Sample records for two-step heating process

  1. Alternative Procedure of Heat Integration Tehnique Election between Two Unit Processes to Improve Energy Saving

    NASA Astrophysics Data System (ADS)

    Santi, S. S.; Renanto; Altway, A.

    2018-01-01

    The energy use system in a production process, in this case heat exchangers networks (HENs), is one element that plays a role in the smoothness and sustainability of the industry itself. Optimizing Heat Exchanger Networks (HENs) from process streams can have a major effect on the economic value of an industry as a whole. So the solving of design problems with heat integration becomes an important requirement. In a plant, heat integration can be carried out internally or in combination between process units. However, steps in the determination of suitable heat integration techniques require long calculations and require a long time. In this paper, we propose an alternative step in determining heat integration technique by investigating 6 hypothetical units using Pinch Analysis approach with objective function energy target and total annual cost target. The six hypothetical units consist of units A, B, C, D, E, and F, where each unit has the location of different process streams to the temperature pinch. The result is a potential heat integration (ΔH’) formula that can trim conventional steps from 7 steps to just 3 steps. While the determination of the preferred heat integration technique is to calculate the potential of heat integration (ΔH’) between the hypothetical process units. Completion of calculation using matlab language programming.

  2. Antioxidants in heat-processed koji and the production mechanisms.

    PubMed

    Okutsu, Kayu; Yoshizaki, Yumiko; Ikeda, Natsumi; Kusano, Tatsuro; Hashimoto, Fumio; Takamine, Kazunori

    2015-11-15

    We previously developed antioxidative heat-processed (HP)-koji via two-step heating (55 °C/2days → 75 °C/3 days) of white-koji. In this study, we isolated antioxidants in HP-koji and investigated their formation mechanisms. The antioxidants were identified to be 5-hydroxymethyl furfural (HMF) and 5-(α-D-glucopyranosyloxymethyl)-2-furfural (GMF) based on nuclear magnetic resonance spectral analysis. HMF and GMF were not present in intact koji, but were formed by heating at 75 °C. As production of these antioxidants was more effective by two-step heating than by constant heating at 55 °C or 75 °C, we presumed that the antioxidant precursors are derived enzymatically at 55°C and that the antioxidants are formed subsequently by thermal reaction at 75 °C. The heating assay of saccharide solutions revealed glucose and isomaltose as HMF and GMF precursors, respectively, and thus the novel finding of GMF formation from isomaltose. Finally, HMF and GMF were effectively formed by two-step heating from glucose and isomaltose present in koji. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Development and test of combustion chamber for Stirling engine heated by natural gas

    NASA Astrophysics Data System (ADS)

    Li, Tie; Song, Xiange; Gui, Xiaohong; Tang, Dawei; Li, Zhigang; Cao, Wenyu

    2014-04-01

    The combustion chamber is an important component for the Stirling engine heated by natural gas. In the paper, we develop a combustion chamber for the Stirling engine which aims to generate 3˜5 kWe electric power. The combustion chamber includes three main components: combustion module, heat exchange cavity and thermal head. Its feature is that the structure can divide "combustion" process and "heat transfer" process into two apparent individual steps and make them happen one by one. Since natural gas can mix with air fully before burning, the combustion process can be easily completed without the second wind. The flame can avoid contacting the thermal head of Stirling engine, and the temperature fields can be easily controlled. The designed combustion chamber is manufactured and its performance is tested by an experiment which includes two steps. The experimental result of the first step proves that the mixture of air and natural gas can be easily ignited and the flame burns stably. In the second step of experiment, the combustion heat flux can reach 20 kW, and the energy utilization efficiency of thermal head has exceeded 0.5. These test results show that the thermal performance of combustion chamber has reached the design goal. The designed combustion chamber can be applied to a real Stirling engine heated by natural gas which is to generate 3˜5 kWe electric power.

  4. Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces

    NASA Technical Reports Server (NTRS)

    Dussinger, Peter M.; Lindemuth, James E.

    1997-01-01

    The principal objective of this Phase 2 SBIR program was to develop and demonstrate a practically insoluble coating for nickel-based superalloys for Stirling engine heat pipe applications. Specific technical objectives of the program were: (1) Determine the solubility corrosion rates for Nickel 200, Inconel 718, and Udimet 72OLI in a simulated Stirling engine heat pipe environment, (2) Develop coating processes and techniques for capillary groove and screen wick structures, (3) Evaluate the durability and solubility corrosion rates for capillary groove and screen wick structures coated with an insoluble coating in cylindrical heat pipes operating under Stirling engine conditions, and (4) Design and fabricate a coated full-scale, partial segment of the current Stirling engine heat pipe for the Stirling Space Power Convertor program. The work effort successfully demonstrated a two-step nickel aluminide coating process for groove wick structures and interior wall surfaces in contact with liquid metals; demonstrated a one-step nickel aluminide coating process for nickel screen wick structures; and developed and demonstrated a two-step aluminum-to-nickel aluminide coating process for nickel screen wick structures. In addition, the full-scale, partial segment was fabricated and the interior surfaces and wick structures were coated. The heat pipe was charged with sodium, processed, and scheduled to be life tested for up to ten years as a Phase 3 effort.

  5. Comparison of machinability of manganese alloyed austempered ductile iron produced using conventional and two step austempering processes

    NASA Astrophysics Data System (ADS)

    Hegde, Ananda; Sharma, Sathyashankara

    2018-05-01

    Austempered Ductile Iron (ADI) is a revolutionary material with high strength and hardness combined with optimum ductility and toughness. The discovery of two step austempering process has lead to the superior combination of all the mechanical properties. However, because of the high strength and hardness of ADI, there is a concern regarding its machinability. In the present study, machinability of ADI produced using conventional and two step heat treatment processes is assessed using tool life and the surface roughness. Speed, feed and depth of cut are considered as the machining parameters in the dry turning operation. The machinability results along with the mechanical properties are compared for ADI produced using both conventional and two step austempering processes. The results have shown that two step austempering process has produced better toughness with good hardness and strength without sacrificing ductility. Addition of 0.64 wt% manganese did not cause any detrimental effect on the machinability of ADI, both in conventional and two step processes. Marginal improvement in tool life and surface roughness were observed in two step process compared to that with conventional process.

  6. Cyclic process for producing methane from carbon monoxide with heat removal

    DOEpatents

    Frost, Albert C.; Yang, Chang-lee

    1982-01-01

    Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

  7. Cyclic process for producing methane in a tubular reactor with effective heat removal

    DOEpatents

    Frost, Albert C.; Yang, Chang-Lee

    1986-01-01

    Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

  8. Sliding wear and corrosion behaviour of alloyed austempered ductile iron subjected to novel two step austempering treatment

    NASA Astrophysics Data System (ADS)

    Sethuram, D.; Srisailam, Shravani; Rao Ponangi, Babu

    2018-04-01

    Austempered Ductile Iron(ADI) is an exciting alloy of iron which offers the design engineers the best combination high strength-to-weight ratio, low cost design flexibility, good toughness, wear resistance along with fatigue strength. The two step austempering procedure helps in simultaneously improving the tensile strength as-well as the ductility to more than that of the conventional austempering process. Extensive literature survey reveals that it’s mechanical and wear behaviour are dependent on heat treatment and alloy additions. Current work focuses on characterizing the two-step ADI samples (TSADI) developed by novel heat treatment process for resistance to corrosion and wear. The samples of Ductile Iron were austempered by the two-Step Austempering process at temperatures 300°C to 450°C in the steps of 50°C.Temperaturesare gradually increased at the rate of 14°C/Hour. In acidic medium (H2SO4), the austempered samples showed better corrosive resistance compared to conventional ductile iron. It has been observed from the wear studies that TSADI sample at 350°C is showing better wear resistance compared to ductile iron. The results are discussed in terms of fractographs, process variables and microstructural features of TSADI samples.

  9. Calculation tool for transported geothermal energy using two-step absorption process

    DOE Data Explorer

    Kyle Gluesenkamp

    2016-02-01

    This spreadsheet allows the user to calculate parameters relevant to techno-economic performance of a two-step absorption process to transport low temperature geothermal heat some distance (1-20 miles) for use in building air conditioning. The parameters included are (1) energy density of aqueous LiBr and LiCl solutions, (2) transportation cost of trucking solution, and (3) equipment cost for the required chillers and cooling towers in the two-step absorption approach. More information is available in the included public report: "A Technical and Economic Analysis of an Innovative Two-Step Absorption System for Utilizing Low-Temperature Geothermal Resources to Condition Commercial Buildings"

  10. Combined effect of pH and heating conditions on the physical properties of Alaska pollock surimi gels.

    PubMed

    Lee, Myeong Gi; Yoon, Won Byong; Park, Jae W

    2017-06-01

    Physical properties of Alaska pollock surimi paste were investigated as affected by pH (4.0 and 6.0-10.0) and heating conditions (slow and fast). The highest values of gel strength and deformability, as shown by breaking force and penetration distance, were obtained at pH 7.5-8.0, while the lowest values were at pH 10.0 followed by pH 6.0 and pH 6.5, respectively. Two-step slow heating process increased the breaking strength value nearly two times higher than one-step fast heating. The effect of pH was strikingly high at pH 7.5 when gels were prepared using 2-step heating, indicating the pH dependence of endogenous transglutaminase. However, the highest gel strength was obtained at pH 8.0 when gels were prepared in fast heating. Whiteness value (L - 3b*) increased significantly (p < .05) as pH increased from 6.0 to 6.5, but thereafter decreased significantly (p < .05) as pH increased. L* value (lightness) and b* value (yellowness) continuously decreased as the pH is shifted from 6.0 to 10. Fast heated gels showed the lowest yellowness, resulting in whiter appearance, probably due to the effect of reduced browning reaction. The uniqueness of this study was to measure the combined effect of pH and heating conditions on the gel texture and color. There were various studies dealing with pH or heating conditions independently. As the primary character for surimi seafood is gel texture and color. The highest values of gel strength and deformability, as shown by breaking force and penetration distance, were obtained at pH 7.5-8.0, while the lowest values were at pH 10.0 followed by pH 6.0 and pH 6.5, respectively. Two-step slow heating process increased the breaking strength value nearly two times higher than one-step fast heating. Whiteness value (L - 3b*) increased significantly as pH increased from 6.0 to 6.5, but thereafter decreased significantly as pH increased. L* value (lightness) and b* value (yellowness) continuously decreased as the pH is shifted from 6.0 to 10. Fast heated gels showed the lowest yellowness, resulting in whiter appearance. © 2016 Wiley Periodicals, Inc.

  11. Biodiesel production from waste frying oil using waste animal bone and solar heat.

    PubMed

    Corro, Grisel; Sánchez, Nallely; Pal, Umapada; Bañuelos, Fortino

    2016-01-01

    A two-step catalytic process for the production of biodiesel from waste frying oil (WFO) at low cost, utilizing waste animal-bone as catalyst and solar radiation as heat source is reported in this work. In the first step, the free fatty acids (FFA) in WFO were esterified with methanol by a catalytic process using calcined waste animal-bone as catalyst, which remains active even after 10 esterification runs. The trans-esterification step was catalyzed by NaOH through thermal activation process. Produced biodiesel fulfills all the international requirements for its utilization as a fuel. A probable reaction mechanism for the esterification process is proposed considering the presence of hydroxyapatite at the surface of calcined animal bones. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Developing a two-step heat treatment for inactivating desiccation-adapted Salmonella spp. in aged chicken litter.

    PubMed

    Chen, Zhao; Wang, Hongye; Jiang, Xiuping

    2015-02-01

    The effectiveness of a two-step heat treatment for eliminating desiccation-adapted Salmonella spp. in aged chicken litter was evaluated. The aged chicken litter with 20, 30, 40, and 50% moisture contents was inoculated with a mixture of four Salmonella serotypes for a 24-h adaptation. Afterwards, the inoculated chicken litter was added into the chicken litter with the adjusted moisture content for a 1-h moist-heat treatment at 65 °C and 100% relative humidity inside a water bath, followed by a dry-heat treatment in a convection oven at 85 °C for 1 h to the desired moisture level (<10-12%). After moist-heat treatment, the populations of Salmonella in aged chicken litter at 20 and 30% moisture contents declined from ≈6.70 log colony-forming units (CFU)/g to 3.31 and 3.00 log CFU/g, respectively. After subsequent 1-h dry-heat treatment, the populations further decreased to 2.97 and 2.57 log CFU/g, respectively. Salmonella cells in chicken litter with 40% and 50% moisture contents were only detectable by enrichment after 40 and 20 min of moist-heat treatment, respectively. Moisture contents in all samples were reduced to <10% after a 1-h dry-heat process. Our results demonstrated that the two-step heat treatment was effective in reducing >5.5 logs of desiccation-adapted Salmonella in aged chicken litter with moisture content at or above 40%. Clearly, the findings from this study may provide the chicken litter processing industry with an effective heat treatment method for producing Salmonella-free chicken litter.

  13. Carbothermal Reduction of Quartz with Carbon from Natural Gas

    NASA Astrophysics Data System (ADS)

    Li, Fei; Tangstad, Merete

    2017-04-01

    Carbothermal reaction between quartz and two different carbons originating from natural gas were investigated in this paper. One of two carbons is the commercial carbon black produced from natural gas in a medium thermal production process. The other carbon is obtained from natural gas cracking at 1273 K (1000 °C) deposited directly on the quartz pellet. At the 1923 K (1650 °C) and CO atmosphere, the impact of carbon content, pellet structure, gas transfer, and heating rate are investigated in a thermo-gravimetric furnace. The reaction process can be divided into two steps: an initial SiC-producing step followed by a SiO-producing step. Higher carbon content and increased gas transfer improves the reaction rate of SiC-producing step, while the thicker carbon coating in carbon-deposited pellet hinders reaction rate. Better gas transfer of sample holder improves reaction rate but causes more SiO loss. Heating rate has almost no influence on reaction. Mass balance analysis shows that mole ratios between SiO2, free carbon, and SiC in the SiC-producing step and SiO-producing step in CO and Ar fit the reaction SiO2(s) + 3 C(s) = SiC(s) + 2 CO(g). SiC-particle and SiC-coating formation process in mixed pellet and carbon-deposited pellet are proposed. SiC whiskers formed in the voids of these two types of pellets.

  14. Numerical characterisation of one-step and three-step solar air heating collectors used for cocoa bean solar drying.

    PubMed

    Orbegoso, Elder Mendoza; Saavedra, Rafael; Marcelo, Daniel; La Madrid, Raúl

    2017-12-01

    In the northern coastal and jungle areas of Peru, cocoa beans are dried using artisan methods, such as direct exposure to sunlight. This traditional process is time intensive, leading to a reduction in productivity and, therefore, delays in delivery times. The present study was intended to numerically characterise the thermal behaviour of three configurations of solar air heating collectors in order to determine which demonstrated the best thermal performance under several controlled operating conditions. For this purpose, a computational fluid dynamics model was developed to describe the simultaneous convective and radiative heat transfer phenomena under several operation conditions. The constructed computational fluid dynamics model was firstly validated through comparison with the data measurements of a one-step solar air heating collector. We then simulated two further three-step solar air heating collectors in order to identify which demonstrated the best thermal performance in terms of outlet air temperature and thermal efficiency. The numerical results show that under the same solar irradiation area of exposition and operating conditions, the three-step solar air heating collector with the collector plate mounted between the second and third channels was 67% more thermally efficient compared to the one-step solar air heating collector. This is because the air exposition with the surface of the collector plate for the three-step solar air heating collector former device was twice than the one-step solar air heating collector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Role of the Heat Sink Layer Ta for Ultrafast Spin Dynamic Process in Amorphous TbFeCo Thin Films

    NASA Astrophysics Data System (ADS)

    Ren, Y.; Zhang, Z. Z.; Min, T.; Jin, Q. Y.

    The ultrafast demagnetization processes (UDP) in Ta (t nm)/TbFeCo (20 nm) films have been studied using the time-resolved magneto-optical Kerr effect (TRMOKE). With a fixed pump fluence of 2 mJ/cm2, for the sample without a Ta underlayer (t=0nm), we observed the UDP showing a two-step decay behavior, with a relatively longer decay time (τ2) around 3.0 ps in the second step due to the equilibrium of spin-lattice relaxation following the 4f occupation. As a 10nm Ta layer is deposited, the two-step demagnetization still exists while τ2 decreases to ˜1.9ps. Nevertheless, the second-step decay (τ2=0ps) disappears as the Ta layer thickness is increased up to 20 nm, only the first-step UDP occurs within 500 fs, followed by a fast recovery process. The rapid magnetization recovery rate strongly depends on the pump fluence. We infer that the Ta layer provides conduction electrons involving the thermal equilibrium of spin-lattice interaction and serves as heat bath taking away energy from spins of TbFeCo alloy film in UDP.

  16. Plasma Heating and Alfvénic Turbulence Enhancement During Two Steps of Energy Conversion in Magnetic Reconnection Exhaust Region of Solar Wind

    NASA Astrophysics Data System (ADS)

    Jiansen, He; Xingyu, Zhu; Yajie, Chen; Chadi, Salem; Michael, Stevens; Hui, Li; Wenzhi, Ruan; Lei, Zhang; Chuanyi, Tu

    2018-04-01

    The magnetic reconnection exhaust is a pivotal region with enormous magnetic energy being continuously released and converted. The physical processes of energy conversion involved are so complicated that an all-round understanding based on in situ measurements is still lacking. We present the evidence of plasma heating by illustrating the broadening of proton and electron velocity distributions, which are extended mainly along the magnetic field, in an exhaust of interchange reconnection between two interplanetary magnetic flux tubes of the same polarity on the Sun. The exhaust is asymmetric across an interface, with both sides being bounded by a pair of compound discontinuities consisting of rotational discontinuity and slow shock. The energized plasmas are found to be firehose unstable, and responsible for the emanation of Alfvén waves during the second step of energy conversion. It is realized that the energy conversion in the exhaust can be a two-step process involving both plasma energization and wave emission.

  17. Two-step sulfonation process for the conversion of polymer fibers to carbon fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barton, Bryan E.; Patton, Jasson T.; Hukkanen, Eric J.

    Disclosed herein are processes for preparing carbon fibers, comprising: sulfonating a polymer fiber with a sulfonating agent that is fuming sulfuric acid, sulfuric acid, chlorosulfonic acid, or a combination thereof; treating the sulfonated polymer with a heated solvent, wherein the temperature of the heated solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 501-3000.degree. C. Carbon fibers prepared according to these methods are also disclosed herein.

  18. One step sintering of homogenized bauxite raw material and kinetic study

    NASA Astrophysics Data System (ADS)

    Gao, Chang-he; Jiang, Peng; Li, Yong; Sun, Jia-lin; Zhang, Jun-jie; Yang, Huan-ying

    2016-10-01

    A one-step sintering process of bauxite raw material from direct mining was completed, and the kinetics of this process was analyzed thoroughly. The results show that the sintering kinetics of bauxite raw material exhibits the liquid-phase sintering behavior. A small portion of impurities existed in the raw material act as a liquid phase. After X-ray diffraction analyses, scanning electron microscopy observations, and kinetics calculations, sintering temperature and heating duration were determined as the two major factors contributing to the sintering process and densification of bauxite ore. An elevated heating temperature and longer duration favor the densification process. The major obstacle for the densification of bauxite material is attributed to the formation of the enclosed blowhole during liquid-phase sintering.

  19. Preparation, characterization and dissolution of passive oxide film on the 400 series stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Sathyaseelan, V. S.; Rufus, A. L.; Chandramohan, P.; Subramanian, H.; Velmurugan, S.

    2015-12-01

    Full system decontamination of Primary Heat Transport (PHT) system of Pressurised Heavy Water Reactors (PHWRs) resulted in low decontamination factors (DF) on stainless steel (SS) surfaces. Hence, studies were carried out with 403 SS and 410 SS that are the material of construction of "End-Fitting body" and "End-Fitting Liner tubes". Three formulations were evaluated for the dissolution of passive films formed over these alloys viz., i) Two-step process consisting of oxidation and reduction reactions, ii) Dilute Chemical Decontamination (DCD) and iii) High Temperature Process. The two-step and high temperature processes could dissolve the oxide completely while the DCD process could remove only 60%. Various techniques like XRD, Raman spectroscopy and SEM-EDX were used for assessing the dissolution process. The two-step process is time consuming, laborious while the high temperature process is less time consuming and is recommended for SS decontamination.

  20. Mechanical and Metallurgical Evolution of Stainless Steel 321 in a Multi-step Forming Process

    NASA Astrophysics Data System (ADS)

    Anderson, M.; Bridier, F.; Gholipour, J.; Jahazi, M.; Wanjara, P.; Bocher, P.; Savoie, J.

    2016-04-01

    This paper examines the metallurgical evolution of AISI Stainless Steel 321 (SS 321) during multi-step forming, a process that involves cycles of deformation with intermediate heat treatment steps. The multi-step forming process was simulated by implementing interrupted uniaxial tensile testing experiments. Evolution of the mechanical properties as well as the microstructural features, such as twins and textures of the austenite and martensite phases, was studied as a function of the multi-step forming process. The characteristics of the Strain-Induced Martensite (SIM) were also documented for each deformation step and intermediate stress relief heat treatment. The results indicated that the intermediate heat treatments considerably increased the formability of SS 321. Texture analysis showed that the effect of the intermediate heat treatment on the austenite was minor and led to partial recrystallization, while deformation was observed to reinforce the crystallographic texture of austenite. For the SIM, an Olson-Cohen equation type was identified to analytically predict its formation during the multi-step forming process. The generated SIM was textured and weakened with increasing deformation.

  1. One-step aluminium-assisted crystallization of Ge epitaxy on Si by magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ziheng, E-mail: ziheng.liu@unsw.edu.au; Hao, Xiaojing; Ho-Baillie, Anita

    In this work, one-step aluminium-assisted crystallization of Ge on Si is achieved via magnetron sputtering by applying an in-situ low temperature (50 °C to 150 °C) heat treatment in between Al and Ge depositions. The effect of heat treatment on film properties and the growth mechanism of Ge epitaxy on Si are studied via X-ray diffraction, Raman and transmission electron microscopy analyses. Compared with the conventional two-step process, the one-step aluminium-assisted crystallization requires much lower thermal budget and results in pure Ge epitaxial layer, which may be suitable for use as a virtual substrate for the fabrication of III-V solar cells.

  2. Sensitivity Equation Derivation for Transient Heat Transfer Problems

    NASA Technical Reports Server (NTRS)

    Hou, Gene; Chien, Ta-Cheng; Sheen, Jeenson

    2004-01-01

    The focus of the paper is on the derivation of sensitivity equations for transient heat transfer problems modeled by different discretization processes. Two examples will be used in this study to facilitate the discussion. The first example is a coupled, transient heat transfer problem that simulates the press molding process in fabrication of composite laminates. These state equations are discretized into standard h-version finite elements and solved by a multiple step, predictor-corrector scheme. The sensitivity analysis results based upon the direct and adjoint variable approaches will be presented. The second example is a nonlinear transient heat transfer problem solved by a p-version time-discontinuous Galerkin's Method. The resulting matrix equation of the state equation is simply in the form of Ax = b, representing a single step, time marching scheme. A direct differentiation approach will be used to compute the thermal sensitivities of a sample 2D problem.

  3. Diffusion welding. [heat treatment of nickel alloys following single step vacuum welding process

    NASA Technical Reports Server (NTRS)

    Holko, K. H. (Inventor)

    1974-01-01

    Dispersion-strengthened nickel alloys are sanded on one side and chemically polished. This is followed by a single-step welding process wherein the polished surfaces are forced into intimate contact at 1,400 F for one hour in a vacuum. Diffusion, recrystallization, and grain growth across the original weld interface are obtained during postheating at 2,150 F for two hours in hydrogen.

  4. Aeration control of thermophilic aerobic digestion using fluorescence monitoring.

    PubMed

    Kim, Young-Kee; Oh, Byung-Keun

    2009-01-01

    The thermophilic aerobic digestion (TAD) process is recognized as an effective method for rapid waste activated sludge (WAS) degradation and the deactivation of pathogenic microorganisms. Yet, high energy costs due to heating and aeration have limited the commercialization of economical TAD processes. Previous research on autothermal thermophilic aerobic digestion (ATAD) has already reduced the heating cost. However, only a few studies have focused on reducing the aeration cost. Therefore, this study applied a two-step aeration control strategy to a fill-and-draw mode semicontinuous TAD process. The NADH-dependent fluorescence was monitored throughout the TAD experiment, and the aeration rate shifted according to the fluorescence intensity. As a result, the simple two-step aeration control operation achieved a 20.3% reduction in the total aeration, while maintaining an effective and stable operation. It is also expected that more savings can be achieved with a further reduction of the lower aeration rate or multisegmentation of the aeration rate.

  5. Sequential control of step-bunching during graphene growth on SiC (0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Jianfeng; Kusunoki, Michiko; Yasui, Osamu

    2016-08-22

    We have investigated the relation between the step-bunching and graphene growth phenomena on an SiC substrate. We found that only a minimum amount of step-bunching occurred during the graphene growth process with a high heating rate. On the other hand, a large amount of step-bunching occurred using a slow heating process. These results indicated that we can control the degree of step-bunching during graphene growth by controlling the heating rate. We also found that graphene coverage suppressed step bunching, which is an effective methodology not only in the graphene technology but also in the SiC-based power electronics.

  6. Improved Stress Corrosion Cracking Resistance and Strength of a Two-Step Aged Al-Zn-Mg-Cu Alloy Using Taguchi Method

    NASA Astrophysics Data System (ADS)

    Lin, Lianghua; Liu, Zhiyi; Ying, Puyou; Liu, Meng

    2015-12-01

    Multi-step heat treatment effectively enhances the stress corrosion cracking (SCC) resistance but usually degrades the mechanical properties of Al-Zn-Mg-Cu alloys. With the aim to enhance SCC resistance as well as strength of Al-Zn-Mg-Cu alloys, we have optimized the process parameters during two-step aging of Al-6.1Zn-2.8Mg-1.9Cu alloy by Taguchi's L9 orthogonal array. In this work, analysis of variance (ANOVA) was performed to find out the significant heat treatment parameters. The slow strain rate testing combined with scanning electron microscope and transmission electron microscope was employed to study the SCC behaviors of Al-Zn-Mg-Cu alloy. Results showed that the contour map produced by ANOVA offered a reliable reference for selection of optimum heat treatment parameters. By using this method, a desired combination of mechanical performances and SCC resistance was obtained.

  7. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    NASA Astrophysics Data System (ADS)

    Wang, Ten-See; Stewart, Eric T.; Canabal, Francisco

    A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze the entire process on a three-dimensional domain. The computed flammability at the exit of the heat exchanger was less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process.

  8. Study on characteristics of printed circuit board liberation and its crushed products.

    PubMed

    Quan, Cui; Li, Aimin; Gao, Ningbo

    2012-11-01

    Recycling printed circuit board waste (PCBW) waste is a hot issue of environmental protection and resource recycling. Mechanical and thermo-chemical methods are two traditional recycling processes for PCBW. In the present research, a two-step crushing process combined with a coarse-crushing step and a fine-pulverizing step was adopted, and then the crushed products were classified into seven different fractions with a standard sieve. The liberation situation and particle shape in different size fractions were observed. Properties of different size fractions, such as heating value, thermogravimetric, proximate, ultimate and chemical analysis were determined. The Rosin-Rammler model was applied to analyze the particle size distribution of crushed material. The results indicated that complete liberation of metals from the PCBW was achieved at a size less than 0.59 mm, but the nonmetal particle in the smaller-than-0.15 mm fraction is liable to aggregate. Copper was the most prominent metal in PCBW and mainly enriched in the 0.42-0.25 mm particle size. The Rosin-Rammler equation adequately fit particle size distribution data of crushed PCBW with a correlation coefficient of 0.9810. The results of heating value and proximate analysis revealed that the PCBW had a low heating value and high ash content. The combustion and pyrolysis process of PCBW was different and there was an obvious oxidation peak of Cu in combustion runs.

  9. Analysis of Water Recovery Rate from the Heat Melt Compactor

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Hegde, U.; Gokoglu, S.

    2013-01-01

    Human space missions generate trash with a substantial amount of plastic (20% or greater by mass). The trash also contains water trapped in food residue and paper products and other trash items. The Heat Melt Compactor (HMC) under development by NASA Ames Research Center (ARC) compresses the waste, dries it to recover water and melts the plastic to encapsulate the compressed trash. The resulting waste disk or puck represents an approximately ten-fold reduction in the volume of the initial trash loaded into the HMC. In the current design concept being pursued, the trash is compressed by a piston after it is loaded into the trash chamber. The piston face, the side walls of the waste processing chamber and the end surface in contact with the waste can be heated to evaporate the water and to melt the plastic. Water is recovered by the HMC in two phases. The first is a pre-process compaction without heat or with the heaters initially turned on but before the waste heats up. Tests have shown that during this step some liquid water may be expelled from the chamber. This water is believed to be free water (i.e., not bound with or absorbed in other waste constituents) that is present in the trash. This phase is herein termed Phase A of the water recovery process. During HMC operations, it is desired that liquid water recovery in Phase A be eliminated or minimized so that water-vapor processing equipment (e.g., condensers) downstream of the HMC are not fouled by liquid water and its constituents (i.e., suspended or dissolved matter) exiting the HMC. The primary water recovery process takes place next where the trash is further compacted while the heated surfaces reach their set temperatures for this step. This step will be referred to herein as Phase B of the water recovery process. During this step the waste chamber may be exposed to different selected pressures such as ambient, low pressure (e.g., 0.2 atm), or vacuum. The objective for this step is to remove both bound and any remaining free water in the trash by evaporation. The temperature settings of the heated surfaces are usually kept above the saturation temperature of water but below the melting temperature of the plastic in the waste during this step to avoid any encapsulation of wet trash which would reduce the amount of recovered water by blocking the vapor escape. In this paper, we analyze the water recovery rate during Phase B where the trash is heated and water leaves the waste chamber as vapor, for operation of the HMC in reduced gravity. We pursue a quasi-one-dimensional model with and without sidewall heating to determine the water recovery rate and the trash drying time. The influences of the trash thermal properties, the amount of water loading, and the distribution of the water in the trash on the water recovery rates are determined.

  10. Quantification of triglyceride content in oleaginous materials using thermo-gravimetry

    DOE PAGES

    Maddi, Balakrishna; Vadlamani, Agasteswar; Viamajala, Sridhar; ...

    2017-10-16

    Laboratory analytical methods for quantification of triglyceride content in oleaginous biomass samples, especially microalgae, require toxic chemicals and/or organic solvents and involve multiple steps. We describe a simple triglyceride quantification method that uses thermo-gravimetry. This method is based on the observation that triglycerides undergo near-complete volatilization/degradation over a narrow temperature interval with a derivative weight loss peak at 420 °C when heated in an inert atmosphere. Degradation of the other constituents of oleaginous biomass (protein and carbohydrates) is largely complete after prolonged exposure of samples at 320 °C. Based on these observations, the triglyceride content of oleaginous biomass was estimatedmore » by using the following two-step process. In Step 1, samples were heated to 320 °C and kept isothermal at this temperature for 15 min. In Step 2, samples were heated from 320 °C to 420 °C and then kept isothermal at 420 °C for 15 min. The results show that mass loss in step 2 correlated well with triglyceride content estimates obtained from conventional techniques for diverse microalgae and oilseed samples.« less

  11. Quantification of triglyceride content in oleaginous materials using thermo-gravimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddi, Balakrishna; Vadlamani, Agasteswar; Viamajala, Sridhar

    Laboratory analytical methods for quantification of triglyceride content in oleaginous biomass samples, especially microalgae, require toxic chemicals and/or organic solvents and involve multiple steps. We describe a simple triglyceride quantification method that uses thermo-gravimetry. This method is based on the observation that triglycerides undergo near-complete volatilization/degradation over a narrow temperature interval with a derivative weight loss peak at 420 °C when heated in an inert atmosphere. Degradation of the other constituents of oleaginous biomass (protein and carbohydrates) is largely complete after prolonged exposure of samples at 320 °C. Based on these observations, the triglyceride content of oleaginous biomass was estimatedmore » by using the following two-step process. In Step 1, samples were heated to 320 °C and kept isothermal at this temperature for 15 min. In Step 2, samples were heated from 320 °C to 420 °C and then kept isothermal at 420 °C for 15 min. The results show that mass loss in step 2 correlated well with triglyceride content estimates obtained from conventional techniques for diverse microalgae and oilseed samples.« less

  12. Heat recirculating cooler for fluid stream pollutant removal

    DOEpatents

    Richards, George A.; Berry, David A.

    2008-10-28

    A process by which heat is removed from a reactant fluid to reach the operating temperature of a known pollutant removal method and said heat is recirculated to raise the temperature of the product fluid. The process can be utilized whenever an intermediate step reaction requires a lower reaction temperature than the prior and next steps. The benefits of a heat-recirculating cooler include the ability to use known pollutant removal methods and increased thermal efficiency of the system.

  13. TG study of the Li0.4Fe2.4Zn0.2O4 ferrite synthesis

    NASA Astrophysics Data System (ADS)

    Lysenko, E. N.; Nikolaev, E. V.; Surzhikov, A. P.

    2016-02-01

    In this paper, the kinetic analysis of Li-Zn ferrite synthesis was studied using thermogravimetry (TG) method through the simultaneous application of non-linear regression to several measurements run at different heating rates (multivariate non-linear regression). Using TG-curves obtained for the four heating rates and Netzsch Thermokinetics software package, the kinetic models with minimal adjustable parameters were selected to quantitatively describe the reaction of Li-Zn ferrite synthesis. It was shown that the experimental TG-curves clearly suggest a two-step process for the ferrite synthesis and therefore a model-fitting kinetic analysis based on multivariate non-linear regressions was conducted. The complex reaction was described by a two-step reaction scheme consisting of sequential reaction steps. It is established that the best results were obtained using the Yander three-dimensional diffusion model at the first stage and Ginstling-Bronstein model at the second step. The kinetic parameters for lithium-zinc ferrite synthesis reaction were found and discussed.

  14. Conversion of crop seed oils to jet fuel and associated methods

    DOEpatents

    Ginosar, Daniel M.; Petkovic, Lucia M.; Thompson, David N.

    2010-05-18

    Aspects of the invention include methods to produce jet fuel from biological oil sources. The method may be comprised of two steps: hydrocracking and reforming. The process may be self-sufficient in heat and hydrogen.

  15. Terraforming - Making an earth of Mars

    NASA Astrophysics Data System (ADS)

    McKay, C. P.

    1987-12-01

    The possibility of creating a habitable environment on Mars via terraforming is discussed. The first step is to determine the amount, distribution, and chemical state of water, carbon dioxide, and nitrogen. The process of warming Mars and altering its atmosphere naturally divides into two steps: in the first step, the planet would be heated by a warm thick carbon dioxide atmosphere, while the second step would be to convert the atmospheric carbon dioxide and soil nitrates to the desired oxygen and nitrogen mixture. It is concluded that life will play a major role in any terraforming of Mars, and that terraforming will be a gradual evolutionary process duplicating the early evolution of life on earth.

  16. Pasteurization of shell eggs using radio frequency heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geveke, David J.; Bigley, Andrew B. W.; Brunkhorst, Christopher D.

    The USDA-FSIS estimates that pasteurization of all shell eggs in the U.S. would reduce the annual number of illnesses by more than 110,000. However, less than 3% of shell eggs are commercially pasteurized. One of the main reasons for this is that the commercial hot water process requires as much as 60 min to complete. In the present study, a radio frequency (RF) apparatus was constructed, and a two-step process was developed that uses RF energy and hot water, to pasteurize eggs in less than half the time. In order to select an appropriate RF generator, the impedance of shellmore » eggs was measured in the frequency range of 10–70 MHz. The power density within the egg was modeled to prevent potential hotspots. Escherichia coli (ATCC 35218) was inoculated in the yolk to approximately 7.5 log CFU/ml. The combination process first heated the egg in 35.0 °C water for 3.5 min using 60 MHz RF energy. This resulted in the yolk being preferentially heated to 61 °C. Then, the egg was heated for an additional 20 min with 56.7 °C water. This two-step process reduced the population of E. coli by 6.5 log. The total time for the process was 23.5 min. By contrast, processing for 60 min was required to reduce the E. coli by 6.6 log using just hot water. The novel RF pasteurization process presented in this study was considerably faster than the existing commercial process. As a result, this should lead to an increase in the percentage of eggs being pasteurized, as well as a reduction of foodborne illnesses.« less

  17. Pasteurization of shell eggs using radio frequency heating

    DOE PAGES

    Geveke, David J.; Bigley, Andrew B. W.; Brunkhorst, Christopher D.

    2016-08-21

    The USDA-FSIS estimates that pasteurization of all shell eggs in the U.S. would reduce the annual number of illnesses by more than 110,000. However, less than 3% of shell eggs are commercially pasteurized. One of the main reasons for this is that the commercial hot water process requires as much as 60 min to complete. In the present study, a radio frequency (RF) apparatus was constructed, and a two-step process was developed that uses RF energy and hot water, to pasteurize eggs in less than half the time. In order to select an appropriate RF generator, the impedance of shellmore » eggs was measured in the frequency range of 10–70 MHz. The power density within the egg was modeled to prevent potential hotspots. Escherichia coli (ATCC 35218) was inoculated in the yolk to approximately 7.5 log CFU/ml. The combination process first heated the egg in 35.0 °C water for 3.5 min using 60 MHz RF energy. This resulted in the yolk being preferentially heated to 61 °C. Then, the egg was heated for an additional 20 min with 56.7 °C water. This two-step process reduced the population of E. coli by 6.5 log. The total time for the process was 23.5 min. By contrast, processing for 60 min was required to reduce the E. coli by 6.6 log using just hot water. The novel RF pasteurization process presented in this study was considerably faster than the existing commercial process. As a result, this should lead to an increase in the percentage of eggs being pasteurized, as well as a reduction of foodborne illnesses.« less

  18. New Nomenclatures for Heat Treatments of Additively Manufactured Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Baker, Andrew H.; Collins, Peter C.; Williams, James C.

    2017-07-01

    The heat-treatment designations and microstructure nomenclatures for many structural metallic alloys were established for traditional metals processing, such as casting, hot rolling or forging. These terms do not necessarily apply for additively manufactured (i.e., three-dimensionally printed or "3D printed") metallic structures. The heat-treatment terminology for titanium alloys generally implies the heat-treatment temperatures and their sequence relative to a thermomechanical processing step (e.g., forging, rolling). These designations include: β-processing, α + β-processing, β-annealing, duplex annealing and mill annealing. Owing to the absence of a thermomechanical processing step, these traditional designations can pose a problem when titanium alloys are first produced via additive manufacturing, and then heat-treated. This communication proposes new nomenclatures for heat treatments of additively manufactured titanium alloys, and uses the distinct microstructural features to provide a correlation between traditional nomenclature and the proposed nomenclature.

  19. Two-steps microwave-assisted treatment on acid hydrolysis of sago pith for bioethanol production

    NASA Astrophysics Data System (ADS)

    Sunarti, T. C.; Yanti, S. D.; Ruriani, E.

    2017-05-01

    Sago is a genus of palm that can be utilized to produce fermentable sugars as substrate for bioethanol. Sago pith is a heterogeneous substrate consists of starch and fiber. Acid hydrolysis by microwave heating radiation can break down starch and fibers together in a very short time, so it is considered to be very efficient process. The use of microwave energy (as power level) and variation of heating time can produce fermentable sugar with certain characteristics. This study included the preparation and analysis of sago pith flour; process of acid hydrolysis (0.3 M and 0.5 M H2SO4) using two steps microwave heating, first with power level 30% (1, 2 and 3 min) and second with power level 70% (3 min); and ethanol production. The conventional treatment (autoclaving at 121°C for 15 min) was carried for the comparison. The highest fermentable sugar (105.7 g/l) was resulted from microwave heating with power level 30% for 2 min followed by the power level 70% for 3 min. This hydrolyzate then used as substrate for bioethanol fermentation and partially neutralized (pH 3, 4, 5) by using yeast Issatchenkia orientalis, and the highest ethanol (2.8 g/l) was produced in pH 5.

  20. ANALYZING NUMERICAL ERRORS IN DOMAIN HEAT TRANSPORT MODELS USING THE CVBEM.

    USGS Publications Warehouse

    Hromadka, T.V.

    1987-01-01

    Besides providing an exact solution for steady-state heat conduction processes (Laplace-Poisson equations), the CVBEM (complex variable boundary element method) can be used for the numerical error analysis of domain model solutions. For problems where soil-water phase change latent heat effects dominate the thermal regime, heat transport can be approximately modeled as a time-stepped steady-state condition in the thawed and frozen regions, respectively. The CVBEM provides an exact solution of the two-dimensional steady-state heat transport problem, and also provides the error in matching the prescribed boundary conditions by the development of a modeling error distribution or an approximate boundary generation.

  1. Power module packaging with double sided planar interconnection and heat exchangers

    DOEpatents

    Liang, Zhenxian; Marlino, Laura D.; Ning, Puqi; Wang, Fei

    2015-05-26

    A double sided cooled power module package having a single phase leg topology includes two IGBT and two diode semiconductor dies. Each IGBT die is spaced apart from a diode semiconductor die, forming a switch unit. Two switch units are placed in a planar face-up and face-down configuration. A pair of DBC or other insulated metallic substrates is affixed to each side of the planar phase leg semiconductor dies to form a sandwich structure. Attachment layers are disposed on outer surfaces of the substrates and two heat exchangers are affixed to the substrates by rigid bond layers. The heat exchangers, made of copper or aluminum, have passages for carrying coolant. The power package is manufactured in a two-step assembly and heating process where direct bonds are formed for all bond layers by soldering, sintering, solid diffusion bonding or transient liquid diffusion bonding, with a specially designed jig and fixture.

  2. The autumn effect: timing of physical dormancy break in seeds of two winter annual species of Geraniaceae by a stepwise process

    PubMed Central

    Gama-Arachchige, N. S.; Baskin, J. M.; Geneve, R. L.; Baskin, C. C.

    2012-01-01

    Background and Aims The involvement of two steps in the physical dormancy (PY)-breaking process previously has been demonstrated in seeds of Fabaceae and Convolvulaceae. Even though there is a claim for a moisture-controlled stepwise PY-breaking in some species of Geraniaceae, no study has evaluated the role of temperature in the PY-breaking process in this family. The aim of this study was to determine whether a temperature-controlled stepwise PY-breaking process occurs in seeds of the winter annuals Geranium carolinianum and G. dissectum. Methods Seeds of G. carolinianum and G. dissectum were stored under different temperature regimes to test the effect of storage temperature on PY-break. The role of temperature and moisture regimes in regulating PY-break was investigated by treatments simulating natural conditions. Greenhouse (non-heated) experiments on seed germination and burial experiments (outdoors) were carried out to determine the PY-breaking behaviour in the natural habitat. Key Results Irrespective of moisture conditions, sensitivity to the PY-breaking step in seeds of G. carolinianum was induced at temperatures ≥20 °C, and exposure to temperatures ≤20 °C made the sensitive seeds permeable. Sensitivity of seeds increased with time. In G. dissectum, PY-break occurred at temperatures ≥20 °C in a single step under constant wet or dry conditions and in two steps under alternate wet–dry conditions if seeds were initially kept wet. Conclusions Timing of seed germination with the onset of autumn can be explained by PY-breaking processes involving (a) two temperature-dependent steps in G. carolinianum and (b) one or two moisture-dependent step(s) along with the inability to germinate under high temperatures in G. dissectum. Geraniaceae is the third of 18 families with PY in which a two-step PY-breaking process has been demonstrated. PMID:22684684

  3. Laser-induced Self-organizing Microstructures on Steel for Joining with Polymers

    NASA Astrophysics Data System (ADS)

    van der Straeten, Kira; Burkhardt, Irmela; Olowinsky, Alexander; Gillner, Arnold

    The combination of different materials such as thermoplastic composites and metals is an important way to improve lightweight construction. As direct connections between these materials fail due to their physical and chemical properties, other joining techniques are required. A new joining approach besides fastening and adhesive joining is a laser-based two-step process. Within the first step the metal surface is modified by laser-microstructuring. In order to enlarge the boundary surface and create undercuts, random self-organizing microstructures are generated on stainless steel substrates. In a second process step both joining partners, metal and composite, are clamped together, the steel surface is heated up with laser radiation and through heat conduction the thermoplastic matrix is melted and flows into the structures. After cooling-down a firm joint between both materials is created. The presented work shows the influence of different laser parameters on the generation of the microstructures. The joint strength is investigated through tensile shear strength tests.

  4. Heat and Mass Transfer Model in Freeze-Dried Medium

    NASA Astrophysics Data System (ADS)

    Alfat, Sayahdin; Purqon, Acep

    2017-07-01

    There are big problems in agriculture sector every year. One of the major problems is abundance of agricultural product during the peak of harvest season that is not matched by an increase in demand of agricultural product by consumers, this causes a wasted agricultural products. Alternative way was food preservation by freeze dried method. This method was already using heat transfer through conduction and convection to reduce water quality in the food. The main objective of this research was to design a model heat and mass transfer in freeze-dried medium. We had two steps in this research, the first step was design of medium as the heat injection site and the second was simulate heat and mass transfer of the product. During simulation process, we use physical property of some agriculture product. The result will show how temperature and moisture distribution every second. The method of research use finite element method (FEM) and will be illustrated in three dimensional.

  5. ANALYZING NUMERICAL ERRORS IN DOMAIN HEAT TRANSPORT MODELS USING THE CVBEM.

    USGS Publications Warehouse

    Hromadka, T.V.; ,

    1985-01-01

    Besides providing an exact solution for steady-state heat conduction processes (Laplace Poisson equations), the CVBEM (complex variable boundary element method) can be used for the numerical error analysis of domain model solutions. For problems where soil water phase change latent heat effects dominate the thermal regime, heat transport can be approximately modeled as a time-stepped steady-state condition in the thawed and frozen regions, respectively. The CVBEM provides an exact solution of the two-dimensional steady-state heat transport problem, and also provides the error in matching the prescribed boundary conditions by the development of a modeling error distribution or an approximative boundary generation. This error evaluation can be used to develop highly accurate CVBEM models of the heat transport process, and the resulting model can be used as a test case for evaluating the precision of domain models based on finite elements or finite differences.

  6. Two-Step Vapor/Liquid/Solid Purification

    NASA Technical Reports Server (NTRS)

    Holland, L. R.

    1986-01-01

    Vertical distillation system combines in single operation advantages of multiple zone refining with those of distillation. Developed specifically to load Bridgman-Stockbarger (vertical-solidification) growth ampoules with ultrapure tellurium and cadmium, system, with suitable modifications, serves as material refiner. In first phase of purification process, ampoule heated to drive off absorbed volatiles. Second phase, evaporator heated to drive off volatiles in charge. Third phase, slowly descending heater causes distillation from evaporator to growing crystal in ampoule.

  7. A new heat transfer analysis in machining based on two steps of 3D finite element modelling and experimental validation

    NASA Astrophysics Data System (ADS)

    Haddag, B.; Kagnaya, T.; Nouari, M.; Cutard, T.

    2013-01-01

    Modelling machining operations allows estimating cutting parameters which are difficult to obtain experimentally and in particular, include quantities characterizing the tool-workpiece interface. Temperature is one of these quantities which has an impact on the tool wear, thus its estimation is important. This study deals with a new modelling strategy, based on two steps of calculation, for analysis of the heat transfer into the cutting tool. Unlike the classical methods, considering only the cutting tool with application of an approximate heat flux at the cutting face, estimated from experimental data (e.g. measured cutting force, cutting power), the proposed approach consists of two successive 3D Finite Element calculations and fully independent on the experimental measurements; only the definition of the behaviour of the tool-workpiece couple is necessary. The first one is a 3D thermomechanical modelling of the chip formation process, which allows estimating cutting forces, chip morphology and its flow direction. The second calculation is a 3D thermal modelling of the heat diffusion into the cutting tool, by using an adequate thermal loading (applied uniform or non-uniform heat flux). This loading is estimated using some quantities obtained from the first step calculation, such as contact pressure, sliding velocity distributions and contact area. Comparisons in one hand between experimental data and the first calculation and at the other hand between measured temperatures with embedded thermocouples and the second calculation show a good agreement in terms of cutting forces, chip morphology and cutting temperature.

  8. First results from the energetic particle instrument on the OEDIPUS-C sounding rocket

    NASA Astrophysics Data System (ADS)

    Gough, M. P.; Hardy, D. A.; James, H. G.

    The Canadian / US OEDIPUS-C rocket was flown from the Poker Flat Rocket Range November 6th 1995 as a mother-son sounding rocket. It was designed to study auroral ionospheric plasma physics using active wave sounding and prove tether technology. The payload separated into two sections reaching a separation of 1200m along the Earth's magnetic field. One section included a frequency stepped HF transmitter and the other included a synchronised HF receiver. Both sections included Energetic Particle Instruments, EPI, stepped in energy synchronously with the transmitter steps. On-board EPI particle processing in both payloads provided direct measurements of electron heating, wave-particle interactions via particle correlators, and a high resolution measurement of wave induced particle heating via transmitter synchronised fast sampling. Strong electron heating was observed at times when the HF transmitter frequency was equal to a harmonic of the electron gyrofrequency, f_ce, or equal to the upper hybrid frequency, f_uh.

  9. Plutonium dissolution process

    DOEpatents

    Vest, M.A.; Fink, S.D.; Karraker, D.G.; Moore, E.N.; Holcomb, H.P.

    1994-01-01

    A two-step process for dissolving Pu metal is disclosed in which two steps can be carried out sequentially or simultaneously. Pu metal is exposed to a first mixture of 1.0-1.67 M sulfamic acid and 0.0025-0.1 M fluoride, the mixture having been heated to 45-70 C. The mixture will dissolve a first portion of the Pu metal but leave a portion of the Pu in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alternatively, nitric acid between 0.05 and 0.067 M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution is diluted with nitrogen.

  10. Novel process chain for hot metal gas forming of ferritic stainless steel 1.4509

    NASA Astrophysics Data System (ADS)

    Mosel, André; Lambarri, Jon; Degenkolb, Lars; Reuther, Franz; Hinojo, José Luis; Rößiger, Jörg; Eurich, Egbert; Albert, André; Landgrebe, Dirk; Wenzel, Holger

    2018-05-01

    Exhaust gas components of automobiles are often produced in ferritic stainless steel 1.4509 due to the low thermal expansion coefficient and the low material price. Until now, components of the stainless steel with complex geometries have been produced in series by means of multi-stage hydroforming at room temperature with intermediate annealing operations. The application of a single-stage hot-forming process, also referred to as hot metal gas forming (HMGF), offers great potential to significantly reduce the production costs of such components. The article describes a novel process chain for the HMGF process. Therefore the tube is heated in two steps. After pre-heating of the semi-finished product outside the press, the tube is heated up to forming start temperature by means of a tool-integrated conductive heating before forming. For the tube of a demonstrator geometry, a simulation model for the conduction heating was set up. In addition to the tool development for this process, experimental results are also described for the production of the demonstrator geometry.

  11. Engineered Multifunctional Surfaces for Fluid Handling

    NASA Technical Reports Server (NTRS)

    Thomas, Chris; Ma, Yonghui; Weislogel, Mark

    2012-01-01

    Designs incorporating variations in capillary geometry and hydrophilic and/or antibacterial surface properties have been developed that are capable of passive gas/liquid separation and passive water flow. These designs can incorporate capillary grooves and/or surfaces arranged to create linear and circumferential capillary geometry at the micro and macro scale, radial fin configurations, micro holes and patterns, and combinations of the above. The antibacterial property of this design inhibits the growth of bacteria or the development of biofilm. The hydrophilic property reduces the water contact angle with a treated substrate such that water spreads into a thin layer atop the treated surface. These antibacterial and hydrophilic properties applied to a thermally conductive surface, combined with capillary geometry, create a novel heat exchanger capable of condensing water from a humid, two-phase water and gas flow onto the treated heat exchanger surfaces, and passively separating the condensed water from the gas flow in a reduced gravity application. The overall process to generate the antibacterial and hydrophilic properties includes multiple steps to generate the two different surface properties, and can be divided into two major steps. Step 1 uses a magnetron-based sputtering technique to implant the silver atoms into the base material. A layer of silver is built up on top of the base material. Completion of this step provides the antibacterial property. Step 2 uses a cold-plasma technique to generate the hydrophilic surface property on top of the silver layer generated in Step 1. Completion of this step provides the hydrophilic property in addition to the antibacterial property. Thermally conductive materials are fabricated and then treated to create the antibacterial and hydrophilic surface properties. The individual parts are assembled to create a condensing heat exchanger with antibacterial and hydrophilic surface properties and capillary geometry, which is capable of passive phase separation in a reduced gravity application. The plasma processes for creating antibacterial and hydrophilic surface properties are suitable for applications where water is present on an exposed surface for an extended time, such that bacteria or biofilms could form, and where there is a need to manage the water on the surface. The processes are also suitable for applications where only the hydrophilic property is needed. In particular, the processes are applicable to condensing heat exchangers (CHXs), which benefit from the antibacterial properties as well as the hydrophilic properties. Water condensing onto the control surfaces of the CHX will provide the moist conditions necessary for the growth of bacteria and the formation of biofilms. The antibacterial properties of the base layer (silver) will mitigate and prevent the growth of bacteria and formation of biofilms that would otherwise reduce the CHX performance. In addition, the hydrophilic properties reduce the water contact angle and prevent water droplets from bridging between control surfaces. Overall, the hydrophilic properties reduce the pressure drop across the CHX.

  12. Isoflavone profile in soymilk as affected by soybean variety, grinding, and heat-processing methods.

    PubMed

    Zhang, Yan; Chang, Sam K C; Liu, Zhisheng

    2015-05-01

    Isoflavones impart health benefits and their overall content and profile in foods are greatly influenced at each step during processing. In this study, 2 soybean varieties (Prosoy and black soybean) were processed with 3 different grinding (ambient, cold, and hot grinding) and heating methods (traditional stove cooking, 1-phase UHT, and 2-phase UHT) for soymilk making. The results showed after cold, ambient, and hot grinding, the total isoflavones were 3917, 5013, and 5949 nmol/g for Prosoy; the total isoflavones were 4073, 3966, and 4284 nmol/g for black soybean. Grinding could significantly increase isoflavone extraction. The grinding process had a destructive effect on isoflavones and this effect varied with grinding temperature. Different heating methods had different effects on different isoflavone forms. Two soybean varieties showed distinct patterns with respect to the change of isoflavone profile during processing. © 2015 Institute of Food Technologists®

  13. Plutonium dissolution process

    DOEpatents

    Vest, Michael A.; Fink, Samuel D.; Karraker, David G.; Moore, Edwin N.; Holcomb, H. Perry

    1996-01-01

    A two-step process for dissolving plutonium metal, which two steps can be carried out sequentially or simultaneously. Plutonium metal is exposed to a first mixture containing approximately 1.0M-1.67M sulfamic acid and 0.0025M-0.1M fluoride, the mixture having been heated to a temperature between 45.degree. C. and 70.degree. C. The mixture will dissolve a first portion of the plutonium metal but leave a portion of the plutonium in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alteratively, nitric acid in a concentration between approximately 0.05M and 0.067M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution process is diluted with nitrogen.

  14. Finite Volume Element (FVE) discretization and multilevel solution of the axisymmetric heat equation

    NASA Astrophysics Data System (ADS)

    Litaker, Eric T.

    1994-12-01

    The axisymmetric heat equation, resulting from a point-source of heat applied to a metal block, is solved numerically; both iterative and multilevel solutions are computed in order to compare the two processes. The continuum problem is discretized in two stages: finite differences are used to discretize the time derivatives, resulting is a fully implicit backward time-stepping scheme, and the Finite Volume Element (FVE) method is used to discretize the spatial derivatives. The application of the FVE method to a problem in cylindrical coordinates is new, and results in stencils which are analyzed extensively. Several iteration schemes are considered, including both Jacobi and Gauss-Seidel; a thorough analysis of these schemes is done, using both the spectral radii of the iteration matrices and local mode analysis. Using this discretization, a Gauss-Seidel relaxation scheme is used to solve the heat equation iteratively. A multilevel solution process is then constructed, including the development of intergrid transfer and coarse grid operators. Local mode analysis is performed on the components of the amplification matrix, resulting in the two-level convergence factors for various combinations of the operators. A multilevel solution process is implemented by using multigrid V-cycles; the iterative and multilevel results are compared and discussed in detail. The computational savings resulting from the multilevel process are then discussed.

  15. The effect of double steps heat treatment on the microstructure of nanostructure bainitic medium carbon steels

    NASA Astrophysics Data System (ADS)

    Foughani, Milad; Kolahi, Alireza; Palizdar, Yahya

    2018-01-01

    Nowadays, Nano structure bainitic steel have attracted attention mostly because of its special mechanical properties such as high tensile strength, hardness, appropriate toughness and low manufacturing cost. The main concern for the mass production of this type of steels is prolong austempering process which increases the production costs as well as time. In this research, in order to accelerate the bainitic transformation and decrease the production time, a medium carbon steel has been prepared and two steps austempering process was employed to prevent the bainite laths thickening. The Samples were austenetized at 1000°C for 15 min and were kept in the salt bath between 1 - 12 hours at 290°C in one step and between 1 - 12 hours at the temperature range of 250°C - 300°C in two steps bainite transformation. The obtained micro structures were studied by the optical and scanning electron microscopy (FESEM) and the mechanical properties were investigated by using tensile and hardness tests. The results show that the two steps austempering process and lower carbon concentration lead to lower austempering time as well as the formation of more stable retained austenite and nanostructured bainite lath which results in higher mechanical properties.

  16. Analytic methods for design of wave cycles for wave rotor core engines

    NASA Technical Reports Server (NTRS)

    Resler, Edwin L., Jr.; Mocsari, Jeffrey C.; Nalim, M. R.

    1993-01-01

    A procedure to design a preliminary wave rotor cycle for any application is presented. To complete a cycle with heat addition there are two separate but related design steps that must be followed. The 'wave' boundary conditions determine the allowable amount of heat added in any case and the ensuing wave pattern requires certain pressure discharge conditions to allow the process to be made cyclic. This procedure, when applied, gives a first estimate of the cycle performance and the necessary information for the next step in the design process, namely the application of a characteristic based or other appropriate detailed one dimensional wave calculation that locates the proper porting around the periphery of the wave rotor. Four examples of the design procedure are given to demonstrate its utility and generality. These examples also illustrate the large gains in performance that could be realized with the use of wave rotor enhanced propulsion cycles.

  17. A Robot Trajectory Optimization Approach for Thermal Barrier Coatings Used for Free-Form Components

    NASA Astrophysics Data System (ADS)

    Cai, Zhenhua; Qi, Beichun; Tao, Chongyuan; Luo, Jie; Chen, Yuepeng; Xie, Changjun

    2017-10-01

    This paper is concerned with a robot trajectory optimization approach for thermal barrier coatings. As the requirements of high reproducibility of complex workpieces increase, an optimal thermal spraying trajectory should not only guarantee an accurate control of spray parameters defined by users (e.g., scanning speed, spray distance, scanning step, etc.) to achieve coating thickness homogeneity but also help to homogenize the heat transfer distribution on the coating surface. A mesh-based trajectory generation approach is introduced in this work to generate path curves on a free-form component. Then, two types of meander trajectories are generated by performing a different connection method. Additionally, this paper presents a research approach for introducing the heat transfer analysis into the trajectory planning process. Combining heat transfer analysis with trajectory planning overcomes the defects of traditional trajectory planning methods (e.g., local over-heating), which helps form the uniform temperature field by optimizing the time sequence of path curves. The influence of two different robot trajectories on the process of heat transfer is estimated by coupled FEM models which demonstrates the effectiveness of the presented optimization approach.

  18. Microwave-induced cracking of pyrolytic tars coupled to microwave pyrolysis for syngas production.

    PubMed

    Beneroso, D; Bermúdez, J M; Montes-Morán, M A; Arenillas, A; Menéndez, J A

    2016-10-01

    Herein a new process is proposed to produce a syngas-rich gas fraction (>80vol% H2+CO) from biowaste based on microwave heating within two differentiated steps in order to avoid tars production. The first step consists of the microwave pyrolysis of biowaste induced by a char-based susceptor at 400-800°C; tars, char and syngas-rich gas fractions being produced. The tars are then fed into the second step where a portion of the char from the first step is used as a bed material in a 0.3:1wt% ratio. This bed is heated up by microwaves up to 800°C, allowing thermal cracking of tars and additional syngas (>90vol% H2+CO) being then produced. This new concept arises as an alternative technology to the gasification of biowastes for producing syngas with no need for catalysts or gasifying reagents to minimise tars production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Thickness measurement by two-sided step-heating thermal imaging

    NASA Astrophysics Data System (ADS)

    Li, Xiaoli; Tao, Ning; Sun, J. G.; Zhang, Cunlin; Zhao, Yuejin

    2018-01-01

    Infrared thermal imaging is a promising nondestructive technique for thickness prediction. However, it is usually thought to be only appropriate for testing the thickness of thin objects or near-surface structures. In this study, we present a new two-sided step-heating thermal imaging method which employed a low-cost portable halogen lamp as the heating source and verified it with two stainless steel step wedges with thicknesses ranging from 5 mm to 24 mm. We first derived the one-dimensional step-heating thermography theory with the consideration of warm-up time of the lamp, and then applied the nonlinear regression method to fit the experimental data by the derived function to determine the thickness. After evaluating the reliability and accuracy of the experimental results, we concluded that this method is capable of testing thick objects. In addition, we provided the criterions for both the required data length and the applicable thickness range of the testing material. It is evident that this method will broaden the thermal imaging application for thickness measurement.

  20. Supercritical Fluid Spray Application Process for Adhesives and Primers

    DTIC Science & Technology

    2003-03-01

    The basic scheme of SFE process consists of three steps. A solvent, typically carbon dioxide, first is heated and pressurized to a supercritical...passivation step to remove contaminants and to prevent recontamination. Bok et al. (25) describe a pressure pulsation mechanism to stimulate improved...in as a liquid, and then it is heated to above its critical temperature to become a supercritical fluid. The sample is injected and dissolved into

  1. Thermal Modeling and Simulation of Electron Beam Melting for Rapid Prototyping on Ti6Al4V Alloys

    NASA Astrophysics Data System (ADS)

    Neira Arce, Alderson

    To be a viable solution for contemporary engineering challenges, the use of titanium alloys in a wider range of applications requires the development of new techniques and processes that are able to decrease production cost and delivery times. As a result, the use of material consolidation in a near-net-shape fashion, using dynamic techniques like additive manufacturing by electron beam selective melting EBSM represents a promising method for part manufacturing. However, a new product material development can be cost prohibitive, requiring the use of computer modeling and simulation as a way to decrease turnaround time. To ensure a proper representation of the EBSM process, a thermophysical material characterization and comparison was first performed on two Ti6Al4V powder feedstock materials prepared by plasma (PREP) and gas atomized (GA) processes. This evaluation comprises an evaluation on particle size distribution, density and powder surface area, collectively with the temperature dependence on properties such as heat capacity, thermal diffusivity, thermal conductivity and surface emissivity. Multiple techniques were employed in this evaluation, including high temperature differential scanning calorimetry (HT-DSC), laser flash analysis (LFA), infrared remote temperature analysis (IR-Thermography), laser diffraction, liquid and gas pycnometry using mercury and krypton adsorption respectively. This study was followed by the review of complementary strategies to simulate the temperature evolution during the EBSM process, using a finite element analysis package called COMSOL Multiphysics. Two alternatives dedicated to representing a moving heat source (electron beam) and the powder bed were developed using a step-by-step approximation initiative. The first method consisted of the depiction of a powder bed discretized on an array of domains, each one representing a static melt pool, where the moving heat source was illustrated by a series of time dependant selective heating and cooling steps. The second method consisted of the solution of a prescribed domain, where each powder layer is discretized by an individual 3D element and the heat source is represented by a 1D element displaced by a temperature-coupling extrapolation routine. Two validation strategies were presented here; the first was used to confirm the accuracy of the proposed model strategy by setting up a controlled experiment; the second was used to validate the post-processing data obtained by the simulation by comparison with in-situ measured EBSM process temperature. Finally, a post-process part evaluation on surface finishing and part porosity was discussed including an assessment of the use of non-destructive inspection techniques such as 3D profilometry by axial chromatism for surface roughness, partial section analysis by serial block-face scanning electron microscopy (SBFSEM) and micro computed tomography (CT-Scan) for pore and inclusion detection.

  2. Thermal energy management process experiment

    NASA Technical Reports Server (NTRS)

    Ollendorf, S.

    1984-01-01

    The thermal energy management processes experiment (TEMP) will demonstrate that through the use of two-phase flow technology, thermal systems can be significantly enhanced by increasing heat transport capabilities at reduced power consumption while operating within narrow temperature limits. It has been noted that such phenomena as excess fluid puddling, priming, stratification, and surface tension effects all tend to mask the performance of two-phase flow systems in a 1-g field. The flight experiment approach would be to attack the experiment to an appropriate mounting surface with a 15 to 20 meter effective length and provide a heat input and output station in the form of heaters and a radiator. Using environmental data, the size, location, and orientation of the experiment can be optimized. The approach would be to provide a self-contained panel and mount it to the STEP through a frame. A small electronics package would be developed to interface with the STEP avionics for command and data handling. During the flight, heaters on the evaporator will be exercised to determine performance. Flight data will be evaluated against the ground tests to determine any anomalous behavior.

  3. Nickel ferrite aerogels with monodisperse nanoscale building blocks--the importance of processing temperature and atmosphere.

    PubMed

    Pettigrew, Katherine A; Long, Jeffrey W; Carpenter, Everett E; Baker, Colin C; Lytle, Justin C; Chervin, Christopher N; Logan, Michael S; Stroud, Rhonda M; Rolison, Debra R

    2008-04-01

    Using two-step (air/argon) thermal processing, sol-gel-derived nickel-iron oxide aerogels are transformed into monodisperse, networked nanocrystalline magnetic oxides of NiFe(2)O(4) with particle diameters that can be ripened with increasing temperature under argon to 4.6, 6.4, and 8.8 nm. Processing in air alone yields poorly crystalline materials; heating in argon alone leads to single phase, but diversiform, polydisperse NiFe(2)O(4), which hampers interpretation of the magnetic properties of the nanoarchitectures. The two-step method yields an improved model system to study magnetic effects as a function of size on the nanoscale while maintaining the particles within the size regime of single domain magnets, as networked building blocks, not agglomerates, and without stabilizing ligands capping the surface.

  4. Kinetic and Mechanism Study of Vanadium Acid Leaching from Black Shale Using Microwave Heating Method

    NASA Astrophysics Data System (ADS)

    Wang, Jing-peng; Zhang, Yi-min; Huang, Jing; Liu, Tao

    2018-04-01

    The leaching kinetics of the vanadium leaching process were investigated by the comparison of microwave heating and conventional heating methods. Microwave heating with CaF2 had a synergistic effect and improved the vanadium leaching efficiency. In contrast to conventional heating leaching, microwave heating accelerated the vanadium leaching rate by approximately 1-3% and by approximately 15% when CaF2 was also used. The kinetics analysis showed that the calculated activation energy decreased in the microwave heating method in the presence and absence of CaF2. The control procedure of leaching also changed from a chemical reaction control step to a mixed chemical diffusion control step upon the addition of CaF2. Microwave heating was shown to be suitable for leaching systems with diffusion or mixed chemical diffusion control steps when the target mineral does not have a microwave absorbing ability.

  5. Kinetic and Mechanism Study of Vanadium Acid Leaching from Black Shale Using Microwave Heating Method

    NASA Astrophysics Data System (ADS)

    Wang, Jing-peng; Zhang, Yi-min; Huang, Jing; Liu, Tao

    2018-06-01

    The leaching kinetics of the vanadium leaching process were investigated by the comparison of microwave heating and conventional heating methods. Microwave heating with CaF2 had a synergistic effect and improved the vanadium leaching efficiency. In contrast to conventional heating leaching, microwave heating accelerated the vanadium leaching rate by approximately 1-3% and by approximately 15% when CaF2 was also used. The kinetics analysis showed that the calculated activation energy decreased in the microwave heating method in the presence and absence of CaF2. The control procedure of leaching also changed from a chemical reaction control step to a mixed chemical diffusion control step upon the addition of CaF2. Microwave heating was shown to be suitable for leaching systems with diffusion or mixed chemical diffusion control steps when the target mineral does not have a microwave absorbing ability.

  6. Report of results of benchmarking survey of central heating operations at NASA centers and various corporations

    NASA Technical Reports Server (NTRS)

    Hoffman, Thomas R.

    1995-01-01

    In recent years, Total Quality Management has swept across the country. Many companies and the Government have started looking at every aspect on how business is done and how money is spent. The idea or goal is to provide a service that is better, faster and cheaper. The first step in this process is to document or measure the process or operation as it stands now. For Lewis Research Center, this report is the first step in the analysis of heating plant operations. This report establishes the original benchmark that can be referred to in the future. The report also provides a comparison to other organization's heating plants to help in the brainstorming of new ideas. The next step is to propose and implement changes that would meet the goals as mentioned above. After the changes have been implemented the measuring process starts over again. This provides for a continuous improvement process.

  7. Dependence of microwave dielectric properties on crystallization behaviour of CaMgSi{sub 2}O{sub 6} glass-ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Bo Kyeong; Jang, Sung Wook; Kim, Eung Soo, E-mail: eskim@kyonggi.ac.kr

    2015-07-15

    The effects of the crystallization behaviour of CaMgSi{sub 2}O{sub 6} (diopside) glass-ceramics on their microwave dielectric properties were investigated as functions of the Cr{sub 2}O{sub 3} content and heat-treatment method used (one or two steps). The crystallization behaviours of the specimens were affected by the Cr{sub 2}O{sub 3} content as well as by the heat-treatment method employed, and were evaluated using X-ray diffraction and the combined Rietveld and reference intensity ratio (RIR) method. The dielectric constants (K) of the specimens did not change significantly with an increase in the Cr{sub 2}O{sub 3} content. The quality factor (Qf) of the specimensmore » increased for Cr{sub 2}O{sub 3} contents of up to 0.5 wt% Cr{sub 2}O{sub 3}, but then decreased for higher contents. These results could be attributed to the degree of crystallization. For the same Cr{sub 2}O{sub 3} content, the specimens that underwent a two-step heat treatment showed lower K values and higher Qf values than those heat-treated in one-step. These results could be attributed to the smaller crystallite size and higher degree of crystallization in the specimens obtained from the two-step heat treatment compared with those of the specimens heat-treated in one-step method.« less

  8. Innovative solar thermochemical water splitting.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, Roy E. Jr.; Siegel, Nathan P.; Evans, Lindsey R.

    2008-02-01

    Sandia National Laboratories (SNL) is evaluating the potential of an innovative approach for splitting water into hydrogen and oxygen using two-step thermochemical cycles. Thermochemical cycles are heat engines that utilize high-temperature heat to produce chemical work. Like their mechanical work-producing counterparts, their efficiency depends on operating temperature and on the irreversibility of their internal processes. With this in mind, we have invented innovative design concepts for two-step solar-driven thermochemical heat engines based on iron oxide and iron oxide mixed with other metal oxides (ferrites). The design concepts utilize two sets of moving beds of ferrite reactant material in close proximitymore » and moving in opposite directions to overcome a major impediment to achieving high efficiency--thermal recuperation between solids in efficient counter-current arrangements. They also provide inherent separation of the product hydrogen and oxygen and are an excellent match with high-concentration solar flux. However, they also impose unique requirements on the ferrite reactants and materials of construction as well as an understanding of the chemical and cycle thermodynamics. In this report the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5) solar thermochemical heat engine and its basic operating principals are described. Preliminary thermal efficiency estimates are presented and discussed. Our ferrite reactant material development activities, thermodynamic studies, test results, and prototype hardware development are also presented.« less

  9. Modeling of the steam hydrolysis in a two-step process for hydrogen production by solar concentrated energy

    NASA Astrophysics Data System (ADS)

    Valle-Hernández, Julio; Romero-Paredes, Hernando; Pacheco-Reyes, Alejandro

    2017-06-01

    In this paper the simulation of the steam hydrolysis for hydrogen production through the decomposition of cerium oxide is presented. The thermochemical cycle for hydrogen production consists of the endothermic reduction of CeO2 to lower-valence cerium oxide, at high temperature, where concentrated solar energy is used as a source of heat; and of the subsequent steam hydrolysis of the resulting cerium oxide to produce hydrogen. The modeling of endothermic reduction step was presented at the Solar Paces 2015. This work shows the modeling of the exothermic step; the hydrolysis of the cerium oxide (III) to form H2 and the corresponding initial cerium oxide made at lower temperature inside the solar reactor. For this model, three sections of the pipe where the reaction occurs were considered; the steam water inlet, the porous medium and the hydrogen outlet produced. The mathematical model describes the fluid mechanics; mass and energy transfer occurring therein inside the tungsten pipe. Thermochemical process model was simulated in CFD. The results show a temperature distribution in the solar reaction pipe and allow obtaining the fluid dynamics and the heat transfer within the pipe. This work is part of the project "Solar Fuels and Industrial Processes" from the Mexican Center for Innovation in Solar Energy (CEMIE-Sol).

  10. Improvement of heat transfer by means of ultrasound: Application to a double-tube heat exchanger.

    PubMed

    Legay, M; Simony, B; Boldo, P; Gondrexon, N; Le Person, S; Bontemps, A

    2012-11-01

    A new kind of ultrasonically-assisted heat exchanger has been designed, built and studied. It can be seen as a vibrating heat exchanger. A comprehensive description of the overall experimental set-up is provided, i.e. of the test rig and the acquisition system. Data acquisition and processing are explained step-by-step with a detailed example of graph obtained and how, from these experimental data, energy balance is calculated on the heat exchanger. It is demonstrated that ultrasound can be used efficiently as a heat transfer enhancement technique, even in such complex systems as heat exchangers. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Research of heat transfer of staggered horizontal bundles of finned tubes at free air convection

    NASA Astrophysics Data System (ADS)

    Novozhilova, A. V.; Maryna, Z. G.; Samorodov, A. V.; Lvov, E. A.

    2017-11-01

    The study of free-convective processes is important because of the cooling problem in many machines and systems, where other ways of cooling are impossible or impractical. Natural convective processes are common in the steam turbine air condensers of electric power plants located within the city limits, in dry cooling towers of circulating water systems, in condensers cooled by air and water, in radiators cooling oil of power electric transformers, in emergency cooling systems of nuclear reactors, in solar power, as well as in air-cooling of power semiconductor energy converters. All this makes actual the synthesis of the results of theoretical and experimental research of free convection for heat exchangers with finned tube bundles. The results of the study of free-convection heat transfer for two-, three- and four-row staggered horizontal bundles of industrial bimetallic finned tubes with finning factor of 16.8 and equilateral tubes arrangement are presented. Cross and diagonal steps in the bundles are the same: 58; 61; 64; 70; 76; 86; 100 mm, which corresponds to the relative steps: 1.042; 1.096; 1.152; 1.258; 1.366; 1.545; 1.797. These steps are standardized for air coolers. An equation for calculating the free-convection heat transfer, taking into account the influence of geometrical parameters in the range of Rayleigh number from 30,000 to 350,000 with an average deviation of ± 4.8%, has been obtained. The relationship presented in the article allows designing a wide range of air coolers for various applications, working in the free convection modes.

  12. Improving the Elevated-Temperature Properties by Two-Step Heat Treatments in Al-Mn-Mg 3004 Alloys

    NASA Astrophysics Data System (ADS)

    Liu, K.; Ma, H.; Chen, X. Grant

    2018-05-01

    In the present work, two-step heat treatments with preheating at different temperatures (175 °C, 250 °C, and 330 °C) as the first step followed by the peak precipitation treatment (375 °C/48 h) as the second step were performed in Al-Mn-Mg 3004 alloys to study their effects on the formation of dispersoids and the evolution of the elevated-temperature strength and creep resistance. During the two-step heat treatments, the microhardness is gradually increased with increasing time to a plateau after 24 hours when first treated at 250 °C and 330 °C, while there is a minor decrease with time when first treated at 175 °C. Results show that both the yield strength (YS) and creep resistance at 300 °C reach the peak values after the two-step treatment of 250 °C/24 h + 375 °C/48 h. The formation of dispersoids is greatly related to the type and size of pre-existing Mg2Si precipitated during the preheating treatments. It was found that coarse rodlike β ' -Mg2Si strongly promotes the nucleation of dispersoids, while fine needle like β ″-Mg2Si has less influence. Under optimized two-step heat treatment and modified alloying elements, the YS at 300 °C can reach as high as 97 MPa with the minimum creep rate of 2.2 × 10-9 s-1 at 300 °C in Al-Mn-Mg 3004 alloys, enabling them as one of the most promising candidates in lightweight aluminum alloys for elevated-temperature applications.

  13. Single step vacuum-free and hydrogen-free synthesis of graphene

    NASA Astrophysics Data System (ADS)

    Orellana, Christian; Cunha, Thiago; Fantini, Cristiano; Jaques, Alonso; Häberle, Patricio

    2017-08-01

    We report a modified method to grow graphene in a single-step process. It is based on chemical vapor deposition and considers the use of methane under extremely adverse synthesis conditions, namely in an open chamber without requiring the addition of gaseous hydrogen in any of the synthesis stages. The synthesis occurs between two parallel Cu plates, heated up via electromagnetic induction. The inductive heating yields a strong thermal gradient between the catalytic substrates and the surrounding environment, promoting the enrichment of hydrogen generated as fragments of the methane molecules within the volume confined by the Cu foils. This induced density gradient is due to thermo-diffusion, also known as the Soret effect. Hydrogen and other low mass molecular fractions produced during the process inhibit oxidative effects and simultaneously reduce the native oxide on the Cu surface. As a result, high quality graphene is obtained on the inner surfaces of the Cu sheets as confirmed by Raman spectroscopy.

  14. Texture evolution in Oxide Dispersion Strengthened (ODS) steel tubes during pilgering process

    NASA Astrophysics Data System (ADS)

    Vakhitova, E.; Sornin, D.; Barcelo, F.; François, M.

    2017-10-01

    Oxide Dispersion Strengthened (ODS) steels are foreseen as fuel cladding material in the coming generation of Sodium Fast Reactors (SFR). Cladding tubes are manufactured by hot extrusion and subsequent cold forming steps. In this study, a 9 wt% Cr ODS steel exhibiting α-γ phase transformation at high temperature is cold formed under industrial conditions with a large section reduction in two pilgering steps. The influence of pilgering process parameters and intermediate heat treatment on the microstructure evolution is studied experimentally using Electron Backscattering Diffraction (EBSD) and X-ray Diffraction (XRD) methods. Pilgered samples show elongated grains and a high texture formation with a preferential orientation along the rolling direction. During the heat treatment, grain morphology is recovered from elongated grains to almost equiaxed ones, while the well-known α-fiber texture presents an unexpected increase in intensity. The remarkable temperature stability of this fiber is attributed to a crystallographic structure memory effect during phase transformations.

  15. Review of the Two-Step H2O/CO2-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions

    PubMed Central

    Loutzenhiser, Peter G.; Meier, Anton; Steinfeld, Aldo

    2010-01-01

    This article provides a comprehensive overview of the work to date on the two‑step solar H2O and/or CO2 splitting thermochemical cycles with Zn/ZnO redox reactions to produce H2 and/or CO, i.e., synthesis gas—the precursor to renewable liquid hydrocarbon fuels. The two-step cycle encompasses: (1) The endothermic dissociation of ZnO to Zn and O2 using concentrated solar energy as the source for high-temperature process heat; and (2) the non-solar exothermic oxidation of Zn with H2O/CO2 to generate H2/CO, respectively; the resulting ZnO is then recycled to the first step. An outline of the underlying science and the technological advances in solar reactor engineering is provided along with life cycle and economic analyses. PMID:28883361

  16. Thermal denaturation of β-glucosidase B from Paenibacillus polymyxa proceeds through a Lumry-Eyring mechanism.

    PubMed

    Camarillo-Cadena, Menandro; Garza-Ramos, Georgina; Peimbert, Mariana; Pérez-Hernández, Gerardo; Zubillaga, Rafael A

    2011-06-01

    β-glucosidase B (BglB), 1,4-β-D: -glucanohydrolase, is an enzyme with various technological applications for which some thermostable mutants have been obtained. Because BglB denatures irreversibly with heating, the stabilities of these mutants are assessed kinetically. It, therefore, becomes relevant to determine whether the measured rate constants reflect one or several elementary kinetic steps. We have analyzed the kinetics of heat denaturation of BglB from Paenibacillus polymyxa under various conditions by following the loss of secondary structure and enzymatic activity. The denaturation is accompanied by aggregation and an initial reversible step at low temperatures. At T ≥ T ( m ), the process follows a two-state irreversible mechanism for which the kinetics does not depend on the enzyme concentration. This behavior can be explained by a Lumry-Eyring model in which the difference between the rates of the irreversible and the renaturation steps increases with temperature. Accordingly, at high scan rates (≥1 °C min(-1)) or temperatures (T ≥ T ( m )), the measurable activation energy involves only the elementary step of denaturation.

  17. A one-step strategy for ultra-fast and low-cost mass production of plastic membrane microfluidic chips.

    PubMed

    Hu, Chong; Lin, Sheng; Li, Wanbo; Sun, Han; Chen, Yangfan; Chan, Chiu-Wing; Leung, Chung-Hang; Ma, Dik-Lung; Wu, Hongkai; Ren, Kangning

    2016-10-05

    An ultra-fast, extremely cost-effective, and environmentally friendly method was developed for fabricating flexible microfluidic chips with plastic membranes. With this method, we could fabricate plastic microfluidic chips rapidly (within 12 seconds per piece) at an extremely low cost (less than $0.02 per piece). We used a heated perfluoropolymer perfluoroalkoxy (often called Teflon PFA) solid stamp to press a pile of two pieces of plastic membranes, low density polyethylene (LDPE) and polyethylene terephthalate (PET) coated with an ethylene-vinyl acetate copolymer (EVA). During the short period of contact with the heated PFA stamp, the pressed area of the membranes permanently bonded, while the LDPE membrane spontaneously rose up at the area not pressed, forming microchannels automatically. These two regions were clearly distinguishable even at the micrometer scale so we were able to fabricate microchannels with widths down to 50 microns. This method combines the two steps in the conventional strategy for microchannel fabrication, generating microchannels and sealing channels, into a single step. The production is a green process without using any solvent or generating any waste. Also, the chips showed good resistance against the absorption of Rhodamine 6G, oligonucleotides, and green fluorescent protein (GFP). We demonstrated some typical microfluidic manipulations with the flexible plastic membrane chips, including droplet formation, on-chip capillary electrophoresis, and peristaltic pumping for quantitative injection of samples and reagents. In addition, we demonstrated convenient on-chip detection of lead ions in water samples by a peristaltic-pumping design, as an example of the application of the plastic membrane chips in a resource-limited environment. Due to the high speed and low cost of the fabrication process, this single-step method will facilitate the mass production of microfluidic chips and commercialization of microfluidic technologies.

  18. Method of preparation of carbon materials for use as electrodes in rechargeable batteries

    DOEpatents

    Doddapaneni, Narayan; Wang, James C. F.; Crocker, Robert W.; Ingersoll, David; Firsich, David W.

    1999-01-01

    A method of producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of .apprxeq.80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere.

  19. High heating rate decomposition dynamics of copper oxide by nanocalorimetry-coupled time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yi, Feng; DeLisio, Jeffery B.; Nguyen, Nam; Zachariah, Michael R.; LaVan, David A.

    2017-12-01

    The thermodynamics and evolved gases were measured during the rapid decomposition of copper oxide (CuO) thin film at rates exceeding 100,000 K/s. CuO decomposes to release oxygen when heated and serves as an oxidizer in reactive composites and chemical looping combustion. Other instruments have shown either one or two decomposition steps during heating. We have confirmed that CuO decomposes by two steps at both slower and higher heating rates. The decomposition path influences the reaction course in reactive Al/CuO/Al composites, and full understanding is important in designing reactive mixtures and other new reactive materials.

  20. Direct fabrication of /sup 238/PuO/sub 2/ fuel forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burney, G.A.; Congdon, J.W.

    1982-07-01

    The current process for the fabrication of /sup 238/PuO/sub 2/ heat sources includes precipitation of small particle plutonium oxalate crystals (4 to 6 ..mu..m diameter), a calcination to PuO/sub 2/, ball milling, cold pressing, granulation (60 to 125 ..mu..m), and granule sintering prior to hot pressing the fuel pellet. A new two-step direct-strike Pu(III) oxalate precipitation method which yields mainly large well-developed rosettes (50 to 100 ..mu..m diameter) has been demonstrated in the laboratory and in the plant. These large rosettes are formed by agglomeration of small (2 to 4 ..mu..m) crystals, and after calcining and sintering, were directly hotmore » pressed into fuel forms, thus eliminating several of the powder conditioning steps. Conditions for direct hot pressing of the large heat-treated rosettes were determined and a full-scale General Purpose Heat Source pellet was fabricated. The pellet had the desired granule-type microstructure to provide dimensional stability at high temperature. 27 figures.« less

  1. Infrared thermography with non-uniform heat flux boundary conditions on the rotor endwall of an axial turbine

    NASA Astrophysics Data System (ADS)

    Lazzi Gazzini, S.; Schädler, R.; Kalfas, A. I.; Abhari, R. S.

    2017-02-01

    It is technically challenging to measure heat fluxes on the rotating components of gas turbines, yet accurate knowledge of local heat loads under engine-representative conditions is crucial for ensuring the reliability of the designs. In this work, quantitative image processing tools were developed to perform fast and accurate infrared thermography measurements on 3D-shaped film-heaters directly deposited on the turbine endwalls. The newly developed image processing method and instrumentation were used to measure the heat load on the rotor endwalls of an axial turbine. A step-transient heat flux calibration technique is applied to measure the heat flux generated locally by the film heater, thus eliminating the need for a rigorously iso-energetic boundary condition. On-board electronics installed on the rotor record the temperature readings of RTDs installed in the substrate below the heaters in order to evaluate the conductive losses in the solid. Full maps of heat transfer coefficient and adiabatic wall temperature are produced for two different operating conditions, demonstrating the sensitivity of the technique to local flow features and variations in heat transfer due to Reynolds number effect.

  2. Manipulation of surface morphology of flower-like Ag/ZnO nanorods to enhance photocatalytic performance

    NASA Astrophysics Data System (ADS)

    U-thaipan, Kasira; Tedsree, Karaked

    2018-06-01

    The surface morphology of flower-like Ag/ZnO nanorod can be manipulated by adopting different synthetic routes and also loading different levels of Ag in order to alter their surface structures to achieve the maximum photocatalytic efficiency. In a single-step preparation method Ag/ZnO was prepared by heating directly a mixture of Zn2+ and Ag+ precursors in an aqueous NaOH-ethylene glycol solution, while in the two-step preparation method an intermediate of flower-shaped ZnO nanorod was obtained by a hydrothermal process before depositing Ag particles on the ZnO surfaces by chemical reduction. The structure, morphology and optical properties of the synthesized samples were characterized using TEM, SEM, XRD, DRS and PL techniques. The sample prepared by single-step method are characterized with agglomeration of Ag atoms as clusters on the surface of ZnO, whereas in the sample prepared by two-step method Ag atoms are found uniformly dispersed and deposited as discrete Ag nanoparticles on the surface of ZnO. A significant enhancement in the adsorption of visible light was evident for Ag/ZnO samples prepared by two-step method especially with low Ag content (0.5 mol%). The flower-like Ag/ZnO nanorod prepared with 0.5 mol% Ag by two-step process was found to be the most efficient photocatalyst for the degradation of phenol, which can decompose 90% of phenol within 120 min.

  3. Synthesis of fluorescent carbon dots by a microwave heating process: structural characterization and cell imaging applications

    NASA Astrophysics Data System (ADS)

    Stefanakis, Dimitrios; Philippidis, Aggelos; Sygellou, Labrini; Filippidis, George; Ghanotakis, Demetrios; Anglos, Demetrios

    2014-10-01

    Two types of highly fluorescent carbon dots (C-dots) were prepared by a single-step procedure based on microwave heating citric acid and 6-aminocaproic acid or citric acid and urea in an aqueous solution. The small size of the isolated carbon dots along with their strong absorption in the UV and their excitation wavelength-dependent fluorescence render them ideal nanomaterials for biomedical applications (imaging and sensing). The structure and properties of the two types of C-dot materials were studied using a series of spectroscopic techniques. The ability of the C-dots to be internalized by HeLa cells was demonstrated via 3-photon fluorescence microscopy imaging.

  4. Synergistic effects of water addition and step heating on the formation of solution-processed zinc tin oxide thin films: towards high-mobility polycrystalline transistors

    NASA Astrophysics Data System (ADS)

    Huang, Genmao; Duan, Lian; Zhao, Yunlong; Zhang, Yunge; Dong, Guifang; Zhang, Deqiang; Qiu, Yong

    2016-11-01

    Thin-film transistors (TFTs) with high mobility and good uniformity are attractive for next-generation flat panel displays. In this work, solution-processed polycrystalline zinc tin oxide (ZTO) thin film with well-ordered microstructure is prepared, thanks to the synergistic effect of water addition and step heating. The step heating treatment other than direct annealing induces crystallization, while adequate water added to precursor solution further facilitates alloying and densification process. The optimal polycrystalline ZTO film is free of hierarchical sublayers, and featured with an increased amount of ternary phases, as well as a decreased fraction of oxygen vacancies and hydroxides. TFT devices based on such an active layer exhibit a remarkable field-effect mobility of 52.5 cm2 V-1 s-1, a current on/off ratio of 2 × 105, a threshold voltage of 2.32 V, and a subthreshold swing of 0.36 V dec-1. Our work offers a facile method towards high-performance solution-processed polycrystalline metal oxide TFTs.

  5. Heat Transfer of Thermocapillary Convection in a Two-Layered Fluid System Under the Influence of Magnetic Field

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Ludovisis, D.; Cha, S. S.

    2006-01-01

    Heat transfer of a two-layer fluid system has been of great importance in a variety of industrial applications. For example, the phenomena of immiscible fluids can be found in materials processing and heat exchangers. Typically in solidification from a melt, the convective motion is the dominant factor that affects the uniformity of material properties. In the layered flow, thermocapillary forces can come into an important play, which was first emphasized by a previous investigator in 1958. Under extraterrestrial environments without gravity, thermocapillary effects can be a more dominant factor, which alters material properties in processing. Control and optimization of heat transfer in an immiscible fluid system need complete understanding of the flow phenomena that can be induced by surface tension at a fluid interface. The present work is focused on understanding of the magnetic field effects on thermocapillary convection, in order to optimize material processing. That is, it involves the study of the complicated phenomena to alter the flow motion in crystal growth. In this effort, the Marangoni convection in a cavity with differentially heated sidewalls is investigated with and without the influence of a magnetic field. As a first step, numerical analyses are performed, by thoroughly investigating influences of all pertinent physical parameters. Experiments are then conducted, with preliminary results, for comparison with the numerical analyses.

  6. Solar kerosene from H2O and CO2

    NASA Astrophysics Data System (ADS)

    Furler, P.; Marxer, D.; Scheffe, J.; Reinalda, D.; Geerlings, H.; Falter, C.; Batteiger, V.; Sizmann, A.; Steinfeld, A.

    2017-06-01

    The entire production chain for renewable kerosene obtained directly from sunlight, H2O, and CO2 is experimentally demonstrated. The key component of the production process is a high-temperature solar reactor containing a reticulated porous ceramic (RPC) structure made of ceria, which enables the splitting of H2O and CO2 via a 2-step thermochemical redox cycle. In the 1st reduction step, ceria is endo-thermally reduced using concentrated solar radiation as the energy source of process heat. In the 2nd oxidation step, nonstoichiometric ceria reacts with H2O and CO2 to form H2 and CO - syngas - which is finally converted into kerosene by the Fischer-Tropsch process. The RPC featured dual-scale porosity for enhanced heat and mass transfer: mm-size pores for volumetric radiation absorption during the reduction step and μm-size pores within its struts for fast kinetics during the oxidation step. We report on the engineering design of the solar reactor and the experimental demonstration of over 290 consecutive redox cycles for producing high-quality syngas suitable for the processing of liquid hydrocarbon fuels.

  7. Two-step catalytic hydrodeoxygenation of fast pyrolysis oil to hydrocarbon liquid fuels.

    PubMed

    Xu, Xingmin; Zhang, Changsen; Liu, Yonggang; Zhai, Yunpu; Zhang, Ruiqin

    2013-10-01

    Two-step catalytic hydrodeoxygenation (HDO) of fast pyrolysis oil was investigated for translating pyrolysis oil to transportation grade hydrocarbon liquid fuels. At the first mild HDO step, various organic solvents were employed to promote HDO of bio-oil to overcome coke formation using noble catalyst (Ru/C) under mild conditions (300 °C, 10 MPa). At the second deep HDO step, conventional hydrogenation setup and catalyst (NiMo/Al2O3) were used under severe conditions (400 °C, 13 MPa) for obtaining hydrocarbon fuel. Results show that the phenomenon of coke formation is effectively eliminated, and the properties of products have been significantly improved, such as oxygen content decreases from 48 to 0.5 wt% and high heating value increases from 17 to 46 MJ kg(-1). GC-MS analysis indicates that the final products include C11-C27 aliphatic hydrocarbons and aromatic hydrocarbons. In short, the fast pyrolysis oils were successfully translated to hydrocarbon liquid fuels using a two-step catalytic HDO process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Magnetic properties of mechanically alloyed Mn-Al-C powders

    NASA Astrophysics Data System (ADS)

    Kohmoto, O.; Kageyama, N.; Kageyama, Y.; Haji, H.; Uchida, M.; Matsushima, Y.

    2011-01-01

    We have prepared supersaturated-solution Mn-Al-C alloy powders by mechanical alloying using a planetary high-energy mill. The starting materials were pure Mn, Al and C powers. The mechanically-alloyed powders were subjected to a two-step heating. Although starting particles are Al and Mn with additive C, the Al peak disappears with MA time. With increasing MA time, transition from α-Mn to β-Mn does not occur; the α-Mn structure maintains. At 100 h, a single phase of supersaturated-solution α-Mn is obtained. The lattice constant of α-Mn decreases with increasing MA time. From the Scherrer formula, the crystallite size at 500 h is obtained as 200Å, which does not mean amorphous state. By two-step heating, high magnetization (66 emu/g) was obtained from short-time-milled powders (t=10 h). The precursor of the as-milled powder is not a single phase α-Mn but contains small amount of fcc Al. After two-step heating, the powder changes to τ-phase. Although the saturation magnetization increases, the value is less than that by conventional bulk MnAl (88 emu/g). Meanwhile, long-time-milled powder of single α-Mn phase results in low magnetization (5.2 emu/g) after two-step heating.

  9. High pressure as an alternative processing step for ham production.

    PubMed

    Pingen, Sylvia; Sudhaus, Nadine; Becker, André; Krischek, Carsten; Klein, Günter

    2016-08-01

    As high pressure processing (HPP) is becoming more and more important in the food industry, this study examined the application of HPP (500 and 600MPa) as a manufacturing step during simulated ham production. By replacing conventional heating with HPP steps, ham-like texture or color attributes could not be achieved. HPP products showed a less pale, less red appearance, softer texture and higher yields. However, a combination of mild temperature (53°C) and 500MPa resulted in parameters more comparable to cooked ham. We conclude that HPP can be used for novel food development, providing novel textures and colors. However, when it comes to ham production, a heating step seems to be unavoidable to obtain characteristic ham properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Synchronous separation, seaming, sealing and sterilization (S4) using brazing for sample containerization and planetary protection

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart; Bao, Xiaoqi; Lindsey, Cameron; Kutzer, Thomas; Salazar, Eduardo

    2018-03-01

    The return of samples back to Earth in future missions would require protection of our planet from the risk of bringing uncontrolled biological materials back with the samples. This protection would require "breaking the chain of contact (BTC)", where any returned material reaching Earth for further analysis would have to be sealed inside a container with extremely high confidence. Therefore, the acquired samples would need to be contained while destroying any potential biological materials that may contaminate the external surface of the container. A novel process that could be used to contain returning samples has been developed and demonstrated in a quarter scale size. The process consists of brazing using non-contact induction heating that synchronously separates, seams, seals and sterilizes (S4) the container. The use of brazing involves melting at temperatures higher than 500°C and this level of heating assures sterilization of the exposed areas since all carbon bonds (namely, organic materials) are broken at this temperature. The mechanism consists of a double wall container with inner and outer shells having Earth-clean interior surfaces. The process consists of two-steps, Step-1: the double wall container halves are fabricated and brazed (equivalent to production on Earth); and Step-2 is the S4 process and it is the equivalent to the execution on-orbit around Mars. In a potential future mission, the double wall container would be split into two halves and prepared on Earth. The potential on-orbit execution would consist of inserting the orbiting sample (OS) container into one of the halves and then mated to the other half and brazed. The latest results of this effort will be described and discussed in this manuscript.

  11. Thermodynamics of non-Markovian reservoirs and heat engines

    NASA Astrophysics Data System (ADS)

    Thomas, George; Siddharth, Nana; Banerjee, Subhashish; Ghosh, Sibasish

    2018-06-01

    We show that non-Markovian effects of the reservoirs can be used as a resource to extract work from an Otto cycle. The state transformation under non-Markovian dynamics is achieved via a two-step process, namely an isothermal process using a Markovian reservoir followed by an adiabatic process. From second law of thermodynamics, we show that the maximum amount of extractable work from the state prepared under the non-Markovian dynamics quantifies a lower bound of non-Markovianity. We illustrate our ideas with an explicit example of non-Markovian evolution.

  12. Off-flavor related volatiles in soymilk as affected by soybean variety, grinding, and heat-processing methods.

    PubMed

    Zhang, Yan; Guo, Shuntang; Liu, Zhisheng; Chang, Sam K C

    2012-08-01

    Off-flavor of soymilk is a barrier to the acceptance of consumers. The objectionable soy odor can be reduced through inhibition of their formation or through removal after being formed. In this study, soymilk was prepared by three grinding methods (ambient, cold, and hot grinding) from two varieties (yellow Prosoy and a black soybean) before undergoing three heating processes: stove cooking, one-phase UHT (ultrahigh temperature), and two-phase UHT process using a Microthermics direct injection processor, which was equipped with a vacuuming step to remove injected water and volatiles. Eight typical soy odor compounds, generated from lipid oxidation, were extracted by a solid-phase microextraction method and analyzed by gas chromatography. The results showed that hot grinding and cold grinding significantly reduced off-flavor as compared with ambient grinding, and hot grinding achieved the best result. The UHT methods, especially the two-phase UHT method, were effective to reduce soy odor. Different odor compounds showed distinct concentration patterns because of different formation mechanisms. The two varieties behaved differently in odor formation during the soymilk-making process. Most odor compounds could be reduced to below the detection limit through a combination of hot grinding and two-phase UHT processing. However, hot grinding gave lower solid and protein recoveries in soymilk.

  13. Fermentative alcohol production

    DOEpatents

    Wilke, Charles R.; Maiorella, Brian L.; Blanch, Harvey W.; Cysewski, Gerald R.

    1982-01-01

    An improved fermentation process for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using "water load balancing" (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

  14. Selective thermal transformation of old computer printed circuit boards to Cu-Sn based alloy.

    PubMed

    Shokri, Ali; Pahlevani, Farshid; Cole, Ivan; Sahajwalla, Veena

    2017-09-01

    This study investigates, verifies and determines the optimal parameters for the selective thermal transformation of problematic electronic waste (e-waste) to produce value-added copper-tin (Cu-Sn) based alloys; thereby demonstrating a novel new pathway for the cost-effective recovery of resources from one of the world's fastest growing and most challenging waste streams. Using outdated computer printed circuit boards (PCBs), a ubiquitous component of e-waste, we investigated transformations across a range of temperatures and time frames. Results indicate a two-step heat treatment process, using a low temperature step followed by a high temperature step, can be used to produce and separate off, first, a lead (Pb) based alloy and, subsequently, a Cu-Sn based alloy. We also found a single-step heat treatment process at a moderate temperature of 900 °C can be used to directly transform old PCBs to produce a Cu-Sn based alloy, while capturing the Pb and antimony (Sb) as alloying elements to prevent the emission of these low melting point elements. These results demonstrate old computer PCBs, large volumes of which are already within global waste stockpiles, can be considered a potential source of value-added metal alloys, opening up a new opportunity for utilizing e-waste to produce metal alloys in local micro-factories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Other factors to consider in the formation of chloropropandiol fatty esters in oil processes.

    PubMed

    Ramli, Muhamad Roddy; Siew, Wai Lin; Ibrahim, Nuzul Amri; Kuntom, Ainie; Abd Razak, Raznim Arni

    2015-01-01

    This paper examines the processing steps of extracting palm oil from fresh fruit bunches in a way that may impact on the formation of chloropropandiol fatty esters (3-MCPD esters), particularly during refining. Diacylglycerols (DAGs) do not appear to be a critical factor when crude palm oils are extracted from various qualities of fruit bunches. Highly hydrolysed oils, in spite of the high free fatty acid (FFA) contents, did not show exceptionally high DAGs, and the oils did not display a higher formation of 3-MCPD esters upon heat treatment. However, acidity measured in terms of pH appears to have a strong impact on 3-MCPD ester formation in the crude oil when heated at high temperatures. The differences in the extraction process of crude palm oil from current commercial processes and that from a modified experimental process showed clearly the effect of acidity of the oil on the formation of 3-MCPD esters. This paper concludes that the washing or dilution step in palm oil mills removes the acidity of the vegetative materials and that a well-optimised dilution/washing step in the extraction process will play an important role in reducing formation of 3-MCPD esters in crude palm oil upon further heat processing.

  16. Method of preparation of carbon materials for use as electrodes in rechargeable batteries

    DOEpatents

    Doddapaneni, N.; Wang, J.C.F.; Crocker, R.W.; Ingersoll, D.; Firsich, D.W.

    1999-03-16

    A method is described for producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of {approx_equal} 80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere. 4 figs.

  17. Fluidized bed selective pyrolysis of coal

    DOEpatents

    Shang, J.Y.; Cha, C.Y.; Merriam, N.W.

    1992-12-15

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.

  18. Fluidized bed selective pyrolysis of coal

    DOEpatents

    Shang, Jer Y.; Cha, Chang Y.; Merriam, Norman W.

    1992-01-01

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.

  19. Characteristics of silica rice husk ash from Mojogedang Karanganyar Indonesia

    NASA Astrophysics Data System (ADS)

    Suryana, R.; Iriani, Y.; Nurosyid, F.; Fasquelle, D.

    2018-05-01

    Indonesia is one of the countries in the world as the most abundant rice producer. Many researchers have demonstrated that the highest composition in the rice husk ash (RHA) is silica. Some of the advantages in utilizing silica as the raw material is the manufacture of ceramics, zeolite synthesis, fabrication of glass, electronic insulator materials, and as a catalyst. The amount of silica from rice husk ash is different for each region. Therefore, the study of silica from RHA is still promising, especially rice organic fertilizers. In this study, the rice came from Mojogedang Karanganyar Indonesia. Rice husk was dried under the solar radiation. Then the rice husk was heated in two steps: the first step at a temperature of 300°C and the second step at a temperature of 1200°C with a holding time at 2 h and 1 h, respectively. Furthermore, the temperature of the second step was varied at 1400 °C and 1600 °C. This heating process produced RHA. The content of RHA was observed on the EDAX spectrums while the morphology was observed from SEM images. The crystal structure of RHA was determined from XRD spectrums. The EDAX spectrums showed that RHA composition was dominated by elements Si and O for all the heating temperature. SEM images showed an agglomeration towards larger domains as heating temperatures increase. Analysis of XRD spectra is polycrystalline silica formed with the significant crystal orientation at 101, 102 and 200. The intensity of 101 increases significantly with increasing temperature. It is concluded that the crystal growth in the direction of 101 is preferred.

  20. Low-Pressure Alcohol Distillation

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Zur Burg, F. W.; Cody, J. C.

    1984-01-01

    Heat requirements lowered for process. Temperature requirements lowered enough to make solar heat absorbed by flat-plate collectors feasible energy source. Alcohol produced without adding other solvents, eliminating need for dehydration or hydrocarbon stripping as final step.

  1. One-step global parameter estimation of kinetic inactivation parameters for Bacillus sporothermodurans spores under static and dynamic thermal processes.

    PubMed

    Cattani, F; Dolan, K D; Oliveira, S D; Mishra, D K; Ferreira, C A S; Periago, P M; Aznar, A; Fernandez, P S; Valdramidis, V P

    2016-11-01

    Bacillus sporothermodurans produces highly heat-resistant endospores, that can survive under ultra-high temperature. High heat-resistant sporeforming bacteria are one of the main causes for spoilage and safety of low-acid foods. They can be used as indicators or surrogates to establish the minimum requirements for heat processes, but it is necessary to understand their thermal inactivation kinetics. The aim of the present work was to study the inactivation kinetics under both static and dynamic conditions in a vegetable soup. Ordinary least squares one-step regression and sequential procedures were applied for estimating these parameters. Results showed that multiple dynamic heating profiles, when analyzed simultaneously, can be used to accurately estimate the kinetic parameters while significantly reducing estimation errors and data collection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Pretreatment of coal during transport

    DOEpatents

    Johnson, Glenn E.; Neilson, Harry B.; Forney, Albert J.; Haynes, William P.

    1977-04-19

    Many available coals are "caking coals" which possess the undesirable characteristic of fusing into a solid mass when heated through their plastic temperature range (about 400.degree. C.) which temperature range is involved in many common treatment processes such as gasification, hydrogenation, carbonization and the like. Unless the caking properties are first destroyed, the coal cannot be satisfactorily used in such processes. A process is disclosed herein for decaking finely divided coal during its transport to the treating zone by propelling the coal entrained in an oyxgen-containing gas through a heated transport pipe whereby the separate transport and decaking steps of the prior art are combined into a single step.

  3. Fusion of Escherichia coli heat-stable enterotoxin and heat-labile enterotoxin B subunit.

    PubMed

    Guzman-Verduzco, L M; Kupersztoch, Y M

    1987-11-01

    The 3' terminus of the DNA coding for the extracellular Escherichia coli heat-stable enterotoxin (ST) devoid of transcription and translation stop signals was fused to the 5' terminus of the DNA coding for the periplasmic B subunit of the heat-labile enterotoxin (LTB) deleted of ribosomal binding sites and leader peptide. By RNA-DNA hybridization analysis, it was shown that the fused DNA was transcribed in vivo into an RNA species in close agreement with the expected molecular weight inferred from the nucleotide sequence. The translation products of the fused DNA resulted in a hybrid molecule recognized in Western blots (immunoblots) with antibodies directed against the heat-labile moiety. Anti-LTB antibodies coupled to a solid support bound ST and LTB simultaneously when incubated with ST-LTB cellular extracts. By [35S]cysteine pulse-chase experiments, it was shown that the fused ST-LTB polypeptide was converted from a precursor with an equivalent electrophoretic mobility of 20,800 daltons to an approximately 18,500-dalton species, which accumulated within the cell. The data suggest that wild-type ST undergoes at least two processing steps during its export to the culture supernatant. Blocking the natural carboxy terminus of ST inhibited the second proteolytic step and extracellular delivery of the hybrid molecule.

  4. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, S., E-mail: fujii.s.ap@m.titech.ac.jp; Department of Information and Communication System Engineering, National Institute of Technology, Okinawa College, Nago, Okinawa 905-2192; Kawamura, S.

    2015-12-15

    Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. Themore » resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.« less

  5. Modeling of Heat and Mass Transfer in a TEC-Driven Lyophilizer

    NASA Technical Reports Server (NTRS)

    Yuan, Zeng-Guang; Hegde, Uday; Litwiller, Eric; Flynn, Michael; Fisher, John

    2006-01-01

    Dewatering of wet waste during space exploration missions is important for crew safety as it stabilizes the waste. It may also be used to recover water and serve as a preconditioning step for waste compaction. A thermoelectric cooler (TEC)-driven lyophilizer is under development at NASA Ames Research Center for this purpose. It has three major components: (i) an evaporator section where water vapor sublimes from the frozen waste, (ii) a condenser section where this water vapor deposits as ice, and (iii) a TEC section which serves as a heat pump to transfer heat from the condenser to the evaporator. This paper analyses the heat and mass transfer processes in the lyophilizer in an effort to understand the ice formation behavior in the condenser. The analysis is supported by experimental observations of ice formation patterns in two different condenser units.

  6. Method of thermally processing superplastically formed aluminum-lithium alloys to obtain optimum strengthening

    NASA Technical Reports Server (NTRS)

    Anton, Claire E. (Inventor)

    1993-01-01

    Optimum strengthening of a superplastically formed aluminum-lithium alloy structure is achieved via a thermal processing technique which eliminates the conventional step of solution heat-treating immediately following the step of superplastic forming of the structure. The thermal processing technique involves quenching of the superplastically formed structure using static air, forced air or water quenching.

  7. A detailed evaluation of heating processes in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin; Solomon, Susan

    1994-01-01

    A fundamental problem in the study of the terrestrial middle atmosphere is to calculate accurately the local heating due to the absorption of solar radiation. Knowledge of the heat budget is essential to understanding the atmospheric thermal structure, atmospheric motions, atmospheric chemistry, and their coupling. The evaluation of heating rates is complicated (especially above the stratopause) by the fact that the heating is not a simple one-step process. That is, the absorbed solar energy does not all immediately appear as heat. Rather, substantial portions of the incident energy may appear as internal energy of excited photolysis products (e.g., O(1D) or O2(1 delta)) or as chemical potential energy of product species such as atomic oxygen. The ultimate disposition of the internal and chemical energy possessed by the photolysis products determines the efficiency and thus the rate at which the middle atmosphere is heated. In studies of the heat budget, it is also vitally important to consider transport of long lived chemical species such as atomic oxygen above approximately 80 km. In such cases, the chemical potential energy may be transported great distances (horizontally or vertically) before undergoing a reaction to release the heat. Atomic oxygen influences the heating not only by reactions with itself and with O2 but also by reactions with odd-hydrogen species, especially those involving OH (Mlynczak and Solomon, 1991a). Consequently, absorbed solar energy may finally by converted to heat a long time after and at a location far from the original deposition. The purpose of this paper is to examine the solar and chemical heating processes and to present parameterizations for the heating efficiencies readily applicable for use in numerical models and heat budget studies. In the next two sections the processes relevant to the heating efficiencies for ozone and molecular oxygen will be reviewed. In section 4 the processes for the exothermic reactions will be reviewed and parameterizations for the heating efficiencies for both the solar and chemical processes will be presented in Section 5.

  8. Analysis of microbiological contamination in mixed pressed ham and cooked sausage in Korea.

    PubMed

    Park, Myoung-Su; Wang, Jun; Park, Joong-Hyun; Forghani, Fereidoun; Moon, Jin-San; Oh, Deog-Hwan

    2014-03-01

    The objective of this study was to investigate the microbial contamination levels (aerobic bacteria plate count [APC], coliforms, Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes) in mixed pressed ham and cooked sausage. A total of 180 samples were collected from factories with and without hazard analysis critical control point (HACCP) systems at four steps: after chopping (AC), after mixing (AM), cooling after the first heating process, and cooling after the second heating process. For ham, APCs and coliform and E. coli counts increased when ingredients were added to the meat at the AC step. Final product APC was 1.63 to 1.85 log CFU/g, and coliforms and E. coli were not detected. S. aureus and L. monocytogenes were found in nine (15.0%) and six (10.0%) samples, respectively, but only at the AC and AM steps and not in the final product. Sausage results were similar to those for ham. The final product APC was 1.52 to 3.85 log CFU/g, and coliforms and E. coli were not detected. S. aureus and L. monocytogenes were found in 29 (24.2%) and 25 (20.8%) samples at the AC and AM steps, respectively, but not in the final product. These results indicate that the temperature and time of the first and second heating are of extreme importance to ensure the microbiological safety of the final product regardless of whether a HACCP system is in place. Microorganism contamination must be monitored regularly and regulations regarding sanitization during processing should be improved. Education regarding employee personal hygiene, environmental hygiene, prevention of cross-contamination, ingredient control, and step-by-step process control is needed to reduce the risk of food poisoning.

  9. Preparation of UC0.07-0.10N0.90-0.93 spheres for TRISO coated fuel particles

    NASA Astrophysics Data System (ADS)

    Hunt, R. D.; Silva, C. M.; Lindemer, T. B.; Johnson, J. A.; Collins, J. L.

    2014-05-01

    The US Department of Energy is considering a new nuclear fuel that would be less susceptible to ruptures during a loss-of-coolant accident. The fuel would consist of tristructural isotropic coated particles with dense uranium nitride (UN) kernels with diameters of 650 or 800 μm. The objectives of this effort are to make uranium oxide microspheres with adequately dispersed carbon nanoparticles and to convert these microspheres into UN spheres, which could be then sintered into kernels. Recent improvements to the internal gelation process were successfully applied to the production of uranium gel spheres with different concentrations of carbon black. After the spheres were washed and dried, a simple two-step heat profile was used to produce porous microspheres with a chemical composition of UC0.07-0.10N0.90-0.93. The first step involved heating the microspheres to 2023 K in a vacuum, and in the second step, the microspheres were held at 1873 K for 6 h in flowing nitrogen.

  10. Integral blow moulding for cycle time reduction of CFR-TP aluminium contour joint processing

    NASA Astrophysics Data System (ADS)

    Barfuss, Daniel; Würfel, Veit; Grützner, Raik; Gude, Maik; Müller, Roland

    2018-05-01

    Integral blow moulding (IBM) as a joining technology of carbon fibre reinforced thermoplastic (CFR-TP) hollow profiles with metallic load introduction elements enables significant cycle time reduction by shortening of the process chain. As the composite part is joined to the metallic part during its consolidation process subsequent joining steps are omitted. In combination with a multi-scale structured load introduction element its form closure function enables to pass very high loads and is capable to achieve high degrees of material utilization. This paper first shows the process set-up utilizing thermoplastic tape braided preforms and two-staged press and internal hydro formed load introduction elements. Second focuses on heating technologies and process optimization. Aiming at cycle time reduction convection and induction heating in regard to the resulting product quality is inspected by photo micrographs and computer tomographic scans. Concluding remarks give final recommendations for the process design in regard to the structural design.

  11. A reduced theoretical model for estimating condensation effects in combustion-heated hypersonic tunnel

    NASA Astrophysics Data System (ADS)

    Lin, L.; Luo, X.; Qin, F.; Yang, J.

    2018-03-01

    As one of the combustion products of hydrocarbon fuels in a combustion-heated wind tunnel, water vapor may condense during the rapid expansion process, which will lead to a complex two-phase flow inside the wind tunnel and even change the design flow conditions at the nozzle exit. The coupling of the phase transition and the compressible flow makes the estimation of the condensation effects in such wind tunnels very difficult and time-consuming. In this work, a reduced theoretical model is developed to approximately compute the nozzle-exit conditions of a flow including real-gas and homogeneous condensation effects. Specifically, the conservation equations of the axisymmetric flow are first approximated in the quasi-one-dimensional way. Then, the complex process is split into two steps, i.e., a real-gas nozzle flow but excluding condensation, resulting in supersaturated nozzle-exit conditions, and a discontinuous jump at the end of the nozzle from the supersaturated state to a saturated state. Compared with two-dimensional numerical simulations implemented with a detailed condensation model, the reduced model predicts the flow parameters with good accuracy except for some deviations caused by the two-dimensional effect. Therefore, this reduced theoretical model can provide a fast, simple but also accurate estimation of the condensation effect in combustion-heated hypersonic tunnels.

  12. The Tensile Properties of Advanced Nickel-Base Disk Superalloys During Quenching Heat Treatments

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Kantzos, Pete T.; Biles, Tiffany; Konkel, William

    2001-01-01

    There is a need to increase the temperature capabilities of superalloy turbine disks. This would allow full utilization of higher temperature combustor and airfoil concepts under development. One approach to meet this goal is to modify the processing and chemistry of advanced alloys, while preserving the ability to use rapid cooling supersolvus heat treatments to achieve coarse grain, fine gamma prime microstructures. An important step in this effort is to understand the key high temperature tensile properties of advanced alloys as they exist during supersolvus heat treatments. This could help in projecting cracking tendencies of disks during quenches from supersolvus heat treatments. The objective of this study was to examine the tensile properties of two advanced disk superalloys during simulated quenching heat treatments. Specimens were cooled from the solution heat treatment temperatures at controlled rates, interrupted, and immediately tensile tested at various temperatures. The responses and failure modes were compared and related to the quench cracking tendencies of disk forgings.

  13. The influence of heat treatment on properties of cold rolled alloyed steel and nickel superalloys sheets used in aircraft industry

    NASA Astrophysics Data System (ADS)

    Zaba, K.; Dul, I.; Puchlerska, S.

    2017-02-01

    Superalloys based on nickel and selected steels are widely used in the aerospace industry, because of their excellent mechanical properties, heat resistance and creep resistance. Metal sheets of these materials are plastically deformed and applied, inter alia, to critical components of aircraft engines. Due to their chemical composition these materials are hardly deformable. There are various methods to improve the formability of these materials, including plastic deformation at an elevated or high temperature, or a suitable heat treatment before forming process. The paper presents results of the metal sheets testing after heat treatment. For the research, sheets of two types of nickel superalloys type Inconel and of three types of steel were chosen. The materials were subjected to multivariate heat treatment at different temperature range and time. After this step, mechanical properties were examined according to the metal sheet rolling direction. The results were compared and the optimal type of pre-trial softening heat treatment for each of the materials was determined.

  14. Effective Methods for Solving Band SLEs after Parabolic Nonlinear PDEs

    NASA Astrophysics Data System (ADS)

    Veneva, Milena; Ayriyan, Alexander

    2018-04-01

    A class of models of heat transfer processes in a multilayer domain is considered. The governing equation is a nonlinear heat-transfer equation with different temperature-dependent densities and thermal coefficients in each layer. Homogeneous Neumann boundary conditions and ideal contact ones are applied. A finite difference scheme on a special uneven mesh with a second-order approximation in the case of a piecewise constant spatial step is built. This discretization leads to a pentadiagonal system of linear equations (SLEs) with a matrix which is neither diagonally dominant, nor positive definite. Two different methods for solving such a SLE are developed - diagonal dominantization and symbolic algorithms.

  15. Improved fermentative alcohol production. [Patent application

    DOEpatents

    Wilke, C.R.; Maiorella, B.L.; Blanch, H.W.; Cysewski, G.R.

    1980-11-26

    An improved fermentation process is described for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using water load balancing (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

  16. Manufacturing Ethyl Acetate From Fermentation Ethanol

    NASA Technical Reports Server (NTRS)

    Rohatgi, Naresh K.; Ingham, John D.

    1991-01-01

    Conceptual process uses dilute product of fermentation instead of concentrated ethanol. Low-concentration ethanol, extracted by vacuum from fermentation tank, and acetic acid constitutes feedstock for catalytic reaction. Product of reaction goes through steps that increases ethyl acetate content to 93 percent by weight. To conserve energy, heat exchangers recycle waste heat to preheat process streams at various points.

  17. Modelization of three-layered polymer coated steel-strip ironing process using a neural network

    NASA Astrophysics Data System (ADS)

    Sellés, M. A.; Schmid, S. R.; Sánchez-Caballero, S.; Seguí, V. J.; Reig, M. J.; Pla, R.

    2012-04-01

    An alternative to the traditional can manufacturing process is to use plastic laminated rolled steels as base stocks. This material consist of pre-heated steel coils that are sandwiched between one or two sheets of polymer. The heated sheets are then immediately quenched, which yields a strong bond between the layers. Such polymer-coated steels were investigated by Jaworski [1,2] and Sellés [3], and found to be suitable for ironing with carefully controlled conditions. A novel multi-layer polymer coated steel has been developed for container applications. This material presents an interesting extension to previous research on polymer laminated steel in ironing, and offers several advantages over the previous material (Sellés [3]). This document shows a modelization for the ironing process (the most crucial step in can manufacturing) done by using a neural network

  18. Fundamental mechanisms in premixed flame propagation via vortex-flame interactions: Numerical simulations

    NASA Technical Reports Server (NTRS)

    Mantel, Thierry

    1994-01-01

    The goal of the present study is to assess numerically the ability of single-step and two-step chemical models to describe the main features encountered during the interaction between a two-dimensional vortex pair and a premixed laminar flame. In the two-step mechanism, the reaction kinetics are represented by a first chain branching reaction A + X yields 2X and a second chain termination reaction X + X yields P. This paper presents the fundamental mechanisms occurring during vortex-flame interactions and the relative impact of the major parameters encountered in turbulent premixed flames and suspected of playing a role in quenching mechanism: (1) Influence of stretch is investigated by analyzing the contribution of curvature and tangential strain on the local structure of the flame. The effect of Lewis number on the flame response to a strained field is analyzed. (2) Radiative heat losses which are suspected to be partially or totally responsible for quenching are also investigated. (3) The effect of the diffusion of the radicals is studied using a two-step mechanism in which an intermediate species is present. The parameters of the two-step mechanism are entirely determined from physical arguments. (4) Precise quantitative comparisons between the DNS and the experimental results of Samaniego et al are performed. These comparisons concern the evolution of the minimum heat release rate found along the flame front during the interaction and the distribution of the heat release rate along the flame front.

  19. Micromechanical Characterization and Texture Analysis of Direct Cast Titanium Alloys Strips

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This research was conducted to determine a post-processing technique to optimize mechanical and material properties of a number of Titanium based alloys and aluminides processed via Melt Overflow Solidification Technique (MORST). This technique was developed by NASA for the development of thin sheet titanium and titanium aluminides used in high temperature applications. The materials investigated in this study included conventional titanium alloy strips and foils, Ti-1100, Ti-24Al-11Nb (Alpha-2), and Ti-48Al-2Ta (Gamma). The methodology used included micro-characterization, heat-treatment, mechanical processing and mechanical testing. Characterization techniques included optical, electron microscopy, and x-ray texture analysis. The processing included heat-treatment and mechanical deformation through cold rolling. The initial as-cast materials were evaluated for their microstructure and mechanical properties. Different heat-treatment and rolling steps were chosen to process these materials. The properties were evaluated further and a processing relationship was established in order to obtain an optimum processing condition. The results showed that the as-cast material exhibited a Widmanstatten (fine grain) microstructure that developed into a microstructure with larger grains through processing steps. The texture intensity showed little change for all processing performed in this investigation.

  20. Physical characterization of a new composition of oxidized zirconium-2.5 wt% niobium produced using a two step process for biomedical applications

    NASA Astrophysics Data System (ADS)

    Pawar, V.; Weaver, C.; Jani, S.

    2011-05-01

    Zirconium and particularly Zr-2.5 wt%Nb (Zr2.5Nb) alloy are useful for engineering bearing applications because they can be oxidized in air to form a hard surface ceramic. Oxidized zirconium (OxZr) due to its abrasion resistant ceramic surface and biocompatible substrate alloy has been used as a bearing surface in total joint arthroplasty for several years. OxZr is characterized by hard zirconium oxide (oxide) formed on Zr2.5Nb using one step thermal oxidation carried out in air. Because the oxide is only at the surface, the bulk material behaves like a metal, with high toughness. The oxide, furthermore, exhibits high adhesion to the substrate because of an oxygen-rich diffusion hardened zone (DHZ) interposing between the oxide and the substrate. In this study, we demonstrate a two step process that forms a thicker DHZ and thus increased depth of hardening than that can be obtained using a one step oxidation process. The first step is thermal oxidation in air and the second step is a heat treatment in vacuum. The second step drives oxygen from the oxide formed in the first step deeper into the substrate to form a thicker DHZ. During the process only a portion of the oxide is dissolved. This new composition (DHOxZr) has approximately 4-6 μm oxide similar to that of OxZr. The nano-hardness of the oxide is similar but the DHZ is approximately 10 times thicker. The stoichiometry of the oxide is similar and a secondary phase rich in oxygen is present through the entire thickness. Due to the increased depth of hardening, the critical load required for the onset of oxide cracking is approximately 1.6 times more than that of the oxide of OxZr. This new composition has a potential to be used as a bearing surface in applications where greater depth of hardening is required.

  1. Thermodynamics of bread baking: A two-state model

    NASA Astrophysics Data System (ADS)

    Zürcher, Ulrich

    2014-03-01

    Bread baking can be viewed as a complex physico-chemical process. It is governed by transport of heat and is accompanied by changes such as gelation of starch, the expansion of air cells within dough, and others. We focus on the thermodynamics of baking and investigate the heat flow through dough and find that the evaporation of excess water in dough is the rate-limiting step. We consider a simplified one-dimensional model of bread, treating the excess water content as a two-state variable that is zero for baked bread and a fixed constant for unbaked dough. We arrive at a system of coupled, nonlinear ordinary differential equations, which are solved using a standard Runge-Kutta integration method. The calculated baking times are consistent with common baking experience.

  2. Two complementary approaches to quantify variability in heat resistance of spores of Bacillus subtilis.

    PubMed

    den Besten, Heidy M W; Berendsen, Erwin M; Wells-Bennik, Marjon H J; Straatsma, Han; Zwietering, Marcel H

    2017-07-17

    Realistic prediction of microbial inactivation in food requires quantitative information on variability introduced by the microorganisms. Bacillus subtilis forms heat resistant spores and in this study the impact of strain variability on spore heat resistance was quantified using 20 strains. In addition, experimental variability was quantified by using technical replicates per heat treatment experiment, and reproduction variability was quantified by using two biologically independent spore crops for each strain that were heat treated on different days. The fourth-decimal reduction times and z-values were estimated by a one-step and two-step model fitting procedure. Grouping of the 20 B. subtilis strains into two statistically distinguishable groups could be confirmed based on their spore heat resistance. The reproduction variability was higher than experimental variability, but both variabilities were much lower than strain variability. The model fitting approach did not significantly affect the quantification of variability. Remarkably, when strain variability in spore heat resistance was quantified using only the strains producing low-level heat resistant spores, then this strain variability was comparable with the previously reported strain variability in heat resistance of vegetative cells of Listeria monocytogenes, although in a totally other temperature range. Strains that produced spores with high-level heat resistance showed similar temperature range for growth as strains that produced low-level heat resistance. Strain variability affected heat resistance of spores most, and therefore integration of this variability factor in modelling of spore heat resistance will make predictions more realistic. Copyright © 2017. Published by Elsevier B.V.

  3. A comparison of simple global kinetic models for coal devolatilization with the CPD model

    DOE PAGES

    Richards, Andrew P.; Fletcher, Thomas H.

    2016-08-01

    Simulations of coal combustors and gasifiers generally cannot incorporate the complexities of advanced pyrolysis models, and hence there is interest in evaluating simpler models over ranges of temperature and heating rate that are applicable to the furnace of interest. In this paper, six different simple model forms are compared to predictions made by the Chemical Percolation Devolatilization (CPD) model. The model forms included three modified one-step models, a simple two-step model, and two new modified two-step models. These simple model forms were compared over a wide range of heating rates (5 × 10 3 to 10 6 K/s) at finalmore » temperatures up to 1600 K. Comparisons were made of total volatiles yield as a function of temperature, as well as the ultimate volatiles yield. Advantages and disadvantages for each simple model form are discussed. In conclusion, a modified two-step model with distributed activation energies seems to give the best agreement with CPD model predictions (with the fewest tunable parameters).« less

  4. Contamination pathways of spore-forming bacteria in a vegetable cannery.

    PubMed

    Durand, Loïc; Planchon, Stella; Guinebretiere, Marie-Hélène; André, Stéphane; Carlin, Frédéric; Remize, Fabienne

    2015-06-02

    Spoilage of low-acid canned food during prolonged storage at high temperatures is caused by heat resistant thermophilic spores of strict or facultative bacteria. Here, we performed a bacterial survey over two consecutive years on the processing line of a French company manufacturing canned mixed green peas and carrots. In total, 341 samples were collected, including raw vegetables, green peas and carrots at different steps of processing, cover brine, and process environment samples. Thermophilic and highly-heat-resistant thermophilic spores growing anaerobically were counted. During vegetable preparation, anaerobic spore counts were significantly decreased, and tended to remain unchanged further downstream in the process. Large variation of spore levels in products immediately before the sterilization process could be explained by occasionally high spore levels on surfaces and in debris of vegetable combined with long residence times in conditions suitable for growth and sporulation. Vegetable processing was also associated with an increase in the prevalence of highly-heat-resistant species, probably due to cross-contamination of peas via blanching water. Geobacillus stearothermophilus M13-PCR genotypic profiling on 112 isolates determined 23 profile-types and confirmed process-driven cross-contamination. Taken together, these findings clarify the scheme of contamination pathway by thermophilic spore-forming bacteria in a vegetable cannery. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Temperature-programmed natural convection for micromixing and biochemical reaction in a single microfluidic chamber.

    PubMed

    Kim, Sung-Jin; Wang, Fang; Burns, Mark A; Kurabayashi, Katsuo

    2009-06-01

    Micromixing is a crucial step for biochemical reactions in microfluidic networks. A critical challenge is that the system containing micromixers needs numerous pumps, chambers, and channels not only for the micromixing but also for the biochemical reactions and detections. Thus, a simple and compatible design of the micromixer element for the system is essential. Here, we propose a simple, yet effective, scheme that enables micromixing and a biochemical reaction in a single microfluidic chamber without using any pumps. We accomplish this process by using natural convection in conjunction with alternating heating of two heaters for efficient micromixing, and by regulating capillarity for sample transport. As a model application, we demonstrate micromixing and subsequent polymerase chain reaction (PCR) for an influenza viral DNA fragment. This process is achieved in a platform of a microfluidic cartridge and a microfabricated heating-instrument with a fast thermal response. Our results will significantly simplify micromixing and a subsequent biochemical reaction that involves reagent heating in microfluidic networks.

  6. Microencapsulation of metal-based phase change material for high-temperature thermal energy storage.

    PubMed

    Nomura, Takahiro; Zhu, Chunyu; Sheng, Nan; Saito, Genki; Akiyama, Tomohiro

    2015-03-13

    Latent heat storage using alloys as phase change materials (PCMs) is an attractive option for high-temperature thermal energy storage. Encapsulation of these PCMs is essential for their successful use. However, so far, technology for producing microencapsulated PCMs (MEPCMs) that can be used above 500°C has not been established. Therefore, in this study, we developed Al-Si alloy microsphere MEPCMs covered by α-Al2O3 shells. The MEPCM was prepared in two steps: (1) the formation of an AlOOH shell on the PCM particles using a boehmite treatment, and (2) heat-oxidation treatment in an O2 atmosphere to form a stable α-Al2O3 shell. The MEPCM presented a melting point of 573°C and latent heat of 247 J g(-1). The cycling performance showed good durability. These results indicated the possibility of using MEPCM at high temperatures. The MEPCM developed in this study has great promise in future energy and chemical processes, such as exergy recuperation and process intensification.

  7. Microencapsulation of Metal-based Phase Change Material for High-temperature Thermal Energy Storage

    NASA Astrophysics Data System (ADS)

    Nomura, Takahiro; Zhu, Chunyu; Sheng, Nan; Saito, Genki; Akiyama, Tomohiro

    2015-03-01

    Latent heat storage using alloys as phase change materials (PCMs) is an attractive option for high-temperature thermal energy storage. Encapsulation of these PCMs is essential for their successful use. However, so far, technology for producing microencapsulated PCMs (MEPCMs) that can be used above 500°C has not been established. Therefore, in this study, we developed Al-Si alloy microsphere MEPCMs covered by α-Al2O3 shells. The MEPCM was prepared in two steps: (1) the formation of an AlOOH shell on the PCM particles using a boehmite treatment, and (2) heat-oxidation treatment in an O2 atmosphere to form a stable α-Al2O3 shell. The MEPCM presented a melting point of 573°C and latent heat of 247 J g-1. The cycling performance showed good durability. These results indicated the possibility of using MEPCM at high temperatures. The MEPCM developed in this study has great promise in future energy and chemical processes, such as exergy recuperation and process intensification.

  8. Enabling two-phase microfluidic thermal transport systems using a novel thermal-flux degassing and fluid charging approach

    NASA Astrophysics Data System (ADS)

    Singh Dhillon, Navdeep; Pisano, Albert P.

    2014-03-01

    A novel two-port thermal-flux method has been proposed and demonstrated for degassing and charging two-phase microfluidic thermal transport systems with a degassed working fluid. In microscale heat pipes and loop heat pipes (mLHPs), small device volumes and large capillary forces associated with smaller feature sizes render conventional vacuum pump-based degassing methods quite impractical. Instead, we employ a thermally generated pressure differential to purge non-condensable gases from these devices before charging them with a degassed working fluid in a two-step process. Based on the results of preliminary experiments studying the effectiveness and reliability of three different high temperature-compatible device packaging approaches, an optimized compression packaging technique was developed to degas and charge a mLHP device using the thermal-flux method. An induction heating-based noninvasive hermetic sealing approach for permanently sealing the degassed and charged mLHP devices has also been proposed. To demonstrate the efficacy of this approach, induction heating experiments were performed to noninvasively seal 1 mm square silicon fill-hole samples with donut-shaped solder preforms. The results show that the minimum hole sealing induction heating time is heat flux limited and can be estimated using a lumped capacitance thermal model. However, further continued heating of the solder uncovers the hole due to surface tension-induced contact line dynamics of the molten solder. It was found that an optimum mass of the solder preform is required to ensure a wide enough induction-heating time window for successful sealing of a fill-hole.

  9. Single Step Laser Transfer and Laser Curing of Ag NanoWires: A Digital Process for the Fabrication of Flexible and Transparent Microelectrodes.

    PubMed

    Zacharatos, Filimon; Karvounis, Panagiotis; Theodorakos, Ioannis; Hatziapostolou, Antonios; Zergioti, Ioanna

    2018-06-19

    Ag nanowire (NW) networks have exquisite optical and electrical properties which make them ideal candidate materials for flexible transparent conductive electrodes. Despite the compatibility of Ag NW networks with laser processing, few demonstrations of laser fabricated Ag NW based components currently exist. In this work, we report on a novel single step laser transferring and laser curing process of micrometer sized pixels of Ag NW networks on flexible substrates. This process relies on the selective laser heating of the Ag NWs induced by the laser pulse energy and the subsequent localized melting of the polymeric substrate. We demonstrate that a single laser pulse can induce both transfer and curing of the Ag NW network. The feasibility of the process is confirmed experimentally and validated by Finite Element Analysis simulations, which indicate that selective heating is carried out within a submicron-sized heat affected zone. The resulting structures can be utilized as fully functional flexible transparent electrodes with figures of merit even higher than 100. Low sheet resistance (<50 Ohm/sq) and high visible light transparency (>90%) make the reported process highly desirable for a variety of applications, including selective heating or annealing of nanocomposite materials and laser processing of nanostructured materials on a large variety of optically transparent substrates, such as Polydimethylsiloxane (PDMS).

  10. Preparation of highly hydrophobic cotton fabrics by modification with bifunctional silsesquioxanes in the sol-gel process

    NASA Astrophysics Data System (ADS)

    Przybylak, Marcin; Maciejewski, Hieronim; Dutkiewicz, Agnieszka

    2016-11-01

    The surface modification of cotton fabrics was carried out using two types of bifunctional fluorinated silsesquioxanes with different ratios of functional groups. The modification was performed either by one- or two-step process. Two methods, the sol-gel and the dip coating method were used in different configurations. The heat treatment and the washing process were applied after modification. The wettability of cotton fabric was evaluated by measuring water contact angles (WCA). Changes in the surface morphology were examined by scanning electron microscopy (SEM, SEM-LFD) and atomic force microscopy (AFM). Moreover, the modified fabrics were subjected to analysis of elemental composition of the applied coatings using SEM-EDS techniques. Highly hydrophobic textiles were obtained in all cases studied and one of the modifications resulted in imparting superhydrophobic properties. Most of impregnated textiles remained hydrophobic even after multiple washing process which shows that the studied modification is durable.

  11. Impact of Si on Microstructure and Mechanical Properties of 22MnB5 Hot Stamping Steel Treated by Quenching & Partitioning (Q&P)

    NASA Astrophysics Data System (ADS)

    Linke, Bernd M.; Gerber, Thomas; Hatscher, Ansgar; Salvatori, Ilaria; Aranguren, Iñigo; Arribas, Maribel

    2018-01-01

    Based on 22MnB5 hot stamping steel, three model alloys containing 0.5, 0.8, and 1.5 wt pct Si were produced, heat treated by quenching and partitioning (Q&P), and characterized. Aided by DICTRA calculations, the thermal Q&P cycles were designed to fit into industrial hot stamping by keeping partitioning times ≤ 30 seconds. As expected, Si increased the amount of retained austenite (RA) stabilized after final cooling. However, for the intermediate Si alloy the heat treatment exerted a particularly pronounced influence with an RA content three times as high for the one-step process compared to the two-step process. It appeared that 0.8 wt pct Si sufficed to suppress direct cementite formation from within martensite laths but did not sufficiently stabilize carbon-soaked RA at higher temperatures. Tensile and bending tests showed strongly diverging effects of austenite on ductility. Total elongation improved consistently with increasing RA content independently from its carbon content. In contrast, the bending angle was not impacted by high-carbon RA but deteriorated almost linearly with the amount of low-carbon RA.

  12. Method of making self-aligned lightly-doped-drain structure for MOS transistors

    DOEpatents

    Weiner, Kurt H.; Carey, Paul G.

    2001-01-01

    A process for fabricating lightly-doped-drains (LDD) for short-channel metal oxide semiconductor (MOS) transistors. The process utilizes a pulsed laser process to incorporate the dopants, thus eliminating the prior oxide deposition and etching steps. During the process, the silicon in the source/drain region is melted by the laser energy. Impurities from the gas phase diffuse into the molten silicon to appropriately dope the source/drain regions. By controlling the energy of the laser, a lightly-doped-drain can be formed in one processing step. This is accomplished by first using a single high energy laser pulse to melt the silicon to a significant depth and thus the amount of dopants incorporated into the silicon is small. Furthermore, the dopants incorporated during this step diffuse to the edge of the MOS transistor gate structure. Next, many low energy laser pulses are used to heavily dope the source/drain silicon only in a very shallow region. Because of two-dimensional heat transfer at the MOS transistor gate edge, the low energy pulses are inset from the region initially doped by the high energy pulse. By computer control of the laser energy, the single high energy laser pulse and the subsequent low energy laser pulses are carried out in a single operational step to produce a self-aligned lightly-doped-drain-structure.

  13. Mechanical properties of weldments in experimental Fe-12Mn-0.2Ti and Fe-12Mn-1Mo-0.2Ti alloys for cryogenic service

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.; Devletian, J. H.

    1981-01-01

    Mechanical properties of weldments in two Fe-12Mn experimental alloys designed for cryogenic service were evaluated. Weldments were made using the GTA welding process. Tests to evaluate the weldments were conducted at -196 C and included: equivalent energy fracture toughness tests; autogenous transverse weld, notched transverse weld, and longitudinal weld tensile tests; and all-weld-metal tensile tests. The Fe-12Mn-0.2Ti and Fe-12Mn-1Mo-0.2Ti alloys proved weldable for cryogenic service, with weld metal and heat-affected zone properties comparable with those of the base metal. Optimum properties were achieved in the base alloys, weld metals, and heat-affected zones after a two-step heat treatment consisting of austenitizing at 900 C followed by tempering at 500 C. The Mo-containing alloy offered a marked improvement in cryogenic properties over those of the Mo-free alloy. Molybdenum increased the amount of retained austenite and reduced the amount of epsilon martensite observed in the microstructure of the two alloys.

  14. Demonstration of Passive Fuel Cell Thermal Management Technology

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William

    2012-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.

  15. Influence of initial heating during final high temperature annealing on the offset of primary and secondary recrystallization in Cu-bearing grain oriented electrical steels

    NASA Astrophysics Data System (ADS)

    Rodriguez-Calvillo, P.; Leunis, E.; Van De Putte, T.; Jacobs, S.; Zacek, O.; Saikaly, W.

    2018-04-01

    The industrial production route of Grain Oriented Electrical Steels (GOES) is complex and fine-tuned for each grade. Its metallurgical process requires in all cases the abnormal grain growth (AGG) of the Goss orientation during the final high temperature annealing (HTA). The exact mechanism of AGG is not yet fully understood, but is controlled by the different inhibition systems, namely MnS, AlN and CuxS, their size and distribution, and the initial primary recrystallized grain size. Therefore, among other parameters, the initial heating stage during the HTA is crucial for the proper development of primary and secondary recrystallized microstructures. Cold rolled 0.3 mm Cu-bearing Grain Oriented Electrical Steel has been submitted to interrupted annealing experiments in a lab tubular furnace. Two different annealing cycles were applied:• Constant heating at 30°C/h up to 1000°C. Two step cycle with initial heating at 100°C/h up to 600°C, followed by 18 h soaking at 600°C and then heating at 30°C/h up to 1050°C. The materials are analyzed in terms of their magnetic properties, grain size, texture and precipitates. The characteristic magnetic properties are analyzed for the different extraction temperatures and Cycles. As the annealing was progressing, the coercivity values (Hc 1.7T [A/m]) decreased, showing two abrupt drops, which can be associated to the on-set of primary and secondary recrystallization. The primary recrystallized grain sizes and recrystallized fractions are fitted to a model using a non-isothermal approach. This analysis shows that, although the resulting grain sizes were similar, the kinetics for the two step annealing were faster due to the lower recovery. The on-set of secondary recrystallization was also shifted to higher temperatures in the case of the continuous heating cycle, which might end in different final grain sizes and final magnetic properties. In both samples, nearly all the observed precipitates are Al-Si-Mn nitrides, ranging from pure AlN to Si4Mn-nitride.

  16. Heat Transfer on a Flat Plate with Uniform and Step Temperature Distributions

    NASA Technical Reports Server (NTRS)

    Bahrami, Parviz A.

    2005-01-01

    Heat transfer associated with turbulent flow on a step-heated or cooled section of a flat plate at zero angle of attack with an insulated starting section was computationally modeled using the GASP Navier-Stokes code. The algebraic eddy viscosity model of Baldwin-Lomax and the turbulent two-equation models, the K- model and the Shear Stress Turbulent model (SST), were employed. The variations from uniformity of the imposed experimental temperature profile were incorporated in the computations. The computations yielded satisfactory agreement with the experimental results for all three models. The Baldwin- Lomax model showed the closest agreement in heat transfer, whereas the SST model was higher and the K-omega model was yet higher than the experiments. In addition to the step temperature distribution case, computations were also carried out for a uniformly heated or cooled plate. The SST model showed the closest agreement with the Von Karman analogy, whereas the K-omega model was higher and the Baldwin-Lomax was lower.

  17. Catalysts for the hydrodenitrogenation of organic materials and process for the preparation of the catalysts

    DOEpatents

    Laine, R.M.; Hirschon, A.S.; Wilson, R.B. Jr.

    1987-12-29

    A process is described for the preparation of a multimetallic catalyst for the hydrodenitrogenation of an organic feedstock, which process comprises: (a) forming a precatalyst itself comprising: (1) a first metal compound selected from compounds of nickel, cobalt or mixtures thereof; (2) a second metal compound selected from compounds of chromium, molybdenum, tungsten, or mixtures thereof; and (3) an inorganic support; (b) heating the precatalyst of step (a) with a source of sulfide in a first non-oxidizing gas at a temperature and for a time effective to presulfide the precatalyst; (c) adding in a second non-oxidizing gas to the sulfided precatalyst of step (b) an organometallic transition metal moiety selected from compounds of iridium, rhodium, iron, ruthenium, tungsten or mixtures thereof for a time and at a temperature effective to chemically combine the metal components; and (d) optionally heating the chemically combined catalyst of step (b) in vacuum at a temperature and for a time effective to remove residual volatile organic materials. 12 figs.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gesta, E.; Intelligent Insect Control, 118 Chemin des Alouettes, Castelnau-le-Lez, 34170; Skovmand, O., E-mail: osk@insectcontrol.net

    The purpose of this study is to understand the influence of the yarn processing on the migration of additives molecules, especially insecticide, within polyethylene (PE) yarns. Yarns were manufactured in the laboratory focusing on three key-steps (spinning, post-stretching and heat-setting). Influence of each step on yarn properties was investigated using tensile tests, differential scanning calorimetry and wide-angle X-ray diffraction. The post-stretching step was proved to be critical in defining yarn mechanical and structural properties. Although a first orientation of polyethylene crystals was induced during spinning, the optimal orientation was only reached by post-stretching. The results also showed that the heat-settingmore » did not significantly change these properties. The presence of additives crystals at the yarn surface was evidenced by scanning-electron microscopy. These studies performed at each yarn production step allowed a detailed analysis of the additives’ ability to migrate. It is concluded that while post-stretching decreased the migration rate, heat-setting seems to boost this migration.« less

  19. Abnormal Grain Growth Suppression in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J. (Inventor); Claytor, Harold Dale (Inventor); Alexa, Joel A. (Inventor)

    2015-01-01

    The present invention provides a process for suppressing abnormal grain growth in friction stir welded aluminum alloys by inserting an intermediate annealing treatment ("IAT") after the welding step on the article. The IAT may be followed by a solution heat treatment (SHT) on the article under effectively high solution heat treatment conditions. In at least some embodiments, a deformation step is conducted on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions. The invention further provides a welded article having suppressed abnormal grain growth, prepared by the process above. Preferably the article is characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget.

  20. Processes of Heat Transfer in Rheologically Unstable Mixtures of Organic Origin

    NASA Astrophysics Data System (ADS)

    Tkachenko, S. I.; Pishenina, N. V.; Rumyantseva, T. Yu.

    2014-05-01

    The dependence of the coefficient of heat transfer from the heat-exchange surface to a rheologically unstable organic mixture on the thermohydrodynamic state of the mixture and its prehistory has been established. A method for multivariant investigation of the process of heat transfer in compound organic mixtures has been proposed; this method makes it possible to evaluate the character and peculiarities of change in the rheological structure of the mixture as functions of the thermohydrodynamic conditions of its treatment. The possibility of evaluating the intensity of heat transfer in a biotechnological system for production of energy carriers at the step of its designing by multivariant investigation of the heat-transfer intensity in rheologically unstable organic mixtures with account of their prehistory has been shown.

  1. Feasibility of in situ controlled heat treatment (ISHT) of Inconel 718 during electron beam melting additive manufacturing

    DOE PAGES

    Sames, William J.; Unocic, Kinga A.; Helmreich, Grant W.; ...

    2016-10-07

    A novel technique was developed to control the microstructure evolution in Alloy 718 processed using Electron Beam Melting (EBM). In situ solution treatment and aging of Alloy 718 was performed by heating the top surface of the build after build completion scanning an electron beam to act as a planar heat source during the cool down process. Results demonstrate that the measured hardness (478 ± 7 HV) of the material processed using in situ heat treatment similar to that of peak-aged Inconel 718. Large solidification grains and cracks formed, which are identified as the likely mechanism leading to failure ofmore » tensile tests of the in situ heat treatment material under loading. Despite poor tensile performance, the technique proposed was shown to successively age Alloy 718 (increase precipitate size and hardness) without removing the sample from the process chamber, which can reduce the number of process steps in producing a part. Lastly, tighter controls on processing temperature during layer melting to lower process temperature and selective heating during in situ heat treatment to reduce over-sintering are proposed as methods for improving the process.« less

  2. Self-Cleaning Ceramic Tiles Produced via Stable Coating of TiO₂ Nanoparticles.

    PubMed

    Shakeri, Amid; Yip, Darren; Badv, Maryam; Imani, Sara M; Sanjari, Mehdi; Didar, Tohid F

    2018-06-13

    The high photocatalytic power of TiO₂ nanoparticles has drawn great attention in environmental and medical applications. Coating surfaces with these particles enables us to benefit from self-cleaning properties and decomposition of pollutants. In this paper, two strategies have been introduced to coat ceramic tiles with TiO₂ nanoparticles, and the self-cleaning effect of the surfaces on degradation of an organic dye under ultraviolent (UV) exposure is investigated. In the first approach, a simple one-step heat treatment method is introduced for coating, and different parameters of the heat treatment process are examined. In the second method, TiO₂ nanoparticles are first aminosilanized using (3-Aminopropyl)triethoxysilane (APTES) treatment followed by their covalently attachment onto CO₂ plasma treated ceramic tiles via N -(3-Dimethylaminopropyl)- N ′-ethylcarbodiimide hydrochloride (EDC) and N -Hydroxysuccinimide (NHS) chemistry. We monitor TiO₂ nanoparticle sizes throughout the coating process using dynamic light scattering (DLS) and characterize developed surfaces using X-ray photoelectron spectroscopy (XPS). Moreover, hydrophilicity of the coated surfaces is quantified using a contact angle measurement. It is shown that applying a one-step heat treatment process with the optimum temperature of 200 °C for 5 h results in successful coating of nanoparticles and rapid degradation of dye in a short time. In the second strategy, the APTES treatment creates a stable covalent coating, while the photocatalytic capability of the particles is preserved. The results show that coated ceramic tiles are capable of fully degrading the added dyes under UV exposure in less than 24 h.

  3. One-Step Sub-micrometer-Scale Electrohydrodynamic Inkjet Three-Dimensional Printing Technique with Spontaneous Nanoscale Joule Heating.

    PubMed

    Zhang, Bin; Seong, Baekhoon; Lee, Jaehyun; Nguyen, VuDat; Cho, Daehyun; Byun, Doyoung

    2017-09-06

    A one-step sub-micrometer-scale electrohydrodynamic (EHD) inkjet three-dimensional (3D)-printing technique that is based on the drop-on-demand (DOD) operation for which an additional postsintering process is not required is proposed. Both the numerical simulation and the experimental observations proved that nanoscale Joule heating occurs at the interface between the charged silver nanoparticles (Ag-NPs) because of the high electrical contact resistance during the printing process; this is the reason why an additional postsintering process is not required. Sub-micrometer-scale 3D structures were printed with an above-35 aspect ratio via the use of the proposed printing technique; furthermore, it is evident that the designed 3D structures such as a bridge-like shape can be printed with the use of the proposed printing technique, allowing for the cost-effective fabrication of a 3D touch sensor and an ultrasensitive air flow-rate sensor. It is believed that the proposed one-step printing technique may replace the conventional 3D conductive-structure printing techniques for which a postsintering process is used because of its economic efficiency.

  4. A study to evaluate non-uniform phase maps in shape memory alloys using finite element method

    NASA Astrophysics Data System (ADS)

    Motte, Naren

    The unique thermo-mechanical behavior of Shape Memory Alloys (SMAs), such as their ability to recover the original shape upon heating or being able to tolerate large deformations without undergoing plastic transformations, makes them a good choice for actuators. This work studies their application in the aerospace and defense industries where SMA components can serve as release mechanisms for gates of enclosures that have to be deployed remotely. This work provides a novel approach in evaluating the stress and heat induced change of phase in a SMA, in terms of the transformation strain tensor. In particular, the FEA tool ANSYS has been used to perform a 2-D analysis of a Cu-Al-Zn-Mn SMA specimen undergoing a nontraditional loading path in two steps with stress and heating loads. In the first load step, tensile displacement is applied, followed by the second load step in which the specimen is heated while the end displacements are held constant. A number of geometric configurations are examined under the two step loading path. Strain results are used to calculate transformation strain which provides a quantitative measure of phase at a material point; when transformation strain is zero, the material point is either twinned martensite, or austenite depending on the temperature. Transformation strain value of unity corresponds to detwinned martensite. A value between zero and one indicates mixed phase. In this study, through two step loading in conjunction with transformation strain calculations, a method for mapping transient non-uniform distribution of phases in an SMA is introduced. Ability to obtain drastically different phase distributions under same loading path by modifying the geometry is demonstrated. The failure behavior of SMAs can be designed such that the load level the crack initiates and the path it propagates can be customized.

  5. Laminar CuO-water nano-fluid flow and heat transfer in a backward-facing step with and without obstacle

    NASA Astrophysics Data System (ADS)

    Togun, Hussein

    2016-03-01

    This paper presents a numerical investigate on CuO-water nano-fluid and heat transfer in a backward-facing step with and without obstacle. The range of Reynolds number varied from 75 to 225 with volume fraction on CuO nanoparticles varied from 1 to 4 % at constant heat flux was investigated. Continuity, momentum, and energy equations with finite volume method in two dimensions were employed. Four different configurations of backward-facing step (without obstacle, with obstacle of 1.5 mm, with obstacle of 3 mm, with obstacle of 4.5 mm) were considered to find the best thermal performance. The results show that the maximum augmentation in heat transfer was about 22 % for backward-facing step with obstacle of 4.5 mm and using CuO nanoparticles at Reynolds number of 225 compared with backward-facing step without obstacle. It is also observed that increase in size of recirculation region with increase of height obstacle on the channel wall has remarkable effect on thermal performance. The results also found that increases in Reynolds number, height obstacle, and volume fractions of CuO nanoparticles lead to increase of pressure drop.

  6. Method to increase the toughness of aluminum-lithium alloys at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Sankaran, Krishnan K. (Inventor); Sova, Brian J. (Inventor); Babel, Henry W. (Inventor)

    2006-01-01

    A method to increase the toughness of the aluminum-lithium alloy C458 and similar alloys at cryogenic temperatures above their room temperature toughness is provided. Increasing the cryogenic toughness of the aluminum-lithium alloy C458 allows the use of alloy C458 for cryogenic tanks, for example for launch vehicles in the aerospace industry. A two-step aging treatment for alloy C458 is provided. A specific set of times and temperatures to age the aluminum-lithium alloy C458 to T8 temper is disclosed that results in a higher toughness at cryogenic temperatures compared to room temperature. The disclosed two-step aging treatment for alloy 458 can be easily practiced in the manufacturing process, does not involve impractical heating rates or durations, and does not degrade other material properties.

  7. Teaching Heat Exchanger Network Synthesis Using Interactive Microcomputer Graphics.

    ERIC Educational Resources Information Center

    Dixon, Anthony G.

    1987-01-01

    Describes the Heat Exchanger Network Synthesis (HENS) program used at Worcester Polytechnic Institute (Massachusetts) as an aid to teaching the energy integration step in process design. Focuses on the benefits of the computer graphics used in the program to increase the speed of generating and changing networks. (TW)

  8. Rapid low-temperature epitaxial growth using a hot-element assisted chemical vapor deposition process

    DOEpatents

    Iwancizko, Eugene; Jones, Kim M.; Crandall, Richard S.; Nelson, Brent P.; Mahan, Archie Harvin

    2001-01-01

    The invention provides a process for depositing an epitaxial layer on a crystalline substrate, comprising the steps of providing a chamber having an element capable of heating, introducing the substrate into the chamber, heating the element at a temperature sufficient to decompose a source gas, passing the source gas in contact with the element; and forming an epitaxial layer on the substrate.

  9. Process for operating equilibrium controlled reactions

    DOEpatents

    Nataraj, Shankar; Carvill, Brian Thomas; Hufton, Jeffrey Raymond; Mayorga, Steven Gerard; Gaffney, Thomas Richard; Brzozowski, Jeffrey Richard

    2001-01-01

    A cyclic process for operating an equilibrium controlled reaction in a plurality of reactors containing an admixture of an adsorbent and a reaction catalyst suitable for performing the desired reaction which is operated in a predetermined timed sequence wherein the heating and cooling requirements in a moving reaction mass transfer zone within each reactor are provided by indirect heat exchange with a fluid capable of phase change at temperatures maintained in each reactor during sorpreaction, depressurization, purging and pressurization steps during each process cycle.

  10. Modelling and simulation of “Free Cooling” process applied to building construction

    NASA Astrophysics Data System (ADS)

    Ousegui, A.; Asbik, M.

    2018-05-01

    Thermal energy storage systems (TES), using phase change material (PCM) in building walls, consists a hot topic within the research community currently. In the present work, a numerical model is developed to simulate free cooling of air-PCM heat exchanger in both charging and discharging steps. The studied case is taken from experimental work. The domain consists in two parallel plates made of Paraffin as PCM, separate by a gap where air circulates. The flow and temperature can be adjusted. The goal is to calculate the temperature of the air at the outlet, in order to analyse the performance of the device. A good agreement was founded between experimental and numerical results. The analysis of the influence of the flow rate on the efficiency of the process confirms a previous works, that the heating flow rate should be higher than cooling one.

  11. Numerical simulation of machining distortions on a forged aerospace component following a one and a multi-step approaches

    NASA Astrophysics Data System (ADS)

    Prete, Antonio Del; Franchi, Rodolfo; Antermite, Fabrizio; Donatiello, Iolanda

    2018-05-01

    Residual stresses appear in a component as a consequence of thermo-mechanical processes (e.g. ring rolling process) casting and heat treatments. When machining these kinds of components, distortions arise due to the redistribution of residual stresses due to the foregoing process history inside the material. If distortions are excessive, they can lead to a large number of scrap parts. Since dimensional accuracy can affect directly the engines efficiency, the dimensional control for aerospace components is a non-trivial issue. In this paper, the problem related to the distortions of large thin walled aeroengines components in nickel superalloys has been addressed. In order to estimate distortions on inner diameters after internal turning operations, a 3D Finite Element Method (FEM) analysis has been developed on a real industrial test case. All the process history, has been taken into account by developing FEM models of ring rolling process and heat treatments. Three different strategies of ring rolling process have been studied and the combination of related parameters which allows to obtain the best dimensional accuracy has been found. Furthermore, grain size evolution and recrystallization phenomena during manufacturing process has been numerically investigated using a semi empirical Johnson-Mehl-Avrami-Kohnogorov (JMAK) model. The volume subtractions have been simulated by boolean trimming: a one step and a multi step analysis have been performed. The multi-step procedure has allowed to choose the best material removal sequence in order to reduce machining distortions.

  12. Experimental study of the heated contact line region for a pure fluid and binary fluid mixture in microgravity.

    PubMed

    Nguyen, Thao T T; Kundan, Akshay; Wayner, Peter C; Plawsky, Joel L; Chao, David F; Sicker, Ronald J

    2017-02-15

    Understanding the dynamics of phase change heat and mass transfer in the three-phase contact line region is a critical step toward improving the efficiency of phase change processes. Phase change becomes especially complicated when a fluid mixture is used. In this paper, a wickless heat pipe was operated on the International Space Station (ISS) to study the contact line dynamics of a pentane/isohexane mixture. Different interfacial regions were identified, compared, and studied. Using high resolution (50×), interference images, we calculated the curvature gradient of the liquid-vapor interface at the contact line region along the edges of the heat pipe. We found that the curvature gradient in the evaporation region increases with increasing heat flux magnitude and decreasing pentane concentration. The curvature gradient for the mixture case is larger than for the pure pentane case. The difference between the two cases increases as pentane concentration decreases. Our data showed that the curvature gradient profile within the evaporation section is separated into two regions with the boundary between the two corresponding to the location of a thick, liquid, "central drop" region at the point of maximum internal local heat flux. We found that the curvature gradients at the central drop and on the flat surfaces where condensation begins are one order of magnitude smaller than the gradients in the corner meniscus indicating the driving forces for fluid flow are much larger in the corners. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Synthesis of nano-sized lithium cobalt oxide via a sol-gel method

    NASA Astrophysics Data System (ADS)

    Li, Guangfen; Zhang, Jing

    2012-07-01

    In this study, nano-structured LiCoO2 thin film were synthesized by coupling a sol-gel process with a spin-coating method using polyacrylic acid (PAA) as chelating agent. The optimized conditions for obtaining a better gel formulation and subsequent homogenous dense film were investigated by varying the calcination temperature, the molar mass of PAA, and the precursor's molar ratios of PAA, lithium, and cobalt ions. The gel films on the silicon substrate surfaces were deposited by multi-step spin-coating process for either increasing the density of the gel film or adjusting the quantity of PAA in the film. The gel film was calcined by an optimized two-step heating procedure in order to obtain regular nano-structured LiCoO2 materials. Both atomic force microscopy (AFM) and scanning electron microscopy (SEM) were utilized to analyze the crystalline and the morphology of the films, respectively.

  14. A general derivation and quantification of the third law of thermodynamics.

    PubMed

    Masanes, Lluís; Oppenheim, Jonathan

    2017-03-14

    The most accepted version of the third law of thermodynamics, the unattainability principle, states that any process cannot reach absolute zero temperature in a finite number of steps and within a finite time. Here, we provide a derivation of the principle that applies to arbitrary cooling processes, even those exploiting the laws of quantum mechanics or involving an infinite-dimensional reservoir. We quantify the resources needed to cool a system to any temperature, and translate these resources into the minimal time or number of steps, by considering the notion of a thermal machine that obeys similar restrictions to universal computers. We generally find that the obtainable temperature can scale as an inverse power of the cooling time. Our results also clarify the connection between two versions of the third law (the unattainability principle and the heat theorem), and place ultimate bounds on the speed at which information can be erased.

  15. A general derivation and quantification of the third law of thermodynamics

    PubMed Central

    Masanes, Lluís; Oppenheim, Jonathan

    2017-01-01

    The most accepted version of the third law of thermodynamics, the unattainability principle, states that any process cannot reach absolute zero temperature in a finite number of steps and within a finite time. Here, we provide a derivation of the principle that applies to arbitrary cooling processes, even those exploiting the laws of quantum mechanics or involving an infinite-dimensional reservoir. We quantify the resources needed to cool a system to any temperature, and translate these resources into the minimal time or number of steps, by considering the notion of a thermal machine that obeys similar restrictions to universal computers. We generally find that the obtainable temperature can scale as an inverse power of the cooling time. Our results also clarify the connection between two versions of the third law (the unattainability principle and the heat theorem), and place ultimate bounds on the speed at which information can be erased. PMID:28290452

  16. A comparative study of heterostructured CuO/CuWO4 nanowires and thin films

    NASA Astrophysics Data System (ADS)

    Polyakov, Boris; Kuzmin, Alexei; Vlassov, Sergei; Butanovs, Edgars; Zideluns, Janis; Butikova, Jelena; Kalendarev, Robert; Zubkins, Martins

    2017-12-01

    A comparative study of heterostructured CuO/CuWO4 core/shell nanowires and double-layer thin films was performed through X-ray diffraction, confocal micro-Raman spectroscopy and electron (SEM and TEM) microscopies. The heterostructures were produced using a two-step process, starting from a deposition of amorphous WO3 layer on top of CuO nanowires and thin films by reactive DC magnetron sputtering and followed by annealing at 650 °C in air. The second step induced a solid-state reaction between CuO and WO3 oxides through a thermal diffusion process, revealed by SEM-EDX analysis. Morphology evolution of core/shell nanowires and double-layer thin films upon heating was studied by electron (SEM and TEM) microscopies. A formation of CuWO4 phase was confirmed by X-ray diffraction and confocal micro-Raman spectroscopy.

  17. Heat Pipe Materials Compatibility

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.; Fleischman, G. L.; Luedke, E. E.

    1976-01-01

    An experimental program to evaluate noncondensable gas generation in ammonia heat pipes was completed. A total of 37 heat pipes made of aluminum, stainless steel and combinations of these materials were processed by various techniques, operated at different temperatures and tested at low temperature to quantitatively determine gas generation rates. In order of increasing stability are aluminum/stainless combination, all aluminum and all stainless heat pipes. One interesting result is the identification of intentionally introduced water in the ammonia during a reflux step as a means of surface passivation to reduce gas generation in stainless-steel/aluminum heat pipes.

  18. RNAi screen in Drosophila larvae identifies histone deacetylase 3 as a positive regulator of the hsp70 heat shock gene expression during heat shock.

    PubMed

    Achary, Bhavana G; Campbell, Katie M; Co, Ivy S; Gilmour, David S

    2014-05-01

    The transcription regulation of the Drosophila hsp70 gene is a complex process that involves the regulation of multiple steps, including the establishment of paused Pol II and release of Pol II into elongation upon heat shock activation. While the major players involved in the regulation of gene expression have been studied in detail, additional factors involved in this process continue to be discovered. To identify factors involved in hsp70 expression, we developed a screen that capitalizes on a visual assessment of heat shock activation using a hsp70-beta galactosidase reporter and publicly available RNAi fly lines to deplete candidate proteins. We validated the screen by showing that the depletion of HSF, CycT, Cdk9, Nurf 301, or ELL prevented the full induction of hsp70 by heat shock. Our screen also identified the histone deacetylase HDAC3 and its associated protein SMRTER as positive regulators of hsp70 activation. Additionally, we show that HDAC3 and SMRTER contribute to hsp70 gene expression at a step subsequent to HSF-mediated activation and release of the paused Pol II that resides at the promoter prior to heat shock induction. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Intermetallic nanoparticles

    DOEpatents

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  20. Intermetallic nanoparticles

    DOEpatents

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2015-11-20

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  1. Intermetallic nanoparticles

    DOEpatents

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2017-01-03

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  2. Carbon activation process for increased surface accessibility in electrochemical capacitors

    DOEpatents

    Doughty, Daniel H.; Eisenmann, Erhard T.

    2001-01-01

    A process for making carbon film or powder suitable for double capacitor electrodes having a capacitance of up to about 300 F/cm.sup.3 is disclosed. This is accomplished by treating in aqueous nitric acid for a period of about 5 to 15 minutes thin carbon films obtained by carbonizing carbon-containing polymeric material having a high degree of molecular directionality, such as polyimide film, then heating the treated carbon film in a non-oxidizing atmosphere at a non-graphitizing temperature of at least 350.degree. C. for about 20 minutes, and repeating alternately the nitric acid step and the heating step from 7 to 10 times. Capacitors made with this carbon may find uses ranging from electronic devices to electric vehicle applications.

  3. Study of ND3-enhanced MAR processes in D2-N2 plasmas to induce plasma detachment

    NASA Astrophysics Data System (ADS)

    Abe, Shota; Chakraborty Thakur, Saikat; Doerner, Russ; Tynan, George

    2017-10-01

    The Molecular Assisted Recombination (MAR) process is thought to be a main channel of volumetric recombination to induce the plasma detachment operation. Authors have focused on a new plasma recombination process supported by ammonia molecules, which will be formed by impurity seeding of N2 for controlling divertor plasma temperature and heat loads in ITER. This ammonia-enhanced MAR process would occur throughout two steps. In this study, the first step of the new MAR process is investigated in low density plasmas (Ne 1016 m-3, Te 4 eV) fueled by D2 and N2. Ion and neutral densities are measured by a calibrated Electrostatic Quadrupole Plasma (EQP) analyzer, combination of an ion energy analyzer and mass spectrometer. The EQP shows formation of ND3 during discharges. Ion densities calculated by a rate equation model are compared with experimental results. We find that the model can reproduce the observed ion densities in the plasma. The model calculation shows that the dominant neutralization channel of Dx+(x =1-3) ions in the volume is the formation of NDy+(y =3 or 4) throughout charge/D+ exchange reactions with ND3. Furthermore, high density plasmas (Ne 1016 m-3) have been achieved to investigate electron-impact dissociative recombination processes of formed NDy+,which is the second step of this MAR process.

  4. Lateral hopping of CO molecules on Pt(111) surface by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Hayashi, M.; Ootsuka, Y.; Paulsson, M.; Persson, B. N. J.; Ueba, H.

    2009-12-01

    Theory of heat transfer between adsorbate vibrational degrees of freedom and ultrafast laser heated hot electrons including vibrational intermode coupling is applied to calculate two-pulse correlation, laser fluence dependence and time dependence of lateral hopping of CO molecules from a step to terrace site on a stepped Pt (111) surface. The intermode coupling is a key ingredient to describe vibrational heating of the frustrated translation mode responsible for the CO hopping. The calculated results are in good agreement with the experimental results, especially if we scale down the experimentally determined absorbed fluence. It is found that CO hopping is induced by indirect heating of the FT mode by the FR mode with a strong frictional coupling to hot electrons.

  5. Microencapsulation of Metal-based Phase Change Material for High-temperature Thermal Energy Storage

    PubMed Central

    Nomura, Takahiro; Zhu, Chunyu; Sheng, Nan; Saito, Genki; Akiyama, Tomohiro

    2015-01-01

    Latent heat storage using alloys as phase change materials (PCMs) is an attractive option for high-temperature thermal energy storage. Encapsulation of these PCMs is essential for their successful use. However, so far, technology for producing microencapsulated PCMs (MEPCMs) that can be used above 500°C has not been established. Therefore, in this study, we developed Al-Si alloy microsphere MEPCMs covered by α-Al2O3 shells. The MEPCM was prepared in two steps: (1) the formation of an AlOOH shell on the PCM particles using a boehmite treatment, and (2) heat-oxidation treatment in an O2 atmosphere to form a stable α-Al2O3 shell. The MEPCM presented a melting point of 573°C and latent heat of 247 J g−1. The cycling performance showed good durability. These results indicated the possibility of using MEPCM at high temperatures. The MEPCM developed in this study has great promise in future energy and chemical processes, such as exergy recuperation and process intensification. PMID:25766648

  6. Absorption heat pump system

    DOEpatents

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  7. Absorption-heat-pump system

    DOEpatents

    Grossman, G.; Perez-Blanco, H.

    1983-06-16

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  8. Comparison of advanced engines for parabolic dish solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Bowyer, J. M.; Gajanana, B. C.

    1980-01-01

    A paraboloidal dish solar thermal power plant produces electrical energy by a two-step conversion process. The collector subsystem is composed of a two-axis tracking paraboloidal concentrator and a cavity receiver. The concentrator focuses intercepted sunlight (direct, normal insolation) into a cavity receiver whose aperture encircles the focal point of the concentrator. At the internal wall of the receiver the electromagnetic radiation is converted to thermal energy. A heat engine/generator assembly then converts the thermal energy captured by the receiver to electricity. Developmental activity has been concentrated on small power modules which employ 11- to 12-meter diameter dishes to generate nominal power levels of approximately 20 kWe. A comparison of advanced heat engines for the dish power module is presented in terms of the performance potential of each engine with its requirements for advanced technology development. Three advanced engine possibilities are the Brayton (gas turbine), Brayton/Rankine combined cycle, and Stirling engines.

  9. Adsorption of nitrogen, hydrogen, and deuterium on carbon nanotubes bundles

    NASA Astrophysics Data System (ADS)

    Vilches, Oscar E.; Tyburski, Adam; Wilson, Tate; Depies, Matt; Becquet, Daphne; Bienfait, Michel

    2001-03-01

    Adsorption isotherm measurements on bundles of closed ends carbon nanotubes will be reported, for temperatures between 77K and 96K for N2, H2, and D2, and between 28K and 40K for H2 and D2. Results show the two broad coverage vs. pressure steps reported by Migone's group [S.E.Weber et al., Phys. Rev. B61, 13150 (2000)] and Bienfait's group [M.Muris et al., Langmuir 16, 7019 (2000)] for other adsorbates using similar substrates. The calculated isosteric heat from the lower coverage step is about twice the isosteric heat of the higher coverage step for each of the molecules, with this higher step having somewhat smaller binding energy than the same molecules on graphite.

  10. LC-MS/MS and UPLC-UV evaluation of anthocyanins and anthocyanidins during rabbiteye blueberry juice processing

    USDA-ARS?s Scientific Manuscript database

    Blueberry juice processing includes multiple steps and each affect the chemical composition of the berries, including thermal degradation of anthocyanins. Not from concentrate juice was made by heating and enzyme processing blueberries before pressing followed by ultrafiltration and pasteurization. ...

  11. Three-dimensional numerical study of heat transfer enhancement in separated flows

    NASA Astrophysics Data System (ADS)

    Kumar, Saurav; Vengadesan, S.

    2017-11-01

    The flow separation appears in a wide range of heat transfer applications and causes poor heat transfer performance. It motivates the study of heat transfer enhancement in laminar as well as turbulent flows over a backward facing step by means of an adiabatic fin mounted on the top wall. Recently, we have studied steady, 2-D numerical simulations in laminar flow and investigated the effect of fin length, location, and orientation. It revealed that the addition of fin causes enhancement of heat transfer and it is very effective to control the flow and thermal behavior. The fin is most effective and sensitive when it is placed exactly above the step. A slight displacement of the fin in upstream of the step causes the complete change of flow and thermal behavior. Based on the obtained 2-D results it is interesting to investigate the side wall effect in three-dimensional simulations. The comparison of two-dimensional and three-dimensional numerical simulations with the available experimental results will be presented. Special attention has to be given to capture unsteadiness in the flow and thermal field.

  12. Comparison of Tobacco Host Cell Protein Removal Methods by Blanching Intact Plants or by Heat Treatment of Extracts.

    PubMed

    Buyel, Johannes F; Hubbuch, Jürgen; Fischer, Rainer

    2016-08-08

    Plants not only provide food, feed and raw materials for humans, but have also been developed as an economical production system for biopharmaceutical proteins, such as antibodies, vaccine candidates and enzymes. These must be purified from the plant biomass but chromatography steps are hindered by the high concentrations of host cell proteins (HCPs) in plant extracts. However, most HCPs irreversibly aggregate at temperatures above 60 °C facilitating subsequent purification of the target protein. Here, three methods are presented to achieve the heat precipitation of tobacco HCPs in either intact leaves or extracts. The blanching of intact leaves can easily be incorporated into existing processes but may have a negative impact on subsequent filtration steps. The opposite is true for heat precipitation of leaf extracts in a stirred vessel, which can improve the performance of downstream operations albeit with major changes in process equipment design, such as homogenizer geometry. Finally, a heat exchanger setup is well characterized in terms of heat transfer conditions and easy to scale, but cleaning can be difficult and there may be a negative impact on filter capacity. The design-of-experiments approach can be used to identify the most relevant process parameters affecting HCP removal and product recovery. This facilitates the application of each method in other expression platforms and the identification of the most suitable method for a given purification strategy.

  13. Dichromated polyvinyl alcohol (DC-PVA) wet processed for high index modulation

    NASA Astrophysics Data System (ADS)

    Rallison, Richard D.

    1997-04-01

    PVA films have been used as mold releases, strippable coatings, binders for photopolymers and when sensitized with metals and/or dyes they have been used as photoresists, volume HOEs, multiplexed holographic optical memory and real time non destructive holographic testing. The list goes on and includes Slime and birth control. In holography, DC-PVA is a real time photoanisotropic recording material useful for phase conjugation experiments and also a stable long term storage medium needing no processing other than heat. Now we add the capability of greatly increasing the versatility of PVA by boosting the index modulation by almost two orders of magnitude. We can add broadband display and HOE applications that were not possible before. Simple two or three step liquid processing is all that is required to make the index modulation grow.

  14. Synthesis of highly uniform Cu2O spheres by a two-step approach and their assembly to form photonic crystals with a brilliant color.

    PubMed

    Su, Xin; Chang, Jie; Wu, Suli; Tang, Bingtao; Zhang, Shufen

    2016-03-21

    Monodisperse semiconductor colloidal spheres with a high refractive index hold great potential for building photonic crystals with a strong band gap, but the difficulty in separating the nucleation and growth processes makes it challenging to prepare highly uniform semiconductor colloidal spheres. Herein, real monodisperse Cu2O spheres were prepared via a hot-injection & heating-up two-step method using diethylene glycol as a milder reducing agent. The diameter of the as prepared Cu2O spheres can be tuned from 90 nm to 190 nm precisely. The SEM images reveal that the obtained Cu2O spheres have a narrow size distribution, which permits their self-assembly to form photonic crystals. The effects of precursor concentration and heating rates on the size and morphology of the Cu2O spheres were investigated in detail. The results indicate that the key points of the method include the burst nucleation to form seeds at a high temperature followed by rapid cooling to prevent agglomeration, and appropriate precursor concentration as well as a moderate growth rate during the further growth process. Importantly, photonic crystal films exhibiting a brilliant structural color were fabricated with the obtained monodisperse Cu2O spheres as building blocks, proving the possibility of making photonic crystals with a strong band gap. The developed method was also successfully applied to prepare monodisperse CdS spheres with diameters in the range from 110 nm to 210 nm.

  15. Effect of sublethal heat treatment on the later stage of germination-to-outgrowth of Clostridium perfringens spores.

    PubMed

    Sakanoue, Hideyo; Yasugi, Mayo; Miyake, Masami

    2018-05-04

    Sublethal heating of spores has long been known to stimulate or activate germination, but the underlying mechanisms are not yet fully understood. In this study, we visualized the entire germination-to-outgrowth process of spores from an anaerobic sporeformer, C. perfringens, at single-cell resolution. Quantitative analysis revealed that sublethal heating significantly reduced the time from completion of germination to the beginning of the first cell division. The results indicate that sublethal heating of C. perfringens spores not only sensitizes the responsiveness of germinant receptors but also directly or indirectly facilitates multiple steps during the bacterial regrowth process. © 2018 The Societies and John Wiley & Sons Australia, Ltd.

  16. Underground structure pattern and multi AO reaction with step feed concept for upgrading an large wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Peng, Yi; Zhang, Jie; Li, Dong

    2018-03-01

    A large wastewater treatment plant (WWTP) could not meet the new demand of urban environment and the need of reclaimed water in China, using a US treatment technology. Thus a multi AO reaction process (Anaerobic/oxic/anoxic/oxic/anoxic/oxic) WWTP with underground structure was proposed to carry out the upgrade project. Four main new technologies were applied: (1) multi AO reaction with step feed technology; (2) deodorization; (3) new energy-saving technology such as water resource heat pump and optical fiber lighting system; (4) dependable old WWTP’s water quality support measurement during new WWTP’s construction. After construction, upgrading WWTP had saved two thirds land occupation, increased 80% treatment capacity and improved effluent standard by more than two times. Moreover, it had become a benchmark of an ecological negative capital changing to a positive capital.

  17. Filler bar heating due to stepped tiles in the shuttle orbiter thermal protection system

    NASA Technical Reports Server (NTRS)

    Petley, D. H.; Smith, D. M.; Edwards, C. L. W.; Patten, A. B.; Hamilton, H. H., II

    1983-01-01

    An analytical study was performed to investigate the excessive heating in the tile to tile gaps of the Shuttle Orbiter Thermal Protection System due to stepped tiles. The excessive heating was evidence by visible discoloration and charring of the filler bar and strain isolation pad that is used in the attachment of tiles to the aluminum substrate. Two tile locations on the Shuttle orbiter were considered, one on the lower surface of the fuselage and one on the lower surface of the wing. The gap heating analysis involved the calculation of external and internal gas pressures and temperatures, internal mass flow rates, and the transient thermal response of the thermal protection system. The results of the analysis are presented for the fuselage and wing location for several step heights. The results of a study to determine the effectiveness of a half height ceramic fiber gap filler in preventing hot gas flow in the tile gaps are also presented.

  18. Means of determining extrusion temperatures

    DOEpatents

    McDonald, Robert E.; Canonico, Domenic A.

    1977-01-01

    In an extrusion process comprising the steps of fabricating a metal billet, heating said billet for a predetermined time and at a selected temperature to increase its plasticity and then forcing said heated billet through a small orifice to produce a desired extruded object, the improvement comprising the steps of randomly inserting a plurality of small metallic thermal tabs at different cross sectional depths in said billet as a part of said fabricating step, and examining said extruded object at each thermal tab location for determining the crystal structure at each extruded thermal tab thus revealing the maximum temperature reached during extrusion in each respective tab location section of the extruded object, whereby the thermal profile of said extruded object during extrusion may be determined.

  19. Microwave-assisted regeneration of synthetic zeolite used in tritium removal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, M.; Takayama, S.; Sano, S.

    The regeneration process using synthetic honeycomb type 5A zeolite under microwave irradiation was experimentally investigated using a single-mode cavity at 2.46 GHz. In order to investigate the effect of electromagnetic fields, inductive heating by a magnetic field was applied to synthetic zeolite containing water. Because the microwave energy absorbed in the sample was less than 15 W, the zeolite sample was only heated to a temperature of 71 C. degrees. Water desorption was observed based on the increased temperature of the zeolite sample and the thermogravimetric curve that indicated a single step phenomenon. As a result, the regeneration process ofmore » zeolite was not complete over a period of 6000 s. A comparison of dielectric heating by an electric field with inductive heating by a magnetic field showed that the regeneration process by microwave irradiation was particularly beneficial in dielectric heating. (authors)« less

  20. European Conference on Advanced Materials and Processes Held in Aachen, Federal Republic of Germany on November 22-24 1989. Abstracts

    DTIC Science & Technology

    1989-11-24

    However, the combination of increasing circuit complexity, customization, size, speed and heat flux is leading to a crisis in packaging technology(1...material properties and tooling restrictions, * production by an economic single-step sintering technique with subsequent heat treatment, * achievement of...programme, page 16. Numerical Mlodelling of Heat Transfer at Interfaces: Finite Element Approaches, Testing and Examples I W. Schafer, MAGM

  1. METHOD OF PRODUCING PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Tolley, W.B.; Smith, R.C.

    1959-12-15

    A process is presented for preparing plutonium tetrafluoride from plutonium(IV) oxalate. The oxalate is dried and decomposed at about 300 deg C to the dioxide, mixed with ammonium bifluoride, and the mixture is heated to between 50 and 150 deg C whereby ammonium plutonium fluoride is formed. The ammonium plutonium fluoride is then heated to about 300 deg C for volatilization of ammonium fluoride. Both heating steps are preferably carried out in an inert atmosphere.

  2. Mechanisms of ultrafine-grained austenite formation under different isochronal conditions in a cold-rolled metastable stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celada-Casero, C., E-mail: c.celada@cenim.csic.es

    The primary objective of this work is to obtain fundamental insights on phase transformations, with focus on the reaustenitization process (α′→γ transformation), of a cold-rolled (CR) semi-austenitic metastable stainless steel upon different isochronal conditions (0.1, 1, 10 and 100 °C/s). For this purpose, an exhaustive microstructural characterization has been performed by using complementary experimental such as scanning and transmission electron microscopy (SEM and TEM), electron backscattered diffraction (EBSD), electron probe microanalysis (EPMA), micro-hardness Vickers and magnetization measurements. It has been detected that all microstructural changes shift to higher temperatures as the heating rate increases. The reaustenitization occurs in two-steps formore » all heating rates, which is attributed to the chemical banding present in the CR state. The α′→γ transformation is controlled by the migration of substitutional alloying elements across the austenite/martensite (γ/α′) interface, which finally leads to ultrafine-grained reaustenitized microstructures (440–280 nm). The morphology of the martensite phase in the CR state has been found to be the responsible for such a grain refinement, along with the presence of χ-phase and nanometric Ni{sub 3}(Ti,Al) precipitates that pin the austenite grain growth, especially upon slowly heating at 0.1 °C/s. - Highlights: •Ultrafine-grained austenite structures are obtained isochronally at 0.1–100 °C/s •The α′→γ transformation occurs in two steps due to the initial chemical banding •A diffusional mechanism governs the α′→γ transformation for all heating rates •The dislocation-cell-type of martensite promotes a diffusional mechanism •Precipitates located at α′/γ interfaces hinder the austenite growth.« less

  3. Solution-Based Approaches to Fabrication of YBa2Cu3O7-δ (YBCO): Precursors of Tri-Fluoroacetate (TFA) and Nanoparticle Colloids

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S. M.; Su, J.; Chintamaneni, V.

    2007-10-01

    Detailed investigation of superconducting films of YBa2Cu3O7-δ (YBCO) prepared from solution-based precursors have been performed. Two precursors have been compared in this study: the presently used trifluoroacetate (TFA) solution and a recently developed colloidal suspension containing nanoparticles of mixed oxide. Detailed analyses of the evolution of microstructure and chemistry of the films have been performed, and process parameters have been correlated with final superconducting properties. Both films need two heating steps: a low temperature calcination and a higher temperature crystallization step. For TFA films, it was seen that the heating rate during calcination needs to be carefully optimized and is expected to be slow. For the alternate process using a nanoparticle precursor, a significantly faster calcination rate is possible. In the TFA process, the Ba ion remains as fluoride and the Y remains as oxyfluoride after calcination. This implies that, during the final crystallization stage to form YBCO, fluorine-containing gases will evolve, resulting in residual porosity. On the other hand, the film from the nanoparticle process is almost fully oxidized after calcination. Therefore, no gases evolve at the final firing (crystallization) stage, and the film has much lower porosity. The superconducting properties of both types of films are adequate, but the nanoparticle films appear to have persistently higher J c values. Moreover, they show improved flux pinning in higher magnetic fields, probably due to nanoscale precipitates of a Cu-rich phase. In addition, the nanocolloid films seem to show additionally enhanced flux pinning when doped with minute amounts of second phase precipitates. It therefore appears that, whereas the TFA process is already quite successful, the newly developed nanoparticle process has significant scope for additional improvement. It can be scaled-up with ease, and can be easily adapted to incorporate nanoscale flux pinning defects for in-field performance.

  4. A thermal microprobe fabricated with wafer-stage processing

    NASA Astrophysics Data System (ADS)

    Zhang, Yongxia; Zhang, Yanwei; Blaser, Juliana; Sriram, T. S.; Enver, Ahsan; Marcus, R. B.

    1998-05-01

    A thermal microprobe has been designed and built for high resolution temperature sensing. The thermal sensor is a thin-film thermocouple junction at the tip of an atomic force microprobe (AFM) silicon probe needle. Only wafer-stage processing steps are used for the fabrication. For high resolution temperature sensing it is essential that the junction be confined to a short distance at the AFM tip. This confinement is achieved by a controlled photoresist coating process. Experiment prototypes have been made with an Au/Pd junction confined to within 0.5 μm of the tip, with the two metals separated elsewhere by a thin insulating oxide layer. Processing begins with double-polished, n-type, 4 in. diameter, 300-μm-thick silicon wafers. Atomically sharp probe tips are formed by a combination of dry and wet chemical etching, and oxidation sharpening. The metal layers are sputtering deposited and the cantilevers are released by a combination of KOH and dry etching. A resistively heated calibration device was made for temperature calibration of the thermal microprobe over the temperature range 25-110 °C. Over this range the thermal outputs of two microprobes are 4.5 and 5.6 μV/K and is linear. Thermal and topographical images are also obtained from a heated tungsten thin film fuse.

  5. Characterization of the microstructure of Nb-1wt.%Zr-0.1wt.%C tubes as affected by thermomechanical processing

    NASA Technical Reports Server (NTRS)

    Uz, Mehmet; Titran, Robert H.

    1993-01-01

    Microstructure of Nb-1Zr-0.1C tubes were characterized as affected by extrusion temperature of the tube shell and its thermomechanical processing to tubing. Two tube shells of about 40-mm outside diameter (OD) and 25-mm inside diameter (ID) were extruded 8:1 from a vacuum arc-melted ingot at 1900 and 1550 K. Two different OD tubes of approximately 0.36-mm wall thickness were fabricated from each tube shell by a series of 26 cold drawing operations with two in process anneals. The microstructure of tube shells and the tubing before and after a 2-step heat treatment were characterized. Residue extracted chemically from each sample was also analyzed to identify the precipitates. The results concerning the effect of the initial extrusion temperature and subsequent processing on the microstructure of the tubes are presented together with a review of results from similar work on Nb-1Zr-0.1C sheet stock.

  6. Investigation of the Brill transition in nylon 6,6 by Raman, THz-Raman, and two-dimensional correlation spectroscopy.

    PubMed

    Bertoldo Menezes, D; Reyer, A; Musso, M

    2018-02-05

    The Brill transition is a phase transition process in polyamides related with structural changes between the hydrogen bonds of the lateral functional groups (CO) and (NH). In this study, we have used the potential of Raman spectroscopy for exploring this phase transition in polyamide 6,6 (nylon 6,6), due to the sensitivity of this spectroscopic technique to small intermolecular changes affecting vibrational properties of relevant functional groups. During a step by step heating and cooling process of the sample we collected Raman spectra allowing us from two-dimensional Raman correlation spectroscopy to identify which spectral regions suffered the largest influence during the Brill transition, and from Terahertz Stokes and anti-Stokes Raman spectroscopy to obtain complementary information, e.g. on the temperature of the sample. This allowed us to grasp signatures of the Brill transition from peak parameters of vibrational modes associated with (CC) skeletal stretches and (CNH) bending, and to verify the Brill transition temperature at around 160°C, as well as the reversibility of this phase transition. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Viking Afterbody Heating Computations and Comparisons to Flight Data

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Wright, Michael J.; Allen, Gary A., Jr.

    2006-01-01

    Computational fluid dynamics predictions of Viking Lander 1 entry vehicle afterbody heating are compared to flight data. The analysis includes a derivation of heat flux from temperature data at two base cover locations, as well as a discussion of available reconstructed entry trajectories. Based on the raw temperature-time history data, convective heat flux is derived to be 0.63-1.10 W/cm2 for the aluminum base cover at the time of thermocouple failure. Peak heat flux at the fiberglass base cover thermocouple is estimated to be 0.54-0.76 W/cm2, occurring 16 seconds after peak stagnation point heat flux. Navier-Stokes computational solutions are obtained with two separate codes using an 8- species Mars gas model in chemical and thermal non-equilibrium. Flowfield solutions using local time-stepping did not result in converged heating at either thermocouple location. A global time-stepping approach improved the computational stability, but steady state heat flux was not reached for either base cover location. Both thermocouple locations lie within a separated flow region of the base cover that is likely unsteady. Heat flux computations averaged over the solution history are generally below the flight data and do not vary smoothly over time for both base cover locations. Possible reasons for the mismatch between flight data and flowfield solutions include underestimated conduction effects and limitations of the computational methods.

  8. Viking Afterbody Heating Computations and Comparisons to Flight Data

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Wright, Michael J.; Allen, Gary A., Jr.

    2006-01-01

    Computational fluid dynamics predictions of Viking Lander 1 entry vehicle afterbody heating are compared to flight data. The analysis includes a derivation of heat flux from temperature data at two base cover locations, as well as a discussion of available reconstructed entry trajectories. Based on the raw temperature-time history data, convective heat flux is derived to be 0.63-1.10 W/sq cm for the aluminum base cover at the time of thermocouple failure. Peak heat flux at the fiberglass base cover thermocouple is estimated to be 0.54-0.76 W/sq cm, occurring 16 seconds after peak stagnation point heat flux. Navier-Stokes computational solutions are obtained with two separate codes using an 8-species Mars gas model in chemical and thermal non-equilibrium. Flowfield solutions using local time-stepping did not result in converged heating at either thermocouple location. A global time-stepping approach improved the computational stability, but steady state heat flux was not reached for either base cover location. Both thermocouple locations lie within a separated flow region of the base cover that is likely unsteady. Heat flux computations averaged over the solution history are generally below the flight data and do not vary smoothly over time for both base cover locations. Possible reasons for the mismatch between flight data and flowfield solutions include underestimated conduction effects and limitations of the computational methods.

  9. Impact of heat treatment on the physical properties of noncrystalline multisolute systems concentrated in frozen aqueous solutions.

    PubMed

    Izutsu, Ken-ichi; Yomota, Chikako; Kawanishi, Toru

    2011-12-01

    The purpose of this study was to elucidate the effect of heat treatment on the miscibility of multiple concentrated solutes that mimic biopharmaceutical formulations in frozen solutions. The first heating thermal analysis of frozen solutions containing either a low-molecular-weight saccharide (e.g., sucrose, trehalose, and glucose) or a polymer (e.g., polyvinylpyrrolidone and dextran) and their mixtures from -70°C showed a single transition at glass transition temperature of maximally freeze-concentrated solution (T(g) ') that indicated mixing of the freeze-concentrated multiple solutes. The heat treatment of single-solute and various polymer-rich mixture frozen solutions at temperatures far above their T(g) ' induced additional ice crystallization that shifted the transitions upward in the following scan. Contrarily, the heat treatment of frozen disaccharide-rich solutions induced two-step heat flow changes (T(g) ' splitting) that suggested separation of the solutes into multiple concentrated noncrystalline phases, different in the solute compositions. The extent of the T(g) ' splitting depended on the heat treatment temperature and time. Two-step glass transition was observed in some sucrose and dextran mixture solids, lyophilized after the heat treatment. Increasing mobility of solute molecules during the heat treatment should allow spatial reordering of some concentrated solute mixtures into thermodynamically favorable multiple phases. Copyright © 2011 Wiley-Liss, Inc.

  10. Coupling of a 2.5 kW steam reformer with a 1 kW el PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Mathiak, J.; Heinzel, A.; Roes, J.; Kalk, Th.; Kraus, H.; Brandt, H.

    The University of Duisburg-Essen has developed a compact multi-fuel steam reformer suitable for natural gas, propane and butane. This steam reformer was combined with a polymer electrolyte membrane fuel cell (PEM FC) and a system test of the process chain was performed. The fuel processor comprises a prereformer step, a primary reformer, water gas shift reactors, a steam generator, internal heat exchangers in order to achieve an optimised heat integration and an external burner for heat supply as well as a preferential oxidation step (PROX) as CO purification. The fuel processor is designed to deliver a thermal hydrogen power output from 500 W to 2.5 kW. The PEM fuel cell stack provides about 1 kW electrical power. In the following paper experimental results of measurements of the single components PEM fuel cell and fuel processor as well as results of the coupling of both to form a process chain are presented.

  11. Multiple-relaxation-time lattice Boltzmann kinetic model for combustion

    NASA Astrophysics Data System (ADS)

    Xu, Aiguo; Lin, Chuandong; Zhang, Guangcai; Li, Yingjun

    2015-04-01

    To probe both the hydrodynamic nonequilibrium (HNE) and thermodynamic nonequilibrium (TNE) in the combustion process, a two-dimensional multiple-relaxation-time (MRT) version of lattice Boltzmann kinetic model (LBKM) for combustion phenomena is presented. The chemical energy released in the progress of combustion is dynamically coupled into the system by adding a chemical term to the LB kinetic equation. Aside from describing the evolutions of the conserved quantities, the density, momentum, and energy, which are what the Navier-Stokes model describes, the MRT-LBKM presents also a coarse-grained description on the evolutions of some nonconserved quantities. The current model works for both subsonic and supersonic flows with or without chemical reaction. In this model, both the specific-heat ratio and the Prandtl number are flexible, the TNE effects are naturally presented in each simulation step. The model is verified and validated via well-known benchmark tests. As an initial application, various nonequilibrium behaviors, including the complex interplays between various HNEs, between various TNEs, and between the HNE and TNE, around the detonation wave in the unsteady and steady one-dimensional detonation processes are preliminarily probed. It is found that the system viscosity (or heat conductivity) decreases the local TNE, but increases the global TNE around the detonation wave, that even locally, the system viscosity (or heat conductivity) results in two kinds of competing trends, to increase and to decrease the TNE effects. The physical reason is that the viscosity (or heat conductivity) takes part in both the thermodynamic and hydrodynamic responses.

  12. Hot metal gas forming of titanium grade 2 bent tubes

    NASA Astrophysics Data System (ADS)

    Paul, Alexander; Werner, Markus; Trân, Ricardo; Landgrebe, Dirk

    2017-10-01

    Within the framework of investigations, an exhaust gas component made of Titanium Grade 2 was produced by means of Hot Metal Gas Forming (HMGF) at the Fraunhofer IWU in Chemnitz, Germany. The semi-finished products were two-fold bent, thermal joined, calibrated and pre-formed tubes. So far, a three-stage internal high-pressure forming process at room temperature plus two necessary intermediate heat treatments were used to produce the component. Due to its complexity as well as the limited forming ability of Titanium Grade 2 at room temperature an one step Hot Metal Gas Forming was developed to replace the former procedure.

  13. New Processes for Freeze-Drying in Dual-Chamber Systems.

    PubMed

    Werk, T; Ludwig, I S; Luemkemann, J; Huwyler, J; Mahler, H-C; Haeuser, C R; Hafner, M

    2016-01-01

    Dual-chamber systems can offer self-administration and home care use for lyophilized biologics. Only a few products have been launched in dual-chamber systems so far-presumably due to dual-chamber systems' complex and costly drug product manufacturing process. Within this paper, two improved processes (both based on tray filling technology) for freeze-drying pharmaceuticals in dual-chamber systems are described. Challenges with regards to heat transfer were tackled by (1) performing the freeze-drying step in a needle-down orientation in combination with an aluminum block, or (2) freeze-drying the drug product "externally" in a metal cartridge with subsequent filling of the lyophilized cake into the dual-chamber system. Metal-mediated heat transfer was shown to be efficient in both cases and batch (unit-to-unit) homogeneity with regards to sublimation rate was increased. It was difficult to influence ice crystal size using different methods when in use with an aluminum block due to its heat capacity. Using such a metal carrier implies a large heat capacity leading to relatively small ice crystals. Compared to the established process, drying times were reduced by half using the new processes. The drying time was, however, longer for syringes compared to vials due to the syringe design (long and slim). The differences in drying times were less pronounced for aggressive drying cycles. The proposed processes may help to considerably decrease investment costs into dual-chamber system fill-finish equipment. Dual-chamber syringes offer self-administration and home care use for freeze-dried pharmaceuticals. Only a few products have been launched in dual-chamber syringes so far-presumably due to their complex and costly drug product manufacturing process. In this paper two improved processes for freeze-drying pharmaceuticals in dual-chamber syringes are described. The major challenge of freeze-drying is to transfer heat through a vacuum. The proposed processes cope with this challenge by (1) freeze-drying the drug product in the syringe in an orientation in which the product is closest to the heat source, or (2) freeze-drying the drug product outside the syringe in a metal tube. The latter requires filling the freeze-dried product subsequently into the dual-chamber syringe. Both processes were very efficient and promised to achieve similar freeze-drying conditions for all dual-chamber syringes within one production run. The proposed processes may help to considerably decrease investment costs into dual-chamber syringe fill-finish equipment. © PDA, Inc. 2016.

  14. Laser-induced thermal ablation of cancerous cell organelles.

    PubMed

    Letfullin, Renat R; Szatkowski, Scott A

    2017-07-01

    By exploiting the physical changes experienced by cancerous organelles, we investigate the feasibility of destroying cancerous cells by single and multipulse modes of laser heating. Our procedure consists of two primary steps: determining the normal and cancerous organelles optical properties and simulating the heating of all of the major organelles in the cell to find the treatment modes for the laser ablation of cancerous organelles without harming healthy cells. Our simulations show that the cancerous nucleus can be selectively heated to damaging temperatures, making this nucleus a feasible therapeutic particle and removing the need for nanoparticle injection. Because of the removal of this extra step, the procedure we propose is simpler and safer for the patient.

  15. Next step in manufacturing

    NASA Astrophysics Data System (ADS)

    Koenig, Jan D.

    2018-04-01

    Thermoelectric devices convert heat flows into electricity. Researchers recently demonstrated that thermoelectric materials can be produced in good quality by 3D printing, enabling a low-cost production process in the near future.

  16. Simulation of the Two Stages Stretch-Blow Molding Process: Infrared Heating and Blowing Modeling

    NASA Astrophysics Data System (ADS)

    Bordival, M.; Schmidt, F. M.; Le Maoult, Y.; Velay, V.

    2007-05-01

    In the Stretch-Blow Molding (SBM) process, the temperature distribution of the reheated perform affects drastically the blowing kinematic, the bottle thickness distribution, as well as the orientation induced by stretching. Consequently, mechanical and optical properties of the final bottle are closely related to heating conditions. In order to predict the 3D temperature distribution of a rotating preform, numerical software using control-volume method has been developed. Since PET behaves like a semi-transparent medium, the radiative flux absorption was computed using Beer Lambert law. In a second step, 2D axi-symmetric simulations of the SBM have been developed using the finite element package ABAQUS®. Temperature profiles through the preform wall thickness and along its length were computed and applied as initial condition. Air pressure inside the preform was not considered as an input variable, but was automatically computed using a thermodynamic model. The heat transfer coefficient applied between the mold and the polymer was also measured. Finally, the G'sell law was used for modeling PET behavior. For both heating and blowing stage simulations, a good agreement has been observed with experimental measurements. This work is part of the European project "APT_PACK" (Advanced knowledge of Polymer deformation for Tomorrow's PACKaging).

  17. Reaction Rate of Ti0.18Zr0.84Cr1.0Fe0.7Mn0.3Cu0.057 to Use for the Heat Driven Type Compact Metal Hydride Refrigerator

    NASA Astrophysics Data System (ADS)

    Bae, Sang-Chul; Katsuta, Masafumi

    Our final goal of this study is to develop the heat driven type compact metal hydride (MH) refrigeration system for the vending machine and the show case, and to attain a refrigeration temperature of 243 K by using a heat source of about 423K. The reaction rate of the MH to use for the heat source, MH used for heat source is studied firstly because the MH refrigeration system consists of two MHs, one is used for the heat source and the other is used for the cooling load extracting. As for the reaction rate in the hydriding process, initially, a rapid surface reaction, governed by the relation 1-(1-F )1/3=kht . After the MH surface has been covered by hydride, the reaction becomes diffusion controlled with the relation 1-3(1-F ' )2/3+2(1-F ' )=k'ht . The reaction rates, kh and k'h , are exponentially proportional to the pressure difference and increase with temperature. And, as for the dehydriding process, it is found out that the rate-controlling step is uniquely diffusion reaction. The dehydriding reaction rate is exponentially proportional to the pressure difference and the initial reacted fraction, and increases with temperature. Finally, on the basis of these experimental results, the brand new rate correlations are reasonably derived. The predicted results for this correlation are in successfully agreement with the experimental ones.

  18. Flexible Microstrip Circuits for Superconducting Electronics

    NASA Technical Reports Server (NTRS)

    Chervenak, James; Mateo, Jennette

    2013-01-01

    Flexible circuits with superconducting wiring atop polyimide thin films are being studied to connect large numbers of wires between stages in cryogenic apparatus with low heat load. The feasibility of a full microstrip process, consisting of two layers of superconducting material separated by a thin dielectric layer on 5 mil (approximately 0.13 mm) Kapton sheets, where manageable residual stress remains in the polyimide film after processing, has been demonstrated. The goal is a 2-mil (approximately 0.051-mm) process using spin-on polyimide to take advantage of the smoother polyimide surface for achieving highquality metal films. Integration of microstrip wiring with this polyimide film may require high-temperature bakes to relax the stress in the polyimide film between metallization steps.

  19. Wire-packed heat exchangers for dilution refrigerators.

    PubMed

    Polturak, E; Rappaport, M; Rosenbaum, R

    1978-03-01

    Very simple wire-packed step heat exchangers for dilution refrigerators are described. No sintering is used in fabrication. Flow impedances and thermal resistance between the liquid and the copper wires are low. A refrigerator with five wire-packed heat exchangers in addition to a countercurrent heat exchanger attains a temperature of 11.4 mK with a single mixing chamber and 6.1 mK with two mixing chambers. High cooling power is achieved at modest (3)He circulation rates.

  20. Characterization of the nature of photosynthetic recovery of wheat seedlings from short-term dark heat exposures and analysis of the mode of acclimation to different light intensities.

    PubMed

    Kreslavski, Vladimir; Tatarinzev, Nikolai; Shabnova, Nadezhda; Semenova, Galina; Kosobryukhov, Anatoli

    2008-10-09

    The nature of photosynthetic recovery was investigated in 10-d-old wheat (Triticum aestivum L., cv. Moskovskaya-35) seedlings exposed to temperatures of 40 and 42 degrees C for 20 min and to temperature 42 degrees C for 40 min in the dark. The aftereffect of heat treatment was monitored by growing the heat-treated plants in low/moderate/high light at 20 degrees C for 72h. The net photosynthetic rates (P(N)) and the fluorescence ratios F(v)/F(m) were evaluated in intact primary leaves and the rates of cyclic and non-cyclic photophosphorylation were measured in the isolated thylakoids. At least two temporally separated steps were identified in the path of recovery from heat stress at 40 and 42 degrees C in the plants growing in high and moderate/high light, respectively. Both photochemical activity of the photosystem II (PSII) and the activity of CO(2) assimilation system were lowered during the first step in comparison with the corresponding activities immediately after heat treatment. During the second step, the photosynthetic activities completely or partly recovered. Recovery from heat stress at 40 degrees C was accompanied by an appreciably higher rate of cyclic photophosphorylation in comparison with control non-heated seedlings. In pre-heated seedlings, the tolerance of the PSII to photoinhibition was higher than in non-treated ones. The mode of acclimation to different light intensities after heat exposures is analyzed.

  1. Solidification processing of alloys using an applied electric field

    NASA Technical Reports Server (NTRS)

    Mckannan, Eugene C. (Inventor); Schmidt, Deborah D. (Inventor); Ahmed, Shaffiq (Inventor); Bond, Robert W. (Inventor)

    1990-01-01

    A method is provided for obtaining an alloy having an ordered microstructure which comprises the steps of heating the central portion of the alloy under uniform temperature so that it enters a liquid phase while the outer portions remain solid, applying a constant electric current through the alloy during the heating step, and solidifying the liquid central portion of the alloy by subjecting it to a temperature-gradient zone so that cooling occurs in a directional manner and at a given rate of speed while maintaining the application of the constant electric current through the alloy. The method of the present invention produces an alloy having superior characteristics such as reduced segregation. After subsequent precipitation by heat-treatment, the alloys produced by the present invention will have excellent strength and high-temperature resistance.

  2. Heat exchanger life extension via in-situ reconditioning

    DOEpatents

    Holcomb, David E.; Muralidharan, Govindarajan

    2016-06-28

    A method of in-situ reconditioning a heat exchanger includes the steps of: providing an in-service heat exchanger comprising a precipitate-strengthened alloy wherein at least one mechanical property of the heat exchanger is degraded by coarsening of the precipitate, the in-service heat exchanger containing a molten salt working heat exchange fluid; deactivating the heat exchanger from service in-situ; in a solution-annealing step, in-situ heating the heat exchanger and molten salt working heat exchange fluid contained therein to a temperature and for a time period sufficient to dissolve the coarsened precipitate; in a quenching step, flowing the molten salt working heat-exchange fluid through the heat exchanger in-situ to cool the alloy and retain a supersaturated solid solution while preventing formation of large precipitates; and in an aging step, further varying the temperature of the flowing molten salt working heat-exchange fluid to re-precipitate the dissolved precipitate.

  3. Precise carbon control of fabricated stainless steel

    DOEpatents

    Nilsen, R.J.

    1975-12-01

    A process is described for controlling the carbon content of fabricated stainless steel components including the steps of heat treating the component in hydrogen atmospheres of varying dewpoints and carbon potentials.

  4. Study of Ordering and Properties in Fe-Ga Alloys With 18 and 21 at. pct Ga

    NASA Astrophysics Data System (ADS)

    Golovin, Igor S.; Dubov, L. Yu.; Funtikov, Yu. V.; Palacheva, V. V.; Cifre, J.; Hamana, D.

    2015-03-01

    Dynamical mechanical and positron annihilation spectroscopies were applied to study the structure of two Fe-Ga alloys with 18 and 21 at. pct Ga after quenching and subsequent annealing. It was found that the alloy with 18 pct Ga has much better damping capacity (Ψ ≈ 30 pct) than the alloy with 21 pct Ga (Ψ ≈ 5 pct). The reason for that is the ordering of the Ga atoms in Fe-21Ga alloy. Ordering processes in both alloys are studied at heating by differential scanning calorimetry, dilatometry, and internal friction or by step-by-step annealing using positron annihilation spectroscopy and hardness tests. Experimental results are explained by sequence of ordering transitions: A2 → D03 → L12.

  5. New prospects in pretreatment of cotton fabrics using microwave heating.

    PubMed

    Hashem, M; Taleb, M Abou; El-Shall, F N; Haggag, K

    2014-03-15

    As microwaves are known to give fast and rapid volume heating, the present study is undertaken to investigate the use of microwave heating for pretreatment cotton fabrics to reduce the pretreatment time, chemicals and water. The onset of the microwave heating technique on the physicochemical and performance properties of desized, scoured and bleached cotton fabric is elucidated and compared with those obtained on using conventional thermal heating. Combined one-step process for desizing, scouring and bleaching of cotton fabric under microwave heating was also investigated. The dual effect of adding urea, (as microwave absorber and hydrogen peroxide activator) has been exploiting to accelerate the pretreatment reaction of cotton fabric. DSC, FT-IR and SEM have been used to investigate the onset of microwave on the morphological and chemical change of cotton cellulose after pretreatment and bleaching under microwave heating. Results obtained show that, a complete fabric preparation was obtained in just 5 min on using microwave in pretreatments process and the fabric properties were comparable to those obtained in traditional pretreatment process which requires 2.5-3h for completion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Plasma Discharge Process in a Pulsed Diaphragm Discharge System

    NASA Astrophysics Data System (ADS)

    Duan, Jianjin; Hu, Jue; Zhang, Chao; Wen, Yuanbin; Meng, Yuedong; Zhang, Chengxu

    2014-12-01

    As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge process of a pulsed diaphragm discharge system. According to the analysis, the pulsed diaphragm discharge proceeds in seven stages: (1) Joule heating and heat exchange stage; (2) nucleated site formation; (3) plasma generation (initiation of the breakdown stage); (4) avalanche growth and plasma expansion; (5) plasma contraction; (6) termination of the plasma discharge; and (7) heat exchange stage. From this analysis, a critical voltage criterion for breakdown is obtained. We anticipate this finding will provide guidance for a better application of plasma discharges, especially diaphragm plasma discharges.

  7. Metalorganic chemical vapor deposition growth of high-mobility AlGaN/AlN/GaN heterostructures on GaN templates and native GaN substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jr-Tai, E-mail: jrche@ifm.liu.se; Hsu, Chih-Wei; Forsberg, Urban

    2015-02-28

    Severe surface decomposition of semi-insulating (SI) GaN templates occurred in high-temperature H{sub 2} atmosphere prior to epitaxial growth in a metalorganic chemical vapor deposition system. A two-step heating process with a surface stabilization technique was developed to preserve the GaN template surface. Utilizing the optimized heating process, a high two-dimensional electron gas mobility ∼2000 cm{sup 2}/V·s was obtained in a thin AlGaN/AlN/GaN heterostructure with an only 100-nm-thick GaN spacer layer homoepitaxially grown on the GaN template. This technique was also demonstrated viable for native GaN substrates to stabilize the surface facilitating two-dimensional growth of GaN layers. Very high residual silicon andmore » oxygen concentrations were found up to ∼1 × 10{sup 20 }cm{sup −3} at the interface between the GaN epilayer and the native GaN substrate. Capacitance-voltage measurements confirmed that the residual carbon doping controlled by growth conditions of the GaN epilayer can be used to successfully compensate the donor-like impurities. State-of-the-art structural properties of a high-mobility AlGaN/AlN/GaN heterostructure was then realized on a 1 × 1 cm{sup 2} SI native GaN substrate; the full width at half maximum of the X-ray rocking curves of the GaN (002) and (102) peaks are only 21 and 14 arc sec, respectively. The surface morphology of the heterostructure shows uniform parallel bilayer steps, and no morphological defects were noticeable over the entire epi-wafer.« less

  8. Transient boiling heat transfer in saturated liquid nitrogen and F113 at standard and zero gravity

    NASA Technical Reports Server (NTRS)

    Oker, E.; Merte, H., Jr.

    1973-01-01

    Transient and steady state nucleate boiling in saturated LN2 and F113 at standard and near zero gravity conditions were investigated for the horizontal up, vertical and horizontal down orientations of the heating surface. Two distinct regimes of heat transfer mechanisms were observed during the interval from the step increase of power input to the onset of nucleate boiling: the conduction and convection dominated regimes. The time duration in each regime was considerably shorter with LN2 than with F113, and decreased as heat flux increased, as gravity was reduced, and as the orientation was changed from horizontal up to horizontal down. In transient boiling, boiling initiates at a single point following the step increase in power, and then spreads over the surface. The delay time for the inception of boiling at the first site, and the velocity of spread of boiling varies depending upon the heat flux, orientation, body force, surface roughness and liquid properties, and are a consequence of changes in boundary layer temperature levels associated with changes in natural convection. Following the step increase in power input, surface temperature overshoot and undershoot occur before the steady state boiling temperature level is established.

  9. Processing and refinement of steel microstructure images for assisting in computerized heat treatment of plain carbon steel

    NASA Astrophysics Data System (ADS)

    Gupta, Shubhank; Panda, Aditi; Naskar, Ruchira; Mishra, Dinesh Kumar; Pal, Snehanshu

    2017-11-01

    Steels are alloys of iron and carbon, widely used in construction and other applications. The evolution of steel microstructure through various heat treatment processes is an important factor in controlling properties and performance of steel. Extensive experimentations have been performed to enhance the properties of steel by customizing heat treatment processes. However, experimental analyses are always associated with high resource requirements in terms of cost and time. As an alternative solution, we propose an image processing-based technique for refinement of raw plain carbon steel microstructure images, into a digital form, usable in experiments related to heat treatment processes of steel in diverse applications. The proposed work follows the conventional steps practiced by materials engineers in manual refinement of steel images; and it appropriately utilizes basic image processing techniques (including filtering, segmentation, opening, and clustering) to automate the whole process. The proposed refinement of steel microstructure images is aimed to enable computer-aided simulations of heat treatment of plain carbon steel, in a timely and cost-efficient manner; hence it is beneficial for the materials and metallurgy industry. Our experimental results prove the efficiency and effectiveness of the proposed technique.

  10. Intensified recovery of valuable products from whey by use of ultrasound in processing steps - A review.

    PubMed

    Gajendragadkar, Chinmay N; Gogate, Parag R

    2016-09-01

    The current review focuses on the analysis of different aspects related to intensified recovery of possible valuable products from cheese whey using ultrasound. Ultrasound can be used for process intensification in processing steps such as pre-treatment, ultrafiltration, spray drying and crystallization. The combination of low-frequency, high intensity ultrasound with the pre-heat treatment minimizes the thickening or gelling of protein containing whey solutions. These characteristics of whey after the ultrasound assisted pretreatment helps in improving the efficacy of ultrafiltration used for separation and also helps in preventing the blockage of orifice of spray dryer atomizing device. Further, the heat stability of whey proteins is increased. In the subsequent processing step, use of ultrasound assisted atomization helps to reduce the treatment times as well as yield better quality whey protein concentrate (WPC) powder. After the removal of proteins from the whey, lactose is a major constituent remaining in the solution which can be efficiently recovered by sonocrystallization based on the use of anti-solvent as ethanol. The scale-up parameters to be considered during designing the process for large scale applications are also discussed along with analysis of various reactor designs. Overall, it appears that use of ultrasound can give significant process intensification benefits that can be harnessed even at commercial scale applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Pre-Finishing of SiC for Optical Applications

    NASA Technical Reports Server (NTRS)

    Rozzi, Jay; Clavier, Odile; Gagne, John

    2011-01-01

    13 Manufacturing & Prototyping A method is based on two unique processing steps that are both based on deterministic machining processes using a single-point diamond turning (SPDT) machine. In the first step, a high-MRR (material removal rate) process is used to machine the part within several microns of the final geometry. In the second step, a low-MRR process is used to machine the part to near optical quality using a novel ductile regime machining (DRM) process. DRM is a deterministic machining process associated with conditions under high hydrostatic pressures and very small depths of cut. Under such conditions, using high negative-rake angle cutting tools, the high-pressure region near the tool corresponds to a plastic zone, where even a brittle material will behave in a ductile manner. In the high-MRR processing step, the objective is to remove material with a sufficiently high rate such that the process is economical, without inducing large-scale subsurface damage. A laser-assisted machining approach was evaluated whereby a CO2 laser was focused in advance of the cutting tool. While CVD (chemical vapor deposition) SiC was successfully machined with this approach, the cutting forces were substantially higher than cuts at room temperature under the same machining conditions. During the experiments, the expansion of the part and the tool due to the heating was carefully accounted for. The higher cutting forces are most likely due to a small reduction in the shear strength of the material compared with a larger increase in friction forces due to the thermal softening effect. The key advantage is that the hybrid machine approach has the potential to achieve optical quality without the need for a separate optical finishing step. Also, this method is scalable, so one can easily progress from machining 50-mm-diameter samples to the 250-mm-diameter mirror that NASA desires.

  12. On computational experiments in some inverse problems of heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Bilchenko, G. G.; Bilchenko, N. G.

    2016-11-01

    The results of mathematical modeling of effective heat and mass transfer on hypersonic aircraft permeable surfaces are considered. The physic-chemical processes (the dissociation and the ionization) in laminar boundary layer of compressible gas are appreciated. Some algorithms of control restoration are suggested for the interpolation and approximation statements of heat and mass transfer inverse problems. The differences between the methods applied for the problem solutions search for these statements are discussed. Both the algorithms are realized as programs. Many computational experiments were accomplished with the use of these programs. The parameters of boundary layer obtained by means of the A.A.Dorodnicyn's generalized integral relations method from solving the direct problems have been used to obtain the inverse problems solutions. Two types of blowing laws restoration for the inverse problem in interpolation statement are presented as the examples. The influence of the temperature factor on the blowing restoration is investigated. The different character of sensitivity of controllable parameters (the local heat flow and local tangent friction) respectively to step (discrete) changing of control (the blowing) and the switching point position is studied.

  13. Two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  14. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  15. Two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  16. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  17. Geothermal modelling of faulted metamorphic crystalline crust: a new model of the Continental Deep Drilling Site KTB (Germany)

    NASA Astrophysics Data System (ADS)

    Szalaiová, Eva; Rabbel, Wolfgang; Marquart, Gabriele; Vogt, Christian

    2015-11-01

    The area of the 9.1-km-deep Continental Deep Drillhole (KTB) in Germany is used as a case study for a geothermal reservoir situated in folded and faulted metamorphic crystalline crust. The presented approach is based on the analysis of 3-D seismic reflection data combined with borehole data and hydrothermal numerical modelling. The KTB location exemplarily contains all elements that make seismic prospecting in crystalline environment often more difficult than in sedimentary units, basically complicated tectonics and fracturing and low-coherent strata. In a first step major rock units including two known nearly parallel fault zones are identified down to a depth of 12 km. These units form the basis of a gridded 3-D numerical model for investigating temperature and fluid flow. Conductive and advective heat transport takes place mainly in a metamorphic block composed of gneisses and metabasites that show considerable differences in thermal conductivity and heat production. Therefore, in a second step, the structure of this unit is investigated by seismic waveform modelling. The third step of interpretation consists of applying wavenumber filtering and log-Gabor-filtering for locating fractures. Since fracture networks are the major fluid pathways in the crystalline, we associate the fracture density distribution with distributions of relative porosity and permeability that can be calibrated by logging data and forward modelling of the temperature field. The resulting permeability distribution shows values between 10-16 and 10-19 m2 and does not correlate with particular rock units. Once thermohydraulic rock properties are attributed to the numerical model, the differential equations for heat and fluid transport in porous media are solved numerically based on a finite difference approach. The hydraulic potential caused by topography and a heat flux of 54 mW m-2 were applied as boundary conditions at the top and bottom of the model. Fluid flow is generally slow and mainly occurring within the two fault zones. Thus, our model confirms the previous finding that diffusive heat transport is the dominant process at the KTB site. Fitting the observed temperature-depth profile requires a correction for palaeoclimate of about 4 K at 1 km depth. Modelled and observed temperature data fit well within 0.2 °C bounds. Whereas thermal conditions are suitable for geothermal energy production, hydraulic conditions are unfavourable without engineered stimulation.

  18. Preparation of the porous cerium dioxide film by two-step anodization and heat treating method

    NASA Astrophysics Data System (ADS)

    Liu, Xiaozhen; Zhu, Bolun; Liu, Yuze; Wang, Shanshan; Chen, Jie; Wang, Xiaoyu

    2017-12-01

    The porous cerium dioxide films were prepared with cerium foils as raw materials by two-step anodization and heat treating method. The anodic cerium oxide films were heat treated in 25∼400°C respectively. The cerium dioxide films were characterized with X-ray diffraction (XRD), Fourier transform infrared (FTIR) techniques, energy-dispersive analyses of X-ray (EDAX) and scanning electron microcopy (SEM), respectively. The anodic cerium oxide film is composed of Ce(OH)3, CeO2 and Ce2O3. When the anodic cerium oxide films were heat treated in 300°C∼400°C for 2h, Ce(OH)3 and Ce2O3 in the anodic cerium oxide films may be converted to CeO2, and the heat treated anodic cerium oxide films are the cerium dioxide films. Water, ethylene glycol and CO2 are adsorbed in the anodic cerium oxide film. The adsorbing water, ethylene glycol and CO2 in the anodic cerium oxide film are removed at 300°C. The cerium dioxide film has strong absorption in the range of 1600∼4000cm-1. The structure of the cerium dioxide film is the porous.

  19. Genesis of Microstructures in Friction Stir Welding of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Tchein, Gnofam Jacques; Jacquin, Dimitri; Coupard, Dominique; Lacoste, Eric; Girot Mata, Franck

    2018-06-01

    This paper is focused on the genesis of microstructures in friction stir welding (FSW) of the Ti-6Al-4V alloy. Several titanium joints, initially prepared with four different preheat treatments, were processed by FSW. Detailed microstructural analyses were performed in order to investigate change in the microstructure during the process. In this work, the FSW processing allows a controlled and stable microstructure to be produced in the stirring zone, regardless of the initial heat treatment or the welding conditions. The welded material undergoes a severe thermomechanical treatment which can be divided into two steps. First, the friction in the shoulder and the plastic strain give rise to the necessary conditions to allow a continuous dynamic recrystallization of the β phase. This operation produces a fine and equiaxed β grain structure. Second, once the pin has moved away, the temperature decreases, and the material undergoes a heat treatment equivalent to air quenching. The material thus exhibits a β → β + α transformation with germination of a fine intergranular Widmanstätten phase within the ex-fully-recrystallized- β grains.

  20. Quality control in the development of coagulation factor concentrates.

    PubMed

    Snape, T J

    1987-01-01

    Limitation of process change is a major factor contributing to assurance of quality in pharmaceutical manufacturing. This is particularly true in the manufacture of coagulation factor concentrates, for which presumptive testing for poorly defined product characteristics is an integral feature of finished product quality control. The development of new or modified preparations requires that this comfortable position be abandoned, and that the effect on finished product characteristics of changes to individual process steps (and components) be assessed. The degree of confidence in the safety and efficacy of the new product will be determined by, amongst other things, the complexity of the process alteration and the extent to which the results of finished product tests can be considered predictive. The introduction of a heat-treatment step for inactivation of potential viral contaminants in coagulation factor concentrates presents a significant challenge in both respects, quite independent of any consideration of assessment of the effectiveness of the viral inactivation step. These interactions are illustrated by some of the problems encountered with terminal dry heat-treatment (72 h. at 80 degrees C) of factor VIII and prothrombin complex concentrates manufactured by the Blood Products Laboratory.

  1. Study of sintering on Mg-Zn-Ca alloy system

    NASA Astrophysics Data System (ADS)

    Annur, Dhyah; Lestari, Franciska P.; Erryani, Aprilia; Kartika, Ika

    2018-05-01

    Magnesium and its alloy have gained a lot of interest to be used in biomedical application due to its biodegradable and biocompatible properties. In this study, sintering process in powder metallurgy was chosen to fabricatenonporous Mg-6Zn-1Ca (in wt%) alloy and porous Mg-6Zn-1Ca-10 Carbamide alloy. For creating porous alloy, carbamide (CO(NH2)2 was added to alloy system as the space holder to create porous structure material. Effect of the space holder addition and sintering temperature on porosity, phase formation, mechanical properties, and corrosion properties was observed. Sintering process was done in a tube furnace under Argon atmosphere in for 5 hours. The heat treatment was done in two steps; heated up at 250 °C for 4 hours to decompose spacer particle, followed by heated up at 580 °C or 630 °C for 5 hours. The porous structure of the resulted alloys was examined using Scanning Electron Microscope (SEM), while the phase formation was characterized by X-ray diffraction (XRD) analysis. Mechanical properties were examined using compression testing. From this study, increasing sintering temperature up to 630 °C reduced the mechanical properties of Mg-Zn-Ca alloy.

  2. Altitude Effects on Thermal Ice Protection System Performance; a Study of an Alternative Approach

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Orchard, David; Wright, William B.; Oleskiw, Myron

    2016-01-01

    Research has been conducted to better understand the phenomena involved during operation of an aircraft's thermal ice protection system under running wet icing conditions. In such situations, supercooled water striking a thermally ice-protected surface does not fully evaporate but runs aft to a location where it freezes. The effects of altitude, in terms of air pressure and density, on the processes involved were of particular interest. Initial study results showed that the altitude effects on heat energy transfer were accurately modeled using existing methods, but water mass transport was not. Based upon those results, a new method to account for altitude effects on thermal ice protection system operation was proposed. The method employs a two-step process where heat energy and mass transport are sequentially matched, linked by matched surface temperatures. While not providing exact matching of heat and mass transport to reference conditions, the method produces a better simulation than other methods. Moreover, it does not rely on the application of empirical correction factors, but instead relies on the straightforward application of the primary physics involved. This report describes the method, shows results of testing the method, and discusses its limitations.

  3. Improvements on FEA with a two-step simulation of experimental procedures in turbine blade crack detection in sonic IR NDE

    NASA Astrophysics Data System (ADS)

    Zhang, Ding; Han, Xiaoyan; Newaz, Golam; Favro, Lawrence D.; Thomas, Robert L.

    2013-01-01

    We showed our work on modeling turbine blade crack detection in Sonic Infrared (IR) Imaging with a method of creating flat crack surface in finite element analysis (FEA) in last year's QNDE paper. This modeling has been carried out continuously as part of model-assisted study on crack detection in aircraft engine turbine blades. We have presented that Sonic IR Imaging NDE is a viable method to detect defects in various structures. It combines ultrasound excitation for frictional heating in defects and infrared imaging to sense this heating, and thus to identify the defects. It is a fast wide-area imaging technology. It only takes a second to image a large area of a target sample. When an aircraft is in flight, the turbine engine blades operate under high temperature and high cyclic stresses. Thus, fatigue cracks can form after many hours of operation. Sonic IR Imaging can be used to detect such cracks. However, we still need to better understand contributions of parameters/factors in the crack detection process with Sonic IR Imaging. FEA modeling can help us to reveal certain aspects through the data it produces where experimental work cannot achieve. Upon the model we presented last year, a two-step simulation process was designed to simulate the important aspects in our experiments. These include a newly designed model for the ultrasound transducer which delivers mechanical energy to the sample and the implementation of static force while engaging the transducer to the sample. In this paper, we present the ideas and the results from the new model.

  4. Microwave pyrolysis using self-generated pyrolysis gas as activating agent: An innovative single-step approach to convert waste palm shell into activated carbon

    NASA Astrophysics Data System (ADS)

    Yek, Peter Nai Yuh; Keey Liew, Rock; Shahril Osman, Mohammad; Chung Wong, Chee; Lam, Su Shiung

    2017-11-01

    Waste palm shell (WPS) is a biomass residue largely available from palm oil industries. An innovative microwave pyrolysis method was developed to produce biochar from WPS while the pyrolysis gas generated as another product is simultaneously used as activating agent to transform the biochar into waste palm shell activated carbon (WPSAC), thus allowing carbonization and activation to be performed simultaneously in a single-step approach. The pyrolysis method was investigated over a range of process temperature and feedstock amount with emphasis on the yield and composition of the WPSAC obtained. The WPSAC was tested as dye adsorbent in removing methylene blue. This pyrolysis approach provided a fast heating rate (37.5°/min) and short process time (20 min) in transforming WPS into WPSAC, recording a product yield of 40 wt%. The WPSAC was detected with high BET surface area (≥ 1200 m2/g), low ash content (< 5 wt%), and high pore volume (≥ 0.54 cm3/g), thus recording high adsorption efficiency of 440 mg of dye/g. The desirable process features (fast heating rate, short process time) and the recovery of WPSAC suggest the exceptional promise of the single-step microwave pyrolysis approach to produce high-grade WPSAC from WPS.

  5. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    DOEpatents

    Daily, W.D.; Ramirez, A.L.; Newmark, R.L.; Udell, K.; Buetnner, H.M.; Aines, R.D.

    1995-09-12

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process. 4 figs.

  6. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    DOEpatents

    Daily, William D.; Ramirez, Abelardo L.; Newmark, Robin L.; Udell, Kent; Buetnner, Harley M.; Aines, Roger D.

    1995-01-01

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process.

  7. Thermochemical cycles for the production of hydrogen

    DOEpatents

    Steinberg, M.; Dang, V.D.

    Two-step processes for the preparation of hydrogen are described: CrCl/sub 3/(g) ..-->.. CrCl/sub 2/(g) + 1/2Cl/sub 2/(g) and CrCl/sub 2/(s) + HCl(g) reversible CrCl/sub 3/(s) + 1/2H/sub 2/(g); UCl/sub 4/(g) ..-->.. UCl/sub 3/(g) + 1/2Cl/sub 2/(g) and UCl/sub 3/(s) + HCl(g) ..-->.. UCl/sub 4/(s) + 1/2H/sub 2/(g); and CaSO/sub 4/(s) ..-->.. CaO(s) + SO/sub 2/(g) + 1/2O/sub 2/(g) and CaO(s) + SO/sub 2/(g) + H/sub 2/O(l) ..-->.. CaSO/sub 4/(s) + H/sub 2/(g). The high temperature available from solar collectors, high temperature gas reactors or fusion reactors is utilized in the first step in which the reaction is endothermic. The efficiency is at least 60% and with process heat recovery, the efficiency may be increased up to 74.4%. An apparatus fr carrying out the process in conjunction with a fusion reactor, is described.

  8. Enhanced eumelanin emission by stepwise three-photon excitation

    NASA Astrophysics Data System (ADS)

    Kerimo, Josef; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2011-03-01

    Eumelanin fluorescence from Sepia officinalis and black human hair was activated with near-infrared radiation and multiphoton excitation. A third order multiphoton absorption by a step-wise process appears to be the underlying mechanism. The activation was caused by a photochemical process since it could not be reproduced by simple heating. Both fluorescence and brightfield imaging indicate the near-infrared irradiation caused photodamage to the eumelanin and the activated emission originated from the photodamaged region. At least two different components with about thousand-fold enhanced fluorescence were activated and could be distinguished by their excitation properties. One component was excited with wavelengths in the visible region and exhibited linear absorption dependence. The second component could be excited with near-infrared wavelengths and had a third order dependence on the laser power. The third order dependence is explained by a step-wise excited state absorption (ESA) process since it could be observed equally with the CW and femtosecond lasers. The new method for photoactivating the eumelanin fluorescence was used to map the melanin content in human hair.

  9. Growth and characterization of spindle-like Ga2O3 nanocrystals by electrochemical reaction in hydrofluoric solution

    NASA Astrophysics Data System (ADS)

    Feng, Lungang; Li, Yufeng; Su, Xilin; Wang, Shuai; Liu, Hao; Wang, Jiangteng; Gong, Zhina; Ding, Wen; Zhang, Ye; Yun, Feng

    2016-12-01

    We report a novel fabrication method of spindle-like gallium oxide (Ga2O3) nanocrystals via two steps processed by electrochemical reaction of the MOVPE-grown GaN epitaxial layer in HF/ethanol (1:6) electrolyte and subsequent heat treatment. Depending on the electrolyte concentration, reaction time and applied voltage, micrometer- to nanometer-size spindle-like gallium fluoride tri-hydrate (GaF3·3H2O) of different densities and geometrical dimensions were formed on the surface of GaN. EDS, XPS and XRD were used to characterize the properties of the material before and after heat treatment. It is found that due to heat treatment at above 600 °C, nanocrystalline Ga2O3 were transformed from the GaF3·3H2O via pyrohydrolysis reaction mechanism. The band gap of ∼5.1 eV of the spindle-like Ga2O3 was measured by the optical absorption spectroscopy.

  10. Preliminary Empirical Models for Predicting Shrinkage, Part Geometry and Metallurgical Aspects of Ti-6Al-4V Shaped Metal Deposition Builds

    NASA Astrophysics Data System (ADS)

    Escobar-Palafox, Gustavo; Gault, Rosemary; Ridgway, Keith

    2011-12-01

    Shaped Metal Deposition (SMD) is an additive manufacturing process which creates parts layer by layer by weld depositions. In this work, empirical models that predict part geometry (wall thickness and outer diameter) and some metallurgical aspects (i.e. surface texture, portion of finer Widmanstätten microstructure) for the SMD process were developed. The models are based on an orthogonal fractional factorial design of experiments with four factors at two levels. The factors considered were energy level (a relationship between heat source power and the rate of raw material input.), step size, programmed diameter and travel speed. The models were validated using previous builds; the prediction error for part geometry was under 11%. Several relationships between the factors and responses were identified. Current had a significant effect on wall thickness; thickness increases with increasing current. Programmed diameter had a significant effect on percentage of shrinkage; this decreased with increasing component size. Surface finish decreased with decreasing step size and current.

  11. Production of glass or glass-ceramic to metal seals with the application of pressure

    DOEpatents

    Kelly, Michael D.; Kramer, Daniel P.

    1987-11-10

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  12. Production of glass or glass-ceramic to metal seals with the application of pressure

    DOEpatents

    Kelly, M.D.; Kramer, D.P.

    1985-01-04

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  13. A phonon thermodynamics approach of gold nanofluids synthesized in solution plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, YongKang, E-mail: yk@rd.numse.nagoya-u.ac.jp; Aburaya, Daiki, E-mail: daiki@rd.numse.nagoya-u.ac.jp; Antoaneta Bratescu, Maria, E-mail: maria@rd.numse.nagoya-u.ac.jp

    2014-03-17

    The phonon thermodynamics theory for liquids was applied to explain the thermal characteristics of gold nanofluids synthesized by a simple, one-step, and chemical-free method using an electrical discharge in a liquid environment termed solution plasma process. The specific heat capacity of nanofluids was measured with a differential scanning calorimeter using the ratio between the differential heat flow rate and the heating rate. The decrease of the specific heat capacity with 10% of gold nanofluids relative to water was explained by the decrease of Frenkel relaxation time with 22%, considering a solid-like state model of liquids.

  14. Double-Vacuum-Bag Process for Making Resin-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bradford, Larry J.

    2007-01-01

    A double-vacuum-bag process has been devised as a superior alternative to a single-vacuum-bag process used heretofore in making laminated fiber-reinforced resin-matrix composite-material structural components. This process is applicable to broad classes of high-performance matrix resins including polyimides and phenolics that emit volatile compounds (solvents and volatile by-products of resin-curing chemical reactions) during processing. The superiority of the double-vacuum-bag process lies in enhanced management of the volatile compounds. Proper management of volatiles is necessary for making composite-material components of high quality: if not removed and otherwise properly managed, volatiles can accumulate in interior pockets as resins cure, thereby forming undesired voids in the finished products. The curing cycle for manufacturing a composite laminate containing a reactive resin matrix usually consists of a two-step ramp-and-hold temperature profile and an associated single-step pressure profile as shown in Figure 1. The lower-temperature ramp-and-hold step is known in the art as the B stage. During the B stage, prepregs are heated and volatiles are generated. Because pressure is not applied at this stage, volatiles are free to escape. Pressure is applied during the higher-temperature ramp-and-hold step to consolidate the laminate and impart desired physical properties to the resin matrix. The residual volatile content and fluidity of the resin at the beginning of application of consolidation pressure are determined by the temperature and time parameters of the B stage. Once the consolidation pressure is applied, residual volatiles are locked in. In order to produce a void-free, high-quality laminate, it is necessary to design the curing cycle to obtain the required residual fluidity and the required temperature at the time of application of the consolidation pressure.

  15. Modified Process Reduces Porosity when Soldering in Reduced Gravity Environments

    NASA Technical Reports Server (NTRS)

    Watson, Kevin; Struk, Peter; Pettegrew, Richard; Downs, Robert; Haylett, Daniel

    2012-01-01

    A modified process yields lower levels of internal porosity for solder joints produced in reduced-gravity environments. The process incorporates both alternative materials and a modified procedure. The process provides the necessary cleaning action to enable effective bonding of the applied solder alloy with the materials to be joined. The modified process incorporates a commercially available liquid flux that is applied to the solder joint before heating with the soldering iron. It is subsequently heated with the soldering iron to activate the cleaning action of the flux and to evaporate most of the flux, followed by application of solder alloy in the form of commercially available solid solder wire (containing no flux). Continued heating ensures adequate flow of the solder alloy around and onto the materials to be joined. The final step is withdrawal of the soldering iron to allow alloy solidification and cooling of the solder joint.

  16. Two-Step Plasma Process for Cleaning Indium Bonding Bumps

    NASA Technical Reports Server (NTRS)

    Greer, Harold F.; Vasquez, Richard P.; Jones, Todd J.; Hoenk, Michael E.; Dickie, Matthew R.; Nikzad, Shouleh

    2009-01-01

    A two-step plasma process has been developed as a means of removing surface oxide layers from indium bumps used in flip-chip hybridization (bump bonding) of integrated circuits. The two-step plasma process makes it possible to remove surface indium oxide, without incurring the adverse effects of the acid etching process.

  17. Direct and continuous synthesis of VO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Powell, M. J.; Marchand, P.; Denis, C. J.; Bear, J. C.; Darr, J. A.; Parkin, I. P.

    2015-11-01

    Monoclinic VO2 nanoparticles are of interest due to the material's thermochromic properties, however, direct synthesis routes to VO2 nanoparticles are often inaccessible due to the high synthesis temperatures or long reaction times required. Herein, we present a two-step synthesis route for the preparation of monoclinic VO2 nanoparticles using Continuous Hydrothermal Flow Synthesis (CHFS) followed by a short post heat treatment step. A range of particle sizes, dependent on synthesis conditions, were produced from 50 to 200 nm by varying reaction temperatures and the residence times in the process. The nanoparticles were characterised by powder X-ray diffraction, Raman and UV/Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The nanoparticles were highly crystalline with rod and sphere-like morphologies present in TEM micrographs, with the size of both the rod and spherical particles being highly dependent on both reaction temperature and residence time. SEM micrographs showed the surface of the powders produced from the CHFS process to be highly uniform. The samples were given a short post synthesis heat treatment to ensure that they were phase pure monoclinic VO2, which led to them exhibiting a large and reversible switch in optical properties (at near-IR wavelengths), which suggests that if such materials can be incorporated into coatings or in composites, they could be used for fenestration in architectural applications.

  18. Direct and continuous synthesis of VO2 nanoparticles.

    PubMed

    Powell, M J; Marchand, P; Denis, C J; Bear, J C; Darr, J A; Parkin, I P

    2015-11-28

    Monoclinic VO2 nanoparticles are of interest due to the material's thermochromic properties, however, direct synthesis routes to VO2 nanoparticles are often inaccessible due to the high synthesis temperatures or long reaction times required. Herein, we present a two-step synthesis route for the preparation of monoclinic VO2 nanoparticles using Continuous Hydrothermal Flow Synthesis (CHFS) followed by a short post heat treatment step. A range of particle sizes, dependent on synthesis conditions, were produced from 50 to 200 nm by varying reaction temperatures and the residence times in the process. The nanoparticles were characterised by powder X-ray diffraction, Raman and UV/Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The nanoparticles were highly crystalline with rod and sphere-like morphologies present in TEM micrographs, with the size of both the rod and spherical particles being highly dependent on both reaction temperature and residence time. SEM micrographs showed the surface of the powders produced from the CHFS process to be highly uniform. The samples were given a short post synthesis heat treatment to ensure that they were phase pure monoclinic VO2, which led to them exhibiting a large and reversible switch in optical properties (at near-IR wavelengths), which suggests that if such materials can be incorporated into coatings or in composites, they could be used for fenestration in architectural applications.

  19. A comparative study of one-step and two-step approaches for MAPbI3 perovskite layer and its influence on the performance of mesoscopic perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Wang, Minhuan; Feng, Yulin; Bian, Jiming; Liu, Hongzhu; Shi, Yantao

    2018-01-01

    The mesoscopic perovskite solar cells (M-PSCs) were synthesized with MAPbI3 perovskite layers as light harvesters, which were grown with one-step and two-step solution process, respectively. A comparative study was performed through the quantitative correlation of resulting device performance and the crystalline quality of perovskite layers. Comparing with the one-step counterpart, a pronounced improvement in the steady-state power conversion efficiencies (PCEs) by 56.86% was achieved with two-step process, which was mainly resulted from the significant enhancement in fill factor (FF) from 48% to 77% without sacrificing the open circuit voltage (Voc) and short circuit current (Jsc). The enhanced FF was attributed to the reduced non-radiative recombination channels due to the better crystalline quality and larger grain size with the two-step processed perovskite layer. Moreover, the superiority of two-step over one-step process was demonstrated with rather good reproducibility.

  20. Novel Chemical Process for Producing Chrome Coated Metal

    PubMed Central

    Pelar, Christopher; Greenaway, Karima; Zea, Hugo; Wu, Chun-Hsien

    2018-01-01

    This work demonstrates that a version of the Reduction Expansion Synthesis (RES) process, Cr-RES, can create a micron scale Cr coating on an iron wire. The process involves three steps. I. A paste consisting of a physical mix of urea, chrome nitrate or chrome oxide, and water is prepared. II. An iron wire is coated by dipping. III. The coated, and dried, wire is heated to ~800 °C for 10 min in a tube furnace under a slow flow of nitrogen gas. The processed wires were then polished and characterized, primarily with scanning electron microscopy (SEM). SEM indicates the chrome layer is uneven, but only on the scale of a fraction of a micron. The evidence of porosity is ambiguous. Elemental mapping using SEM electron microprobe that confirmed the process led to the formation of a chrome metal layer, with no evidence of alloy formation. Additionally, it was found that thickness of the final Cr layer correlated with the thickness of the precursor layer that was applied prior to the heating step. Potentially, this technique could replace electrolytic processing, a process that generates carcinogenic hexavalent chrome, but further study and development is needed. PMID:29303977

  1. Novel Chemical Process for Producing Chrome Coated Metal.

    PubMed

    Pelar, Christopher; Greenaway, Karima; Zea, Hugo; Wu, Chun-Hsien; Luhrs, Claudia C; Phillips, Jonathan

    2018-01-05

    This work demonstrates that a version of the Reduction Expansion Synthesis (RES) process, Cr-RES, can create a micron scale Cr coating on an iron wire. The process involves three steps. I. A paste consisting of a physical mix of urea, chrome nitrate or chrome oxide, and water is prepared. II. An iron wire is coated by dipping. III. The coated, and dried, wire is heated to ~800 °C for 10 min in a tube furnace under a slow flow of nitrogen gas. The processed wires were then polished and characterized, primarily with scanning electron microscopy (SEM). SEM indicates the chrome layer is uneven, but only on the scale of a fraction of a micron. The evidence of porosity is ambiguous. Elemental mapping using SEM electron microprobe that confirmed the process led to the formation of a chrome metal layer, with no evidence of alloy formation. Additionally, it was found that thickness of the final Cr layer correlated with the thickness of the precursor layer that was applied prior to the heating step. Potentially, this technique could replace electrolytic processing, a process that generates carcinogenic hexavalent chrome, but further study and development is needed.

  2. Pyrolysis of poly(vinyl chloride) and-electric arc furnacedust mixtures.

    PubMed

    Al-Harahsheh, Mohammad; Al-Otoom, Awni; Al-Makhadmah, Leema; Hamilton, Ian E; Kingman, Sam; Al-Asheh, Sameer; Hararah, Muhanned

    2015-12-15

    An investigation into the pyrolysis kinetics of PVC mixed with electric arc furnace dust (EAFD) was performed. Mixtures of both materials with varying PVC ratios (1:1, 1:2, 1:3) were prepared and pyrolyzed in a nitrogen atmosphere under dynamic heating conditions at different heating rates (5, 10, 30 and 50 °C/min). The pyrolysis process proceeded through two main decomposition steps; the first step involved the release of HCl which reacted with the metal oxides present in the dust, subsequently forming metal chlorides and water vapor. Benzene was also found to release as detected by TGA-MS. The remaining hydrocarbons in the polymer backbone decomposed further in the second step releasing further volatile hydrocarbons. Different models were used to fit the kinetic data namely the integral, the Van Krevelen, and Coats and Red fern methods. The presence of EAFD during PVC decomposition resulted in a considerable decrease in the activation energy of the reaction occurring during the first decomposition region. Furthermore, iron oxides were retained in the pyrolysis residue, whilst other valuable metals, including Zn and Pb, were converted to chlorides that are recoverable by leaching in water. It is believed that EAFD can be utilized as an active catalyst to produce energy gases such as propyneas evident from the TGA-MS. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. USAF solar thermal applications case studies

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The potential of solar energy technologies to meet mission related applications for process heat was investigated. The reduction of the dependence of military installations on fossil fuels by promoting the use of more abundant resources where liquid hydrocarbons and natural gas are now used is examined. The evaluation and utilization of renewable energy systems to provide process heat and space heating are emphasized. The application of thermal energy systems is divided into four steps: (1) investigation of the potential operational cost effectiveness of selected thermal technologies; (2) selection of a site and preliminary design of point focussing solar thermal plant; (3) construction and test of an engineering prototype; and (4) installation and operation of a solar thermal energy plant.

  4. NASA Astrophysics Data System (ADS)

    Bechetti, Daniel H.; DuPont, John N.; deBarbadillo, John J.; Baker, Brian A.

    2014-06-01

    Thermodynamic and kinetic modeling were used to determine appropriate heat treatment schedules for homogenization and second phase dissolution in INCONEL® alloy 740H® (INCONEL and 740H are registered trademarks of Special Metals Corporation) fusion welds. Following these simulations, a two-step heat treatment process was applied to specimens from a single pass gas tungsten arc weld (GTAW). Scanning electron microscopy (SEM) has been used to assess the changes in the distribution of alloying elements as well as changes in the fraction of second phase particles within the fusion zone. Experimental results demonstrate that adequate homogenization of alloy 740H weld metal can be achieved by a 1373 K/4 h (1100 °C/4 h) treatment. Complete dissolution of second phase particles could not be completely achieved, even at exposure to temperatures near the alloy's solidus temperature. These results are in good agreement with thermodynamic and kinetic predictions.

  5. The Problem of Existence

    DTIC Science & Technology

    1985-01-01

    envisionment) produced by GIZMO . ? In the envisionment, I s indicates the set of quantity—conditioned individuals that exists during a situa- tion...envisionment step by step . In START, the initial state, GIZMO deduces that heat flow occurs, since there is assumed to be a temperature difference between the...stov e GIZMO implements the basic operations of qualitative process theory, including an envisioner for makin g predictions and a program for

  6. Scaleable two-component gelator from phthalic acid derivatives and primary alkyl amines: acid-base interaction in the cooperative assembly.

    PubMed

    Su, Ting; Hong, Kwon Ho; Zhang, Wannian; Li, Fei; Li, Qiang; Yu, Fang; Luo, Genxiang; Gao, Honghe; He, Yu-Peng

    2017-06-07

    A series of phthalic acid derivatives (P) with a carbon-chain tail was designed and synthesized as single-component gelators. A combination of the single-component gelator P and a non-gelling additive n-alkylamine A through acid-base interaction brought about a series of novel phase-selective two-component gelators PA. The gelation capabilities of P and PA, and the structural, morphological, thermo-dynamic and rheological properties of the corresponding gels were investigated. A molecular dynamics simulation showed that the H-bonding network in PA formed between the NH of A and the carbonyl oxygen of P altered the assembly process of gelator P. Crude PA could be synthesized through a one-step process without any purification and could selectively gel the oil phase without a typical heating-cooling process. Moreover, such a crude PA and its gelation process could be amplified to the kilogram scale with high efficiency, which offers a practical economically viable solution to marine oil-spill recovery.

  7. Closed hollow bulb obturator--one-step fabrication: a clinical report.

    PubMed

    Buzayan, Muaiyed M; Ariffin, Yusnidar T; Yunus, Norsiah

    2013-10-01

    A method is described for the fabrication of a closed hollow bulb obturator prosthesis using a hard thermoforming splint material and heat-cured acrylic resin. The technique allowed the thickness of the thermoformed bulb to be optimized for weight reduction, while the autopolymerized seal area was covered in heat-cured acrylic resin, thus eliminating potential leakage and discoloration. This technique permits the obturator prosthesis to be processed to completion from the wax trial denture without additional laboratory investing, flasking, and processing. © 2013 by the American College of Prosthodontists.

  8. Water evaporation in silica colloidal deposits.

    PubMed

    Peixinho, Jorge; Lefèvre, Grégory; Coudert, François-Xavier; Hurisse, Olivier

    2013-10-15

    The results of an experimental study on the evaporation and boiling of water confined in the pores of deposits made of mono-dispersed silica colloidal micro-spheres are reported. The deposits are studied using scanning electron microscopy, adsorption of nitrogen, and adsorption of water through attenuated total reflection-infrared spectroscopy. The evaporation is characterized using differential scanning calorimetry and thermal gravimetric analysis. Optical microscopy is used to observe the patterns on the deposits after evaporation. When heating at a constant rate and above boiling temperature, the release of water out of the deposits is a two step process. The first step is due to the evaporation and boiling of the surrounding and bulk water and the second is due to the desorption of water from the pores. Additional experiments on the evaporation of water from membranes having cylindrical pores and of heptane from silica deposits suggest that the second step is due to the morphology of the deposits. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Single-particle stochastic heat engine.

    PubMed

    Rana, Shubhashis; Pal, P S; Saha, Arnab; Jayannavar, A M

    2014-10-01

    We have performed an extensive analysis of a single-particle stochastic heat engine constructed by manipulating a Brownian particle in a time-dependent harmonic potential. The cycle consists of two isothermal steps at different temperatures and two adiabatic steps similar to that of a Carnot engine. The engine shows qualitative differences in inertial and overdamped regimes. All the thermodynamic quantities, including efficiency, exhibit strong fluctuations in a time periodic steady state. The fluctuations of stochastic efficiency dominate over the mean values even in the quasistatic regime. Interestingly, our system acts as an engine provided the temperature difference between the two reservoirs is greater than a finite critical value which in turn depends on the cycle time and other system parameters. This is supported by our analytical results carried out in the quasistatic regime. Our system works more reliably as an engine for large cycle times. By studying various model systems, we observe that the operational characteristics are model dependent. Our results clearly rule out any universal relation between efficiency at maximum power and temperature of the baths. We have also verified fluctuation relations for heat engines in time periodic steady state.

  10. Cutting and drilling of carbon fiber reinforced plastics (CFRP) by 70W short pulse nanosecond laser

    NASA Astrophysics Data System (ADS)

    Jaeschke, Peter; Stolberg, Klaus; Bastick, Stefan; Ziolkowski, Ewa; Roehner, Markus; Suttmann, Oliver; Overmeyer, Ludger

    2014-02-01

    Continuous carbon fibre reinforced plastics (CFRP) are recognized as having a significant lightweight construction potential for a wide variety of industrial applications. However, a today`s barrier for a comprehensive dissemination of CFRP structures is the lack of economic, quick and reliable manufacture processes, e.g. the cutting and drilling steps. In this paper, the capability of using pulsed disk lasers in CFRP machining is discussed. In CFRP processing with NIR lasers, carbon fibers show excellent optical absorption and heat dissipation, contrary to the plastics matrix. Therefore heat dissipation away from the laser focus into the material is driven by heat conduction of the fibres. The matrix is heated indirectly by heat transfer from the fibres. To cut CFRP, it is required to reach the melting temperature for thermoplastic matrix materials or the disintegration temperature for thermoset systems as well as the sublimation temperature of the reinforcing fibers simultaneously. One solution for this problem is to use short pulse nanosecond lasers. We have investigated CFRP cutting and drilling with such a laser (max. 7 mJ @ 10 kHz, 30 ns). This laser offers the opportunity of wide range parameter tuning for systematic process optimization. By applying drilling and cutting operations based on galvanometer scanning techniques in multi-cycle mode, excellent surface and edge characteristics in terms of delamination-free and intact fiber-matrix interface were achieved. The results indicate that nanosecond disk laser machining could consequently be a suitable tool for the automotive and aircraft industry for cutting and drilling steps.

  11. Laser Processed Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Hansen, Scott

    2017-01-01

    The Laser Processed Heat Exchanger project will investigate the use of laser processed surfaces to reduce mass and volume in liquid/liquid heat exchangers as well as the replacement of the harmful and problematic coatings of the Condensing Heat Exchangers (CHX). For this project, two scale unit test articles will be designed, manufactured, and tested. These two units are a high efficiency liquid/liquid HX and a high reliability CHX.

  12. Self-heating of dried industrial tannery wastewater sludge induced by pyrophoric iron sulfides formation.

    PubMed

    Bertani, R; Biasin, A; Canu, P; Della Zassa, M; Refosco, D; Simionato, F; Zerlottin, M

    2016-03-15

    Similarly to many powders of solids, dried sludge originated from tannery wastewater may result in a self-heating process, under given circumstances. In most cases, it causes a moderate heating (reaching 70-90°C), but larger, off-design residence times in the drier, in a suboxic atmosphere, extremely reactive solids can be produced. Tannery waste contains several chemicals that mostly end up in the wastewater treatment sludge. Unexpected and uncontrolled self heating could lead to a combustion and even to environmental problems. Elaborating on previous studies, with the addition of several analytical determinations, before and after the self-heating, we attempted to formulate a mechanism for the onset of heating. We demonstrated that the system Fe/S/O has been involved in the process. We proved that the formation of small quantities of pyrophoric iron sulfides is the key. They are converted to sulfated by reaction with water and oxygen with exothermic processes. The pyrite/pyrrhotite production depends on the sludge drying process. The oxidation of sulfides to oxides and sulfates through exothermic steps, reasonably catalyzed by metals in the sludge, occurs preferentially in a moist environment. The mechanism has been proved by reproducing in the laboratory prolonged heating under anoxic/suboxic atmosphere. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Heat treatment of unclarified Escherichia coli homogenate improved the recovery efficiency of recombinant hepatitis B core antigen.

    PubMed

    Ng, Michelle Y T; Tan, Wen Siang; Abdullah, Norhafizah; Ling, Tau Chuan; Tey, Beng Ti

    2006-10-01

    Heat precipitation procedure has been regularly incorporated as a selective purification step in various thermostable proteins expressed in different hosts. This method is efficient in precipitation of most of the host proteins and also deactivates various host proteases that can be harmful to the desired gene products. In this study, introduction of heat treatment procedure in the purification of hepatitis B core antigen (HBcAg) produced in Escherichia coli has been investigated. Thermal treatment of the cell homogenate at 60 degrees C for 30 min prior to subsequent clarification steps has resulted in 1.4 times and 18% higher in purity and recovery yield, respectively, compared to the non-heat-treated cell homogenate. In direct capture of HBcAg by using anion-exchangers from unclarified feedstock, pre-conditioning the feedstock by heat treatment at 60 degrees C for 45 min has increased the recovery yield of HBcAg by 2.9-fold and 42% in purity compared to that treated for 10 min. Enzyme-linked immunosorbent assay (ELISA) analysis showed that the antigenicity of the core particles was not affected by the heat treatment process.

  14. Microwave Therapy for Bone Tumors

    NASA Astrophysics Data System (ADS)

    Takakuda, Kazuo; Inaoka, Shuken; Saito, Hirokazu; Hassan, Moinuddin; Koyama, Yoshikazu; Kuroda, Hiroshi; Kanaya, Tomohiro; Kosaka, Toshifumi; Tanaka, Shigeo; Miyairi, Hiroo; Shinomiya, Kenichi

    In vivo microwave treatments for bone tumor are designed, which enable us to conserve the activity and functionality of the matrix of living tissues. This treatment is composed of two steps. In the first step, the tumor was coagulated by the application of microwaves emitted from the antenna inserted into the tumor tissue, and then removed. In the second step, the surrounding tissue suspected to be invaded with transformed cells was covered with hydro gels and heated similarly. The tissue itself was heated by the conduction from the gels. The tissue temperature should be kept at 60°C for 30 minutes. This treatment should kill the whole cells within the tissues, but the mechanical strength and the biochemical activity of the matrix should be left intact. The matrix preserves the mechanical functions and ensures the maximum regeneration ability of the tissue. In this study, various hydro gels were examined and the most promising one was selected. Animal experiments were carried out and successful heating verified the applicability of the treatment.

  15. Fossil fuel combined cycle power system

    DOEpatents

    Labinov, Solomon Davidovich; Armstrong, Timothy Robert; Judkins, Roddie Reagan

    2006-10-10

    A system for converting fuel energy to electricity includes a reformer for converting a higher molecular weight gas into at least one lower molecular weight gas, at least one turbine to produce electricity from expansion of at least one of the lower molecular weight gases, and at least one fuel cell. The system can further include at least one separation device for substantially dividing the lower molecular weight gases into at least two gas streams prior to the electrochemical oxidization step. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  16. Heat Fluxes and Evaporation Measurements by Multi-Function Heat Pulse Probe: a Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Sharma, V.; Ciocca, F.; Hopmans, J. W.; Kamai, T.; Lunati, I.; Parlange, M. B.

    2012-04-01

    Multi Functional Heat Pulse Probes (MFHPP) are multi-needles probes developed in the last years able to measure temperature, thermal properties such as thermal diffusivity and volumetric heat capacity, from which soil moisture is directly retrieved, and electric conductivity (through a Wenner array). They allow the simultaneous measurement of coupled heat, water and solute transport in porous media, then. The use of only one instrument to estimate different quantities in the same volume and almost at the same time significantly reduces the need to interpolate different measurement types in space and time, increasing the ability to study the interdependencies characterizing the coupled transports, especially of water and heat, and water and solute. A three steps laboratory experiment is realized at EPFL to investigate the effectiveness and reliability of the MFHPP responses in a loamy soil from Conthey, Switzerland. In the first step specific calibration curves of volumetric heat capacity and thermal conductivity as function of known volumetric water content are obtained placing the MFHPP in small samplers filled with the soil homogeneously packed at different saturation degrees. The results are compared with literature values. In the second stage the ability of the MFHPP to measure heat fluxes is tested within a homemade thermally insulated calibration box and results are matched with those by two self-calibrating Heatflux plates (from Huxseflux), placed in the same box. In the last step the MFHPP are used to estimate the cumulative subsurface evaporation inside a small column (30 centimeters height per 8 centimeters inner diameter), placed on a scale, filled with the same loamy soil (homogeneously packed and then saturated) and equipped with a vertical array of four MFHPP inserted close to the surface. The subsurface evaporation is calculated from the difference between the net sensible heat and the net heat storage in the volume scanned by the probes, and the values obtained are matched with the overall evaporation, estimated through the scale in terms of weight loss. A numerical model able to solve the coupled heat-moisture diffusive equations is used to interpolate the obtained measures in the second and third step.

  17. Laser-based gluing of diamond-tipped saw blades

    NASA Astrophysics Data System (ADS)

    Hennigs, Christian; Lahdo, Rabi; Springer, André; Kaierle, Stefan; Hustedt, Michael; Brand, Helmut; Wloka, Richard; Zobel, Frank; Dültgen, Peter

    2016-03-01

    To process natural stone such as marble or granite, saw blades equipped with wear-resistant diamond grinding segments are used, typically joined to the blade by brazing. In case of damage or wear, they must be exchanged. Due to the large energy input during thermal loosening and subsequent brazing, the repair causes extended heat-affected zones with serious microstructure changes, resulting in shape distortions and disadvantageous stress distributions. Consequently, axial run-out deviations and cutting losses increase. In this work, a new near-infrared laser-based process chain is presented to overcome the deficits of conventional brazing-based repair of diamond-tipped steel saw blades. Thus, additional tensioning and straightening steps can be avoided. The process chain starts with thermal debonding of the worn grinding segments, using a continuous-wave laser to heat the segments gently and to exceed the adhesive's decomposition temperature. Afterwards, short-pulsed laser radiation removes remaining adhesive from the blade in order to achieve clean joining surfaces. The third step is roughening and activation of the joining surfaces, again using short-pulsed laser radiation. Finally, the grinding segments are glued onto the blade with a defined adhesive layer, using continuous-wave laser radiation. Here, the adhesive is heated to its curing temperature by irradiating the respective grinding segment, ensuring minimal thermal influence on the blade. For demonstration, a prototype unit was constructed to perform the different steps of the process chain on-site at the saw-blade user's facilities. This unit was used to re-equip a saw blade with a complete set of grinding segments. This saw blade was used successfully to cut different materials, amongst others granite.

  18. Efficiency of autothermal thermophilic aerobic digestion under two different oxygen flow rates.

    PubMed

    Aynur, Sebnem Koyunluoglu; Riffat, Rumana; Murthy, Sudhir

    2014-01-01

    The objective of this research was to understand the influence of oxygenation at two different oxygen flow rates (0.105 and 0.210 L/L/h) on autothermal thermophilic aerobic digestion (ATAD), and on the overall performance of Dual Digestion (DD). Profile experiments on an ATAD reactor showed that a significant portion of volatile fatty acids and ammonia were produced in the first 12 h period, and both followed first order kinetics. Ammonia concentrations of ATAD effluent were 1015 mg/L and 1450 mg/L, respectively, at the two oxygenation rates. Ammonia production was not complete in the ATAD reactor at the lower oxygenation rate. However, it was sufficient to maximize volatile solids reduction in the DD process. The biological heat of oxidations were 14,300 J/g Volatile Solids (VS) removed and 15,900 J/g VS removed for the two oxygen flow rates, respectively. The ATAD step provided enhanced digestion for the DD process with higher volatile solids removal and methane yield when compared to conventional digestion.

  19. Simultaneous Measurement of Thermal Conductivity and Specific Heat in a Single TDTR Experiment

    NASA Astrophysics Data System (ADS)

    Sun, Fangyuan; Wang, Xinwei; Yang, Ming; Chen, Zhe; Zhang, Hang; Tang, Dawei

    2018-01-01

    Time-domain thermoreflectance (TDTR) technique is a powerful thermal property measurement method, especially for nano-structures and material interfaces. Thermal properties can be obtained by fitting TDTR experimental data with a proper thermal transport model. In a single TDTR experiment, thermal properties with different sensitivity trends can be extracted simultaneously. However, thermal conductivity and volumetric heat capacity usually have similar trends in sensitivity for most materials; it is difficult to measure them simultaneously. In this work, we present a two-step data fitting method to measure the thermal conductivity and volumetric heat capacity simultaneously from a set of TDTR experimental data at single modulation frequency. This method takes full advantage of the information carried by both amplitude and phase signals; it is a more convenient and effective solution compared with the frequency-domain thermoreflectance method. The relative error is lower than 5 % for most cases. A silicon wafer sample was measured by TDTR method to verify the two-step fitting method.

  20. Step-by-Step Heating of Dye Solution for Efficient Solar Energy Harvesting in Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Shah, Syed Afaq Ali; Sayyad, Muhammad Hassan; Abdulkarim, Salem; Qiao, Qiquan

    2018-05-01

    A step-by-step heat treatment was applied to ruthenium-based N719 dye solution for its potential application in dye-sensitized solar cells (DSSCs). The effects were analyzed and compared with standard untreated devices. A significant increase in short circuit current density was observed by employing a step-by-step heating method for dye solution in DSSCs. This increase of J sc is attributed to the enhancement in dye adsorption by the surface of the semiconductor and the higher number of charge carriers generated. DSSCs fabricated by a heated dye solution have achieved an overall power conversion efficiency of 8.41% which is significantly higher than the efficiency of 7.31% achieved with DSSCs fabricated without heated dye. Electrochemical impedance spectroscopy and capacitance voltage studies were performed to understand the better performance of the device fabricated with heated dye. Furthermore, transient photocurrent and transient photovoltage measurements were also performed to gain an insight into interfacial charge carrier recombinations.

  1. Decision support for operations and maintenance (DSOM) system

    DOEpatents

    Jarrell, Donald B [Kennewick, WA; Meador, Richard J [Richland, WA; Sisk, Daniel R [Richland, WA; Hatley, Darrel D [Kennewick, WA; Brown, Daryl R [Richland, WA; Keibel, Gary R [Richland, WA; Gowri, Krishnan [Richland, WA; Reyes-Spindola, Jorge F [Richland, WA; Adams, Kevin J [San Bruno, CA; Yates, Kenneth R [Lake Oswego, OR; Eschbach, Elizabeth J [Fort Collins, CO; Stratton, Rex C [Richland, WA

    2006-03-21

    A method for minimizing the life cycle cost of processes such as heating a building. The method utilizes sensors to monitor various pieces of equipment used in the process, for example, boilers, turbines, and the like. The method then performs the steps of identifying a set optimal operating conditions for the process, identifying and measuring parameters necessary to characterize the actual operating condition of the process, validating data generated by measuring those parameters, characterizing the actual condition of the process, identifying an optimal condition corresponding to the actual condition, comparing said optimal condition with the actual condition and identifying variances between the two, and drawing from a set of pre-defined algorithms created using best engineering practices, an explanation of at least one likely source and at least one recommended remedial action for selected variances, and providing said explanation as an output to at least one user.

  2. Electrodeposited MCrAlY Coatings for Gas Turbine Engine Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2015-11-01

    Electrolytic codeposition is a promising alternative process for fabricating MCrAlY coatings. The coating process involves two steps, i.e., codeposition of CrAlY-based particles and a metal matrix of Ni, Co, or (Ni,Co), followed by a diffusion heat treatment to convert the composite coating to the desired MCrAlY microstructure. Despite the advantages such as low cost and non-line-of-sight, this coating process is less known than electron beam-physical vapor deposition and thermal spray processes for manufacturing high-temperature coatings. This article provides an overview of the electro-codeposited MCrAlY coatings for gas turbine engine applications, highlighting the unique features of this coating process and some important findings in the past 30 years. Challenges and research opportunities for further optimization of this type of MCrAlY coatings are also discussed.

  3. Impact of processing on odour-active compounds of a mixed tomato-onion puree.

    PubMed

    Koutidou, Maria; Grauwet, Tara; Van Loey, Ann; Acharya, Parag

    2017-08-01

    Gas chromatography-olfactometry revealed thirty-two odour-active compounds in a heat-processed tomato-onion puree, among which twenty-seven were identified by gas chromatography-olfactometry-mass spectrometry (GC-O-MS) and comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOF MS). Based on the results of two olfactometric methods, i.e. detection frequency and aroma extract dilution analysis, the most potent aroma components include: dipropyl disulfide, S-propyl thioacetate, dimethyl trisulfide, 1-octen-3-one, methional, dipropyl trisulfide, 4,5-dimethylthiazole, 2-phenylacetaldehyde and sotolone. Processing of mixed vegetable systems can add complexity in their aroma profiles due to (bio)chemical interactions between the components. Therefore, the impact of different processing steps (i.e. thermal blanching, all-in-one and split-stream processes) on the volatile profile and aroma of a mixed tomato-onion puree has been investigated using a GC-MS fingerprinting approach. Results showed the potential to control the aroma in a mixed tomato-onion system through process-induced enzymatic modulations for producing tomato-onion food products with distinct aroma characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Orbital foamed material extruder

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S. (Inventor)

    2009-01-01

    This invention is a process for producing foamed material in space comprising the steps of: rotating the material to simulate the force of gravity; heating the rotating material until it is molten; extruding the rotating, molten material; injecting gas into the extruded, rotating, molten material to produce molten foamed material; allowing the molten foamed material to cool to below melting temperature to produce the foamed material. The surface of the extruded foam may be heated to above melting temperature and allowed to cool to below melting temperature. The extruded foam may also be cut to predetermined length. The starting material may be metal or glass. Heating may be accomplished by electrical heating elements or by solar heating.

  5. A Non Local Electron Heat Transport Model for Multi-Dimensional Fluid Codes

    NASA Astrophysics Data System (ADS)

    Schurtz, Guy

    2000-10-01

    Apparent inhibition of thermal heat flow is one of the most ancient problems in computational Inertial Fusion and flux-limited Spitzer-Harm conduction has been a mainstay in multi-dimensional hydrodynamic codes for more than 25 years. Theoretical investigation of the problem indicates that heat transport in laser produced plasmas has to be considered as a non local process. Various authors contributed to the non local theory and proposed convolution formulas designed for practical implementation in one-dimensional fluid codes. Though the theory, confirmed by kinetic calculations, actually predicts a reduced heat flux, it fails to explain the very small limiters required in two-dimensional simulations. Fokker-Planck simulations by Epperlein, Rickard and Bell [PRL 61, 2453 (1988)] demonstrated that non local effects could lead to a strong reduction of heat flow in two dimensions, even in situations where a one-dimensional analysis suggests that the heat flow is nearly classical. We developed at CEA/DAM a non local electron heat transport model suitable for implementation in our two-dimensional radiation hydrodynamic code FCI2. This model may be envisionned as the first step of an iterative solution of the Fokker-Planck equations; it takes the mathematical form of multigroup diffusion equations, the solution of which yields both the heat flux and the departure of the electron distribution function to the Maxwellian. Although direct implementation of the model is straightforward, formal solutions of it can be expressed in convolution form, exhibiting a three-dimensional tensor propagator. Reduction to one dimension retrieves the original formula of Luciani, Mora and Virmont [PRL 51, 1664 (1983)]. Intense magnetic fields may be generated by thermal effects in laser targets; these fields, as well as non local effects, will inhibit electron conduction. We present simulations where both effects are taken into account and shortly discuss the coupling strategy between them.

  6. Boeing CST-100 Starliner Base Heat Shield Installation

    NASA Image and Video Library

    2018-03-15

    On March 15, the base heat shield for Boeing’s CST-100 Starliner was freshly installed on the bottom of Spacecraft 1 in the High Bay of the Commercial Crew and Cargo Processing Facility at Kennedy Space Center. This is the spacecraft that will fly during the Pad Abort Test. The next step involves installation of the back shells and forward heat shield, and then the crew module will be mated to the service module for a fit check. Finally, the vehicle will head out to White Sands Missile Range in New Mexico for testing.

  7. Ignition Delay Associated with a Strained Strip

    NASA Technical Reports Server (NTRS)

    Gerk, T. J.; Karagozian, A. R.

    1996-01-01

    Ignition processes associated with two adjacent fuel-oxidizer interferences bounding a strained fuel strip are explored here using single-step activation energy asymptotics. Calculations are made for constant as well as temporally decaying strain fields. There possible models of ignition are determined: one in which the two interfaces ignite independently as diffusion flames; one in which the two interfaces ignite dependently and in which ignition occurs to form a single , premixed flame at very high strain rates before ignition is completely prevented. In contrast to a single, isolated interface in which ignition can be prevented by overmatching heat production with heat convection due to strain, ignition of a strained fuel strip can also be prevented if the finite extend of fuel is diluted by oxidizer more quickly than heat production can cause a positive feedback thermal runaway. These behaviors are dependent on the relative sizes of timescales associated with species and heat diffusion, with convection due to strain, and with the chemical reaction. The result here indicate that adjacent, strained species interfaces may ignite quite differently in nature from ignition of a single, strained intrface and that their interdependence should be considered as the interfaces are brought closer together in complex strain fields. Critical strain rates leading to complete ignition delay are found to be considerably smaller for the fuel strip than those for single interfaces as the fuel strip is made thin in comparison to diffusion and chemical length scales.

  8. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern.

    PubMed

    Han, Nam; Cuong, Tran Viet; Han, Min; Ryu, Beo Deul; Chandramohan, S; Park, Jong Bae; Kang, Ji Hye; Park, Young-Jae; Ko, Kang Bok; Kim, Hee Yun; Kim, Hyun Kyu; Ryu, Jae Hyoung; Katharria, Y S; Choi, Chel-Jong; Hong, Chang-Hee

    2013-01-01

    The future of solid-state lighting relies on how the performance parameters will be improved further for developing high-brightness light-emitting diodes. Eventually, heat removal is becoming a crucial issue because the requirement of high brightness necessitates high-operating current densities that would trigger more joule heating. Here we demonstrate that the embedded graphene oxide in a gallium nitride light-emitting diode alleviates the self-heating issues by virtue of its heat-spreading ability and reducing the thermal boundary resistance. The fabrication process involves the generation of scalable graphene oxide microscale patterns on a sapphire substrate, followed by its thermal reduction and epitaxial lateral overgrowth of gallium nitride in a metal-organic chemical vapour deposition system under one-step process. The device with embedded graphene oxide outperforms its conventional counterpart by emitting bright light with relatively low-junction temperature and thermal resistance. This facile strategy may enable integration of large-scale graphene into practical devices for effective heat removal.

  9. Isolation of Salmonella from alfalfa seed and demonstration of impaired growth of heat-injured cells in seed homogenates.

    PubMed

    Liao, Ching-Hsing; Fett, William F

    2003-05-15

    Three major foodborne outbreaks of salmonellosis in 1998 and 1999 were linked to the consumption of raw alfalfa sprouts. In this report, an improved method is described for isolation of Salmonella from alfalfa seed lots, which had been implicated in these outbreaks. From each seed lot, eight samples each containing 25 g of seed were tested for the presence of Salmonella by the US FDA Bacteriological Analytical Manual (BAM) procedure and by a modified method applying two successive pre-enrichment steps. Depending on the seed lot, one to four out of eight samples tested positive for Salmonella by the standard procedure and two to seven out of eight samples tested positive by the modified method. Thus, the use of two consecutive pre-enrichment steps led to a higher detection rate than a single pre-enrichment step. This result indirectly suggested that Salmonella cells on contaminated seeds might be injured and failed to fully resuscitate in pre-enrichment broth containing seed components during the first 24 h of incubation. Responses of heat-injured Salmonella cells grown in buffered peptone water (BPW) and in three alfalfa seed homogenates were investigated. For preparation of seed homogenates, 25 g of seeds were homogenized in 200 ml of BPW using a laboratory Stomacher and subsequently held at 37 degrees C for 24 h prior to centrifugation and filtration. While untreated cells grew at about the same rate in BPW and in seed homogenates, heat-injured cells (52 degrees C, 10 min) required approximately 0.5 to 4.0 h longer to resuscitate in seed homogenates than in BPW. This result suggests that the alfalfa seed components or fermented metabolites from native bacteria hinder the repair and growth of heat-injured cells. This study also shows that an additional pre-enrichment step increases the frequency of isolation of Salmonella from naturally contaminated seeds, possibly by alleviating the toxic effect of seed homogenates on repair or growth of injured cells.

  10. On the genesis of molybdenum carbide phases during reduction-carburization reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guil-Lopez, R., E-mail: rut.guil@icp.csic.es; Nieto, E.; Departamento de Tecnologia Quimica y Energetica, ESCET, Universidad Rey Juan Carlos, C/Tulipan s/n, 28933-Mostoles

    2012-06-15

    Molybdenum carbide has been prepared according to the carbothermal reduction method. Carbon black substrate was used as C-source whereas a H{sub 2}-flow was the reducing agent. Two different H{sub 2} consumption steps were identified during the carburization treatment. The low temperature step is related to the reduction of Mo{sup 6+}-to-Mo{sup 4+}, the higher temperature process accounts for the deep reduction of Mo{sup 4+}-to-metal Mo{sup 0} and its subsequent reaction with C to form the Mo-carbide. The influences of the maximum carburization temperature, carburization time, gas hourly space velocity regarding Mo-loading, heating rate and temperature of Ar pre-treatment were analyzed. Allmore » these conditions are interrelated to each other. Thus, the carburization process ends at 700 Degree-Sign C when Mo-loading is 10 wt%, however Mo-loading higher than 10 wt% requires higher temperatures. Carburization temperatures up to 800 Degree-Sign C are needed to fulfill Mo-carbide formation with samples containing 50 wt% Mo. Nevertheless, Ar pre-treatment at 550 Degree-Sign C and slow heating rates favor the carburization, thus requiring lower carburization temperatures to reach the same carburization level. - Graphical Abstract: H{sub 2}-consumption profile (TPR) during the molybdenum carburization process, XRD patterns of the reduced Mo-samples after carburization and TEM-micrographs with two different enlargement of the samples with 5, 20 and 50 wt% Mo. Highlights: Black-Right-Pointing-Pointer Control of carburization variables: tailor the reduced/carbide Mo-phases (single/mixture). Black-Right-Pointing-Pointer Mo carburization in two stages: (1) Mo{sup 6+}-Mo{sup 4+}; (2) Mo{sup 4+}-Mo{sup 0} and, at once, MoC. Black-Right-Pointing-Pointer The carburization process is faster than Mo{sup 4+} reduction. Black-Right-Pointing-Pointer XPS probed: reduced Mo particles show core-shell structure. Black-Right-Pointing-Pointer Core: reduced Mo (Mo{sub 2}C, MoO{sub 2} and/or Mo{sup 0}); Shell: 2-3 nm of MoO{sub 3}.« less

  11. The Effect of Sintering Temperature on The Rolled Silver-Sheathed Monofilament Bi,Pb-Sr-Ca-Cu-O Superconducting Wire

    NASA Astrophysics Data System (ADS)

    Hendrik; Sebleku, P.; Siswayanti, B.; Pramono, A. W.

    2017-05-01

    The manufacture of high critical temperature (Tc) Bi, Pb-Sr-Ca-Cu-O (HTS BPSCCO) superconductor wire fabricated by power-in-tube (PIT) is a multi-step process. The main difficulty is that the value of Tc superconductor wire determined by various factors for each step. The objective of this research is to investigate the effect of sintering parameters on the properties of final rolled material. The fabrication process of 1 m rolled-silver sheath monofilament superconductor BPSCCO wire using mechanical deformation process including rolling and drawing has been carried out. The pure silver powders were melted and formed into pure silver (Ag) tube. The tube was 10 mm in diameter with a sheath material: superconductor powders ratio of about 6 : 1. Starting powders, containing the nominal composition of Bi2-Sr2-Cam-1-Cum-Oy, were inserted into the pure silver tube and rolled until it reached a diameter of 4 mm. A typical area reduction ratio of about 5% per step has been proposed to prevent microcracking during the cold-drawing process. The process of rolling of the silver tube was subsequently repeated to obtain three samples and then followed by heat-treated at 820 °C, 840 °C, and 860 °C, respectively. The surface morphology was analyzed by using SEM; the crystal structure was studied by using X-RD, whereas the superconductivity was investigated by using temperature dependence resistivity measurement by using four-point probe technique. SEM images showed the porosity of the cross-sectional surface of the samples. The sample with low heating temperature showed porosity more than the one with high temperature. The value of critical temperature (Tc) of the sample with a dwelling time of heating of 8 hours is 70 K. At above 70 K, it shows the behavior of conductor properties. However, the porosity increased as the heating time increased up to 24 hours. The critical temperature was difficult to be identified due to its porosity. According to XRD results, the Bi-2212 phase is prominent in all samples.

  12. Investigation to biodiesel production by the two-step homogeneous base-catalyzed transesterification.

    PubMed

    Ye, Jianchu; Tu, Song; Sha, Yong

    2010-10-01

    For the two-step transesterification biodiesel production made from the sunflower oil, based on the kinetics model of the homogeneous base-catalyzed transesterification and the liquid-liquid phase equilibrium of the transesterification product, the total methanol/oil mole ratio, the total reaction time, and the split ratios of methanol and reaction time between the two reactors in the stage of the two-step reaction are determined quantitatively. In consideration of the transesterification intermediate product, both the traditional distillation separation process and the improved separation process of the two-step reaction product are investigated in detail by means of the rigorous process simulation. In comparison with the traditional distillation process, the improved separation process of the two-step reaction product has distinct advantage in the energy duty and equipment requirement due to replacement of the costly methanol-biodiesel distillation column. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Directional solidification processing of alloys using an applied electric field

    NASA Technical Reports Server (NTRS)

    McKannan, Eugene C. (Inventor); Schmidt, Deborah D. (Inventor); Ahmed, Shaffiq (Inventor); Bond, Robert W. (Inventor)

    1992-01-01

    A method is provided for obtaining an alloy having an ordered microstructure which comprises the steps of heating the central portion of the alloy under uniform temperature so that it enters a liquid phase while the outer portions remain solid, applying a constant electric current through the alloy during the heating step, and solidifying the liquid central portion of the alloy by subjecting it to a temperature-gradient zone so that cooling occurs in a directional manner and at a given rate of speed while maintaining the application of the constant electric current through the alloy. The method is particularly suitable for use with nickel-based superalloys. The method of the present invention produces an alloy having superior characteristics such as reduced segregation. After subsequent precipitation by heat-treatment, the alloys produced by the present invention will have excellent strength and high-temperature resistance.

  14. Pressure- and heat-induced inactivation of butyrylcholinesterase: evidence for multiple intermediates and the remnant inactivation process.

    PubMed Central

    Weingand-Ziade, A; Ribes, F; Renault, F; Masson, P

    2001-01-01

    The inactivation process of native (N) human butyrylcholinesterase (BuChE) by pressure and/or heat was found to be multi-step. It led to irreversible formation of an active intermediate (I) state and a denatured state. This series-inactivation process was described by expanding the Lumry-Eyring [Lumry, R. and Eyring, H. (1954) J. Phys. Chem. 58, 110-120] model. The intermediate state (I) was found to have a K(m) identical with that of the native state and a turnover rate (k(cat)) twofold higher than that of the native state with butyrylthiocholine as the substrate. The increased catalytic efficiency (k(cat)/K(m)) of I can be explained by a conformational change in the active-site gorge and/or restructuring of the water-molecule network in the active-site pocket, making the catalytic steps faster. However, a pressure/heat-induced covalent modification of native BuChE, affecting the catalytic machinery, cannot be ruled out. The inactivation process of BuChE induced by the combined action of pressure and heat was found to continue after interruption of pressure/temperature treatment. This secondary inactivation process was termed 'remnant inactivation'. We hypothesized that N and I were in equilibrium with populated metastable N' and I' states. The N' and I' states can either return to the active forms, N and I, or develop into inactive forms, N(')(in) and I(')(in). Both active N' and I' intermediate states displayed different rates of remnant inactivation depending on the pressure and temperature pretreatments and on the storage temperature. A first-order deactivation model describing the kinetics of the remnant inactivation of BuChE is proposed. PMID:11368776

  15. STEP wastewater treatment: a solar thermal electrochemical process for pollutant oxidation.

    PubMed

    Wang, Baohui; Wu, Hongjun; Zhang, Guoxue; Licht, Stuart

    2012-10-01

    A solar thermal electrochemical production (STEP) pathway was established to utilize solar energy to drive useful chemical processes. In this paper, we use experimental chemistry for efficient STEP wastewater treatment, and suggest a theory based on the decreasing stability of organic pollutants (hydrocarbon oxidation potentials) with increasing temperature. Exemplified by the solar thermal electrochemical oxidation of phenol, the fundamental model and experimental system components of this process outline a general method for the oxidation of environmentally stable organic pollutants into carbon dioxide, which is easily removed. Using thermodynamic calculations we show a sharply decreasing phenol oxidation potential with increasing temperature. The experimental results demonstrate that this increased temperature can be supplied by solar thermal heating. In combination this drives electrochemical phenol removal with enhanced oxidation efficiency through (i) a thermodynamically driven decrease in the energy needed to fuel the process and (ii) improved kinetics to sustain high rates of phenol oxidation at low electrochemical overpotential. The STEP wastewater treatment process is synergistic in that it is performed with higher efficiency than either electrochemical or photovoltaic conversion process acting alone. STEP is a green, efficient, safe, and sustainable process for organic wastewater treatment driven solely by solar energy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Incubation behavior of silicon nanowire growth investigated by laser-assisted rapid heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Sang-gil; Kim, Eunpa; Grigoropoulos, Costas P., E-mail: cgrigoro@berkeley.edu

    2016-08-15

    We investigate the early stage of silicon nanowire growth by the vapor-liquid-solid mechanism using laser-localized heating combined with ex-situ chemical mapping analysis by energy-filtered transmission electron microscopy. By achieving fast heating and cooling times, we can precisely determine the nucleation times for nanowire growth. We find that the silicon nanowire nucleation process occurs on a time scale of ∼10 ms, i.e., orders of magnitude faster than the times reported in investigations using furnace processes. The rate-limiting step for silicon nanowire growth at temperatures in the vicinity of the eutectic temperature is found to be the gas reaction and/or the silicon crystalmore » growth process, whereas at higher temperatures it is the rate of silicon diffusion through the molten catalyst that dictates the nucleation kinetics.« less

  17. Silicon Chemical Vapor Deposition Process Using a Half-Inch Silicon Wafer for Minimal Manufacturing System

    NASA Astrophysics Data System (ADS)

    Li, Ning; Habuka, Hitoshi; Ikeda, Shin-ichi; Hara, Shiro

    A chemical vapor deposition reactor for producing thin silicon films was designed and developed for achieving a new electronic device production system, the Minimal Manufacturing, using a half-inch wafer. This system requires a rapid process by a small footprint reactor. This was designed and verified by employing the technical issues, such as (i) vertical gas flow, (ii) thermal operation using a highly concentrated infrared flux, and (iii) reactor cleaning by chlorine trifluoride gas. The combination of (i) and (ii) could achieve a low heating power and a fast cooling designed by the heat balance of the small wafer placed at a position outside of the reflector. The cleaning process could be rapid by (iii). The heating step could be skipped because chlorine trifluoride gas was reactive at any temperature higher than room temperature.

  18. The application of two-step linear temperature program to thermal analysis for monitoring the lipid induction of Nostoc sp. KNUA003 in large scale cultivation.

    PubMed

    Kang, Bongmun; Yoon, Ho-Sung

    2015-02-01

    Recently, microalgae was considered as a renewable energy for fuel production because its production is nonseasonal and may take place on nonarable land. Despite all of these advantages, microalgal oil production is significantly affected by environmental factors. Furthermore, the large variability remains an important problem in measurement of algae productivity and compositional analysis, especially, the total lipid content. Thus, there is considerable interest in accurate determination of total lipid content during the biotechnological process. For these reason, various high-throughput technologies were suggested for accurate measurement of total lipids contained in the microorganisms, especially oleaginous microalgae. In addition, more advanced technologies were employed to quantify the total lipids of the microalgae without a pretreatment. However, these methods are difficult to measure total lipid content in wet form microalgae obtained from large-scale production. In present study, the thermal analysis performed with two-step linear temeperature program was applied to measure heat evolved in temperature range from 310 to 351 °C of Nostoc sp. KNUA003 obtained from large-scale cultivation. And then, we examined the relationship between the heat evolved in 310-351 °C (HE) and total lipid content of the wet Nostoc cell cultivated in raceway. As a result, the linear relationship was determined between HE value and total lipid content of Nostoc sp. KNUA003. Particularly, there was a linear relationship of 98% between the HE value and the total lipid content of the tested microorganism. Based on this relationship, the total lipid content converted from the heat evolved of wet Nostoc sp. KNUA003 could be used for monitoring its lipid induction in large-scale cultivation. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. DIRECT INGOT PROCESS FOR PRODUCING URANIUM

    DOEpatents

    Leaders, W.M.; Knecht, W.S.

    1960-11-15

    A process is given in which uranium tetrafluoride is reduced to the metal with magnesium and in the same step the uranium metal formed is cast into an ingot. For this purpose a mold is arranged under and connected with the reaction bomb, and both are filled with the reaction mixture. The entire mixture is first heated to just below reaction temperature, and thereafter heating is restricted to the mixture in the mold. The reaction starts in the mold whereby heat is released which brings the rest of the mixture to reaction temperature. Pure uranium metal settles in the mold while the magnesium fluoride slag floats on top of it. After cooling, the uranium is separated from the slag by mechanical means.

  20. WELDING PROCESS

    DOEpatents

    Zambrow, J.; Hausner, H.

    1957-09-24

    A method of joining metal parts for the preparation of relatively long, thin fuel element cores of uranium or alloys thereof for nuclear reactors is described. The process includes the steps of cleaning the surfaces to be jointed, placing the sunfaces together, and providing between and in contact with them, a layer of a compound in finely divided form that is decomposable to metal by heat. The fuel element members are then heated at the contact zone and maintained under pressure during the heating to decompose the compound to metal and sinter the members and reduced metal together producing a weld. The preferred class of decomposable compounds are the metal hydrides such as uranium hydride, which release hydrogen thus providing a reducing atmosphere in the vicinity of the welding operation.

  1. Property Changes of Cyanate Ester/epoxy Insulation Systems Caused by AN Iter-Like Double Impregnation and by Reactor Irradiation

    NASA Astrophysics Data System (ADS)

    Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.

    2010-04-01

    Because of the double pancake design of the ITER TF coils the insulation will be applied in several steps. As a consequence, the conductor insulation as well as the pancake insulation will undergo multiple heat cycles in addition to the initial curing cycle. In particular the properties of the organic resin may be influenced, since its heat resistance is limited. Two identical types of sample consisting of wrapped R-glass/Kapton layers and vacuum impregnated with a cyanate ester/epoxy blend were prepared. The build-up of the reinforcement was identical for both insulation systems; however, one system was fabricated in two steps. In the first step only one half of the reinforcing layers was impregnated and cured. Afterwards the remaining layers were wrapped onto the already cured system, before the resulting system was impregnated and cured again. The mechanical properties were characterized prior to and after irradiation to fast neutron fluences of 1 and 2×1022 m-2 (E>0.1 MeV) in tension and interlaminar shear at 77 K. In order to simulate the pulsed operation of ITER, tension-tension fatigue measurements were performed in the load controlled mode. The results do not show any evidence for reduced mechanical strength caused by the additional heat cycle.

  2. Numerical Analysis of Heat Transfer During Quenching Process

    NASA Astrophysics Data System (ADS)

    Madireddi, Sowjanya; Krishnan, Krishnan Nambudiripad; Reddy, Ammana Satyanarayana

    2018-04-01

    A numerical model is developed to simulate the immersion quenching process of metals. The time of quench plays an important role if the process involves a defined step quenching schedule to obtain the desired characteristics. Lumped heat capacity analysis used for this purpose requires the value of heat transfer coefficient, whose evaluation requires large experimental data. Experimentation on a sample work piece may not represent the actual component which may vary in dimension. A Fluid-Structure interaction technique with a coupled interface between the solid (metal) and liquid (quenchant) is used for the simulations. Initial times of quenching shows boiling heat transfer phenomenon with high values of heat transfer coefficients (5000-2.5 × 105 W/m2K). Shape of the work piece with equal dimension shows less influence on the cooling rate Non-uniformity in hardness at the sharp corners can be reduced by rounding off the edges. For a square piece of 20 mm thickness, with 3 mm fillet radius, this difference is reduced by 73 %. The model can be used for any metal-quenchant combination to obtain time-temperature data without the necessity of experimentation.

  3. Integrated modeling and heat treatment simulation of austempered ductile iron

    NASA Astrophysics Data System (ADS)

    Hepp, E.; Hurevich, V.; Schäfer, W.

    2012-07-01

    The integrated modeling and simulation of the casting and heat treatment processes for producing austempered ductile iron (ADI) castings is presented. The focus is on describing different models to simulate the austenitization, quenching and austempering steps during ADI heat treatment. The starting point for the heat treatment simulation is the simulated microstructure after solidification and cooling. The austenitization model considers the transformation of the initial ferrite-pearlite matrix into austenite as well as the dissolution of graphite in austenite to attain a uniform carbon distribution. The quenching model is based on measured CCT diagrams. Measurements have been carried out to obtain these diagrams for different alloys with varying Cu, Ni and Mo contents. The austempering model includes nucleation and growth kinetics of the ADI matrix. The model of ADI nucleation is based on experimental measurements made for varied Cu, Ni, Mo contents and austempering temperatures. The ADI kinetic model uses a diffusion controlled approach to model the growth. The models have been integrated in a tool for casting process simulation. Results are shown for the optimization of the heat treatment process of a planetary carrier casting.

  4. Electro-thermo-mechanical coupling analysis of deep drawing with resistance heating for aluminum matrix composites sheet

    NASA Astrophysics Data System (ADS)

    Zhang, Kaifeng; Zhang, Tuoda; Wang, Bo

    2013-05-01

    Recently, electro-plastic forming to be a focus of attention in materials hot processing research area, because it is a sort of energy-saving, high efficient and green manufacturing technology. An electro-thermo-mechanical model can be adopted to carry out the sequence simulation of aluminum matrix composites sheet deep drawing via electro-thermal coupling and thermal-mechanical coupling method. The first step of process is resistance heating of sheet, then turn off the power, and the second step is deep drawing. Temperature distribution of SiCp/2024Al composite sheet by resistance heating and sheet deep drawing deformation were analyzed. During the simulation, effect of contact resistances, temperature coefficient of resistance for electrode material and SiCp/2024Al composite on temperature distribution were integrally considered. The simulation results demonstrate that Sicp/2024Al composite sheet can be rapidly heated to 400° in 30s using resistances heating and the sheet temperature can be controlled by adjusting the current density. Physical properties of the electrode materials can significantly affect the composite sheet temperature distribution. The temperature difference between the center and the side of the sheet is proportional to the thermal conductivity of the electrode, the principal cause of which is that the heat transfers from the sheet to the electrode. SiCp/2024Al thin-wall part can be intactly manufactured at strain rate of 0.08s-1 and the sheet thickness thinning rate is limited within 20%, which corresponds well to the experimental result.

  5. Welding of Semiconductor Nanowires by Coupling Laser-Induced Peening and Localized Heating.

    PubMed

    Rickey, Kelly M; Nian, Qiong; Zhang, Genqiang; Chen, Liangliang; Suslov, Sergey; Bhat, S Venkataprasad; Wu, Yue; Cheng, Gary J; Ruan, Xiulin

    2015-11-03

    We demonstrate that laser peening coupled with sintering of CdTe nanowire films substantially enhances film quality and charge transfer while largely maintaining basic particle morphology. During the laser peening phase, a shockwave is used to compress the film. Laser sintering comprises the second step, where a nanosecond pulse laser beam welds the nanowires. Microstructure, morphology, material content, and electrical conductivities of the films are characterized before and after treatment. The morphology results show that laser peening can decrease porosity and bring nanowires into contact, and pulsed laser heating fuses those contacts. Multiphysics simulations coupling electromagnetic and heat transfer modules demonstrate that during pulsed laser heating, local EM field enhancement is generated specifically around the contact areas between two semiconductor nanowires, indicating localized heating. The characterization results indicate that solely laser peening or sintering can only moderately improve the thin film quality; however, when coupled together as laser peen sintering (LPS), the electrical conductivity enhancement is dramatic. LPS can decrease resistivity up to a factor of ~10,000, resulting in values on the order of ~10(5) Ω-cm in some cases, which is comparable to CdTe thin films. Our work demonstrates that LPS is an effective processing method to obtain high-quality semiconductor nanocrystal films.

  6. Welding of Semiconductor Nanowires by Coupling Laser-Induced Peening and Localized Heating

    PubMed Central

    Rickey, Kelly M.; Nian, Qiong; Zhang, Genqiang; Chen, Liangliang; Suslov, Sergey; Bhat, S. Venkataprasad; Wu, Yue; Cheng, Gary J.; Ruan, Xiulin

    2015-01-01

    We demonstrate that laser peening coupled with sintering of CdTe nanowire films substantially enhances film quality and charge transfer while largely maintaining basic particle morphology. During the laser peening phase, a shockwave is used to compress the film. Laser sintering comprises the second step, where a nanosecond pulse laser beam welds the nanowires. Microstructure, morphology, material content, and electrical conductivities of the films are characterized before and after treatment. The morphology results show that laser peening can decrease porosity and bring nanowires into contact, and pulsed laser heating fuses those contacts. Multiphysics simulations coupling electromagnetic and heat transfer modules demonstrate that during pulsed laser heating, local EM field enhancement is generated specifically around the contact areas between two semiconductor nanowires, indicating localized heating. The characterization results indicate that solely laser peening or sintering can only moderately improve the thin film quality; however, when coupled together as laser peen sintering (LPS), the electrical conductivity enhancement is dramatic. LPS can decrease resistivity up to a factor of ~10,000, resulting in values on the order of ~105 Ω-cm in some cases, which is comparable to CdTe thin films. Our work demonstrates that LPS is an effective processing method to obtain high-quality semiconductor nanocrystal films. PMID:26527570

  7. Study the effect of elevated dies temperature on aluminium and steel round deep drawing

    NASA Astrophysics Data System (ADS)

    Lean, Yeong Wei; Azuddin, M.

    2016-02-01

    Round deep drawing operation can only be realized by expensive multi-step production processes. To reduce the cost of processes while expecting an acceptable result, round deep drawing can be done at elevated temperature. There are 3 common problems which are fracture, wrinkling and earing of deep drawing a round cup. The main objective is to investigate the effect of dies temperature on aluminium and steel round deep drawing; with a sub-objective of eliminate fracture and reducing wrinkling effect. Experimental method is conducted with 3 different techniques on heating the die. The techniques are heating both upper and lower dies, heating only the upper dies, and heating only the lower dies. 4 different temperatures has been chosen throughout the experiment. The experimental result then will be compared with finite element analysis software. There is a positive result from steel material on heating both upper and lower dies, where the simulation result shows comparable as experimental result. Heating both upper and lower dies will be the best among 3 types of heating techniques.

  8. Crystallization kinetics of Fe based amorphous alloy

    NASA Astrophysics Data System (ADS)

    Shanker Rao, T.; Lilly Shanker Rao, T.

    2015-02-01

    Differential Scanning Calorimetry(DSC) experimental data under non-isothermal conditions for Fe based Metglas 2605SA1 (wt% Fe=85-95, Si=5-10, B=1-5) metallic glass ribbons are reported and discussed. The DSC Scans performed at different heating rates showed two step crystallization processes and are interpreted in terms of different models like Kissinger, Ozawa, Boswell, Augis & Bennett and Gao & Wang. From the heating rate dependence of the onset temperature (To) and the crystallization peak temperature (Tp), the kinetic triplet, activation energy of crystallization (E), Avrami exponent (n) and the frequency factor (A) are determined. The determined E for peak I is 354.5 ± 2.5 kJ/mol and for the peak II is 348.2 ± 2.2 kJ/mol, respectively. The frequency factor for peak I is 1.1 × 1023sec-1 and for peak II is 6.1 × 1020sec-1.

  9. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers

    PubMed Central

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Taylor, Curtis; Basile, Vito; Jiang, Peng

    2015-01-01

    Smart shape-memory polymers can memorize and recover their permanent shape in response to an external stimulus (for example, heat). They have been extensively exploited for a wide spectrum of applications ranging from biomedical devices to aerospace morphing structures. However, most of the existing shape-memory polymers are thermoresponsive and their performance is hindered by heat-demanding programming and recovery steps. Although pressure is an easily adjustable process variable such as temperature, pressure-responsive shape-memory polymers are largely unexplored. Here we report a series of shape-memory polymers that enable unusual ‘cold' programming and instantaneous shape recovery triggered by applying a contact pressure at ambient conditions. Moreover, the interdisciplinary integration of scientific principles drawn from two disparate fields—the fast-growing photonic crystal and shape-memory polymer technologies—enables fabrication of reconfigurable photonic crystals and simultaneously provides a simple and sensitive optical technique for investigating the intriguing shape-memory effects at nanoscale. PMID:26074349

  10. Efficiency versus speed in quantum heat engines: Rigorous constraint from Lieb-Robinson bound

    NASA Astrophysics Data System (ADS)

    Shiraishi, Naoto; Tajima, Hiroyasu

    2017-08-01

    A long-standing open problem whether a heat engine with finite power achieves the Carnot efficiency is investgated. We rigorously prove a general trade-off inequality on thermodynamic efficiency and time interval of a cyclic process with quantum heat engines. In a first step, employing the Lieb-Robinson bound we establish an inequality on the change in a local observable caused by an operation far from support of the local observable. This inequality provides a rigorous characterization of the following intuitive picture that most of the energy emitted from the engine to the cold bath remains near the engine when the cyclic process is finished. Using this description, we prove an upper bound on efficiency with the aid of quantum information geometry. Our result generally excludes the possibility of a process with finite speed at the Carnot efficiency in quantum heat engines. In particular, the obtained constraint covers engines evolving with non-Markovian dynamics, which almost all previous studies on this topic fail to address.

  11. Efficiency versus speed in quantum heat engines: Rigorous constraint from Lieb-Robinson bound.

    PubMed

    Shiraishi, Naoto; Tajima, Hiroyasu

    2017-08-01

    A long-standing open problem whether a heat engine with finite power achieves the Carnot efficiency is investgated. We rigorously prove a general trade-off inequality on thermodynamic efficiency and time interval of a cyclic process with quantum heat engines. In a first step, employing the Lieb-Robinson bound we establish an inequality on the change in a local observable caused by an operation far from support of the local observable. This inequality provides a rigorous characterization of the following intuitive picture that most of the energy emitted from the engine to the cold bath remains near the engine when the cyclic process is finished. Using this description, we prove an upper bound on efficiency with the aid of quantum information geometry. Our result generally excludes the possibility of a process with finite speed at the Carnot efficiency in quantum heat engines. In particular, the obtained constraint covers engines evolving with non-Markovian dynamics, which almost all previous studies on this topic fail to address.

  12. Exploration of photosensitive polyimide as the modification layer in thin film microcircuit

    NASA Astrophysics Data System (ADS)

    Liu, Lily; Song, Changbin; Xue, Bin; Li, Jing; Wang, Junxi; Li, Jinmin

    2018-02-01

    Positive type photosensitive polyimide is used as the modification layer in the thin film transistors production process. The photosensitive polyimide is not only used as the second insulating layer, it can also be used instead of a mask because of the photosensitivity. A suitable curing condition can help photosensitive polyimide form the high performance polyimide with orderly texture inside, and the performance of imidization depends on the precise control of temperature, time, and heat control during the curing process. Therefore, experiments of different stepped up heating tests are made, and the ability of protecting silicon dioxide is analyzed.

  13. A multi-step reaction model for ignition of fully-dense Al-CuO nanocomposite powders

    NASA Astrophysics Data System (ADS)

    Stamatis, D.; Ermoline, A.; Dreizin, E. L.

    2012-12-01

    A multi-step reaction model is developed to describe heterogeneous processes occurring upon heating of an Al-CuO nanocomposite material prepared by arrested reactive milling. The reaction model couples a previously derived Cabrera-Mott oxidation mechanism describing initial, low temperature processes and an aluminium oxidation model including formation of different alumina polymorphs at increased film thicknesses and higher temperatures. The reaction model is tuned using traces measured by differential scanning calorimetry. Ignition is studied for thin powder layers and individual particles using respectively the heated filament (heating rates of 103-104 K s-1) and laser ignition (heating rate ∼106 K s-1) experiments. The developed heterogeneous reaction model predicts a sharp temperature increase, which can be associated with ignition when the laser power approaches the experimental ignition threshold. In experiments, particles ignited by the laser beam are observed to explode, indicating a substantial gas release accompanying ignition. For the heated filament experiments, the model predicts exothermic reactions at the temperatures, at which ignition is observed experimentally; however, strong thermal contact between the metal filament and powder prevents the model from predicting the thermal runaway. It is suggested that oxygen gas release from decomposing CuO, as observed from particles exploding upon ignition in the laser beam, disrupts the thermal contact of the powder and filament; this phenomenon must be included in the filament ignition model to enable prediction of the temperature runaway.

  14. Formation mechanism of monodispersed spherical core-shell ceria/polymer hybrid nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izu, Noriya, E-mail: n-izu@aist.go.jp; Uchida, Toshio; Matsubara, Ichiro

    2011-08-15

    Graphical abstract: The formation mechanism for core-shell nanoparticles is considered to be as follows: nucleation and particle growth occur simultaneously (left square); very slow particle growth occurs (middle square). Highlights: {yields} The size of the resultant nanoparticles was strongly and complicatedly dependent on the set temperature used during reflux heating and the PVP molecular weight. {yields} The size of the nanoparticles increased by a 2-step process as the reflux heating time increased. {yields} The IR spectral changes with increasing reflux time indicated the increase in the number of cross-linked polymers in the shell. -- Abstract: Very unique core-shell ceria (ceriummore » oxide)/polymer hybrid nanoparticles that have monodispersed spherical structures and are easily dispersed in water or alcohol without the need for a dispersant were reported recently. The formation mechanism of the unique nanoparticles, however, was not clear. In order to clarify the formation mechanism, these nanoparticles were prepared using a polyol method (reflux heating) under varied conditions of temperature, time, and concentration and molecular weight of added polymer (poly(vinylpyrrolidone)). The size of the resultant nanoparticles was strongly and complicatedly dependent on the set temperature used during reflux heating and the poly(vinylpyrrolidone) molecular weight. Furthermore, the size of the nanoparticles increased by a 2-step process as the reflux heating time increased. The IR spectral changes with increasing reflux time indicated the increase in the number of cross-linked polymers in the shell. From these results, the formation mechanism was discussed and proposed.« less

  15. Hybrid mesh finite volume CFD code for studying heat transfer in a forward-facing step

    NASA Astrophysics Data System (ADS)

    Jayakumar, J. S.; Kumar, Inder; Eswaran, V.

    2010-12-01

    Computational fluid dynamics (CFD) methods employ two types of grid: structured and unstructured. Developing the solver and data structures for a finite-volume solver is easier than for unstructured grids. But real-life problems are too complicated to be fitted flexibly by structured grids. Therefore, unstructured grids are widely used for solving real-life problems. However, using only one type of unstructured element consumes a lot of computational time because the number of elements cannot be controlled. Hence, a hybrid grid that contains mixed elements, such as the use of hexahedral elements along with tetrahedral and pyramidal elements, gives the user control over the number of elements in the domain, and thus only the domain that requires a finer grid is meshed finer and not the entire domain. This work aims to develop such a finite-volume hybrid grid solver capable of handling turbulence flows and conjugate heat transfer. It has been extended to solving flow involving separation and subsequent reattachment occurring due to sudden expansion or contraction. A significant effect of mixing high- and low-enthalpy fluid occurs in the reattached regions of these devices. This makes the study of the backward-facing and forward-facing step with heat transfer an important field of research. The problem of the forward-facing step with conjugate heat transfer was taken up and solved for turbulence flow using a two-equation model of k-ω. The variation in the flow profile and heat transfer behavior has been studied with the variation in Re and solid to fluid thermal conductivity ratios. The results for the variation in local Nusselt number, interface temperature and skin friction factor are presented.

  16. A fundamental study of nucleate pool boiling under microgravity

    NASA Technical Reports Server (NTRS)

    Ervin, Jamie S.; Merte, Herman, Jr.

    1991-01-01

    An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, and the bulk liquid temperatures. High speed photography was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.

  17. From nano- to macro-engineering of oxide-encapsulated-nanoparticles for harsh reactions: one-step organization via cross-linking molecules.

    PubMed

    Zhang, Qiaofei; Zhao, Guofeng; Zhang, Zhiqiang; Han, Lupeng; Fan, Songyu; Chai, Ruijuan; Li, Yakun; Liu, Ye; Huang, Jun; Lu, Yong

    2016-09-29

    A strategy of "macro-micro-nano" organization is reported for embedding oxide-encapsulated-nanoparticles onto monolithic substrates in one-step with the aid of molecularly defined cross-linking agents. Such catalysts, with enhanced heat/mass transfer and high permeability, are qualified for several harsh reaction processes such as CH 4 /VOC abatement, gas-phase hydrogenation of dimethyl oxalate and oxidative dehydrogenation of ethane.

  18. Coupling of Spinosad Fermentation and Separation Process via Two-Step Macroporous Resin Adsorption Method.

    PubMed

    Zhao, Fanglong; Zhang, Chuanbo; Yin, Jing; Shen, Yueqi; Lu, Wenyu

    2015-08-01

    In this paper, a two-step resin adsorption technology was investigated for spinosad production and separation as follows: the first step resin addition into the fermentor at early cultivation period to decrease the timely product concentration in the broth; the second step of resin addition was used after fermentation to adsorb and extract the spinosad. Based on this, a two-step macroporous resin adsorption-membrane separation process for spinosad fermentation, separation, and purification was established. Spinosad concentration in 5-L fermentor increased by 14.45 % after adding 50 g/L macroporous at the beginning of fermentation. The established two-step macroporous resin adsorption-membrane separation process got the 95.43 % purity and 87 % yield for spinosad, which were both higher than that of the conventional crystallization of spinosad from aqueous phase that were 93.23 and 79.15 % separately. The two-step macroporous resin adsorption method has not only carried out the coupling of spinosad fermentation and separation but also increased spinosad productivity. In addition, the two-step macroporous resin adsorption-membrane separation process performs better in spinosad yield and purity.

  19. Optimization of Advanced ACTPol Transition Edge Sensor Bolometer Operation Using R(T,I) Transition Measurements

    NASA Astrophysics Data System (ADS)

    Salatino, Maria

    2017-06-01

    In the current submm and mm cosmology experiments the focal planes are populated by kilopixel transition edge sensors (TESes). Varying incoming power load requires frequent rebiasing of the TESes through standard current-voltage (IV) acquisition. The time required to perform IVs on such large arrays and the resulting transient heating of the bath reduces the sky observation time. We explore a bias step method that significantly reduces the time required for the rebiasing process. This exploits the detectors' responses to the injection of a small square wave signal on top of the dc bias current and knowledge of the shape of the detector transition R(T,I). This method has been tested on two detector arrays of the Atacama Cosmology Telescope (ACT). In this paper, we focus on the first step of the method, the estimate of the TES %Rn.

  20. Ammonia Vapor-Assisted Synthesis of Cu(OH)2 and CuO Nanostructures: Anionic (Cl-, NO3 -, SO4 2-) Influence on the Product Morphology

    NASA Astrophysics Data System (ADS)

    Mansournia, Mohammadreza; Arbabi, Akram

    2017-01-01

    Shape control of inorganic nanostructures generally requires using surfactants or ligands to passivate certain crystallographic planes. This paper describes a novel additive-free synthesis of cupric oxide nanostructures with different morphologies from the aqueous solutions of copper(II) with Cl-, NO3 -, and SO4 2- as counter ions. Through a one-step approach, CuO nanoleaves, nanoparticles and flower-like microspheres were directly synthesized at 80°C upon exposure to ammonia vapor using a cupric solution as a single precursor. Furthermore, during a two-step process, Cu(OH)2 nanofibers and nanorods were prepared under an ammonia atmosphere, then converted to CuO nanostructures with morphology preservation by heat treatment in air. The as-prepared Cu(OH)2 and CuO nanostructures are characterized using x-ray diffraction, scanning electron microscopy and Fourier transformation infrared spectroscopy techniques.

  1. A one-dimensional nonlinear problem of thermoelasticity in extended thermodynamics

    NASA Astrophysics Data System (ADS)

    Rawy, E. K.

    2018-06-01

    We solve a nonlinear, one-dimensional initial boundary-value problem of thermoelasticity in generalized thermodynamics. A Cattaneo-type evolution equation for the heat flux is used, which differs from the one used extensively in the literature. The hyperbolic nature of the associated linear system is clarified through a study of the characteristic curves. Progressive wave solutions with two finite speeds are noted. A numerical treatment is presented for the nonlinear system using a three-step, quasi-linearization, iterative finite-difference scheme for which the linear system of equations is the initial step in the iteration. The obtained results are discussed in detail. They clearly show the hyperbolic nature of the system, and may be of interest in investigating thermoelastic materials, not only at low temperatures, but also during high temperature processes involving rapid changes in temperature as in laser treatment of surfaces.

  2. Using gait parameters to detect fatigue and responses to ice slurry during prolonged load carriage.

    PubMed

    Tay, Cheryl S; Lee, Jason K W; Teo, Ya S; Foo, Phildia Q Z; Tan, Pearl M S; Kong, Pui W

    2016-01-01

    This study examined (1) if changes in gait characteristics could indicate the exertional heat stress experienced during prolonged load carriage, and (2) if gait characteristics were responsive to a heat mitigation strategy. In an environmental chamber replicating tropical climatic conditions (ambient temperature 32°C, 70% relative humidity), 16 males aged 21.8 (1.2) years performed two trials of a work-rest cycle protocol consisting two bouts of 4-km treadmill walks with 30-kg load at 5.3km/h separated by a 15-min rest period. Ice slurry (ICE) or room temperature water (29°C) as a control (CON) was provided in 200-ml aliquots. The fluids were given 10min before the start, at the 15(th) and 30(th) min of each work cycle, and during each rest period. Spatio-temporal gait characteristics were obtained at the start and end of each work-rest cycle using a floor-based photocell system (OptoGait) and a high-speed video camera at 120Hz. Repeated-measure analysis of variance (trial×time) showed that with time, step width decreased (p=.024) while percent crossover steps increased (p=.008) from the 40(th) min onwards. Reduced stance time variability (-11.1%, p=.029) step width variability (-8.2%, p=.001), and percent crossover step (-18.5%, p=.010) were observed in ICE compared with CON. No differences in step length and most temporal variables were found. In conclusion, changes in frontal plane gait characteristics may indicate exertional heat stress during prolonged load carriage, and some of these changes may be mitigated with ice slurry ingestion. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Latent Heating Retrieval from TRMM Observations Using a Simplified Thermodynamic Model

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Olson, William S.

    2003-01-01

    A procedure for the retrieval of hydrometeor latent heating from TRMM active and passive observations is presented. The procedure is based on current methods for estimating multiple-species hydrometeor profiles from TRMM observations. The species include: cloud water, cloud ice, rain, and graupel (or snow). A three-dimensional wind field is prescribed based on the retrieved hydrometeor profiles, and, assuming a steady-state, the sources and sinks in the hydrometeor conservation equations are determined. Then, the momentum and thermodynamic equations, in which the heating and cooling are derived from the hydrometeor sources and sinks, are integrated one step forward in time. The hydrometeor sources and sinks are reevaluated based on the new wind field, and the momentum and thermodynamic equations are integrated one more step. The reevalution-integration process is repeated until a steady state is reached. The procedure is tested using cloud model simulations. Cloud-model derived fields are used to synthesize TRMM observations, from which hydrometeor profiles are derived. The procedure is applied to the retrieved hydrometeor profiles, and the latent heating estimates are compared to the actual latent heating produced by the cloud model. Examples of procedure's applications to real TRMM data are also provided.

  4. Improving Malaysian cocoa quality through the use of dehumidified air under mild drying conditions.

    PubMed

    Hii, Ching L; Law, Chung L; Cloke, Michael; Sharif, Suzannah

    2011-01-30

    Various studies have been conducted in the past to improve the quality of Malaysian cocoa beans. However, the processing methods still remain crude and lack technological advancement. In terms of drying, no previous study has attempted to apply advanced drying technology to improve bean quality. This paper presents the first attempt to improve the quality of cocoa beans through heat pump drying using constant air (28.6 and 40.4 °C) and stepwise (step-up 30.7-43.6-56.9 °C and step-down 54.9-43.9 °C) drying profiles. Comparison was made against hot air drying at 55.9 °C. Product quality assessment showed significant improvement in the quality of Malaysian cocoa beans. Quality was found to be better in terms of lower acidity (higher pH) and higher degree of browning (cut test) for cocoa beans dried using the step-up profile. All heat pump-dried samples showed flavour quality comparable to that of Ghanaian and better than that of Malaysian and Indonesian commercial samples. Step-up-dried samples showed the best flavour profile with high level of cocoa flavour, low in sourness and not excessive in bitterness and astringency. Dried cocoa samples from the step-up drying profile showed the best overall quality as compared with commercial samples from Malaysia, Indonesia and Ghana. The improvement of Malaysian cocoa bean quality is thus achievable through heat pump drying. 2010 Society of Chemical Industry.

  5. Aroma recovery from roasted coffee by wet grinding.

    PubMed

    Baggenstoss, J; Thomann, D; Perren, R; Escher, F

    2010-01-01

    Aroma recovery as determined by solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) was compared in coffees resulting from conventional grinding processes, and from wet grinding with cold and hot water. Freshly roasted coffee as well as old, completely degassed coffee was ground in order to estimate the relationship of internal carbon dioxide pressure in freshly roasted coffee with the aroma loss during grinding. The release of volatile aroma substances during grinding was found to be related to the internal carbon dioxide pressure, and wet grinding with cold water was shown to minimize losses of aroma compounds by trapping them in water. Due to the high solubility of roasted coffee in water, the use of wet-grinding equipment is limited to processes where grinding is followed by an extraction step. Combining grinding and extraction by the use of hot water for wet grinding resulted in considerable losses of aroma compounds because of the prolonged heat impact. Therefore, a more promising two-step process involving cold wet grinding and subsequent hot extraction in a closed system was introduced. The yield of aroma compounds in the resulting coffee was substantially higher compared to conventionally ground coffee. © 2010 Institute of Food Technologists®

  6. Gasification of high ash, high ash fusion temperature bituminous coals

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  7. Aluminum alloy AA-6061 and RSA-6061 heat treatment for large mirror applications

    NASA Astrophysics Data System (ADS)

    Newswander, T.; Crowther, B.; Gubbels, G.; Senden, R.

    2013-09-01

    Aluminum mirrors and telescopes can be built to perform well if the material is processed correctly and can be relatively low cost and short schedule. However, the difficulty of making high quality aluminum telescopes increases as the size increases, starting with uniform heat treatment through the thickness of large mirror substrates. A risk reduction effort was started to build and test a ½ meter diameter super polished aluminum mirror. Material selection, the heat treatment process and stabilization are the first critical steps to building a successful mirror. In this study, large aluminum blanks of both conventional AA-6061 per AMS-A-22771 and RSA AA-6061 were built, heat treated and stress relieved. Both blanks were destructively tested with a cut through the thickness. Hardness measurements and tensile tests were completed. We present our results in this paper and make suggestions for modification of procedures and future work.

  8. Study on the curie transition of P(VDF-TrFE) copolymer

    NASA Astrophysics Data System (ADS)

    Eka Septiyani Arifin, Devi; Ruan, J. J.

    2018-01-01

    A systematic study was carried out to decipher the mechanism of Curie transition of piezoelectric crystals of poly(vinylidene fluoride trifluoroethylene) P(VDF-TrFE). The unique polarity of P(VDF-TrFE) crystalline phase below curie transition temperature is attributed to the lattice packing of all-trans molecular chains, which allocates all the substituted fluorine atoms on one side of molecular chains and hydrogen atoms on the other side. Therefore, a net dipole moment is created across the lateral packing of molecular chains. Nevertheless, due to the mutual repulsion among fluorene atoms, this all-trans conformation is not stable, and ready to change above Curie temperature, where thermal kinetic energy is sufficient to cause segmental rotation. As being illustrated by in-situ recorded X-ray diffraction and thermal analysis, the concerned curie transition is deciphered as a one-step process which is involved two process and this is different from conventional one-step solid-solid transitions. Accompanied with this one-step process during heating, the occurrence of lamellar bending is inferred for elucidating the decline of stacking regularity of crystalline lamellae, which reversibly recover during subsequent cooling. However, as the crystalline lamellae of P(VDF-TrFE) are confined in between the stacking of crystalline lamellae of PVDF, lamellar bending is restricted accordingly. As a result, a certain fraction of the piezoelectric crystalline lamellae was found to survive through the Curie transition. Thus, in addition to the suggestion of a one-step process as a new concept for understanding the Curie transition, the relationship between the lamellar stacking and transition of molecular packing is unveiled as well in this research.

  9. 40 CFR 63.6675 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... nitrogen oxides (NOX) control device for rich burn engines that, in a two-step reaction, promotes the... reciprocating internal combustion engine which uses reciprocating motion to convert heat energy into mechanical...

  10. Process concept of retorting of Julia Creek oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitnai, O.

    1984-06-01

    A process is proposed for the above ground retorting of the Julia Creek oil shale in Queensland. The oil shale characteristics, process description, chemical reactions of the oil shale components, and the effects of variable and operating conditions on process performance are discussed. The process contains a fluidized bed combustor which performs both as a combustor of the spent shales and as a heat carrier generator for the pyrolysis step. 12 references, 5 figures, 5 tables.

  11. Inter-layer and intra-layer heat transfer in bilayer/monolayer graphene van der Waals heterostructure: Is there a Kapitza resistance analogous?

    NASA Astrophysics Data System (ADS)

    Rajabpour, Ali; Fan, Zheyong; Vaez Allaei, S. Mehdi

    2018-06-01

    Van der Waals heterostructures have exhibited interesting physical properties. In this paper, heat transfer in hybrid coplanar bilayer/monolayer (BL-ML) graphene, as a model layered van der Waals heterostructure, was studied using non-equilibrium molecular dynamics (MD) simulations. The temperature profile and inter- and intra-layer heat fluxes of the BL-ML graphene indicated that, there is no fully developed thermal equilibrium between layers and the drop in the average temperature profile at the step-like BL-ML interface is not attributable to the effect of Kapitza resistance. By increasing the length of the system up to 1 μm in the studied MD simulations, the thermally non-equilibrium region was reduced to a small area near the step-like interface. All MD results were compared to a continuum model and a good match was observed between the two approaches. Our results provide a useful understanding of heat transfer in nano- and micro-scale layered materials and van der Waals heterostructures.

  12. New numerical approach for the modelling of machining applied to aeronautical structural parts

    NASA Astrophysics Data System (ADS)

    Rambaud, Pierrick; Mocellin, Katia

    2018-05-01

    The manufacturing of aluminium alloy structural aerospace parts involves several steps: forming (rolling, forging …etc), heat treatments and machining. Before machining, the manufacturing processes have embedded residual stresses into the workpiece. The final geometry is obtained during this last step, when up to 90% of the raw material volume is removed by machining. During this operation, the mechanical equilibrium of the part is in constant evolution due to the redistribution of the initial stresses. This redistribution is the main cause for workpiece deflections during machining and for distortions - after unclamping. Both may lead to non-conformity of the part regarding the geometrical and dimensional specifications and therefore to rejection of the part or additional conforming steps. In order to improve the machining accuracy and the robustness of the process, the effect of the residual stresses has to be considered for the definition of the machining process plan and even in the geometrical definition of the part. In this paper, the authors present two new numerical approaches concerning the modelling of machining of aeronautical structural parts. The first deals with the use of an immersed volume framework to model the cutting step, improving the robustness and the quality of the resulting mesh compared to the previous version. The second is about the mechanical modelling of the machining problem. The authors thus show that in the framework of rolled aluminium parts the use of a linear elasticity model is functional in the finite element formulation and promising regarding the reduction of computation times.

  13. Method of pyrolyzing brown coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michel, W.; Heberlein, I.; Ossowski, M.

    A two-step method and apparatus are disclosed based on the fluidized bed principle, for the production of coke, rich gas and pyrolysis tar, with the object of executing the method in a compact apparatus arrangement, with high energy efficiency and high throughput capacity. This is accomplished by a sequence in which the fine grains removed from the drying vapor mixture are removed from the actual pyrolysis process, and a hot gas, alien to the carbonization, is used as fluidization medium in the pyrolysis reactor, and with a hot gas-high performance separator being used for the dust separation from the pyrolysismore » gas, with the combustion exhaust gas produced in the combustion chamber being used for the indirect heating of the fluidization medium, for the pre-heating of the gas, which is alien to the carbonization, and for the direct heating in the dryer. The dryer has a double casing in the area of the fluidized bed, and a mixing chamber is arranged directly underneath its initial flow bottom, while the pyrolysis reactor is directly connected to the combustion chamber and the pre-heater.« less

  14. Fuzzy model-based fault detection and diagnosis for a pilot heat exchanger

    NASA Astrophysics Data System (ADS)

    Habbi, Hacene; Kidouche, Madjid; Kinnaert, Michel; Zelmat, Mimoun

    2011-04-01

    This article addresses the design and real-time implementation of a fuzzy model-based fault detection and diagnosis (FDD) system for a pilot co-current heat exchanger. The design method is based on a three-step procedure which involves the identification of data-driven fuzzy rule-based models, the design of a fuzzy residual generator and the evaluation of the residuals for fault diagnosis using statistical tests. The fuzzy FDD mechanism has been implemented and validated on the real co-current heat exchanger, and has been proven to be efficient in detecting and isolating process, sensor and actuator faults.

  15. System for thermochemical hydrogen production

    DOEpatents

    Werner, R.W.; Galloway, T.R.; Krikorian, O.H.

    1981-05-22

    Method and apparatus are described for joule boosting a SO/sub 3/ decomposer using electrical instead of thermal energy to heat the reactants of the high temperature SO/sub 3/ decomposition step of a thermochemical hydrogen production process driven by a tandem mirror reactor. Joule boosting the decomposer to a sufficiently high temperature from a lower temperature heat source eliminates the need for expensive catalysts and reduces the temperature and consequent materials requirements for the reactor blanket. A particular decomposer design utilizes electrically heated silicon carbide rods, at a temperature of 1250/sup 0/K, to decompose a cross flow of SO/sub 3/ gas.

  16. Autoclave heat treatment for prealloyed powder products

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ashbrook, R. L.

    1973-01-01

    Technique could be applied directly to loose powders as part of hot pressing process of forming them to any required shapes. This would eliminate initial extrusion step commonly applied to prealloyed powders, substantially reduce cost of forming operation, and result in optimum properties.

  17. Absolute Paleointensity Techniques: Developments in the Last 10 Years (Invited)

    NASA Astrophysics Data System (ADS)

    Bowles, J. A.; Brown, M. C.

    2009-12-01

    The ability to determine variations in absolute intensity of the Earth’s paleomagnetic field has greatly enhanced our understanding of geodynamo processes, including secular variation and field reversals. Igneous rocks and baked clay artifacts that carry a thermal remanence (TRM) have allowed us to study field variations over timescales ranging from decades to billions of years. All absolute paleointensity techniques are fundamentally based on repeating the natural process by which the sample acquired its magnetization, i.e. a laboratory TRM is acquired in a controlled field, and the ratio of the natural TRM to that acquired in the laboratory is directly proportional to the ancient field. Techniques for recovering paleointensity have evolved since the 1930s from relatively unsophisticated (but revolutionary for their time) single step remagnetizations to the various complicated, multi-step procedures in use today. These procedures can be broadly grouped into two categories: 1) “Thellier-type” experiments that step-wise heat samples at a series of temperatures up to the maximum unblocking temperature of the sample, progressively removing the natural remanence (NRM) and acquiring a laboratory-induced TRM; and 2) “Shaw-type” experiments that combine alternating field demagnetization of the NRM and laboratory TRM with a single heating to a temperature above the sample’s Curie temperature, acquiring a total TRM in one step. Many modifications to these techniques have been developed over the years with the goal of identifying and/or accommodating non-ideal behavior, such as alteration and multi-domain (MD) remanence, which may lead to inaccurate paleofield estimates. From a technological standpoint, perhaps the most significant development in the last decade is the use of microwave (de)magnetization in both Thellier-type and Shaw-type experiments. By using microwaves to directly generate spin waves within the magnetic grains (rather than using phonons generated by heating, which then exchange energy with the magnetic system), a TRM can be acquired with minimal heating of the bulk sample, thus potentially minimizing sample alteration. The theory of TRM acquisition is best developed for single-domain (SD) grains, and most paleointensity techniques are predicated on the assumption that the remanence is carried predominantly by SD material. Because the vast majority of geological materials are characterized by a larger magnetic grain size, efforts to expand paleointensity studies over the past decade have focused on developing TRM theories and paleointensity methods for pseudo-single-domain (PSD) and MD samples. Other workers have been exploring the potential of SD materials that were not traditionally used in paleointensity studies, such as ash flow tuffs, submarine basaltic glass, and single silicate crystals with magnetite inclusions. The latter has the potential to shed light on early Earth processes, given that the fine-grained inclusions may be resistant to alteration over long time scales. We will review the major paleointensity techniques in use today, with special attention paid to the advantages and disadvantages of each. Techniques will be illustrated with examples highlighting new paleointensity applications to geologic processes at a variety of timescales.

  18. Artificial Aging Effects on Cryogenic Fracture Toughness of the Main Structural Alloy for the Super Lightweight Tank

    NASA Technical Reports Server (NTRS)

    Chen, P. S.; Stanton, W. P.

    2002-01-01

    In 1996, Marshall Space Flight Center developed a multistep heating rate-controlled (MSRC) aging technique that significantly enhanced cryogenic fracture toughness (CFT) and reduced the statistical spread of fracture toughness values in alloy 2195 by controlling the location and size of strengthening precipitate T1. However, it could not be readily applied to flight-related hardware production, primarily because large-scale production furnaces are unable to maintain a heating rate of 0.6 C (1 F)/hr. In August 1996, a new program was initiated to determine whether the MSRC aging treatment could be further modified to facilitate its implementation to flight hardware production. It was successfully redesigned into a simplified two-step aging treatment consisting of 132 C (270 F)/20 hr + 138 C (280 F)/40 hr. Results indicated that two-step aging can achieve the same yield strength levels as those produced by conventional aging while providing greatly improved ductility. Two-step aging proved to be very effective at enhancing CFT, enabling previously rejected materials to meet simulated service requirements. Cryogenic properties are improved by controlling T1 nucleation and growth so that they are promoted in the matrix and suppressed in the subgrain boundaries.

  19. A novel trapezoid fin pattern applicable for air-cooled heat sink

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Hung; Wang, Chi-Chuan

    2015-11-01

    The present study proposed a novel step or trapezoid surface design applicable to air-cooled heat sink under cross flow condition. A total of five heat sinks were made and tested, and the corresponding fin patterns are (a) plate fin; (b) step fin (step 1/3, 3 steps); (c) 2-step fin (step 1/2, 2 steps); (d) trapezoid fin (trap 1/3, cutting 1/3 length from the rear end) and (e) trapezoid fin (trap 1/2, cutting 1/2 length from the rear end). The design is based on the heat transfer augmentation via (1) longer perimeter of entrance region and (2) larger effective temperature difference at the rear part of the heat sink. From the test results, it is found that either step or trapezoid design can provide a higher heat transfer conductance and a lower pressure drop at a specified frontal velocity. The effective conductance of trap 1/3 design exceeds that of plate surface by approximately 38 % at a frontal velocity of 5 m s-1 while retains a lower pressure drop of 20 % with its surface area being reduced by 20.6 %. For comparisons exploiting the overall thermal resistance versus pumping power, the resultant thermal resistance of the proposed trapezoid design 1/3, still reveals a 10 % lower thermal resistance than the plate fin surface at a specified pumping power.

  20. Forming an age hardenable aluminum alloy with intermediate annealing

    NASA Astrophysics Data System (ADS)

    Wang, Kaifeng; Carsley, John E.; Stoughton, Thomas B.; Li, Jingjing; Zhang, Lianhong; He, Baiyan

    2013-12-01

    A method to improve formability of aluminum sheet alloys by a two-stage stamping process with intermediate annealing was developed for a non-age hardenable Al-Mg alloy where the annealing heat treatment provided recovery of cold work from the initial stamping and recrystallization of the microstructure to enhance the forming limits of the material. This method was extended to an age hardenable, Al-Mg-Si alloy, which is complicated by the competing metallurgical effects during heat treatment including recovery (softening effect) vs. precipitation (hardening effect). An annealing heat treatment process condition was discovered wherein the stored strain energy from an initial plastic deformation can be sufficiently recovered to enhance formability in a second deformation; however, there is a deleterious effect on subsequent precipitation hardening. The improvement in formability was quantified with uniaxial tensile tests as well as with the forming limit diagram. Since strain-based forming limit curves (FLC) are sensitive to pre-strain history, both stress-based FLCs and polar-effective-plastic-strain (PEPS) FLCs, which are path-independent, were used to evaluate the forming limits after preform annealing. A technique was developed to calculate the stress-based FLC in which a residual-effective-plastic-strain (REPS) was determined by overlapping the hardening curve of the pre-strained and annealed material with that of the simply-annealed- material. After converting the strain-based FLCs using the constant REPS method, it was found that the stress-based FLCs and the PEPS FLCs of the post-annealed materials were quite similar and both tools are applicable for evaluating the forming limits of Al-Mg-Si alloys for a two-step stamping process with intermediate annealing.

  1. Development of dispersion-strengthened XD (trademark) Cu alloys for high heat-flux applications

    NASA Technical Reports Server (NTRS)

    Kumar, K. Sharvan

    1993-01-01

    In a previous effort sponsored by NASA LeRC, the XD(trademark) process was used to produce ZrB2 particulate reinforcements in Cu and the resulting extruded material was microstructurally characterized and evaluated in tension over a range of temperatures. A problem that was encountered in that study was microstructural inhomogeneity resulting from the frequent presence of 'ZrB2 agglomerates' that were several microns in size. The presence of these agglomerates was attributed to improper mixing of powders in the green compact used in the XD process for elemental boron powder segregation. In this program, several milling parameters were examined in an effort to optimize this processing step; two levels of ZrB2 reinforcements were considered (7 vol. percent and 15 vol. percent). Microstructures of the reacted powder mass were examined to verify the absence of these agglomerates. Larger bathes of powder were then mixed, reacted, machined to size, canned, and extruded. The microstructure and tensile properties of these extrusions were examined, and the measured properties were correlated with the observed microstructure. Large unreacted or partially reacted Zr particles were present. These particles affected the mechanical properties deleteriously, and their presence is attributed to insufficient heat of reaction during XD synthesis. Alternate processing routes are recommended.

  2. One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor

    PubMed Central

    Fusillo, Vincenzo; Jenkins, Robert L; Lubinu, M Caterina; Mason, Christopher

    2013-01-01

    Summary The Bohlmann–Rahtz pyridine synthesis and the Hantzsch dihydropyridine synthesis can be carried out in a microwave flow reactor or using a conductive heating flow platform for the continuous processing of material. In the Bohlmann–Rahtz reaction, the use of a Brønsted acid catalyst allows Michael addition and cyclodehydration to be carried out in a single step without isolation of intermediates to give the corresponding trisubstituted pyridine as a single regioisomer in good yield. Furthermore, 3-substituted propargyl aldehydes undergo Hantzsch dihydropyridine synthesis in preference to Bohlmann–Rahtz reaction in a very high yielding process that is readily transferred to continuous flow processing. PMID:24204407

  3. Synthesis of 2,4,8,10-tetroxaspiro5,5undecane

    NASA Technical Reports Server (NTRS)

    Poshkus, A. C. (Inventor)

    1985-01-01

    Pentaerythritol is converted to its diformal, 2,4,8,10-tetroxaspirol5.5undecane, by heating it to a temperature within the range of about 110 to 150 C, for a period of up to 10 minutes, in the presence of a slight excess of paraformaldehyde and of a catalytic quantity of an acid catalyst such as sulfuric acid. The reaction may be carried out in two steps, by forming first the monoformal, then the diformal. In any case, total reaction time is about 10 minutes, and yield of diformal are greater than 90%. Previous processes require hours or days, and often, tedious operating procedures.

  4. PROCESS OF PRODUCING SHAPED PLUTONIUM

    DOEpatents

    Anicetti, R.J.

    1959-08-11

    A process is presented for producing and casting high purity plutonium metal in one step from plutonium tetrafluoride. The process comprises heating a mixture of the plutonium tetrafluoride with calcium while the mixture is in contact with and defined as to shape by a material obtained by firing a mixture consisting of calcium oxide and from 2 to 10% by its weight of calcium fluoride at from 1260 to 1370 deg C.

  5. SUNgas: Thermochemical Approaches to Solar Fuels

    NASA Astrophysics Data System (ADS)

    Davidson, Jane

    2013-04-01

    Solar energy offers an intelligent solution to reduce anthropogenic emissions of greenhouse gases and to meet an expanding global demand for energy. A transformative change from fossil to solar energy requires collection, storage, and transport of the earth's most abundant but diffuse and intermittent source of energy. One intriguing approach for harvest and storage of solar energy is production of clean fuels via high temperature thermochemical processes. Concentrated solar energy is the heat source and biomass or water and carbon dioxide are the feedstocks. Two routes to produce fuels using concentrated solar energy and a renewable feed stock will be discussed: gasification of biomass or other carbonaceous materials and metal oxide cycles to produce synthesis gas. The first and most near term route to solar fuels is to gasify biomass. With conventional gasification, air or oxygen is supplied at fuel-rich levels to combust some of the feedstock and in this manner generate the energy required for conversion to H2 and CO. The partial-combustion consumes up to 40% of the energetic value of the feedstock. With air combustion, the product gas is diluted by high levels of CO2 and N2. Using oxygen reduces the product dilution, but at the expense of adding an oxygen plant. Supplying the required heat with concentrated solar radiation eliminates the need for partial combustion of the biomass feedstock. As a result, the product gas has an energetic value greater than that of the feedstock and it is not contaminated by the byproducts of combustion. The second promising route to solar fuels splits water and carbon dioxide. Two-step metal-oxide redox cycles hold out great potential because they the temperature required to achieve a reasonable degree of dissociation is lower than direct thermal dissociation and O2 and the fuel are produced in separate steps. The 1^st step is the endothermic thermal dissociation of the metal oxide to the metal or lower-valence metal oxide. The 2^nd exothermic step is the hydrolysis of the reduced metal to form H2 and the corresponding metal oxide. Two promising options for 2-step cycles, the Zn/ZnO and non-stoichiometric ceria redox cycles, will be compared with a focus on efficiency and state of the art achievements.

  6. Rock Smelting of Copper Ores with Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Norgate, Terry; Jahanshahi, Sharif; Haque, Nawshad

    It is generally recognised that the grades of metallic ores are falling globally. This trend can be expected to increase the life cycle-based energy requirement for primary metal production due to the additional amount of material that must be handled and treated in the mining and mineral processing stages of the metal production life cycle. Rock (or whole ore) smelting has been suggested as a possible alternative processing route for low grade ores with a potentially lower energy intensity and environmental impact than traditional processing routes. In this processing route, the beneficiation stage is eliminated along with its associated energy consumption and greenhouse gas emissions, but this is partially offset by the need for more solid material to be handled and heated up to smelting temperatures. A life cycle assessment study was carried out to assess the potential energy and greenhouse gas benefits of a conceptual flowsheet of the rock smelting process, using copper ore as an example. Recovery and utilisation of waste heat in the slag (via dry slag granulation) and offgas streams from the smelting step was also included in the study, with the waste heat being utilised either for thermal applications or electricity generation.

  7. Processing of zero-derived words in English: an fMRI investigation.

    PubMed

    Pliatsikas, Christos; Wheeldon, Linda; Lahiri, Aditi; Hansen, Peter C

    2014-01-01

    Derivational morphological processes allow us to create new words (e.g. punish (V) to noun (N) punishment) from base forms. The number of steps from the basic units to derived words often varies (e.g., nationalitybridge-V) i.e., zero-derivation (Aronoff, 1980). We compared the processing of one-step (soaking

  8. Engineering design and prototype development of a full scale ultrasound system for virgin olive oil by means of numerical and experimental analysis.

    PubMed

    Clodoveo, Maria Lisa; Moramarco, Vito; Paduano, Antonello; Sacchi, Raffaele; Di Palmo, Tiziana; Crupi, Pasquale; Corbo, Filomena; Pesce, Vito; Distaso, Elia; Tamburrano, Paolo; Amirante, Riccardo

    2017-07-01

    The aim of the virgin olive oil extraction process is mainly to obtain the best quality oil from fruits, by only applying mechanical actions while guaranteeing the highest overall efficiency. Currently, the mechanical methods used to extract virgin oils from olives are basically of two types: the discontinuous system (obsolete) and the continuous one. Anyway the system defined as "continuous" is composed of several steps which are not all completely continuous, due to the presence of the malaxer, a device that works in batch. The aim of the paper was to design, realize and test the first full scale sono-exchanger for the virgin olive oil industry, to be placed immediately after the crusher and before the malaxer. The innovative device is mainly composed of a triple concentric pipe heat exchanger combined with three ultrasound probes. This mechanical solution allows both the cell walls (which release the oil droplets) along with the minor compounds to be destroyed more effectively and the heat exchange between the olive paste and the process water to be accelerated. This strategy represents the first step towards the transformation of the malaxing step from a batch operation into a real continuous process, thus improving the working capacity of the industrial plants. Considering the heterogeneity of the olive paste, which is composed of different tissues, the design of the sono-exchanger required a thorough fluid dynamic analysis. The thermal effects of the sono-exchanger were monitored by measuring the temperature of the product at the inlet and the outlet of the device; in addition, the measurement of the pigments concentration in the product allowed monitoring the mechanical effects of the sono-exchanger. The effects of the innovative process were also evaluated in terms of extra virgin olive oil yields and quality, evaluating the main legal parameters, the polyphenol and tocopherol content. Moreover, the activity of the polyphenol oxidase enzyme in the olive paste was measured. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. FRACTIONAL DISTILLATION SEPARATION OF PLUTONIUM VALUES FROM LIGHT ELEMENT VALUES

    DOEpatents

    Cunningham, B.B.

    1957-12-17

    A process is described for removing light element impurities from plutonium. It has been found that plutonium contaminated with impurities may be purified by converting the plutonium to a halide and purifying the halide by a fractional distillation whereby impurities may be distilled from the plutonium halide. A particularly effective method includes the step of forming a lower halide such as the trior tetrahalide and distilling the halide under conditions such that no decomposition of the halide occurs. Molecular distillation methods are particularly suitable for this process. The apparatus may comprise an evaporation plate with means for heating it and a condenser surface with means for cooling it. The condenser surface is placed at a distance from the evaporating surface less than the mean free path of molecular travel of the material being distilled at the pressure and temperature used. The entire evaporating system is evacuated until the pressure is about 10/sup -4/ millimeters of mercury. A high temperuture method is presented for sealing porous materials such as carbon or graphite that may be used as a support or a moderator in a nuclear reactor. The carbon body is subjected to two surface heats simultaneously in an inert atmosphere; the surface to be sealed is heated to 1500 degrees centigrade; and another surface is heated to 300 degrees centigrade, whereupon the carbon vaporizes and flows to the cooler surface where it is deposited to seal that surface. This method may be used to seal a nuclear fuel in the carbon structure.

  10. Bacterial Stressors in Minimally Processed Food

    PubMed Central

    Capozzi, Vittorio; Fiocco, Daniela; Amodio, Maria Luisa; Gallone, Anna; Spano, Giuseppe

    2009-01-01

    Stress responses are of particular importance to microorganisms, because their habitats are subjected to continual changes in temperature, osmotic pressure, and nutrients availability. Stressors (and stress factors), may be of chemical, physical, or biological nature. While stress to microorganisms is frequently caused by the surrounding environment, the growth of microbial cells on its own may also result in induction of some kinds of stress such as starvation and acidity. During production of fresh-cut produce, cumulative mild processing steps are employed, to control the growth of microorganisms. Pathogens on plant surfaces are already stressed and stress may be increased during the multiple mild processing steps, potentially leading to very hardy bacteria geared towards enhanced survival. Cross-protection can occur because the overlapping stress responses enable bacteria exposed to one stress to become resistant to another stress. A number of stresses have been shown to induce cross protection, including heat, cold, acid and osmotic stress. Among other factors, adaptation to heat stress appears to provide bacterial cells with more pronounced cross protection against several other stresses. Understanding how pathogens sense and respond to mild stresses is essential in order to design safe and effective minimal processing regimes. PMID:19742126

  11. Studies on allergoids from naturally occurring allergens. III. Preparation of ragweed pollen allergoids by aldehyde modification in two steps.

    PubMed

    Marsh, D G; Norman, P S; Roebber, M; Lichtenstein, L M

    1981-12-01

    We have devised a new process for modifying heat-labile allergens, which employs a sequential "two-step" incubation at temperatures of 10 degree C and 30 degree to 32 degree C. This process was found to produce effective ragweed "allergoids" with low allergenicity and good immunogenicity, which makes them useful for the therapy of allergic humans. Modification with formaldehyde produced derivatives ("formallergoids") that were about 10-fold less allergenic in allergic humans (as measured by leukocyte histamine-release assay), and similarly or more immunogenic in guinea pigs, than glutaraldehyde-modified allergens ("glutarallergoids"). Further analysis by RAST inhibition showed that a ragweed formallergoid was sixfold less reactive than a glutarallergoid with a pool of human IgE antibodies. However, the formallergoid had retained the ability to induce a wide array of antibodies against native ragweed antigens, since rabbit anti-formallergoid serum was able to recognize at least 12 different ragweed antigens, including AgE. Gel-filtration experiments showed that both the formallergoid and glutarallergoid materials contained polymers having apparent molecular weights distributed around 260,000 and 230,000 daltons, respectively (approximate range 30,000 to 900,000 daltons). Our studies provide the immunochemical basis for the use of these allergoids in the therapy of allergic humans.

  12. 40 CFR 63.6675 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., in a two-step reaction, promotes the conversion of excess oxygen, NOX, CO, and volatile organic... reciprocating motion to convert heat energy into mechanical work and which is not mobile. Stationary RICE differ...

  13. Menu driven heat treatment control of thin walled bodies

    DOEpatents

    Kothmann, Richard E.; Booth, Jr., Russell R.; Grimm, Noel P.; Batenburg, Abram; Thomas, Vaughn M.

    1992-01-01

    A process for controlling the heating of a thin-walled body according to a predetermined temperature program by means of electrically controllable heaters, comprising: disposing the heaters adjacent one surface of the body such that each heater is in facing relation with a respective zone of the surface; supplying heat-generating power to each heater and monitoring the temperature at each surface zone; and for each zone: deriving (16,18,20), on the basis of the temperature values obtained in the monitoring step, estimated temperature values of the surface at successive time intervals each having a first selected duration; generating (28), on the basis of the estimated temperature values derived in each time interval, representations of the temperature, THSIFUT, which each surface zone will have, based on the level of power presently supplied to each heater, at a future time which is separated from the present time interval by a second selected duration; determining (30) the difference between THSIFUT and the desired temperature, FUTREFTVZL, at the future time which is separated from the present time interval by the second selected duration; providing (52) a representation indicating the power level which sould be supplied to each heater in order to reduce the difference obtained in the determining step; and adjusting the power level supplied to each heater by the supplying step in response to the value of the representation provided in the providing step.

  14. Process design and economic analysis of the zinc selenide thermochemical hydrogen cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otsuki, H.H.; Krikorian, O.H.

    1978-09-06

    A detailed preliminary design for a hydrogen production plant has been developed based on an improved version of the ZnSe thermochemical cycle for decomposing water. In the latest version of the cycle, ZnCl/sub 2/ is converted directly to ZnO through high temperature steam hydrolysis. This eliminates the need for first converting ZnCl/sub 2/ to ZnSO/sub 4/ and also slightly reduces the overall heat requirement. Moreover, it broadens the temperature range over which prime heat is required and improves the coupling of the cycle with a nuclear reactor heat source. The ZnSe cycle is driven by a very-high-temperature nuclear reactor (VHTR)more » proposed by Westinghouse that provides a high-temperature (1283 K) helium working gas for process heat and power. The plant is sized to produce 27.3 Mg H/sub 2//h (60,000 lb H/sub 2//h) and requires specially designed equipment to perform the critical reaction steps in the cycle. We have developed conceptual designs for several of the important process steps to make cost estimates, and have obtained a cycle efficiency of about 40% and a hydrogen production cost of about $14/GJ. We believe that the cost is high because input data on reaction rates and equipment lifetimes have been conservatively estimated and the cycle parameters have not been optimized. Nonetheless, this initial analysis serves an important function in delineating areas in the cycle where additional research is needed to increase efficiency and reduce costs in a more advanced version of the cycle.« less

  15. Mathematical quantification of the induced stress resistance of microbial populations during non-isothermal stresses.

    PubMed

    Garre, Alberto; Huertas, Juan Pablo; González-Tejedor, Gerardo A; Fernández, Pablo S; Egea, Jose A; Palop, Alfredo; Esnoz, Arturo

    2018-02-02

    This contribution presents a mathematical model to describe non-isothermal microbial inactivation processes taking into account the acclimation of the microbial cell to thermal stress. The model extends the log-linear inactivation model including a variable and model parameters quantifying the induced thermal resistance. The model has been tested on cells of Escherichia coli against two families of non-isothermal profiles with different constant heating rates. One of the families was composed of monophasic profiles, consisting of a non-isothermal heating stage from 35 to 70°C; the other family was composed of biphasic profiles, consisting of a non-isothermal heating stage followed by a holding period at constant temperature of 57.5°C. Lower heating rates resulted in a higher thermal resistance of the bacterial population. This was reflected in a higher D-value. The parameter estimation was performed in two steps. Firstly, the D and z-values were estimated from the isothermal experiments. Next, the parameters describing the acclimation were estimated using one of the biphasic profiles. This set of parameters was able to describe the remaining experimental data. Finally, a methodology for the construction of diagrams illustrating the magnitude of the induced thermal resistance is presented. The methodology has been illustrated by building it for a biphasic temperature profile with a linear heating phase and a holding phase. This diagram provides a visualization of how the shape of the temperature profile (heating rate and holding temperature) affects the acclimation of the cell to the thermal stress. This diagram can be used for the design of inactivation treatments by industry taking into account the acclimation of the cell to the thermal stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell Feder and Mahmoud Z. Yousef

    Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of the ECH heating system were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture (ECH). The neutronics discrete-ordinates code ATTILA® and SEVERIAN® (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken frommore » the ITER “Brand Model” MCNP benchmark model. A biased quadrature set equivelant to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and ECH cases. The ECH or Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 μSv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 μSv/hr but fell below the limit to 90 μSv/hr 2-weeks later. The Large Aperture or ECH style shielding model exhibited higher and more persistent dose rates. After 1-day the dose rate was 230 μSv/hr but was still at 120 μSv/hr 4-weeks later. __________________________________________________« less

  17. The Effect of Surfactant and Compatibilizer on Inorganic Loading and Properties of PPO-based EPMM Membranes

    NASA Astrophysics Data System (ADS)

    Bissadi, Golnaz

    Hybrid membranes represent a promising alternative to the limitations of organic and inorganic materials for high productivity and selectivity gas separation membranes. In this study, the previously developed concept of emulsion-polymerized mixed matrix (EPMM) membranes was further advanced by investigating the effects of surfactant and compatibilizer on inorganic loading in poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)-based EPMM membranes, in which inorganic part of the membranes originated from tetraethylorthosilicate (TEOS). The polymerization of TEOS, which consists of hydrolysis of TEOS and condensation of the hydrolyzed TEOS, was carried out as (i) one- and (ii) two-step processes. In the one-step process, the hydrolysis and condensation take place in the same environment of a weak acid provided by the aqueous solution of aluminum hydroxonitrate and sodium carbonate. In the two-step process, the hydrolysis takes place in the environment of a strong acid (solution of hydrochloric acid), whereas the condensation takes place in weak base environment obtained by adding excess of the ammonium hydroxide solution to the acidic solution of the hydrolyzed TEOS. For both one- and two-step processes, the emulsion polymerization of TEOS was carried out in two types of emulsions made of (i) pure trichloroethylene (TCE) solvent, and (ii) 10 w/v% solution of PPO in TCE, using different combinations of the compatibilizer (ethanol) and the surfactant (n-octanol). The experiments with pure TCE, which are referred to as a gravimetric powder method (GPM) allowed assessing the effect of different experimental parameters on the conversion of TEOS. The GPM tests also provided a guide for the synthesis of casting emulsions containing PPO, from which the EPMM membranes were prepared using a spin coating technique. The synthesized EPMM membranes were characterized using 29Si nuclear magnetic resonance (29Si NMR), differential scanning calorimetry (DSC), inductively coupled plasma mass spectrometry (ICP-MS), and gas permeation measurements carried out in a constant pressure (CP) system. The 29Si NMR analysis verified polymerization of TEOS in the emulsions made of pure TCE, and the PPO solution in TCE. The conversions of TEOS in the two-step process in the two types of emulsions were very close to each other. In the case of the one-step process, the conversions in the TCE emulsion were significantly greater than those in the emulsion of the PPO solution in TCE. Consequently, the conversions of TEOS in the EPMM membranes made in the two-step process were greater than those in the EPMM membranes made in the one-step process. The latter ranged between 10 - 20%, while the highest conversion in the two-step process was 74% in the presence of pure compatibilizer with no surfactant. Despite greater conversions and hence the greater inorganic loadings, the EPMM membranes prepared in the two-step process had glass transition temperatures (Tg) only slightly greater than the reference PPO membranes. In contrast, despite relatively low inorganic loadings, the EPMM membranes prepared in the one-step process had Tgs markedly greater than PPO, and showed the expected trend of an increase in Tg with the inorganic loading. These results indicate that in the case of the one-step process the polymerized TEOS was well integrated with the PPO chains and the interactions between the two phases lead to high Tgs. On the other hand, this was not the case for the EPMM membranes prepared in the two-step process, suggesting possible phase separation between the polymerized TEOS and the organic phase. The latter was confirmed by detecting no selectivity in the EPMM membranes prepared by the two-step process. In contrast, the EPMM membranes prepared in the one-step process in the presence of the compatibilizer and no surfactant showed 50% greater O2 permeability coefficient and a slightly greater O2/N2 permeability ratio compared to the reference PPO membranes.

  18. An asymptotic-preserving Lagrangian algorithm for the time-dependent anisotropic heat transport equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacon, Luis; del-Castillo-Negrete, Diego; Hauck, Cory D.

    2014-09-01

    We propose a Lagrangian numerical algorithm for a time-dependent, anisotropic temperature transport equation in magnetized plasmas in the large guide field regime. The approach is based on an analytical integral formal solution of the parallel (i.e., along the magnetic field) transport equation with sources, and it is able to accommodate both local and non-local parallel heat flux closures. The numerical implementation is based on an operator-split formulation, with two straightforward steps: a perpendicular transport step (including sources), and a Lagrangian (field-line integral) parallel transport step. Algorithmically, the first step is amenable to the use of modern iterative methods, while themore » second step has a fixed cost per degree of freedom (and is therefore scalable). Accuracy-wise, the approach is free from the numerical pollution introduced by the discrete parallel transport term when the perpendicular to parallel transport coefficient ratio X ⊥ /X ∥ becomes arbitrarily small, and is shown to capture the correct limiting solution when ε = X⊥L 2 ∥/X1L 2 ⊥ → 0 (with L∥∙ L⊥ , the parallel and perpendicular diffusion length scales, respectively). Therefore, the approach is asymptotic-preserving. We demonstrate the capabilities of the scheme with several numerical experiments with varying magnetic field complexity in two dimensions, including the case of transport across a magnetic island.« less

  19. Influence of parameters controlling the extrusion step in fused filament fabrication (FFF) process applied to polymers using numerical simulation

    NASA Astrophysics Data System (ADS)

    Shahriar, Bakrani Balani; Arthur, Cantarel; France, Chabert; Valérie, Nassiet

    2018-05-01

    Extrusion is one of the oldest manufacturing processes; it is widely used for manufacturing finished and semi-finished products. Moreover, extrusion is also the main process in additive manufacturing technologies such as Fused Filament Fabrication (FFF). In FFF process, the parts are manufactured layer by layer using thermoplastic material. The latter in form of filament, is melted in the liquefier and then it is extruded and deposited on the previous layer. The mechanical properties of the printed parts rely on the coalescence of each extrudate with another one. The coalescence phenomenon is driven by the flow properties of the melted polymer when it comes out the nozzle just before the deposition step. This study aims to master the quality of the printed parts by controlling the effect of the parameters of the extruder on the flow properties in the FFF process. In the current study, numerical simulation of the polymer coming out of the extruder was carried out using Computational Fluid Dynamics (CFD) and two phase flow (TPF) simulation Level Set (LS) method by 2D axisymmetric module of COMSOL Multiphysics software. In order to pair the heat transfer with the flow simulation, an advection-diffusion equation was used. Advection-diffusion equation was implemented as a Partial Differential Equation (PDE) in the software. In order to define the variation of viscosity of the polymer with temperature, the rheological behaviors of two thermoplastics were measured by extensional rheometer and using a parallel-plate configuration of an oscillatory rheometer. The results highlight the influence of the environment temperature and the cooling rate on the temperature and viscosity of the extrudate exiting from the nozzle. Moreover, the temperature and its corresponding viscosity at different times have been determined using numerical simulation. At highest shear rates, the extrudate undergoes deformation from typical cylindrical shape. These results are required to predict the coalescence of filaments, a step towards understanding the mechanical properties of the printed parts.

  20. Phase 2 of the array automated assembly task for the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Petersen, R. C.

    1980-01-01

    Studies were conducted on several fundamental aspects of electroless nickel/solder metallization for silicon solar cells. A process, which precedes the electroless nickel plating with several steps of palladium plating and heat treatment, was compared directly with single step electroless nickel plating. Work was directed toward answering specific questions concerning the effect of silicon surface oxide on nickel plating, effects of thermal stresses on the metallization, sintering of nickel plated on silicon, and effects of exposure to the plating solution on solar cell characteristics. The process was found to be extremely lengthy and cumbersome, and was also found to produce a product virtually identical to that produced by single step electroless nickel plating, as shown by adhesion tests and electrical characteristics of cells under illumination.

  1. Characterization of double diffusive convection step and heat budget in the deep Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Lu, Y.

    2013-12-01

    In this paper, we explore the hydrographic structure and heat budget in deep Canada Basin using data measured with McLane-Moored-Profilers (MMPs), bottom-pressure-recorders (BPRs), and conductivity-temperature-depth (CTD) profilers. From the bottom upward, a homogenous bottom layer and its overlaying double diffusive convection (DDC) steps are well identified at Mooring A (75oN, 150oW). We find that the deep water is in weak diapycnal mixing because the effective diffusivity of the bottom layer is ~1.8×10-5 m 2s-1 while that of the other steps is ~10-6 m 2s-1. The vertical heat flux through DDC steps is evaluated with different methods. We find that the heat flux (0.1-11 mWm-2) is much smaller than geothermal heating (~50 mWm-2), which suggests that the stack of DDC steps acts as a thermal barrier in the deep basin. Moreover, the temporal distributions of temperature and salinity differences across the interface are exponential, while those of heat flux and effective diffusivity are found to be approximately log-normal. Both are the result of strong intermittency. Between 2003 and 2011, temperature fluctuation close to the sea floor distributed asymmetrically and skewed towards positive values, which provides direct indication that geothermal heating is transferred into ocean. Both BPR and CTD data suggest that geothermal heating, not the warming of upper ocean, is the dominant mechanism responsible for the warming of deep water. As the DDC steps prevent the vertical heat transfer, geothermal heating will be unlikely to have significant effect on the middle and upper oceans.

  2. Characterization of double diffusive convection steps and heat budget in the deep Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Zhou, Sheng-Qi; Lu, Yuan-Zheng

    2013-12-01

    In this paper, we explore the hydrographic structure and heat budget in the deep Canada Basin by using data measured with McLane-Moored-Profilers (MMP), bottom pressure recorders (BPR), and conductivity-temperature-depth (CTD) profilers. Upward from the bottom, a homogeneous bottom layer and its overlaying double diffusive convection (DDC) steps are well identified at Mooring A (75°N,150°W). We find that the deep water is in weak diapycnal mixing because the effective diffusivity of the bottom layer is ˜1.8 × 10-5 m2s-1, while that of the other steps is ˜10-6 m2s-1. The vertical heat flux through the DDC steps is evaluated by using different methods. We find that the heat flux (0.1-11 mWm -2) is much smaller than geothermal heating (˜50 mWm -2). This suggests that the stack of DDC steps acts as a thermal barrier in the deep basin. Moreover, the temporal distributions of temperature and salinity differences across the interface are exponential, whereas those of heat flux and effective diffusivity are found to be approximately lognormal. Both are the result of strong intermittency. Between 2003 and 2011, temperature fluctuations close to the sea floor were distributed asymmetrically and skewed toward positive values, which provide a direct observation that geothermal heating was transferred into the ocean. Both BPR and CTD data suggest that geothermal heating and not the warming of the upper ocean is the dominant mechanism responsible for the warming of deep water. As the DDC steps prevent vertical heat transfer, geothermal heating is unlikely to have a significant effect on the middle and upper Arctic Ocean.

  3. A Fundamental Study of Nucleate Pool Boiling Under Microgravity

    NASA Technical Reports Server (NTRS)

    Ervin, Jamie S.; Merte, Herman, Jr.

    1996-01-01

    An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal-resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- 1 experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, the bulk liquid temperatures. High speed photography (up to 1,000 frames per second) was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface, some observed here for the first time, are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels (on the order of 5 W/cm(exp 2)) is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.

  4. Cleanliness of Ti-bearing Al-killed ultra-low-carbon steel during different heating processes

    NASA Astrophysics Data System (ADS)

    Guo, Jian-long; Bao, Yan-ping; Wang, Min

    2017-12-01

    During the production of Ti-bearing Al-killed ultra-low-carbon (ULC) steel, two different heating processes were used when the converter tapping temperature or the molten steel temperature in the Ruhrstahl-Heraeus (RH) process was low: heating by Al addition during the RH decarburization process and final deoxidation at the end of the RH decarburization process (process-I), and increasing the oxygen content at the end of RH decarburization, heating and final deoxidation by one-time Al addition (process-II). Temperature increases of 10°C by different processes were studied; the results showed that the two heating processes could achieve the same heating effect. The T.[O] content in the slab and the refining process was better controlled by process-I than by process-II. Statistical analysis of inclusions showed that the numbers of inclusions in the slab obtained by process-I were substantially less than those in the slab obtained by process-II. For process-I, the Al2O3 inclusions produced by Al added to induce heating were substantially removed at the end of decarburization. The amounts of inclusions were substantially greater for process-II than for process-I at different refining stages because of the higher dissolved oxygen concentration in process-II. Industrial test results showed that process-I was more beneficial for improving the cleanliness of molten steel.

  5. Effect of coating density on oxidation resistance and Cr vaporization from solid oxide fuel cell interconnects

    NASA Astrophysics Data System (ADS)

    Talic, Belma; Falk-Windisch, Hannes; Venkatachalam, Vinothini; Hendriksen, Peter Vang; Wiik, Kjell; Lein, Hilde Lea

    2017-06-01

    Manganese cobalt spinel oxides are promising materials for protective coatings for solid oxide fuel cell (SOFC) interconnects. To achieve high density such coatings are often sintered in a two-step procedure, involving heat treatment first in reducing and then in oxidizing atmospheres. Sintering the coating inside the SOFC stack during heating would reduce production costs, but may result in a lower coating density. The importance of coating density is here assessed by characterization of the oxidation kinetics and Cr evaporation of Crofer 22 APU with MnCo1.7Fe0.3O4 spinel coatings of different density. The coating density is shown to have minor influence on the long-term oxidation behavior in air at 800 °C, evaluated over 5000 h. Sintering the spinel coating in air at 900 °C, equivalent to an in-situ heat treatment, leads to an 88% reduction of the Cr evaporation rate of Crofer 22 APU in air-3% H2O at 800 °C. The air sintered spinel coating is initially highly porous, however, densifies with time in interaction with the alloy. A two-step reduction and re-oxidation heat treatment results in a denser coating, which reduces Cr evaporation by 97%.

  6. Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process

    DOEpatents

    Balachandran, Uthamalingam

    1996-01-01

    A process for the preparation of amorphous precursor powders for Pb-doped Bi.sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x (2223) includes a freeze-drying process incorporating a splat-freezing step. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution without any phase separation; grinding the frozen flakes to form a powder; freeze-drying the frozen powder; heating the dried powder to form a dry green precursor powders; denitrating the green-powders; heating the denitrated powders to form phase-clean Bi-2223 powders. The grain boundaries of the 2223 grains appear to be clean, leading to good intergrain contact between 2223 grains.

  7. Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process

    DOEpatents

    Balachandran, U.

    1996-06-04

    A process for the preparation of amorphous precursor powders for Pb-doped Bi{sub 2}Sr{sub 2} Ca{sub 2}Cu{sub 3}O{sub x} (2223) includes a freeze-drying process incorporating a splat-freezing step. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution without any phase separation; grinding the frozen flakes to form a powder; freeze-drying the frozen powder; heating the dried powder to form a dry green precursor powders; denitrating the green-powders; heating the denitrated powders to form phase-clean Bi-2223 powders. The grain boundaries of the 2223 grains appear to be clean, leading to good intergrain contact between 2223 grains. 11 figs.

  8. Thermal Evolution of the Earth from a Plate Tectonics Point of View

    NASA Astrophysics Data System (ADS)

    Grigne, C.; Combes, M.; Le Yaouanq, S.; Husson, L.; Conrad, C. P.; Tisseau, C.

    2011-12-01

    Earth's thermal history is classically studied using scaling laws that link the surface heat loss to the temperature and viscosity of the convecting mantle. When such a parameterization is used in the global heat budget of the Earth to integrate the mantle temperature backwards in time, a runaway increase of temperature is obtained, leading to the so-called "thermal catastrophe". We propose a new approach that does not rely on convective scaling laws but instead considers the dynamics of plate tectonics, including temperature-dependent surface processes. We use a multi-agent system to simulate time-dependent plate tectonics in a 2D cylindrical geometry with evolutive plate boundaries. Plate velocities are computed using local force balance and explicit parameterizations for plate boundary processes such as trench migration, subduction initiation, continental breakup and plate suturing. The number of plates is not imposed but emerges naturally. At a given time step, heat flux is integrated from the seafloor age distribution and a global heat budget is used to compute the evolution of mantle temperature. This approach has a very low computational cost and allows us to study the effect of a wide range of input parameters on the long-term thermal evolution of the system. For Earth-like parameters, an average cooling rate of 60-70K per billion years is obtained, which is consistent with petrological and rheological constraints. Two time scales arise in the evolution of the heat flux: a linear long-term decrease and high-amplitude short-term fluctuations due to tectonic rearrangements. We show that the viscosity of the mantle is not a key parameter in the thermal evolution of the system and that no thermal catastrophe occurs when considering tectonic processes. The cooling rate of the Earth depends mainly on its ability to replace old insulating seafloor by young thin oceanic lithosphere. Therefore, the main controlling factors are parameters such as the resistance of continental lithosphere to breakup or the critical age for subduction initiation. We infer that simple convective considerations alone cannot account for the complex nature of mantle heat loss and that tectonic processes dictate the thermal evolution of the Earth.

  9. Processing and microstructure of Nb-1 percent Zr-0.1 percent C alloy sheet

    NASA Technical Reports Server (NTRS)

    Uz, Mehmet; Titran, Robert H.

    1992-01-01

    A systematic study was carried out to evaluate the effects of processing on the microstructure of Nb-1 wt. pct. Zr-0.1 wt. pct. C alloy sheet. The samples were fabricated by cold rolling different sheet bars that were single-, double- or triple-extruded at 1900 K. Heat treatment consisted on one- or two-step annealing of different samples at temperatures ranging from 1350 to 1850 K. The assessment of the effects of processing on microstructure involved characterization of the precipitates including the type, crystal structure, chemistry and distribution within the material as well as an examination of the grain structure. A combination of various analytical and metallographic techniques were used on both the sheet samples and the residue extracted from them. The results show that the relatively coarse orthorhombic Nb2C carbides in the as-rolled samples transformed to rather fine cubic monocarbides of Nb and Zr with varying Zr/Nb ratios upon subsequent heat treatment. The relative amount of the cubic carbides and the Zr/Nb ratio increased with increasing number of extrusions prior to cold rolling. Furthermore, the size and the aspect ratio of the grains appear to be strong functions of the processing history of the material. These and other results obtained will be presented with the emphasis on a possible relationship between processing and microstructure.

  10. In situ heat treatment process utilizing a closed loop heating system

    DOEpatents

    Vinegar, Harold J.; Nguyen, Scott Vinh

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  11. Hybrid Thermochemical/Biological Processing

    NASA Astrophysics Data System (ADS)

    Brown, Robert C.

    The conventional view of biorefineries is that lignocellulosic plant material will be fractionated into cellulose, hemicellulose, lignin, and terpenes before these components are biochemically converted into market products. Occasionally, these plants include a thermochemical step at the end of the process to convert recalcitrant plant components or mixed waste streams into heat to meet thermal energy demands elsewhere in the facility. However, another possibility for converting high-fiber plant materials is to start by thermochemically processing it into a uniform intermediate product that can be biologically converted into a bio-based product. This alternative route to bio-based products is known as hybrid thermochemical/biological processing. There are two distinct approaches to hybrid processing: (a) gasification followed by fermentation of the resulting gaseous mixture of carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2) and (b) fast pyrolysis followed by hydrolysis and/or fermentation of the anhydrosugars found in the resulting bio-oil. This article explores this "cart before the horse" approach to biorefineries.

  12. Dynamic Simulation of a Helium Liquefier

    NASA Astrophysics Data System (ADS)

    Maekawa, R.; Ooba, K.; Nobutoki, M.; Mito, T.

    2004-06-01

    Dynamic behavior of a helium liquefier has been studied in detail with a Cryogenic Process REal-time SimulaTor (C-PREST) at the National Institute for Fusion Science (NIFS). The C-PREST is being developed to integrate large-scale helium cryogenic plant design, operation and maintenance for optimum process establishment. As a first step of simulations of cooldown to 4.5 K with the helium liquefier model is conducted, which provides a plant-process validation platform. The helium liquefier consists of seven heat exchangers, a liquid-nitrogen (LN2) precooler, two expansion turbines and a liquid-helium (LHe) reservoir. Process simulations are fulfilled with sequence programs, which were implemented with C-PREST based on an existing liquefier operation. The interactions of a JT valve, a JT-bypass valve and a reservoir-return valve have been dynamically simulated. The paper discusses various aspects of refrigeration process simulation, including its difficulties such as a balance between complexity of the adopted models and CPU time.

  13. Improving the two-step remediation process for CCA-treated wood. Part I, Evaluating oxalic acid extraction

    Treesearch

    Carol Clausen

    2004-01-01

    In this study, three possible improvements to a remediation process for chromated-copper-arsenate (CCA) treated wood were evaluated. The process involves two steps: oxalic acid extraction of wood fiber followed by bacterial culture with Bacillus licheniformis CC01. The three potential improvements to the oxalic acid extraction step were (1) reusing oxalic acid for...

  14. A Combined Brazing and Aluminizing Process for Repairing Turbine Blades by Thermal Spraying Using the Coating System NiCrSi/NiCoCrAlY/Al

    NASA Astrophysics Data System (ADS)

    Nicolaus, M.; Möhwald, K.; Maier, H. J.

    2017-10-01

    The repair and maintenance of components in the aerospace industry play an increasingly important role due to rising manufacturing costs. Besides welding, vacuum brazing is a well-established repair process for turbine blades made of nickel-based alloys. After the coating of the worn turbine blade has been removed, the manual application of the nickel-based filler metal follows. Subsequently, the hot gas corrosion-protective coating is applied by thermal spraying. The brazed turbine blade is aluminized to increase the hot gas corrosion resistance. The thermal spray technology is used to develop a two-stage hybrid technology that allows shortening the process chain for repair brazing turbine blades and is described in the present paper. In the first step, the coating is applied on the base material. Specifically, the coating system employed here is a layer system consisting of nickel filler metal, NiCoCrAlY and aluminum. The second step represents the combination of brazing and aluminizing of the coating system which is subjected to a heat treatment. The microstructure, which results from the combined brazing and aluminizing process, is characterized and the relevant diffusion processes in the coating system are illustrated. The properties of the coating and the ramifications with respect to actual applications will be discussed.

  15. Anticancer activity of Nigella sativa (black seed) and its relationship with the thermal processing and quinone composition of the seed.

    PubMed

    Agbaria, Riad; Gabarin, Adi; Dahan, Arik; Ben-Shabat, Shimon

    2015-01-01

    The traditional preparation process of Nigella sativa (NS) oil starts with roasting of the seeds, an allegedly unnecessary step that was never skipped. The aims of this study were to investigate the role and boundaries of thermal processing of NS seeds in the preparation of therapeutic extracts and to elucidate the underlying mechanism. NS extracts obtained by various seed thermal processing methods were investigated in vitro for their antiproliferative activity in mouse colon carcinoma (MC38) cells and for their thymoquinone content. The effect of the different methods of thermal processing on the ability of the obtained NS oil to inhibit the nuclear factor kappa B (NF-κB) pathway was then investigated in Hodgkin's lymphoma (L428) cells. The different thermal processing protocols yielded three distinct patterns: heating the NS seeds to 50°C, 100°C, or 150°C produced oil with a strong ability to inhibit tumor cell growth; no heating or heating to 25°C had a mild antiproliferative effect; and heating to 200°C or 250°C had no effect. Similar patterns were obtained for the thymoquinone content of the corresponding oils, which showed an excellent correlation with the antiproliferative data. It is proposed that there is an oxidative transition mechanism between quinones after controlled thermal processing of the seeds. While NS oil from heated seeds delayed the expression of NF-κB transcription, non-heated seeds resulted in only 50% inhibition. The data indicate that controlled thermal processing of NS seeds (at 50°C-150°C) produces significantly higher anticancer activity associated with a higher thymoquinone oil content, and inhibits the NF-κB signaling pathway.

  16. Study on the mechanism of Si-glass-Si two step anodic bonding process

    NASA Astrophysics Data System (ADS)

    Hu, Lifang; Wang, Hao; Xue, Yongzhi; Shi, Fangrong; Chen, Shaoping

    2018-04-01

    Si-glass-Si was successfully bonded together through a two-step anodic bonding process. The bonding current in each step of the two-step bonding process was investigated, and found to be quite different. The first bonding current decreased quickly to a relatively small value, but for the second bonding step, there were two current peaks; the current first decreased, then increased, and then decreased again. The second current peak occurred earlier with higher temperature and voltage. The two-step anodic bonding process was investigated in terms of bonding current. SEM and EDS tests were conducted to investigate the interfacial structure of the Si-glass-Si samples. The two bonding interfaces were almost the same, but after an etching process, transitional layers could be found in the bonding interface and a deeper trench with a thickness of ~1.5 µm could be found in the second bonding interface. Atomic force microscopy mapping results indicated that sodium precipitated from the back of the glass, which makes the roughness of the surface become coarse. Tensile tests indicated that the fracture occurred at the glass substrate and that the bonding strength increased with the increment of bonding temperature and voltage with the maximum strength of 6.4 MPa.

  17. Secondary Heat Exchanger Design and Comparison for Advanced High Temperature Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piyush Sabharwall; Ali Siahpush; Michael McKellar

    2012-06-01

    The goals of next generation nuclear reactors, such as the high temperature gas-cooled reactor and advance high temperature reactor (AHTR), are to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology, giving rise to the following study. Various studies have been performed in attempts to update the secondarymore » heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient conversion cycles, such as the Rankine super critical and subcritical cycles. This study considers two different types of heat exchangers—helical coiled heat exchanger and printed circuit heat exchanger—as possible options for the AHTR secondary heat exchangers with the following three different options: (1) A single heat exchanger transfers all the heat (3,400 MW(t)) from the intermediate heat transfer loop to the power conversion system or process plants; (2) Two heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants, each exchanger transfers 1,700 MW(t) with a parallel configuration; and (3) Three heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants. Each heat exchanger transfers 1,130 MW(t) with a parallel configuration. A preliminary cost comparison will be provided for all different cases along with challenges and recommendations.« less

  18. Biophysical studies of photosystem II-related recovery processes after a heat pulse in barley seedlings (Hordeum vulgare L.).

    PubMed

    Tóth, Szilvia Z; Schansker, Gert; Kissimon, Judit; Kovács, László; Garab, Gyozo; Strasser, Reto J

    2005-02-01

    Leaves of 7-day-old barley seedlings were subjected to heat pulses at 50 degrees C for 20 or 40s to inhibit partially or fully the oxygen evolution without inducing visible symptoms. By means of biophysical techniques, we investigated the time course and mechanism of photosystem II (PSII) recovery. After the heat treatment, the samples were characterized by typical heat stress symptoms: loss of oxygen evolution activity, strong decrease of Fv/Fm, induction of the K-step in the fluorescence induction transient, emergence of the AT-thermoluminescence-band and a dramatic increase in membrane permeability. In the first 4h in the light following the heat pulse, the AT-band and the K-step disappeared in parallel, indicating the loss of this restricted activity of PSII. This phase was followed by a recovery period, during which PSII-activity was gradually restored in the light. In darkness, no recovery, except for the membrane permeability, was observed. A model is presented that accounts for (i) the damage induced by the heat pulse on the membrane architecture and on the PSII donor side, (ii) the light-dependent removal of the impaired reaction centers from the disorganized membrane, and (iii) the subsequent light-independent restoration of the membrane permeability and the de novo synthesis of the PSII reaction centers in the light.

  19. TOPICAL REVIEW: Black silicon method X: a review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment

    NASA Astrophysics Data System (ADS)

    Jansen, H V; de Boer, M J; Unnikrishnan, S; Louwerse, M C; Elwenspoek, M C

    2009-03-01

    An intensive study has been performed to understand and tune deep reactive ion etch (DRIE) processes for optimum results with respect to the silicon etch rate, etch profile and mask etch selectivity (in order of priority) using state-of-the-art dual power source DRIE equipment. The research compares pulsed-mode DRIE processes (e.g. Bosch technique) and mixed-mode DRIE processes (e.g. cryostat technique). In both techniques, an inhibitor is added to fluorine-based plasma to achieve directional etching, which is formed out of an oxide-forming (O2) or a fluorocarbon (FC) gas (C4F8 or CHF3). The inhibitor can be introduced together with the etch gas, which is named a mixed-mode DRIE process, or the inhibitor can be added in a time-multiplexed manner, which will be termed a pulsed-mode DRIE process. Next, the most convenient mode of operation found in this study is highlighted including some remarks to ensure proper etching (i.e. step synchronization in pulsed-mode operation and heat control of the wafer). First of all, for the fabrication of directional profiles, pulsed-mode DRIE is far easier to handle, is more robust with respect to the pattern layout and has the potential of achieving much higher mask etch selectivity, whereas in a mixed-mode the etch rate is higher and sidewall scalloping is prohibited. It is found that both pulsed-mode CHF3 and C4F8 are perfectly suited to perform high speed directional etching, although they have the drawback of leaving the FC residue at the sidewalls of etched structures. They show an identical result when the flow of CHF3 is roughly 30 times the flow of C4F8, and the amount of gas needed for a comparable result decreases rapidly while lowering the temperature from room down to cryogenic (and increasing the etch rate). Moreover, lowering the temperature lowers the mask erosion rate substantially (and so the mask selectivity improves). The pulsed-mode O2 is FC-free but shows only tolerable anisotropic results at -120 °C. The downside of needing liquid nitrogen to perform cryogenic etching can be improved by using a new approach in which both the pulsed and mixed modes are combined into the so-called puffed mode. Alternatively, the use of tetra-ethyl-ortho-silicate (TEOS) as a silicon oxide precursor is proposed to enable sufficient inhibiting strength and improved profile control up to room temperature. Pulsed-mode processing, the second important aspect, is commonly performed in a cycle using two separate steps: etch and deposition. Sometimes, a three-step cycle is adopted using a separate step to clean the bottom of etching features. This study highlights an issue, known by the authors but not discussed before in the literature: the need for proper synchronization between gas and bias pulses to explore the benefit of three steps. The transport of gas from the mass flow controller towards the wafer takes time, whereas the application of bias to the wafer is relatively instantaneous. This delay causes a problem with respect to synchronization when decreasing the step time towards a value close to the gas residence time. It is proposed to upgrade the software with a delay time module for the bias pulses to be in pace with the gas pulses. If properly designed, the delay module makes it possible to switch on the bias exactly during the arrival of the gas for the bottom removal step and so it will minimize the ionic impact because now etch and deposition steps can be performed virtually without bias. This will increase the mask etch selectivity and lower the heat impact significantly. Moreover, the extra bottom removal step can be performed at (also synchronized!) low pressure and therefore opens a window for improved aspect ratios. The temperature control of the wafer, a third aspect of this study, at a higher etch rate and longer etch time, needs critical attention, because it drastically limits the DRIE performance. It is stressed that the exothermic reaction (high silicon loading) and ionic impact (due to metallic masks and/or exposed silicon) are the main sources of heat that might raise the wafer temperature uncontrollably, and they show the weakness of the helium backside technique using mechanical clamping. Electrostatic clamping, an alternative technique, should minimize this problem because it is less susceptible to heat transfer when its thermal resistance and the gap of the helium backside cavity are minimized; however, it is not a subject of the current study. Because oxygen-growth-based etch processes (due to their ultra thin inhibiting layer) rely more heavily on a constant wafer temperature than fluorocarbon-based processes, oxygen etches are more affected by temperature fluctuations and drifts during the etching. The fourth outcome of this review is a phenomenological model, which explains and predicts many features with respect to loading, flow and pressure behaviour in DRIE equipment including a diffusion zone. The model is a reshape of the flow model constructed by Mogab, who studied the loading effect in plasma etching. Despite the downside of needing a cryostat, it is shown that—when selecting proper conditions—a cryogenic two-step pulsed mode can be used as a successful technique to achieve high speed and selective plasma etching with an etch rate around 25 µm min-1 (<1% silicon load) with nearly vertical walls and resist etch selectivity beyond 1000. With the model in hand, it can be predicted that the etch rate can be doubled (50 µm min-1 at an efficiency of 33% for the fluorine generation from the SF6 feed gas) by minimizing the time the free radicals need to pass the diffusion zone. It is anticipated that this residence time can be reduced sufficiently by a proper inductive coupled plasma (ICP) source design (e.g. plasma shower head and concentrator). In order to preserve the correct profile at such high etch rates, the pressure during the bottom removal step should be minimized and, therefore, the synchronized three-step pulsed mode is believed to be essential to reach such high etch rates with sufficient profile control. In order to improve the etch rate even further, the ICP power should be enhanced; the upgrading of the turbopump seems not yet to be relevant because the throttle valve in the current study had to be used to restrict the turbo efficiency. In order to have a versatile list of state-of-the-art references, it has been decided to arrange it in subjects. The categories concerning plasma physics and applications are, for example, books, reviews, general topics, fluorine-based plasmas, plasma mixtures with oxygen at room temperature, wafer heat transfer and high aspect ratio trench (HART) etching. For readers 'new' to this field, it is advisable to study at least one (but rather more than one) of the reviews concerning plasma as found in the first 30 references. In many cases, a paper can be classified into more than one category. In such cases, the paper is directed to the subject most suited for the discussion of the current review. For example, many papers on heat transfer also treat cryogenic conditions and all the references dealing with highly anisotropic behaviour have been directed to the category HARTs. Additional pointers could get around this problem but have the disadvantage of creating a kind of written spaghetti. I hope that the adapted organization structure will help to have a quick look at and understanding of current developments in high aspect ratio plasma etching. Enjoy reading... Henri Jansen 18 June 2008

  20. A comparison of microwave versus direct solar heating for lunar brick production

    NASA Technical Reports Server (NTRS)

    Yankee, S. J.; Strenski, D. G.; Pletka, B. J.; Patil, D. S.; Mutsuddy, B. C.

    1990-01-01

    Two processing techniques considered suitable for producing bricks from lunar regolith are examined: direct solar heating and microwave heating. An analysis was performed to compare the two processes in terms of the amount of power and time required to fabricate bricks of various sizes. Microwave heating was shown to be significantly faster than solar heating for rapid production of realistic-size bricks. However, the relative simplicity of the solar collector(s) used for the solar furnace compared to the equipment necessary for microwave generation may present an economic tradeoff.

  1. Enhanced performance of wearable piezoelectric nanogenerator fabricated by two-step hydrothermal process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Yu; Lei, Jixue; Yin, Bing

    2014-03-17

    A simple two-step hydrothermal process was proposed for enhancing the performance of the nanogenerator on flexible and wearable terylene-fabric substrate. With this method, a significant enhancement in output voltage of the nanogenerator from ∼10 mV to 7 V was achieved, comparing with the one by conventional one-step process. In addition, another advantage with the devices synthesized by two-step hydrothermal process was that their output voltages are only sensitive to strain rather than strain rate. The devices with a high output voltage have the ability to power common electric devices and will have important applications in flexible electronics and wearable devices.

  2. Heat Transfer in Adhesively Bonded Honeycomb Core Panels

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran

    2001-01-01

    The Swann and Pittman semi-empirical relationship has been used as a standard in aerospace industry to predict the effective thermal conductivity of honeycomb core panels. Recent measurements of the effective thermal conductivity of an adhesively bonded titanium honeycomb core panel using three different techniques, two steady-state and one transient radiant step heating method, at four laboratories varied significantly from each other and from the Swann and Pittman predictions. Average differences between the measurements and the predictions varied between 17 and 61% in the temperature range of 300 to 500 K. In order to determine the correct values of the effective thermal conductivity and determine which set of the measurements or predictions were most accurate, the combined radiation and conduction heat transfer in the honeycomb core panel was modeled using a finite volume numerical formulation. The transient radiant step heating measurements provided the best agreement with the numerical results. It was found that a modification of the Swann and Pittman semi-empirical relationship which incorporated the facesheets and adhesive layers in the thermal model provided satisfactory results. Finally, a parametric study was conducted to investigate the influence of adhesive thickness and thermal conductivity on the overall heat transfer through the panel.

  3. Combined Steady-State and Dynamic Heat Exchanger Experiment

    ERIC Educational Resources Information Center

    Luyben, William L.; Tuzla, Kemal; Bader, Paul N.

    2009-01-01

    This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, William L; Gunderson, Jake A; Dickson, Peter M

    There has been a long history of interest in the decomposition kinetics of HMX and HMX-based formulations due to the widespread use of this explosive in high performance systems. The kinetics allow us to predict, or attempt to predict, the behavior of the explosive when subjected to thermal hazard scenarios that lead to ignition via impact, spark, friction or external heat. The latter, commonly referred to as 'cook off', has been widely studied and contemporary kinetic and transport models accurately predict time and location of ignition for simple geometries. However, there has been relatively little attention given to the problemmore » of localized ignition that results from the first three ignition sources of impact, spark and friction. The use of a zero-order single-rate expression describing the exothermic decomposition of explosives dates to the early work of Frank-Kamanetskii in the late 1930s and continued through the 60's and 70's. This expression provides very general qualitative insight, but cannot provide accurate spatial or timing details of slow cook off ignition. In the 70s, Catalano, et al., noted that single step kinetics would not accurately predict time to ignition in the one-dimensional time to explosion apparatus (ODTX). In the early 80s, Tarver and McGuire published their well-known three step kinetic expression that included an endothermic decomposition step. This scheme significantly improved the accuracy of ignition time prediction for the ODTX. However, the Tarver/McGuire model could not produce the internal temperature profiles observed in the small-scale radial experiments nor could it accurately predict the location of ignition. Those factors are suspected to significantly affect the post-ignition behavior and better models were needed. Brill, et al. noted that the enthalpy change due to the beta-delta crystal phase transition was similar to the assumed endothermic decomposition step in the Tarver/McGuire model. Henson, et al., deduced the kinetics and thermodynamics of the phase transition, providing Dickson, et al. with the information necessary to develop a four-step model that included a two-step nucleation and growth mechanism for the {beta}-{delta} phase transition. Initially, an irreversible scheme was proposed. That model accurately predicted the spatial and temporal cook off behavior of the small-scale radial experiment under slow heating conditions, but did not accurately capture the endothermic phase transition at a faster heating rate. The current version of the four-step model includes reversibility and accurately describes the small-scale radial experiment over a wide range of heating rates. We have observed impact-induced friction ignition of PBX 9501 with grit embedded between the explosive and the lower anvil surface. Observation was done using an infrared camera looking through the sapphire bottom anvil. Time to ignition and temperature-time behavior were recorded. The time to ignition was approximately 500 microseconds and the temperature was approximately 1000 K. The four step reversible kinetic scheme was previously validated for slow cook off scenarios. Our intention was to test the validity for significantly faster hot-spot processes, such as the impact-induced grit friction process studied here. We found the model predicted the ignition time within experimental error. There are caveats to consider when evaluating the agreement. The primary input to the model was friction work over an area computed by a stress analysis. The work rate itself, and the relative velocity of the grit and substrate both have a strong dependence on the initial position of the grit. Any errors in the analysis or the initial grit position would affect the model results. At this time, we do not know the sensitivity to these issues. However, the good agreement does suggest the four step kinetic scheme may have universal applicability for HMX systems.« less

  5. Not-from-concentrate blueberry juice extraction utilizing frozen fruit, heated mash, and enzyme processes

    USDA-ARS?s Scientific Manuscript database

    Juice production is a multibillion dollar industry and an economical way to use fruit past seasonal harvests. To evaluate how production steps influence not-from-concentrate (NFC) blueberry (Vaccinium sp.) juice recovery, bench top and pilot scale experiments were performed. In bench-top, southern h...

  6. Energy--What to Do until the Computer Comes.

    ERIC Educational Resources Information Center

    Johnston, Archie B.

    Drawing from Tallahassee Community College's (TCC's) experiences with energy conservation, this paper offers suggestions for reducing energy costs through computer-controlled systems and other means. After stating the energy problems caused by TCC's multi-zone heating and cooling system, the paper discusses the five-step process by which TCC…

  7. Measuring the temperature dependent thermal diffusivity of geomaterials using high-speed differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    von Aulock, Felix W.; Wadsworth, Fabian B.; Vasseur, Jeremie; Lavallée, Yan

    2016-04-01

    Heat diffusion in the Earth's crust is critical to fundamental geological processes, such as the cooling of magma, heat dissipation during and following transient heating events (e.g. during frictional heating along faults), and to the timescales of contact metamorphosis. The complex composition and multiphase nature of geomaterials prohibits the accurate modeling of thermal diffusivities and measurements over a range of temperatures are sparse due to the specialized nature of the equipment and lack of instrument availability. We present a novel method to measure the thermal diffusivity of geomaterials such as minerals and rocks with high precision and accuracy using a commercially available differential scanning calorimeter (DSC). A DSC 404 F1 Pegasus® equipped with a Netzsch high-speed furnace was used to apply a step-heating program to corundum single crystal standards of varying thicknesses. The standards were cylindrical discs of 0.25-1 mm thickness with 5.2-6 mm diameter. Heating between each 50 °C temperature interval was conducted at a rate of 100 °C/min over the temperature range 150-1050 °C. Such large heating rates induces temperature disequilibrium in the samples used. However, isothermal segments of 2 minutes were used during which the temperature variably equilibrated with the furnace between the heating segments and thus the directly-measured heat-flow relaxed to a constant value before the next heating step was applied. A finite-difference 2D conductive heat transfer model was used in cylindrical geometry for which the measured furnace temperature was directly applied as the boundary condition on the sample-cylinder surfaces. The model temperature was averaged over the sample volume per unit time and converted to heat-flow using the well constrained thermal properties for corundum single crystals. By adjusting the thermal diffusivity in the model solution and comparing the resultant heat-flow with the measured values, we obtain a model calibration for the thermal diffusivity of corundum. Preliminary calibration tests suggest a very good correlation between the measured results compared with literature values of the thermal diffusivity of this standard material. However, more measurements on standard materials are needed to guarantee the accuracy of the presented technique for measuring the thermal diffusion of materials and apply this method to numerical models for relevant processes in geoscience.

  8. Enhanced multimaterial 4D printing with active hinges

    NASA Astrophysics Data System (ADS)

    Akbari, Saeed; Hosein Sakhaei, Amir; Kowsari, Kavin; Yang, Bill; Serjouei, Ahmad; Yuanfang, Zhang; Ge, Qi

    2018-06-01

    Despite great progress in four-dimensional (4D) printing, i.e. three-dimensional (3D) printing of active (stimuli-responsive) materials, the relatively low actuation force of the 4D printed structures often impedes their engineering applications. In this study, we use multimaterial inkjet 3D printing technology to fabricate shape memory structures, including a morphing wing flap and a deployable structure, which consist of active and flexible hinges joining rigid (non-active) parts. The active hinges, printed from a shape memory polymer (SMP), lock the structure into a second temporary shape during a thermomechanical programming process, while the flexible hinges, printed from an elastomer, effectively increase the actuation force and the load-bearing capacity of the printed structure as reflected in the recovery ratio. A broad range of mechanical properties such as modulus and failure strain can be achieved for both active and flexible hinges by varying the composition of the two base materials, i.e. the SMP and the elastomer, to accommodate large deformation induced during programming step, and enhance the recovery in the actuating step. To find the important design parameters, including local deformation, shape fixity and recovery ratio, we conduct high fidelity finite element simulations, which are able to accurately predict the nonlinear deformation of the printed structures. In addition, a coupled thermal-electrical finite element analysis was performed to model the heat transfer within the active hinges during the localized Joule heating process. The model predictions showed good agreement with the measured temperature data and were used to find the major parameters affecting temperature distribution including the applied voltage and the convection rate.

  9. Thermal and optical modeling of "blackened" tips for diode laser surgery

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Skrypnik, Alexei V.; Kurnyshev, Vadim Y.

    2016-04-01

    This paper presents the results of thermal and optical modeling of "blackened" tips (fiber-optic thermal converter) with different structures: film and volumetric. Film converter is created by laser radiation action on a cork or paper and it is a one-step process. As a result, a carbonized cork or paper adhered to the distal end of the optical fiber absorbs light that leads to heating of the distal end of the optical fiber. We considered the peculiarities of volumetric converters formed by sintering (second step) of the target material transferred to the tip, at irradiating the target with laser radiation (first step). We investigated the interaction between 980 nm laser radiation and converters in the air and water. As a result of experiments and modeling, it was obtain, that converter temperature and power of converter destruction depend on the environment in which it is placed. We found that film converter in the air at average power of laser radiation of 0.30+/-0.05 W is heated to 900+/-50°C and destructed, and volumetric converter in the air at average power of laser radiation of 1.0+/-0.1 W is heated to 1000+/-50°C and destructed at reaching of 4.0+/-0.1 W only. We found that film converter in the water at average power of laser radiation of 1.0+/-0.1 W is heated to 550+/-50°C and destructed at reaching of 4.0+/-0.1 W only. Volumetric converter at average power of laser radiation of4.0+/-0.1 W is heated to 450+/-50°C and is not destructed up to 7.5+/-0.1 W, it is heated to 500+/-50°C in this case. Thus, volumetric converter is more resistant to action of laser heating.

  10. A novel precursor system and its application to produce tin doped indium oxide.

    PubMed

    Veith, M; Bubel, C; Zimmer, M

    2011-06-14

    A new type of precursor has been developed by molecular design and synthesised to produce tin doped indium oxide (ITO). The precursor consists of a newly developed bimetallic indium tin alkoxide, Me(2)In(O(t)Bu)(3)Sn (Me = CH(3), O(t)Bu = OC(CH(3))(3)), which is in equilibrium with an excess of Me(2)In(O(t)Bu). This quasi single-source precursor is applied in a sol-gel process to produce powders and coatings of ITO using a one-step heat treatment process under an inert atmosphere. The main advantage of this system is the simple heat treatment that leads to the disproportionation of the bivalent Sn(II) precursor into Sn(IV) and metallic tin, resulting in an overall reduced state of the metal in the final tin doped indium oxide (ITO) material, hence avoiding the usually necessary reduction step. Solid state (119)Sn-NMR measurements of powder samples confirm the appearance of Sn(II) in an amorphous gel state and of metallic tin after annealing under nitrogen. The corresponding preparation of ITO coatings by spin coating on glass leads to transparent conductive layers with a high transmittance of visible light and a low electrical resistivity without the necessity of a reduction step.

  11. Effects of thermomechanical processing on tensile and long-time creep behavior of Nb-1 percent Zr-0.1 percent C sheet

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Uz, Mehmet

    1994-01-01

    Effects of thermomechanical processing on the mechanical properties of Nb-1 wt. percent Zr-0.1 wt. percent C, a candidate alloy for use in advanced space power systems, were investigated. Sheet bars were cold rolled into 1-mm thick sheets following single, double, or triple extrusion operations at 1900 K. All the creep and tensile specimens were given a two-step heat treatment 1 hr at 1755 K + 2 hr 1475 K prior to testing. Tensile properties were determined at 300 as well as at 1350 K. Microhardness measurements were made on cold rolled, heat treated, and crept samples. Creep tests were carried out at 1350 K and 34.5 MPa for times of about 10,000 to 19,000 hr. The results show that the number of extrusions had some effects on both the microhardness and tensile properties. However, the long-time creep behavior of the samples were comparable, and all were found to have adequate properties to meet the design requirements of advanced power systems regardless of thermomechanical history. The results are discussed in correlation with processing and microstructure, and further compared to the results obtained from the testing of Nb-1 wt. percent Zr and Nb-1 wt. percent Zr-0.06 wt. percent C alloys.

  12. Two-step rapid sulfur capture. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-04-01

    The primary goal of this program was to test the technical and economic feasibility of a novel dry sorbent injection process called the Two-Step Rapid Sulfur Capture process for several advanced coal utilization systems. The Two-Step Rapid Sulfur Capture process consists of limestone activation in a high temperature auxiliary burner for short times followed by sorbent quenching in a lower temperature sulfur containing coal combustion gas. The Two-Step Rapid Sulfur Capture process is based on the Non-Equilibrium Sulfur Capture process developed by the Energy Technology Office of Textron Defense Systems (ETO/TDS). Based on the Non-Equilibrium Sulfur Capture studies the rangemore » of conditions for optimum sorbent activation were thought to be: activation temperature > 2,200 K for activation times in the range of 10--30 ms. Therefore, the aim of the Two-Step process is to create a very active sorbent (under conditions similar to the bomb reactor) and complete the sulfur reaction under thermodynamically favorable conditions. A flow facility was designed and assembled to simulate the temperature, time, stoichiometry, and sulfur gas concentration prevalent in the advanced coal utilization systems such as gasifiers, fluidized bed combustors, mixed-metal oxide desulfurization systems, diesel engines, and gas turbines.« less

  13. Thermodynamic and economic analysis of heat pumps for energy recovery in industrial processes

    NASA Astrophysics Data System (ADS)

    Urdaneta-B, A. H.; Schmidt, P. S.

    1980-09-01

    A computer code has been developed for analyzing the thermodynamic performance, cost and economic return for heat pump applications in industrial heat recovery. Starting with basic defining characteristics of the waste heat stream and the desired heat sink, the algorithm first evaluates the potential for conventional heat recovery with heat exchangers, and if applicable, sizes the exchanger. A heat pump system is then designed to process the residual heating and cooling requirements of the streams. In configuring the heat pump, the program searches a number of parameters, including condenser temperature, evaporator temperature, and condenser and evaporator approaches. All system components are sized for each set of parameters, and economic return is estimated and compared with system economics for conventional processing of the heated and cooled streams (i.e., with process heaters and coolers). Two case studies are evaluated, one in a food processing application and the other in an oil refinery unit.

  14. Investigating the use of a rational Runge Kutta method for transport modelling

    NASA Astrophysics Data System (ADS)

    Dougherty, David E.

    An unconditionally stable explicit time integrator has recently been developed for parabolic systems of equations. This rational Runge Kutta (RRK) method, proposed by Wambecq 1 and Hairer 2, has been applied by Liu et al.3 to linear heat conduction problems in a time-partitioned solution context. An important practical question is whether the method has application for the solution of (nearly) hyperbolic equations as well. In this paper the RRK method is applied to a nonlinear heat conduction problem, the advection-diffusion equation, and the hyperbolic Buckley-Leverett problem. The method is, indeed, found to be unconditionally stable for the linear heat conduction problem and performs satisfactorily for the nonlinear heat flow case. A heuristic limitation on the utility of RRK for the advection-diffusion equation arises in the Courant number; for the second-order accurate one-step two-stage RRK method, a limiting Courant number of 2 applies. First order upwinding is not as effective when used with RRK as with Euler one-step methods. The method is found to perform poorly for the Buckley-Leverett problem.

  15. Sensitivity of Austempering Heat Treatment of Ductile Irons to Changes in Process Parameters

    NASA Astrophysics Data System (ADS)

    Boccardo, A. D.; Dardati, P. M.; Godoy, L. A.; Celentano, D. J.

    2018-06-01

    Austempered ductile iron (ADI) is frequently obtained by means of a three-step austempering heat treatment. The parameters of this process play a crucial role on the microstructure of the final product. This paper considers the influence of some process parameters ( i.e., the initial microstructure of ductile iron and the thermal cycle) on key features of the heat treatment (such as minimum required time for austenitization and austempering and microstructure of the final product). A computational simulation of the austempering heat treatment is reported in this work, which accounts for a coupled thermo-metallurgical behavior in terms of the evolution of temperature at the scale of the part being investigated (the macroscale) and the evolution of phases at the scale of microconstituents (the microscale). The paper focuses on the sensitivity of the process by looking at a sensitivity index and scatter plots. The sensitivity indices are determined by using a technique based on the variance of the output. The results of this study indicate that both the initial microstructure and the thermal cycle parameters play a key role in the production of ADI. This work also provides a guideline to help selecting values of the appropriate process parameters to obtain parts with a required microstructural characteristic.

  16. Control of Byssochlamys and Related Heat-resistant Fungi in Grape Products

    PubMed Central

    King, A. Douglas; Michener, H. David; Ito, Keith A.

    1969-01-01

    Heat-resistant strains of Byssochlamys fulva, B. nivea, and other heat-resistant fungi were isolated from vineyard soil, grapes, grape-processing lines, and waste pomace. They are known to remain in grape juice occasionally and to grow in grape juice products. Ascospores of these fungi have a D value (decimal reduction time) of about 10 min at 190 F (88 C), but in the presence of 90 μliters of SO2 per liter (normally added to the juice) the D value was cut in half. Filtration through a commercial diatomaceous filter aid (also a common processing step) entrapped all but about 0.001% of experimentally added spores. Thus, heat in the presence of SO2 and filtration together can reduce the population of these spores by several orders of magnitude. Growth was also prevented by benzoate or sorbate in low concentrations. Oxygen must be reduced to extremely low levels before lack of oxygen limits growth. Images PMID:16349856

  17. Simultaneous fabrication of a microcavity absorber-emitter on a Ni-W alloy film

    NASA Astrophysics Data System (ADS)

    Nashun; Kagimoto, Masahiro; Iwami, Kentaro; Umeda, Norihiro

    2017-10-01

    A process for the simultaneous fabrication of microcavity structures on both sides of a film was proposed and demonstrated to develop a free-standing-type integrated absorber-emitter for use in solar thermophotovoltaic power generation systems. The absorber-emitter-integrated film comprised a heat-resistant Ni-W alloy deposited by electroplating. A two-step silicon mould was fabricated using deep reactive-ion etching and electron beam lithography. Cavity arrays with different unit sizes were successfully fabricated on both sides of the film; these arrays are suitable for use as a solar spectrum absorber and an infrared-selective emitter. Their emissivity spectra were characterised through UV-vis-NIR and Fourier transform infrared spectroscopy.

  18. Short sample training behavior of Nb-Ti fibers at 4. 2 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, L.S.; Judd, B.A.; Ocampo, G.

    Experimental results are presented for the stress required to cause quenching during successive runs when bare fibers of Nb-Ti are carrying subcritical currents with no cross field. The data fall into two distinct regimes attributed to regions of magnetic flux stability and instability. Microplastic deformation is believed to supply the energy to initiate the flux jump process in the magnetic instability regime, and is the only source of heat available for triggering a quench when the fiber is magnetically stable. In both cases, quenching is observed at stresses well below the mechanically observed elastic limit. Simple techniques for one-step trainingmore » and detraining are also described.« less

  19. Independence of surface morphology and reconstruction during the thermal preparation of perovskite oxide surfaces

    NASA Astrophysics Data System (ADS)

    Jäger, Maren; Teker, Ali; Mannhart, Jochen; Braun, Wolfgang

    2018-03-01

    Using a CO2 laser to directly heat the crystals from the back side, SrTiO3 substrates may be thermally prepared in situ for epitaxy without the need for ex-situ etching and annealing. We find that the formation of large terraces with straight steps at 900-1100 °C is independent of the formation of the ideal surface reconstruction for epitaxy, which requires temperatures in excess of 1200 °C to complete. The process may be universal, at least for perovskite oxide surfaces, as it also works, at different temperatures, for LaAlO3 and NdGaO3, two other widely used oxide substrate materials.

  20. Improving the Mechanical Properties of the Fusion Zone in Electron-Beam Welded Ti-5Al-5Mo-5V-3Cr Alloys

    NASA Astrophysics Data System (ADS)

    Marvel, Christopher J.; Sabol, Joseph C.; Pasang, Timotius; Watanabe, Masashi; Misiolek, Wojciech Z.

    2017-04-01

    It is well-known that ω-phase precipitates embrittle Ti-5553 alloys and that ω-phase embrittlement can be overcome with appropriate heat treatments. However, the microstructural evolution of electron-beam welded Ti-5553 is not as understood as compared to the cast or wrought material. This study compared the microstructures of as-welded and post-weld heat-treated specimens by scanning and transmission electron microscopy, and similarly compared the localized mechanical behavior of the fusion zones with microhardness testing and digital image correlation coupled tensile testing. The primary observations were that the embrittling ω-phase precipitates formed upon cooling, and could not be fully solutionized in a single-step treatment of 1077 K (804 °C) for 1 hour. It was also discovered that nanoscale α-phase precipitates nucleated after the single-step treatment, although they were small in number and sparsely distributed. However, a two-step heat treatment of 1077 K (804 °C) for 1 hour and 873 K (600 °C) for 4 hours completely solutionized the ω-phase and produced a dense network of 2- μm-wide α-phase plates, which significantly improved the mechanical properties. Overall, this study has shown that post-weld heat treatments improve the strength and ductility of electron-beam welded Ti-5553 alloys by controlling ω- and α-phase evolution.

  1. Carbon Fibers Conductivity Studies

    NASA Technical Reports Server (NTRS)

    Yang, C. Y.; Butkus, A. M.

    1980-01-01

    In an attempt to understand the process of electrical conduction in polyacrylonitrile (PAN)-based carbon fibers, calculations were carried out on cluster models of the fiber consisting of carbon, nitrogen, and hydrogen atoms using the modified intermediate neglect of differential overlap (MINDO) molecular orbital (MO) method. The models were developed based on the assumption that PAN carbon fibers obtained with heat treatment temperatures (HTT) below 1000 C retain nitrogen in a graphite-like lattice. For clusters modeling an edge nitrogen site, analysis of the occupied MO's indicated an electron distribution similar to that of graphite. A similar analysis for the somewhat less stable interior nitrogen site revealed a partially localized II electron distribution around the nitrogen atom. The differences in bonding trends and structural stability between edge and interior nitrogen clusters led to a two-step process proposed for nitrogen evolution with increasing HTT.

  2. Numerical modelling and experimental study of liquid evaporation during gel formation

    NASA Astrophysics Data System (ADS)

    Pokusaev, B. G.; Khramtsov, D. P.

    2017-11-01

    Gels are promising materials in biotechnology and medicine as a medium for storing cells for bioprinting applications. Gel is a two-phase system consisting of solid medium and liquid phase. Understanding of a gel structure evolution and gel aging during liquid evaporation is a crucial step in developing new additive bioprinting technologies. A numerical and experimental study of liquid evaporation was performed. In experimental study an evaporation process of an agarose gel layer located on Petri dish was observed and mass difference was detected using electronic scales. Numerical model was based on a smoothed particle hydrodynamics method. Gel in a model was represented as a solid-liquid system and liquid evaporation was modelled due to capillary forces and heat transfer. Comparison of experimental data and numerical results demonstrated that model can adequately represent evaporation process in agarose gel.

  3. Stabilization of an α/β-hydrolase by introducing proline residues: salicylic binding protein 2 from tobacco

    PubMed Central

    Huang, Jun; Jones, Bryan J.; Kazlauskas, Romas J.

    2015-01-01

    α/β-Hydrolases are important enzymes for biocatalysis, but their stability often limits their application. As a model α/β-hydrolase, we investigated a plant esterase, salicylic acid binding protein 2 (SABP2). SABP2 shows typical stability to urea (unfolding free energy 6.9±1.5 kcal/mol) and to heat inactivation (T1/215 min 49.2±0.5 °C). Denaturation in urea occurs in two steps, but heat inactivation occurs in a single step. The first unfolding step in urea eliminates catalytic activity. Surprisingly, we found that the first unfolding likely corresponds to the unfolding of the larger catalytic domain. Replacing selected amino acid residues with proline stabilized SABP2. Proline restricts the flexibility of the unfolded protein, thereby shifting the equilibrium toward the folded conformation. Seven locations for proline substitution were chosen either by amino acid sequence alignment with a more stable homolog or by targeting flexible regions in SABP2. Introducing proline in the catalytic domain stabilized SABP2 to the first unfolding in urea for three of five cases: L46P (+0.2 M urea), S70P (+0.1) and E215P (+0.9). Introducing proline in the cap domain did not (two of two cases), supporting the assignment that the first unfolding corresponds to the catalytic domain. Proline substitutions in both domains stabilized SABP2 to heat inactivation: L46P (ΔT1/215 min = +6.4 °C), S70P (+5.4), S115P (+1.8), S141P (+4.9), and E215P (+4.2). Combining substitutions did not further increase the stability to urea denaturation, but dramatically increased resistance to heat inactivation: L46P-S70P ΔT1/215 min = +25.7 °C. This straightforward proline substitution approach may also stabilize other α/β-hydrolases. PMID:26110207

  4. Effective utilizations of palm oil mill fly ash for synthetic amorphous silica and carbon zeolite composite synthesis

    NASA Astrophysics Data System (ADS)

    Utama, P. S.; Saputra, E.; Khairat

    2018-04-01

    Palm Oil Mill Fly Ash (POMFA) the solid waste of palm oil industry was used as a raw material for synthetic amorphous silica and carbon zeolite composite synthesis in order to minimize the wastes of palm oil industry. The alkaline extraction combine with the sol-gel precipitation and mechanical fragmentation was applied to produce synthetic amorphous silica. The byproduct, extracted POMFA was rich in carbon and silica content in a significant amount. The microwave heated hydrothermal process used to synthesize carbon zeolite composite from the byproduct. The obtained silica had chemical composition, specific surface area and the micrograph similar to commercial precipitated silica for rubber filler. The microwave heated hydrothermal process has a great potential for synthesizing carbon zeolite composite. The process only needs one-step and shorter time compare to conventional hydrothermal process.

  5. Wrapping process for fabrication of A-15 superconducting composite wires

    DOEpatents

    Suenaga, M.; Klamut, C.J.; Luhman, T.S.

    1980-08-15

    A method for fabricating superconducting wires wherein a billet of copper containing filaments of niobium or vanadium is rolled to form a strip which is wrapped about a tin-alloy core to form a composite. The alloy is a tin-copper alloy for niobium filaments and a gallium-copper alloy for vanadium filaments. The composite is then drawn down to a desired wire size and heat treated. During the heat treatment process, the tin in the bronze reacts with the niobium to form the superconductor niobium tin. In the case where vanadium is used, the gallium in the gallium bronze reacts with the vanadium to form the superconductor vanadium gallium. This new process eliminates the costly annealing steps, external tin plating and drilling of bronze ingots required in a number of prior art processes.

  6. A two-stage heating scheme for heat assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Xiong, Shaomin; Kim, Jeongmin; Wang, Yuan; Zhang, Xiang; Bogy, David

    2014-05-01

    Heat Assisted Magnetic Recording (HAMR) has been proposed to extend the storage areal density beyond 1 Tb/in.2 for the next generation magnetic storage. A near field transducer (NFT) is widely used in HAMR systems to locally heat the magnetic disk during the writing process. However, much of the laser power is absorbed around the NFT, which causes overheating of the NFT and reduces its reliability. In this work, a two-stage heating scheme is proposed to reduce the thermal load by separating the NFT heating process into two individual heating stages from an optical waveguide and a NFT, respectively. As the first stage, the optical waveguide is placed in front of the NFT and delivers part of laser energy directly onto the disk surface to heat it up to a peak temperature somewhat lower than the Curie temperature of the magnetic material. Then, the NFT works as the second heating stage to heat a smaller area inside the waveguide heated area further to reach the Curie point. The energy applied to the NFT in the second heating stage is reduced compared with a typical single stage NFT heating system. With this reduced thermal load to the NFT by the two-stage heating scheme, the lifetime of the NFT can be extended orders longer under the cyclic load condition.

  7. Comparative kinetic analysis on thermal degradation of some cephalosporins using TG and DSC data

    PubMed Central

    2013-01-01

    Background The thermal decomposition of cephalexine, cefadroxil and cefoperazone under non-isothermal conditions using the TG, respectively DSC methods, was studied. In case of TG, a hyphenated technique, including EGA, was used. Results The kinetic analysis was performed using the TG and DSC data in air for the first step of cephalosporin’s decomposition at four heating rates. The both TG and DSC data were processed according to an appropriate strategy to the following kinetic methods: Kissinger-Akahira-Sunose, Friedman, and NPK, in order to obtain realistic kinetic parameters, even if the decomposition process is a complex one. The EGA data offer some valuable indications about a possible decomposition mechanism. The obtained data indicate a rather good agreement between the activation energy’s values obtained by different methods, whereas the EGA data and the chemical structures give a possible explanation of the observed differences on the thermal stability. A complete kinetic analysis needs a data processing strategy using two or more methods, but the kinetic methods must also be applied to the different types of experimental data (TG and DSC). Conclusion The simultaneous use of DSC and TG data for the kinetic analysis coupled with evolved gas analysis (EGA) provided us a more complete picture of the degradation of the three cephalosporins. It was possible to estimate kinetic parameters by using three different kinetic methods and this allowed us to compare the Ea values obtained from different experimental data, TG and DSC. The thermodegradation being a complex process, the both differential and integral methods based on the single step hypothesis are inadequate for obtaining believable kinetic parameters. Only the modified NPK method allowed an objective separation of the temperature, respective conversion influence on the reaction rate and in the same time to ascertain the existence of two simultaneous steps. PMID:23594763

  8. An experimental investigation on the thermal field of overlapping layers in laser-assisted tape winding process

    NASA Astrophysics Data System (ADS)

    Hosseini, S. M. A.; Baran, I.; Akkerman, R.

    2018-05-01

    The laser-assisted tape winding (LATW) is an automated process for manufacturing fiber-reinforced thermoplastic tubular products, such as pipes and pressure vessels. Multi-physical phenomena such as heat transfer, mechanical bonding, phase changes and solid mechanics take place during the process. These phenomena need to be understood and described well for an improved product reliability. Temperature is one of the important parameters in this process to control and optimize the product quality which can be employed in an intelligent model-based inline control system. The incoming tape can overlap with the already wounded layer during the process based on the lay-up configuration. In this situation, the incoming tape can step-on or step-off to an already deposited layer/laminate. During the overlapping, the part temperature changes due to the variation of the geometry caused by previously deposited layer, i.e. a bump geometry. In order to qualify the temperature behavior at the bump regions, an experimental set up is designed on a flat laminate. Artificial bumps/steps are formed on the laminate with various thicknesses and fiber orientations. As the laser head experiences the step-on and step-off, the IR (Infra-Red) camera and the embedded thermocouples measure the temperature on the surface and inside the laminate, respectively. During the step-on, a small drop in temperature is observed while in step-off a higher peak in temperature is observed. It can be concluded that the change in the temperature during overlapping is due to the change in laser incident angle made by the bump geometry. The effect of the step thickness on the temperature peak is quantified and found to be significant.

  9. Scale structure of aluminised Manet steel after HIP treatment

    NASA Astrophysics Data System (ADS)

    Glasbrenner, H.; Stein-Fechner, K.; Konys, J.

    2000-12-01

    Coatings on low activation steels are required in fusion technology in order to reduce the tritium permeation rate through the steel into the cooling water system by a factor of at least 100. Alumina seems to be a promising coating material. However, an appropriate coating system must also have the potential for self-healing since the ceramic alumina scale tends to fail if mechanical stress is applied. A technology is introduced here to form a ductile Al enriched surface scale on Manet II steel (Fe-10.3%Cr) with an alumina overlayer. This technology consists of two main process steps. Hot dip aluminising has been performed at 700°C for 30 s in order to introduce Al to the near surface zone. The very hard intermetallic scale Fe 2Al 5 which forms during the immersion process gets completely transformed into FeAl 2, FeAl and α-Fe(Al) phases during a subsequent hot isostatic press (HIP) process step at high pressure at 1040°C for 30 min. The pressures chosen for the HIPing were 1000 and 2000 bar. Without HIPing pores form due to the Kirkendall effect. The influence of the high pressure on the heat treatment (1040°C, 30 min) will be discussed in this paper.

  10. Stress memory induced rearrangements of HSP transcription, photosystem II photochemistry and metabolism of tall fescue (Festuca arundinacea Schreb.) in response to high-temperature stress

    PubMed Central

    Hu, Tao; Liu, Shu-Qian; Amombo, Erick; Fu, Jin-Min

    2015-01-01

    When plants are pre-exposed to stress, they can produce some stable signals and physiological reactions that may be carried forward as “stress memory”. However, there is insufficient information about plants' stress memory responses mechanisms. Here, two tall fescue genotypes, heat-tolerant PI 574522 and heat-sensitive PI 512315, were subjected to recurring high-temperature pre-acclimation treatment. Two heat shock protein (HSP) genes, LMW-HSP and HMW-HSP, exhibited transcriptional memory for their higher transcript abundance during one or more subsequent stresses (S2, S3, S4) relative to the first stress (S1), and basal transcript levels during the recovery states (R1, R2, and R3). Activated transcriptional memory from two trainable genes could persist up to 4 days, and induce higher thermotolerance in tall fescue. This was confirmed by greater turf quality and lower electrolyte leakage. Pre-acclimation treatment inhibited the decline at steps of O-J-I-P and energy transport fluxes in active Photosystem II reaction center (PSII RC) for both tall fescue genotypes. The heat stress memory was associated with major shifts in leaf metabolite profiles. Furthermore, there was an exclusive increase in leaf organic acids (citric acid, malic acid, tris phosphoric acid, threonic acid), sugars (sucrose, glucose, idose, allose, talose, glucoheptose, tagatose, psicose), amino acids (serine, proline, pyroglutamic acid, glycine, alanine), and one fatty acid (butanoic acid) in pre-acclimated plants. These observations involved in transcriptional memory, PSII RC energy transport and metabolite profiles could provide new insights into the plant high–temperature response process. PMID:26136755

  11. Single Crystal Synthesis and STM Studies of High Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Barrientos, Alfonso

    1997-01-01

    This is a final report for the work initiated in September of 1994 under the grant NAG8-1085 - NASA/OMU, on the fabrication of bulk and single crystal synthesis, specific heat measuring and STM studies of high temperature superconductors. Efforts were made to fabricate bulk and single crystals of mercury based superconducting material. A systematic thermal analysis on the precursors for the corresponding oxides and carbonates were carried out to synthesized bulk samples. Bulk material was used as seed in an attempt to grow single crystals by a two-step self flux process. On the other hand bulk samples were characterized by x-ray diffraction, electrical resistivity and magnetic susceptibility, We studied the specific heat behavior in the range from 80 to 300 K. Some preliminary attempts were made to study the atomic morphology of our samples. As part of our efforts we built an ac susceptibility apparatus for measuring the transition temperature of our sintered samples.

  12. Welding/sealing glass-enclosed space in a vacuum

    DOEpatents

    Tracy, C.E.; Benson, D.K.

    1996-02-06

    A method of welding and sealing the edges of two juxtaposed glass sheets together to seal a vacuum space between the sheets comprises the steps of positioning a radiation absorbent material, such as FeO, VO{sub 2}, or NiO, between the radiation transmissive glass sheets adjacent the edges and then irradiating the absorbent material, preferably with a laser beam, through at least one of the glass sheets. Heat produced by the absorbed radiation in the absorbent material melts glass in the portions of both glass sheets that are adjacent the absorbent material, and the melted glass from both sheets flows together to create the weld when the melted glass cools and hardens. The absorbent material can be dissolved and diffused into the melted glass to the extent that it no longer absorbs enough energy to keep the glass melted, thus, with appropriate proportioning of absorbent material to source energy power and welding heat needed, the process can be made self-stopping. 8 figs.

  13. Welding/sealing glass-enclosed space in a vacuum

    DOEpatents

    Tracy, C. Edwin; Benson, David K.

    1996-01-01

    A method of welding and sealing the edges of two juxtaposed glass sheets together to seal a vacuum space between the sheets comprises the steps of positioning a radiation absorbant material, such as FeO, VO.sub.2, or NiO, between the radiation transmissive glass sheets adjacent the edges and then irradiating the absorbant material, preferably with a laser beam, through at least one of the glass sheets. Heat produced by the absorbed radiation in the absorbant material melts glass in the portions of both glass sheets that are adjacent the absorbant material, and the melted glass from both sheets flows together to create the weld when the melted glass cools and hardens. The absorbant material can be dissolved and diffused into the melted glass to the extent that it no longer absorbs enough energy to keep the glass melted, thus, with appropriate proportioning of absorbant material to source energy power and welding heat needed, the process can be made self-stopping.

  14. Robotic Processing Of Rocket-Engine Nozzles

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Maslakowski, John E.; Gutow, David A.; Deily, David C.

    1994-01-01

    Automated manufacturing cell containing computer-controlled robotic processing system developed to implement some important related steps in fabrication of rocket-engine nozzles. Performs several tedious and repetitive fabrication, measurement, adjustment, and inspection processes and subprocesses now performed manually. Offers advantages of reduced processing time, greater consistency, excellent collection of data, objective inspections, greater productivity, and simplified fixturing. Also affords flexibility: by making suitable changes in hardware and software, possible to modify process and subprocesses. Flexibility makes work cell adaptable to fabrication of heat exchangers and other items structured similarly to rocket nozzles.

  15. Improved silicon nitride for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Yeh, H. C.; Wimmer, J. M.

    1986-01-01

    Silicon nitride is a high temperature material currently under consideration for heat engine and other applications. The objective is to improve the net shape fabrication technology of Si3N4 by injection molding. This is to be accomplished by optimizing the process through a series of statistically designed matrix experiments. To provide input to the matrix experiments, a wide range of alternate materials and processing parameters was investigated throughout the whole program. The improvement in the processing is to be demonstrated by a 20 percent increase in strength and a 100 percent increase in the Weibull modulus over that of the baseline material. A full characterization of the baseline process was completed. Material properties were found to be highly dependent on each step of the process. Several important parameters identified thus far are the starting raw materials, sinter/hot isostatic pressing cycle, powder bed, mixing methods, and sintering aid levels.

  16. Thermal sensors to control polymer forming. Challenge and solutions

    NASA Astrophysics Data System (ADS)

    Lemeunier, F.; Boyard, N.; Sarda, A.; Plot, C.; Lefèvre, N.; Petit, I.; Colomines, G.; Allanic, N.; Bailleul, J. L.

    2017-10-01

    Many thermal sensors are already used, for many years, to better understand and control material forming processes, especially polymer processing. Due to technical constraints (high pressure, sealing, sensor dimensions…) the thermal measurement is often performed in the tool or close its surface. Thus, it only gives partial and disturbed information. Having reliable information about the heat flux exchanges between the tool and the material during the process would be very helpful to improve the control of the process and to favor the development of new materials. In this work, we present several sensors developed in labs to study the molding steps in forming processes. The analysis of the obtained thermal measurements (temperature, heat flux) shows the required sensitivity threshold of sensitivity of thermal sensors to be able to detect on-line the rate of thermal reaction. Based on these data, we will present new sensor designs which have been patented.

  17. Smouldering (thermal) remediation of soil contaminated with industrial organic liquids: novel insights into heat transfer and kinetics uncovered by integrating experiments and modelling

    NASA Astrophysics Data System (ADS)

    Gerhard, J.; Zanoni, M. A. B.; Torero, J. L.

    2017-12-01

    Smouldering (i.e., flameless combustion) underpins the technology Self-sustaining Treatment for Active Remediation (STAR). STAR achieves the in situ destruction of nonaqueous phase liquids (NAPLs) by generating a self-sustained smouldering reaction that propagates through the source zone. This research explores the nature of the travelling reaction and the influence of key in situ and engineered characteristics. A novel one-dimensional numerical model was developed (in COMSOL) to simulate the smouldering remediation of bitumen-contaminated sand. This model was validated against laboratory column experiments. Achieving model validation depended on correctly simulating the energy balance at the reaction front, including properly accounting for heat transfer, smouldering kinetics, and heat losses. Heat transfer between soil and air was demonstrated to be generally not at equilibrium. Moreover, existing heat transfer correlations were found to be inappropriate for the low air flow Reynold's numbers (Re < 30) relevant in this and similar thermal remediation systems. Therefore, a suite of experiments were conducted to generate a new heat transfer correlation, which generated correct simulations of convective heat flow through soil. Moreover, it was found that, for most cases of interest, a simple two-step pyrolysis/oxidation set of kinetic reactions was sufficient. Arrhenius parameters, calculated independently from thermogravimetric experiments, allowed the reaction kinetics to be validated in the smouldering model. Furthermore, a simple heat loss term sufficiently accounted for radial heat losses from the column. Altogether, these advances allow this simple model to reasonably predict the self-sustaining process including the peak reaction temperature, the reaction velocity, and the complete destruction of bitumen behind the front. Simulations with the validated model revealed numerous unique insights, including how the system inherently recycles energy, how air flow rate and NAPL saturation dictate contaminant destruction rates, and the extremes that lead to extinction. Overall, this research provides unique insights into the complex interplay of thermochemical processes that govern the success of smouldering as well as other thermal remediation approaches.

  18. A niobium oxide-tantalum oxide selector-memristor self-aligned nanostack

    NASA Astrophysics Data System (ADS)

    Diaz Leon, Juan J.; Norris, Kate J.; Yang, J. Joshua; Sevic, John F.; Kobayashi, Nobuhiko P.

    2017-03-01

    The integration of nonlinear current-voltage selectors and bi-stable memristors is a paramount step for reliable operation of crossbar arrays. In this paper, the self-aligned assembly of a single nanometer-scale device that contains both a selector and a memristor is presented. The two components (i.e., selector and memristor) are vertically assembled via a self-aligned fabrication process combined with electroforming. In designing the device, niobium oxide and tantalum oxide are chosen as materials for selector and memristor, respectively. The formation of niobium oxide is visualized by exploiting the self-limiting reaction between niobium and tantalum oxide; crystalline niobium (di)oxide forms at the interface between metallic niobium and tantalum oxide via electrothermal heating, resulting in a niobium oxide selector self-aligned to a tantalum oxide memristor. A steady-state finite element analysis is used to assess the electrothermal heating expected to occur in the device. Current-voltage measurements and structural/chemical analyses conducted for the virgin device, the electroforming process, and the functional selector-memristor device are presented. The demonstration of a self-aligned, monolithically integrated selector-memristor device would pave a practical pathway to various circuits based on memristors attainable at manufacturing scales.

  19. Process for producing large grain cadmium telluride

    DOEpatents

    Hasoon, Falah S.; Nelson, Art J.

    1996-01-01

    A process for producing a cadmium telluride polycrystalline film having grain sizes greater than about 20 .mu.m. The process comprises providing a substrate upon which cadmium telluride can be deposited and placing that substrate within a vacuum chamber containing a cadmium telluride effusion cell. A polycrystalline film is then deposited on the substrate through the steps of evacuating the vacuum chamber to a pressure of at least 10.sup.-6 torr.; heating the effusion cell to a temperature whereat the cell releases stoichiometric amounts of cadmium telluride usable as a molecular beam source for growth of grains on the substrate; heating the substrate to a temperature whereat a stoichiometric film of cadmium telluride can be deposited; and releasing cadmium telluride from the effusion cell for deposition as a film on the substrate. The substrate then is placed in a furnace having an inert gas atmosphere and heated for a sufficient period of time at an annealing temperature whereat cadmium telluride grains on the substrate grow to sizes greater than about 20 .mu.m.

  20. Development of soft-sphere contact models for thermal heat conduction in granular flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, A. B.; Pannala, S.; Ma, Z.

    2016-06-08

    Conductive heat transfer to flowing particles occurs when two particles (or a particle and wall) come into contact. The direct conduction between the two bodies depends on the collision dynamics, namely the size of the contact area and the duration of contact. For soft-sphere discrete-particle simulations, it is computationally expensive to resolve the true collision time because doing so would require a restrictively small numerical time step. To improve the computational speed, it is common to increase the 'softness' of the material to artificially increase the collision time, but doing so affects the heat transfer. In this work, two physically-basedmore » correction terms are derived to compensate for the increased contact area and time stemming from artificial particle softening. By including both correction terms, the impact that artificial softening has on the conductive heat transfer is removed, thus enabling simulations at greatly reduced computational times without sacrificing physical accuracy.« less

  1. Exact analytical solution to a transient conjugate heat-transfer problem

    NASA Technical Reports Server (NTRS)

    Sucec, J.

    1973-01-01

    An exact analytical solution is found for laminar, constant-property, slug flow over a thin plate which is also convectively cooled from below. The solution is found by means of two successive Laplace transformations when a transient in the plate and the fluid is initiated by a step change in the fluid inlet temperature. The exact solution yields the transient fluid temperature, surface heat flux, and surface temperature distributions. The results of the exact transient solution for the surface heat flux are compared to the quasi-steady values, and a criterion for the validity of the quasi-steady results is found. Also the effect of the plate coupling parameter on the surface heat flux are investigated.

  2. Hierarchical modeling of heat transfer in silicon-based electronic devices

    NASA Astrophysics Data System (ADS)

    Goicochea Pineda, Javier V.

    In this work a methodology for the hierarchical modeling of heat transfer in silicon-based electronic devices is presented. The methodology includes three steps to integrate the different scales involved in the thermal analysis of these devices. The steps correspond to: (i) the estimation of input parameters and thermal properties required to solve the Boltzmann transport equation (BTE) for phonons by means of molecular dynamics (MD) simulations, (ii) the quantum correction of some of the properties estimated with MD to make them suitable for BTE and (iii) the numerical solution of the BTE using the lattice Boltzmann method (LBM) under the single mode relaxation time approximation subject to different initial and boundary conditions, including non-linear dispersion relations and different polarizations in the [100] direction. Each step of the methodology is validated with numerical, analytical or experimental reported data. In the first step of the methodology, properties such as, phonon relaxation times, dispersion relations, group and phase velocities and specific heat are obtained with MD at of 300 and 1000 K (i.e. molecular temperatures). The estimation of the properties considers the anhamonic nature of the potential energy function, including the thermal expansion of the crystal. Both effects are found to modify the dispersion relations with temperature. The behavior of the phonon relaxation times for each mode (i.e. longitudinal and transverse, acoustic and optical phonons) is identified using power functions. The exponents of the acoustic modes are agree with those predicted theoretically perturbation theory at high temperatures, while those for the optical modes are higher. All properties estimated with MD are validated with values for the thermal conductivity obtained from the Green-Kubo method. It is found that the relative contribution of acoustic modes to the overall thermal conductivity is approximately 90% at both temperatures. In the second step, two new quantum correction alternatives are applied to correct the results obtained with MD. The alternatives consider the quantization of the energy per phonon mode. In addition, the effect of isotope scattering is included in the phonon-phonon relaxation time values previously determined in the first step. It is found that both the quantization of the energy and the inclusion of scattering with isotopes significant reduce the contribution of high-frequency modes to the overall thermal conductivity. After these two effects are considered, the contribution of optical modes reduces to less than 2.4%. In this step, two sets of properties are obtained. The first one results from the application of quantum corrections to abovementioned properties, while the second is obtained including also the isotope scattering. These sets of properties are identified in this work as isotope-enriched silicon (isoSi) and natural silicon (natSi) and are used along other phonon relaxation time models in the last step of our methodology. Before we solve the BTE using the LBM, a new dispersive lattice Boltzmann formulation is proposed. The new dispersive formulation is based on constant lattice spacings (CLS) and flux limiters, rather than constant time steps (as previously reported). It is found that the new formulation significantly reduces the computation cost and complexity of the solution of the BTE, without affecting the thermal predictions. Lastly, in the last step of our methodology, we solve the BTE. The equation is solved under the relaxation time approximation using our thermal properties estimated for isoSi and natSi and using two phonon formulations. The phonon formulations include a gray model and the new dispersive method. For comparison purposes, the BTE is also solved using the phenomenological and theoretical phonon relaxation time models of Holland, and Han and Klemens. Different thermal predictions in steady and transient states are performed to illustrate the application of the methodology in one- and two-dimensional silicon films and in silicon-over-insulator (SOI) transistors. These include the determination of bulk and film thermal conductivities (i.e. out-of-plane and in-plane), and the transient evolution of the wall heat flux and temperature for films of different thicknesses. In addition, the physics of phonons is further analyzed in terms of the influence and behavior of acoustic and optical modes in the thermal predictions and the effect of phonon confinement in the thermal response of SOI-like transistors subject to different self-heating conditions.

  3. Consolidation of lunar regolith: Microwave versus direct solar heating

    NASA Technical Reports Server (NTRS)

    Kunitzer, J.; Strenski, D. G.; Yankee, S. J.; Pletka, B. J.

    1991-01-01

    The production of construction materials on the lunar surface will require an appropriate fabrication technique. Two processing methods considered as being suitable for producing dense, consolidated products such as bricks are direct solar heating and microwave heating. An analysis was performed to compare the two processes in terms of the amount of power and time required to fabricate bricks of various size. The regolith was considered to be a mare basalt with an overall density of 60 pct. of theoretical. Densification was assumed to take place by vitrification since this process requires moderate amounts of energy and time while still producing dense products. Microwave heating was shown to be significantly faster compared to solar furnace heating for rapid production of realistic-size bricks.

  4. Hybrid C-nanotubes/Si 3D nanostructures by one-step growth in a dual-plasma reactor

    NASA Astrophysics Data System (ADS)

    Toschi, Francesco; Orlanducci, Silvia; Guglielmotti, Valeria; Cianchetta, Ilaria; Magni, Corrado; Terranova, Maria Letizia; Pasquali, Matteo; Tamburri, Emanuela; Matassa, Roberto; Rossi, Marco

    2012-06-01

    Hybrid nanostructures consisting of Si polycrystalline nanocones, with an anemone-like termination coated with C-nanotubes bundles, have been generated on a (1 0 0) Si substrate in a dual mode microwave/radio-frequency plasma reactor. The substrate is both heated and bombarded by energetic H ions during the synthesis process. The nanocones growth is explained considering pull of the growing Si nanocrystalline phase along the lines of the electrical field, likely via a molten/recrystallization mechanism. The one-step building of the achieved complex 3D architectures is described in terms of dynamic competition between Si and C nanotubes growth under the peculiar conditions of kinetically driven processes.

  5. Potential for solar industrial process heat in the United States: A look at California

    NASA Astrophysics Data System (ADS)

    Kurup, Parthiv; Turchi, Craig

    2016-05-01

    The use of Concentrating Solar Power (CSP) collectors (e.g., parabolic trough or linear Fresnel systems) for industrial thermal applications has been increasing in global interest in the last few years. In particular, the European Union has been tracking the deployment of Solar Industrial Process Heat (SIPH) plants. Although relatively few plants have been deployed in the United States (U.S.), we establish that 29% of primary energy consumption in the U.S. manufacturing sector is used for process heating. Perhaps the best opportunities for SIPH reside in the state of California due to its excellent solar resource, strong industrial base, and solar-friendly policies. This initial analysis identified 48 TWhth/year of process heat demand in certain California industries versus a technical solar-thermal energy potential of 23,000 TWhth/year. The top five users of industrial steam in the state are highlighted and special attention paid to the food sector that has been an early adopter of SIPH in other countries. A comparison of the cost of heat from solar-thermal collectors versus the cost of industrial natural gas in California indicates that SIPH may be cost effective even under the relatively low gas prices seen in 2014. A recommended next step is the identification of pilot project candidates to promote the deployment of SIPH facilities.

  6. Potential for Solar Industrial Process Heat in the United States: A Look at California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurup, Parthiv; Turchi, Craig

    The use of Concentrating Solar Power (CSP) collectors (e.g., parabolic trough or linear Fresnel systems) for industrial thermal applications has been increasing in global interest in the last few years. In particular, the European Union has been tracking the deployment of Solar Industrial Process Heat (SIPH) plants. Although relatively few plants have been deployed in the United States (U.S.), we establish that 29% of primary energy consumption in the U.S. manufacturing sector is used for process heating. Perhaps the best opportunities for SIPH reside in the state of California due to its excellent solar resource, strong industrial base, and solar-friendlymore » policies. This initial analysis identified 48 TWhth/year of process heat demand in certain California industries versus a technical solar-thermal energy potential of 23,000 TWhth/year. The top five users of industrial steam in the state are highlighted and special attention paid to the food sector that has been an early adopter of SIPH in other countries. A comparison of the cost of heat from solar-thermal collectors versus the cost of industrial natural gas in California indicates that SIPH may be cost effective even under the relatively low gas prices seen in 2014. A recommended next step is the identification of pilot project candidates to promote the deployment of SIPH facilities.« less

  7. Performance Prediction and Simulation of Gas Turbine Engine Operation for Aircraft, Marine, Vehicular, and Power Generation

    DTIC Science & Technology

    2007-02-01

    gas turbine systems is the Brayton cycle that passes atmospheric air, the working fluid, through the turbine only once. The thermodynamic steps of the... Brayton cycle include compression of atmospheric air, introduction and ignition of fuel, and expansion of the heated combustion gases through the...the two heat recovery steam generators to generate steam. The gas turbine model is built by connecting the individual components of the Brayton

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell E. Feder and Mahmoud Z. Youssef

    Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of a large aperture diagnostic were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture. The neutronics discrete-ordinates code ATTILA® and SEVERIAN® (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken from themore » ITER “Brand Model” MCNP benchmark model. A biased quadrature set equivelant to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and Large Aperture cases. The Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 μSv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 μSv/hr but fell below the limit to 90 μSv/hr 2-weeks later. The Large Aperture style shielding model exhibited higher and more persistent dose rates. After 1-day the dose rate was 230 μSv/hr but was still at 120 μSv/hr 4-weeks later.« less

  9. Production and Purification of the Native Saccharomyces cerevisiae Hsp12 in Escherichia coli.

    PubMed

    Léger, Antoine; Hocquellet, Agnès; Dieryck, Wilfrid; Moine, Virginie; Marchal, Axel; Marullo, Philippe; Josseaume, Annabelle; Cabanne, Charlotte

    2017-09-20

    Hsp12 is a small heat shock protein produced in many organisms, including the yeast Saccharomyces cerevisiae. It has been described as an indicator of yeast stress rate and has also been linked to the sweetness sensation of wine. To obtain a sufficient amount of protein, we produced and purified Hsp12 without tag in Escherichia coli. A simple fast two-step process was developed using a microplate approach and a design of experiments. A capture step on an anion-exchange salt-tolerant resin was followed by size exclusion chromatography for polishing, leading to a purity of 97%. Thereafter, specific anti-Hsp12 antibodies were obtained by rabbit immunization. An ELISA was developed to quantify Hsp12 in various strains of Saccharomyces cerevisiae. The antibodies showed high specificity and allowed the quantitation of Hsp12 in the yeast. The quantities of Hsp12 measured in the strains differed in direct proportion to the level of expression found in previous studies.

  10. A review on wetting and water condensation - Perspectives for CO2 condensation.

    PubMed

    Snustad, Ingrid; Røe, Ingeborg T; Brunsvold, Amy; Ervik, Åsmund; He, Jianying; Zhang, Zhiliang

    2018-06-01

    Liquefaction of vapor is a necessary, but energy intensive step in several important process industries. This review identifies possible materials and surface structures for promoting dropwise condensation, known to increase efficiency of condensation heat transfer. Research on superhydrophobic and superomniphobic surfaces promoting dropwise condensation constitutes the basis of the review. In extension of this, knowledge is extrapolated to condensation of CO 2 . Global emissions of CO 2 need to be minimized in order to reduce global warming, and liquefaction of CO 2 is a necessary step in some carbon capture, transport and storage (CCS) technologies. The review is divided into three main parts: 1) An overview of recent research on superhydrophobicity and promotion of dropwise condensation of water, 2) An overview of recent research on superomniphobicity and dropwise condensation of low surface tension substances, and 3) Suggested materials and surface structures for dropwise CO 2 condensation based on the two first parts. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, Igor; Ronningen, Reginald Martin

    The research studied one-step and two-step Isotope Separation on Line (ISOL) targets for future radioactive beam facilities with high driver-beam power through advanced computer simulations. As a target material uranium carbide in the form of foils was used because of increasing demand for actinide targets in rare-isotope beam facilities and because such material was under development in ISAC at TRIUMF when this project started. Simulations of effusion were performed for one-step and two step targets and the effects of target dimensions and foil matrix were studied. Diffusion simulations were limited by availability of diffusion parameters for UC x material atmore » reduced density; however, the viability of the combined diffusion?effusion simulation methodology was demonstrated and could be used to extract physical parameters such as diffusion coefficients and effusion delay times from experimental isotope release curves. Dissipation of the heat from the isotope-producing targets is the limiting factor for high-power beam operation both for the direct and two-step targets. Detailed target models were used to simulate proton beam interactions with the targets to obtain the fission rates and power deposition distributions, which were then applied in the heat transfer calculations to study the performance of the targets. Results indicate that a direct target, with specification matching ISAC TRIUMF target, could operate in 500-MeV proton beam at beam powers up to ~40 kW, producing ~8 10 13 fission/s with maximum temperature in UCx below 2200 C. Targets with larger radius allow higher beam powers and fission rates. For the target radius in the range 9-mm to 30-mm the achievable fission rate increases almost linearly with target radius, however, the effusion delay time also increases linearly with target radius.« less

  12. Effects of heat shocks on microbial community structure and microbial activity of a methanogenic enrichment degrading benzoate.

    PubMed

    Mei, R; Narihiro, T; Nobu, M K; Liu, W-T

    2016-11-01

    In anaerobic digesters, temperature fluctuation could lead to process instability and failure. It is still not well understood how digester microbiota as a whole respond to heat shock, and what specific organisms are vulnerable to perturbation or responsible for process recovery after perturbation. To address these questions, a mesophilic benzoate-degrading methanogenic culture enriched from digester was subjected to different levels of heat shock. Three types of methane production profiles after perturbation were observed in comparison to the control: uninhibited, inhibited with later recovery, and inhibited without recovery. These responses were correlated with the microbial community compositions based on the analyses of 16S rRNA and 16S rRNA gene. Specifically, the primary benzoate-degrading syntroph was highly affected by heat shock, and its abundance and activity were both crucial to the restoration of benzoate degradation after heat shock. In contrast, methanogens were stable regardless whether methane production was inhibited. Populations related to 'Candidatus Cloacimonetes' and Firmicutes showed stimulated growth. These observations indicated distinct physiological traits and ecological niches associated with individual microbial groups. The results obtained after exposure to heat shock can be critical to more comprehensive characterization of digester ecology under perturbations. Anaerobic digestion is an essential step in municipal wastewater treatment owing to its striking capacity of reducing wasted sludge and recovering energy. However, as an elaborate microbial process, it requires constant temperature control and is sensitive to heat shock. In this study, we explored the microbial response to heat shock of a methanogenic culture enriched from anaerobic digester sludge. Microorganisms that were vulnerable to perturbation or responsible for process recovery after perturbation were identified. © 2016 The Society for Applied Microbiology.

  13. Method for producing catalysis from coal

    DOEpatents

    Farcasiu, Malvina; Derbyshire, Frank; Kaufman, Phillip B.; Jagtoyen, Marit

    1998-01-01

    A method for producing catalysts from coal is provided comprising mixing an aqueous alkali solution with the coal, heating the aqueous mixture to treat the coal, drying the now-heated aqueous mixture, reheating the mixture to form carbonized material, cooling the mixture, removing excess alkali from the carbonized material, and recovering the carbonized material, wherein the entire process is carried out in controlled atmospheres, and the carbonized material is a hydrocracking or hydrodehalogenation catalyst for liquid phase reactions. The invention also provides for a one-step method for producing catalysts from coal comprising mixing an aqueous alkali solution with the coal to create a mixture, heating the aqueous mixture from an ambient temperature to a predetermined temperature at a predetermined rate, cooling the mixture, and washing the mixture to remove excess alkali from the treated and carbonized material, wherein the entire process is carried out in a controlled atmosphere.

  14. Method for producing catalysts from coal

    DOEpatents

    Farcasiu, M.; Derbyshire, F.; Kaufman, P.B.; Jagtoyen, M.

    1998-02-24

    A method for producing catalysts from coal is provided comprising mixing an aqueous alkali solution with the coal, heating the aqueous mixture to treat the coal, drying the now-heated aqueous mixture, reheating the mixture to form carbonized material, cooling the mixture, removing excess alkali from the carbonized material, and recovering the carbonized material, wherein the entire process is carried out in controlled atmospheres, and the carbonized material is a hydrocracking or hydrodehalogenation catalyst for liquid phase reactions. The invention also provides for a one-step method for producing catalysts from coal comprising mixing an aqueous alkali solution with the coal to create a mixture, heating the aqueous mixture from an ambient temperature to a predetermined temperature at a predetermined rate, cooling the mixture, and washing the mixture to remove excess alkali from the treated and carbonized material, wherein the entire process is carried out in a controlled atmosphere. 1 fig.

  15. Field-temperature phase diagrams of freestanding and substrate-constrained epitaxial Ni-Mn-Ga-Co films for magnetocaloric applications

    NASA Astrophysics Data System (ADS)

    Diestel, A.; Niemann, R.; Schleicher, B.; Schwabe, S.; Schultz, L.; Fähler, S.

    2015-07-01

    Ferroic cooling processes that rely on field-induced first-order transformations of solid materials are a promising step towards a more energy-efficient refrigeration technology. In particular, thin films are discussed for their fast heat transfer and possible applications in microsystems. Substrate-constrained films are not useful since their substrates act as a heat sink. In this article, we examine a substrate-constrained and a freestanding epitaxial film of magnetocaloric Ni-Mn-Ga-Co. We compare phase diagrams and entropy changes obtained by magnetic field and temperature scans, which differ. We observe an asymmetry of the hysteresis between heating and cooling branch, which vanishes at high magnetic fields. These effects are discussed with respect to the vector character of a magnetic field, which acts differently on the nucleation and growth processes compared to the scalar character of the temperature.

  16. High resolution frequency to time domain transformations applied to the stepped carrier MRIS measurements

    NASA Technical Reports Server (NTRS)

    Ardalan, Sasan H.

    1992-01-01

    Two narrow-band radar systems are developed for high resolution target range estimation in inhomogeneous media. They are reformulations of two presently existing systems such that high resolution target range estimates may be achieved despite the use of narrow bandwidth radar pulses. A double sideband suppressed carrier radar technique originally derived in 1962, and later abandoned due to its inability to accurately measure target range in the presence of an interfering reflection, is rederived to incorporate the presence of an interfering reflection. The new derivation shows that the interfering reflection causes a period perturbation in the measured phase response. A high resolution spectral estimation technique is used to extract the period of this perturbation leading to accurate target range estimates independent of the signal-to-interference ratio. A non-linear optimal signal processing algorithm is derived for a frequency-stepped continuous wave radar system. The resolution enhancement offered by optimal signal processing of the data over the conventional Fourier Transform technique is clearly demonstrated using measured radar data. A method for modeling plane wave propagation in inhomogeneous media based on transmission line theory is derived and studied. Several simulation results including measurement of non-uniform electron plasma densities that develop near the heat tiles of a space re-entry vehicle are presented which verify the validity of the model.

  17. Process for Preparing a Tough, Soluble, Aromatic, Thermoplastic Copolyimide

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor)

    1997-01-01

    A process for preparing a tough, soluble, aromatic, thermoplastic copolyimide is provided. The process comprises the steps of (a) providing 4.4'-oxydiphthalic anhydride to 3,4,3',4'-biphenyltetracarboxylic dianhydride at a mole ratio ranging from about 25 mole percent to 75 mole percent to 75 mole percent to about 25 mole percent; (b) adding 3,4'-oxydianiline to form a mixture; (c) adding a polar aprotic or polar protic solvent to the mixture to form a solution having a percentage of solids capable of maintaining polymer solubility; (d) stirring the solution to allow it to react; (e) adding an azeotropic solvent to the solution and heating to remove water; (f) cooling the solution of step (e) to room temperature and recovering the tough, soluble, aromatic, thermoplastic copolyimide.

  18. Methanol from CO2 by organo-cocatalysis: CO2 capture and hydrogenation in one process step.

    PubMed

    Reller, Christian; Pöge, Matthias; Lißner, Andreas; Mertens, Florian O R L

    2014-12-16

    Carbon dioxide chemically bound to alcohol-amines was hydrogenated to methanol under retrieval of these industrially used CO2 capturing reagents. The energetics of the process can be seen as a partial cancellation of the exothermic heat of reaction of the hydrogenation with the endothermic one of the CO2 release from the capturing reagent. The process provides a means to significantly improve the energy efficiency of CO2 to methanol conversions.

  19. Using stepped anvils to make even insulation layers in laser-heated diamond-anvil cell samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Zhixue; Gu, Tingting; Dobrosavljevic, Vasilije

    Here, we describe a method to make even insulation layers for high-pressure laser-heated diamond-anvil cell samples using stepped anvils. Moreover, the method works for both single-sided and double-sided laser heating using solid or fluid insulation. The stepped anvils are used as matched pairs or paired with a flat culet anvil to make gasket insulation layers and not actually used at high pressures; thus, their longevity is ensured. We also compare the radial temperature gradients and Soret diffusion of iron between self-insulating samples and samples produced with stepped anvils and find that less pronounced Soret diffusion occurs in samples with evenmore » insulation layers produced by stepped anvils.« less

  20. Using stepped anvils to make even insulation layers in laser-heated diamond-anvil cell samples

    DOE PAGES

    Du, Zhixue; Gu, Tingting; Dobrosavljevic, Vasilije; ...

    2015-09-01

    Here, we describe a method to make even insulation layers for high-pressure laser-heated diamond-anvil cell samples using stepped anvils. Moreover, the method works for both single-sided and double-sided laser heating using solid or fluid insulation. The stepped anvils are used as matched pairs or paired with a flat culet anvil to make gasket insulation layers and not actually used at high pressures; thus, their longevity is ensured. We also compare the radial temperature gradients and Soret diffusion of iron between self-insulating samples and samples produced with stepped anvils and find that less pronounced Soret diffusion occurs in samples with evenmore » insulation layers produced by stepped anvils.« less

  1. Method of coating an iron-based article

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magdefrau, Neal; Beals, James T.; Sun, Ellen Y.

    A method of coating an iron-based article includes a first heating step of heating a substrate that includes an iron-based material in the presence of an aluminum source material and halide diffusion activator. The heating is conducted in a substantially non-oxidizing environment, to cause the formation of an aluminum-rich layer in the iron-based material. In a second heating step, the substrate that has the aluminum-rich layer is heated in an oxidizing environment to oxidize the aluminum in the aluminum-rich layer.

  2. Effect of Microstructure on Time Dependent Fatigue Crack Growth Behavior In a P/M Turbine Disk Alloy

    NASA Technical Reports Server (NTRS)

    Telesman, Ignacy J.; Gabb, T. P.; Bonacuse, P.; Gayda, J.

    2008-01-01

    A study was conducted to determine the processes which govern hold time crack growth behavior in the LSHR disk P/M superalloy. Nineteen different heat treatments of this alloy were evaluated by systematically controlling the cooling rate from the supersolvus solutioning step and applying various single and double step aging treatments. The resulting hold time crack growth rates varied by more than two orders of magnitude. It was shown that the associated stress relaxation behavior for these heat treatments was closely correlated with the crack growth behavior. As stress relaxation increased, the hold time crack growth resistance was also increased. The size of the tertiary gamma' in the general microstructure was found to be the key microstructural variable controlling both the hold time crack growth behavior and stress relaxation. No relationship between the presence of grain boundary M23C6 carbides and hold time crack growth was identified which further brings into question the importance of the grain boundary phases in determining hold time crack growth behavior. The linear elastic fracture mechanics parameter, Kmax, is unable to account for visco-plastic redistribution of the crack tip stress field during hold times and thus is inadequate for correlating time dependent crack growth data. A novel methodology was developed which captures the intrinsic crack driving force and was able to collapse hold time crack growth data onto a single curve.

  3. Extracellular heat shock protein HSP90{beta} secreted by MG63 osteosarcoma cells inhibits activation of latent TGF-{beta}1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Shigeki; Kulkarni, Ashok B., E-mail: ak40m@nih.gov

    2010-07-30

    Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex, which consists of latency-associated peptide (LAP) and the mature ligand. The release of the mature ligand from LAP usually occurs through conformational change of the latent complex and is therefore considered to be the first step in the activation of the TGF-{beta} signaling pathway. So far, factors such as heat, pH changes, and proteolytic cleavage are reportedly involved in this activation process, but the precise molecular mechanism is still far from clear. Identification and characterization of the cell surface proteins that bind to LAP are important to our understandingmore » of the latent TGF-{beta} activation process. In this study, we have identified heat shock protein 90 {beta} (HSP90{beta}) from the cell surface of the MG63 osteosarcoma cell line as a LAP binding protein. We have also found that MG63 cells secrete HSP90{beta} into extracellular space which inhibits the activation of latent TGF-{beta}1, and that there is a subsequent decrease in cell proliferation. TGF-{beta}1-mediated stimulation of MG63 cells resulted in the increased cell surface expression of HSP90{beta}. Thus, extracellular HSP90{beta} is a negative regulator for the activation of latent TGF-{beta}1 modulating TGF-{beta} signaling in the extracellular domain. -- Research highlights: {yields} Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex. {yields} This complex consists of latency-associated peptide (LAP) and the mature ligand. {yields} The release of the mature ligand from LAP is the first step in TGF-{beta} activation. {yields} We identified for the first time a novel mechanism for this activation process. {yields} Heat shock protein 90 {beta} is discovered as a negative regulator for this process.« less

  4. Method for improving the mechanical properties of uranium-1 to 3 wt % zirconium alloy

    DOEpatents

    Anderson, R.C.

    1983-11-22

    A uranium-1 to 3 wt % zirconium alloy characterized by high strength, high ductility and stable microstructure is fabricated by an improved thermal mechanical process. A homogenous ingot of the alloy which has been reduced in thickness of at least 50% in the two-step forging operation, rolled into a plate with a 75% reduction and then heated in vacuum at a temperature of about 750 to 850/sup 0/C and then quenched in water, is subjected to further thermal-mechanical operation steps to increase the compressive yield strength approximately 30%, stabilize the microstructure, and decrease the variations in mechanical properties throughout the plate is provided. These thermal-mechanical steps are achieved by cold rolling the quenchd plate to reduce the thickness thereof about 8 to 12%, aging the cold rolled plate at a first temperature of about 325 to 375/sup 0/C for five to six hours and then aging the plate at a higher temperature ranging from 480 to 500/sup 0/C for five to six hours prior to cooling the billet to ambient conditions and sizing the billet or plate into articles provides the desired increase in mechanical properties and phase stability throughout the plate.

  5. Fabrication and characterization of nanoclay modified PMR type polyimide composites reinforced with 3D woven basalt fabric

    NASA Astrophysics Data System (ADS)

    Xie, Jianfei; Qiu, Yiping

    2009-07-01

    Nanoclay modified PMR type polyimide composites were prepared from 3D orthogonal woven basalt fiber performs and nanoclay modified polyimide matrix resin, which derived from methylene dianiline (MDA), dimethyl ester of 3,3',4,4'- oxydiphthalic acid (ODPE), monomethyl ester of cis-5-norbornene-endo-2,3-dicarboxylic acid (NE) and nanoclay. The Na+-montmorillonite was organically treated using a 1:1 molar ratio mixture of dodecylamine (C12) and MDA. The rheological properties of neat B-stage PMR polyimide and 2% clay modified B-stage PMR polyimide were investigated. Based on the results obtained from the rheological tests, a two step compression molding process can be established for the composites. In the first step, the 3D fabric preforms were impregnated with polyimide resin in a vacuum oven and heated up for degassing the volatiles and by-products. In the second step, composites were compressed. The internal structure of the composites was observed by a microscope. Incorporation of 2% clay showed an improvement in the Tg and stiffness of the PMR polyimide. The resulting composites exhibited high thermal stability and good mechanical properties.

  6. Multi-scale Microstructure Characterization for Improved Understanding of Microstructure-Property Relationship in Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Song, Hye Yun

    Additive manufacturing (AM) is the process for making 3-D objects by adding materials layer by layer. It can result in a marked reduction of the time and cost associated with designing and producing highly complex parts. Over the past decade, significant progress has been made in machine hardware and control software for process development to achieve dimensional accuracy and mitigate defects. On the other hand, the knowledge on microstructure-property relationship in the additively manufactured builds is still being established. In additive manufacturing, the interactions between the heat source and the material lead to a series of physical phenomena including localized heating, melting, solidification and micro-segregation, and cooling. Far-from-equilibrium microstructure can form as the material experiences a large number of repeated, rapid heating and cooling cycles (i.e. temperature gyrations) during depositions. The mechanical properties of additively manufactured parts are significantly influenced by their final microstructure. The overarching goal of the present research is to improve the fundamental understanding of microstructure-property relationship for AM parts. Specially, it is investigated the high-temperature creep strength of InconelRTM 718 (abbreviated as IN718 thereafter) fabricated by laser-powder bed fusion (L-PBF) AM. The specific objectives include (1) effect of support on the local microstructure, (2) microstructure evolution during post-built heat treatment, and (3) creep strength. Detailed microstructure characterization is performed using a multitude of tools including micro-hardness mapping, scanning electron microscope (SEM) along with electron backscatter diffraction (EBSD), and transmission electron microscope (TEM) for selected area diffraction (SAD) analysis and energy-dispersive X-ray spectroscopy (EDS). The characterized microstructure is correlated to the mechanical properties. Highlights of the research findings are discussed in the following. A support is a "temporary" structure typically built in-situ with the primary part to provide the structural support to the mass of overhanging features; it is subsequently removed after fabrication. During the building process, the existence of such support can affect the local heat flow from the build to the substrate, which in turn may influence the local microstructure. The first objective of this research is to develop a fundamental understanding of the effect of the support on the microstructure fabricated by L-PBF AM. Two groups of as-built samples, with support and without support, are studied. SEM along with EBSD is used to analyze the microstructure characteristics including the growth of the microstructures, the fraction of different microstructure and the misorientation among the microstructure grains. At the nano-scale resolution, TEM is used to identify the precipitate phases. In addition, the micro-hardness values are also measured for samples built with and without support. As a precipitation-strengthened alloy, the heat treatment is critical for IN718, since the desired mechanical properties, such as high-temperature tensile and creep strength, are only acquired by the formation of the strengthening precipitates, namely gamma' prime and gamma''. Currently, the industrial standards for the heat treatment of IN718 are developed for cast and wrought cases and not specifically for AM builds. Thus, it is essential to evaluate the effect of the heat treatment on the formation of the strengthening precipitates in IN718 builds fabricated by L-PBF AM, which is the focus of the second objective. Particularly, a modification to the industry standard heat treatment is developed to maximize the fraction of the strengthening precipitates in the IN718 builds. The microstructural characterizations are performed for several modified heat treatment cases including a homogenization step, solution annealing step and aging step. The micro-hardness values are measured for as-built conditions and several heat-treated conditions including the modified homogenization, solution anneal and aging steps. Finally, the oxidation behavior during the heat treatment is also discussed and compared to that for a piece of actual cast. The third objective of the present study is the evaluation of the mechanical properties of heat-treated IN718 builds produced by L-PBF AM. Particularly, creep test are performed to quantify the mechanical properties of the heat-treated IN718 builds. The creep samples are heat-treated using the following condition: homogenization at 1100 °C for 2 hours followed by air cooling (AC), and aging at 760 °C for 10 hours also followed by AC. For the creep test, the samples are loaded at a constant stress (690 MPa or 100 ksi) at 649 °C (1200 °F) in accordance to Aerospace Material Standards (AMS) 5663. The creep rate of the heat-treated AM sample is compared with the literature data for wrought cases. The relationship of creep strength to the characteristic of the microstructures in the heat-treated IN718 builds is discussed. In summary, the research results provide insights into the microstructure-creep-strength relationship for IN718 fabricated by additive manufacturing. Particularly, a modified post-built heat treatment is developed to maximize the formation of strengthening precipitates and achieve large grains in IN718, resulting in a markedly higher creep strength when compared to the literature data for wrought cases. Taken as a whole, the new knowledge generated in this dissertation is essential to ensure the performance of additively manufactured parts in structural applications.

  7. A combined approach of self-referencing and Principle Component Thermography for transient, steady, and selective heating scenarios

    NASA Astrophysics Data System (ADS)

    Omar, M. A.; Parvataneni, R.; Zhou, Y.

    2010-09-01

    Proposed manuscript describes the implementation of a two step processing procedure, composed of the self-referencing and the Principle Component Thermography (PCT). The combined approach enables the processing of thermograms from transient (flash), steady (halogen) and selective (induction) thermal perturbations. Firstly, the research discusses the three basic processing schemes typically applied for thermography; namely mathematical transformation based processing, curve-fitting processing, and direct contrast based calculations. Proposed algorithm utilizes the self-referencing scheme to create a sub-sequence that contains the maximum contrast information and also compute the anomalies' depth values. While, the Principle Component Thermography operates on the sub-sequence frames by re-arranging its data content (pixel values) spatially and temporally then it highlights the data variance. The PCT is mainly used as a mathematical mean to enhance the defects' contrast thus enabling its shape and size retrieval. The results show that the proposed combined scheme is effective in processing multiple size defects in sandwich steel structure in real-time (<30 Hz) and with full spatial coverage, without the need for a priori defect-free area.

  8. Design and test of a compact optics system for the pool boiling experiment

    NASA Technical Reports Server (NTRS)

    Ling, Jerri S.; Laubenthal, James R.

    1990-01-01

    The experiment described seeks to improve the understanding of the fundamental mechanisms that constitute nucleate pool boiling. The vehicle for accomplishing this is an investigation, including tests to be conducted in microgravity and coupled with appropriate analyses, of the heat transfer and vapor bubble dynamics associated with nucleation, bubble growth/collapse and subsequent motion, considering the interrelations between buoyancy, momentum and surface tension which will govern the motion of the vapor and surrounding liquid, as a function of the heating rate at the heat transfer surface and the temperature level and distribution in the bulk liquid. The experiment is designed to be contained within the confines of a Get-Away-Special Canister (GAS Can) installed in the bay of the space shuttle. When the shuttle reaches orbit, the experiment will be turned on and testing will proceed automatically. In the proposed Pool Boiling Experiment a pool of liquid, initially at a precisely defined pressure and temperature, will be subjected to a step imposed heat flux from a semitransparent thin-film heater forming part of one wall of the container such that boiling is initiated and maintained for a defined period of time at a constant pressure level. Transient measurements of the heater surface and fluid temperatures near the surface will be made, noting especially the conditions at the onset of boiling, along with motion photography of the boiling process in two simultaneous views, from beneath the heating surface and from the side. The conduct of the experiment and the data acquisition will be completely automated and self-contained. For the initial flight, a total of nine tests are proposed, with three levels of heat flux and three levels of subcooling. The design process used in the development and check-out of the compact photographic/optics system for the Pool Boiling Experiment is documented.

  9. Hynol: An economic process for methanol production from biomass and natural gas with reduced CO2 emission

    NASA Astrophysics Data System (ADS)

    Steinberg, M.; Dong, Yuanji

    1993-10-01

    The Hynol process is proposed to meet the demand for an economical process for methanol production with reduced CO2 emission. This new process consists of three reaction steps: (1) hydrogasification of biomass, (2) steam reforming of the produced gas with additional natural gas feedstock, and (3) methanol synthesis of the hydrogen and carbon monoxide produced during the previous two steps. The H2-rich gas remaining after methanol synthesis is recycled to gasify the biomass in an energy neutral reactor so that there is no need for an expensive oxygen plant as required by commercial steam gasifiers. Recycling gas allows the methanol synthesis reactor to perform at a relatively lower pressure than conventional while the plant still maintains high methanol yield. Energy recovery designed into the process minimizes heat loss and increases the process thermal efficiency. If the Hynol methanol is used as an alternative and more efficient automotive fuel, an overall 41% reduction in CO2 emission can be achieved compared to the use of conventional gasoline fuel. A preliminary economic estimate shows that the total capital investment for a Hynol plant is 40% lower than that for a conventional biomass gasification plant. The methanol production cost is $0.43/gal for a 1085 million gal/yr Hynol plant which is competitive with current U.S. methanol and equivalent gasoline prices. Process flowsheet and simulation data using biomass and natural gas as cofeedstocks are presented. The Hynol process can convert any condensed carbonaceous material, especially municipal solid waste (MSW), to produce methanol.

  10. TRUST84. Sat-Unsat Flow in Deformable Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narasimhan, T.N.

    1984-11-01

    TRUST84 solves for transient and steady-state flow in variably saturated deformable media in one, two, or three dimensions. It can handle porous media, fractured media, or fractured-porous media. Boundary conditions may be an arbitrary function of time. Sources or sinks may be a function of time or of potential. The theoretical model considers a general three-dimensional field of flow in conjunction with a one-dimensional vertical deformation field. The governing equation expresses the conservation of fluid mass in an elemental volume that has a constant volume of solids. Deformation of the porous medium may be nonelastic. Permeability and the compressibility coefficientsmore » may be nonlinearly related to effective stress. Relationships between permeability and saturation with pore water pressure in the unsaturated zone may be characterized by hysteresis. The relation between pore pressure change and effective stress change may be a function of saturation. The basic calculational model of the conductive heat transfer code TRUMP is applied in TRUST84 to the flow of fluids in porous media. The model combines an integrated finite difference algorithm for numerically solving the governing equation with a mixed explicit-implicit iterative scheme in which the explicit changes in potential are first computed for all elements in the system, after which implicit corrections are made only for those elements for which the stable time-step is less than the time-step being used. Time-step sizes are automatically controlled to optimize the number of iterations, to control maximum change to potential during a time-step, and to obtain desired output information. Time derivatives, estimated on the basis of system behavior during the two previous time-steps, are used to start the iteration process and to evaluate nonlinear coefficients. Both heterogeneity and anisotropy can be handled.« less

  11. Resin Film Infusion (RFI) Process Modeling for Large Transport Aircraft Wing Structures

    NASA Technical Reports Server (NTRS)

    Loos, Alfred C.; Caba, Aaron C.; Furrow, Keith W.

    2000-01-01

    This investigation completed the verification of a three-dimensional resin transfer molding/resin film infusion (RTM/RFI) process simulation model. The model incorporates resin flow through an anisotropic carbon fiber preform, cure kinetics of the resin, and heat transfer within the preform/tool assembly. The computer model can predict the flow front location, resin pressure distribution, and thermal profiles in the modeled part. The formulation for the flow model is given using the finite element/control volume (FE/CV) technique based on Darcy's Law of creeping flow through a porous media. The FE/CV technique is a numerically efficient method for finding the flow front location and the fluid pressure. The heat transfer model is based on the three-dimensional, transient heat conduction equation, including heat generation. Boundary conditions include specified temperature and convection. The code was designed with a modular approach so the flow and/or the thermal module may be turned on or off as desired. Both models are solved sequentially in a quasi-steady state fashion. A mesh refinement study was completed on a one-element thick model to determine the recommended size of elements that would result in a converged model for a typical RFI analysis. Guidelines are established for checking the convergence of a model, and the recommended element sizes are listed. Several experiments were conducted and computer simulations of the experiments were run to verify the simulation model. Isothermal, non-reacting flow in a T-stiffened section was simulated to verify the flow module. Predicted infiltration times were within 12-20% of measured times. The predicted pressures were approximately 50% of the measured pressures. A study was performed to attempt to explain the difference in pressures. Non-isothermal experiments with a reactive resin were modeled to verify the thermal module and the resin model. Two panels were manufactured using the RFI process. One was a stepped panel and the other was a panel with two 'T' stiffeners. The difference between the predicted infiltration times and the experimental times was 4% to 23%.

  12. Experimental study of laminar forced convective heat transfer of deionized water based copper (I) oxide nanofluids in a tube with constant wall heat flux

    NASA Astrophysics Data System (ADS)

    Umer, Asim; Naveed, Shahid; Ramzan, Naveed

    2016-10-01

    Nanofluids, having 1-100 nm size particles in any base fluid are promising fluid for heat transfer intensification due to their enhanced thermal conductivity as compared with the base fluid. The forced convection of nanofluids is the major practical application in heat transfer equipments. In this study, heat transfer enhancements at constant wall heat flux under laminar flow conditions were investigated. Nanofluids of different volume fractions (1, 2 and 4 %) of copper (I) oxide nanoparticles in deionized water were prepared using two step technique under mechanical mixing and ultrasonication. The results were investigated by increasing the Reynolds number of the nanofluids at constant heat flux. The trends of Nusselt number variation with dimensionless length (X/D) and Reynolds numbers were studied. It was observed that heat transfer coefficient increases with increases particles volume concentration and Reynolds number. The maximum enhancement in heat transfer coefficient of 61 % was observed with 4 % particle volume concentration at Reynolds number (Re ~ 605).

  13. Heat transfer and pressure drop characteristics of nanofluids in a plate heat exchanger.

    PubMed

    Kwon, Y H; Kim, D; Li, C G; Lee, J K; Hong, D S; Lee, J G; Lee, S H; Cho, Y H; Kim, S H

    2011-07-01

    In this paper, the heat transfer characteristics and pressure drop of the ZnO and Al2O3 nanofluids in a plate heat exchanger were studied. The experimental conditions were 100-500 Reynolds number and the respective volumetric flow rates. The working temperature of the heat exchanger was within 20-40 degrees C. The measured thermophysical properties, such as thermal conductivity and kinematic viscosity, were applied to the calculation of the convective heat transfer coefficient of the plate heat exchanger employing the ZnO and Al2O3 nanofluids made through a two-step method. According to the Reynolds number, the overall heat transfer coefficient for 6 vol% Al2O3 increased to 30% because at the given viscosity and density of the nanofluids, they did not have the same flow rates. At a given volumetric flow rate, however, the performance did not improve. After the nanofluids were placed in the plate heat exchanger, the experimental results pertaining to nanofluid efficiency seemed inauspicious.

  14. Fabrication of X-ray Microcalorimeter Focal Planes Composed of Two Distinct Pixel Types.

    PubMed

    Wassell, E J; Adams, J S; Bandler, S R; Betancourt-Martinez, G L; Chiao, M P; Chang, M P; Chervenak, J A; Datesman, A M; Eckart, M E; Ewin, A J; Finkbeiner, F M; Ha, J Y; Kelley, R; Kilbourne, C A; Miniussi, A R; Sakai, K; Porter, F; Sadleir, J E; Smith, S J; Wakeham, N A; Yoon, W

    2017-06-01

    We are developing superconducting transition-edge sensor (TES) microcalorimeter focal planes for versatility in meeting specifications of X-ray imaging spectrometers including high count-rate, high energy resolution, and large field-of-view. In particular, a focal plane composed of two sub-arrays: one of fine-pitch, high count-rate devices and the other of slower, larger pixels with similar energy resolution, offers promise for the next generation of astrophysics instruments, such as the X-ray Integral Field Unit (X-IFU) instrument on the European Space Agency's Athena mission. We have based the sub-arrays of our current design on successful pixel designs that have been demonstrated separately. Pixels with an all gold X-ray absorber on 50 and 75 micron scales where the Mo/Au TES sits atop a thick metal heatsinking layer have shown high resolution and can accommodate high count-rates. The demonstrated larger pixels use a silicon nitride membrane for thermal isolation, thinner Au and an added bismuth layer in a 250 micron square absorber. To tune the parameters of each sub-array requires merging the fabrication processes of the two detector types. We present the fabrication process for dual production of different X-ray absorbers on the same substrate, thick Au on the small pixels and thinner Au with a Bi capping layer on the larger pixels to tune their heat capacities. The process requires multiple electroplating and etching steps, but the absorbers are defined in a single ion milling step. We demonstrate methods for integrating heatsinking of the two types of pixel into the same focal plane consistent with the requirements for each sub-array, including the limiting of thermal crosstalk. We also discuss fabrication process modifications for tuning the intrinsic transition temperature (T c ) of the bilayers for the different device types through variation of the bilayer thicknesses. The latest results on these "hybrid" arrays will be presented.

  15. Fabrication of X-ray Microcalorimeter Focal Planes Composed of Two Distinct Pixel Types

    PubMed Central

    Wassell, E. J.; Adams, J. S.; Bandler, S. R.; Betancourt-Martinez, G. L.; Chiao, M. P.; Chang, M. P.; Chervenak, J. A.; Datesman, A. M.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Ha, J. Y.; Kelley, R.; Kilbourne, C. A.; Miniussi, A. R.; Sakai, K.; Porter, F.; Sadleir, J. E.; Smith, S. J.; Wakeham, N. A.; Yoon, W.

    2017-01-01

    We are developing superconducting transition-edge sensor (TES) microcalorimeter focal planes for versatility in meeting specifications of X-ray imaging spectrometers including high count-rate, high energy resolution, and large field-of-view. In particular, a focal plane composed of two sub-arrays: one of fine-pitch, high count-rate devices and the other of slower, larger pixels with similar energy resolution, offers promise for the next generation of astrophysics instruments, such as the X-ray Integral Field Unit (X-IFU) instrument on the European Space Agency’s Athena mission. We have based the sub-arrays of our current design on successful pixel designs that have been demonstrated separately. Pixels with an all gold X-ray absorber on 50 and 75 micron scales where the Mo/Au TES sits atop a thick metal heatsinking layer have shown high resolution and can accommodate high count-rates. The demonstrated larger pixels use a silicon nitride membrane for thermal isolation, thinner Au and an added bismuth layer in a 250 micron square absorber. To tune the parameters of each sub-array requires merging the fabrication processes of the two detector types. We present the fabrication process for dual production of different X-ray absorbers on the same substrate, thick Au on the small pixels and thinner Au with a Bi capping layer on the larger pixels to tune their heat capacities. The process requires multiple electroplating and etching steps, but the absorbers are defined in a single ion milling step. We demonstrate methods for integrating heatsinking of the two types of pixel into the same focal plane consistent with the requirements for each sub-array, including the limiting of thermal crosstalk. We also discuss fabrication process modifications for tuning the intrinsic transition temperature (Tc) of the bilayers for the different device types through variation of the bilayer thicknesses. The latest results on these “hybrid” arrays will be presented. PMID:28804229

  16. Fabrication of X-ray Microcalorimeter Focal Planes Composed of Two Distinct Pixel Types

    NASA Technical Reports Server (NTRS)

    Wassell, Edward J.; Adams, Joseph S.; Bandler, Simon R.; Betancour-Martinez, Gabriele L; Chiao, Meng P.; Chang, Meng Ping; Chervenak, James A.; Datesman, Aaron M.; Eckart, Megan E.; Ewin, Audrey J.; hide

    2016-01-01

    We develop superconducting transition-edge sensor (TES) microcalorimeter focal planes for versatility in meeting the specifications of X-ray imaging spectrometers, including high count rate, high energy resolution, and large field of view. In particular, a focal plane composed of two subarrays: one of fine pitch, high count-rate devices and the other of slower, larger pixels with similar energy resolution, offers promise for the next generation of astrophysics instruments, such as the X-ray Integral Field Unit Instrument on the European Space Agencys ATHENA mission. We have based the subarrays of our current design on successful pixel designs that have been demonstrated separately. Pixels with an all-gold X-ray absorber on 50 and 75 micron pitch, where the Mo/Au TES sits atop a thick metal heatsinking layer, have shown high resolution and can accommodate high count rates. The demonstrated larger pixels use a silicon nitride membrane for thermal isolation, thinner Au, and an added bismuth layer in a 250-sq micron absorber. To tune the parameters of each subarray requires merging the fabrication processes of the two detector types. We present the fabrication process for dual production of different X-ray absorbers on the same substrate, thick Au on the small pixels and thinner Au with a Bi capping layer on the larger pixels to tune their heat capacities. The process requires multiple electroplating and etching steps, but the absorbers are defined in a single-ion milling step. We demonstrate methods for integrating the heatsinking of the two types of pixel into the same focal plane consistent with the requirements for each subarray, including the limiting of thermal crosstalk. We also discuss fabrication process modifications for tuning the intrinsic transition temperature (T(sub c)) of the bilayers for the different device types through variation of the bilayer thicknesses. The latest results on these 'hybrid' arrays will be presented.

  17. Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor

    DOEpatents

    Britten, Jerald A.

    1997-01-01

    A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for 1) cleaning, developing or etching, 2) rinsing, and 3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material.

  18. Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor

    DOEpatents

    Britten, J.A.

    1997-08-26

    A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for (1) cleaning, developing or etching, (2) rinsing, and (3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material. 5 figs.

  19. Lunar base heat pump, phase 1

    NASA Technical Reports Server (NTRS)

    Goldman, Jeffrey H.; Harvey, A.; Lovell, T.; Walker, David H.

    1994-01-01

    This report describes the Phase 1 process and analysis used to select a refrigerant and thermodynamic cycle as the basis of a vapor compression heat pump requiring a high temperature lift, then to perform a preliminary design to implement the selected concept, including major component selection. Use of a vapor compression heat pump versus other types was based on prior work performed for the Electric Power Research Institute. A high lift heat pump is needed to enable a thermal control system to remove heat down to 275 K from a habitable volume when the external thermal environment is severe. For example, a long-term lunar base habitat will reject heat from a space radiator to a 325 K environment. The first step in the selection process was to perform an optimization trade study, quantifying the effect of radiator operating temperature and heat pump efficiency on total system mass; then, select the radiator operating temperature corresponding to the lowest system mass. Total system mass included radiators, all heat pump components, and the power supply system. The study showed that lunar night operation, with no temperature lift, dictated the radiator size. To operate otherwise would require a high mass penalty to store power. With the defined radiation surface, and heat pump performances assumed to be from 40 percent to 60 percent of the Carnot ideal, the optimum heat rejection temperature ranged from 387 K to 377 K, as a function of heat pump performance. Refrigerant and thermodynamic cycles were then selected to best meet the previously determined design conditions. The system was then adapted as a ground-based prototype lifting temperature to 360 K (versus 385 K for flight unit) and using readily available commercial-grade components. Over 40 refrigerants, separated into wet and dry compression behavioral types, were considered in the selection process. Refrigerants were initially screened for acceptable critical temperature. The acceptable refrigerants were analyzed in ideal single and two-stage thermodynamic cycles. Top candidates were analyzed assuming realistic component limits and system pressure drops, and were evaluated for other considerations such as safety, environmental impact, and commercial availability. A maximum coefficient of performance (COP) of 56 percent of the Carnot ideal was achievable for a three-stage CFC-11 cycle operating under the flight conditions above. The program was completed by defining a control scheme and by researching and selecting the major components, compressor and heat exchangers, that could be used to implement the thermodynamic cycle selected. Special attention was paid to using similar technologies for the SIRF and flight heat pumps resulting in the commercially available equivalent of the flight unit. A package concept was generated for the components selected and mass and volume estimated.

  20. Fast Assembly of Gold Nanoparticles in Large-Area 2D Nanogrids Using a One-Step, Near-Infrared Radiation-Assisted Evaporation Process.

    PubMed

    Utgenannt, André; Maspero, Ross; Fortini, Andrea; Turner, Rebecca; Florescu, Marian; Jeynes, Christopher; Kanaras, Antonios G; Muskens, Otto L; Sear, Richard P; Keddie, Joseph L

    2016-02-23

    When fabricating photonic crystals from suspensions in volatile liquids using the horizontal deposition method, the conventional approach is to evaporate slowly to increase the time for particles to settle in an ordered, periodic close-packed structure. Here, we show that the greatest ordering of 10 nm aqueous gold nanoparticles (AuNPs) in a template of larger spherical polymer particles (mean diameter of 338 nm) is achieved with very fast water evaporation rates obtained with near-infrared radiative heating. Fabrication of arrays over areas of a few cm(2) takes only 7 min. The assembly process requires that the evaporation rate is fast relative to the particles' Brownian diffusion. Then a two-dimensional colloidal crystal forms at the falling surface, which acts as a sieve through which the AuNPs pass, according to our Langevin dynamics computer simulations. With sufficiently fast evaporation rates, we create a hybrid structure consisting of a two-dimensional AuNP nanoarray (or "nanogrid") on top of a three-dimensional polymer opal. The process is simple, fast, and one-step. The interplay between the optical response of the plasmonic Au nanoarray and the microstructuring of the photonic opal results in unusual optical spectra with two extinction peaks, which are analyzed via finite-difference time-domain method simulations. Comparison between experimental and modeling results reveals a strong interplay of plasmonic modes and collective photonic effects, including the formation of a high-order stopband and slow-light-enhanced plasmonic absorption. The structures, and hence their optical signatures, are tuned by adjusting the evaporation rate via the infrared power density.

  1. Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs

    2011-10-16

    Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizingmore » available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.« less

  2. Heat pipe heat transport system for the Stirling Space Power Converter (SSPC)

    NASA Technical Reports Server (NTRS)

    Alger, Donald L.

    1992-01-01

    Life issues relating to a sodium heat pipe heat transport system are described. The heat pipe system provides heat, at a temperature of 1050 K, to a 50 kWe Stirling engine/linear alternator power converter called the Stirling Space Power Converter (SSPC). The converter is being developed under a National Aeronautics and Space Administration program. Since corrosion of heat pipe materials in contact with sodium can impact the life of the heat pipe, a literature review of sodium corrosion processes was performed. It was found that the impurity reactions, primarily oxygen, and dissolution of alloy elements were the two corrosion process likely to be operative in the heat pipe. Approaches that are being taken to minimize these corrosion processes are discussed.

  3. Sol-Gel Process for Making Pt-Ru Fuel-Cell Catalysts

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Valdez, Thomas; Kumta, Prashant; Kim, Y.

    2005-01-01

    A sol-gel process has been developed as a superior alternative to a prior process for making platinum-ruthenium alloy catalysts for electro-oxidation of methanol in fuel cells. The starting materials in the prior process are chloride salts of platinum and ruthenium. The process involves multiple steps, is time-consuming, and yields a Pt-Ru product that has relatively low specific surface area and contains some chloride residue. Low specific surface area translates to incomplete utilization of the catalytic activity that might otherwise be available, while chloride residue further reduces catalytic activity ("poisons" the catalyst). In contrast, the sol-gel process involves fewer steps and less time, does not leave chloride residue, and yields a product of greater specific area and, hence, greater catalytic activity. In this sol-gel process (see figure), the starting materials are platinum(II) acetylacetonate [Pt(C5H7O2)2, also denoted Pt-acac] and ruthenium(III) acetylacetonate [Ru(C5H7O2)3, also denoted Ru-acac]. First, Pt-acac and Ru-acac are dissolved in acetone at the desired concentrations (typically, 0.00338 moles of each salt per 100 mL of acetone) at a temperature of 50 C. A solution of 25 percent tetramethylammonium hydroxide [(CH3)4NOH, also denoted TMAH] in methanol is added to the Pt-acac/Ruacac/ acetone solution to act as a high-molecular-weight hydrolyzing agent. The addition of the TMAH counteracts the undesired tendency of Pt-acac and Ru-acac to precipitate as separate phases during the subsequent evaporation of the solvent, thereby helping to yield a desired homogeneous amorphous gel. The solution is stirred for 10 minutes, then the solvent is evaporated until the solution becomes viscous, eventually transforming into a gel. The viscous gel is dried in air at a temperature of 170 C for about 10 hours. The dried gel is crushed to make a powder that is the immediate precursor of the final catalytic product. The precursor powder is converted to the final product in a controlled-atmosphere heat treatment. Desirably, the final product is a phase-pure (Pt phase only) Pt-Ru powder with a high specific surface area. The conditions of the controlled- atmosphere heat are critical for obtaining the aforementioned desired properties. A typical heat treatment that yields best results for a catalytic alloy of equimolar amounts of Pt and Ru consists of at least two cycles of heating to a temperature of 300 C and holding at 300 C for several hours, all carried out in an atmosphere of 1 percent O2 and 99 percent N2. The resulting powder consists of crystallites with typical linear dimensions of <10 nm. Tests have shown that the powder is highly effective in catalyzing the electro-oxidation of methanol.

  4. Comparison of single-step and two-step purified coagulants from Moringa oleifera seed for turbidity and DOC removal.

    PubMed

    Sánchez-Martín, J; Ghebremichael, K; Beltrán-Heredia, J

    2010-08-01

    The coagulant proteins from Moringa oleifera purified with single-step and two-step ion-exchange processes were used for the coagulation of surface water from Meuse river in The Netherlands. The performances of the two purified coagulants and the crude extract were assessed in terms of turbidity and DOC removal. The results indicated that the optimum dosage of the single-step purified coagulant was more than two times higher compared to the two-step purified coagulant in terms of turbidity removal. And the residual DOC in the two-step purified coagulant was lower than in single-step purified coagulant or crude extract. (c) 2010 Elsevier Ltd. All rights reserved.

  5. Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration

    DOEpatents

    Golden, Timothy Christopher; Weist, Jr., Edward Landis; Hufton, Jeffrey Raymond; Novosat, Paul Anthony

    2010-04-13

    A process for selectively separating hydrogen from at least one more strongly adsorbable component in a plurality of adsorption beds to produce a hydrogen-rich product gas from a low hydrogen concentration feed with a high recovery rate. Each of the plurality of adsorption beds subjected to a repetitive cycle. The process comprises an adsorption step for producing the hydrogen-rich product from a feed gas mixture comprising 5% to 50% hydrogen, at least two pressure equalization by void space gas withdrawal steps, a provide purge step resulting in a first pressure decrease, a blowdown step resulting in a second pressure decrease, a purge step, at least two pressure equalization by void space gas introduction steps, and a repressurization step. The second pressure decrease is at least 2 times greater than the first pressure decrease.

  6. Optimization of stress relief heat treatment of PHWR pressure tubes (Zr 2.5Nb alloy)

    NASA Astrophysics Data System (ADS)

    Choudhuri, Gargi; Srivastava, D.; Gurumurthy, K. R.; Shah, B. K.

    2008-12-01

    The micro-structure of cold worked Zr-2.5%Nb pressure tube material consists of elongated grains of α-zirconium enclosed by a thin film of β-zirconium phase. This β-Zr phase is unstable and on heating, progressively decomposes to α-Zr phase and β-phase enriched with Nb and ultimately form β Nb. Meta-stable ω-phase precipitates as an intermediate step during decomposition depending on the heat treatment schedule, β→α+β→α+ω+β→α+β→α+β Morphological changes occur in the β-zirconium phase during the decomposition. The continuous ligaments of β Zr phase turn into a discontinuous array of particles followed by globulization of the β-phase. The morphological changes impose a significant effect on the creep rate and on the delayed hydride cracking velocity due to reduction in the hydrogen diffusion coefficient in α Zr. If the continuity of β-phase is disrupted by heat treatment, the effective diffusion coefficient decreases with a concomitant reduction in DHC velocity. The pressure tubes for the Indian PHWRs are made by a process of hot extrusion followed by cold pilgering in two stages and an intermediate annealing. Autoclaving at 400 °C for 36 h ensures stress relieving of the finished tubes. In the present studies, autoclaving duration at 400 °C was varied from 24 h to 96 h at 12 h-steps and the micro-structural changes in the β-phase were observed by TEM. Dislocation density, hardness and the micro-structural features such as thickness of β-phase, inter-particle spacing and volume fraction of the phases were measured at each stage. Autoclaving for a longer duration was found to change the morphology of β-phase and increase the inter-particle spacing. Progressive changes in the aspect ratio of the β-phase and their size and distribution are documented and reported. These micro-structural modifications are expected to decrease DHC velocity during reactor operation.

  7. Capillary hydrodynamics and transport processes during phase change in microscale systems

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. V.

    2017-09-01

    The characteristics of two-phase gas-liquid flow and heat transfer during flow boiling and condensing in micro-scale heat exchangers are discussed in this paper. The results of numerical simulation of the evaporating liquid film flowing downward in rectangular minichannel of the two-phase compact heat exchanger are presented and the peculiarities of microscale heat transport in annular flow with phase changes are discussed. Presented model accounts the capillarity induced transverse flow of liquid and predicts the microscale heat transport processes when the nucleate boiling becomes suppressed. The simultaneous influence of the forced convection, nucleate boiling and liquid film evaporation during flow boiling in plate-fin heat exchangers is considered. The equation for prediction of the flow boiling heat transfer at low flux conditions is presented and verified using experimental data.

  8. Study of a two-dimension transient heat propagation in cylindrical coordinates by means of two finite difference methods

    NASA Astrophysics Data System (ADS)

    Dumencu, A.; Horbaniuc, B.; Dumitraşcu, G.

    2016-08-01

    The analytical approach of unsteady conduction heat transfer under actual conditions represent a very difficult (if not insurmountable) problem due to the issues related to finding analytical solutions for the conduction heat transfer equation. Various techniques have been developed in order to overcome these difficulties, among which the alternate directions method and the decomposition method. Both of them are particularly suited for two-dimension heat propagation. The paper deals with both techniques in order to verify whether the results provided are in good accordance. The studied case consists of a long hollow cylinder, and considers that the time-dependent temperature field varies both in the radial and the axial directions. The implicit technique is used in both methods and involves the simultaneous solving of a set of equations for all of the nodes for each time step successively for each of the two directions. Gauss elimination is used to obtain the solution of the set, representing the nodal temperatures. After using the two techniques the results show a very good agreement, and since the decomposition is easier to use in terms of computer code and running time, this technique seems to be more recommendable.

  9. A simulated RTM process for fabricating polyimide (AMB-21) carbon fiber composites

    NASA Technical Reports Server (NTRS)

    Avva, V. Sarma; Sadler, Robert L.; Thomas, Shanon

    1995-01-01

    An experimental polyimide matrix, AMB-21 - supplied by NASA/LeRC, was especially formulated to be non-carcinogenic. It was also expected to be amenable to a Resin Transfer Molding Process (RTM). AMB-21 is a solid at room temperature and must be heated to a very high temperature to obtain a fluid state. However, even after heating it to a realistic high temperature, it was found to be too viscous for use in a RTM process. As a result, a promising approach was experimented leading to the introduction of the resin into a solvent solution in order to obtain a viscosity suitable for RTM. A mixture of methanol and tetrahydroferone was found to be a suitable solvent mixture. The matrix solution was introduced into carbon-fiber preform using two techniques: (1) injection of matrix into a Resin Transfer Mold after positioning the preform into the 'mold cavity', and (2) infiltration of matrix into the preform using the 'autoclave through-the-thickness transfer process'. After completing the resin transfer (infiltration) process, the 'filled' preform was heated to 300 F for one hour to reduce the solvent content. The temperature was then increased to 400 F under a vacuum to complete the solvent evaporation and to remove volatile products of the polyimide imidization. The impregnated preform was removed from the mold and press-cured at 200 psi and 600 FF for two hours. The resulting panel was found to be of reasonably good quality. This observation was based on the results obtained from short beam shear strength (700-8000 psi) tests and microscopic examination of the cross-section indicating a very low level of porosity. Further, the flash around the molded panels from the compression molding was free of porosity indicating the removal of volatiles, solvents, and other imidization products. Based on these studies, a new RTM mold containing a diaphragm capable of applying 200 psi at 600 F has been designed and constructed with the expectation that it will allow the incorporation of all of the above processing steps, including the consolidation with the preform in the mold cavity. Moreover, the new diaphragm design will enable to process larger preform panels. Processing studies with the diaphragm mold are being initiated.

  10. Heat and mass transfer during the cryopreservation of a bioartificial liver device: a computational model.

    PubMed

    Balasubramanian, Saravana K; Coger, Robin N

    2005-01-01

    Bioartificial liver devices (BALs) have proven to be an effective bridge to transplantation for cases of acute liver failure. Enabling the long-term storage of these devices using a method such as cryopreservation will ensure their easy off the shelf availability. To date, cryopreservation of liver cells has been attempted for both single cells and sandwich cultures. This study presents the potential of using computational modeling to help develop a cryopreservation protocol for storing the three dimensional BAL: Hepatassist. The focus is upon determining the thermal and concentration profiles as the BAL is cooled from 37 degrees C-100 degrees C, and is completed in two steps: a cryoprotectant loading step and a phase change step. The results indicate that, for the loading step, mass transfer controls the duration of the protocol, whereas for the phase change step, when mass transfer is assumed negligible, the latent heat released during freezing is the control factor. The cryoprotocol that is ultimately proposed considers time, cooling rate, and the temperature gradients that the cellular space is exposed to during cooling. To our knowledge, this study is the first reported effort toward designing an effective protocol for the cryopreservation of a three-dimensional BAL device.

  11. Real-Time Simulation of the X-33 Aerospace Engine

    NASA Technical Reports Server (NTRS)

    Aguilar, Robert

    1999-01-01

    This paper discusses the development and performance of the X-33 Aerospike Engine RealTime Model. This model was developed for the purposes of control law development, six degree-of-freedom trajectory analysis, vehicle system integration testing, and hardware-in-the loop controller verification. The Real-Time Model uses time-step marching solution of non-linear differential equations representing the physical processes involved in the operation of a liquid propellant rocket engine, albeit in a simplified form. These processes include heat transfer, fluid dynamics, combustion, and turbomachine performance. Two engine models are typically employed in order to accurately model maneuvering and the powerpack-out condition where the power section of one engine is used to supply propellants to both engines if one engine malfunctions. The X-33 Real-Time Model is compared to actual hot fire test data and is been found to be in good agreement.

  12. Influence of heating and acidification on the flavor of whey protein isolate.

    PubMed

    White, S S; Fox, K M; Jervis, S M; Drake, M A

    2013-03-01

    Previous studies have established that whey protein manufacture unit operations influence the flavor of dried whey proteins. Additionally, manufacturers generally instantize whey protein isolate (WPI; ≥ 90% protein) by agglomeration with lecithin to increase solubility and wettability. Whey protein isolate is often subjected to additional postprocessing steps in beverage manufacturing, including acidification and heat treatment. These postprocessing treatments may further influence formation or release of flavors. The objective of the first study was to characterize the effect of 2 processing steps inherent to manufacturing of acidic protein beverages (acidification and heat treatment) on the flavor of non-instant WPI. The second study sought to determine the effect of lecithin agglomeration, a common form of instantized (INST) WPI used in beverage manufacturing, on the flavor of WPI after acidification and heat treatment. In the first experiment, commercial non-instantized (NI) WPI were rehydrated and evaluated as is (control); acidified to pH 3.2; heated to 85°C for 5 min in a benchtop high temperature, short time (HTST) pasteurizer; or acidified to 3.2 and heated to 85°C for 30s (AH-HTST). In the second experiment, INST and NI commercial WPI were subsequently evaluated as control, acidified, heated, or AH-HTST. All samples were evaluated by descriptive sensory analysis, solid-phase microextraction (SPME), and gas chromatography-mass spectrometry. Acidification of NI WPI produced higher concentrations of dimethyl disulfide (DMDS) and sensory detection of potato/brothy flavors, whereas heating increased cooked/sulfur flavors. Acidification and heating increased cardboard, potato/brothy, and malty flavors and produced higher concentrations of aldehydes, ketones, and sulfur compounds. Differences between INST and NI WPI existed before treatment; INST WPI displayed cucumber flavors not present in NI WPI. After acidification, INST WPI were distinguished by higher intensity of cucumber flavor and higher concentrations of E-2-nonenal. No perceivable differences were observed between INST and NI WPI after heating; sulfur and eggy flavors increased in both types of WPI. After treatment, AH-INST-HTST samples were differentiated from AH-NI-HTST by grassy/hay and grainy flavor and increased lipid oxidation products. Further processing of WPI in food applications has negative effects on the flavor contributions of WPI. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Method for fabrication of crack-free ceramic dielectric films

    DOEpatents

    Ma, Beihai; Narayanan, Manoj; Balachandran, Uthamalingam; Chao, Sheng; Liu, Shanshan

    2016-05-31

    The invention provides a process for forming crack-free dielectric films on a substrate. The process comprises the application of a dielectric precursor layer of a thickness from about 0.3 .mu.m to about 1.0 .mu.m to a substrate. The deposition is followed by low temperature heat pretreatment, prepyrolysis, pyrolysis and crystallization step for each layer. The deposition, heat pretreatment, prepyrolysis, pyrolysis and crystallization are repeated until the dielectric film forms an overall thickness of from about 1.5 .mu.m to about 20.0 .mu.m and providing a final crystallization treatment to form a thick dielectric film. The process provides a thick crack-free dielectric film on a substrate, the dielectric forming a dense thick crack-free dielectric having an overall dielectric thickness of from about 1.5 .mu.m to about 20.0 .mu.m.

  14. Process for disposing of radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grantham, L.F.; Gray, R.L.; McCoy, L.R.

    1988-05-03

    A process for removing water from the pores of spent, contaminated radioactive ion exchange resins and encasing radionuclides entrapped within the pores of the resins, the process is described consisting essentially of the sequential steps of: (a) heating the spent ion exchange resins at a temperature of from about 100/sup 0/C to about 150/sup 0/C to remove water from within and fill the pores of the ion exchange resins by heating the ion exchange resins for from about 46 to about 610 hours at a temperature at which the pores of the resins are sealed while avoiding any fusing ormore » melting of the ion exchange resins to encase radionuclides contained within the resins; and (b) cooling the resins to obtain dry, flowable ion exchange resins having radionuclides encased within sealed polymeric spheres.« less

  15. A-15 Superconducting composite wires and a method for making

    DOEpatents

    Suenaga, Masaki; Klamut, Carl J.; Luhman, Thomas S.

    1984-01-01

    A method for fabricating superconducting wires wherein a billet of copper containing filaments of niobium or vanadium is rolled to form a strip which is wrapped about a tin-alloy core to form a composite. The alloy is a tin-copper alloy for niobium filaments and a gallium-copper alloy for vanadium filaments. The composite is then drawn down to a desired wire size and heat treated. During the heat treatment process, the tin in the bronze reacts with the niobium to form the superconductor niobium tin. In the case where vanadium is used, the gallium in the gallium bronze reacts with the vanadium to form the superconductor vanadium gallium. This new process eliminates the costly annealing steps, external tin plating and drilling of bronze ingots required in a number of prior art processes.

  16. A novel polyimide based micro heater with high temperature uniformity

    DOE PAGES

    Yu, Shifeng; Wang, Shuyu; Lu, Ming; ...

    2017-02-06

    MEMS based micro heaters are a key component in micro bio-calorimetry, nondispersive infrared gas sensors, semiconductor gas sensors and microfluidic actuators. A micro heater with a uniform temperature distribution in the heating area and short response time is desirable in ultrasensitive temperature-dependent measurements. In this study, we propose a novel micro heater design to reach a uniform temperature in a large heating area by optimizing the heating power density distribution in the heating area. A polyimide membrane is utilized as the substrate to reduce the thermal mass and heat loss which allows for fast thermal response as well as amore » simplified fabrication process. A gold and titanium heating element is fabricated on the flexible polyimide substrate using the standard MEMS technique. The temperature distribution in the heating area for a certain power input is measured by an IR camera, and is consistent with FEA simulation results. Finally, this design can achieve fast response and uniform temperature distribution, which is quite suitable for the programmable heating such as impulse and step driving.« less

  17. A novel polyimide based micro heater with high temperature uniformity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shifeng; Wang, Shuyu; Lu, Ming

    MEMS based micro heaters are a key component in micro bio-calorimetry, nondispersive infrared gas sensors, semiconductor gas sensors and microfluidic actuators. A micro heater with a uniform temperature distribution in the heating area and short response time is desirable in ultrasensitive temperature-dependent measurements. In this study, we propose a novel micro heater design to reach a uniform temperature in a large heating area by optimizing the heating power density distribution in the heating area. A polyimide membrane is utilized as the substrate to reduce the thermal mass and heat loss which allows for fast thermal response as well as amore » simplified fabrication process. A gold and titanium heating element is fabricated on the flexible polyimide substrate using the standard MEMS technique. The temperature distribution in the heating area for a certain power input is measured by an IR camera, and is consistent with FEA simulation results. Finally, this design can achieve fast response and uniform temperature distribution, which is quite suitable for the programmable heating such as impulse and step driving.« less

  18. Validation of a program for supercritical power plant calculations

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Łukowicz, Henryk; Bartela, Łukasz; Michalski, Sebastian

    2011-12-01

    This article describes the validation of a supercritical steam cycle. The cycle model was created with the commercial program GateCycle and validated using in-house code of the Institute of Power Engineering and Turbomachinery. The Institute's in-house code has been used extensively for industrial power plants calculations with good results. In the first step of the validation process, assumptions were made about the live steam temperature and pressure, net power, characteristic quantities for high- and low-pressure regenerative heat exchangers and pressure losses in heat exchangers. These assumptions were then used to develop a steam cycle model in Gate-Cycle and a model based on the code developed in-house at the Institute of Power Engineering and Turbomachinery. Properties, such as thermodynamic parameters at characteristic points of the steam cycle, net power values and efficiencies, heat provided to the steam cycle and heat taken from the steam cycle, were compared. The last step of the analysis was calculation of relative errors of compared values. The method used for relative error calculations is presented in the paper. The assigned relative errors are very slight, generally not exceeding 0.1%. Based on our analysis, it can be concluded that using the GateCycle software for calculations of supercritical power plants is possible.

  19. Automated kidney detection for 3D ultrasound using scan line searching

    NASA Astrophysics Data System (ADS)

    Noll, Matthias; Nadolny, Anne; Wesarg, Stefan

    2016-04-01

    Ultrasound (U/S) is a fast and non-expensive imaging modality that is used for the examination of various anatomical structures, e.g. the kidneys. One important task for automatic organ tracking or computer-aided diagnosis is the identification of the organ region. During this process the exact information about the transducer location and orientation is usually unavailable. This renders the implementation of such automatic methods exceedingly challenging. In this work we like to introduce a new automatic method for the detection of the kidney in 3D U/S images. This novel technique analyses the U/S image data along virtual scan lines. Here, characteristic texture changes when entering and leaving the symmetric tissue regions of the renal cortex are searched for. A subsequent feature accumulation along a second scan direction produces a 2D heat map of renal cortex candidates, from which the kidney location is extracted in two steps. First, the strongest candidate as well as its counterpart are extracted by heat map intensity ranking and renal cortex size analysis. This process exploits the heat map gap caused by the renal pelvis region. Substituting the renal pelvis detection with this combined cortex tissue feature increases the detection robustness. In contrast to model based methods that generate characteristic pattern matches, our method is simpler and therefore faster. An evaluation performed on 61 3D U/S data sets showed, that in 55 cases showing none or minor shadowing the kidney location could be correctly identified.

  20. Improved silicon carbide for advanced heat engines. I - Process development for injection molding

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.; Trela, Walter

    1989-01-01

    Alternate processing methods have been investigated as a means of improving the mechanical properties of injection-molded SiC. Various mixing processes (dry, high-sheer, and fluid) were evaluated along with the morphology and particle size of the starting beta-SiC powder. Statistically-designed experiments were used to determine significant effects and interactions of variables in the mixing, injection molding, and binder removal process steps. Improvements in mechanical strength can be correlated with the reduction in flaw size observed in the injection molded green bodies obtained with improved processing methods.

  1. Surfaces for high heat dissipation with no Leidenfrost limit

    NASA Astrophysics Data System (ADS)

    Sajadi, Seyed Mohammad; Irajizad, Peyman; Kashyap, Varun; Farokhnia, Nazanin; Ghasemi, Hadi

    2017-07-01

    Heat dissipation from hot surfaces through cooling droplets is limited by the Leidenfrost point (LFP), in which an insulating vapor film prevents direct contact between the cooling droplet and the hot surface. A range of approaches have been developed to raise this limit to higher temperatures, but the limit still exists. Recently, a surface architecture, decoupled hierarchical structure, was developed that allows the suppression of LFP completely. However, heat dissipation by the structure in the low superheat region was inferior to other surfaces and the structure required an extensive micro/nano fabrication procedure. Here, we present a metallic surface structure with no LFP and high heat dissipation capacity in all temperature ranges. The surface features the nucleate boiling phenomenon independent of the temperature with an approximate heat transfer coefficient of 20 kW m-2 K-1. This surface is developed in a one-step process with no micro/nano fabrication. We envision that this metallic surface provides a unique platform for high heat dissipation in power generation, photonics/electronics, and aviation systems.

  2. Induction heating to trigger the nickel surface modification by in situ generated 4-carboxybenzene diazonium

    NASA Astrophysics Data System (ADS)

    Arrotin, Bastien; Jacques, Amory; Devillers, Sébastien; Delhalle, Joseph; Mekhalif, Zineb

    2016-05-01

    Nickel is commonly used in numerous applications and is one of the few materials that present strong ferromagnetic properties. These make it a suitable material for induction heating which can be used to activate the grafting of organic species such as diazonium salts onto the material. Diazonium compounds are often used for the modification of metals and alloys thanks to their easy chemical reduction onto the substrates and the possibility to apply a one-step in situ generation process of the diazonium species. This work focuses on the grafting of 4-aminocarboxybenzene on nickel substrates in the context of a spontaneous grafting conducted either at room temperature or by thermal assistance through conventional heating and induction heating. These modifications are also carried out with the goal of maintaining the oxides layer as much as possible unaffected. The benefits of using induction heating with respect to conventional heating are an increase of the grafting rate, a better control of the reaction and a slighter impact on the oxides layer.

  3. The effect of cyclic heat treatment on the physicochemical properties of bio hydroxyapatite from bovine bone.

    PubMed

    Londoño-Restrepo, S M; Jeronimo-Cruz, R; Rubio-Rosas, E; Rodriguez-García, M E

    2018-05-02

    This paper focus on physicochemical changes in bio-hydroxyapatite (BIO-HAp) from bovine femur obtained by calcination at high temperatures: 520-620 (each 20 °C) at 7.4 °C/min and from 700 to 1100 °C (each 100 °C) at three heating rates: 7.4, 9.9, and 11.1 °C/min. BIO-HAp samples were obtained using a multi-step process: cleaning, milling, hydrothermal process, calcination in an air atmosphere, and cooling in furnace air. Inductively Couple Plasma (ICP) showed that the presence of Mg, K, S, Ba, Zn, and Na, is not affected by the annealing temperature and heating rate. While Scanning Electron Microscopy (SEM) images showed the continuous growth of the HAp crystals during the calcination process due to the coalescence phenomenon, and the Full Width at the Half Maximum for the X-ray patterns for temperatures up to 700 is affected by the annealing temperature and the heating rate. Through X-ray diffraction, thermal, and calorimetric analysis (TGA-DSC), a partial dehydroxylation of hydroxyapatite was found in samples calcined up to 900 °C for the three heating rates. Also, Ca/P molar ratio decreased for samples calcined up to 900 °C as a result of the dehydroxylation process. NaCaPO 4 , CaCO 3 , Ca 3 (PO 4 ) 2 , MgO, and Ca(H 2 PO 4 ) 2 are some phases identified by X-ray diffraction; some of them are part of the bone and others were formed during the calcination process as a function of annealing temperature and heating rate, as it is the case for MgO.

  4. Performance testing to identify climate-ready trees

    Treesearch

    E.Gregory McPherson; Alison M. Berry; Natalie S. van Doorn

    2018-01-01

    Urban forests produce ecosystem services that can benefit city dwellers, but are especially vulnerable to climate change stressors such as heat, drought, extreme winds and pests. Tree selection is an important decision point for managers wanting to transition to a more stable and resilient urban forest structure. This study describes a five-step process to identify and...

  5. The impact of a public health department's expansion from a one-step to a two-step refugee screening process on the detection and initiation of treatment of latent tuberculosis.

    PubMed

    Einterz, E M; Younge, O; Hadi, C

    2018-06-01

    To determine, subsequent to the expansion of a county health department's refugee screening process from a one-step to a two-step process, the change in early loss to follow-up and time to initiation of treatment of new refugees with latent tuberculosis infection (LTBI). Quasi-experimental, quantitative. Review of patient medical records. Among 384 refugees who met the case definition of LTBI without prior tuberculosis (TB) classification, the number of cases lost to early follow-up fell from 12.5% to 0% after expansion to a two-step screening process. The average interval between in-country arrival and initiation of LTBI treatment was shortened by 41.4%. The addition of a second step to the refugee screening process was correlated with significant improvements in the county's success in tracking and treating cases of LTBI in refugees. Given the disproportionate importance of foreign-born cases of LTBI to the incidence of TB disease in low-incidence countries, these improvements could have a substantial impact on overall TB control, and the process described could serve as a model for other local health department refugee screening programs. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  6. Effects of industrial processing on folate content in green vegetables.

    PubMed

    Delchier, Nicolas; Ringling, Christiane; Le Grandois, Julie; Aoudé-Werner, Dalal; Galland, Rachel; Georgé, Stéphane; Rychlik, Michael; Renard, Catherine M G C

    2013-08-15

    Folates are described to be sensitive to different physical parameters such as heat, light, pH and leaching. Most studies on folates degradation during processing or cooking treatments were carried out on model solutions or vegetables only with thermal treatments. Our aim was to identify which steps were involved in folates loss in industrial processing chains, and which mechanisms were underlying these losses. For this, the folates contents were monitored along an industrial canning chain of green beans and along an industrial freezing chain of spinach. Folates contents decreased significantly by 25% during the washing step for spinach in the freezing process, and by 30% in the green beans canning process after sterilisation, with 20% of the initial amount being transferred into the covering liquid. The main mechanism involved in folate loss during both canning green beans and freezing spinach was leaching. Limiting the contact between vegetables and water or using steaming seems to be an adequate measure to limit folates losses during processing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Method of manufacturing iron aluminide by thermomechanical processing of elemental powders

    DOEpatents

    Deevi, Seetharama C.; Lilly, Jr., A. Clifton; Sikka, Vinod K.; Hajaligol, Mohammed R.

    2000-01-01

    A powder metallurgical process of preparing iron aluminide useful as electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 20 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1 % rare earth metal, .ltoreq.1% oxygen, and/or .ltoreq.3% Cu. The process includes forming a mixture of aluminum powder and iron powder, shaping the mixture into an article such as by cold rolling the mixture into a sheet, and sintering the article at a temperature sufficient to react the iron and aluminum powders and form iron aluminide. The sintering can be followed by hot or cold rolling to reduce porosity created during the sintering step and optional annealing steps in a vacuum or inert atmosphere.

  8. A Chemical Route to Activation of Open Metal Sites in the Copper-Based Metal-Organic Framework Materials HKUST-1 and Cu-MOF-2.

    PubMed

    Kim, Hong Ki; Yun, Won Seok; Kim, Min-Bum; Kim, Jeung Yoon; Bae, Youn-Sang; Lee, JaeDong; Jeong, Nak Cheon

    2015-08-12

    Open coordination sites (OCSs) in metal-organic frameworks (MOFs) often function as key factors in the potential applications of MOFs, such as gas separation, gas sorption, and catalysis. For these applications, the activation process to remove the solvent molecules coordinated at the OCSs is an essential step that must be performed prior to use of the MOFs. To date, the thermal method performed by applying heat and vacuum has been the only method for such activation. In this report, we demonstrate that methylene chloride (MC) itself can perform the activation role: this process can serve as an alternative "chemical route" for the activation that does not require applying heat. To the best of our knowledge, no previous study has demonstrated this function of MC, although MC has been popularly used in the pretreatment step prior to the thermal activation process. On the basis of a Raman study, we propose a plausible mechanism for the chemical activation, in which the function of MC is possibly due to its coordination with the Cu(2+) center and subsequent spontaneous decoordination. Using HKUST-1 film, we further demonstrate that this chemical activation route is highly suitable for activating large-area MOF films.

  9. Process for metallization of a substrate by curing a catalyst applied thereto

    DOEpatents

    Chen, Ken S.; Morgan, William P.; Zich, John L.

    2002-10-08

    An improved additive process for metallization of substrates is described whereby a catalyst solution is applied to a surface of a substrate. Metallic catalytic clusters can be formed in the catalyst solution on the substrate surface by heating the substrate. Electroless plating can then deposit metal onto the portion of the substrate surface coated with catalyst solution. Additional metallization thickness can be obtained by electrolytically plating the substrate surface after the electroless plating step.

  10. Self-assembly and continuous growth of hexagonal graphene flakes on liquid Cu

    NASA Astrophysics Data System (ADS)

    Cho, Seong-Yong; Kim, Min-Sik; Kim, Minsu; Kim, Ki-Ju; Kim, Hyun-Mi; Lee, Do-Joong; Lee, Sang-Hoon; Kim, Ki-Bum

    2015-07-01

    Graphene growth on liquid Cu has received great interest, owing to the self-assembly behavior of hexagonal graphene flakes with aligned orientation and to the possibility of forming a single grain of graphene through a commensurate growth of these graphene flakes. Here, we propose and demonstrate a two-step growth process which allows the formation of self-assembled, completely continuous graphene on liquid Cu. After the formation of full coverage on the liquid Cu, grain boundaries were revealed via selective hydrogen etching and the original grain boundaries were clearly resolved. This result indicates that, while the flakes self-assembled with the same orientation, there still remain structural defects, gaps and voids that were not resolved by optical microscopy or scanning electron microscopy. To overcome this limitation, the two-step growth process was employed, consisting of a sequential process of a normal single-layer graphene growth and self-assembly process with a low carbon flux, followed by the final stage of graphene growth at a high degree of supersaturation with a high carbon flux. Continuity of the flakes was verified via hydrogen etching and a NaCl-assisted oxidation process, as well as by measuring the electrical properties of the graphene grown by the two-step process. Two-step growth can provide a continuous graphene layer, but commensurate stitching should be further studied.Graphene growth on liquid Cu has received great interest, owing to the self-assembly behavior of hexagonal graphene flakes with aligned orientation and to the possibility of forming a single grain of graphene through a commensurate growth of these graphene flakes. Here, we propose and demonstrate a two-step growth process which allows the formation of self-assembled, completely continuous graphene on liquid Cu. After the formation of full coverage on the liquid Cu, grain boundaries were revealed via selective hydrogen etching and the original grain boundaries were clearly resolved. This result indicates that, while the flakes self-assembled with the same orientation, there still remain structural defects, gaps and voids that were not resolved by optical microscopy or scanning electron microscopy. To overcome this limitation, the two-step growth process was employed, consisting of a sequential process of a normal single-layer graphene growth and self-assembly process with a low carbon flux, followed by the final stage of graphene growth at a high degree of supersaturation with a high carbon flux. Continuity of the flakes was verified via hydrogen etching and a NaCl-assisted oxidation process, as well as by measuring the electrical properties of the graphene grown by the two-step process. Two-step growth can provide a continuous graphene layer, but commensurate stitching should be further studied. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03352g

  11. Bottom-up heating method for producing polyethylene lunar concrete in lunar environment

    NASA Astrophysics Data System (ADS)

    Lee, Jaeho; Ann, Ki Yong; Lee, Tai Sik; Mitikie, Bahiru Bewket

    2018-07-01

    The Apollo Program launched numerous missions to the Moon, Earth's nearest and only natural satellite. NASA is now planning new Moon missions as a first step toward human exploration of Mars and other planets. However, the Moon has an extreme environment for humans. In-situ resource utilization (ISRU) construction must be used on the Moon to build habitable structures. Previous studies on polymeric lunar concrete investigated top-down heating for stabilizing the surface. This study investigates bottom-up heating with manufacturing temperatures as low as 200 °C in a vacuum chamber that simulates the lunar environment. A maximum compressive strength of 5.7 MPa is attained; this is suitable for constructing habitable structures. Furthermore, the bottom-up heating approach achieves solidification two times faster than does the top-down heating approach.

  12. Briquetting and carbonization of biomass products for the sustainable productions of activated carbons

    NASA Astrophysics Data System (ADS)

    Khorasgani, Nasrin B.; Karimibavani, Bahareh; Alamir, Mohammed; Alzahrani, Naif; McClain, Amy P.; Asmatulu, Ramazan

    2017-04-01

    One of the most environmental concerns is the climate change because of the greenhouse gasses, such as CO2, N2O, CH4, and fluorinated gases. The big majority of CO2 is coming from burning of fossil fuels to generate steam, heat and power. In order to address some of the major environmental concerns of fossil fuels, a number of different alternatives for renewable energy sources have been considered, including sunlight, wind, rain, tides and geothermal heat and biomass. In the present study, two different biomass products (three leaves and grasses) were collected from the local sources, cleaned, chopped, and mixed with corn starch as a binder prior to the briquetting process at different external loads in a metallic mold. A number of tests, including drop, ignition and mechanical compression were conducted on the prepared briquettes before and after stabilizations and carbonization processes at different conditions. The test results indicated that briquetting pressure and carbonizations are the primary factors to produce stable and durable briquettes for various industrial applications. Undergraduate students have been involved in every step of the project and observed all the details of the process during the laboratory studies, as well as data collection, analysis and presentation. This study will be useful for the future trainings of the undergraduate engineering students on the renewable energy and related technologies.

  13. Controlling CH3NH3PbI(3-x)Cl(x) Film Morphology with Two-Step Annealing Method for Efficient Hybrid Perovskite Solar Cells.

    PubMed

    Liu, Dong; Wu, Lili; Li, Chunxiu; Ren, Shengqiang; Zhang, Jingquan; Li, Wei; Feng, Lianghuan

    2015-08-05

    The methylammonium lead halide perovskite solar cells have become very attractive because they can be prepared with low-cost solution-processable technology and their power conversion efficiency have been increasing from 3.9% to 20% in recent years. However, the high performance of perovskite photovoltaic devices are dependent on the complicated process to prepare compact perovskite films with large grain size. Herein, a new method is developed to achieve excellent CH3NH3PbI3-xClx film with fine morphology and crystallization based on one step deposition and two-step annealing process. This method include the spin coating deposition of the perovskite films with the precursor solution of PbI2, PbCl2, and CH3NH3I at the molar ratio 1:1:4 in dimethylformamide (DMF) and the post two-step annealing (TSA). The first annealing is achieved by solvent-induced process in DMF to promote migration and interdiffusion of the solvent-assisted precursor ions and molecules and realize large size grain growth. The second annealing is conducted by thermal-induced process to further improve morphology and crystallization of films. The compact perovskite films are successfully prepared with grain size up to 1.1 μm according to SEM observation. The PL decay lifetime, and the optic energy gap for the film with two-step annealing are 460 ns and 1.575 eV, respectively, while they are 307 and 327 ns and 1.577 and 1.582 eV for the films annealed in one-step thermal and one-step solvent process. On the basis of the TSA process, the photovoltaic devices exhibit the best efficiency of 14% under AM 1.5G irradiation (100 mW·cm(-2)).

  14. Effect of Scintillometer Height on Structure Parameter of the Refractive Index of Air Measurements

    NASA Astrophysics Data System (ADS)

    Gowda, P. H.; Howell, T. A.; Hartogensis, O.; Basu, S.; Scanlon, B. R.

    2009-12-01

    Scintillometers measure amount of scintillations by emitting a beam of light over a horizontal path and expresses as the atmospheric turbulence structure parameter as the refractive index of air (Cn2). Cn2 represents the turbulent strength of the atmosphere and describes the ability of the atmosphere to transport heat and humidity. The main objective of this study was to evaluate the effect of scintillometer height on Cn2 measurements and on the estimation of latent heat fluxes. The study was conducted during the 2009 summer growing season in the USDA-ARS Conservation and Production Research Laboratory (CPRL) at Bushland [350 11' N, 1020 06' W; 1,170 m elevation MSL], Texas. Field experiment consisted of two steps: (1) cross-calibration of scintillometers and (2) measurement of Cn2 at different heights. In the first step, three large aperture scintillometers (LAS) were deployed across two large lysimeter fields with bare soil surfaces. During the 3-week cross-calibration period, all three scintillometers were installed at a 2-m height with a path length of 420 m. Cn2 was monitored at a 1-min interval and averaged for 15-min periods. Cn2 measurements were synchronized with weather station and weighing lysimeter measurements. After the cross-calibration period, scintillometers were installed at 2-, 2.5- and 3-m heights, and Cn2 measurements were continued for another 3-week period. In addition to the Cn2 measurements, net radiation (Rn) and soil heat fluxes (G) were measured in both lysimeter fields. Cn2 values were corrected for inner scale dependence before cross calibration and estimation of sensible heat fluxes. Measurements of wind speed, air temperature, and relative humidity were used with Cn2 data to derive sensible heat fluxes. Latent heat fluxes were estimated as a residual from the energy balance and compared with lysimeter data. Results of cross calibration and effects of scintillometer height on the estimation of latent heat fluxes were reported and discussed.

  15. History of special metallurgical (SM) building remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maul, G.F. Jr.

    1996-12-31

    Throughout most of the 1960s the SM-Building was a very busy and undoubtedly exciting place to work. The SNAP Program was in full swing then, producing heat sources, first for demonstration purposes, then for communications and weather satellites. As the program evolved, Mound was engaged in producing plutonium-powered heat sources for medical applications, including the famous cardiac pacemaker, which supplied rhythmic electrical pulses to the human heart in order to regulate the heart beat. This paper reviews the steps the building went through in the process of being shut down, decommissioned, and finally removed.

  16. Photovoltaic Cell And Manufacturing Process

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes R.

    1996-11-26

    Provided is a method for controlling electrical properties and morphology of a p-type material of a photovoltaic device. The p-type material, such as p-type cadmium telluride, is first subjected to heat treatment in an oxidizing environment, followed by recrystallization in an environment substantially free of oxidants. In one embodiment, the heat treatment step comprises first subjecting the p-type material to an oxidizing atmosphere at a first temperature to getter impurities, followed by second subjecting the p-type material to an oxidizing atmosphere at a second temperature, higher than the first temperature, to develop a desired oxidation gradient through the p-type material.

  17. Processing and mechanical characterization of alumina laminates

    NASA Astrophysics Data System (ADS)

    Montgomery, John K.

    2002-08-01

    Single-phase ceramics that combine property gradients or steps in monolithic bodies are sought as alternatives to ceramic composites made of dissimilar materials. This work describes novel processing methods to produce stepped-density (or laminated) alumina single-phase bodies that maintain their mechanical integrity. One arrangement consists of a stiff, dense bulk material with a thin, flaw tolerant, porous exterior layer. Another configuration consists of a lightweight, low-density bulk material with a thin, hard, wear resistant exterior layer. Alumina laminates with strong interfaces have been successfully produced in this work using two different direct-casting processes. Gelcasting is a useful near-net shape processing technique that has been combined with several techniques, such as reaction bonding of aluminum oxide and the use of starch as a fugative filler, to successfully produced stepped-density alumina laminates. The other direct casting process that has been developed in this work is thermoreversible gelcasting (TRG). This is a reversible gelation process that has been used to produce near-net shape dense ceramic bodies. Also, individual layers can be stacked together and heated to produce laminates. Bilayer laminate samples were produced with varied thickness of porous and dense layers. It was shown that due to the difference in modulus and hardness, transverse cracking is found upon Hertzian contact when the dense layer is on the exterior. In the opposite arrangement, compacted damage zones formed in the porous material and no damage occurred in the underlying dense layer. Flaw tolerant behavior of the porous exterior/dense underlayer was examined by measuring biaxial strength as a function of Vickers indentation load. It was found that the thinnest layer of porous material results in the greatest flaw tolerance. Also, higher strength was exhibited at large indentation loads when compared to dense monoliths. The calculated stresses on the surfaces and interface afforded an explanation of the behavior that failure initiates at the interface between the layers for the thinnest configuration, rather than the sample surface.

  18. A Graphical Proof of the Positive Entropy Change in Heat Transfer between Two Objects

    ERIC Educational Resources Information Center

    Kiatgamolchai, Somchai

    2015-01-01

    It is well known that heat transfer between two objects results in a positive change in the total entropy of the two-object system. The second law of thermodynamics states that the entropy change of a naturally irreversible process is positive. In other words, if the entropy change of any process is positive, it can be inferred that such a process…

  19. Deconvolution of complex differential scanning calorimetry profiles for protein transitions under kinetic control.

    PubMed

    Toledo-Núñez, Citlali; Vera-Robles, L Iraís; Arroyo-Maya, Izlia J; Hernández-Arana, Andrés

    2016-09-15

    A frequent outcome in differential scanning calorimetry (DSC) experiments carried out with large proteins is the irreversibility of the observed endothermic effects. In these cases, DSC profiles are analyzed according to methods developed for temperature-induced denaturation transitions occurring under kinetic control. In the one-step irreversible model (native → denatured) the characteristics of the observed single-peaked endotherm depend on the denaturation enthalpy and the temperature dependence of the reaction rate constant, k. Several procedures have been devised to obtain the parameters that determine the variation of k with temperature. Here, we have elaborated on one of these procedures in order to analyze more complex DSC profiles. Synthetic data for a heat capacity curve were generated according to a model with two sequential reactions; the temperature dependence of each of the two rate constants involved was determined, according to the Eyring's equation, by two fixed parameters. It was then shown that our deconvolution procedure, by making use of heat capacity data alone, permits to extract the parameter values that were initially used. Finally, experimental DSC traces showing two and three maxima were analyzed and reproduced with relative success according to two- and four-step sequential models. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Double-diffusive instabilities in ancient seawater

    NASA Astrophysics Data System (ADS)

    Pawlowicz, Rich; Scheifele, Ben; Zaloga, Artem; Wuest, Alfred; Sommer, Tobias

    2015-04-01

    Powell Lake, British Columbia, Canada is a geothermally heated lake about 350m deep with a saline lower layer that was isolated from the ocean by coastal uplift about 11000 years ago, after the last ice age. Careful temperature and conductivity profiling measurements show consistent, stable, and spatially/temporally coherent steps resulting from double-diffusive processes in certain ranges of depth, vertically interspersed with other depth ranges where these signatures are not present. These features are quasi-stable for at least several years. Although molecular diffusion has removed about half the salt from the deepest waters and biogeochemical processes have slightly modified the water composition, the lack of tidal processes and shear-driven mixing, as well as an accurate estimate of heat flux from both sediment heat flux measurements and gradient measurements in a region not susceptible to diffusive instabilities, makes this a unique geophysical laboratory to study double diffusion. Here we present a detailed picture of the structure of Powell Lake and its double-diffusive stair cases, and suggest shortcomings with existing parameterizations for fluxes through such staircases.

  1. Process for producing large grain cadmium telluride

    DOEpatents

    Hasoon, F.S.; Nelson, A.J.

    1996-01-16

    A process is described for producing a cadmium telluride polycrystalline film having grain sizes greater than about 20 {micro}m. The process comprises providing a substrate upon which cadmium telluride can be deposited and placing that substrate within a vacuum chamber containing a cadmium telluride effusion cell. A polycrystalline film is then deposited on the substrate through the steps of evacuating the vacuum chamber to a pressure of at least 10{sup {minus}6} torr.; heating the effusion cell to a temperature whereat the cell releases stoichiometric amounts of cadmium telluride usable as a molecular beam source for growth of grains on the substrate; heating the substrate to a temperature whereat a stoichiometric film of cadmium telluride can be deposited; and releasing cadmium telluride from the effusion cell for deposition as a film on the substrate. The substrate then is placed in a furnace having an inert gas atmosphere and heated for a sufficient period of time at an annealing temperature whereat cadmium telluride grains on the substrate grow to sizes greater than about 20 {micro}m.

  2. Investigation of Third Gyro-harmonic Heating at HAARP Using Stimulated Radio Emissions, the MUIR and SuperDARN Radars

    NASA Astrophysics Data System (ADS)

    Mahmoudian, Alireza; Bernhardt, Paul; Ruohoniemi, J. Michael; Isham, Brett; Watkins, Brenton; Scales, Wayne

    2016-07-01

    Use of high frequency (HF) heating experiments has been extended in recent years as a useful methodology for plasma physicists wishing to remotely study the properties and behavior of the ionosphere as well as nonlinear plasma processes. Our recent work using high latitude heating experiments has lead to several important discoveries that have enabled assessment of active geomagnetic conditions, determination of minor ion species and their densities, ion mass spectrometry, electron temperature measurements in the heating ionosphere, as well a deeper understanding of physical processes associated with electron acceleration and formation of field aligned irregularities. The data recorded during two campaigns at HAARP in 2011 and 2012 will be presented. Several diagnostic instruments have been used to detect HAARP heater-generated ionospheric irregularities and plasma waves. These diagnostics include an ionosonde, MUIR (Modular UHF Ionospheric Radar at 446 MHz), SuperDARN HF backscatter radar and ground-based SEE receivers. Variation of the wideband/ narrowband SEE features, SuperDARN echoes, and enhanced ion lines were studied with pump power variation, pump frequency stepping near 3fce as well as changing beam angle relative to the magnetic zenith. In particular, formation of field-aligned irregularities (FAIs) and upper hybrid (UH) waves through oscillating two-stream instability (OSTI) and resonance instability is studied. During heating, Narrowband SEE (NSEE) showed enhancements that correlated with the enhanced MUIR radar ion lines. IA MSBS (Magnetized Stimulated Brillouin Scatter) lines are much narrower than Wideband SEE (WSEE) lines and as a result electron temperature calculated using NSEE line offset has potential to be more accurate. This technique may therefore complement the electron temperature calculation using ISR spectra. Strength of IA MSBS lines correlate with EHIL in the MUIR spectrum during HF pump frequency variation near 3fce. Therefore, NSEE could be used for similar diagnostic information, particularly temperature assessment during heating. More detailed physics-based modeling of such SEE is expected to provide further diagnostic information/capabilities. This work has demonstrated the tremendous future potential of Narrowband SEE (NSEE) as a powerful untapped ionospheric diagnostic which could provide complementary measurements for locations that ISR facilities are not available or as a complementary measurement for the waves and irregularities that cannot be observed by ISR.

  3. In-situ synchrotron wide-angle X-ray diffraction as a rapid method for cocrystal/salt screening.

    PubMed

    Dong, Pin; Lin, Ling; Li, Yongcheng; Huang, Zhengwei; Lang, Tianqun; Wu, Chuanbin; Lu, Ming

    2015-12-30

    The purpose of this work was to explore in-situ synchrotron wide-angle X-ray diffraction (WAXD) as a rapid and accurate tool to screen and monitor the formation of cocrystal/salts during heating. The active pharmaceutical ingredients (caffeine, carbamazepine and lamotrigine) were respectively mixed with the coformer (saccharin), and then heated by the hot stage. Real-time process monitoring was performed using synchrotron WAXD to assess cocrystal formation and subsequently compared to differential scanning calorimetry (DSC) measurements. The effect of heating rates and cocrystal growth behavior were investigated. Synchrotron WAXD was fast and sensitive to detect cocrystal formation with the appearance of characteristic diffraction rings, even at the heating rate of 30°C/min, while DSC curves showed overlapped peaks. Unlike the indirect characterization of DSC on endo/exothermic peaks, synchrotron WAXD can directly and qualitatively determine cocrystal by diffraction peaks. The diffraction intensity-temperature curves and the corresponding first-derivative curves clearly exhibited the growth behavior of cocrystal upon heating, providing useful information to optimize the process temperature of hot melt extrusion to continuously manufacture cocrystal. The study suggests that in-situ synchrotron WAXD could provide a one-step process to screen cocrystal at high efficiency and reveal the details of cocrystal/salts growth behavior. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Reliable Exfoliation of Large-Area High-Quality Flakes of Graphene and Other Two-Dimensional Materials.

    PubMed

    Huang, Yuan; Sutter, Eli; Shi, Norman N; Zheng, Jiabao; Yang, Tianzhong; Englund, Dirk; Gao, Hong-Jun; Sutter, Peter

    2015-11-24

    Mechanical exfoliation has been a key enabler of the exploration of the properties of two-dimensional materials, such as graphene, by providing routine access to high-quality material. The original exfoliation method, which remained largely unchanged during the past decade, provides relatively small flakes with moderate yield. Here, we report a modified approach for exfoliating thin monolayer and few-layer flakes from layered crystals. Our method introduces two process steps that enhance and homogenize the adhesion force between the outermost sheet in contact with a substrate: Prior to exfoliation, ambient adsorbates are effectively removed from the substrate by oxygen plasma cleaning, and an additional heat treatment maximizes the uniform contact area at the interface between the source crystal and the substrate. For graphene exfoliation, these simple process steps increased the yield and the area of the transferred flakes by more than 50 times compared to the established exfoliation methods. Raman and AFM characterization shows that the graphene flakes are of similar high quality as those obtained in previous reports. Graphene field-effect devices were fabricated and measured with back-gating and solution top-gating, yielding mobilities of ∼4000 and 12,000 cm(2)/(V s), respectively, and thus demonstrating excellent electrical properties. Experiments with other layered crystals, e.g., a bismuth strontium calcium copper oxide (BSCCO) superconductor, show enhancements in exfoliation yield and flake area similar to those for graphene, suggesting that our modified exfoliation method provides an effective way for producing large area, high-quality flakes of a wide range of 2D materials.

  5. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment

    NASA Technical Reports Server (NTRS)

    Erickson, Lisa R.; Ungar, Eugene K.

    2013-01-01

    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  6. Biodiesel from Citrullus colocynthis Oil: Sulfonic-Ionic Liquid-Catalyzed Esterification of a Two-Step Process

    PubMed Central

    Ali Elsheikh, Yasir; Hassan Akhtar, Faheem

    2014-01-01

    Biodiesel was prepared from Citrullus colocynthis oil (CCO) via a two-step process. The first esterification step was explored in two ionic liquids (ILs) with 1,3-disulfonic acid imidazolium hydrogen sulfate (DSIMHSO4) and 3-methyl-1-sulfonic acid imidazolium hydrogen sulfate (MSIMHSO4). Both ILs appeared to be good candidates to replace hazardous acidic catalyst due to their exceptional properties. However, the two sulfonic chains existing in DSIMHSO4 were found to increase the acidity to the IL than the single sulfonic chain in MSIMHSO4. Based on the results, 3.6 wt% of DSIMHSO4, methanol/CCO molar ratio of 12 : 1, and 150°C offered a final FFA conversion of 95.4% within 105 min. A 98.2% was produced via second KOH-catalyzed step in 1.0%, 6 : 1 molar ratio, 600 rpm, and 60°C for 50 min. This new two-step catalyzed process could solve the corrosion and environmental problems associated with the current acidic catalysts. PMID:24987736

  7. Size Effect of the 2-D Bodies on the Geothermal Gradient and Q-A Plot

    NASA Astrophysics Data System (ADS)

    Thakur, M.; Blackwell, D. D.

    2009-12-01

    Using numerical models we have investigated some of the criticisms on the Q-A plot of related to the effect of size of the body on the slope and reduced heat flow. The effects of horizontal conduction depend on the relative difference of radioactivity between the body and the country rock (assuming constant thermal conductivity). Horizontal heat transfer due to different 2-D bodies was numerically studied in order to quantify resulting temperature differences at the Moho and errors on the predication of Qr (reduced heat flow). Using the two end member distributions of radioactivity, the step model (thickness 10km) and exponential model, different 2-D models of horizontal scale (width) ranging from 10 -500 km were investigated. Increasing the horizontal size of the body tends to move observations closer towards the 1-D solution. A temperature difference of 50 oC is produced (for the step model) at Moho between models of width 10 km versus 500 km. In other words the 1-D solution effectively provides large scale averaging in terms of heat flow and temperature field in the lithosphere. For bodies’ ≤ 100 km wide the geotherms at shallower levels are affected, but at depth they converge and are 50 oC lower than that of the infinite plate model temperature. In case of 2-D bodies surface heat flow is decreased due to horizontal transfer of heat, which will shift the Q-A point vertically downward on the Q-A plot. The smaller the size of the body, the more will be the deviation from the 1-D solution and the more will be the movement of Q-A point downwards on a Q-A plot. On the Q-A plot, a limited points of bodies of different sizes with different radioactivity contrast (for the step and exponential model), exactly reproduce the reduced heat flow Qr. Thus the size of the body can affect the slope on a Q-A plot but Qr is not changed. Therefore, Qr ~ 32 mWm-2 obtained from the global terrain average Q-A plot represents the best estimate of stable continental mantle heat flow.

  8. Effect of a Stepped Si(100) Surface on the Nucleation Process of Ge Islands

    NASA Astrophysics Data System (ADS)

    Yesin, M. Yu.; Nikiforov, A. I.; Timofeev, V. A.; Mashanov, V. I.; Tuktamyshev, A. R.; Loshkarev, I. D.; Pchelyakov, O. P.

    2018-03-01

    Nucleation of Ge islands on a stepped Si(100) surface is studied. It is shown by diffraction of fast electrons that at a temperature of 600°C, constant flux of Si, and deposition rate of 0.652 Å/s, a series of the 1×2 superstructure reflections completely disappears, if the Si (100) substrate deviated by an angle of 0.35° to the (111) face is preliminarily heated to 1000°C. The disappearance of the 1×2 superstructure reflexes is due to the transition from the surface with monoatomic steps to that with diatomic ones. Investigations of the Ge islands' growth were carried out on the Si(100) surface preliminarily annealed at temperatures of 800 and 1000°C. It is shown that the islands tend to nucleate at the step edges.

  9. Estimation of Heat Transfer Coefficient in Squeeze Casting of Magnesium Alloy AM60 by Experimental Polynomial Extrapolation Method

    NASA Astrophysics Data System (ADS)

    Sun, Zhizhong; Niu, Xiaoping; Hu, Henry

    In this work, a different wall-thickness 5-step (with thicknesses as 3, 5, 8, 12, 20 mm) casting mold was designed, and squeeze casting of magnesium alloy AM60 was performed in a hydraulic press. The casting-die interfacial heat transfer coefficients (IHTC) in 5-step casting were determined based on experimental thermal histories data throughout the die and inside the casting which were recorded by fine type-K thermocouples. With measured temperatures, heat flux and IHTC were evaluated using the polynomial curve fitting method. The results show that the wall thickness affects IHTC peak values significantly. The IHTC value for the thick step is higher than that for the thin steps.

  10. Apparatus and processes for the mass production of photovoltaic modules

    DOEpatents

    Barth, Kurt L [Ft. Collins, CO; Enzenroth, Robert A [Fort Collins, CO; Sampath, Walajabad S [Fort Collins, CO

    2007-05-22

    An apparatus and processes for large scale inline manufacturing of CdTe photovoltaic modules in which all steps, including rapid substrate heating, deposition of CdS, deposition of CdTe, CdCl.sub.2 treatment, and ohmic contact formation, are performed within a single vacuum boundary at modest vacuum pressures. A p+ ohmic contact region is formed by subliming a metal salt onto the CdTe layer. A back electrode is formed by way of a low cost spray process, and module scribing is performed by means of abrasive blasting or mechanical brushing through a mask. The vacuum process apparatus facilitates selective heating of substrates and films, exposure of substrates and films to vapor with minimal vapor leakage, deposition of thin films onto a substrate, and stripping thin films from a substrate. A substrate transport apparatus permits the movement of substrates into and out of vacuum during the thin film deposition processes, while preventing the collection of coatings on the substrate transport apparatus itself.

  11. Production of Substitute Natural Gas from Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew Lucero

    2009-01-31

    The goal of this research program was to develop and demonstrate a novel gasification technology to produce substitute natural gas (SNG) from coal. The technology relies on a continuous sequential processing method that differs substantially from the historic methanation or hydro-gasification processing technologies. The thermo-chemistry relies on all the same reactions, but the processing sequences are different. The proposed concept is appropriate for western sub-bituminous coals, which tend to be composed of about half fixed carbon and about half volatile matter (dry ash-free basis). In the most general terms the process requires four steps (1) separating the fixed carbon frommore » the volatile matter (pyrolysis); (2) converting the volatile fraction into syngas (reforming); (3) reacting the syngas with heated carbon to make methane-rich fuel gas (methanation and hydro-gasification); and (4) generating process heat by combusting residual char (combustion). A key feature of this technology is that no oxygen plant is needed for char combustion.« less

  12. Apparatus and processes for the mass production of photovotaic modules

    DOEpatents

    Barth, Kurt L.; Enzenroth, Robert A.; Sampath, Walajabad S.

    2002-07-23

    An apparatus and processes for large scale inline manufacturing of CdTe photovoltaic modules in which all steps, including rapid substrate heating, deposition of CdS, deposition of CdTe, CdCl.sub.2 treatment, and ohmic contact formation, are performed within a single vacuum boundary at modest vacuum pressures. A p+ ohmic contact region is formed by subliming a metal salt onto the CdTe layer. A back electrode is formed by way of a low cost spray process, and module scribing is performed by means of abrasive blasting or mechanical brushing through a mask. The vacuum process apparatus facilitates selective heating of substrates and films, exposure of substrates and films to vapor with minimal vapor leakage, deposition of thin films onto a substrate, and stripping thin films from a substrate. A substrate transport apparatus permits the movement of substrates into and out of vacuum during the thin film deposition processes, while preventing the collection of coatings on the substrate transport apparatus itself.

  13. Decomposing properties of phosphogypsum with iron addition under two-step cycle multi-atmosphere control in fluidised bed.

    PubMed

    Zheng, Dalong; Ma, Liping; Wang, Rongmou; Yang, Jie; Dai, Quxiu

    2018-02-01

    Phosphogypsum is a solid industry by-product generated when sulphuric acid is used to process phosphate ore into fertiliser. Phosphogypsum stacks without pretreatment are often piled on the land surface or dumped in the sea, causing significant environmental damage. This study examined the reaction characteristics of phosphogypsum, when decomposed in a multi-atmosphere fluidised bed. Phosphogypsum was first dried, sieved and mixed proportionally with lignite at the mass ratio of 10:1, it was then immersed in 0.8 [Formula: see text] with a solid-liquid ratio of 8:25. The study included a two-step cycle of multi-atmosphere control. First, a reducing atmosphere was provided to allow phosphogypsum decomposition through partial lignite combustion. After the reduction stage reaction was completed, the reducing atmosphere was changed into an air-support oxidising atmosphere at the constant temperature. Each atmosphere cycle had a conversion time of 30 min to ensure a sufficient reaction. The decomposing properties of phosphogypsum were obtained in different atmosphere cycles, at different reaction temperatures, different heating rates and different fluidised gas velocities, using experimental results combined with a theoretical analysis using FactSage 7.0 Reaction module. The study revealed that the optimum reaction condition was to circulate the atmosphere twice at a temperature of 1100 °C. The heating rate above 800 °C was 5 [Formula: see text], and the fluidised gas velocity was 0.40 [Formula: see text]. The procedure proposed in this article can serve as a phosphogypsum decomposition solution, and can support the future management of this by-product, resulting in more sustainable production.

  14. A qualitative assessment of Toxoplasma gondii risk in ready-to-eat smallgoods processing.

    PubMed

    Mie, Tanya; Pointon, Andrew M; Hamilton, David R; Kiermeier, Andreas

    2008-07-01

    Toxoplasma gondii is one of the most common parasitic infections of humans and other warm-blooded animals. In most adults, it does not cause serious illness, but severe disease may result from infection in fetuses and immunocompromised people. Consumption of raw or undercooked meats has consistently been identified as an important source of exposure to T. gondii. Several studies indicate the potential failure to inactivate T. gondii in the processes of cured meat products, This article presents a qualitative risk-based assessment of the processing of ready-to-eat smallgoods, which include cooked or uncooked fermented meat, pâté, dried meat, slow cured meat, luncheon meat, and cooked muscle meat including ham and roast beef. The raw meat ingredients are rated with respect to their likelihood of containing T. gondii cysts and an adjustment is made based on whether all the meat from a particular source is frozen. Next, the effectiveness of common processing steps to inactivate T. gondii cysts is assessed, including addition of spices, nitrates, nitrites and salt, use of fermentation, smoking and heat treatment, and the time and temperature during maturation. It is concluded that processing steps that may be effective in the inactivation of T. gondii cysts include freezing, heat treatment, and cooking, and the interaction between salt concentration, maturation time, and temperature. The assessment is illustrated using a Microsoft Excel-based software tool that was developed to facilitate the easy assessment of four hypothetical smallgoods products.

  15. The evaluation of energy efficiency of convective heat transfer surfaces in tube bundles

    NASA Astrophysics Data System (ADS)

    Grigoriev, B. A.; Pronin, V. A.; Salohin, V. I.; Sidenkov, D. V.

    2017-11-01

    When evaluating the effectiveness of the heat exchange surfaces in the main considered characteristics such as heat flow (Q, Watt), the power required for pumps (N, Watt), and surface area of heat transfer (F, m2). The most correct comparison provides a comparison “ceteris paribus”. Carried out performance comparison “ceteris paribus” in-line and staggered configurations of bundles with a circular pipes can serve as a basis for the development of physical models of flow and heat transfer in tube bundles with tubes of other geometric shapes, considering intertubular stream with attached eddies. The effect of longitudinal and transverse steps of the pipes on the energy efficiency of different configurations would take into account by mean of physical relations between the structure of shell side flow with attached eddies and intensity of transfer processes of heat and momentum. With the aim of energy-efficient placement of tubes, such an approach opens up great opportunities for the synthesis of a plurality of tubular heat exchange surfaces, in particular, the layout of the twisted and in-line-diffuser type with a drop-shaped pipes.

  16. Process for remediation of plastic waste

    DOEpatents

    Pol, Vilas G [Westmont, IL; Thiyagarajan, Pappannan [Germantown, MD

    2012-04-10

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  17. [Investigation of stages of chemical leaching and biooxidation during the extraction of gold from sulfide concentrates].

    PubMed

    Murav'ev, M I; Fomchenko, N V; Kondrat'eva, T V

    2015-01-01

    We examined the chemical leaching and biooxidation stages in a two-stage biooxidation process of an auriferous sulfide concentrate containing pyrrhotite, arsenopyrite and pyrite. Chemical leaching of the concentrate (slurry density at 200 g/L) by ferric sulfate biosolvent (initial concentration at 35.6 g/L), which was obtained by microbial oxidation of ferrous sulfate for 2 hours at 70°C at pH 1.4, was allowed to oxidize 20.4% ofarsenopyrite and 52.1% of sulfur. The most effective biooxidation of chemically leached concentrate was observed at 45°C in the presence of yeast extract. Oxidation of the sulfide concentrate in a two-step process proceeded more efficiently than in one-step. In a two-step mode, gold extraction from the precipitate was 10% higher and the content of elemental sulfur was two times lower than in a one-step process.

  18. Theoretical simulation of the dual-heat-flux method in deep body temperature measurements.

    PubMed

    Huang, Ming; Chen, Wenxi

    2010-01-01

    Deep body temperature reveals individual physiological states, and is important in patient monitoring and chronobiological studies. An innovative dual-heat-flux method has been shown experimentally to be competitive with the conventional zero-heat-flow method in its performance, in terms of measurement accuracy and step response to changes in the deep temperature. We have utilized a finite element method to model and simulate the dynamic process of a dual-heat-flux probe in deep body temperature measurements to validate the fundamental principles of the dual-heat-flux method theoretically, and to acquire a detailed quantitative description of the thermal profile of the dual-heat-flux probe. The simulation results show that the estimated deep body temperature is influenced by the ambient temperature (linearly, at a maximum rate of 0.03 °C/°C) and the blood perfusion rate. The corresponding depth of the estimated temperature in the skin and subcutaneous tissue layer is consistent when using the dual-heat-flux probe. Insights in improving the performance of the dual-heat-flux method were discussed for further studies of dual-heat-flux probes, taking into account structural and geometric considerations.

  19. Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes

    NASA Technical Reports Server (NTRS)

    Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak

    2004-01-01

    High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel Benchmarks (NPB). In this paper, we present some interesting performance results of ow OpenMP parallel implementation on different architectures such as the SGI Origin2000, SGI Altix, and Cray MTA-2.

  20. Role of Magnetic Reconnection in Heating Astrophysical Plasmas

    NASA Astrophysics Data System (ADS)

    Hammoud, M. M.; El Eid, M.; Darwish, M.; Dayeh, M. A.

    2017-12-01

    The description of plasma in the context of a fluid model reveals the important phenomenon of magnetic reconnection (MGR). This process is thought to be the cause of particle heating and acceleration in various astrophysical phenomena. Examples are geomagnetic storms, solar flares, or heating the solar corona, which is the focus of the present contribution. The magnetohydrodynamic approach (MHD) provides a basic description of MGR. However, the simulation of this process is rather challenging. Although it is not yet established whether waves or reconnection play the dominant role in heating the solar atmosphere, the present goal is to examine the tremendous increase of the temperature between the solar chromosphere and the corona in a very narrow transition region. Since we are dealing with very-high temperature plasma, the modeling of such heating process seems to require a two-fluid description consisting of ions and electrons. This treatment is an extension of the one-fluid model of resistive MHD that has been recently developed by [Hammoud et al., 2017] using the modern numerical openfoam toolbox. In this work, we outline the two-fluid approach using coronal conditions, show evidence of MGR in the two-fluid description, and investigate the temperature increase as a result of this MGR process.

Top