GRA)

  14. A constructive model potential method for atomic interactions

    NASA Technical Reports Server (NTRS)

    Bottcher, C.; Dalgarno, A.

    1974-01-01

    A model potential method is presented that can be applied to many electron single centre and two centre systems. The development leads to a Hamiltonian with terms arising from core polarization that depend parametrically upon the positions of the valence electrons. Some of the terms have been introduced empirically in previous studies. Their significance is clarified by an analysis of a similar model in classical electrostatics. The explicit forms of the expectation values of operators at large separations of two atoms given by the model potential method are shown to be equivalent to the exact forms when the assumption is made that the energy level differences of one atom are negligible compared to those of the other.

  15. A Monte Carlo (N,V,T) study of the stability of charged interfaces: A simulation on a hypersphere

    NASA Astrophysics Data System (ADS)

    Delville, A.; Pellenq, R. J.-M.; Caillol, J. M.

    1997-05-01

    We have used an exact expression of the Coulombic interactions derived on a hypersphere of an Euclidian space of dimension four to determine the swelling behavior of two infinite charged plates neutralized by exchangeable counterions. Monte Carlo simulations in the (N,V,T) ensemble allows for a derivation of short-ranged hard core repulsions and long-ranged electrostatic forces, which are the two components of the interionic forces in the context of the primitive model. Comparison with numerical results obtained by a classical Euclidian method illustrates the efficiency of the hyperspherical approach, especially at strong coupling between the charged particles, i.e., for divalent counterions and small plate separation.

  16. Proton conduction within the reaction centers of Rhodobacter capsulatus: the electrostatic role of the protein.

    PubMed

    Maróti, P; Hanson, D K; Baciou, L; Schiffer, M; Sebban, P

    1994-06-07

    Light-induced charge separation in the photosynthetic reaction center results in delivery of two electrons and two protons to the terminal quinone acceptor QB. In this paper, we have used flash-induced absorbance spectroscopy to study three strains that share identical amino acid sequences in the QB binding site, all of which lack the protonatable amino acids Glu-L212 and Asp-L213. These strains are the photosynthetically incompetent site-specific mutant Glu-L212/Asp-L213-->Ala-L212/Ala-L213 and two different photocompetent derivatives that carry both alanine substitutions and an intergenic suppressor mutation located far from QB (class 3 strain, Ala-Ala + Arg-M231-->Leu; class 4 strain, Ala-Ala + Asn-M43-->Asp). At pH 8 in the double mutant, we observe a concomitant decrease of nearly 4 orders of magnitude in the rate constants of second electron and proton transfer to QB compared to the wild type. Surprisingly, these rates are increased to about the same extent in both types of suppressor strains but remain > 2 orders of magnitude smaller than those of the wild type. In the double mutant, at pH 8, the loss of Asp-L213 and Glu-L212 leads to a substantial stabilization (> or = 60 meV) of the semiquinone energy level. Both types of compensatory mutations partially restore, to nearly the same level, the original free energy difference for electron transfer from primary quinone QA to QB. The pH dependence of the electron and proton transfer processes in the double-mutant and the suppressor strains suggests that when reaction centers of the double mutant are shifted to lower pH (1.5-2 units), they function like those of the suppressor strains at physiological pH. Our data suggest that the main effect of the compensatory mutations is to partially restore the negative electrostatic environment of QB and to increase an apparent "functional" pK of the system for efficient proton transfer to the active site. This emphasizes the role of the protein in tuning the electrostatic environment of its cofactors and highlights the possible long-range electrostatic effects.

  17. Tuning domain size and crystallinity in isoindigo/PCBM organic solar cells via solution shearing

    DOE PAGES

    Gu, Kevin L.; Zhou, Yan; Gu, Xiaodan; ...

    2016-11-01

    Despite having achieved the long sought-after performance of 10% power conversion efficiency, high performance organic photovoltaics (OPVs) are still mostly constrained to lab scale devices fabricated by spin coating. Efforts to produce printed OPVs lag considerably behind, and the sensitivity to different fabrication methods highlights the need to develop a comprehensive understanding of the processing-morphology relationship in printing methods. Here we present a systematic experimental investigation of a model low bandgap polymer/fullerene system, poly-isoindigo thienothiophene/PC 61BM, using a lab-scale analogue to roll-to-roll coating as the fabrication tool in order to understand the impact of processing parameters on morphological evolution. Wemore » report that domain size and polymer crystallinity can be tuned by a factor of two by controlling the temperature and coating speed. Lower fabrication temperature simultaneously decreased the phase separation domain size and increased the relative degree of crystallinity in those domains, leading to improved photocurrent. We conclude that domain size in isoindigo/PCBM is dictated by spontaneous phase separation rather than crystal nucleation and growth. Moreover we present a model to describe the temperature dependence of domain size formation in our system, which demonstrates that morphology is not necessarily strictly dependent on the evaporation rate, but rather on the interplay between evaporation and diffusion during the printing process.« less

  18. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets

    NASA Astrophysics Data System (ADS)

    Liu, Mingjie; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Takata, Masaki; Aida, Takuzo

    2015-01-01

    Machine technology frequently puts magnetic or electrostatic repulsive forces to practical use, as in maglev trains, vehicle suspensions or non-contact bearings. In contrast, materials design overwhelmingly focuses on attractive interactions, such as in the many advanced polymer-based composites, where inorganic fillers interact with a polymer matrix to improve mechanical properties. However, articular cartilage strikingly illustrates how electrostatic repulsion can be harnessed to achieve unparalleled functional efficiency: it permits virtually frictionless mechanical motion within joints, even under high compression. Here we describe a composite hydrogel with anisotropic mechanical properties dominated by electrostatic repulsion between negatively charged unilamellar titanate nanosheets embedded within it. Crucial to the behaviour of this hydrogel is the serendipitous discovery of cofacial nanosheet alignment in aqueous colloidal dispersions subjected to a strong magnetic field, which maximizes electrostatic repulsion and thereby induces a quasi-crystalline structural ordering over macroscopic length scales and with uniformly large face-to-face nanosheet separation. We fix this transiently induced structural order by transforming the dispersion into a hydrogel using light-triggered in situ vinyl polymerization. The resultant hydrogel, containing charged inorganic structures that align cofacially in a magnetic flux, deforms easily under shear forces applied parallel to the embedded nanosheets yet resists compressive forces applied orthogonally. We anticipate that the concept of embedding anisotropic repulsive electrostatics within a composite material, inspired by articular cartilage, will open up new possibilities for developing soft materials with unusual functions.

  19. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets.

    PubMed

    Liu, Mingjie; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Takata, Masaki; Aida, Takuzo

    2015-01-01

    Machine technology frequently puts magnetic or electrostatic repulsive forces to practical use, as in maglev trains, vehicle suspensions or non-contact bearings. In contrast, materials design overwhelmingly focuses on attractive interactions, such as in the many advanced polymer-based composites, where inorganic fillers interact with a polymer matrix to improve mechanical properties. However, articular cartilage strikingly illustrates how electrostatic repulsion can be harnessed to achieve unparalleled functional efficiency: it permits virtually frictionless mechanical motion within joints, even under high compression. Here we describe a composite hydrogel with anisotropic mechanical properties dominated by electrostatic repulsion between negatively charged unilamellar titanate nanosheets embedded within it. Crucial to the behaviour of this hydrogel is the serendipitous discovery of cofacial nanosheet alignment in aqueous colloidal dispersions subjected to a strong magnetic field, which maximizes electrostatic repulsion and thereby induces a quasi-crystalline structural ordering over macroscopic length scales and with uniformly large face-to-face nanosheet separation. We fix this transiently induced structural order by transforming the dispersion into a hydrogel using light-triggered in situ vinyl polymerization. The resultant hydrogel, containing charged inorganic structures that align cofacially in a magnetic flux, deforms easily under shear forces applied parallel to the embedded nanosheets yet resists compressive forces applied orthogonally. We anticipate that the concept of embedding anisotropic repulsive electrostatics within a composite material, inspired by articular cartilage, will open up new possibilities for developing soft materials with unusual functions.

  20. Numerical simulation of turbulent flow and heat transfer in the wedge-shaped liquid metal pool of a twin-roll caster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seyedein, S.H.; Hasan, H.

    1997-03-01

    Controlled flow and heat transfer are important for the quality of a strip in a twin-roll continuous casting process. A numerical study was carried out to investigate the two-dimensional turbulent flow and heat transfer in the liquid stainless-steel-filled wedge-shaped cavity formed by the two counterrotating rolls in a twin-roll continuous casting system. The turbulent characteristics of the flow were modeled using a low-Reynolds-number {kappa}-{epsilon} turbulence model due to Launder and Sharma. The arbitrary nature of the computational domain was accounted for through the use of a nonorthogonal boundary-fitted coordinate system on a staggered grid. A control-volume-based finite difference scheme wasmore » used to solve the transformed transport equations. This study is primarily focused on elucidating the inlet superheat dissipation in the melt pool with the rolls being maintained at a constant liquidus temperature of the steel. A parametric study was carried out to ascertain the effect of the inlet superheat, the casting speed, and the roll gap at the nip of the rotating rolls on the flow and heat transfer characteristics. The velocity fields show two counterrotating recirculation zones in the upstream region. The local Nusselt number on the roll surface shows significant variations. The contours of temperature and turbulent viscosity show the complex nature of the turbulent transport phenomena to be expected in a twin-roll casting process.« less

  1. Electrons in one dimension

    PubMed Central

    Berggren, K.-F.; Pepper, M.

    2010-01-01

    In this article, we present a summary of the current status of the study of the transport of electrons confined to one dimension in very low disorder GaAs–AlGaAs heterostructures. By means of suitably located gates and application of a voltage to ‘electrostatically squeeze’ the electronic wave functions, it is possible to produce a controllable size quantization and a transition from two-dimensional transport. If the length of the electron channel is sufficiently short, then transport is ballistic and the quantized subbands each have a conductance equal to the fundamental quantum value 2e2/h, where the factor of 2 arises from the spin degeneracy. This mode of conduction is discussed, and it is shown that a number of many-body effects can be observed. These effects are discussed as in the spin-incoherent regime, which is entered when the separation of the electrons is increased and the exchange energy is less than kT. Finally, results are presented in the regime where the confinement potential is decreased and the electron configuration relaxes to minimize the electron–electron repulsion to move towards a two-dimensional array. It is shown that the ground state is no longer a line determined by the size quantization alone, but becomes two distinct rows arising from minimization of the electrostatic energy and is the precursor of a two-dimensional Wigner lattice. PMID:20123751

  2. Open ended tubing cutters

    NASA Technical Reports Server (NTRS)

    Girala, A. S. (Inventor)

    1981-01-01

    A self clamping cutting tool which includes a handle attached to a C-shaped housing is described. Rotatably mounted within the housing is a C-shaped tool body carrying a set of clamping rolls, two support rolls, and an edged cutting roll (64). The support rolls are disposed to one side of the axis of a pipe and the cutting roll is disposed to the other side of a pipe axis so that these rolls contact a pipe at three circumferential points. Cutter advancing apparatus advance the cutting roll toward the support rollers. The support rolls and cutting roll are rotatable independently of the C-shaped housing. A one way ratchet mechanism disposed between the C-shaped housing and the C-shaped tool body permits operation by movement in one rotational direction about the pipe axis.

  3. Analysis of Drop Shapes during Electrowetting on a Dielectric

    NASA Astrophysics Data System (ADS)

    Daneshbod, Yousef

    2005-03-01

    Electrowetting refers to the electrostatic control of the interfacial energy of a liquid on a solid, primarily used for the transport of micro-liter volumes of drops on surfaces with embedded electrode arrays. In the present work, the drop is modeled as a two-dimensional lens-like conductor immersed in an infinite dielectric medium slightly above a planar conductor. A matched asymptotic expansion is used to approximate the electrostatic field surrounding the drop. The outer problem models the drop as a conducting circular segment resting on the conducting plane, each maintained at a separate constant potential. The inner problem corrects the region near the edge of the drop by modeling it as an infinite planar conducting wedge lying slightly above the conducting plane. By matching the inner and outer solutions, the charge density along the entire surface of the drop can be approximated, enabling the calculation of the total capacitance of the system. An energy minimization method similar to that of Shapiro et al. [J. Appl. Phys., 93, 5794 (2003)] is applied to the total energy consisting of the liquid/gas, liquid/solid and solid/gas surface energies, together with the electrostatic contribution, subject to the constraint that the drop volume remains constant. A modified form of the Young-Lippmann equation is thus derived that includes the contribution from the extra capacitance of the drop obtained via matched asymptotics.

  4. Tuning of electrostatic vs. depletion interaction in deciding the phase behavior of nanoparticle-polymer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sugam, E-mail: sugam@barc.gov.in; Aswal, V. K.; Kohlbrecher, J.

    2015-06-24

    Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accountingmore » for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology.« less

  5. Foam Rolling for Delayed-Onset Muscle Soreness and Recovery of Dynamic Performance Measures

    PubMed Central

    Pearcey, Gregory E. P.; Bradbury-Squires, David J.; Kawamoto, Jon-Erik; Drinkwater, Eric J.; Behm, David G.; Button, Duane C.

    2015-01-01

    Context: After an intense bout of exercise, foam rolling is thought to alleviate muscle fatigue and soreness (ie, delayed-onset muscle soreness [DOMS]) and improve muscular performance. Potentially, foam rolling may be an effective therapeutic modality to reduce DOMS while enhancing the recovery of muscular performance. Objective: To examine the effects of foam rolling as a recovery tool after an intense exercise protocol through assessment of pressure-pain threshold, sprint time, change-of-direction speed, power, and dynamic strength-endurance. Design: Controlled laboratory study. Setting: University laboratory. Patients or Other Participants: A total of 8 healthy, physically active males (age = 22.1 ± 2.5 years, height = 177.0 ± 7.5 cm, mass = 88.4 ± 11.4 kg) participated. Intervention(s): Participants performed 2 conditions, separated by 4 weeks, involving 10 sets of 10 repetitions of back squats at 60% of their 1-repetition maximum, followed by either no foam rolling or 20 minutes of foam rolling immediately, 24, and 48 hours postexercise. Main Outcome Measure(s): Pressure-pain threshold, sprint speed (30-m sprint time), power (broad-jump distance), change-of-direction speed (T-test), and dynamic strength-endurance. Results: Foam rolling substantially improved quadriceps muscle tenderness by a moderate to large amount in the days after fatigue (Cohen d range, 0.59 to 0.84). Substantial effects ranged from small to large in sprint time (Cohen d range, 0.68 to 0.77), power (Cohen d range, 0.48 to 0.87), and dynamic strength-endurance (Cohen d = 0.54). Conclusions: Foam rolling effectively reduced DOMS and associated decrements in most dynamic performance measures. PMID:25415413

  6. Using Dice Games to Teach Hazards, Risk, and Outcomes in HACCP Classes

    ERIC Educational Resources Information Center

    Oyarzabal, Omar A.

    2015-01-01

    This article describes the incorporation of a dice game (piggy) to teach food safety hazards and risk in an engaging way in HACCP classes. Each player accumulates points by rolling two dice, but loses points in a turn when rolling a 7, or all accumulated points when rolling two consecutive doubles. This game helps explain the difference between a…

  7. Study of rolling element dynamic interactions with separators and raceway paths: Roller to separator contact forces and cage to shaft speed ratios in roller bearings

    NASA Technical Reports Server (NTRS)

    Nypan, L. J.

    1978-01-01

    Cage to roller force measurements, cage to shaft forces, and cage to shaft speed ratios are reported for 115 and 118mm bore roller bearings operating at speeds of 4,000, 8,000, and 12,000 rpm under loads ranging from 360 to 6670 N (80 to 1500 lb).

  8. Aero-Assisted Pre-Stage for Ballistic and Aero-Assisted Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Ustinov, Eugene A.

    2012-01-01

    A concept of an aero-assisted pre-stage is proposed, which enables launch of both ballistic and aero-assisted launch vehicles from conventional runways. The pre-stage can be implemented as a delta-wing with a suitable undercarriage, which is mated with the launch vehicle, so that their flight directions are coaligned. The ample wing area of the pre-stage combined with the thrust of the launch vehicle ensure prompt roll-out and take-off of the stack at airspeeds typical for a conventional jet airliner. The launch vehicle is separated from the pre-stage as soon as safe altitude is achieved, and the desired ascent trajectory is reached. Nominally, the pre-stage is non-powered. As an option, to save the propellant of the launch vehicle, the pre-stage may have its own short-burn propulsion system, whereas the propulsion system of the launch vehicle is activated at the separation point. A general non-dimensional analysis of performance of the pre-stage from roll-out to separation is carried out and applications to existing ballistic launch vehicle and hypothetical aero-assisted vehicles (spaceplanes) are considered.

  9. Space shuttle vehicle rocket plume impingement study for separation analysis. Tasks 2 and 3: Definition and preliminary plume impingement analysis for the MSC booster

    NASA Technical Reports Server (NTRS)

    Wojciechowski, C. J.; Penny, M. M.; Prozan, R. J.

    1970-01-01

    The results are presented of a space shuttle plume impingement study for the Manned Spacecraft Center configuration. This study was conducted as two tasks which were to (1) define the orbiter main stage engine exhaust plume flow field, and (2) define the plume impingement heating, force and resulting moment environments on the booster during the staging maneuver. To adequately define these environments during the staging maneuver and allow for deviation from the nominal separation trajectory, a multitude of relative orbiter/booster positions are analyzed which map the region that contains the separation trajectories. The data presented can be used to determine a separation trajectory which will result in acceptable impingement heating rates, forces, and the resulting moments. The data, presented in graphical form, include the effect of roll, pitch and yaw maneuvers for the booster. Quasi-steady state analysis methods were used with the orbiter engine operating at full thrust. To obtain partial thrust results, simple ratio equations are presented.

  10. “Capacitive Sensor” to Measure Flow Electrification and Prevent Electrostatic Hazards

    PubMed Central

    Paillat, Thierry; Touchard, Gerard; Bertrand, Yves

    2012-01-01

    At a solid/liquid interface, physico-chemical phenomena occur that lead to the separation of electrical charges, establishing a zone called electrical double layer. The convection of one part of these charges by the liquid flow is the cause of the flow electrification phenomenon which is suspected of being responsible of incidents in the industry. The P' Institute of Poitiers University and CNRS has developed an original sensor called “capacitive sensor” that allows the characterization of the mechanisms involved in the generation, accumulation and transfer of charges. As an example, this sensor included in the design of high power transformers, could easily show the evolution of electrostatic charge generation developed during the operating time of the transformer and, therefore, point out the operations leading to electrostatic hazards and, then, monitor the transformer to prevent such risks. PMID:23202162

  11. Electrostatic Interactions and Self-Assembly in Polymeric Systems

    NASA Astrophysics Data System (ADS)

    Dobrynin, Andrey

    Electrostatic interactions between macroions play an important role in different areas ranging from materials science to biophysics. They are main driving forces behind layer-by-layer assembly technique that allows self-assembly of multilayer films from synthetic polyelectrolytes, DNA, proteins and nanoparticles. They are responsible for complexation and reversible gelation between polyelectrolytes and proteins. In this talk, using results of the molecular dynamics simulations and analytical calculations, I will demonstrate what effect electrostatic interactions, counterion condensation and polymer solvent affinity have on a collapse of polyelectrolyte chain in a poor solvent conditions for the polymer backbone, on complexations and reversible gelation between polyelectrolytes and polyamholytes (unstructured proteins), on microphase separation transitions in spherical and planar charged brushes, and on a layer-by-layer assembly of charged nanoparticles and linear polyelectrolytes on charged surfaces. NSF DMR-1004576 DMR-1409710.

  12. Flexible single-layer ionic organic-inorganic frameworks towards precise nano-size separation

    NASA Astrophysics Data System (ADS)

    Yue, Liang; Wang, Shan; Zhou, Ding; Zhang, Hao; Li, Bao; Wu, Lixin

    2016-02-01

    Consecutive two-dimensional frameworks comprised of molecular or cluster building blocks in large area represent ideal candidates for membranes sieving molecules and nano-objects, but challenges still remain in methodology and practical preparation. Here we exploit a new strategy to build soft single-layer ionic organic-inorganic frameworks via electrostatic interaction without preferential binding direction in water. Upon consideration of steric effect and additional interaction, polyanionic clusters as connection nodes and cationic pseudorotaxanes acting as bridging monomers connect with each other to form a single-layer ionic self-assembled framework with 1.4 nm layer thickness. Such soft supramolecular polymer frameworks possess uniform and adjustable ortho-tetragonal nanoporous structure in pore size of 3.4-4.1 nm and exhibit greatly convenient solution processability. The stable membranes maintaining uniform porous structure demonstrate precisely size-selective separation of semiconductor quantum dots within 0.1 nm of accuracy and may hold promise for practical applications in selective transport, molecular separation and dialysis systems.

  13. Gas detection with microelectromechanical Fabry-Perot interferometer technology in cell phone

    NASA Astrophysics Data System (ADS)

    Mannila, Rami; Hyypiö, Risto; Korkalainen, Marko; Blomberg, Martti; Kattelus, Hannu; Rissanen, Anna

    2015-06-01

    VTT Technical Research Centre of Finland has developed a miniaturized optical sensor for gas detection in a cell phone. The sensor is based on a microelectromechanical (MEMS) Fabry-Perot interferometer, which is a structure with two highly reflective surfaces separated by a tunable air gap. The MEMS FPI is a monolithic device, i.e. it is made entirely on one substrate in a batch process, without assembling separate pieces together. The gap is adjusted by moving the upper mirror with electrostatic force, so there are no actual moving parts. VTT has designed and manufactured a MEMS FPI based carbon dioxide sensor demonstrator which is integrated to a cell phone shield cover. The demonstrator contains light source, gas cell, MEMS FPI, detector, control electronics and two coin cell batteries as a power source. It is connected to the cell phone by Bluetooth. By adjusting the wavelength range and customizing the MEMS FPI structure, it is possible to selectively sense multiple gases.

  14. The role of electrostatics in protein-protein interactions of a monoclonal antibody.

    PubMed

    Roberts, D; Keeling, R; Tracka, M; van der Walle, C F; Uddin, S; Warwicker, J; Curtis, R

    2014-07-07

    Understanding how protein-protein interactions depend on the choice of buffer, salt, ionic strength, and pH is needed to have better control over protein solution behavior. Here, we have characterized the pH and ionic strength dependence of protein-protein interactions in terms of an interaction parameter kD obtained from dynamic light scattering and the osmotic second virial coefficient B22 measured by static light scattering. A simplified protein-protein interaction model based on a Baxter adhesive potential and an electric double layer force is used to separate out the contributions of longer-ranged electrostatic interactions from short-ranged attractive forces. The ionic strength dependence of protein-protein interactions for solutions at pH 6.5 and below can be accurately captured using a Deryaguin-Landau-Verwey-Overbeek (DLVO) potential to describe the double layer forces. In solutions at pH 9, attractive electrostatics occur over the ionic strength range of 5-275 mM. At intermediate pH values (7.25 to 8.5), there is a crossover effect characterized by a nonmonotonic ionic strength dependence of protein-protein interactions, which can be rationalized by the competing effects of long-ranged repulsive double layer forces at low ionic strength and a shorter ranged electrostatic attraction, which dominates above a critical ionic strength. The change of interactions from repulsive to attractive indicates a concomitant change in the angular dependence of protein-protein interaction from isotropic to anisotropic. In the second part of the paper, we show how the Baxter adhesive potential can be used to predict values of kD from fitting to B22 measurements, thus providing a molecular basis for the linear correlation between the two protein-protein interaction parameters.

  15. A Pilot Opinion Study of Lateral Control Requirements for Fighter-Type Aircraft

    NASA Technical Reports Server (NTRS)

    Creer, Brent Y.; Stewart, John D.; Merrick, Robert B.; Drinkwater, Fred J., III

    1959-01-01

    As part of a continuing NASA program of research on airplane handling qualities, a pilot opinion investigation has been made on the lateral control requirements of fighter aircraft flying in their combat speed range. The investigation was carried out using a stationary flight simulator and a moving flight simulator, and the flight simulator results were supplemented by research tests in actual flight. The flight simulator study was based on the presumption that the pilot rates the roll control of an airplane primarily on a single-degree-of-freedom basis; that is, control of angle of roll about the aircraft body axis being of first importance. From the assumption of a single degree of freedom system it follows that there are two fundamental parameters which govern the airplane roll response, namely the roll damping expressed as a time constant and roll control power in terms of roll acceleration. The simulator study resulted in a criterion in terms of these two parameters which defines satisfactory, unsatisfactory, and unacceptable roll performance from a pilot opinion standpoint. The moving simulator results were substantiated by the in-flight investigation. The derived criterion was compared with the roll performance criterion based upon wing tip helix angle and also with other roll performance concepts which currently influence the roll performance design of military fighter aircraft flying in their combat speed range.

  16. Effective Coulomb force modeling for spacecraft in Earth orbit plasmas

    NASA Astrophysics Data System (ADS)

    Seubert, Carl R.; Stiles, Laura A.; Schaub, Hanspeter

    2014-07-01

    Coulomb formation flight is a concept that utilizes electrostatic forces to control the separations of close proximity spacecraft. The Coulomb force between charged bodies is a product of their size, separation, potential and interaction with the local plasma environment. A fast and accurate analytic method of capturing the interaction of a charged body in a plasma is shown. The Debye-Hückel analytic model of the electrostatic field about a charged sphere in a plasma is expanded to analytically compute the forces. This model is fitted to numerical simulations with representative geosynchronous and low Earth orbit (GEO and LEO) plasma environments using an effective Debye length. This effective Debye length, which more accurately captures the charge partial shielding, can be up to 7 times larger at GEO, and as great as 100 times larger at LEO. The force between a sphere and point charge is accurately captured with the effective Debye length, as opposed to the electron Debye length solutions that have errors exceeding 50%. One notable finding is that the effective Debye lengths in LEO plasmas about a charged body are increased from centimeters to meters. This is a promising outcome, as the reduced shielding at increased potentials provides sufficient force levels for operating the electrostatically inflated membrane structures concept at these dense plasma altitudes.

  17. Emergence of a Stern Layer from the Incorporation of Hydration Interactions into the Gouy-Chapman Model of the Electrical Double Layer.

    PubMed

    Brown, Matthew A; Bossa, Guilherme Volpe; May, Sylvio

    2015-10-27

    In one of the most commonly used phenomenological descriptions of the electrical double layer, a charged solid surface and a diffuse region of mobile ions are separated from each other by a thin charge-depleted Stern layer. The Stern layer acts as a capacitor that improves the classical Gouy-Chapman model by increasing the magnitude of the surface potential and limiting the maximal counterion concentration. We show that very similar Stern-like properties of the diffuse double layer emerge naturally from adding a nonelectrostatic hydration repulsion to the electrostatic Coulomb potential. The interplay of electrostatic attraction and hydration repulsion of the counterions and the surface leads to the formation of a diffuse counterion layer that remains well separated from the surface. In addition, hydration repulsions between the ions limit and control the maximal ion concentration and widen the width of the diffuse double layer. Our mean-field model, which we express in terms of electrostatic and hydration potentials, is physically consistent and conceptually similar to the classical Gouy-Chapman model. It allows the incorporation of ion specificity, accounts for hydration properties of charged surfaces, and predicts Stern layer properties, which we analyze in terms of the effective size of the hydrated counterions.

  18. A method for the determination of the coefficient of rolling friction using cycloidal pendulum

    NASA Astrophysics Data System (ADS)

    Ciornei, M. C.; Alaci, S.; Ciornei, F. C.; Romanu, I. C.

    2017-08-01

    The paper presents a method for experimental finding of coefficient of rolling friction appropriate for biomedical applications based on the theory of cycloidal pendulum. When a mobile circle rolls over a fixed straight line, the points from the circle describe trajectories called normal cycloids. To materialize this model, it is sufficient that a small region from boundary surfaces of a moving rigid body is spherical. Assuming pure rolling motion, the equation of motion of the cycloidal pendulum is obtained - an ordinary nonlinear differential equation. The experimental device is composed by two interconnected balls rolling over the material to be studied. The inertial characteristics of the pendulum can be adjusted via weights placed on a rod. A laser spot oscillates together to the pendulum and provides the amplitude of oscillations. After finding the experimental parameters necessary in differential equation of motion, it can be integrated using the Runge-Kutta of fourth order method. The equation was integrated for several materials and found values of rolling friction coefficients. Two main conclusions are drawn: the coefficient of rolling friction influenced significantly the amplitude of oscillation but the effect upon the period of oscillation is practically imperceptible. A methodology is proposed for finding the rolling friction coefficient and the pure rolling condition is verified.

  19. Domain Formation Induced by the Adsorption of Charged Proteins on Mixed Lipid Membranes

    PubMed Central

    Mbamala, Emmanuel C.; Ben-Shaul, Avinoam; May, Sylvio

    2005-01-01

    Peripheral proteins can trigger the formation of domains in mixed fluid-like lipid membranes. We analyze the mechanism underlying this process for proteins that bind electrostatically onto a flat two-component membrane, composed of charged and neutral lipid species. Of particular interest are membranes in which the hydrocarbon lipid tails tend to segregate owing to nonideal chain mixing, but the (protein-free) lipid membrane is nevertheless stable due to the electrostatic repulsion between the charged lipid headgroups. The adsorption of charged, say basic, proteins onto a membrane containing anionic lipids induces local lipid demixing, whereby charged lipids migrate toward (or away from) the adsorption site, so as to minimize the electrostatic binding free energy. Apart from reducing lipid headgroup repulsion, this process creates a gradient in lipid composition around the adsorption zone, and hence a line energy whose magnitude depends on the protein's size and charge and the extent of lipid chain nonideality. Above a certain critical lipid nonideality, the line energy is large enough to induce domain formation, i.e., protein aggregation and, concomitantly, macroscopic lipid phase separation. We quantitatively analyze the thermodynamic stability of the dressed membrane based on nonlinear Poisson-Boltzmann theory, accounting for both the microscopic characteristics of the proteins and lipid composition modulations at and around the adsorption zone. Spinodal surfaces and critical points of the dressed membranes are calculated for several different model proteins of spherical and disk-like shapes. Among the models studied we find the most substantial protein-induced membrane destabilization for disk-like proteins whose charges are concentrated in the membrane-facing surface. If additional charges reside on the side faces of the proteins, direct protein-protein repulsion diminishes considerably the propensity for domain formation. Generally, a highly charged flat face of a macroion appears most efficient in inducing large compositional gradients, hence a large and unfavorable line energy and consequently lateral macroion aggregation and, concomitantly, macroscopic lipid phase separation. PMID:15626713

  20. Formation of ion clusters in the phase separated structures of neutral-charged polymer blends

    NASA Astrophysics Data System (ADS)

    Kwon, Ha-Kyung; Olvera de La Cruz, Monica

    2015-03-01

    Polyelectrolyte blends, consisting of at least one charged species, are promising candidate materials for fuel cell membranes, for their mechanical stability and high selectivity for proton conduction. The phase behavior of the blends is important to understand, as this can significantly affect the performance of the device. The phase behavior is controlled by χN, the Flory-Huggins parameter multiplied by the number of mers, as well as the electrostatic interactions between the charged backbone and the counterions. It has recently been shown that local ionic correlations, incorporated via liquid state (LS) theory, enhance phase separation of the blend, even in the absence of polymer interactions. In this study, we show phase diagrams of neutral-charged polymer blends including ionic correlations via LS theory. In addition to enhanced phase separation at low χN, the blends show liquid-liquid phase separation at high electrostatic interaction strengths. Above the critical strength, the charged polymer phase separates into ion-rich and ion-poor regions, resulting in the formation of ion clusters within the charged polymer phase. This can be shown by the appearance of multiple spinodal and critical points, indicating the coexistence of several charge separated phases. This work was performed under the following financial assistance award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD).

  1. NASA Tech Briefs, January 2010

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Topics covered include: Cryogenic Flow Sensor; Multi-Sensor Mud Detection; Gas Flow Detection System; Mapping Capacitive Coupling Among Pixels in a Sensor Array; Fiber-Based Laser Transmitter for Oxygen A-Band Spectroscopy and Remote Sensing; Low-Profile, Dual-Wavelength, Dual-Polarized Antenna; Time-Separating Heating and Sensor Functions of Thermistors in Precision Thermal Control Applications; Cellular Reflectarray Antenna; A One-Dimensional Synthetic-Aperture Microwave Radiometer; Electrical Switching of Perovskite Thin-Film Resistors; Two-Dimensional Synthetic-Aperture Radiometer; Ethernet-Enabled Power and Communication Module for Embedded Processors; Electrically Variable Resistive Memory Devices; Improved Attachment in a Hybrid Inflatable Pressure Vessel; Electrostatic Separator for Beneficiation of Lunar Soil; Amorphous Rover; Space-Frame Antenna; Gear-Driven Turnbuckle Actuator; In-Situ Focusing Inside a Thermal Vacuum Chamber; Space-Frame Lunar Lander; Wider-Opening Dewar Flasks for Cryogenic Storage; Silicon Oxycarbide Aerogels for High-Temperature Thermal Insulation; Supercapacitor Electrolyte Solvents with Liquid Range Below -80 C; Designs and Materials for Better Coronagraph Occulting Masks; Fuel-Cell-Powered Vehicle with Hybrid Power Management; Fine-Water-Mist Multiple-Orientation-Discharge Fire Extinguisher; Fuel-Cell Water Separator; Turbulence and the Stabilization Principle; Improved Cloud Condensation Nucleus Spectrometer; Better Modeling of Electrostatic Discharge in an Insulator; Sub-Aperture Interferometers; Terahertz Mapping of Microstructure and Thickness Variations; Multiparallel Three-Dimensional Optical Microscopy; Stabilization of Phase of a Sinusoidal Signal Transmitted Over Optical Fiber; Vacuum-Compatible Wideband White Light and Laser Combiner Source System; Optical Tapers as White-Light WGM Resonators; EPR Imaging at a Few Megahertz Using SQUID Detectors; Reducing Field Distortion in Magnetic Resonance Imaging; Fluorogenic Cell-Based Biosensors for Monitoring Microbes; A Constant-Force Resistive Exercise Unit; GUI to Facilitate Research on Biological Damage from Radiation; On-Demand Urine Analyzer; More-Realistic Digital Modeling of a Human Body; and Advanced Liquid-Cooling Garment Using Highly Thermally Conductive Sheets.

  2. Acute Effects of Foam Rolling, Static Stretching, and Dynamic Stretching During Warm-ups on Muscular Flexibility and Strength in Young Adults.

    PubMed

    Su, Hsuan; Chang, Nai-Jen; Wu, Wen-Lan; Guo, Lan-Yuen; Chu, I-Hua

    2017-11-01

    Foam rolling has been proposed to improve muscle function, performance, and joint range of motion (ROM). However, whether a foam rolling protocol can be adopted as a warm-up to improve flexibility and muscle strength is unclear. To examine and compare the acute effects of foam rolling, static stretching, and dynamic stretching used as part of a warm-up on flexibility and muscle strength of knee flexion and extension. Crossover study. University research laboratory. 15 male and 15 female college students (age 21.43 ± 1.48 y, weight 65.13 ± 12.29 kg, height 166.90 ± 6.99 cm). Isokinetic peak torque was measured during knee extension and flexion at an angular velocity of 60°/second. Flexibility of the quadriceps was assessed by the modified Thomas test, while flexibility of the hamstrings was assessed using the sit-and-reach test. The 3 interventions were performed by all participants in random order on 3 days separated by 48-72 hours. The flexibility test scores improved significantly more after foam rolling as compared with static and dynamic stretching. With regard to muscle strength, only knee extension peak torque (pre vs. postintervention) improved significantly after the dynamic stretching and foam rolling, but not after static stretching. Knee flexion peak torque remained unchanged. Foam rolling is more effective than static and dynamic stretching in acutely increasing flexibility of the quadriceps and hamstrings without hampering muscle strength, and may be recommended as part of a warm-up in healthy young adults.

  3. Head position modulates optokinetic nystagmus

    PubMed Central

    Ferraresi, A.; Botti, F. M.; Panichi, R.; Barmack, N. H.

    2011-01-01

    Orientation and movement relies on both visual and vestibular information mapped in separate coordinate systems. Here, we examine how coordinate systems interact to guide eye movements of rabbits. We exposed rabbits to continuous horizontal optokinetic stimulation (HOKS) at 5°/s to evoke horizontal eye movements, while they were statically or dynamically roll-tilted about the longitudinal axis. During monocular or binocular HOKS, when the rabbit was roll-tilted 30° onto the side of the eye stimulated in the posterior → anterior (P → A) direction, slow phase eye velocity (SPEV) increased by 3.5–5°/s. When the rabbit was roll-tilted 30° onto the side of the eye stimulated in the A → P direction, SPEV decreased to ~2.5°/s. We also tested the effect of roll-tilt after prolonged optokinetic stimulation had induced a negative optokinetic afternystagmus (OKAN II). In this condition, the SPEV occurred in the dark, “open loop.” Modulation of SPEV of OKAN II depended on the direction of the nystagmus and was consistent with that observed during “closed loop” HOKS. Dynamic roll-tilt influenced SPEV evoked by HOKS in a similar way. The amplitude and the phase of SPEV depended on the frequency of vestibular oscillation and on HOKS velocity. We conclude that the change in the linear acceleration of the gravity vector with respect to the head during roll-tilt modulates the gain of SPEV depending on its direction. This modulation improves gaze stability at different image retinal slip velocities caused by head roll-tilt during centric or eccentric head movement. PMID:21735244

  4. Head position modulates optokinetic nystagmus.

    PubMed

    Pettorossi, V E; Ferraresi, A; Botti, F M; Panichi, R; Barmack, N H

    2011-08-01

    Orientation and movement relies on both visual and vestibular information mapped in separate coordinate systems. Here, we examine how coordinate systems interact to guide eye movements of rabbits. We exposed rabbits to continuous horizontal optokinetic stimulation (HOKS) at 5°/s to evoke horizontal eye movements, while they were statically or dynamically roll-tilted about the longitudinal axis. During monocular or binocular HOKS, when the rabbit was roll-tilted 30° onto the side of the eye stimulated in the posterior → anterior (P → A) direction, slow phase eye velocity (SPEV) increased by 3.5-5°/s. When the rabbit was roll-tilted 30° onto the side of the eye stimulated in the A → P direction, SPEV decreased to ~2.5°/s. We also tested the effect of roll-tilt after prolonged optokinetic stimulation had induced a negative optokinetic afternystagmus (OKAN II). In this condition, the SPEV occurred in the dark, "open loop." Modulation of SPEV of OKAN II depended on the direction of the nystagmus and was consistent with that observed during "closed loop" HOKS. Dynamic roll-tilt influenced SPEV evoked by HOKS in a similar way. The amplitude and the phase of SPEV depended on the frequency of vestibular oscillation and on HOKS velocity. We conclude that the change in the linear acceleration of the gravity vector with respect to the head during roll-tilt modulates the gain of SPEV depending on its direction. This modulation improves gaze stability at different image retinal slip velocities caused by head roll-tilt during centric or eccentric head movement.

  5. Evaluation of separation properties of a modified strong cation exchange material named MEX and its application in 2D-MEX × C18 system to separate peptides from scorpion venom.

    PubMed

    Chen, Bo; Xu, Junyan; Fu, Qing; Dong, Xuefang; Guo, Zhimou; Jin, Yu; Liang, Xinmiao

    2015-07-07

    Peptides from scorpion venom represent one of the most promising drug sources for drug discovery for some specific diseases. Current challenges in their separation include high complexity, high homologies and the huge range of peptides. In this paper, a modified strong cation exchange material, named MEX, was utilised for the two-dimensional separation of peptides from complex scorpion venom. The silica-based MEX column was bonded with two functional groups; benzenesulfonic acid and cyanopropyl. To better understand its separation mechanisms, seven standard peptides with different properties were employed in an evaluation study, the results of which showed that two interactions were involved in the MEX column: electrostatic interactions based on benzenesulfonic acid groups dominated the separation of peptides; weak hydrophobic interactions introduced by cyanopropyl groups increased the column's selectivity for peptides with the same charge. This characteristic allowed the MEX column to overcome some of the drawbacks of traditional strong cation exchange (SCX) columns. Furthermore, the study showed the great effects of the acetonitrile (ACN) content, the sodium perchlorate (NaClO4) concentration and the buffer pH in the mobile phase on the peptides' retention and separation selectivity on the MEX column. Subsequently, the MEX column was combined with a C18 column to establish an off-line 2D-MEX × C18 system to separate peptides from scorpion Buthus martensi Karsch (BmK) venom. Due to complementary separation mechanisms in each dimension, a high orthogonality of 47.62% was achieved. Moreover, a good loading capacity, excellent stability and repeatability were exhibited by the MEX column, which are beneficial for its use in future preparation experiments. Therefore, the MEX column could be an alternative to the traditional SCX columns for the separation of peptides from scorpion venom.

  6. Ion extraction capabilities of two-grid accelerator systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1984-01-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. This work resulted in a large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high. The apparatus developed for this study is also shown to be well suited measuring the electron backstreaming and electrical breakdown characteristics of two-grid accelerator systems.

  7. Predicting Ares I Reaction Control System Performance by Utilizing Analysis Anchored with Development Test Data

    NASA Technical Reports Server (NTRS)

    Stein, William B.; Holt, K.; Holton, M.; Williams, J. H.; Butt, A.; Dervan, M.; Sharp, D.

    2010-01-01

    The Ares I launch vehicle is an integral part of NASA s Constellation Program, providing a foundation for a new era of space access. The Ares I is designed to lift the Orion Crew Module and will enable humans to return to the Moon as well as explore Mars.1 The Ares I is comprised of two inline stages: a Space Shuttle-derived five-segment Solid Rocket Booster (SRB) First Stage (FS) and an Upper Stage (US) powered by a Saturn V-derived J-2X engine. A dedicated Roll Control System (RoCS) located on the connecting interstage provides roll control prior to FS separation. Induced yaw and pitch moments are handled by the SRB nozzle vectoring. The FS SRB operates for approximately two minutes after which the US separates from the vehicle and the US Reaction Control System (ReCS) continues to provide reaction control for the remainder of the mission. A representation of the Ares I launch vehicle in the stacked configuration and including the Orion Crew Exploration Vehicle (CEV) is shown in Figure 1. Each Reaction Control System (RCS) design incorporates a Gaseous Helium (GHe) pressurization system combined with a monopropellant Hydrazine (N2H4) propulsion system. Both systems have two diametrically opposed thruster modules. This architecture provides one failure tolerance for function and prevention of catastrophic hazards such as inadvertent thruster firing, bulk propellant leakage, and over-pressurization. The pressurization system on the RoCS includes two ambient pressure-referenced regulators on parallel strings in order to attain the required system level single Fault Tolerant (FT) design for function while the ReCS utilizes a blow-down approach. A single burst disk and relief valve assembly is also included on the RoCS to ensure single failure tolerance for must-not-occur catastrophic hazards. The Reaction Control Systems are designed to support simultaneously firing multiple thrusters as required

  8. Material-Process-Performance Relationships for Roll-to-Roll Coated PEM Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauger, Scott; Neyerlin, K.C.; Stickel, Jonathan

    2017-04-26

    Roll-to-roll (R2R) coating is the most economical and highest throughput method for producing fuel cell electrodes. R2R coating encompasses many different methodologies to create uniform films on a moving web substrate. Here we explore two coating methods, gravure and slot die, to understand the impacts of each on film uniformity and performance.

  9. Cloverleaf microgyroscope with electrostatic alignment and tuning

    NASA Technical Reports Server (NTRS)

    Challoner, A. Dorian (Inventor); Gutierrez, Roman C. (Inventor); Tang, Tony K. (Inventor)

    2007-01-01

    A micro-gyroscope (10) having closed loop output operation by a control voltage (V.sub.ty), that is demodulated by a drive axis (x-axis) signal V.sub.thx of the sense electrodes (S1, S2), providing Coriolis torque rebalance to prevent displacement of the micro-gyroscope (10) on the output axis (y-axis) V.sub.thy.about.0. Closed loop drive axis torque, V.sub.tx maintains a constant drive axis amplitude signal, V.sub.thx. The present invention provides independent alignment and tuning of the micro-gyroscope by using separate electrodes and electrostatic bias voltages to adjust alignment and tuning. A quadrature amplitude signal, or cross-axis transfer function peak amplitude is used to detect misalignment that is corrected to zero by an electrostatic bias voltage adjustment. The cross-axis transfer function is either V.sub.thy/V.sub.ty or V.sub.tnx/V.sub.tx. A quadrature signal noise level, or difference in natural frequencies estimated from measurements of the transfer functions is used to detect residual mistuning, that is corrected to zero by a second electrostatic bias voltage adjustment.

  10. Electrostatic interaction between stereocilia: I. Its role in supporting the structure of the hair bundle.

    PubMed

    Dolgobrodov, S G; Lukashkin, A N; Russell, I J

    2000-12-01

    This paper provides theoretical estimates for the forces of electrostatic interaction between adjacent stereocilia in auditory and vestibular hair cells. Estimates are given for parameters within the measured physiological range using constraints appropriate for the known geometry of the hair bundle. Stereocilia are assumed to possess an extended, negatively charged surface coat, the glycocalyx. Different charge distribution profiles within the glycocalyx are analysed. It is shown that charged glycocalices on the apical surface of the hair cells can support spatial separation between adjacent stereocilia in the hair bundles through electrostatic repulsion between stereocilia. The charge density profile within the glycocalyx is a crucial parameter. In fact, attraction instead of repulsion between adjacent stereocilia will be observed if the charge of the glycocalyx is concentrated near the membrane of the stereocilia, thereby making this type of charge distribution unlikely. The forces of electrostatic interaction between stereocilia may influence the mechanical properties of the hair bundle and, being strongly non-linear, contribute to the non-linear phenomena that have been recorded from the periphery of the auditory and vestibular systems.

  11. Resistance to Rolling in the Adhesive Contact of Two Elastic Spheres

    NASA Technical Reports Server (NTRS)

    Dominik, C.; Tielens, A. G. G. M.

    1995-01-01

    For the stability of agglomerates of micron sized particles it is of considerable importance to study the effects of tangential forces on the contact of two particles. If the particles can slide or roll easily over each other, fractal structures of these agglomerates will not be stable. We use the description of contact forces by Johnson, Kendall and Roberts, along with arguments based on the atomic structure of the surfaces in contact, in order to calculate the resistance to rolling in such a contact. It is shown that the contact reacts elastically to torque forces up to a critical bending angle. Beyond that, irreversible rolling occurs. In the elastic regime, the moment opposing the attempt to roll is proportional to the bending angle and to the pull-off force P(sub c). Young's modulus of the involved materials has hardly any influence on the results. We show that agglomerates of sub-micron sized particles will in general be quite rigid and even long chains of particles cannot be bent easily. For very small particles, the contact will rather break than allow for rolling. We further discuss dynamic properties such as the possibility of vibrations in this degree of freedom and the typical amount of rolling during a collision of two particles.

  12. Why the water bridge does not collapse

    NASA Astrophysics Data System (ADS)

    Aerov, Artem A.

    2011-09-01

    In 2007 an interesting phenomenon was discovered [J. Phys. DJPAPBE0022-372710.1088/0022-3727/40/19/052 40, 6112 (2007)]: a horizontal thread of water, the so-called water bridge, hangs in a horizontal electrostatic field. A different explanation of the water bridge stability is proposed herein: the force supporting it is the surface tension of water, while the role of the electric field is to not allow the water bridge to reduce its surface energy by breaking into separate drops. It is proven that electrostatic field is not the origin of the tension holding the bridge.

  13. Transition to chaos of natural convection between two infinite differentially heated vertical plates

    NASA Astrophysics Data System (ADS)

    Gao, Zhenlan; Sergent, Anne; Podvin, Berengere; Xin, Shihe; Le Quéré, Patrick; Tuckerman, Laurette S.

    2013-08-01

    Natural convection of air between two infinite vertical differentially heated plates is studied analytically in two dimensions (2D) and numerically in two and three dimensions (3D) for Rayleigh numbers Ra up to 3 times the critical value Rac=5708. The first instability is a supercritical circle pitchfork bifurcation leading to steady 2D corotating rolls. A Ginzburg-Landau equation is derived analytically for the flow around this first bifurcation and compared with results from direct numerical simulation (DNS). In two dimensions, DNS shows that the rolls become unstable via a Hopf bifurcation. As Ra is further increased, the flow becomes quasiperiodic, and then temporally chaotic for a limited range of Rayleigh numbers, beyond which the flow returns to a steady state through a spatial modulation instability. In three dimensions, the rolls instead undergo another pitchfork bifurcation to 3D structures, which consist of transverse rolls connected by counter-rotating vorticity braids. The flow then becomes time dependent through a Hopf bifurcation, as exchanges of energy occur between the rolls and the braids. Chaotic behavior subsequently occurs through two competing mechanisms: a sequence of period-doubling bifurcations leading to intermittency or a spatial pattern modulation reminiscent of the Eckhaus instability.

  14. The Poisson-Helmholtz-Boltzmann model.

    PubMed

    Bohinc, K; Shrestha, A; May, S

    2011-10-01

    We present a mean-field model of a one-component electrolyte solution where the mobile ions interact not only via Coulomb interactions but also through a repulsive non-electrostatic Yukawa potential. Our choice of the Yukawa potential represents a simple model for solvent-mediated interactions between ions. We employ a local formulation of the mean-field free energy through the use of two auxiliary potentials, an electrostatic and a non-electrostatic potential. Functional minimization of the mean-field free energy leads to two coupled local differential equations, the Poisson-Boltzmann equation and the Helmholtz-Boltzmann equation. Their boundary conditions account for the sources of both the electrostatic and non-electrostatic interactions on the surface of all macroions that reside in the solution. We analyze a specific example, two like-charged planar surfaces with their mobile counterions forming the electrolyte solution. For this system we calculate the pressure between the two surfaces, and we analyze its dependence on the strength of the Yukawa potential and on the non-electrostatic interactions of the mobile ions with the planar macroion surfaces. In addition, we demonstrate that our mean-field model is consistent with the contact theorem, and we outline its generalization to arbitrary interaction potentials through the use of a Laplace transformation. © EDP Sciences / Società Italiana di Fisica / Springer-Verlag 2011

  15. Quantitative analysis and predictive engineering of self-rolling of nanomembranes under anisotropic mismatch strain

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Song, Pengfei; Meng, Fanchao; Li, Xiao; Liu, Xinyu; Song, Jun

    2017-12-01

    The present work presents a quantitative modeling framework for investigating the self-rolling of nanomembranes under different lattice mismatch strain anisotropy. The effect of transverse mismatch strain on the roll-up direction and curvature has been systematically studied employing both analytical modeling and numerical simulations. The bidirectional nature of the self-rolling of nanomembranes and the critical role of transverse strain in affecting the rolling behaviors have been demonstrated. Two fabrication strategies, i.e., third-layer deposition and corner geometry engineering, have been proposed to predictively manipulate the bidirectional rolling competition of strained nanomembranes, so as to achieve controlled, unidirectional roll-up. In particular for the strategy of corner engineering, microfabrication experiments have been performed to showcase its practical application and effectiveness. Our study offers new mechanistic knowledge towards understanding and predictive engineering of self-rolling of nanomembranes with improved roll-up yield.

  16. The influence of tyre characteristics on measures of rolling performance during cross-country mountain biking.

    PubMed

    Macdermid, Paul William; Fink, Philip W; Stannard, Stephen R

    2015-01-01

    This investigation sets out to assess the effect of five different models of mountain bike tyre on rolling performance over hard-pack mud. Independent characteristics included total weight, volume, tread surface area and tread depth. One male cyclist performed multiple (30) trials of a deceleration field test to assess reliability. Further tests performed on a separate occasion included multiple (15) trials of the deceleration test and six fixed power output hill climb tests for each tyre. The deceleration test proved to be reliable as a means of assessing rolling performance via differences in initial and final speed (coefficient of variation (CV) = 4.52%). Overall differences between tyre performance for both deceleration test (P = 0.014) and hill climb (P = 0.032) were found, enabling significant (P < 0.0001 and P = 0.049) models to be generated, allowing tyre performance prediction based on tyre characteristics. The ideal tyre for rolling and climbing performance on hard-pack surfaces would be to decrease tyre weight by way of reductions in tread surface area and tread depth while keeping volume high.

  17. Experimental analysis of two-layered dissimilar metals by roll bonding

    NASA Astrophysics Data System (ADS)

    Zhao, Guanghui; Li, Yugui; Li, Juan; Huang, Qingxue; Ma, Lifeng

    2018-02-01

    Rolling reduction and base layers thickness have important implications for rolling compounding. A two-layered 304 stainless steel/Q345R low alloyed steel was roll bonded. The roll bonding was performed at the three thickness reductions of 25%, 40% and 55% with base layers of various thicknesses (Q345R). The microstructures of the composite were investigated by the ultra-deep microscope (OM) and scanning electron microscope (SEM) and Transmission electron microscope (TEM). Simultaneously, the mechanical properties of the composite were experimentally measured and the tensile fracture surfaces were observed by SEM. The interfaces were successfully bonded without any cracking or voids, which indicated a good fabrication of the 304/Q345R composite. The rolling reduction rate and thinning increase of the substrate contributed to the bonding effects appearance of the roll bonded sheet. The Cr and Ni enriched diffusion layer was formed by the interface elements diffusion. The Cr and Ni diffusion led to the formation of ˜10 μm wide Cr and Ni layers on the carbon steel side.

  18. Hybrid Ultra-Microporous Materials for Selective Xenon Adsorption and Separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Mona H.; Elsaidi, Sameh K.; Pham, Tony

    2016-05-30

    The demand for Xe/Kr separation continues to grow due to the industrial significance of high-purity Xe gas. Current separation processes rely on energy intensive cryogenic distillation. Therefore, there is a need to develop less energy intensive alternatives such as physisorptive separation using porous materials. Here we show that an underexplored class of porous materials called hybrid ultramicroporous materials (HUMs) based upon inorganic and organic building blocks affords new benchmark selectivity for Xe separation from Xe/Kr mixtures. The isostructural materials, CROFOUR-1-Ni and CROFOUR-2-Ni, are coordination networks that exhibit coordinatively saturated metal centres and two distinct types of micropores, one of whichmore » is lined by CrO42- (CROFOUR) anions and the other is decorated by the functionalized organic linker. These nets offer unprecedented selectivity towards Xe, and also address processing and stability limitations of existing porous materials. Modelling experiments indicate that the extraordinary selectivity of these nets is tailored by synergy between the pore size, which is just above the kinetic diameter of Xe, and the strong electrostatics afforded by the CrO42- anions. Column breakthrough experiments demonstrate the potential of the practical use of these materials in Xe/Kr separation at low concentrations at the levels relevant to Xe capture from air and in nuclear fuel reprocessing.« less

  19. Fault Diagnosis for Centre Wear Fault of Roll Grinder Based on a Resonance Demodulation Scheme

    NASA Astrophysics Data System (ADS)

    Wang, Liming; Shao, Yimin; Yin, Lei; Yuan, Yilin; Liu, Jing

    2017-05-01

    Roll grinder is one of the important parts in the rolling machinery, and the grinding precision of roll surface has direct influence on the surface quality of steel strip. However, during the grinding process, the centre bears the gravity of the roll and alternating stress. Therefore, wear or spalling faults are easily observed on the centre, which will lead to an anomalous vibration of the roll grinder. In this study, a resonance demodulation scheme is proposed to detect the centre wear fault of roll grinder. Firstly, fast kurtogram method is employed to help select the sub-band filter parameters for optimal resonance demodulation. Further, the envelope spectrum are derived based on the filtered signal. Finally, two health indicators are designed to conduct the fault diagnosis for centre wear fault. The proposed scheme is assessed by analysing experimental data from a roll grinder of twenty-high rolling mill. The results show that the proposed scheme can effectively detect the centre wear fault of the roll grinder.

  20. Nonlocal Electrostatics in Spherical Geometries Using Eigenfunction Expansions of Boundary-Integral Operators.

    PubMed

    Bardhan, Jaydeep P; Knepley, Matthew G; Brune, Peter

    2015-01-01

    In this paper, we present an exact, infinite-series solution to Lorentz nonlocal continuum electrostatics for an arbitrary charge distribution in a spherical solute. Our approach relies on two key steps: (1) re-formulating the PDE problem using boundary-integral equations, and (2) diagonalizing the boundary-integral operators using the fact that their eigenfunctions are the surface spherical harmonics. To introduce this uncommon approach for calculations in separable geometries, we first re-derive Kirkwood's classic results for a protein surrounded concentrically by a pure-water ion-exclusion (Stern) layer and then a dilute electrolyte, which is modeled with the linearized Poisson-Boltzmann equation. The eigenfunction-expansion approach provides a computationally efficient way to test some implications of nonlocal models, including estimating the reasonable range of the nonlocal length-scale parameter λ. Our results suggest that nonlocal solvent response may help to reduce the need for very high dielectric constants in calculating pH-dependent protein behavior, though more sophisticated nonlocal models are needed to resolve this question in full. An open-source MATLAB implementation of our approach is freely available online.

  1. Nonlocal Electrostatics in Spherical Geometries Using Eigenfunction Expansions of Boundary-Integral Operators

    PubMed Central

    Bardhan, Jaydeep P.; Knepley, Matthew G.; Brune, Peter

    2015-01-01

    In this paper, we present an exact, infinite-series solution to Lorentz nonlocal continuum electrostatics for an arbitrary charge distribution in a spherical solute. Our approach relies on two key steps: (1) re-formulating the PDE problem using boundary-integral equations, and (2) diagonalizing the boundary-integral operators using the fact that their eigenfunctions are the surface spherical harmonics. To introduce this uncommon approach for calculations in separable geometries, we first re-derive Kirkwood’s classic results for a protein surrounded concentrically by a pure-water ion-exclusion (Stern) layer and then a dilute electrolyte, which is modeled with the linearized Poisson–Boltzmann equation. The eigenfunction-expansion approach provides a computationally efficient way to test some implications of nonlocal models, including estimating the reasonable range of the nonlocal length-scale parameter λ. Our results suggest that nonlocal solvent response may help to reduce the need for very high dielectric constants in calculating pH-dependent protein behavior, though more sophisticated nonlocal models are needed to resolve this question in full. An open-source MATLAB implementation of our approach is freely available online. PMID:26273581

  2. Criteria for disintegration of an uncharged conducting liquid jet in a transverse electric field

    NASA Astrophysics Data System (ADS)

    Zubareva, O. V.; Zubarev, N. M.; Volkov, N. B.

    2018-01-01

    An uncharged conducting liquid cylindrical column (a jet for applications) placed between a pair of flat electrodes is considered. In the trivial case, when the electric field is absent, the jet with circular cross-section is the only possible equilibrium configuration of the system. In the presence of a potential difference between the electrodes, the jet is deformed by the electrostatic forces: its cross-section stretches along the electric field lines. In the case of the mutual compensation of the electrostatic and capillary forces, a new equilibrium configuration of the jet can appear. In a sufficiently strong field, the balance of the forces becomes impossible, and the jet disintegrates (splits into two separate jets). In the present work, we find the range of the parameters (the applied potential difference and the interelectrode distance), where the problem of finding the equilibrium configurations of the jet has solutions. Also we obtain the conditions under which the solutions do not exist and, consequently, the jet splits. The results are compared with the previously studied limiting case of infinite interelectrode distance.

  3. On approximate formulas for the electrostatic force between two conducting spheres

    NASA Astrophysics Data System (ADS)

    Sliško, Josip; Brito-Orta, Raúl A.

    1998-04-01

    A series expression for the electrostatic force between two charged conducting spheres having equal radii and charges is derived using the method of electrical images. This expression is a special case of that for two spheres with arbitrary charges and radii, found by Maxwell using zonal harmonics. Keeping in mind the use of approximate formulas for the interpretation of classroom measurements of the electrostatic force between spheres, we comment on two incorrect approximate formulas and examine the contribution of the first few non-Coulomb terms of the correct formula by comparing with values obtained using a computational approach.

  4. Probing lipid membrane electrostatics

    NASA Astrophysics Data System (ADS)

    Yang, Yi

    The electrostatic properties of lipid bilayer membranes play a significant role in many biological processes. Atomic force microscopy (AFM) is highly sensitive to membrane surface potential in electrolyte solutions. With fully characterized probe tips, AFM can perform quantitative electrostatic analysis of lipid membranes. Electrostatic interactions between Silicon nitride probes and supported zwitterionic dioleoylphosphatidylcholine (DOPC) bilayer with a variable fraction of anionic dioleoylphosphatidylserine (DOPS) were measured by AFM. Classical Gouy-Chapman theory was used to model the membrane electrostatics. The nonlinear Poisson-Boltzmann equation was numerically solved with finite element method to provide the potential distribution around the AFM tips. Theoretical tip-sample electrostatic interactions were calculated with the surface integral of both Maxwell and osmotic stress tensors on tip surface. The measured forces were interpreted with theoretical forces and the resulting surface charge densities of the membrane surfaces were in quantitative agreement with the Gouy-Chapman-Stern model of membrane charge regulation. It was demonstrated that the AFM can quantitatively detect membrane surface potential at a separation of several screening lengths, and that the AFM probe only perturbs the membrane surface potential by <2%. One important application of this technique is to estimate the dipole density of lipid membrane. Electrostatic analysis of DOPC lipid bilayers with the AFM reveals a repulsive force between the negatively charged probe tips and the zwitterionic lipid bilayers. This unexpected interaction has been analyzed quantitatively to reveal that the repulsion is due to a weak external field created by the internai membrane dipole moment. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported DOPC membranes. This new ability to quantitatively measure the membrane dipole density in a noninvasive manner will be useful in identifying the biological effects of the dipole potential. Finally, heterogeneous model membranes were studied with fluid electric force microscopy (FEFM). Electrostatic mapping was demonstrated with 50 nm resolution. The capabilities of quantitative electrostatic measurement and lateral charge density mapping make AFM a unique and powerful probe of membrane electrostatics.

  5. Atomic vapor laser isotope separation of lead-210 isotope

    DOEpatents

    Scheibner, K.F.; Haynam, C.A.; Johnson, M.A.; Worden, E.F.

    1999-08-31

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207. 5 figs.

  6. Atomic vapor laser isotope separation of lead-210 isotope

    DOEpatents

    Scheibner, Karl F.; Haynam, Christopher A.; Johnson, Michael A.; Worden, Earl F.

    1999-01-01

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207.

  7. ELISA - an electrostatic storage ring for low-energy ions

    NASA Astrophysics Data System (ADS)

    Pape Moeller, Soeren

    1997-05-01

    The design of a new type of storage ring for low-energy ions using electrostatic deflection and focusing devices is described. Electrostatic bends and quadrupoles are used since they are more efficient than magnetic ones for low-velocity heavy ions. Furthermore, electrostatic devices are more compact and easier to construct than magnetic devices. In comparison to an electromagnetic trap, one important advantage of the elecrostatic ring is the easy access to the circulating beam and its decay products. These and other features, e.g. no magnetic fields, makes such storage devices attractive for many atomic-physics experiments. Also neigboring fields as chemistry and biology might benefit from such an relatively inexpensive device. One important difference between an electrostatic and a magnetic ring is, that the longitudinal energy is not conserved for the electrostatic ring. The actual ring will have a race-track shape as defined by two straight sections each with two quadrupole doublets connected by 180-degrees bends. The bends will consist of 160-degrees spherical deflection plates surrounded by two parallel plate 10-degrees bends. The storage ring ELISA, currently being built, will have a circumference of 6 meters. The first beam tests will take place during summer 1996.

  8. NASA Ares I Launch Vehicle Roll and Reaction Control Systems Design Status

    NASA Technical Reports Server (NTRS)

    Butt, Adam; Popp, Chris G.; Pitts, Hank M.; Sharp, David J.

    2009-01-01

    This paper provides an update of design status following the preliminary design review of NASA s Ares I first stage roll and upper stage reaction control systems. The Ares I launch vehicle has been chosen to return humans to the moon, mars, and beyond. It consists of a first stage five segment solid rocket booster and an upper stage liquid bi-propellant J-2X engine. Similar to many launch vehicles, the Ares I has reaction control systems used to provide the vehicle with three degrees of freedom stabilization during the mission. During launch, the first stage roll control system will provide the Ares I with the ability to counteract induced roll torque. After first stage booster separation, the upper stage reaction control system will provide the upper stage element with three degrees of freedom control as needed. Trade studies and design assessments conducted on the roll and reaction control systems include: propellant selection, thruster arrangement, pressurization system configuration, and system component trades. Since successful completion of the preliminary design review, work has progressed towards the critical design review with accomplishments made in the following areas: pressurant / propellant tank, thruster assembly, and other component configurations, as well as thruster module design, and waterhammer mitigation approach. Also, results from early development testing are discussed along with plans for upcoming system testing. This paper concludes by summarizing the process of down selecting to the current baseline configuration for the Ares I roll and reaction control systems.

  9. An intelligent fault diagnosis method of rolling bearings based on regularized kernel Marginal Fisher analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Shi, Tielin; Xuan, Jianping

    2012-05-01

    Generally, the vibration signals of fault bearings are non-stationary and highly nonlinear under complicated operating conditions. Thus, it's a big challenge to extract optimal features for improving classification and simultaneously decreasing feature dimension. Kernel Marginal Fisher analysis (KMFA) is a novel supervised manifold learning algorithm for feature extraction and dimensionality reduction. In order to avoid the small sample size problem in KMFA, we propose regularized KMFA (RKMFA). A simple and efficient intelligent fault diagnosis method based on RKMFA is put forward and applied to fault recognition of rolling bearings. So as to directly excavate nonlinear features from the original high-dimensional vibration signals, RKMFA constructs two graphs describing the intra-class compactness and the inter-class separability, by combining traditional manifold learning algorithm with fisher criteria. Therefore, the optimal low-dimensional features are obtained for better classification and finally fed into the simplest K-nearest neighbor (KNN) classifier to recognize different fault categories of bearings. The experimental results demonstrate that the proposed approach improves the fault classification performance and outperforms the other conventional approaches.

  10. Numerical Investigation of a Cavitating Mixing Layer of Liquefied Natural Gas (LNG) Behind a Flat Plate Splitter

    NASA Astrophysics Data System (ADS)

    Rahbarimanesh, Saeed; Brinkerhoff, Joshua

    2017-11-01

    The mutual interaction of shear layer instabilities and phase change in a two-dimensional cryogenic cavitating mixing layer is investigated using a numerical model. The developed model employs the homogeneous equilibrium mixture (HEM) approach in a density-based framework to compute the temperature-dependent cavitation field for liquefied natural gas (LNG). Thermal and baroclinic effects are captured via iterative coupled solution of the governing equations with dynamic thermophysical models that accurately capture the properties of LNG. The mixing layer is simulated for vorticity-thickness Reynolds numbers of 44 to 215 and cavitation numbers of 0.1 to 1.1. Attached cavity structures develop on the splitter plate followed by roll-up of the separated shear layer via the well-known Kelvin-Helmholtz mode, leading to streamwise accumulation of vorticity and eventual shedding of discrete vortices. Cavitation occurs as vapor cavities nucleate and grow from the low-pressure cores in the rolled-up vortices. Thermal effects and baroclinic vorticity production are found to have significant impacts on the mixing layer instability and cavitation processes.

  11. Traction behavior of two traction lubricants

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Rohn, D. A.

    1983-01-01

    In the analysis of rolling-sliding concentrated contacts, such as gears, bearings and traction drives, the traction characteristics of the lubricant are of prime importance. The elastic shear modulus and limiting shear stress properties of the lubricant dictate the traction/slip characteristics and power loss associated with an EHD contact undergoing slip and/or spin. These properties can be deducted directly from the initial slope m and maximum traction coefficient micron of an experimental traction curve. In this investigation, correlation equations are presented to predict m and micron for two modern traction fluids based on the regression analysis of 334 separate traction disk machine experiments. The effects of contact pressure, temperature, surface velocity, ellipticity ratio are examined. Problems in deducing lubricant shear moduli from disk machine tests are discussed.

  12. Macroscopic electric charge separation during hypervelocity impacts: Potential implications for planetary paleomagnetism

    NASA Technical Reports Server (NTRS)

    Crawford, D. A.; Schultz, P. H.

    1993-01-01

    The production of transient magnetic fields by hypervelocity meteoroid impact has been proposed to possibly explain the presence of paleomagnetic fields in certain lunar samples as well as across broader areas of the lunar surface. In an effort to understand the lunar magnetic record, continued experiments at the NASA Ames Vertical Gun Range allow characterizing magnetic fields produced by the 5 km/s impacts of 0.32-0.64 cm projectiles over a broad range of impact angles and projectile/target compositions. From such studies, another phenomenon has emerged, macroscopic electric charge separation, that may have importance for the magnetic state of solid-body surfaces. This phenomenon was observed during explosive cratering experiments, but the magnetic consequences of macroscopic electric charge separation (as opposed to plasma production) during explosion and impact cratering have not, to our knowledge, been explored before now. It is straightforward to show that magnetic field production due to this process may scale as a weakly increasing function of impactor kinetic energy, although more work is needed to precisely assess the scaling dependence. The original intent of our experiments was to assess the character of purely electrostatic signals for comparison with inferred electrostatic noise signals acquired by shielded magnetic sensors buried within particulate dolomite targets. The results demonstrated that electrostatic noise does affect the magnetic sensors but only at relatively short distances (less than 4 cm) from the impact point (our magnetic studies are generally performed at distances greater than approximately 5.5 cm). However, to assess models for magnetic field generation during impact, measurements are needed of the magnetic field as close to the impact point as possible; hence, work with an improved magnetic sensor design is in progress. In this paper, we focus on electric charge separation during hypervelocity impacts as a potential transient magnetic field production mechanism in its own right.

  13. Series-Coupled Pairs of Silica Microresonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Iltchenko, Vladimir; Maleki, Lute; Handley, Tim

    2009-01-01

    Series-coupled pairs of whispering-gallery-mode optical microresonators have been demonstrated as prototypes of stable, narrow-band-pass photonic filters. Characteristics that are generally considered desirable in a photonic or other narrow-band-pass filter include response as nearly flat as possible across the pass band, sharp roll-off, and high rejection of signals outside the pass band. A single microresonator exhibits a Lorentzian filter function: its peak response cannot be made flatter and its roll-off cannot be made sharper. However, as a matter of basic principle applicable to resonators in general, it is possible to (1) use multiple resonators, operating in series or parallel, to obtain a roll-off sharper, and out-of-band rejection greater, relative to those of a Lorentzian filter function and (2) to make the peak response (the response within the pass band) flatter by tuning the resonators to slightly different resonance frequencies that span the pass band. The first of the two microresonators in each series-coupled pair was a microtorus made of germania-doped silica (containing about 19 mole percent germania), which is a material used for the cores of some optical fibers. The reasons for choosing this material is that exposing it to ultraviolet light causes it to undergo a chemical change that changes its index of refraction and thereby changes the resonance frequency. Hence, this material affords the means to effect the desired slight relative detuning of the two resonators. The second microresonator in each pair was a microsphere of pure silica. The advantage of making one of the resonators a torus instead of a sphere is that its spectrum of whispering-gallery-mode resonances is sparser, as needed to obtain a frequency separation of at least 100 GHz between resonances of the filter as a whole.

  14. Contact electrification of insulating materials

    NASA Astrophysics Data System (ADS)

    Lacks, Daniel J.; Mohan Sankaran, R.

    2011-11-01

    The electrostatic charge that is generated when two materials are contacted or rubbed and then separated is a well-known physical process that has been studied for more than 2500 years. Contact electrification occurs in many contexts, both natural and technological. For example, in dust storms the collisions between particles lead to electrostatic charging and in extreme cases, extraordinary lightning displays. In electrophotography, toner particles are intentionally charged to guide their deposition in well-defined patterns. Despite such a long history and so many important consequences, a fundamental understanding of the mechanism behind contact electrification remains elusive. An open question is what type of species are transferred between the surfaces to generate charge—experiments suggest various species ranging from electrons to ions to nanoscopic bits of material, and theoretical work suggests that non-equilibrium states may play an important role. Another open question is the contact electrification that occurs when two insulating materials with identical physical properties touch—since there is no apparent driving force, it is not clear why charge transfer occurs. A third open question involves granular systems—models and experiments have shown that a particle-size dependence for the charging often exists. In this review, we discuss the fundamental aspects of contact electrification and highlight recent research efforts aimed at understanding these open questions.

  15. Electrostatic Interactions as Mediators in the Allosteric Activation of Protein Kinase A RIα.

    PubMed

    P Barros, Emília; Malmstrom, Robert D; Nourbakhsh, Kimya; Del Rio, Jason C; Kornev, Alexandr P; Taylor, Susan S; Amaro, Rommie E

    2017-03-14

    Close-range electrostatic interactions that form salt bridges are key components of protein stability. Here we investigate the role of these charged interactions in modulating the allosteric activation of protein kinase A (PKA) via computational and experimental mutational studies of a conserved basic patch located in the regulatory subunit's B/C helix. Molecular dynamics simulations evidenced the presence of an extended network of fluctuating salt bridges spanning the helix and connecting the two cAMP binding domains in its extremities. Distinct changes in the flexibility and conformational free energy landscape induced by the separate mutations of Arg239 and Arg241 suggested alteration of cAMP-induced allosteric activation and were verified through in vitro fluorescence polarization assays. These observations suggest a mechanical aspect to the allosteric transition of PKA, with Arg239 and Arg241 acting in competition to promote the transition between the two protein functional states. The simulations also provide a molecular explanation for the essential role of Arg241 in allowing cooperative activation, by evidencing the existence of a stable interdomain salt bridge with Asp267. Our integrated approach points to the role of salt bridges not only in protein stability but also in promoting conformational transition and function.

  16. Perceived direction of gravity and the body-axis during static whole body roll-tilt in healthy subjects.

    PubMed

    Tamura, Atsushi; Wada, Yoshiro; Inui, Takuo; Shiotani, Akihiro

    2017-10-01

    We used the subjective visual vertical (SVV) and two different subjective visual body axis (SVBA) methods to quantify roll-tilt perception under gravity, and investigated the characteristics of these methods during static roll-tilt. In addition, we independently developed a compact device to facilitate evaluation of SVBA in different gravitational environments. Ten male volunteers participated in this study. We created a roll-tilt environment using a flight simulator in a dark room. The cockpit of the simulator was tilted leftward or rightward (-30°, -20°, -10°, 0°, 10°, 20° and 30°) in each randomly ordered trial. We quantified roll-tilt perception such that the experiment was conducted under 21 different conditions per participant. We found no significant differences among the SVV error and the two types of SVBA error. The SVV and the SVBA methods may be useful for evaluating subjective roll-tilt perception.

  17. Low roll-off and high efficiency orange OLEDs using green and red dopants in an exciplex forming co-host

    NASA Astrophysics Data System (ADS)

    Lee, Sunghun; Kim, Kwon-Hyeon; Yoo, Seung-Jun; Park, Young-Seo; Kim, Jang-Joo

    2013-09-01

    We present high efficiency orange emitting OLEDs with low driving voltage and low roll-off of efficiency using an exciplex forming co-host by (1) co-doping of green and red emitting phosphorescence dyes in the host and (2) red and green phosphorescent dyes doped in the host as separate red and green emitting layers. The orange OLEDs achieved a low turn-on voltage of 2.4 V and high external quantum efficiencies (EQE) of 25.0% and 22.8%, respectively. Moreover, the OLEDs showed low roll-off of efficiency with an EQE of over 21% and 19.6% at 10,000 cd/m2, respectively. The devices displayed good orange color with very little color shift with increasing luminance. The transient electroluminescence of the OLEDs indicated that both energy transfer and direct charge trapping took place in the devices.

  18. Flight evaluation of an advanced technology light twin-engine airplane (ATLIT)

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1977-01-01

    Project organization and execution, airplane description and performance predictions, and the results of the flight evaluation of an advanced technology light twin engine airplane (ATLIT) are presented. The ATLIT is a Piper PA-34-200 Seneca I modified by the installation of new wings incorporating the GA(W)-1 (Whitcomb) airfoil, reduced wing area, roll control spoilers, and full span Fowler flaps. The conclusions for the ATLIT evaluation are based on complete stall and roll flight test results and partial performance test results. The Stalling and rolling characteristics met design expectations. Climb performance was penalized by extensive flow separation in the region of the wing body juncture. Cruise performance was found to be penalized by a large value of zero lift drag. Calculations showed that, with proper attention to construction details, the improvements in span efficiency and zero lift drag would permit the realization of the predicted increases in cruising and maximum rate of climb performance.

  19. Flight evaluation of the transonic stability and control characteristics of an airplane incorporating a supercritical wing

    NASA Technical Reports Server (NTRS)

    Matheny, N. W.; Gatlin, D. H.

    1978-01-01

    A TF-8A airplane was equipped with a transport type supercritical wing and fuselage fairings to evaluate predicted performance improvements for cruise at transonic speeds. A comparison of aerodynamic derivatives extracted from flight and wind tunnel data showed that static longitudinal stability, effective dihedral, and aileron effectiveness, were higher than predicted. The static directional stability derivative was slower than predicted. The airplane's handling qualities were acceptable with the stability augmentation system on. The unaugmented airplane exhibited some adverse lateral directional characteristics that involved low Dutch roll damping and low roll control power at high angles of attack and roll control power that was greater than satisfactory for transport aircraft at cruise conditions. Longitudinally, the aircraft exhibited a mild pitchup tendency. Leading edge vortex generators delayed the onset of flow separation, moving the pitchup point to a higher lift coefficient and reducing its severity.

  20. Infant rolling abilities--the same or different 20 years after the back to sleep campaign?

    PubMed

    Darrah, Johanna; Bartlett, Doreen J

    2013-05-01

    To compare the order and age of emergence of rolling prone to supine and supine to prone before the introduction of back to sleep guidelines and 20 years after their introduction. The original normative data for the Alberta Infant Motor Scale (AIMS) were collected just prior to the introduction of back to sleep guidelines in 1992. Currently these norms are being re-evaluated. Data of rolling patterns of infants 36 weeks of age or younger from the original sample (n=1114) and the contemporary sample (n=351) were evaluated to compare the sequence of appearance of prone to supine and supine to prone rolls (proportion of infants passing each roll) and the ages of emergence (estimated age when 50% of infants passed each roll). The sequence of emergence and estimated age of appearance of both rolling directions were similar between the two time periods. The introduction of the supine sleep position to reduce the prevalence of Sudden Infant Death Syndrome (SIDS) has not altered the timing or sequence of infant rolling abilities. This information is valuable to health care providers involved in the surveillance of infants' development. Original normative age estimates for these two motor abilities are still appropriate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Charge pattern matching as a ‘fuzzy’ mode of molecular recognition for the functional phase separations of intrinsically disordered proteins

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsuan; Brady, Jacob P.; Forman-Kay, Julie D.; Chan, Hue Sun

    2017-11-01

    Biologically functional liquid-liquid phase separation of intrinsically disordered proteins (IDPs) is driven by interactions encoded by their amino acid sequences. Little is currently known about the molecular recognition mechanisms for distributing different IDP sequences into various cellular membraneless compartments. Pertinent physics was addressed recently by applying random-phase-approximation (RPA) polymer theory to electrostatics, which is a major energetic component governing IDP phase properties. RPA accounts for charge patterns and thus has advantages over Flory-Huggins (FH) and Overbeek-Voorn mean-field theories. To make progress toward deciphering the phase behaviors of multiple IDP sequences, the RPA formulation for one IDP species plus solvent is hereby extended to treat polyampholyte solutions containing two IDP species plus solvent. The new formulation generally allows for binary coexistence of two phases, each containing a different set of volume fractions ({φ }1,{φ }2) for the two different IDP sequences. The asymmetry between the two predicted coexisting phases with regard to their {φ }1/{φ }2 ratios for the two sequences increases with increasing mismatch between their charge patterns. This finding points to a multivalent, stochastic, ‘fuzzy’ mode of molecular recognition that helps populate various IDP sequences differentially into separate phase compartments. An intuitive illustration of this trend is provided by FH models, whereby a hypothetical case of ternary coexistence is also explored. Augmentations of the present RPA theory with a relative permittivity {ɛ }{{r}}(φ ) that depends on IDP volume fraction φ ={φ }1+{φ }2 lead to higher propensities to phase separate, in line with the case with one IDP species we studied previously. Notably, the cooperative, phase-separation-enhancing effects predicted by the prescriptions for {ɛ }{{r}}(φ ) we deem physically plausible are much more prominent than that entailed by common effective medium approximations based on Maxwell Garnett and Bruggeman mixing formulas. Ramifications of our findings on further theoretical development for IDP phase separation are discussed.

  2. Experimental investigations on airfoils with different geometries in the domain of high angles of attack-flow separation

    NASA Technical Reports Server (NTRS)

    Keil, J.

    1985-01-01

    Wind tunnel tests were conducted on airfoil models in order to study the flow separation phenomena occurring for high angles of attack. Pressure distribution on wings of different geometries were measured. Results show that for three-dimensional airfoils layout and span lift play a role. Separation effects on airfoils with moderate extension are three-dimensional. The flow domains separated from the air foil must be treated three-dimensionally. The rolling-up of separated vortex layers increases with angle in intensity and induction effect and shows strong nonlinearities. Boundary layer material moves perpendicularly to the flow direction due to the pressure gradients at the airfoil; this has a stabilizing effect. The separation starts earlier with increasing pointed profiles.

  3. Self-Recognition Between Two Almost Identical Macroions During Their Assembly: The Effects of pH and Temperature.

    PubMed

    Haso, Fadi; Li, Dong; Garai, Somenath; Pigga, Joseph M; Liu, Tianbo

    2015-09-14

    Two Keplerate-type macroions, [Mo(VI) 72 Fe(III) 30 O252 - (CH3 COO)12 {Mo2 O7 (H2 O)}2 {H2 Mo2 O8 (H2 O)}(H2 O)91 ]⋅ca. 150 H2 O= {Mo72 Fe30 } and [{Na(H2 O)12 }⊂{Mo(VI) 72 Cr(III) 30 O252 (CH3 COO)19 - (H2 O)94 }]⋅ca. 120 H2 O={Mo72 Cr30 }, with identical size and shape but different charge density, can self-assemble into spherical "blackberry"-like structures in aqueous solution by means of electrostatic interactions. These two macroanions can self-recognize each other and self-assemble into two separate types of homogeneous blackberries in their mixed dilute aqueous solution, in which they carry -7 and -5 net charges, respectively. Either adjusting the solution pH or raising temperature is expected to make the self-recognition more difficult, by making the charge densities of the two clusters closer, or by decreasing the activation energy barrier for the blackberry formation, respectively. Amazingly, the self-recognition behavior remains, as confirmed by dynamic and static light scattering, TEM, and energy dispersive spectroscopy techniques. The results prove that the self-recognition behavior of the macroions due to the long-range electrostatic interaction is universal and can be achieved when only minimum differences exist between two types of macroanions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. S/G-1: an ab initio force-field blending frozen Hermite Gaussian densities and distributed multipoles. Proof of concept and first applications to metal cations.

    PubMed

    Chaudret, Robin; Gresh, Nohad; Narth, Christophe; Lagardère, Louis; Darden, Thomas A; Cisneros, G Andrés; Piquemal, Jean-Philip

    2014-09-04

    We demonstrate as a proof of principle the capabilities of a novel hybrid MM'/MM polarizable force field to integrate short-range quantum effects in molecular mechanics (MM) through the use of Gaussian electrostatics. This lead to a further gain in accuracy in the representation of the first coordination shell of metal ions. It uses advanced electrostatics and couples two point dipole polarizable force fields, namely, the Gaussian electrostatic model (GEM), a model based on density fitting, which uses fitted electronic densities to evaluate nonbonded interactions, and SIBFA (sum of interactions between fragments ab initio computed), which resorts to distributed multipoles. To understand the benefits of the use of Gaussian electrostatics, we evaluate first the accuracy of GEM, which is a pure density-based Gaussian electrostatics model on a test Ca(II)-H2O complex. GEM is shown to further improve the agreement of MM polarization with ab initio reference results. Indeed, GEM introduces nonclassical effects by modeling the short-range quantum behavior of electric fields and therefore enables a straightforward (and selective) inclusion of the sole overlap-dependent exchange-polarization repulsive contribution by means of a Gaussian damping function acting on the GEM fields. The S/G-1 scheme is then introduced. Upon limiting the use of Gaussian electrostatics to metal centers only, it is shown to be able to capture the dominant quantum effects at play on the metal coordination sphere. S/G-1 is able to accurately reproduce ab initio total interaction energies within closed-shell metal complexes regarding each individual contribution including the separate contributions of induction, polarization, and charge-transfer. Applications of the method are provided for various systems including the HIV-1 NCp7-Zn(II) metalloprotein. S/G-1 is then extended to heavy metal complexes. Tested on Hg(II) water complexes, S/G-1 is shown to accurately model polarization up to quadrupolar response level. This opens up the possibility of embodying explicit scalar relativistic effects in molecular mechanics thanks to the direct transferability of ab initio pseudopotentials. Therefore, incorporating GEM-like electron density for a metal cation enable the introduction of nonambiguous short-range quantum effects within any point-dipole based polarizable force field without the need of an extensive parametrization.

  5. Research and industrialization of near-net rolling technology used in shaft parts

    NASA Astrophysics Data System (ADS)

    Hu, Zhenghuan; Wang, Baoyu; Zheng, Zhenhua

    2017-11-01

    Shaft part rolling is an efficient and green nearnet shaping technology offering many advantages, including high production efficiency, high material utilization rate, high product quality, and excellent production environment. In this paper, the features of shaft part rolling are introduced along with the working principles of two main shaft part rolling technologies, namely, cross wedge rolling (CWR) and skew rolling (SR). In relation to this technology, some R&D achievements gained by the University of Science and Technology Beijing are summarized. Finally, the latest developments in shaft part rolling are presented, including SR steel balls, precise forming of camshaft blank by CWR, SR phosphorous copper balls at room temperature, and CWR hollow axle sleeve. Although the shaft part rolling technology has been widely used in China, it only accounts for about 15% of applicable parts at present. Nevertheless, this technology has broad application prospects.

  6. Research and industrialization of near-net rolling technology used in shaft parts

    NASA Astrophysics Data System (ADS)

    Hu, Zhenghuan; Wang, Baoyu; Zheng, Zhenhua

    2018-03-01

    Shaft part rolling is an efficient and green nearnet shaping technology offering many advantages, including high production efficiency, high material utilization rate, high product quality, and excellent production environment. In this paper, the features of shaft part rolling are introduced along with the working principles of two main shaft part rolling technologies, namely, cross wedge rolling (CWR) and skew rolling (SR). In relation to this technology, some R&D achievements gained by the University of Science and Technology Beijing are summarized. Finally, the latest developments in shaft part rolling are presented, including SR steel balls, precise forming of camshaft blank by CWR, SR phosphorous copper balls at room temperature, and CWR hollow axle sleeve. Although the shaft part rolling technology has been widely used in China, it only accounts for about 15% of applicable parts at present. Nevertheless, this technology has broad application prospects.

  7. Effect of Cold-rolling on Mechanical Properties and Microstructure of an Al-12%Si-0.2%Mg Alloy

    NASA Astrophysics Data System (ADS)

    Liao, Hengcheng; Cai, Mingdong; Jing, Qiumin; Ding, Ke

    2011-11-01

    Effect of multi-pass cold-rolling on the mechanical properties and microstructure of a near-eutectic Al-12%Si-0.2%Mg casting alloy was investigated. Optical microscopy, SEM, and TEM were employed to resolve the as-rolled microstructure, and the microstructure of samples after aging treatment. It has been found that Brinell hardness increases considerably with rolling reduction ratio; and further annealing leads to a remarkable drop in hardness. Two mechanisms, namely precipitation hardening and recovery softening, were found to develop simultaneously in the subsequent aging treatment following cold rolling. In contrast, recovery softening dominated the aging of cold-rolled specimen with prior intermediate annealing. Tensile properties were also performed to measure the effect of cold rolling and subsequent aging treatment.

  8. Graphene gas pumps

    NASA Astrophysics Data System (ADS)

    Davidovikj, D.; Bouwmeester, D.; van der Zant, H. S. J.; Steeneken, P. G.

    2018-07-01

    We report on the development of a pneumatically coupled graphene membrane system, comprising of two circular cavities connected by a narrow trench. Both cavities and the trench are covered by a thin few-layer graphene membrane to form a sealed dumbbell-shaped chamber. Local electrodes at the bottom of each cavity allow for actuation of each membrane separately, enabling electrical control and manipulation of the gas flow inside the channel. Using laser interferometry, we measure the displacement of each drum at atmospheric pressure as a function of the frequency of the electrostatic driving force and provide a proof-of-principle of using graphene membranes to pump attolitre quantities of gases at the nanoscale.

  9. Phase behaviour and structure of stable complexes of oppositely charged polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Mengarelli, V.; Auvray, L.; Zeghal, M.

    2009-03-01

    We study the formation and structure of stable electrostatic complexes between oppositely charged polyelectrolytes, a long polymethacrylic acid and a shorter polyethylenimine, at low pH, where the polyacid is weakly charged. We explore the phase diagram as a function of the charge and concentration ratio of the constituents. In agreement with theory, turbidity and ζ potential measurements show two distinct regimes of weak and strong complexation, which appear successively as the pH is increased and are separated by a well-defined limit. Weak complexes observed by neutron scattering and contrast matching have an open, non-compact structure, while strong complexes are condensed.

  10. Deciphering the Possible Role of Strain Path on the Evolution of Microstructure, Texture, and Magnetic Properties in a Fe-Cr-Ni Alloy

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Khatirkar, Rajesh Kisni; Gupta, Aman; Shekhawat, Satish K.; Suwas, Satyam

    2018-06-01

    In the present work, the influence of strain path on the evolution of microstructure, crystallographic texture, and magnetic properties of a two-phase Fe-Cr-Ni alloy was investigated. The Fe-Cr-Ni alloy had nearly equal proportion of austenite and ferrite and was cold rolled up to a true strain of 1.6 (thickness reduction) using two different strain paths—unidirectional rolling and multi-step cross rolling. The microstructures were characterized by scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD), while crystallographic textures were determined using X-ray diffraction. For magnetic characterization, B-H loops and M-H curves were measured and magnetic force microscopy was performed. After unidirectional rolling, ferrite showed the presence of strong α-fiber (rolling direction, RD//<110>) and austenite showed strong brass type texture (consisting of Brass (Bs) ({110}<112>), Goss ({110}<001>), and S ({123}<634>)). After multi-step cross rolling, strong rotated cube ({100}<110>) was developed in ferrite, while austenite showed ND (normal direction) rotated brass ( 10 deg) texture. The strain-induced martensite (SIM) was found to be higher in unidirectionally rolled samples than multi-step cross-rolled samples. The coherently diffracting domain size, micro-strain, coercivity, and core loss also showed a strong correlation with strain and strain path. More strain was partitioned into austenite than ferrite during deformation (unidirectional as well as cross rolling). Further, the strain partitioning (in both austenite and ferrite) was found to be higher in unidirectionally rolled samples.

  11. Poisson-Boltzmann theory of the charge-induced adsorption of semi-flexible polyelectrolytes.

    PubMed

    Ubbink, Job; Khokhlov, Alexei R

    2004-03-15

    A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin, owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing to the high surface density of polyelectrolyte strands caused by the generally strong binding between polyelectrolyte and surface. The Poisson-Boltzmann equation for the electrostatic interaction between the array of adsorbed polyelectrolytes and the charged surface is solved for a cylindrical geometry, both numerically, using a finite element method, and analytically within the weak curvature limit under the assumption of excess monovalent salt. For small separations, repulsive surface polarization and counterion osmotic pressure effects dominate over the electrostatic attraction and the resulting electrostatic interaction curve shows a minimum at nonzero separations on the Angstrom scale. The equilibrium density of the adsorbed phase is obtained by minimizing the total free energy under the condition of equality of chemical potential and osmotic pressure of the polyelectrolyte in solution and in the adsorbed phase. For a wide range of ionic conditions and charge densities of the charged surface, the interstrand separation as predicted by the Poisson-Boltzmann model and the analytical theory closely agree. For low to moderate charge densities of the adsorbing surface, the interstrand spacing decreases as a function of the charge density of the charged surface. Above about 0.1 M excess monovalent salt, it is only weakly dependent on the ionic strength. At high charge densities of the adsorbing surface, the interstrand spacing increases with increasing ionic strength, in line with the experiments by Fang and Yang [J. Phys. Chem. B 101, 441 (1997)]. (c) 2004 American Institute of Physics.

  12. Formation of stable nanoparticles via electrostatic complexation between sodium caseinate and gum arabic.

    PubMed

    Ye, Aiqian; Flanagan, John; Singh, Harjinder

    2006-06-05

    The formation of electrostatic complexes between sodium caseinate and gum arabic (GA) was studied as a function of pH (2.0-7.0), using slow acidification in situ with glucono-delta-lactone (GDL) or titration with HCl. The colloidal behavior of the complexes under specific conditions was investigated using absorbance measurements (at 515 or 810 nm) and dynamic light scattering (DLS). In contrast to the sudden increase in absorbance and subsequent precipitation of sodium caseinate solutions at pH < 5.4, the absorbance values of mixtures of sodium caseinate and GA increased to a level that was dependent on GA concentration at pH 5.4 (pH(c)). The absorbance values remained constant with further decreases in pH until a sudden increase in absorbance was observed (at pH(phi)). The pH(phi) was also dependent upon the GA concentration. Dynamic light scattering (DLS) data showed that the sizes of the particles formed by the complexation of sodium caseinate and GA between pH(c) and pH(phi) were between 100 and 150 nm and these nanoparticles were visualized using negative staining transmission electron microscopy (TEM). Below pH(phi), the nanoparticles associated to form larger particles, causing phase separation. zeta-Potential measurements of the nanoparticles and chemical analysis after phase separation showed that phase separation was a consequence of charge neutralization. The formation of complexes between sodium caseinate and GA was inhibited at high ionic strength (>50 mM NaCl). It is postulated that the structure of the nanoparticles comprises an aggregated caseinate core, protected from further aggregation by steric repulsion of one, or more, electrostatically attached GA molecules. Copyright 2005 Wiley Periodicals, Inc.

  13. Preparation and characterization of chemically functionalized silica-coated magnetic nanoparticles as a DNA separator.

    PubMed

    Kang, Kiho; Choi, Jinsub; Nam, Joong Hee; Lee, Sang Cheon; Kim, Kyung Ja; Lee, Sang-Won; Chang, Jeong Ho

    2009-01-15

    The work describes a simple and convenient process for highly efficient and direct DNA separation with functionalized silica-coated magnetic nanoparticles. Iron oxide magnetic nanoparticles and silica-coated magnetic nanoparticles were prepared uniformly, and the silica coating thickness could be easily controlled in a range from 10 to 50 nm by changing the concentration of silica precursor (TEOS) including controlled magnetic strength and particle size. A change in the surface modification on the nanoparticles was introduced by aminosilanization to enhance the selective DNA separation resulting from electrostatic interaction. The efficiency of the DNA separation was explored via the function of the amino-group numbers, particle size, the amount of the nanoparticles used, and the concentration of NaCl salt. The DNA adsorption yields were high in terms of the amount of triamino-functionalized nanoparticles used, and the average particle size was 25 nm. The adsorption efficiency of aminofunctionalized nanoparticles was the 4-5 times (80-100%) higher compared to silica-coated nanoparticles only (10-20%). DNA desorption efficiency showed an optimum level of over 0.7 M of the NaCl concentration. To elucidate the agglomeration of nanoparticles after electrostatic DNA binding, the Guinier plots were calculated from small-angle X-ray diffractions in a comparison of the results of energy diffraction TEM and confocal laser scanning microscopy. Additionally, the direct separation of human genomic DNA was achieved from human saliva and whole blood with high efficiency.

  14. Space shuttle engineering and operations support. ALT separation reference trajectories for tailcone on orbiter forward and aft CG configurations. Mission planning, mission analysis and software formulation

    NASA Technical Reports Server (NTRS)

    Glenn, G. M.

    1977-01-01

    A preflight analysis of the ALT separation reference trajectories for the tailcone on, forward, and aft cg orbiter configurations is documented. The ALT separation reference trajectories encompass the time from physical separation of the orbiter from the carrier to orbiter attainment of the maximum ALT interface airspeed. The trajectories include post separation roll maneuvers by both vehicles and are generated using the final preflight data base. The trajectories so generated satisfy all known separation design criteria and violate no known constraints. The requirement for this analysis is given along with the specifications, assumptions, and analytical approach used to generate the separation trajectories. The results of the analytical approach are evaluated, and conclusions and recommendations are summarized.

  15. Electric-field-induced forces between two surfaces filled with an insulating liquid: the role of adsorbed water

    NASA Astrophysics Data System (ADS)

    Wang, Yong Jian; Xu, Zuli; Sheng, Ping; Tong, Penger

    2014-06-01

    A systematic study of the electric-field-induced forces between a solid glass sphere and a flat gold-plated substrate filled with an insulating liquid has been carried out. Using atomic force microscopy, we measure the electrostatic force f(s, V) between the sphere and substrate as a function of the surface separation s and applied voltage V. The measured f(s, V) is found to be well described by an equation for a conducting sphere. Further force measurements for the "wet" porous glass spheres filled with an aqueous solution of urea and the dried porous glass spheres filled with (dry) air suggest that there is a water layer of a few nanometers in thickness adsorbed on the hydrophilic glass surface under ambient conditions. This adsorbed water layer is more conductive than the dielectric core of the glass sphere, making the sphere surface to be at a potential close to that of the cantilever electrode. As a result, the electric field is strongly concentrated in the gap region between the glass sphere and gold-plate substrate and thus their electrostatic attraction is enhanced. This surface conductivity effect is further supported by the thermal gravimetric analysis (TGA) and force response measurements to a time-dependent electric field. The experiment clearly demonstrates that the adsorption of a conductive water layer on a hydrophilic surface plays a dominant role in determining the electrostatic interaction between the dielectric sphere and substrate.

  16. Lamellar cationic lipid-DNA complexes from lipids with a strong preference for planar geometry: A Minimal Electrostatic Model.

    PubMed

    Perico, Angelo; Manning, Gerald S

    2014-11-01

    We formulate and analyze a minimal model, based on condensation theory, of the lamellar cationic lipid (CL)-DNA complex of alternately charged lipid bilayers and DNA monolayers in a salt solution. Each lipid bilayer, composed by a random mixture of cationic and neutral lipids, is assumed to be a rigid uniformly charged plane. Each DNA monolayer, located between two lipid bilayers, is formed by the same number of parallel DNAs with a uniform separation distance. For the electrostatic calculation, the model lipoplex is collapsed to a single plane with charge density equal to the net lipid and DNA charge. The free energy difference between the lamellar lipoplex and a reference state of the same number of free lipid bilayers and free DNAs, is calculated as a function of the fraction of CLs, of the ratio of the number of CL charges to the number of negative charges of the DNA phosphates, and of the total number of planes. At the isoelectric point the free energy difference is minimal. The complex formation, already favoured by the decrease of the electrostatic charging free energy, is driven further by the free energy gain due to the release of counterions from the DNAs and from the lipid bilayers, if strongly charged. This minimal model compares well with experiment for lipids having a strong preference for planar geometry and with major features of more detailed models of the lipoplex. © 2014 Wiley Periodicals, Inc.

  17. A theoretical study of complexes formed between cations and curved aromatic systems: electrostatics does not always control cation-π interaction.

    PubMed

    Carrazana-García, Jorge A; Cabaleiro-Lago, Enrique M; Rodríguez-Otero, Jesús

    2017-04-19

    The present work studies the interaction of two extended curved π-systems (corannulene and sumanene) with various cations (sodium, potassium, ammonium, tetramethylammonium, guanidinium and imidazolium). Polyatomic cations are models of groups found in important biomolecules in which cation-π interaction plays a fundamental role. The results indicate an important size effect: with extended π systems and cations of the size of potassium and larger, dispersion is much more important than has been generally recognized for cation-π interactions. In most of the systems studied here, the stability of the cation-π complexes is the result of a balanced combination of electrostatic, induction and dispersion contributions. None of the systems studied here owes its stability to the electrostatic interaction more than 42%. Induction dominates stabilization in complexes with sodium, and in some of the potassium and ammonium complexes. In complexes with large cations and with flat cations dispersion is the major stabilizing contribution and can provide more than 50% of the stabilization energy. This implies that theoretical studies of the cation-π interaction involving large or even medium-size fragments require a level of calculation capable of properly modelling dispersion. The separation between the cation and the π system is another important factor to take into account, especially when the fragments of the cation-π complex are bound (for example, to a protein backbone) and cannot interact at the most favourable distance.

  18. Rolled-up inductor structure for a radiofrequency integrated circuit (RFIC)

    DOEpatents

    Li, Xiuling; Huang, Wen; Ferreira, Placid M.; Yu, Xin

    2015-12-29

    A rolled-up inductor structure for a radiofrequency integrated circuit (RFIC) comprises a multilayer sheet in a rolled configuration comprising multiple turns about a longitudinal axis. The multilayer sheet comprises a conductive pattern layer on a strain-relieved layer, and the conductive pattern layer comprises at least one conductive strip having a length extending in a rolling direction. The at least one conductive strip thereby wraps around the longitudinal axis in the rolled configuration. The conductive pattern layer may also comprise two conductive feed lines connected to the conductive strip for passage of electrical current therethrough. The conductive strip serves as an inductor cell of the rolled-up inductor structure.

  19. Experiments in sensing transient rotational acceleration cues on a flight simulator

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.

    1979-01-01

    Results are presented for two transient motion sensing experiments which were motivated by the identification of an anomalous roll cue (a 'jerk' attributed to an acceleration spike) in a prior investigation of realistic fighter motion simulation. The experimental results suggest the consideration of several issues for motion washout and challenge current sensory system modeling efforts. Although no sensory modeling effort is made it is argued that such models must incorporate the ability to handle transient inputs of short duration (some of which are less than the accepted latency times for sensing), and must represent separate channels for rotational acceleration and velocity sensing.

  20. Study of novel concepts of power transmission gears

    NASA Technical Reports Server (NTRS)

    Rivin, Eugene I.

    1991-01-01

    Two concepts in power transmission gear design are proposed which provide a potential for large noise reduction and for improving weight to payload ratio due to use of advanced fiber reinforced and ceramic materials. These concepts are briefly discussed. Since both concepts use ultrathin layered rubber-metal laminates for accommodating limited travel displacements, properties of the laminates, such as their compressive strength, compressive and shear moduli were studied. Extensive testing and computational analysis were performed on the first concept gears (laminate coated conformal gears). Design and testing of the second conceptual design (composite gear with separation of sliding and rolling motions) are specifically described.

  1. Automatic Adviser on Mobile Objects Status Identification and Classification

    NASA Astrophysics Data System (ADS)

    Shabelnikov, A. N.; Liabakh, N. N.; Gibner, Ya M.; Saryan, A. S.

    2018-05-01

    A mobile object status identification task is defined within the image discrimination theory. It is proposed to classify objects into three classes: object operation status; its maintenance is required and object should be removed from the production process. Two methods were developed to construct the separating boundaries between the designated classes: a) using statistical information on the research objects executed movement, b) basing on regulatory documents and expert commentary. Automatic Adviser operation simulation and the operation results analysis complex were synthesized. Research results are commented using a specific example of cuts rolling from the hump yard. The work was supported by Russian Fundamental Research Fund, project No. 17-20-01040.

  2. Hamilton-Jacobi formalism to warm inflationary scenario

    NASA Astrophysics Data System (ADS)

    Sayar, K.; Mohammadi, A.; Akhtari, L.; Saaidi, Kh.

    2017-01-01

    The Hamilton-Jacobi formalism as a powerful method is being utilized to reconsider the warm inflationary scenario, where the scalar field as the main component driving inflation interacts with other fields. Separating the context into strong and weak dissipative regimes, the goal is followed for two popular functions of Γ . Applying slow-rolling approximation, the required perturbation parameters are extracted and, by comparing to the latest Planck data, the free parameters are restricted. The possibility of producing an acceptable inflation is studied where the result shows that for all cases the model could successfully suggest the amplitude of scalar perturbation, scalar spectral index, its running, and the tensor-to-scalar ratio.

  3. The Influence of Drift Gas Composition on the Separation Mechanism in Traveling Wave Ion Mobility Spectrometry: Insight from Electrodynamic Simulations

    PubMed Central

    May, Jody C.; McLean, John A.

    2013-01-01

    The influence of three different drift gases (helium, nitrogen, and argon) on the separation mechanism in traveling wave ion mobility spectrometry is explored through ion trajectory simulations which include considerations for ion diffusion based on kinetic theory and the electrodynamic traveling wave potential. The model developed for this work is an accurate depiction of a second-generation commercial traveling wave instrument. Three ion systems (cocaine, MDMA, and amphetamine) whose reduced mobility values have previously been measured in different drift gases are represented in the simulation model. The simulation results presented here provide a fundamental understanding of the separation mechanism in traveling wave, which is characterized by three regions of ion motion: (1) ions surfing on a single wave, (2) ions exhibiting intermittent roll-over onto subsequent waves, and (3) ions experiencing a steady state roll-over which repeats every few wave cycles. These regions of ion motion are accessed through changes in the gas pressure, wave amplitude, and wave velocity. Resolving power values extracted from simulated arrival times suggest that momentum transfer in helium gas is generally insufficient to access regions (2) and (3) where ion mobility separations occur. Ion mobility separations by traveling wave are predicted to be effectual for both nitrogen and argon, with slightly lower resolving power values observed for argon as a result of band-broadening due to collisional scattering. For the simulation conditions studied here, the resolving power in traveling wave plateaus between regions (2) and (3), with further increases in wave velocity contributing only minor improvements in separations. PMID:23888124

  4. The Influence of Drift Gas Composition on the Separation Mechanism in Traveling Wave Ion Mobility Spectrometry: Insight from Electrodynamic Simulations.

    PubMed

    May, Jody C; McLean, John A

    2003-06-01

    The influence of three different drift gases (helium, nitrogen, and argon) on the separation mechanism in traveling wave ion mobility spectrometry is explored through ion trajectory simulations which include considerations for ion diffusion based on kinetic theory and the electrodynamic traveling wave potential. The model developed for this work is an accurate depiction of a second-generation commercial traveling wave instrument. Three ion systems (cocaine, MDMA, and amphetamine) whose reduced mobility values have previously been measured in different drift gases are represented in the simulation model. The simulation results presented here provide a fundamental understanding of the separation mechanism in traveling wave, which is characterized by three regions of ion motion: (1) ions surfing on a single wave, (2) ions exhibiting intermittent roll-over onto subsequent waves, and (3) ions experiencing a steady state roll-over which repeats every few wave cycles. These regions of ion motion are accessed through changes in the gas pressure, wave amplitude, and wave velocity. Resolving power values extracted from simulated arrival times suggest that momentum transfer in helium gas is generally insufficient to access regions (2) and (3) where ion mobility separations occur. Ion mobility separations by traveling wave are predicted to be effectual for both nitrogen and argon, with slightly lower resolving power values observed for argon as a result of band-broadening due to collisional scattering. For the simulation conditions studied here, the resolving power in traveling wave plateaus between regions (2) and (3), with further increases in wave velocity contributing only minor improvements in separations.

  5. 42 CFR 21.46 - Merit roll.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... candidates for appointment as officers shall assign a numerical rating to each candidate for appointment in... expired merit roll. If two candidates who were examined at the same time receive the same numerical rating... candidate whose name is being transferred from an expired to a new merit roll has the same numerical rating...

  6. 42 CFR 21.46 - Merit roll.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... candidates for appointment as officers shall assign a numerical rating to each candidate for appointment in... expired merit roll. If two candidates who were examined at the same time receive the same numerical rating... candidate whose name is being transferred from an expired to a new merit roll has the same numerical rating...

  7. 42 CFR 21.46 - Merit roll.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... candidates for appointment as officers shall assign a numerical rating to each candidate for appointment in... expired merit roll. If two candidates who were examined at the same time receive the same numerical rating... candidate whose name is being transferred from an expired to a new merit roll has the same numerical rating...

  8. 42 CFR 21.46 - Merit roll.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... candidates for appointment as officers shall assign a numerical rating to each candidate for appointment in... expired merit roll. If two candidates who were examined at the same time receive the same numerical rating... candidate whose name is being transferred from an expired to a new merit roll has the same numerical rating...

  9. 42 CFR 21.46 - Merit roll.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... candidates for appointment as officers shall assign a numerical rating to each candidate for appointment in... expired merit roll. If two candidates who were examined at the same time receive the same numerical rating... candidate whose name is being transferred from an expired to a new merit roll has the same numerical rating...

  10. A Rolling Pendulum Bob: Conservation of Energy and Partitioning of Kinetic Energy.

    ERIC Educational Resources Information Center

    Helrich, Carl; Lehman, Thomas

    1979-01-01

    Describes a pendulum in which the spherical bob can roll on a track of the same arc as it swings when suspended by a cord. Comparison of the motion in the two mentioned cases shows the effect of rotational kinetic energy when the bob rolls. (GA)

  11. Preparation of high-strength Al-Mg-Si-Cu-Fe alloy via heat treatment and rolling

    NASA Astrophysics Data System (ADS)

    Liu, Chong-yu; Yu, Peng-fei; Wang, Xiao-ying; Ma, Ming-zhen; Liu, Ri-ping

    2014-07-01

    An Al-Mg-Si-Cu-Fe alloy was solid-solution treated at 560°C for 3 h and then cooled by water quenching or furnace cooling. The alloy samples which underwent cooling by these two methods were rolled at different temperatures. The microstructure and mechanical properties of the rolled alloys were investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis, and tensile testing. For the water-quenched alloys, the peak tensile strength and elongation occurred at a rolling temperature of 180°C. For the furnace-cooled alloys, the tensile strength decreased initially, until the rolling temperature of 420°C, and then increased; the elongation increased consistently with increasing rolling temperature. The effects of grain boundary hardening and dislocation hardening on the mechanical properties of these rolled alloys decreased with increases in rolling temperature. The mechanical properties of the 180°C rolling water-quenched alloy were also improved by the presence of β″ phase. Above 420°C, the effect of solid-solution hardening on the mechanical properties of the rolled alloys increased with increases in rolling temperature.

  12. De Novo Design of Boron-Based Host Materials for Highly Efficient Blue and White Phosphorescent OLEDs with Low Efficiency Roll-Off.

    PubMed

    Xue, Miao-Miao; Huang, Chen-Chao; Yuan, Yi; Cui, Lin-Song; Li, Yong-Xi; Wang, Bo; Jiang, Zuo-Quan; Fung, Man-Keung; Liao, Liang-Sheng

    2016-08-10

    Borane is an excellent electron-accepting species, and its derivatives have been widely used in a variety of fields. However, the use of borane derivatives as host materials in OLEDs has rarely reported because the device performance is generally not satisfactory. In this work, two novel spiro-bipolar hosts with incorporated borane were designed and synthesized. The strategies used in preparing these materials were to increase the spatial separation of the highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) in the molecules, tune the connecting positions of functional groups, and incorporate specific functional groups with desirable thermal stability. Based on these designs, phosphorescent OLEDs with borane derivatives as hosts and with outstanding device performances were obtained. In particular, devices based on SAF-3-DMB/FIrpic exhibited an external quantum efficiency (EQE) of >25%. More encouragingly, the device was found to have quite a low efficiency roll-off, giving an efficiency of >20% even at a high brightness of 10000 cd/m(2). Furthermore, the EQE of the three-color-based (R + G + B) white OLED employing SAF-3-DMB as a host was also as high as 22.9% with CIE coordinates of (x, y) = (0.40, 0.48). At a brightness of 5000 cd/m(2), there was only a 3% decrease in EQE from its maximum value, implying a very low efficiency roll-off.

  13. Effects of homogenization treatment on recrystallization behavior of 7150 aluminum sheet during post-rolling annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Zhanying; Department of Applied Science, University of Québec at Chicoutimi, Saguenay, QC G7H 2B1; Zhao, Gang

    2016-04-15

    The effects of two homogenization treatments applied to the direct chill (DC) cast billet on the recrystallization behavior in 7150 aluminum alloy during post-rolling annealing have been investigated using the electron backscatter diffraction (EBSD) technique. Following hot and cold rolling to the sheet, measured orientation maps, the recrystallization fraction and grain size, the misorientation angle and the subgrain size were used to characterize the recovery and recrystallization processes at different annealing temperatures. The results were compared between the conventional one-step homogenization and the new two-step homogenization, with the first step being pretreated at 250 °C. Al{sub 3}Zr dispersoids with highermore » densities and smaller sizes were obtained after the two-step homogenization, which strongly retarded subgrain/grain boundary mobility and inhibited recrystallization. Compared with the conventional one-step homogenized samples, a significantly lower recrystallized fraction and a smaller recrystallized grain size were obtained under all annealing conditions after cold rolling in the two-step homogenized samples. - Highlights: • Effects of two homogenization treatments on recrystallization in 7150 Al sheets • Quantitative study on the recrystallization evolution during post-rolling annealing • Al{sub 3}Zr dispersoids with higher densities and smaller sizes after two-step treatment • Higher recrystallization resistance of 7150 sheets with two-step homogenization.« less

  14. Ultrasensitive photodetectors exploiting electrostatic trapping and percolation transport

    DOE PAGES

    Zhang, Yingjie; Hellebusch, Daniel J.; Bronstein, Noah D.; ...

    2016-06-21

    The sensitivity of semiconductor photodetectors is limited by photocarrier recombination during the carrier transport process. We developed a new photoactive material that reduces recombination by physically separating hole and electron charge carriers. This material has a specific detectivity (the ability to detect small signals) of 5 × 10 17 Jones, the highest reported in visible and infrared detectors at room temperature, and 4-5 orders of magnitude higher than that of commercial single-crystal silicon detectors. The material was fabricated by sintering chloride-capped CdTe nanocrystals into polycrystalline films, where Cl selectively segregates into grain boundaries acting as n-type dopants. Photogenerated electrons concentratemore » in and percolate along the grain boundaries - a network of energy valleys, while holes are confined in the grain interiors. This electrostatic field-assisted carrier separation and percolation mechanism enables an unprecedented photoconductive gain of 10 10 e - per photon, and allows for effective control of the device response speed by active carrier quenching.« less

  15. Management strategies on the industrialization road of state-of-the-art technologies for e-waste recycling: the case study of electrostatic separation--a review.

    PubMed

    Xue, Mianqiang; Li, Jia; Xu, Zhenming

    2013-02-01

    Electronic waste (e-waste) management is pressing as global production has increased significantly in the past few years and is rising continuously at a fast rate. Many countries are facing hazardous e-waste mountains, most of which are disposed of by backyard recyclers, creating serious threats to public health and ecosystems. Industrialization of state-of-the-art recycling technologies is imperative to enhance the comprehensive utilization of resources and to protect the environment. This article aims to provide an overview of management strategies solving the crucial problems during the process of industrialization. A typical case study of electrostatic separation for recycling waste printed circuit boards was discussed in terms of parameters optimization, materials flow control, noise assessment, risk assessment, economic evaluation and social benefits analysis. The comprehensive view provided by the review could be helpful to the progress of the e-waste recycling industry.

  16. Electrostatic coalescence system with independent AC and DC hydrophilic electrodes

    DOEpatents

    Hovarongkura, A. David; Henry, Jr., Joseph D.

    1981-01-01

    An improved electrostatic coalescence system is provided in which independent AC and DC hydrophilic electrodes are employed to provide more complete dehydration of an oil emulsion. The AC field is produced between an AC electrode array and the water-oil interface wherein the AC electrode array is positioned parallel to the interface which acts as a grounded electrode. The emulsion is introduced into the AC field in an evenly distributed manner at the interface. The AC field promotes drop-drop and drop-interface coalescence of the water phase in the entering emulsion. The continuous oil phase passes upward through the perforated AC electrode array and enters a strong DC field produced between closely spaced DC electrodes in which small dispersed droplets of water entrained in the continuous phase are removed primarily by collection at hydrophilic DC electrodes. Large droplets of water collected by the electrodes migrate downward through the AC electrode array to the interface. All phase separation mechanisms are utilized to accomplish more complete phase separation.

  17. Ultrasensitive photodetectors exploiting electrostatic trapping and percolation transport

    PubMed Central

    Zhang, Yingjie; Hellebusch, Daniel J.; Bronstein, Noah D.; Ko, Changhyun; Ogletree, D. Frank; Salmeron, Miquel; Alivisatos, A. Paul

    2016-01-01

    The sensitivity of semiconductor photodetectors is limited by photocarrier recombination during the carrier transport process. We developed a new photoactive material that reduces recombination by physically separating hole and electron charge carriers. This material has a specific detectivity (the ability to detect small signals) of 5 × 1017 Jones, the highest reported in visible and infrared detectors at room temperature, and 4–5 orders of magnitude higher than that of commercial single-crystal silicon detectors. The material was fabricated by sintering chloride-capped CdTe nanocrystals into polycrystalline films, where Cl selectively segregates into grain boundaries acting as n-type dopants. Photogenerated electrons concentrate in and percolate along the grain boundaries—a network of energy valleys, while holes are confined in the grain interiors. This electrostatic field-assisted carrier separation and percolation mechanism enables an unprecedented photoconductive gain of 1010 e− per photon, and allows for effective control of the device response speed by active carrier quenching. PMID:27323904

  18. Electrostatic generator/motor having rotors of varying thickness and a central stator electrically connected together into two groups

    DOEpatents

    Post, Richard F.

    2010-11-16

    A sub-module consists of a set of two outer sets of stationary fan-blade-shaped sectors. These outer sectors include conductive material and are maintained at ground potential in several examples. Located midway between them is a set of stationary sector plates with each plate being electrically insulated from the others. An example provides that the inner sector plates are connected together alternately, forming two groups of parallel-connected condensers that are then separately connected, through high charging circuit resistances, to a source of DC potential with respect to ground, with an additional connecting lead being provided for each group to connect their output as an AC output to a load. These same leads can he used, when connected to a driver circuit, to produce motor action.

  19. Optical scattering from rough-rolled aluminum surfaces.

    PubMed

    Rönnelid, M; Adsten, M; Lindström, T; Nostell, P; Wäckelgård, E

    2001-05-01

    Bidirectional, angular resolved scatterometry was used to evaluate the feasibility of using rolled aluminum as reflectors in solar thermal collectors and solar cells. Two types of rolled aluminum with different surface roughnesses were investigated. The results show that the smoother of the two samples [rms height, (0.20 ? 0.02) mum] can be used as a nonimaging, concentrating reflector with moderate reflection losses compared with those of optically smooth aluminum reflectors. The sample with the rougher surface [rms height, (0.6 ? 0.1) mum] is not suitable as a concentrating element but can be used as planar reflectors. The orientation of the rolling grooves is then of importance for minimizing reflection losses in the system.

  20. A tilt and roll device for automated correction of rotational setup errors.

    PubMed

    Hornick, D C; Litzenberg, D W; Lam, K L; Balter, J M; Hetrick, J; Ten Haken, R K

    1998-09-01

    A tilt and roll device has been developed to add two additional degrees of freedom to an existing treatment table. This device allows computer-controlled rotational motion about the inferior-superior and left-right patient axes. The tilt and roll device comprises three supports between the tabletop and base. An automotive type universal joint welded to the end of a steel pipe supports the center of the table. Two computer-controlled linear electric actuators utilizing high accuracy stepping motors support the foot of table and control the tilt and roll of the tabletop. The current system meets or exceeds all pre-design specifications for precision, weight capacity, rigidity, and range of motion.

  1. Understanding the influence of solvent field and fluctuations on the stability of photo-induced charge-separated state in molecular triad

    NASA Astrophysics Data System (ADS)

    Balamurugan, D.; Aquino, Adelia; Lischka, Hans; Dios, Francis; Flores, Lionel; Cheung, Margaret

    2013-03-01

    Molecular triad composed of fullerene, porphyrin, and carotene is an artificial analogue of natural photosynthetic system and is considered for applications in solar energy conversion because of its ability to produce long-lived photo-induced charge separated state. The goal of the present multiscale simulation is to understand how the stability of photo-induced charge-separated state in molecular triad is influenced by a polar organic solvent, namely tetrahydrofuran (THF). The multiscale approach is based on combined quantum, classical molecular dynamics, and statistical physics calculations. The quantum chemical calculations were performed on the triad using the second order algebraic diagrammatic perturbation and time-dependent density functional theory. Molecular dynamics simulations were performed on triad in a box of THF solvent with the replica exchange method. The two methods on different length and time scales are bridged through an important sampling technique. We have analyzed the free energy landscape, structural fluctuations, and the long- range electrostatic interactions between triad and solvent molecules. The results suggest that the polarity and re-organization of the solvent is critical in stabilization of charge-separated state in triad. Supported by DOE (DE-FG02-10ER16175)

  2. 35. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill, oneton ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill, one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: Bevel gear at lower end of vertical drive shaft in foreground turned bevel gear of top roll when the vertical drive shaft was in place in the brass-bearing socket in the middle ground of the photograph. The bolts above the top roll and at the side of the two bottom rolls adjusted the pressure and position of the rolls' brass bearings. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  3. Biomechanical Factors and Injury Risk in High-Severity Rollovers

    PubMed Central

    Moore, Tara L. A.; Vijayakumar, Vinod; Steffey, Duane L.; Ramachandran, Karuna; Corrigan, Catherine Ford

    2005-01-01

    The number of rolls, as well as other factors, has been associated with increased injury risk in rollovers. Data from NASS-CDS from 1995–2003 were used to evaluate the biomechanical implications of vehicle kinematics during multiple rolls and to evaluate the risk of injuries to different body regions during rollovers. The data showed that the risk of injury increased with increasing number of rolls. The rate of increase in risk varied by the region of the body affected and injury severity. The increased risk was particularly great when a vehicle rolled more than two complete rolls. PMID:16179145

  4. Interdomain electron transfer in cellobiose dehydrogenase is governed by surface electrostatics.

    PubMed

    Kadek, Alan; Kavan, Daniel; Marcoux, Julien; Stojko, Johann; Felice, Alfons K G; Cianférani, Sarah; Ludwig, Roland; Halada, Petr; Man, Petr

    2017-02-01

    Cellobiose dehydrogenase (CDH) is a fungal extracellular oxidoreductase which fuels lytic polysaccharide monooxygenase with electrons during cellulose degradation. Interdomain electron transfer between the flavin and cytochrome domain in CDH, preceding the electron flow to lytic polysaccharide monooxygenase, is known to be pH dependent, but the exact mechanism of this regulation has not been experimentally proven so far. To investigate the structural aspects underlying the domain interaction in CDH, hydrogen/deuterium exchange (HDX-MS) with improved proteolytic setup (combination of nepenthesin-1 with rhizopuspepsin), native mass spectrometry with ion mobility and electrostatics calculations were used. HDX-MS revealed pH-dependent changes in solvent accessibility and hydrogen bonding at the interdomain interface. Electrostatics calculations identified these differences to result from charge neutralization by protonation and together with ion mobility pointed at higher electrostatic repulsion between CDH domains at neutral pH. In addition, we uncovered extensive O-glycosylation in the linker region and identified the long-unknown exact cleavage point in papain-mediated domain separation. Transition of CDH between its inactive (open) and interdomain electron transfer-capable (closed) state is shown to be governed by changes in the protein surface electrostatics at the domain interface. Our study confirms that the interdomain electrostatic repulsion is the key factor modulating the functioning of CDH. The results presented in this paper provide experimental evidence for the role of charge repulsion in the interdomain electron transfer in cellobiose dehydrogenases, which is relevant for exploiting their biotechnological potential in biosensors and biofuel cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Factors affecting measured aircraft sound levels in the vicinity of start-of-takeoff roll

    NASA Astrophysics Data System (ADS)

    Richard, Horonjeff; Fleming, Gregg G.; Rickley, Edward J.; Connor, Thomas L.

    This paper presents the findings of a recently conducted measurement and analysis program of jet transport aircraft sound levels in the vicinity of the star-of-takeoff roll. The purpose of the program was two-fold: (1) to evaluate the computational accuracy of the Federal Aviation Administration's Integrated Noise Model (INM) in the vicinity of start-of-takeoff roll with a recently updated database (INM 3.10), and (2) to provide guidance for future model improvements. Focusing on the second of these two goals, this paper examines several factors affecting Sound Exposure Levels (SELs) in the hemicircular area behind the aircraft brake release point at the start-of-takeoff. In addition to the aircraft type itself, these factors included the geometric relationship of the measurement site to the runway, the wind velocity (speed and direction), aircraft grow weight, and start-of-roll mode (static or rolling start).

  6. The Effect of Twins on Critical Currents of High Tc Superconductors

    DTIC Science & Technology

    1989-01-01

    particles to stick together due to electrostatic forces. To overcome this we have formed a slurry of the material in liquid nitrogen and flash...can use and the liquid convection tends to counteract the separation process. We have-now designed a magnetic track which particles will slide down with...Currents of High Tc Superconductors" - A.M. Campbell and M.F. Ashby The initial work on levitation forces and separation of superconducting powders has

  7. Effects of prolonged weightlessness on self-motion perception and eye movements evoked by roll and pitch

    NASA Technical Reports Server (NTRS)

    Reschke, Millard F.; Parker, Donald E.

    1987-01-01

    Seven astronauts reported translational self-motion during roll simulation 1-3 h after landing following 5-7 d of orbital flight. Two reported strong translational self-motion perception when they performed pitch head motions during entry and while the orbiter was stationary on the runway. One of two astronauts from whom adequate data were collected exhibited a 132-deg shift in the phase angle between roll stimulation and horizontal eye position 2 h after landing. Neither of two from whom adequate data were collected exhibited increased horizontal eye movement amplitude or disturbance of voluntary pitch or roll body motion immediately postflight. These results are generally consistent with an otolith tilt-translation reinterpretation model and are being applied to the development of apparatus and procedures intended to preadapt astronauts to the sensory rearrangement of weightlessness.

  8. Variable dual-frequency electrostatic wave launcher for plasma applications.

    PubMed

    Jorns, Benjamin; Sorenson, Robert; Choueiri, Edgar

    2011-12-01

    A variable tuning system is presented for launching two electrostatic waves concurrently in a magnetized plasma. The purpose of this system is to satisfy the wave launching requirements for plasma applications where maximal power must be coupled into two carefully tuned electrostatic waves while minimizing erosion to the launching antenna. Two parallel LC traps with fixed inductors and variable capacitors are used to provide an impedance match between a two-wave source and a loop antenna placed outside the plasma. Equivalent circuit analysis is then employed to derive an analytical expression for the normalized, average magnetic flux density produced by the antenna in this system as a function of capacitance and frequency. It is found with this metric that the wave launcher can couple to electrostatic modes at two variable frequencies concurrently while attenuating noise from the source signal at undesired frequencies. An example based on an experiment for plasma heating with two electrostatic waves is used to demonstrate a procedure for tailoring the wave launcher to accommodate the frequency range and flux densities of a specific two-wave application. This example is also used to illustrate a method based on averaging over wave frequencies for evaluating the overall efficacy of the system. The wave launcher is shown to be particularly effective for the illustrative example--generating magnetic flux densities in excess of 50% of the ideal case at two variable frequencies concurrently--with a high adaptability to a number of plasma dynamics and heating applications.

  9. Film handling procedures for Skylab S-056 experiment

    NASA Technical Reports Server (NTRS)

    Maas, K. A.

    1972-01-01

    In a simulation conducted August 28, 1972, two rolls of Type SO-212 film were rewound in the sensitometer darkroom preparatory to processing. The first roll contained approximately 500 feet of film exposed to a resolution target and was unloaded from a can. The second roll of 1000 feet, with about 600 feet advanced to the takeup side, was in a flight magazine. The downloading and rewinding of this second roll of film is described in detail.

  10. Navigating in foldonia: Using accelerated molecular dynamics to explore stability, unfolding and self-healing of the β-solenoid structure formed by a silk-like polypeptide

    PubMed Central

    Zhao, Binwu

    2017-01-01

    The β roll molecules with sequence (GAGAGAGQ)10 stack via hydrogen bonding to form fibrils which have been themselves been used to make viral capsids of DNA strands, supramolecular nanotapes and pH-responsive gels. Accelerated molecular dynamics (aMD) simulations are used to investigate the unfolding of a stack of two β roll molecules, (GAGAGAGQ)10, to shed light on the folding mechanism by which silk-inspired polypeptides form fibrils and to identify the dominant forces that keep the silk-inspired polypeptide in a β roll configuration. Our study shows that a molecule in a stack of two β roll molecules unfolds in a step-wise fashion mainly from the C terminal. The bottom template is found to play an important role in stabilizing the β roll structure of the molecule on top by strengthening the hydrogen bonds in the layer that it contacts. Vertical hydrogen bonds within the β roll structure are considerably weaker than lateral hydrogen bonds, signifying the importance of lateral hydrogen bonds in stabilizing the β roll structure. Finally, an intermediate structure was found containing a β hairpin and an anti-parallel β sheet consisting of strands from the top and bottom molecules, revealing the self-healing ability of the β roll stack. PMID:28329017

  11. The two sides of complement C3d: evolution of electrostatics in a link between innate and adaptive immunity.

    PubMed

    Kieslich, Chris A; Morikis, Dimitrios

    2012-01-01

    The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of -1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic "hot-spots". Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic "hot-spots" at the two functional sites of C3d, while the surface of CR2 lacks electrostatic "hot-spots" despite its excessively positive nature. We propose that the electrostatic "hot-spots" of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3d, after the divergence of jawless fish.

  12. The Two Sides of Complement C3d: Evolution of Electrostatics in a Link between Innate and Adaptive Immunity

    PubMed Central

    Kieslich, Chris A.; Morikis, Dimitrios

    2012-01-01

    The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of −1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic “hot-spots”. Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic “hot-spots” at the two functional sites of C3d, while the surface of CR2 lacks electrostatic “hot-spots” despite its excessively positive nature. We propose that the electrostatic “hot-spots” of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3d, after the divergence of jawless fish. PMID:23300422

  13. Metal-assisted exfoliation (MAE): green, roll-to-roll compatible method for transferring graphene to flexible substrates

    NASA Astrophysics Data System (ADS)

    Zaretski, Aliaksandr V.; Moetazedi, Herad; Kong, Casey; Sawyer, Eric J.; Savagatrup, Suchol; Valle, Eduardo; O'Connor, Timothy F.; Printz, Adam D.; Lipomi, Darren J.

    2015-01-01

    Graphene is expected to play a significant role in future technologies that span a range from consumer electronics, to devices for the conversion and storage of energy, to conformable biomedical devices for healthcare. To realize these applications, however, a low-cost method of synthesizing large areas of high-quality graphene is required. Currently, the only method to generate large-area single-layer graphene that is compatible with roll-to-roll manufacturing destroys approximately 300 kg of copper foil (thickness = 25 μm) for every 1 g of graphene produced. This paper describes a new environmentally benign and scalable process of transferring graphene to flexible substrates. The process is based on the preferential adhesion of certain thin metallic films to graphene; separation of the graphene from the catalytic copper foil is followed by lamination to a flexible target substrate in a process that is compatible with roll-to-roll manufacturing. The copper substrate is indefinitely reusable and the method is substantially greener than the current process that uses relatively large amounts of corrosive etchants to remove the copper. The sheet resistance of the graphene produced by this new process is unoptimized but should be comparable in principle to that produced by the standard method, given the defects observable by Raman spectroscopy and the presence of process-induced cracks. With further improvements, this green, inexpensive synthesis of single-layer graphene could enable applications in flexible, stretchable, and disposable electronics, low-profile and lightweight barrier materials, and in large-area displays and photovoltaic modules.

  14. The Problem of Preconcentration of Uranium Ores by Physical Processes; LES PROBLEMES DE LA PRECONCENTRATION DES MINERAIS D'URANIUM PAR VOIE PHYSIQUE. LE TRIAGE ELECTRONIQUE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuchot, L.; Ginocchio, A. et al.

    1959-10-31

    As uranium ores, like most other ores, are not definite substances which can be treated directly for the production of the metal, the ores must be concentrated. The common physical processes used for all ores, such as sieving, gravimetric separation, flotation, electromagnetic separation, and electrostatic separation, are applicable to the beneficiation of uranium. The radioactivity of uranium ores has led to a radiometric method for the concentration. This method is described in detail. As an example, the preconcentration of Forez ores is discussed. (J.S.R.)

  15. Apparatus and process for the separation of gases using supersonic expansion and oblique wave compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VanOsdol, John G.

    The disclosure provides an apparatus and method for gas separation through the supersonic expansion and subsequent deceleration of a gaseous stream. The gaseous constituent changes phase from the gaseous state by desublimation or condensation during the acceleration producing a collectible constituent, and an oblique shock diffuser decelerates the gaseous stream to a subsonic velocity while maintain the collectible constituent in the non-gaseous state. Following deceleration, the carrier gas and the collectible constituent at the subsonic velocity are separated by a separation means, such as a centrifugal, electrostatic, or impingement separator. In an embodiment, the gaseous stream issues from a combustionmore » process and is comprised of N.sub.2 and CO.sub.2.« less

  16. Reintroducing electrostatics into macromolecular crystallographic refinement: application to neutron crystallography and DNA hydration.

    PubMed

    Fenn, Timothy D; Schnieders, Michael J; Mustyakimov, Marat; Wu, Chuanjie; Langan, Paul; Pande, Vijay S; Brunger, Axel T

    2011-04-13

    Most current crystallographic structure refinements augment the diffraction data with a priori information consisting of bond, angle, dihedral, planarity restraints, and atomic repulsion based on the Pauli exclusion principle. Yet, electrostatics and van der Waals attraction are physical forces that provide additional a priori information. Here, we assess the inclusion of electrostatics for the force field used for all-atom (including hydrogen) joint neutron/X-ray refinement. Two DNA and a protein crystal structure were refined against joint neutron/X-ray diffraction data sets using force fields without electrostatics or with electrostatics. Hydrogen-bond orientation/geometry favors the inclusion of electrostatics. Refinement of Z-DNA with electrostatics leads to a hypothesis for the entropic stabilization of Z-DNA that may partly explain the thermodynamics of converting the B form of DNA to its Z form. Thus, inclusion of electrostatics assists joint neutron/X-ray refinements, especially for placing and orienting hydrogen atoms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Reintroducing Electrostatics into Macromolecular Crystallographic Refinement: Application to Neutron Crystallography and DNA Hydration

    PubMed Central

    Fenn, Timothy D.; Schnieders, Michael J.; Mustyakimov, Marat; Wu, Chuanjie; Langan, Paul; Pande, Vijay S.; Brunger, Axel T.

    2011-01-01

    Summary Most current crystallographic structure refinements augment the diffraction data with a priori information consisting of bond, angle, dihedral, planarity restraints and atomic repulsion based on the Pauli exclusion principle. Yet, electrostatics and van der Waals attraction are physical forces that provide additional a priori information. Here we assess the inclusion of electrostatics for the force field used for all-atom (including hydrogen) joint neutron/X-ray refinement. Two DNA and a protein crystal structure were refined against joint neutron/X-ray diffraction data sets using force fields without electrostatics or with electrostatics. Hydrogen bond orientation/geometry favors the inclusion of electrostatics. Refinement of Z-DNA with electrostatics leads to a hypothesis for the entropic stabilization of Z-DNA that may partly explain the thermodynamics of converting the B form of DNA to its Z form. Thus, inclusion of electrostatics assists joint neutron/X-ray refinements, especially for placing and orienting hydrogen atoms. PMID:21481775

  18. Motion compensation for aircraft-borne interferometric SAR

    NASA Astrophysics Data System (ADS)

    Bullock, Richard John

    This research has studied data driven techniques for roll compensation for aircraft-borne InSAR, for platforms where an accurate Inertial Navigation Unit (INU) is inappropriate due to limitations on weight or cost, such as a low-cost civilian mapping system or a miniature UAV. It is shown that for unknown topography, roll errors cannot simply be filtered from the interferogram due to a fundamental ambiguity between aircraft roll effects and certain types of undulating terrain. The solution to this problem lies in the differential Doppler shifts of the signals received at the two antennas. These are proportional to the aircraft roll rate and can be extracted by incoherent or coherent means and utilised to reconstruct the aircraft roll history. This research analyses, experimentally evaluates and further develops the incoherent Differential Doppler (DD) method for roll compensation, developed to the proof-of-concept stage by A. Currie at QinetiQ (Malvern) and compares this with the two-look method, which is a novel coherent technique developed, analysed and experimentally evaluated as part of this PhD from an original idea proposed by Prof. R. Voles of UCL. By means of empirical analysis, numerical simulation and real test data from the QinetiQ C-Band InSAR, it is shown that the two-look method offers significant advantages in sensitivity, frequency performance, robustness and efficiency of implementation over the DD method, particularly at long range. The experimental results also show that for the QinetiQ C-Band InSAR, the two-look method provides roll compensation to a similar quality or better than provided by the on-board Litton-93 INU, which has a specified accuracy of +/-0.05°. Ambiguities in the roll rate estimates from other motions are also shown to be small for this platform, and could be reduced further by employing differential GPS track compensation.

  19. Dynamic stability test results on an 0.024 scale B-1 air vehicle

    NASA Technical Reports Server (NTRS)

    Beeman, R. R.

    1972-01-01

    Dynamic longitudinal and lateral-directional stability characteristics of the B-1 air vehicle were investigated in three wind tunnels at the Langley Research Center. The main rotary derivatives were obtained for an angle of attack range of -3 degrees to +16 degrees for a Mach number range of 0.2 to 2.16. Damping in roll data could not be obtained at the supersonic Mach numbers. The Langley 7 x 10 foot high speed tunnel, the 8 foot transonic pressure tunnel, and the 4 foot Unitary Plan wind tunnel were the test sites. An 0.024 scale light-weight model was used on a forced oscillation type balance. Test Reynolds number varied from 474,000/ft to 1,550,000/ft. through the Mach number range tested. The results showed that the dynamic stability characteristics of the model in pitch and roll were generally satisfactory up to an angle attack of about +6 degrees. In the wing sweep range from 15 to 25 degrees the positive damping levels in roll deteriorated rapidly above +2 degrees angle of attack. This reduction in roll damping is believed to be due to the onset of separation over the wing as stall is approached.

  20. Effective grain size and charpy impact properties of high-toughness X70 pipeline steels

    NASA Astrophysics Data System (ADS)

    Hwang, Byoungchul; Kim, Yang Gon; Lee, Sunghak; Kim, Young Min; Kim, Nack J.; Yoo, Jang Yong

    2005-08-01

    The correlation of microstructure and Charpy V-notch (CVN) impact properties of a high-toughness API X70 pipeline steel was investigated in this study. Six kinds of steel were fabricated by varying the hot-rolling conditions, and their microstructures, effective grain sizes, and CVN impact properties were analyzed. The CVN impact test results indicated that the steels rolled in the single-phase region had higher upper-shelf energies (USEs) and lower energy-transition temperatures (ETTs) than the steels rolled in the two-phase region because their microstructures were composed of acicular ferrite (AF) and fine polygonal ferrite (PF). The decreased ETT in the steels rolled in the single-phase region could be explained by the decrease in the overall effective grain size due to the presence of AF having a smaller effective grain size. On the other hand, the absorbed energy of the steels rolled in the two-phase region was considerably lower because a large amount of dislocations were generated inside PFs during rolling. It was further decreased when coarse martensite or cementite was formed during the cooling process.

  1. Influence of warm rolling temperature on ferrite recrystallization in low C and IF steels

    NASA Astrophysics Data System (ADS)

    Barnett, Matthew Robert

    Experiments involving single pass laboratory rolling and isothermal salt bath annealing were carried out; three steels were studied: a titanium stabilized interstitial free grade and two low carbon grades, one of which contained a particularly low level of manganese (˜0.009wt.%). The two low carbon grades were produced such that any complication from AlN precipitation was avoided. X-ray, neutron diffraction, optical metallography and mechanical testing measurements were carried out on the samples before and after annealing. The main aim of this work was to further the understanding of the metallurgy of recrystallization after ferrite rolling at temperatures between room temperature and 700sp°C. Deformation textures, recrystallization kinetics, final grain sizes and recrystallization textures were quantified for all the samples and experimental conditions. A major conclusion based on these data is that the influence of rolling temperature is far greater in the low carbon samples than in the IF grade. Indeed, the IF results alter only marginally with increasing temperature. In the low carbon grades, however, the rolling texture sharpens, recrystallization slows, the final grain size coarsens, and the recrystallization texture changes when the rolling temperature is increased. This distinct difference between the two steel types is explained in terms of their contrasting deformation behaviors. Solute carbon and nitrogen in the low carbon grades interact with dislocations causing high stored energy levels after low temperature rolling (due to dynamic strain aging) and high strain rate sensitivities during high temperature rolling (due to the solute drag of dislocations in the transition region between DSA and DRC). Nucleation during subsequent recrystallization is strongly influenced by both the stored energy and the strain rate sensitivity. The latter affects the occurrence of the flow localisations that enhance nucleation.

  2. Automated seed manipulation and planting

    NASA Technical Reports Server (NTRS)

    Garcia, Ray; Herrera, Javier; Holcomb, Scott; Kelly, Paul; Myers, Scott; Rosendo, Manny; Sivitz, Herbert; Wolsefer, Dave

    1988-01-01

    Activities for the Fall Semester, 1987 focused on investigating the mechanical/electrical properties of wheat seeds and forming various Seed Planting System (SPS) concepts based on those properties. The Electrical Division of the design group was formed to devise an SPS using electrostatic charge fields for seeding operations. Experiments concerning seed separation using electrical induction (rearranging of the charges within the seed) were conducted with promising results. The seeds, when exposed to the high voltage and low current field produced by a Van de Graff generator, were observed to move back and forth between two electrodes. An SPS concept has been developed based on this phenomena, and will be developed throughout the Spring Semester, 1988. The Mechanical Division centered on SPS concepts involving valves, pumps, and fluids to separate and deliver seeds. An SPS idea utilizing the pressure difference caused by air as it rushes out of holes drilled in the wall of a closed container has been formulated and will be considered for future development. Also, a system of seed separation and delivery employing a combination of centrifugal force, friction, and air flow was considered.

  3. Prediction on the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase based on gene expression programming.

    PubMed

    Li, Yuqin; You, Guirong; Jia, Baoxiu; Si, Hongzong; Yao, Xiaojun

    2014-01-01

    Quantitative structure-activity relationships (QSAR) were developed to predict the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase via heuristic method (HM) and gene expression programming (GEP). The descriptors of 33 pyrrolidine derivatives were calculated by the software CODESSA, which can calculate quantum chemical, topological, geometrical, constitutional, and electrostatic descriptors. HM was also used for the preselection of 5 appropriate molecular descriptors. Linear and nonlinear QSAR models were developed based on the HM and GEP separately and two prediction models lead to a good correlation coefficient (R (2)) of 0.93 and 0.94. The two QSAR models are useful in predicting the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase during the discovery of new anticancer drugs and providing theory information for studying the new drugs.

  4. Inflation with a smooth constant-roll to constant-roll era transition

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2017-07-01

    In this paper, we study canonical scalar field models, with a varying second slow-roll parameter, that allow transitions between constant-roll eras. In the models with two constant-roll eras, it is possible to avoid fine-tunings in the initial conditions of the scalar field. We mainly focus on the stability of the resulting solutions, and we also investigate if these solutions are attractors of the cosmological system. We shall calculate the resulting scalar potential and, by using a numerical approach, we examine the stability and attractor properties of the solutions. As we show, the first constant-roll era is dynamically unstable towards linear perturbations, and the cosmological system is driven by the attractor solution to the final constant-roll era. As we demonstrate, it is possible to have a nearly scale-invariant power spectrum of primordial curvature perturbations in some cases; however, this is strongly model dependent and depends on the rate of the final constant-roll era. Finally, we present, in brief, the essential features of a model that allows oscillations between constant-roll eras.

  5. Behavior of sheets from Ti-alloys by rolling and heat treatment

    NASA Astrophysics Data System (ADS)

    Isaenkova, M.; Perlovich, Yu.; Fesenko, V.; Gritskevich, M.; Stolbov, S.; Zaripova, M.

    2017-10-01

    Sheets from single- and two-phase Ti-alloys (VT1-0, Ti-22Nb-9%Zr and VT-16) were rolled at the room temperature up to various deformation degrees and annealed at temperatures 500-900 °C. The regularities of texture formation in both phases were established. In the technically pure Ti (VT1-0) with the single α-Ti phase the final stable texture component is (0001)±30-40°ND-TD<101 ¯0>. In the two-phase alloy the reorientation of basal axes of α-Ti occurs by the same trajectories as in the single phase alloy. However, in the case of two-phase alloy texture development in α-Ti stops at the intermediate stage, when this texture consists of components with rolling planes (0001)±15-20°ND-RD and (0001)±30-40°ND-TD. The stability of the first components can be provided both by the mutually balanced operation of pyramidal and basal slip systems, activity of which remains at the high deformation degree of two-phase alloy, and by the dynamic α↔β phase transformations, taking place in the distorted structures of α- and β-phases in the course of its cold rolling. At recrystallization of technically pure Ti the basal component disappears in its texture. At the same time, prismatic axes turn by angles 20÷30° depending on the heating rate of the rolled sheet and annealing temperature. At recrystallization of the two-phase Ti-alloy prismatic axes of its α-grains doesn't turn relative to their positions in the rolling texture, as it occurs in the single-phase alloy. This fact indicates to some alternative mode of arising new recrystallized grains in two-phase alloys.

  6. Roll paper pilot. [mathematical model for predicting pilot rating of aircraft in roll task

    NASA Technical Reports Server (NTRS)

    Naylor, F. R.; Dillow, J. D.; Hannen, R. A.

    1973-01-01

    A mathematical model for predicting the pilot rating of an aircraft in a roll task is described. The model includes: (1) the lateral-directional aircraft equations of motion; (2) a stochastic gust model; (3) a pilot model with two free parameters; and (4) a pilot rating expression that is a function of rms roll angle and the pilot lead time constant. The pilot gain and lead time constant are selected to minimize the pilot rating expression. The pilot parameters are then adjusted to provide a 20% stability margin and the adjusted pilot parameters are used to compute a roll paper pilot rating of the aircraft/gust configuration. The roll paper pilot rating was computed for 25 aircraft/gust configurations. A range of actual ratings from 2 to 9 were encountered and the roll paper pilot ratings agree quite well with the actual ratings. In addition there is good correlation between predicted and measured rms roll angle.

  7. Photopolymerization Of Levitated Droplets

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan; Rhim, Won-Kyu; Hyson, Michael T.; Chang, Manchium

    1989-01-01

    Experimental containerless process combines two established techniques to make variety of polymeric microspheres. In single step, electrostatically-levitated monomer droplets polymerized by ultraviolet light. Faster than multiple-step emulsion polymerization process used to make microspheres. Droplets suspended in cylindrical quadrupole electrostatic levitator. Alternating electrostatic field produces dynamic potential along axis. Process enables tailoring of microspheres for medical, scientific, and industrial applications.

  8. The measurement of dynamic radii for passenger car tyre

    NASA Astrophysics Data System (ADS)

    Anghelache, G.; Moisescu, R.

    2017-10-01

    The tyre dynamic rolling radius is an extremely important parameter for vehicle dynamics, for operation of safety systems as ESP, ABS, TCS, etc., for road vehicle research and development, as well as for validation or as an input parameter of automotive simulations and models. The paper investigates the dynamic rolling radii of passenger car tyre and the influence of rolling speed and inflation pressure on their magnitude. The measurement of dynamic rolling radii has been performed on a chassis dynamometer test rig. The dynamic rolling radii have been measured indirectly, using longitudinal rolling speed and angular velocity of wheel. Due to the subtle effects that the parameters have on rolling radius magnitude, very accurate equipment has to be used. Two different methods have been chosen for measuring the wheel angular velocity: the stroboscopic lamp and the incremental rotary encoder. The paper shows that the stroboscopic lamp has an insufficient resolution, therefore it was no longer used for experimental investigation. The tyre dynamic rolling radii increase with rolling speed and with tyre inflation pressure, but the effect of pressure is more significant. The paper also makes considerations on the viability of simplified formulae from literature for calculating the tyre dynamic rolling radius.

  9. Method for calculating the rolling and yawing moments due to rolling for unswept wings with or without flaps or ailerons by use of nonlinear section lift data

    NASA Technical Reports Server (NTRS)

    Martina, Albert P

    1953-01-01

    The methods of NACA Reports 865 and 1090 have been applied to the calculation of the rolling- and yawing-moment coefficients due to rolling for unswept wings with or without flaps or ailerons. The methods allow the use of nonlinear section lift data together with lifting-line theory. Two calculated examples are presented in simplified computing forms in order to illustrate the procedures involved.

  10. Signal and power roll ring testing update

    NASA Technical Reports Server (NTRS)

    Smith, Dennis W.

    1989-01-01

    The development of the roll ring as a long-life, low-torque alternative to the slip ring is discussed. A roll ring consists of one or more circular flexures captured by their own spring force in the annular space between two concentric conductors or contact rings. The advantages of roll rings over other types of electrical transfer devices are: extremely low drag torque, high transfer efficiencies in high-power configurations, extremely low wear debris generation, long life, and low weight for high-power applications.

  11. Electrostatic Separator for Beneficiation of Lunar Soil

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Arens, Ellen; Trigwell, Steve; Captain, James

    2010-01-01

    A charge separator has been constructed for use in a lunar environment that will allow for separation of minerals from lunar soil. In the present experiments, whole lunar dust as received was used. The approach taken here was that beneficiation of ores into an industrial feedstock grade may be more efficient. Refinement or enrichment of specific minerals in the soil before it is chemically processed may be more desirable as it would reduce the size and energy requirements necessary to produce the virgin material, and it may significantly reduce the process complexity. The principle is that minerals of different composition and work function will charge differently when tribocharged against different materials, and hence be separated in an electric field.

  12. Comparison of complementary and Kalman filter based data fusion for attitude heading reference system

    NASA Astrophysics Data System (ADS)

    Islam, Tariqul; Islam, Md. Saiful; Shajid-Ul-Mahmud, Md.; Hossam-E-Haider, Md

    2017-12-01

    An Attitude Heading Reference System (AHRS) provides 3D orientation of an aircraft (roll, pitch, and yaw) with instantaneous position and also heading information. For implementation of a low cost AHRS system Micro-electrical-Mechanical system (MEMS) based sensors are used such as accelerometer, gyroscope, and magnetometer. Accelerometers suffer from errors caused by external accelerations that sums to gravity and make accelerometers based rotation inaccurate. Gyroscopes can remove such errors but create drifting problems. So for getting the precise data additionally two very common and well known filters Complementary and Kalman are introduced to the system. In this paper a comparison of system performance using these two filters is shown separately so that one would be able to select filter with better performance for his/her system.

  13. Two-point correlators revisited: fast and slow scales in multifield models of inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghersi, José T. Gálvez; Frolov, Andrei V., E-mail: joseg@sfu.ca, E-mail: frolov@sfu.ca

    2017-05-01

    We study the structure of two-point correlators of the inflationary field fluctuations in order to improve the accuracy and efficiency of the existing methods to calculate primordial spectra. We present a description motivated by the separation of the fast and slow evolving components of the spectrum which is based on Cholesky decomposition of the field correlator matrix. Our purpose is to rewrite all the relevant equations of motion in terms of slowly varying quantities. This is important in order to consider the contribution from high-frequency modes to the spectrum without affecting computational performance. The slow-roll approximation is not required tomore » reproduce the main distinctive features in the power spectrum for each specific model of inflation.« less

  14. Identifying Student Use of Ball-and-Stick Images versus Electrostatic Potential Map Images via Eye Tracking

    ERIC Educational Resources Information Center

    Williamson, Vickie M.; Hegarty, Mary; Deslongchamps, Ghislain; Williamson, Kenneth C., III

    2013-01-01

    This pilot study examined students' use of ball-and-stick images versus electrostatic potential maps when asked questions about electron density, positive charge, proton attack, and hydroxide attack with six different molecules (two alcohols, two carboxylic acids, and two hydroxycarboxylic acids). Students' viewing of these dual images…

  15. Three-dimensional instabilities of natural convection between two differentially heated vertical plates: Linear and nonlinear complementary approaches

    NASA Astrophysics Data System (ADS)

    Gao, Zhenlan; Podvin, Berengere; Sergent, Anne; Xin, Shihe; Chergui, Jalel

    2018-05-01

    The transition to the chaos of the air flow between two vertical plates maintained at different temperatures is studied in the Boussinesq approximation. After the first bifurcation at critical Rayleigh number Rac, the flow consists of two-dimensional (2D) corotating rolls. The stability of the 2D rolls is examined, confronting linear predictions with nonlinear integration. In all cases the 2D rolls are destabilized in the spanwise direction. Efficient linear stability analysis based on an Arnoldi method shows competition between two eigenmodes, corresponding to different spanwise wavelengths and different types of roll distortion. Nonlinear integration shows that the lower-wave-number mode is always dominant. A partial route to chaos is established through the nonlinear simulations. The flow becomes temporally chaotic for Ra =1.05 Rac , but remains characterized by the spatial patterns identified by linear stability analysis. This highlights the complementary role of linear stability analysis and nonlinear simulation.

  16. Coulombic interactions during advection-dominated transport of ions in porous media

    NASA Astrophysics Data System (ADS)

    Muniruzzaman, Muhammad; Stolze, Lucien; Rolle, Massimo

    2017-04-01

    Solute transport of charged species in porous media is significantly affected by the electrochemical migration term resulting from the charge-induced interactions among dissolved ions and with solid surfaces. Therefore, the characterization of such Coulombic interactions and their effect on multicomponent ionic transport is of critical importance for assessing the fate of charged solutes in porous media. In this work we present a detailed investigation of the electrochemical effects during conservative multicomponent ionic transport in homogeneous and heterogeneous domains by means of laboratory bench-scale experiments and numerical simulations. The investigation aims at quantifying the key role of small-scale electrostatic interactions in flow-through systems, especially when advection is the dominant mass-transfer process. Considering dilute solutions of strong electrolytes (e.g., MgCl2 and NaBr) we report results showing the important role of Coulombic interactions in the lateral displacement of the different ionic species for steady-state transport scenarios in which the solutions are continuously injected through different portions of the flow-through chamber [1, 2]. Successively, we focus our attention on transient transport and pulse injection of the electrolytes. In these experiments high-resolution spatial and temporal monitoring of the ions' concentrations (600 samples; 1800 concentration measurements), at closely spaced outlet ports (5 mm), allowed us resolving the effects of charge interactions on the temporal breakthrough and spatial profiles of the cations and anions [3]. The interpretation of the experimental results requires a multicomponent modeling approach with an accurate description of local hydrodynamic dispersion, as well as the explicit quantification of the dispersive fluxes' cross-coupling due to the Coulombic interactions between the charged species. A new 2-D simulator [4], coupling the solution of the multicomponent ionic transport problem with the geochemical code PHREEQC has been developed and used to quantitatively interpret the experimental results. References [1] Rolle M., Muniruzzaman M., Haberer C.M. and P. Grathwohl (2013). Geochim. Cosmochim. Acta 120, 195-205. [2] Muniruzzaman M., Haberer C.M., Grathwohl P. and M. Rolle (2014). Geochim. Cosmochim. Acta 141, 656-669. [3] Muniruzzaman M. and M. Rolle (2017). Water Resour. Res. (in press). [4] Muniruzzaman M. and M. Rolle (2016). Adv. Water Resour. 98, 1-15.

  17. A comparative study of roll compaction of free-flowing and cohesive pharmaceutical powders.

    PubMed

    Yu, Shen; Gururajan, Bindhu; Reynolds, Gavin; Roberts, Ron; Adams, Michael J; Wu, Chuan-Yu

    2012-05-30

    Roll compaction is widely adopted as a dry granulation method in the pharmaceutical industry. The roll compaction behaviour of feed powders is primarily governed by two parameters: the maximum pressure and the nip angle. Although the maximum pressure can be measured directly using pressure sensors fitted in the rolls, it is not a trivial task to determine the nip angle, which is a measure of the size of the compaction zone and hence the degree of compression. Thus a robust approach based upon the calculation of the pressure gradient, which can be obtained directly from experiments using an instrumented roll compactor, was developed. It has been shown that the resulting nip angles are comparable to those obtained using the methods reported in literature. Nevertheless, the proposed approach has distinctive advantages including (1) it is based on the intrinsic features of slip and no-slip interactions between the powder and roll surface and (2) it is not necessary to carry out wall friction measurements that involve plates that may not be representative of the roll compactor in terms of the surface topography and surface energy. The method was evaluated by investigating the effect of roll speed for two pharmaceutical excipients with distinctive material properties: microcrystalline cellulose (MCC) and di-calcium phosphate dihydrate (DCPD). It was found that the maximum pressure and nip angle for DCPD, which is a cohesive powder, decrease sharply with increasing roll speed whereas they are essentially independent of roll speed for MCC, which is an easy flowing powder. The roll compaction behaviour of MCC-DCPD mixtures with various compositions was also investigated in order to evaluate the effect of flowability. It was found that the nip angle and maximum pressure generally increased with improved flowability of the feed powders. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. The Snakelike Chain Character of Unstructured RNA

    PubMed Central

    Jacobson, David R.; McIntosh, Dustin B.; Saleh, Omar A.

    2013-01-01

    In the absence of base-pairing and tertiary structure, ribonucleic acid (RNA) assumes a random-walk conformation, modulated by the electrostatic self-repulsion of the charged, flexible backbone. This behavior is often modeled as a Kratky-Porod “wormlike chain” (WLC) with a Barrat-Joanny scale-dependent persistence length. In this study we report measurements of the end-to-end extension of poly(U) RNA under 0.1 to 10 pN applied force and observe two distinct elastic-response regimes: a low-force, power-law regime characteristic of a chain of swollen blobs on long length scales and a high-force, salt-valence-dependent regime consistent with ion-stabilized crumpling on short length scales. This short-scale structure is additionally supported by force- and salt-dependent quantification of the RNA ion atmosphere composition, which shows that ions are liberated under stretching; the number of ions liberated increases with increasing bulk salt concentration. Both this result and the observation of two elastic-response regimes directly contradict the WLC model, which predicts a single elastic regime across all forces and, when accounting for scale-dependent persistence length, the opposite trend in ion release with salt concentration. We conclude that RNA is better described as a “snakelike chain,” characterized by smooth bending on long length scales and ion-stabilized crumpling on short length scales. In monovalent salt, these two regimes are separated by a characteristic length that scales with the Debye screening length, highlighting the determining importance of electrostatics in RNA conformation. PMID:24314087

  19. Roll Casting of Aluminum Alloy Clad Strip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, R.; Tsuge, H.; Haga, T.

    2011-01-17

    Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of upper and lower casters and melt temperature of the lower caster were investigated. When the roll-load of the upper and lower caster was large enough, the overlay strip could be solidified and be connected. The overlay strip could be connectedmore » when the melt of the overlay strip cast by the lower caster was low enough. Sound three layers of clad strip could be cast by proper conditions.« less

  20. The effect of thermomechanical processing on second phase particle redistribution in U-10 wt%Mo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Xiaohua; Wang, Xiaowo; Joshi, Vineet V.

    2018-03-01

    The multi-pass hot-rolling process of an annealed uranium-10 wt% molybdenum coupon was studied by plane-strain compression finite element modeling. Two point correlation function (2PCF) was used to analyze the carbide particle distribution after each rolling reduction. The hot rolling simulation results show that the alignment of UC particles along grain boundaries will rotate during rolling until it is parallel to the rolling direction, to form stringer-like distributions which are typically observed in rolled products that contain inclusions. 2PCF analysis of simulation shows that the interparticle spacing shrinks along the normal direction. The number of major peaks of 2PCF along NDmore » decreases after large reduction. The locations of major peaks indicate the inter-stringer distances.« less

  1. On the Influence of Surface Heterogeneities onto Roll Convection

    NASA Astrophysics Data System (ADS)

    Gryschka, M.; Drüe, C.; Raasch, S.; Etling, D.

    2009-04-01

    Roll convection is a common phenomenon in atmospheric convective boundary layers (CBL) with background wind. Roll convection is observed both over land and over sea for different synoptic situations. There is still some debate about the different types of roll convection and their causes or rather the necessary conditions for their appearance. The stability parameter ζ = -zi•L (zi: boundary layer height, L: Monin-Obukhov stability length) is widely used as a predictor for roll convection, since numerous studies suggest that convective rolls only appear when 0 < ζ < 20. In other words, roll development becomes unlikely for strong surface heating and weak vertical wind shear. In contrast to those studies the presence of roll convection in almost any polar cold air outbreak (as can be seen in numerous satellite images as cloud streets) reveals that even for large ζ roll convection can develop. Some studies report roll convection in cold air outbreaks for ζ = 250. Our large eddy simulations (LES) on roll convection suggests that the contrasting results concerning the dependency of roll convection on ζ are due to two different types of roll convection: One type which develops purely by self organization if ζ < 20 ("free rolls") and another type which is triggered by heterogeneities in surface temperature and develops also for large ζ ("forced rolls"). We think that most of the cloud streets observed in polar cold air outbreaks over open water are due to rolls of forced type which are tied to upstream located heterogeneities in the sea-ice distribution. The results of this study suggests that the omission of surface inhomogeneities in previous LES is the reason for the absence of rolls in all LES with strong surface heating and weak vertical wind shear so far. In this contribution we will present a large eddy simulation which successfully represents forced rolls under such conditions.

  2. Static roll-tilt over 5 minutes locally distorts the internal estimate of direction of gravity.

    PubMed

    Tarnutzer, A A; Bockisch, C J; Straumann, D; Marti, S; Bertolini, G

    2014-12-01

    The subjective visual vertical (SVV) indicates perceived direction of gravity. Even in healthy human subjects, roll angle-dependent misestimations, roll overcompensation (A-effect, head-roll > 60° and <135°) and undercompensation (E-effect, head-roll < 60°), occur. Previously, we demonstrated that, after prolonged roll-tilt, SVV estimates when upright are biased toward the preceding roll position, which indicates that perceived vertical (PV) is shifted by the prior tilt (Tarnutzer AA, Bertolini G, Bockisch CJ, Straumann D, Marti S. PLoS One 8: e78079, 2013). Hypothetically, PV in any roll position could be biased toward the previous roll position. We asked whether such a "global" bias occurs or whether the bias is "local". The SVV of healthy human subjects (N = 9) was measured in nine roll positions (-120° to +120°, steps = 30°) after 5 min of roll-tilt in one of two adaptation positions (±90°) and compared with control trials without adaptation. After adapting, adjustments were shifted significantly (P < 0.05) toward the previous adaptation position for nearby roll-tilted positions (±30°, ±60°) and upright only. We computationally simulated errors based on the sum of a monotonically increasing function (producing roll undercompensation) and a mixture of Gaussian functions (representing roll overcompensation centered around PV). In combination, the pattern of A- and E-effects could be generated. By shifting the function representing local overcompensation toward the adaptation position, the experimental postadaptation data could be fitted successfully. We conclude that prolonged roll-tilt locally distorts PV rather than globally shifting it. Short-term adaptation of roll overcompensation may explain these shifts and could reflect the brain's strategy to optimize SVV estimates around recent roll positions. Thus postural stability can be improved by visually-mediated compensatory responses at any sustained body-roll orientation. Copyright © 2014 the American Physiological Society.

  3. PREFACE: 7th International Conference on Applied Electrostatics (ICAES-2012)

    NASA Astrophysics Data System (ADS)

    Li, Jie

    2013-03-01

    ICAES is an important conference organized every four years by the Committee on Electrostatics of the Chinese Physical Society, which serves as a forum for scientists, educators and engineers interested in the fundamentals, applications, disasters and safety of electrostatics, etc. In recent years, new techniques, applications and fundamental theories on electrostatics have developed considerably. ICAES-7, held in Dalian, China, from 17-19 September 2012, aimed to provide a forum for all scholars to report the newest developments in electrostatics, to probe the questions that scholars faced and to discuss fresh ideas related to electrostatics. ICAES-7 was co-organized and hosted by Dalian University of Technology, and was sponsored by the Ministry of Education of China, the National Natural Science Foundation of China, Dalian University of Technology, Nanjing Suman Electronics Co. Ltd (Suman, China), Shekonic (Yangzhou Shuanghong, China) Electric/Mechanical Co. Ltd, and Suzhou TA&A Ultra Clean Technology Co. Ltd. (China). On behalf of the organizing committee of ICAES-7, I express my great appreciation for their support of the conference. Over 160 scholars and engineers from many countries including Croatia, The Czech Republic, D.P.R. Korea, Germany, Japan, Malaysia, Poland, Russia, the United States of America, China attended ICAES-7, and the conference collected and selected 149 papers for publication. The subjects of those papers cover the fundamentals of electrostatics, electrostatic disaster and safety, and electrostatic application (e.g. precipitation, pollutant control, biological treatment, mixture separation and food processing, etc). I cordially thank all authors and attendees for their support, and my appreciation is also given to the conference honorary chair, the organizing committee and advisory committee, and the conference secretaries for their hard work. ICAES-7 is dedicated to the memory of Professor Jen-Shih Chang (professor emeritus in the Faculty of Engineering, McMaster University, Canada), Haitian Scholar of Dalian University of Technology (China), who passed away on 27 February 2011. Professor Chang was active in research fields including the applications of electrostatics, electromagnetic hydrodynamics, plasma environmental pollution control technologies, etc and he contributed much to the development of these fields. Professor Chang was the visiting professor at some Key Universities in China and was the friend of Chinese scholars engaged in electrostatics. Professor Chang was also active in joining and supporting the previous ICAES. We will cherish the memory of Professor Jen-Shih Chang forever. Professor Jie Li Proceedings Editor Dalian, September 2012 Conference photograph

  4. Active space debris charging for contactless electrostatic disposal maneuvers

    NASA Astrophysics Data System (ADS)

    Schaub, Hanspeter; Sternovsky, Zoltán

    2014-01-01

    The remote charging of a passive object using an electron beam enables touchless re-orbiting of large space debris from geosynchronous orbit (GEO) using electrostatic forces. The advantage of this method is that it can operate with a separation distance of multiple craft radii, thus reducing the risk of collision. The charging of the tug-debris system to high potentials is achieved by active charge transfer using a directed electron beam. Optimal potential distributions using isolated- and coupled-sphere models are discussed. A simple charging model takes into account the primary electron beam current, ultra-violet radiation induced photoelectron emission, collection of plasma particles, secondary electron emission and the recapture of emitted particles. The results show that through active charging in a GEO space environment high potentials can be both achieved and maintained with about a 75% transfer efficiency. Further, the maximum electrostatic tractor force is shown to be insensitive to beam current levels. This latter later result is important when considering debris with unknown properties.

  5. Energy harvesting with stacked dielectric elastomer transducers: Nonlinear theory, optimization, and linearized scaling law

    NASA Astrophysics Data System (ADS)

    Tutcuoglu, A.; Majidi, C.

    2014-12-01

    Using principles of damped harmonic oscillation with continuous media, we examine electrostatic energy harvesting with a "soft-matter" array of dielectric elastomer (DE) transducers. The array is composed of infinitely thin and deformable electrodes separated by layers of insulating elastomer. During vibration, it deforms longitudinally, resulting in a change in the capacitance and electrical enthalpy of the charged electrodes. Depending on the phase of electrostatic loading, the DE array can function as either an actuator that amplifies small vibrations or a generator that converts these external excitations into electrical power. Both cases are addressed with a comprehensive theory that accounts for the influence of viscoelasticity, dielectric breakdown, and electromechanical coupling induced by Maxwell stress. In the case of a linearized Kelvin-Voigt model of the dielectric, we obtain a closed-form estimate for the electrical power output and a scaling law for DE generator design. For the complete nonlinear model, we obtain the optimal electrostatic voltage input for maximum electrical power output.

  6. Simulations of Coulomb systems with slab geometry using an efficient 3D Ewald summation method

    NASA Astrophysics Data System (ADS)

    dos Santos, Alexandre P.; Girotto, Matheus; Levin, Yan

    2016-04-01

    We present a new approach to efficiently simulate electrolytes confined between infinite charged walls using a 3d Ewald summation method. The optimal performance is achieved by separating the electrostatic potential produced by the charged walls from the electrostatic potential of electrolyte. The electric field produced by the 3d periodic images of the walls is constant inside the simulation cell, with the field produced by the transverse images of the charged plates canceling out. The non-neutral confined electrolyte in an external potential can be simulated using 3d Ewald summation with a suitable renormalization of the electrostatic energy, to remove a divergence, and a correction that accounts for the conditional convergence of the resulting lattice sum. The new algorithm is at least an order of magnitude more rapid than the usual simulation methods for the slab geometry and can be further sped up by adopting a particle-particle particle-mesh approach.

  7. A versatile electrostatic trap with open optical access

    NASA Astrophysics Data System (ADS)

    Li, Sheng-Qiang; Yin, Jian-Ping

    2018-04-01

    A versatile electrostatic trap with open optical access for cold polar molecules in weak-field-seeking state is proposed in this paper. The trap is composed of a pair of disk electrodes and a hexapole. With the help of a finite element software, the spatial distribution of the electrostatic field is calculated. The results indicate that a three-dimensional closed electrostatic trap is formed. Taking ND3 molecules as an example, the dynamic process of loading and trapping is simulated. The results show that when the velocity of the molecular beam is 10 m/s and the loading time is 0.9964 ms, the maximum loading efficiency reaches 94.25% and the temperature of the trapped molecules reaches about 30.3 mK. A single well can be split into two wells, which is of significant importance to the precision measurement and interference of matter waves. This scheme, in addition, can be further miniaturized to construct one-dimensional, two-dimensional, and three-dimensional spatial electrostatic lattices.

  8. Finding a Needle in a PCAP

    DTIC Science & Technology

    2015-01-27

    Separate from analysis Indexing: • Timestamp Files • BPF Filters • GUI tools • Splunk 5 YAF PCAP Features Rolling PCAP dump • Rotates files using time...PCAP file for each flow. • Use with BPF filters. 6 Gh0st Rat Investigation 7 Gh0st Chinese remote access Trojan Free source code Easy to modify...Merge PCAP files w/ mergecap PCAP Write a BPF filter that will return session Separate Flows TCPDUMP YAF 26 Questions? CERT NetSA tools website

  9. Stationary and oscillatory convection of binary fluids in a porous medium.

    PubMed

    Augustin, M; Umla, R; Huke, B; Lücke, M

    2010-11-01

    We investigate numerically stationary convection and traveling wave structures of binary fluid mixtures with negative separation ratio in the Rayleigh-Bénard system filled with a porous medium. The bifurcation behavior of these roll structures is elucidated as well as the properties of the velocity, temperature, and concentration fields. Moreover, we discuss lateral averaged currents of temperature and concentration. Finally, we investigate the influence of the Lewis number, of the separation ratio, and of the normalized porosity on the bifurcation branches.

  10. Ares I-X Management Office (MMO) Integrated Master Schedule (IMS)

    NASA Technical Reports Server (NTRS)

    Heintzman, Keith; Askins, Bruce

    2010-01-01

    Objectives: Demonstrate control of a dynamically similar, integrated Ares I/Orion, using Ares I relevant ascent control algorithms. Perform an in-flight separation/staging event between a Ares I-similar First Stage and a representative Upper Stage. Demonstrate assembly and recovery of a new Ares I-like First Stage element at KSC. Demonstrate First Stage separation sequencing, and quantify First Stage atmospheric entry dynamics, and parachute performance. Characterize magnitude of integrated vehicle roll torque throughout First Stage flight.

  11. A molecular modeling based method to predict elution behavior and binding patches of proteins in multimodal chromatography.

    PubMed

    Banerjee, Suvrajit; Parimal, Siddharth; Cramer, Steven M

    2017-08-18

    Multimodal (MM) chromatography provides a powerful means to enhance the selectivity of protein separations by taking advantage of multiple weak interactions that include electrostatic, hydrophobic and van der Waals interactions. In order to increase our understanding of such phenomena, a computationally efficient approach was developed that combines short molecular dynamics simulations and continuum solvent based coarse-grained free energy calculations in order to study the binding of proteins to Self Assembled Monolayers (SAM) presenting MM ligands. Using this method, the free energies of protein-MM SAM binding over a range of incident orientations of the protein can be determined. The resulting free energies were then examined to identify the more "strongly bound" orientations of different proteins with two multimodal surfaces. The overall free energy of protein-MM surface binding was then determined and correlated to retention factors from isocratic chromatography. This correlation, combined with analytical expressions from the literature, was then employed to predict protein gradient elution salt concentrations as well as selectivity reversals with different MM resin systems. Patches on protein surfaces that interacted strongly with MM surfaces were also identified by determining the frequency of heavy atom contacts with the atoms of the MM SAMs. A comparison of these patches to Electrostatic Potential and hydrophobicity maps indicated that while all of these patches contained significant positive charge, only the highest frequency sites also possessed hydrophobicity. The ability to identify key binding patches on proteins may have significant impact on process development for the separation of bioproduct related impurities. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. High voltage conditioning of the electrostatic deflector of MARA

    NASA Astrophysics Data System (ADS)

    Partanen, J.; Johansen, U.; Sarén, J.; Tuunanen, J.; Uusitalo, J.

    2016-06-01

    MARA is a new recoil mass separator in the Accelerator Laboratory of University of Jyväskylä (JYFL-ACCLAB) with a mass resolving power of 250 and an ion-optical configuration of QQQDEDM . In this paper the construction, control and conditioning of its electrostatic deflector are described. The deflector was designed for voltages up to 500 kV accross the gap, corresponding to a 3.6 MV/m field, to accomodate fusion reactions with inverse kinematics. Titanium electrodes with a beam dump opening in the anode are used. The conditioning procedure, which has been used repeatedly to take the deflector to 450 kV, is described, along with the safety systems and precautions that are in place.

  13. Dual actuation micro-mirrors

    NASA Astrophysics Data System (ADS)

    Alneamy, A. M.; Khater, M. E.; Al-Ghamdi, M. S.; Park, S.; Heppler, G. R.; Abdel-Rahman, E. M.

    2018-07-01

    This paper investigates the performance of cantilever-type micro-mirrors under electromagnetic, electrostatic and dual actuation. We developed and validated a two-DOFs model of the coupled bending-torsion motions of the mirror and used it in conjunction with experiments in air and in vacuum to compare all three actuation methods. We found that electromagnetic actuation is the most effective delivering a scanning range of  ± out of a geometrically allowable range of  ± at a current amplitude i  =  3 mA and a magnetic field of B  =  30 mT. Electrostatic actuation, whether alone or in conjunction with electromagnetic actuation, limited the stable angular range to smaller values (as small as ) due to the presence of spurious piston motions. This is an innate characteristic of micro-scale electrostatic actuation, the electrostatic force and the undesirable piston motion grow faster than the electrostatic torque and the desired angular displacement as the voltage is increased and they limit the stable angular range. Finally, we found that the dual actuation can be used to design two-DOF mirrors where electromagnetic actuation drives angular motion for optical beam steering and electrostatic actuation drives piston motion to control the mirror focus.

  14. Experimental Study of Lunar Dust Transportation due to Electrostatic Forces and Micro-meteorite Impacts

    NASA Astrophysics Data System (ADS)

    Orger, N. C.; Toyoda, K.; Cho, M.

    2017-12-01

    Lunar dust particles can be transported via several physical mechanisms above the surface, and the electrostatic dust lofting was suspected to be the responsible mechanism for the high-altitude lunar horizon glow above the terminator region. Most of the recent studies have shown that contact forces acting on the dust grains of sub-micrometer and micrometer sizes are much larger than the electrostatic forces resulting from the ambient plasma conditions; however, the electrostatic forces are strong enough to accelerate the lunar dust grains to high altitudes once the dust particles are separated from the surface by an initial mechanism. In this study our purpose is to investigate if the dust particles can be transported under the electrostatic forces after they are released from the surface by the micrometeorite impacts. It is expected to be the most of the dust grains will be launched from the elastic deformation regions, and the contact forces will be canceled after they are moved tens of nanometers. For the experiments, silica particles are used in a cavity with 2 cm diameter and 5 mm depth on the graphite plates. First, the dust particles are baked under an infrared lamp to release the absorbed atmospheric particles in the vacuum chamber. Second, the electron beam source emits electrons with 100 - 200 eV energies, and a Faraday cup measures the electron current in the vacuum chamber. Third, a laser beam is used to simulate micro-meteorite impacts, and the results are monitored with a high speed camera mostly focusing on the elastic deformation region. Therefore, this study investigates how the impacts modify the dust transportation as an initial mechanism for electrostatic dust lofting to high altitudes.

  15. Flow regimes of adiabatic gas-liquid two-phase under rolling conditions

    NASA Astrophysics Data System (ADS)

    Yan, Chaoxing; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Wang, Yang; Tian, Daogui

    2013-07-01

    Characteristics of adiabatic air/water two-phase flow regimes under vertical and rolling motion conditions were investigated experimentally. Test sections are two rectangular ducts with the gaps of 1.41 and 10 mm, respectively, and a circular tube with 25 mm diameter. Flow regimes were recorded by a high speed CCD-camera and were identified by examining the video images. The experimental results indicate that the characteristics of flow patterns in 10 mm wide rectangular duct under vertical condition are very similar to those in circular tube, but different from the 1.41 mm wide rectangular duct. Channel size has a significant influence on flow pattern transition, boundary of which in rectangular channels tends asymptotically towards that in the circular tube with increasing the width of narrow side. Flow patterns in rolling channels are similar to each other, nevertheless, the effect of rolling motion on flow pattern transition are significantly various. Due to the remarkable influences of the friction shear stress and surface tension in the narrow gap duct, detailed flow pattern maps of which under vertical and rolling conditions are indistinguishable. While for the circular tube with 25 mm diameter, the transition from bubbly to slug flow occurs at a higher superficial liquid velocity and the churn flow covers more area on the flow regime map as the rolling period decreases.

  16. Countercurrent distribution of biological cells

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1982-01-01

    Detailed physiochemical studies of dextran/poly(ethylene glycol) (PEG) two phase systems were carried out to characterize and provide understanding of the properties of the systems which determine cell partition and the electrophoretic behavior of phase drops responsible for electric field driven phase separation. A detailed study of the electrostatic and electrokinetic potentials developed in these systems was carried out. The salt partition was examined both in phase systems and with pure polymer solutions via equilibrium dialysis and mechanism of sulfate, chloride and phosphate partition shown to be exclusion by PEG rather than binding by dextran. Salt partition was shown to have a strong effect on the polymer compositions of the phases as well, an effect which produces large changes in the interfacial tension between them. These effects were characterized and the interfacial tension shown to obey a power law with respect to its dependence on the length of the tie line describing the system composition on a phase diagram. The electrostatic potential differences measured via salt bridges were shown to obey thermodynamic predictions. The electrophoretic mobilities measured were utilized to provide a partial test of Levine's incomplete theory of phase drop electrophoresis. The data were consistent with Levine's expression over a limited range of the variables tested.

  17. An advanced application of the quantitative structure-activity relationship concept in electrokinetic chromatography of metal complexes.

    PubMed

    Oszwałdowski, Sławomir; Timerbaev, Andrei R

    2008-02-01

    The relevance of the quantitative structure-activity relationship (QSAR) principle in MEKC and microemulsion EKC (MEEKC) of metal-ligand complexes was evaluated for a better understanding of analyte migration mechanism. A series of gallium chelates were applied as test solutes with available experimental migration data in order to reveal the molecular properties that govern the separation. The QSAR models operating with n-octanol-water partition coefficients or van der Waals volumes were found to be valid for estimation of the retention factors (log k') of neutral compounds when using only an aqueous MEEKC electrolyte. On the other hand, consistent approximations of log k' for both uncharged and charged complexes in either EKC mode (and also with hydro-organic BGEs) were achievable with two-parametric QSARs in which the dipole moment is additionally incorporated as a structural descriptor, reflecting the electrostatic solute-pseudostationary phase interaction. The theoretical analysis of significant molecular parameters in MEKC systems, in which the micellar BGE is modified with an organic solvent, confirmed that concomitant consideration of hydrophobic, electrostatic, and solvation factors is essential for explaining the migration behavior of neutral metal complexes.

  18. Electrostatic Field Invisibility Cloak

    NASA Astrophysics Data System (ADS)

    Lan, Chuwen; Yang, Yuping; Geng, Zhaoxin; Li, Bo; Zhou, Ji

    2015-11-01

    The invisibility cloak has been drawing much attention due to its new concept for manipulating many physical fields, from oscillating wave fields (electromagnetic, acoustic and elastic) to static magnetic fields, dc electric fields, and diffusive fields. Here, an electrostatic field invisibility cloak has been theoretically investigated and experimentally demonstrated to perfectly hide two dimensional objects without disturbing their external electrostatic fields. The desired cloaking effect has been achieved via both cancelling technology and transformation optics (TO). This study demonstrates a novel way for manipulating electrostatic fields, which shows promise for a wide range of potential applications.

  19. Advanced Response Surface Modeling of Ares I Roll Control Jet Aerodynamic Interactions

    NASA Technical Reports Server (NTRS)

    Favaregh, Noah M.

    2010-01-01

    The Ares I rocket uses roll control jets. These jets have aerodynamic implications as they impinge on the surface and protuberances of the vehicle. The jet interaction on the body can cause an amplification or a reduction of the rolling moment produced by the jet itself, either increasing the jet effectiveness or creating an adverse effect. A design of experiments test was planned and carried out using computation fluid dynamics, and a subsequent response surface analysis ensued on the available data to characterize the jet interaction across the ascent portion of the Ares I flight envelope. Four response surface schemes were compared including a single response surface covering the entire design space, separate sector responses that did not overlap, continuously overlapping surfaces, and recursive weighted response surfaces. These surfaces were evaluated on traditional statistical metrics as well as visual inspection. Validation of the recursive weighted response surface was performed using additionally available data at off-design point locations.

  20. Demonstration of the coast-down technique for determining train resistances

    NASA Technical Reports Server (NTRS)

    Dayman, B.

    1983-01-01

    Full-scale measurement or validation of the various factors of train running resistance is an essential step in decreasing train energy consumption. Such a measurement capability would enable railroads to evaluate the cost benefits of operational and train consistent configuration changes, and new vehicle and truck designs for decreasing aerodynamic drag and rolling resistance. A decrease in the rolling resistance affects more than just a decrease in energy consumption; it also will result in decreased mechanical wear, hence less wheel and rail maintenance and replacement costs. A demonstration of a simple coast-down technique (based on computer-reduction of distance history) was accomplished using specially configured trains on main line rail provided by the Atchison, Topeka and Sante Fe Railway Co. This demonstration test shows that this distance-history coast-down technique for trains is easy to execute in the field. The total running resistance history was accurately determined and subsequently separated into rolling resistance (mechanical friction) and aerodynamic drag.

  1. Nano-level instrumentation for analyzing the dynamic accuracy of a rolling element bearing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Z.; Hong, J.; Zhang, J.

    2013-12-15

    The rotational performance of high-precision rolling bearings is fundamental to the overall accuracy of complex mechanical systems. A nano-level instrument to analyze rotational accuracy of high-precision bearings of machine tools under working conditions was developed. In this instrument, a high-precision (error motion < 0.15 μm) and high-stiffness (2600 N axial loading capacity) aerostatic spindle was applied to spin the test bearing. Operating conditions could be simulated effectively because of the large axial loading capacity. An air-cylinder, controlled by a proportional pressure regulator, was applied to drive an air-bearing subjected to non-contact and precise loaded axial forces. The measurement results onmore » axial loading and rotation constraint with five remaining degrees of freedom were completely unconstrained and uninfluenced by the instrument's structure. Dual capacity displacement sensors with 10 nm resolution were applied to measure the error motion of the spindle using a double-probe error separation method. This enabled the separation of the spindle's error motion from the measurement results of the test bearing which were measured using two orthogonal laser displacement sensors with 5 nm resolution. Finally, a Lissajous figure was used to evaluate the non-repetitive run-out (NRRO) of the bearing at different axial forces and speeds. The measurement results at various axial loadings and speeds showed the standard deviations of the measurements’ repeatability and accuracy were less than 1% and 2%. Future studies will analyze the relationship between geometrical errors and NRRO, such as the ball diameter differences of and the geometrical errors in the grooves of rings.« less

  2. Nano-level instrumentation for analyzing the dynamic accuracy of a rolling element bearing.

    PubMed

    Yang, Z; Hong, J; Zhang, J; Wang, M Y; Zhu, Y

    2013-12-01

    The rotational performance of high-precision rolling bearings is fundamental to the overall accuracy of complex mechanical systems. A nano-level instrument to analyze rotational accuracy of high-precision bearings of machine tools under working conditions was developed. In this instrument, a high-precision (error motion < 0.15 μm) and high-stiffness (2600 N axial loading capacity) aerostatic spindle was applied to spin the test bearing. Operating conditions could be simulated effectively because of the large axial loading capacity. An air-cylinder, controlled by a proportional pressure regulator, was applied to drive an air-bearing subjected to non-contact and precise loaded axial forces. The measurement results on axial loading and rotation constraint with five remaining degrees of freedom were completely unconstrained and uninfluenced by the instrument's structure. Dual capacity displacement sensors with 10 nm resolution were applied to measure the error motion of the spindle using a double-probe error separation method. This enabled the separation of the spindle's error motion from the measurement results of the test bearing which were measured using two orthogonal laser displacement sensors with 5 nm resolution. Finally, a Lissajous figure was used to evaluate the non-repetitive run-out (NRRO) of the bearing at different axial forces and speeds. The measurement results at various axial loadings and speeds showed the standard deviations of the measurements' repeatability and accuracy were less than 1% and 2%. Future studies will analyze the relationship between geometrical errors and NRRO, such as the ball diameter differences of and the geometrical errors in the grooves of rings.

  3. Confined Pattern-Directed Assembly of Polymer-Grafted Nanoparticles in a Phase Separating Blend with a Homopolymer Matrix.

    PubMed

    Zhang, Ren; Lee, Bongjoon; Bockstaller, Michael R; Douglas, Jack F; Stafford, Christopher M; Kumar, Sanat K; Raghavan, Dharmaraj; Karim, Alamgir

    The controlled organization of nanoparticle (NP) constituents into superstructures of well-defined shape, composition and connectivity represents a continuing challenge in the development of novel hybrid materials for many technological applications. We show that the phase separation of polymer-tethered nanoparticles immersed in a chemically different polymer matrix provides an effective and scalable method for fabricating defined submicron-sized amorphous NP domains in melt polymer thin films. We investigate this phenomenon with a view towards understanding and controlling the phase separation process through directed nanoparticle assembly. In particular, we consider isothermally annealed thin films of polystyrene-grafted gold nanoparticles (AuPS) dispersed in a poly(methyl methacrylate) (PMMA) matrix. Classic binary polymer blend phase separation related morphology transitions, from discrete AuPS domains to bicontinuous to inverse domain structure with increasing nanoparticle composition is observed, yet the kinetics of the AuPS/PMMA polymer blends system exhibit unique features compared to the parent PS/PMMA homopolymer blend. We further illustrate how to pattern-align the phase-separated AuPS nanoparticle domain shape, size and location through the imposition of a simple and novel external symmetry-breaking perturbation via soft-lithography. Specifically, submicron-sized topographically patterned elastomer confinement is introduced to direct the nanoparticles into kinetically controlled long-range ordered domains, having a dense yet well-dispersed distribution of non-crystallizing nanoparticles. The simplicity, versatility and roll-to-roll adaptability of this novel method for controlled nanoparticle assembly should make it useful in creating desirable patterned nanoparticle domains for a variety of functional materials and applications.

  4. Detecting chameleons through Casimir force measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine

    2007-12-15

    The best laboratory constraints on strongly coupled chameleon fields come not from tests of gravity per se but from precision measurements of the Casimir force. The chameleonic force between two nearby bodies is more akin to a Casimir-like force than a gravitational one: The chameleon force behaves as an inverse power of the distance of separation between the surfaces of two bodies, just as the Casimir force does. Additionally, experimental tests of gravity often employ a thin metallic sheet to shield electrostatic forces; however, this sheet masks any detectable signal due to the presence of a strongly coupled chameleon field.more » As a result of this shielding, experiments that are designed to specifically test the behavior of gravity are often unable to place any constraint on chameleon fields with a strong coupling to matter. Casimir force measurements do not employ a physical electrostatic shield and as such are able to put tighter constraints on the properties of chameleons fields with a strong matter coupling than tests of gravity. Motivated by this, we perform a full investigation on the possibility of testing chameleon models with both present and future Casimir experiments. We find that present-day measurements are not able to detect the chameleon. However, future experiments have a strong possibility of detecting or rule out a whole class of chameleon models.« less

  5. Aggregation and disaggregation dynamics of sedimented and charged superparamagnetic micro-particles in water suspension.

    PubMed

    Domínguez-García, P; Pastor, J M; Rubio, M A

    2011-04-01

    This article presents results on the aggregation and disaggregation kinetics on a 1 μm diameter charged superparamagnetic particles dispersed in water under a constant uniaxial magnetic field in experiments with salt (KCl) added to the suspension in order to observe the behaviour of the system when the electrical properties of the particles have been screened. These particles have an electric charge and are confined between two separated 100 μm thick quartz windows, and sediment near the charged bottom wall. The electrostatic interactions that take place in this experimental setup may affect the micro-structure and colloidal stability of the suspension and thus, the dynamics of aggregation and disaggregation.

  6. A theory of the inverse magnetoelectric effect in layered magnetostrictive-piezoelectric structures

    NASA Astrophysics Data System (ADS)

    Filippov, D. A.; Radchenko, G. S.; Firsova, T. O.; Galkina, T. A.

    2017-05-01

    A theory of the inverse magnetoelectric effect in layered structures has been presented. The theory is based on solving the equations of elastodynamics and electrostatics separately for the magnetostrictive and piezoelectric phases, taking into account the conditions at the interface between the phases. Expressions for the coefficient of inverse magnetoelectric conversion through the parameters characterizing the magnetostrictive and piezoelectric phases have been obtained. Theoretical dependences of the inverse magnetoelectric conversion coefficient on the frequency of the alternating-current electric field for the three-layer PZT-Ni-PZT structure and the two-layer terfenol- D-PZT structure have been calculated. The results of the calculations are in good agreement with the experimental data.

  7. Active load control during rolling maneuvers. [performed in the Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Pototzky, Anthony S.; Hoadley, Sherwood T.

    1994-01-01

    A rolling maneuver load alleviation (RMLA) system has been demonstrated on the active flexible wing (AFW) wind tunnel model in the Langley Transonic Dynamics Tunnel (TDT). The objective was to develop a systematic approach for designing active control laws to alleviate wing loads during rolling maneuvers. Two RMLA control laws were developed that utilized outboard control-surface pairs (leading and trailing edge) to counteract the loads and that used inboard trailing-edge control-surface pairs to maintain roll performance. Rolling maneuver load tests were performed in the TDT at several dynamic pressures that included two below and one 11 percent above open-loop flutter dynamic pressure. The RMLA system was operated simultaneously with an active flutter suppression system above open-loop flutter dynamic pressure. At all dynamic pressures for which baseline results were obtained, torsion-moment loads were reduced for both RMLA control laws. Results for bending-moment load reductions were mixed; however, design equations developed in this study provided conservative estimates of load reduction in all cases.

  8. Electrostatic Beneficiation of Lunar Regolith: Applications in In-Situ Resource Utilization

    NASA Technical Reports Server (NTRS)

    Trigwell, Steve; Captain, James; Weis, Kyle; Quinn, Jacqueline

    2011-01-01

    Upon returning to the moon, or further a field such as Mars, presents enormous challenges in sustaining life for extended periods of time far beyond the few days the astronauts experienced on the moon during the Apollo missions. A stay on Mars is envisioned to last several months, and it would be cost prohibitive to take all the requirements for such a stay from earth. Therefore, future exploration missions will be required to be self-sufficient and utilize the resources available at the mission site to sustain human occupation. Such an exercise is currently the focus of intense research at NASA under the In-situ Resource Utilization (ISRU) program. As well as oxygen and water necessary for human life, resources for providing building materials for habitats, radiation protection, and landing/launch pads are required. All these materials can be provided by the regolith present on the surface as it contains sufficient minerals and metals oxides to meet the requirements. However, before processing, it would be cost effective if the regolith could be enriched in the mineral(s) of interest. This can be achieved by electrostatic beneficiation in which tribocharged mineral particles are separated out and the feedstock enriched or depleted as required. The results of electrostatic beneficiation of lunar simulants and actual Apollo regolith, in lunar high vacuum are reported in which various degrees of efficient particle separation and mineral enrichment up to a few hundred percent were achieved.

  9. pH-dependence of single-protein adsorption and diffusion at a liquid chromatographic interface.

    PubMed

    Kisley, Lydia; Poongavanam, Mohan-Vivekanandan; Kourentzi, Katerina; Willson, Richard C; Landes, Christy F

    2016-02-01

    pH is a common mobile phase variable used to control protein separations due to the tunable nature of amino acid and adsorbent charge. Like other column variables such as column density and ligand loading density, pH is usually optimized empirically. Single-molecule spectroscopy extracts molecular-scale data to provide a framework for mechanistic optimization of pH. The adsorption and diffusion of a model globular protein, α-lactalbumin, was studied by single-molecule microscopy at a silica-aqueous interface analogous to aqueous normal phase and hydrophilic interaction chromatography and capillary electrophoresis interfaces at varied pH. Electrostatic repulsion resulting in free diffusion was observed at pH above the isoelectric point of the protein. In contrast, at low pH strong adsorption and surface diffusion with either no (D ∼ 0.01 μm(2) /s) or translational (D ∼ 0.3 μm(2) /s) motion was observed where the protein likely interacted with the surface through electrostatic, hydrophobic, and hydrogen bonding forces. The fraction of proteins immobilized could be increased by lowering the pH. These results show that retention of proteins at the silica interface cannot be viewed solely as an adsorption/desorption process and that the type of surface diffusion, which ultimately leads to ensemble chromatographic separations, can be controlled by tuning long-range electrostatic and short-range hydrophobic and hydrogen bonding forces with pH. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Roll up nanowire battery from silicon chips

    PubMed Central

    Vlad, Alexandru; Reddy, Arava Leela Mohana; Ajayan, Anakha; Singh, Neelam; Gohy, Jean-François; Melinte, Sorin; Ajayan, Pulickel M.

    2012-01-01

    Here we report an approach to roll out Li-ion battery components from silicon chips by a continuous and repeatable etch-infiltrate-peel cycle. Vertically aligned silicon nanowires etched from recycled silicon wafers are captured in a polymer matrix that operates as Li+ gel-electrolyte and electrode separator and peeled off to make multiple battery devices out of a single wafer. Porous, electrically interconnected copper nanoshells are conformally deposited around the silicon nanowires to stabilize the electrodes over extended cycles and provide efficient current collection. Using the above developed process we demonstrate an operational full cell 3.4 V lithium-polymer silicon nanowire (LIPOSIL) battery which is mechanically flexible and scalable to large dimensions. PMID:22949696

  11. Single field double inflation and primordial black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kannike, K.; Marzola, L.; Raidal, M.

    Within the framework of scalar-tensor theories, we study the conditions that allow single field inflation dynamics on small cosmological scales to significantly differ from that of the large scales probed by the observations of cosmic microwave background. The resulting single field double inflation scenario is characterised by two consequent inflation eras, usually separated by a period where the slow-roll approximation fails. At large field values the dynamics of the inflaton is dominated by the interplay between its non-minimal coupling to gravity and the radiative corrections to the inflaton self-coupling. For small field values the potential is, instead, dominated by amore » polynomial that results in a hilltop inflation. Without relying on the slow-roll approximation, which is invalidated by the appearance of the intermediate stage, we propose a concrete model that matches the current measurements of inflationary observables and employs the freedom granted by the framework on small cosmological scales to give rise to a sizeable population of primordial black holes generated by large curvature fluctuations. We find that these features generally require a potential with a local minimum. We show that the associated primordial black hole mass function is only approximately lognormal.« less

  12. Effects of free-stream turbulence intensity on transition in a laminar separation bubble formed over an airfoil

    NASA Astrophysics Data System (ADS)

    Istvan, Mark S.; Yarusevych, Serhiy

    2018-03-01

    The laminar-to-turbulent transition process in a laminar separation bubble formed over a NACA 0018 airfoil is investigated experimentally. All experiments are performed for an angle of attack of 4°, chord Reynolds numbers of 80,000 and 125,000, and free-stream turbulence intensities between 0.06 and 1.99%. The results show that increasing the level of free-stream turbulence intensity leads to a decrease in separation bubble length, attributed to a downstream shift in mean separation and an upstream shift in mean reattachment, the later ascribed to an upstream shift in mean transition. Maximum spatial amplification rates of disturbances in the separated shear layer decrease with increasing free-stream turbulence intensity, implying that the larger initial amplitudes of disturbances are solely responsible for the upstream shift in mean transition and as a result mean reattachment. At the baseline level of turbulence intensity, coherent structures forming in the aft portion of the bubble are characterized by strong spanwise coherence at formation, and undergo spanwise deformations leading to localized breakup in the vicinity of mean reattachment. As the level of free-stream turbulence intensity is increased, the spanwise coherence of the shear layer rollers is reduced, and spanwise undulations in the vortex filaments start to take place at the mean location of roll-up. At the highest level of turbulence intensity investigated, streamwise streaks originating in the boundary layer upstream of the separation bubble are observed within the bubble. These streaks signify an onset of bypass transition upstream of the separation bubble, which gives rise to a highly three-dimensional shear layer roll-up. A quantitative analysis of the associated changes in salient characteristics of the coherent structures is presented, connecting the effect of elevated free-stream turbulence intensity on the time-averaged and dynamic characteristics of the separation bubble.

  13. Overview of the Mars Exploration Rover Mission

    NASA Astrophysics Data System (ADS)

    Adler, M.

    2002-12-01

    The Mars Exploration Rover (MER) Project is an ambitious mission to land two highly capable rovers at different sites in the equatorial region of Mars. The two vehicles are launched separately in May through July of 2003. Mars surface operations begin on January 4, 2004 with the first landing, followed by the second landing three weeks later on January 25. The useful surface lifetime of each rover will be at least 90 sols. The science objectives of exploring multiple locations within each of two widely separated and scientifically distinct landing sites will be accomplished along with the demonstration of key surface exploration technologies for future missions. The two MER spacecraft are planned to be identical. The rovers are landed using the Mars Pathfinder approach of a heatshield and parachute to slow the vehicle relative to the atmosphere, solid rockets to slow the lander near the surface, and airbags to cushion the surface impacts. During entry, descent, and landing, the vehicles will transmit coded tones directly to Earth, and in the terminal descent phase will also transmit telemetry to the MGS orbiter to indicate progress through the critical events. Once the lander rolls to a stop, a tetrahedral structure opens to right the lander and to reveal the folded rover, which then deploys and later by command will roll off of the lander to begin its exploration. Each six-wheeled rover carries a suite of instruments to collect contextual information about the landing site using visible and thermal infrared remote sensing, and to collect in situ information on the composition, mineralogy, and texture of selected Martian soils and rocks using an arm-mounted microscopic imager, rock abrasion tool, and spectrometers. During their surface missions, the rovers will communicate with Earth directly through the Deep Space Network as well as indirectly through the Odyssey and MGS orbiters. The solar-powered rovers will be commanded in the morning of each Sol, with the results returned in the afternoon of that Sol guiding the plans for the following Sol. Between the command sessions, the rover will autonomously execute the requested activities, including as an example traverses of tens of meters using autonomous navigation and hazard avoidance.

  14. Response of Leaf Water Potential, Stomatal Resistance, and Leaf Rolling to Water Stress

    PubMed Central

    O'Toole, John C.; Cruz, Rolando T.

    1980-01-01

    Numerous studies have associated increased stomatal resistance with response to water deficit in cereals. However, consideration of change in leaf form seems to have been neglected. The response of adaxial and abaxial stomatal resistance and leaf rolling in rice to decreasing leaf water potential was investigated. Two rice cultivars were subjected to control and water stress treatments in a deep (1-meter) aerobic soil. Concurrent measurements of leaf water potential, stomatal resistance, and degree of leaf rolling were made through a 29-day period after cessation of irrigation. Kinandang Patong, an upland adapted cultivar, maintained higher dawn and midday leaf water potential than IR28, a hybrid selected in irrigated conditions. This was not explained by differences in leaf diffusive resistance or leaf rolling, and is assumed to result from a difference in root system extent. Stomatal resistance increased more on the abaxial than the adaxial leaf surface in both cultivars. This was associated with a change in leaf form or rolling inward of the upper leaf surface. Both responses, increased stomatal resistance and leaf rolling, were initiated in a similar leaf water potential range (−8 to −12 bars). Leaves of IR28 became fully rolled at leaf water potential of about −22 bars; however, total leaf diffusive resistance was only about 4 to 5 seconds per centimeter (conductance 0.25 to 0.2 centimeter per second) at that stage. Leaf diffusive resistance and degree of leaf rolling were linearly related to leaf water potential. Thus, leaf rolling in rice may be used as an estimate of the other two less obvious effects of water deficit. PMID:16661206

  15. Storage effects on genomic DNA in rolled and mature coca leaves.

    PubMed

    Johnson, Emanuel L; Kim, Soo-Hyung; Emche, Stephen D

    2003-08-01

    Rolled and mature leaf tissue was harvested from Erythroxylum coca var. coca Lam. (coca) to determine a method for storage that would maintain DNA with high quality and content up to 50 days. Harvesting coca leaf tissue under Andean field conditions often requires storage from 3 to 10 days before extraction where tissue integrity is lost. All samples of rolled and mature coca leaf tissue were harvested and separately stored fresh in RNAlater for 50 days at 4 degrees, -20 degrees, and 23 degrees C, while similar samples were air-dried for 72 h at 23 degrees C or oven-dried for 72 h at 40 degrees C after storage, before extraction. Triplicate samples of each tissue type were extracted for DNA at 10-day intervals and showed that DNA integrity and content were preserved in leaf tissue stored at 4 degrees and -20 degrees C for 50 days. Rolled and mature leaf tissue stored at 4 degrees, -20 degrees, and 23 degrees C showed insignificant degradation of DNA after 10 days, and by day 50, only leaf tissue stored at 4 degrees and -20 degrees C had not significantly degraded. All air- and oven-dried leaf tissue extracts showed degradation upon drying (day 0) and continuous degradation up to day 50, despite storage conditions. Amplified fragment length polymorphism analysis of DNA from rolled and mature leaf tissue of coca stored at 4 degrees and -20 degrees C for 0, 10, and 50 days showed that DNA integrity and content were preserved. We recommend that freshly harvested rolled or mature coca leaf tissue be stored at 4 degrees, -20 degrees, and 23 degrees C for 10 days after harvest, and if a longer storage is required, then store at 4 degrees or -20 degrees C.

  16. Flows in forward deformable roll coating gaps: Comparison between spring and plane-strain models of roll cover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvalho, M.S.; Scriven, L.E.

    1997-12-01

    In this report the flow between rigid and a deformable rotating rolls fully submerged in a liquid pool is studied. The deformation of compliant roll cover is described by two different models (1) independent, radially oriented springs that deform in response to the traction force applied at the extremity of each or one-dimensional model, and (2) a plane-strain deformation of an incompressible Mooney-Rivlin material or non-linear elastic model. Based on the flow rate predictions of both models, an empirical relation between the spring constant of the one dimensional model and the roll cover thickness and elastic modulus is proposed.

  17. Numerical Simulation of Forced and Free-to-Roll Delta-Wing Motions

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.; Schiff, Lewis B.

    1996-01-01

    The three-dimensional, Reynolds-averaged, Navier-Stokes (RANS) equations are used to numerically simulate nonsteady vortical flow about a 65-deg sweep delta wing at 30-deg angle of attack. Two large-amplitude, high-rate, forced-roll motions, and a damped free-to-roll motion are presented. The free-to-roll motion is computed by coupling the time-dependent RANS equations to the flight dynamic equation of motion. The computed results are in good agreement with the forces, moments, and roll-angle time histories. Vortex breakdown is present in each case. Significant time lags in the vortex breakdown motions relative to the body motions strongly influence the dynamic forces and moments.

  18. Roll compaction/dry granulation: comparison between roll mill and oscillating granulator in dry granulation.

    PubMed

    Sakwanichol, Jarunee; Puttipipatkhachorn, Satit; Ingenerf, Gernot; Kleinebudde, Peter

    2012-01-01

    Different experimental factorial designs were employed to evaluate granule properties obtained from oscillating granulator and roll mill. Four oscillating-granulator parameters were varied, i.e. rotor speed, oscillating angle, aperture of mesh screen and rotor type. Six roll-mill parameters that were throughput, speed ratio in both first and second stages, gap between roll pair in both stages and roll-surface texture were also investigated. Afterwards, the granule properties obtained from two milling types with similar median particle size were compared. All milling parameters in both milling types affected significantly the median particle size, size distribution and amount of fine particles (P < 0.05), except the rotor types of oscillating granulator on fines. Only three milling parameters influenced significantly the flowability (P < 0.05). These were the throughput and the gap size in the first stage of roll mill and the sieve size of oscillating granulator. In comparison between milling types, the differences of granule properties were not practically relevant. However, the roll mill had much higher capacity than the oscillating granulator about seven times, resulting in improving energy savings per unit of product. Consequently, the roll mill can be applied instead of oscillating granulator for roll compaction/dry granulation technique.

  19. Enhancing roll stability of heavy vehicle by LQR active anti-roll bar control using electronic servo-valve hydraulic actuators

    NASA Astrophysics Data System (ADS)

    Vu, Van Tan; Sename, Olivier; Dugard, Luc; Gaspar, Peter

    2017-09-01

    Rollover of heavy vehicle is an important road safety problem world-wide. Although rollovers are relatively rare events, they are usually deadly accidents when they occur. The roll stability loss is the main cause of rollover accidents in which heavy vehicles are involved. In order to improve the roll stability, most of modern heavy vehicles are equipped with passive anti-roll bars to reduce roll motion during cornering or riding on uneven roads. However these may be not sufficient to overcome critical situations. This paper introduces the active anti-roll bars made of four electronic servo-valve hydraulic actuators, which are modelled and integrated in a yaw-roll model of a single unit heavy vehicle. The control signal is the current entering the electronic servo-valve and the output is the force generated by the hydraulic actuator. The active control design is achieved solving a linear optimal control problem based on the linear quadratic regulator (LQR) approach. A comparison of several LQR controllers is provided to allow for tackling the considered multi-objective problems. Simulation results in frequency and time domains show that the use of two active anti-roll bars (front and rear axles) drastically improves the roll stability of the single unit heavy vehicle compared with the passive anti-roll bar.

  20. Electrostatically Driven Guest Binding in a Self-Assembled Porous Network at the Liquid/Solid Interface.

    PubMed

    Iritani, Kohei; Ikeda, Motoki; Yang, Anna; Tahara, Kazukuni; Anzai, Masaru; Hirose, Keiji; De Feyter, Steven; Moore, Jeffrey S; Tobe, Yoshito

    2018-05-29

    We present here the construction of a self-assembled two-dimensional (2D) porous monolayer bearing a highly polar 2D space to study guest co-adsorption through electrostatic interactions at the liquid/solid interface. For this purpose, a dehydrobenzo[12]annulene (DBA) derivative, DBA-TeEG, having tetraethylene glycol (TeEG) groups at the end of the three alternating alkoxy chains connected by p-phenylene linkers was synthesized. As a reference host molecule, DBA-C10, having nonpolar C 10 alkyl chains at three alternating terminals, was employed. As guest molecules, hexagonal phenylene-ethynylene macrocycles (PEMs) attached by triethylene glycol (TEG) ester and hexyl ester groups, PEM-TEG and PEM-C6, respectively, at each vertex of the macrocyclic periphery were used. Scanning tunneling microscopy observations at the 1,2,4-trichlorobenzene/highly oriented pyrolytic graphite interface revealed that PEM-TEG was immobilized in the pores formed by DBA-TeEG at higher probability because of electrostatic interactions such as dipole-dipole and hydrogen bonding interactions between oligoether units of the host and guest, in comparison to PEM-C6 with nonpolar groups. These observations are discussed based on molecular mechanics simulations to investigate the role of the polar functional groups. When a nonpolar host matrix formed by DBA-C10 was used, however, only phase separation and preferential adsorption were observed; virtually no host-guest complexation was discernible. This is ascribed to the strong affinity between the guest molecules which form by themselves densely packed van der Waals networks on the surface.

Top