Mechanism of Formation of Li 7 P 3 S 11 Solid Electrolytes through Liquid Phase Synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuxing; Lu, Dongping; Bowden, Mark
Crystalline Li7P3S11 is a promising solid electrolyte for all solid state lithium/lithium ion batteries. A controllable liquid phase synthesis of Li7P3S11 is more desirable compared to conventional mechanochemical synthesis, but recent attempts suffer from reduced ionic conductivities. Here we elucidate the formation mechanism of crystalline Li7P3S11 synthesized in the liquid phase (acetonitrile, or ACN). We conclude that the crystalline Li7P3S11 forms through a two-step reaction: 1) formation of solid Li3PS4∙ACN and amorphous Li2S∙P2S5 phases in the liquid phase; 2) solid-state conversion of the two phases. The implication of this two-step reaction mechanism to the morphology control and the transport propertiesmore » of liquid phase synthesized Li7P3S11 is identified and discussed.« less
Guan, Zixuan; Chen, Di; Chueh, William C
2017-08-30
The oxygen incorporation reaction, which involves the transformation of an oxygen gas molecule to two lattice oxygen ions in a mixed ionic and electronic conducting solid, is a ubiquitous and fundamental reaction in solid-state electrochemistry. To understand the reaction pathway and to identify the rate-determining step, near-equilibrium measurements have been employed to quantify the exchange coefficients as a function of oxygen partial pressure and temperature. However, because the exchange coefficient contains contributions from both forward and reverse reaction rate constants and depends on both oxygen partial pressure and oxygen fugacity in the solid, unique and definitive mechanistic assessment has been challenging. In this work, we derive a current density equation as a function of both oxygen partial pressure and overpotential, and consider both near and far from equilibrium limits. Rather than considering specific reaction pathways, we generalize the multi-step oxygen incorporation reaction into the rate-determining step, preceding and following quasi-equilibrium steps, and consider the number of oxygen ions and electrons involved in each. By evaluating the dependence of current density on oxygen partial pressure and overpotential separately, one obtains the reaction orders for oxygen gas molecules and for solid-state species in the electrode. We simulated the oxygen incorporation current density-overpotential curves for praseodymium-doped ceria for various candidate rate-determining steps. This work highlights a promising method for studying the exchange kinetics far away from equilibrium.
Solid state synthesis of poly(dichlorophosphazene)
Allen, Christopher W.; Hneihen, Azzam S.; Peterson, Eric S.
2001-01-01
A method for making poly(dichlorophosphazene) using solid state reactants is disclosed and described. The present invention improves upon previous methods by removing the need for chlorinated hydrocarbon solvents, eliminating complicated equipment and simplifying the overall process by providing a "single pot" two step reaction sequence. This may be accomplished by the condensation reaction of raw materials in the melt phase of the reactants and in the absence of an environmentally damaging solvent.
Liu, Qiunan; Yang, Tingting; Du, Congcong; Tang, Yongfu; Sun, Yong; Jia, Peng; Chen, Jingzhao; Ye, Hongjun; Shen, Tongde; Peng, Qiuming; Zhang, Liqiang; Huang, Jianyu
2018-06-13
We report real time imaging of the oxygen reduction reactions (ORRs) in all solid state sodium oxygen batteries (SOBs) with CuO nanowires (NWs) as the air cathode in an aberration-corrected environmental transmission electron microscope under an oxygen environment. The ORR occurred in a distinct two-step reaction, namely, a first conversion reaction followed by a second multiple ORR. In the former, CuO was first converted to Cu 2 O and then to Cu; in the latter, NaO 2 formed first, followed by its disproportionation to Na 2 O 2 and O 2 . Concurrent with the two distinct electrochemical reactions, the CuO NWs experienced multiple consecutive large volume expansions. It is evident that the freshly formed ultrafine-grained Cu in the conversion reaction catalyzed the latter one-electron-transfer ORR, leading to the formation of NaO 2 . Remarkably, no carbonate formation was detected in the oxygen cathode after cycling due to the absence of carbon source in the whole battery setup. These results provide fundamental understanding into the oxygen chemistry in the carbonless air cathode in all solid state Na-O 2 batteries.
Constales, Denis; Yablonsky, Gregory S.; Wang, Lucun; ...
2017-04-25
This paper presents a straightforward and user-friendly procedure for extracting a reactivity characterization of catalytic reactions on solid materials under non-steady-state conditions, particularly in temporal analysis of products (TAP) experiments. The kinetic parameters derived by this procedure can help with the development of detailed mechanistic understanding. The procedure consists of the following two major steps: 1) Three “Laplace reactivities” are first determined based on the moments of the exit flow pulse response data; 2) Depending on a select kinetic model, kinetic constants of elementary reaction steps can then be expressed as a function of reactivities and determined accordingly. In particular,more » we distinguish two calculation methods based on the availability and reliability of reactant and product data. The theoretical results are illustrated using a reverse example with given parameters as well as an experimental example of CO oxidation over a supported Au/SiO 2 catalyst. The procedure presented here provides an efficient tool for kinetic characterization of many complex chemical reactions.« less
Kinetic concepts of thermally stimulated reactions in solids
NASA Astrophysics Data System (ADS)
Vyazovkin, Sergey
Historical analysis suggests that the basic kinetic concepts of reactions in solids were inherited from homogeneous kinetics. These concepts rest upon the assumption of a single-step reaction that disagrees with the multiple-step nature of solid-state processes. The inadequate concepts inspire such unjustified anticipations of kinetic analysis as evaluating constant activation energy and/or deriving a single-step reaction mechanism for the overall process. A more adequate concept is that of the effective activation energy, which may vary with temperature and extent of conversion. The adequacy of this concept is illustrated by literature data as well as by experimental data on the thermal dehydration of calcium oxalate monohydrate and thermal decomposition of calcium carbonate, ammonium nitrate and 1,3,5,7- tetranitro-1,3,5,7-tetrazocine.
Hwang, Deng-Fwu; Hsieh, Tzu-Feng; Lin, Shan-Yang
2013-01-01
The stepwise reaction pathway of the solid-state Maillard reaction between glucose (Glc) and asparagine (Asn) was investigated using simultaneous differential scanning calorimetry (DSC)-FTIR microspectroscopy. The color change and FTIR spectra of Glc-Asn physical mixtures (molar ratio = 1:1) preheated to different temperatures followed by cooling were also examined. The successive reaction products such as Schiff base intermediate, Amadori product, and decarboxylated Amadori product in the solid-state Glc-Asn Maillard reaction were first simultaneously evidenced by this unique DSC-FTIR microspectroscopy. The color changed from white to yellow-brown to dark brown, and appearance of new IR peaks confirmed the formation of Maillard reaction products. The present study clearly indicates that this unique DSC-FTIR technique not only accelerates but also detects precursors and products of the Maillard reaction in real time.
NASA Astrophysics Data System (ADS)
Zheng, Huifeng; Wang, Weiqi; Liu, Yangqiao; Sun, Jing
2017-03-01
Compact, pinhole-free and PbI2-free perovskite films, are desirable for high-performance perovskite solar cells (PSCs), especially if large columnar grains are obtained in which the adverse effects of grain boundaries will be minimized. However, the conventional solid-state reaction methods, originated from the two-step method, failed to grow columnar grains of CH3NH3PbI3 in a facile way. Here, we demonstrate a strategy for growing large columnar grains of CH3NH3PbI3, by less-crystallized nanoporous PbI2 (ln-PbI2) film enhanced solid-state reaction method. We demonstrated columnar grains were obtainable only when ln-PbI2 films were applied. Therefore, the replacement of compact PbI2 by ln-PbI2 in the solid-sate reaction, leads to higher power conversion efficiency, better reproducibility, better stability and less hysteresis. Furthermore, by systematically investigating the effects of annealing temperature and duration, we found that an annealing temperature ≥120 °C was also critical for growing columnar grains. With the optimal process, a champion efficiency of 16.4% was obtained and the average efficiency reached 14.2%. Finally, the mechanism of growing columnar grains was investigated, in which a VPb″ -assisted hooping model was proposed. This work reveals the origins of grain growth in the solid-state reaction method, which will contribute to preparing high quality perovskite films with much larger columnar grains.
Rapid Solid-State Metathesis Routes to Nanostructured Silicon-Germainum
NASA Technical Reports Server (NTRS)
Rodriguez, Marc (Inventor); Kaner, Richard B. (Inventor); Bux, Sabah K. (Inventor); Fleurial, Jean-Pierre (Inventor)
2014-01-01
Methods for producing nanostructured silicon and silicon-germanium via solid state metathesis (SSM). The method of forming nanostructured silicon comprises the steps of combining a stoichiometric mixture of silicon tetraiodide (SiI4) and an alkaline earth metal silicide into a homogeneous powder, and initating the reaction between the silicon tetraiodide (SiI4) with the alkaline earth metal silicide. The method of forming nanostructured silicon-germanium comprises the steps of combining a stoichiometric mixture of silicon tetraiodide (SiI4) and a germanium based precursor into a homogeneous powder, and initiating the reaction between the silicon tetraiodide (SiI4) with the germanium based precursors.
X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment
ERIC Educational Resources Information Center
Varberg, Thomas D.; Skakuj, Kacper
2015-01-01
Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…
Giant onsite electronic entropy enhances the performance of ceria for water splitting.
Naghavi, S Shahab; Emery, Antoine A; Hansen, Heine A; Zhou, Fei; Ozolins, Vidvuds; Wolverton, Chris
2017-08-18
Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Ce 4+ /Ce 3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.Solid-state entropy of reduction increases the thermodynamic efficiency of ceria for two-step thermochemical water splitting. Here, the authors report a large and different source of entropy, the onsite electronic configurational entropy arising from coupling between orbital and spin angular momenta in f orbitals.
Gatus, Mark R D; Bhadbhade, Mohan; Messerle, Barbara A
2017-10-24
Two highly versatile xanthene scaffolds containing pairs of heteroditopic ligands were found to be capable of accommodating a range of transition metal ions, including Au(i), Ir(i), Ir(iii), Rh(i), and Ru(ii) to generate an array of heterobimetallic complexes. The metal complexes were fully characterised and proved to be stable in the solid and solution state, with no observed metal-metal scrambling. Heterobimetallic complexes containing the Rh(i)/Ir(i) combinations were tested as catalysts for the two-step dihydroalkoxylation reaction of alkynediols and sequential hydroamination/hydrosilylation reaction of alkynamines.
Surface-Activated Coupling Reactions Confined on a Surface.
Dong, Lei; Liu, Pei Nian; Lin, Nian
2015-10-20
Chemical reactions may take place in a pure phase of gas or liquid or at the interface of two phases (gas-solid or liquid-solid). Recently, the emerging field of "surface-confined coupling reactions" has attracted intensive attention. In this process, reactants, intermediates, and products of a coupling reaction are adsorbed on a solid-vacuum or a solid-liquid interface. The solid surface restricts all reaction steps on the interface, in other words, the reaction takes place within a lower-dimensional, for example, two-dimensional, space. Surface atoms that are fixed in the surface and adatoms that move on the surface often activate the surface-confined coupling reactions. The synergy of surface morphology and activity allow some reactions that are inefficient or prohibited in the gas or liquid phase to proceed efficiently when the reactions are confined on a surface. Over the past decade, dozens of well-known "textbook" coupling reactions have been shown to proceed as surface-confined coupling reactions. In most cases, the surface-confined coupling reactions were discovered by trial and error, and the reaction pathways are largely unknown. It is thus highly desirable to unravel the mechanisms, mechanisms of surface activation in particular, of the surface-confined coupling reactions. Because the reactions take place on surfaces, advanced surface science techniques can be applied to study the surface-confined coupling reactions. Among them, scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) are the two most extensively used experimental tools. The former resolves submolecular structures of individual reactants, intermediates, and products in real space, while the latter monitors the chemical states during the reactions in real time. Combination of the two methods provides unprecedented spatial and temporal information on the reaction pathways. The experimental findings are complemented by theoretical modeling. In particular, density-functional theory (DFT) transition-state calculations have been used to shed light on reaction mechanisms and to unravel the trends of different surface materials. In this Account, we discuss recent progress made in two widely studied surface-confined coupling reactions, aryl-aryl (Ullmann-type) coupling and alkyne-alkyne (Glaser-type) coupling, and focus on surface activation effects. Combined experimental and theoretical studies on the same reactions taking place on different metal surfaces have clearly demonstrated that different surfaces not only reduce the reaction barrier differently and render different reaction pathways but also control the morphology of the reaction products and, to some degree, select the reaction products. We end the Account with a list of questions to be addressed in the future. Satisfactorily answering these questions may lead to using the surface-confined coupling reactions to synthesize predefined products with high yield.
Simple synthetic route to manganese-containing nanowires with the spinel crystal structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Lei; Zhang, Yan; Hudak, Bethany M.
This report describes a new route to synthesize single-crystalline manganese-containing spinel nanowires (NWs) by a two-step hydrothermal and solid-state synthesis. Interestingly, a nanowire or nanorod morphology is maintained during conversion from MnO{sub 2}/MnOOH to CuMn{sub 2}O{sub 4}/Mg{sub 2}MnO{sub 4}, despite the massive structural rearrangement this must involve. Linear sweep voltammetry (LSV) curves of the products give preliminary demonstration that CuMn{sub 2}O{sub 4} NWs are catalytically active towards the oxygen evolution reaction (OER) in alkaline solution, exhibiting five times the magnitude of current density found with pure carbon black. - Highlights: • Synthesis of single-crystalline manganese-containing spinel nanowires. • Binary oxidemore » nanowire converted to ternary oxide wire through solid state reaction. • Approach to structure conversion with shape retention could be generally applicable. • Copper and Manganese display multiple oxidation states with potential for catalysis. • CuMn{sub 2}O{sub 4} nanowires show promise as catalysts for the oxygen evolution reaction.« less
Low-temperature synthesis of actinide tetraborides by solid-state metathesis reactions
Lupinetti, Anthony J [Los Alamos, NM; Garcia, Eduardo [Los Alamos, NM; Abney, Kent D [Los Alamos, NM
2004-12-14
The synthesis of actinide tetraborides including uranium tetraboride (UB.sub.4), plutonium tetraboride (PuB.sub.4) and thorium tetraboride (ThB.sub.4) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to .ltoreq.850.degree. C. As an example, when UCl.sub.4 is reacted with an excess of MgB.sub.2, at 850.degree. C., crystalline UB.sub.4 is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl.sub.3 as the initial step in the reaction. The UB.sub.4 product is purified by washing water and drying.
Kinetics of liquid-solid reactions in naphthenic acid conversion and Kraft pulping
NASA Astrophysics Data System (ADS)
Yang, Ling
Two liquid-solid reactions, in which the morphology of the solid changes as the reactions proceeds, were examined. One is the NA conversion in oil by decarboxylation on metal oxides and carbonates, and the other is the Kraft pulping in which lignin removal by delignification reaction. In the study of the NA conversion, CaO was chosen as the catalyst for the kinetic study from the tested catalysts based on NA conversion. Two reaction mixtures, carrier oil plus commercial naphthenic acids and heavy vacuum gas oil (HVGO) from Athabasca bitumen, were applied in the kinetic study. The influence of TAN, temperature, and catalyst loading on the NA conversion and decarboxylation were studied systematically. The results showed that the removal rate of TAN and the decarboxylation of NA were both independent of the concentration of NA over the range studied, and significantly dependent on reaction temperature. The data from analyzing the spent catalyst demonstrated that calcium naphthenate was an intermediate of the decarboxylation reaction of NA, and the decomposition of calcium naphthenate was a rate-determining step. In the study on the delignification of the Kraft pulping, a new mechanism was proposed for the heterogeneous delignification reaction during the Kraft pulping process. In particular, the chemical reaction mechanism took into account the heterogeneous nature of Kraft pulping. Lignin reacted in parallel with sodium hydroxide and sodium sulfide. The mechanism consists of three key kinetic steps: (1) adsorption of hydroxide and hydrosulfide ions on lignin; (2) surface reaction on the solid surface to produce degraded lignin products; and (3) desorption of degradation products from the solid surface. The most important step for the delignification process is the surface reaction, rather than the reactions occurring in the liquid phase. A kinetic model has, thus, been developed based on the proposed mechanism. The derived kinetic model showed that the mechanism could be employed to predict the pulping behavior under a variety of conditions with good accuracy.
Atomic Scale Dynamics of Contact Formation in the Cross-Section of InGaAs Nanowire Channels
Chen, Renjie; Jungjohann, Katherine L.; Mook, William M.; ...
2017-03-23
In the alloyed and compound contacts between metal and semiconductor transistor channels we see that they enable self-aligned gate processes which play a significant role in transistor scaling. At nanoscale dimensions and for nanowire channels, prior experiments focused on reactions along the channel length, but the early stage of reaction in their cross sections remains unknown. We report on the dynamics of the solid-state reaction between metal (Ni) and semiconductor (In 0.53Ga 0.47As), along the cross-section of nanowires that are 15 nm in width. Unlike planar structures where crystalline nickelide readily forms at conventional, low alloying temperatures, nanowires exhibit amore » solid-state amorphization step that can undergo a crystal regrowth step at elevated temperatures. Here, we capture the layer-by-layer reaction mechanism and growth rate anisotropy using in situ transmission electron microscopy (TEM). Our kinetic model depicts this new, in-plane contact formation which could pave the way for engineered nanoscale transistors.« less
One Step Combustion Synthesis Of YAG:Ce Phosphor For Solid State Lighting
NASA Astrophysics Data System (ADS)
Yadav, Pooja; Gupta, K. Vijay Kumar; Muley, Aarti; Joshi, C. P.; Moharil, S. V.
2011-10-01
YAG:Ce is an important phosphor having applications in various fields ranging from solid state lighting to scintillation detectors. YAG phosphors doped with activators are mainly synthesized by solid state reaction techniques that require high sintering temperatures (above 1500°C) to eliminate YAM and YAP phases. Though several soft chemical routes have been explored for synthesis of YAG, most of these methods are complex and phase pure materials are not obtained in one step, but prolonged annealing at temperatures around 1000 C or above becomes necessary. One step combustion synthesis of YAG:Ce3+ and related phosphors carried out at 500 C furnace temperature is reported here. Activation with Ce3+ could be achieved during the synthesis without taking recourse to any post-combustion thermal treatment. LEDs prepared from the combustion synthesized YAG:Ce3+, exhibited properties comparable to those produced from the commercial phosphor.
NASA Astrophysics Data System (ADS)
Luo, Yu; Shi, Yixiang; Li, Wenying; Cai, Ningsheng
2018-03-01
CO/CO2 are the major gas reactant/product in the fuel electrode of reversible solid oxide cells (RSOC). This study proposes a two-charge-transfer-step mechanism to describe the reaction and transfer processes of CO-CO2 electrochemical conversion on a patterned Ni electrode of RSOC. An elementary reaction model is developed to couple two charge transfer reactions, C(Ni)+O2-(YSZ) ↔ CO(Ni)+(YSZ) +2e- and CO(Ni)+O2-(YSZ) ↔ CO2(Ni)+(YSZ)+2e-, with adsorption/desorption, surface chemical reactions and surface diffusion. This model well validates in both solid oxide electrolysis cell (SOEC) and solid oxide fuel cell (SOFC) modes by the experimental data from a patterned Ni electrode with 10 μm stripe width at different pCO (0-0.25 atm), pCO2 (0-0.35 atm) and operating temperature (600-700 °C). This model indicates SOEC mode is dominated by charge transfer step C(Ni)+O2-(YSZ)↔CO(Ni)+(YSZ) +2e-, while SOFC mode by CO(Ni)+ O2-(YSZ)↔CO2(Ni)+(YSZ)+2e- on the patterned Ni electrode. The sensitivity analysis shows charge transfer step is the major rate-determining step for RSOC, besides, surface diffusion of CO and CO2 as well as CO2 adsorption also plays a significant role in the electrochemical reaction of SOEC while surface diffusion of CO and CO2 desorption could be co-limiting in SOFC.
Morphology and conductivity study of solid electrolyte Li{sub 3}PO{sub 4}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prayogi, Lugas Dwi, E-mail: ldprayodi@gmail.com; Faisal, Muhamad; Kartini, Evvy, E-mail: kartini@batan.go.id
2016-02-08
The comparison between two different methods of synthesize of solid electrolyte Li{sub 3}PO{sub 4} as precursor material for developing lithium ion battery, has been performed. The first method is to synthesize Li{sub 3}PO{sub 4} prepared by wet chemical reaction from LiOH and H{sub 3}PO{sub 4} which provide facile, abundant available resource, low cost, and low toxicity. The second method is solid state reaction prepared by Li{sub 2}CO{sub 3} and NH{sub 4}H{sub 2}PO{sub 4.} In addition, the possible morphology identification of comparison between two different methods will also be discussed. The composition, morphology, and additional identification phase and another compound ofmore » Li{sub 3}PO{sub 4} powder products from two different reaction are characterized by SEM, EDS, and EIS. The Li{sub 3}PO{sub 4} powder produced from wet reaction and solid state reaction have an average diameter of 0.834 – 7.81 µm and 2.15 – 17.3 µm, respectively. The density of Li{sub 3}PO{sub 4} prepared by wet chemical reaction is 2.238 gr/cm{sup 3}, little bit lower than the sample prepared by solid state reaction which density is 2.3560 gr/cm{sup 3}. The EIS measurement result shows that the conductivity of Li{sub 3}PO{sub 4} is 1.7 x 10{sup −9} S.cm{sup −1} for wet chemical reaction and 1.8 x 10{sup −10} S.cm{sup −1} for solid state reaction. The conductivity of Li{sub 3}PO{sub 4} is not quite different between those two samples even though they were prepared by different method of synthesize.« less
LiCoPO4 cathode from a CoHPO4·xH2O nanoplate precursor for high voltage Li-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Daiwon; Li, Xiaolin; Henderson, Wesley A.
2016-02-01
Highly crystalline LiCoPO4/C cathode has been synthesized without any impurities via single step solid-state reaction using CoHPO4xH2O nanoplates as a precursor obtained by simple precipitation route. The electrochemical test shows specific capacity as high as 125mAh/g at charge/discharge rate of C/10. Synthesis approach for obtaining CoHPO4xH2O nanoplate precursor and final LiCoPO4/C cathode using single step solid-state reaction have been characterized using X-ray diffraction, thermos gravimetric analyses (TGA) – differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The electrochemical test and cycling stability using different electrolytes, additive and separator have been investigated.
Ceramic surfaces, interfaces and solid-state reactions
NASA Astrophysics Data System (ADS)
Heffelfinger, Jason Roy
Faceting, the decomposition of a surface into two or more surfaces of different orientation, is studied as a function of annealing time for ceramic surfaces. Single-crystals of Alsb2Osb3\\ (alpha-Alsb2Osb3 or corundum structure) are carefully prepared and characterized by atomic force microscopy, scanning electron microscopy and transmission electron microscopy. The mechanisms by which the originally smooth vicinal surface transforms into either a hill-and-valley or a terrace-and-step structure have been characterized. The progression of faceting is found to have a series of stages: surface smoothing, nucleation and growth of individual facets, formation of facet domains, coalescence of individual and facet domains and facet coarsening. These stages provide a model for the mechanisms of how other ceramic surfaces may facet into hill-and-valley and terrace-and-step surface microstructures. The well characterized Alsb2Osb3 surfaces provide excellent substrates by which to study the effect of surface structure on thin-film growth. Pulsed-laser deposition was used to grow thin films of yttria stabilized zirconia (YSZ) and Ysb2Osb3 onto annealed Alsb2Osb3 substrates. The substrate surface structure, such as surface steps and terraces, was found to have several effects on thin-film growth. Thin-films grown onto single-crystal substrates serve as a model geometry for studying thin-film solid-state reactions. Here, the reaction sequence and orientation relationship between thin films of Ysb2Osb3 and an Alsb2Osb3 substrate were characterized for different reaction temperatures. In a system were multiple reaction phases can form, the yttria aluminum monoclinic phase (YAM) was found to form prior to formation of other phases in this system. In a second system, a titanium alloy was reacted with single crystal Alsb2Osb3 in order to study phase formation in an intermetallic system. Both Tisb3Al and TiAl were found to form as reaction products and their orientation relationships with the Alsb2Osb3 are discussed.
Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow.
Peyman, Sally A; Iles, Alexander; Pamme, Nicole
2009-11-07
An extremely versatile microfluidic device is demonstrated in which multi-step (bio)chemical procedures can be performed in continuous flow. The system operates by generating several co-laminar flow streams, which contain reagents for specific (bio)reactions across a rectangular reaction chamber. Functionalized magnetic microparticles are employed as mobile solid-supports and are pulled from one side of the reaction chamber to the other by use of an external magnetic field. As the particles traverse the co-laminar reagent streams, binding and washing steps are performed on their surface in one operation in continuous flow. The applicability of the platform was first demonstrated by performing a proof-of-principle binding assay between streptavidin coated magnetic particles and biotin in free solution with a limit of detection of 20 ng mL(-1) of free biotin. The system was then applied to a mouse IgG sandwich immunoassay as a first example of a process involving two binding steps and two washing steps, all performed within 60 s, a fraction of the time required for conventional testing.
Synthesis of acrylic polymer beads for solid-supported proline-derived organocatalysts.
Kristensen, Tor E; Vestli, Kristian; Fredriksen, Kim A; Hansen, Finn K; Hansen, Tore
2009-07-16
A completely non-chromatographic and highly large-scale adaptable synthesis of acrylic polymer beads containing proline and prolineamides has been developed. Novel monomeric proline (meth)acrylates are prepared from hydroxyproline in only one step. Free-radical copolymerization then gives solid-supported proline organocatalysts directly in as little as two steps overall, without using any prefabricated solid supports, by using either droplet or dispersion polymerization. These affordable acrylic beads have highly favorable and adjustable swelling characteristics and are excellent reusable catalysts for organocatalytic reactions.
Consequences of acid strength for isomerization and elimination catalysis on solid acids.
Macht, Josef; Carr, Robert T; Iglesia, Enrique
2009-05-13
We address here the manner in which acid catalysis senses the strength of solid acids. Acid strengths for Keggin polyoxometalate (POM) clusters and zeolites, chosen because of their accurately known structures, are described rigorously by their deprotonation energies (DPE). Mechanistic interpretations of the measured dynamics of alkane isomerization and alkanol dehydration are used to obtain rate and equilibrium constants and energies for intermediates and transition states and to relate them to acid strength. n-Hexane isomerization rates were limited by isomerization of alkoxide intermediates on bifunctional metal-acid mixtures designed to maintain alkane-alkene equilibrium. Isomerization rate constants were normalized by the number of accessible protons, measured by titration with 2,6-di-tert-butylpyridine during catalysis. Equilibrium constants for alkoxides formed by protonation of n-hexene increased slightly with deprotonation energies (DPE), while isomerization rate constants decreased and activation barriers increased with increasing DPE, as also shown for alkanol dehydration reactions. These trends are consistent with thermochemical analyses of the transition states involved in isomerization and elimination steps. For all reactions, barriers increased by less than the concomitant increase in DPE upon changes in composition, because electrostatic stabilization of ion-pairs at the relevant transition states becomes more effective for weaker acids, as a result of their higher charge density at the anionic conjugate base. Alkoxide isomerization barriers were more sensitive to DPE than for elimination from H-bonded alkanols, the step that limits 2-butanol and 1-butanol dehydration rates; the latter two reactions showed similar DPE sensitivities, despite significant differences in their rates and activation barriers, indicating that slower reactions are not necessarily more sensitive to acid strength, but instead reflect the involvement of more unstable organic cations at their transition states. These compensating effects from electrostatic stabilization depend on how similar the charge density in these organic cations is to that in the proton removed. Cations with more localized charge favor strong electrostatic interactions with anions and form more stable ionic structures than do cations with more diffuse charges. Ion-pairs at elimination transition states contain cations with higher local charge density at the sp(2) carbon than for isomerization transition states; as a result, these ion-pairs recover a larger fraction of the deprotonation energy, and, consequently, their reactions become less sensitive to acid strength. These concepts lead us to conclude that the energetic difficulty of a catalytic reaction, imposed by gas-phase reactant proton affinities in transition state analogues, does not determine its sensitivity to the acid strength of solid catalysts.
Surface studies relevant to silicon carbide chemical vapor deposition
NASA Technical Reports Server (NTRS)
Stinespring, C. D.; Wormhoudt, J. C.
1989-01-01
Reactions of C2H4, C3H8, and CH4 on the Si(111) surface and C2H4 on the Si(100) surface were investigated for surface temperatures in the range of 1062-1495 K. Results led to the identification of the reaction products, a characterization of the solid-state transport process, a determination of the nucleation mechanism and growth kinetics, and an assessment of orientation effects. Based on these results and on the modeling studies of Stinespring and Wormhoudt (1988) on the associated gas phase chemistry, a physical model for the two-step beta-SiC CVD process is proposed.
NASA Astrophysics Data System (ADS)
Nourry, Sendres; Krim, Lahouari
2015-07-01
We have characterized the CH4 + N(4S) reaction in solid phase, at very low temperature, under non-energetic conditions and where the CH4 and N reactants are in their ground states. A microwave-driven atomic source has been used to generate ground-state nitrogen atoms N(4S), and experiments have been carried out at temperatures as low as 3 K to reduce the mobility of the trapped species in solid phase and hence to freeze the first step of the CH4 + N reaction pathway. Leaving the formed solid sample in the dark for a while allows all trapped reactants to relax to the ground state, specifically radicals and excited species streaming from the plasma discharge. Such a method could be the only possibility of proving that the CH4 + N reaction occurs between CH4 and N reactants in their ground states without any additional energy to initiate the chemical process. The appearance of the CH3 reaction product, just by inducing the mobility of N atoms between 3 and 11 K, translates that a hydrogen abstraction reaction from methane, under non-energetic conditions, will start occurring at very low temperature. The formation of methyl radical, under these experimental conditions, is due to recombination processes N(4S)-N(4S) of ground-state nitrogen atoms without any contribution of cosmic ray particles or high-energy photons.
Hlova, Ihor; Goldston, Jennifer F.; Gupta, Shalabh; ...
2017-05-30
Solid-state mechanochemical synthesis of alane (AlH 3) starting from sodium hydride (NaH) and aluminum chloride (AlCl 3) has been achieved at room temperature. The transformation pathway of this solid-state reaction was controlled by a stepwise addition of AlCl 3 to the initial reaction mixture that contained sodium hydride in excess of stoichiometric amount. As in the case of previously investigated LiH–AlCl 3 system, complete selectivity was achieved whereby formation of unwanted elemental aluminum was fully suppressed, and AlH 3 was obtained in quantitative yield. Reaction progress during each step was investigated by means of solid-state NMR and powder X-ray diffraction,more » which revealed that the overall reaction proceeds through a series of intermediate alanates that may be partially chlorinated. The NaH–AlCl 3 system presents some subtle differences compared to LiH–AlCl 3 system particularly with respect to optimal concentrations needed during one of the reaction stages. Based on the results, we postulate that high local concentrations of NaH may stabilize chlorine-containing derivatives and prevent decomposition into elemental aluminum with hydrogen evolution. As a result, complete conversion with quantitative yield of alane was confirmed by both SSNMR and hydrogen desorption analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hlova, Ihor; Goldston, Jennifer F.; Gupta, Shalabh
Solid-state mechanochemical synthesis of alane (AlH 3) starting from sodium hydride (NaH) and aluminum chloride (AlCl 3) has been achieved at room temperature. The transformation pathway of this solid-state reaction was controlled by a stepwise addition of AlCl 3 to the initial reaction mixture that contained sodium hydride in excess of stoichiometric amount. As in the case of previously investigated LiH–AlCl 3 system, complete selectivity was achieved whereby formation of unwanted elemental aluminum was fully suppressed, and AlH 3 was obtained in quantitative yield. Reaction progress during each step was investigated by means of solid-state NMR and powder X-ray diffraction,more » which revealed that the overall reaction proceeds through a series of intermediate alanates that may be partially chlorinated. The NaH–AlCl 3 system presents some subtle differences compared to LiH–AlCl 3 system particularly with respect to optimal concentrations needed during one of the reaction stages. Based on the results, we postulate that high local concentrations of NaH may stabilize chlorine-containing derivatives and prevent decomposition into elemental aluminum with hydrogen evolution. As a result, complete conversion with quantitative yield of alane was confirmed by both SSNMR and hydrogen desorption analysis.« less
Crystal growth of YBCO coated conductors by TFA MOD method
NASA Astrophysics Data System (ADS)
Yoshizumi, M.; Nakanishi, T.; Matsuda, J.; Nakaoka, K.; Sutoh, Y.; Izumi, T.; Shiohara, Y.
2008-09-01
The crystal growth mechanism of TFA (trifluoroacetates)-MOD (metal organic deposition) derived YBa 2Cu 3O y has been investigated to understand the process for higher production rates of the conversion process. YBCO films were prepared by TFA-MOD on CeO 2/Gd 2Zr 2O 7/Hastelloy C276 substrates. The growth rates of YBCO derived from Y:Ba:Cu = 1:2:3 and 1:1.5:3 starting solutions were investigated by XRD and TEM analyses. YBCO growth proceeds in two steps of the epitaxial one from the substrate and solid state reaction. The overall growth rate estimated from the residual amounts of BaF 2 with time measured by XRD is proportional to a square root of P(H 2O). The trend was independent of the composition of starting solutions, however, the growth rate obtained from the 1:1.5:3 starting solutions was high as twice as that of 1:2:3, which could not be explained by the composition of BaF 2 included in the precursor films. On the other hand, the growth rate measured from the thickness of the YBCO quenched film at the same process time showed no difference between the samples of 1:2:3 and 1:1.5:3. The epitaxial growth rate of 1:1.5:3 was also the same as the overall growth rate of that, which means there was no solid state reaction to form YBCO after the epitaxial growth. The YBCO growth mechanism was found to be as follows; YBCO crystals nucleate at the surface of the substrate and epitaxially grow into the precursor by layer-by-layer by a manner with trapping unreacted particles. The amounts of YBCO and the unreacted particles trapped in the YBCO film are independent of the composition of the starting solution in this step. Unreacted particles react with each other to form YBCO and pores by solid state reaction as long as there is BaF 2 left in the film. The Ba-poor starting solution gives little BaF 2 left in the film and so the solid state reaction is completed within a short time, resulting in the fast overall growth rate.
Thermal behaviour and kinetics of coal/biomass blends during co-combustion.
Gil, M V; Casal, D; Pevida, C; Pis, J J; Rubiera, F
2010-07-01
The thermal characteristics and kinetics of coal, biomass (pine sawdust) and their blends were evaluated under combustion conditions using a non-isothermal thermogravimetric method (TGA). Biomass was blended with coal in the range of 5-80 wt.% to evaluate their co-combustion behaviour. No significant interactions were detected between the coal and biomass, since no deviations from their expected behaviour were observed in these experiments. Biomass combustion takes place in two steps: between 200 and 360 degrees C the volatiles are released and burned, and at 360-490 degrees C char combustion takes place. In contrast, coal is characterized by only one combustion stage at 315-615 degrees C. The coal/biomass blends presented three combustion steps, corresponding to the sum of the biomass and coal individual stages. Several solid-state mechanisms were tested by the Coats-Redfern method in order to find out the mechanisms responsible for the oxidation of the samples. The kinetic parameters were determined assuming single separate reactions for each stage of thermal conversion. The combustion process of coal consists of one reaction, whereas, in the case of the biomass and coal/biomass blends, this process consists of two or three independent reactions, respectively. The results showed that the chemical first order reaction is the most effective mechanism for the first step of biomass oxidation and for coal combustion. However, diffusion mechanisms were found to be responsible for the second step of biomass combustion. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Wiehn, Matthias S; Fürniss, Daniel; Bräse, Stefan
2009-01-01
Three small compound biaryl libraries featuring a novel fluorinating cleavage strategy for preparation of a difluoromethyl group were assembled on solid supports. The average reaction yield per step was up to 96% in a synthetic sequence over five to six steps. Key features were Suzuki coupling reactions, transesterification with potassium cyanide and amidation reaction with trimethyl aluminum on solid supports.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, J.; Larson, E.M.; Holt, J.B.
Real-time synchrotron diffraction has been used to monitor the phase transformations of highly exothermic, fast self-propagating solid combustion reactions on a subsecond time scale down to 100 milliseconds and in some instances to 10 milliseconds. Three systems were investigated: Ti + C {yields} TiC; Ti + C + xNi {yields} TiC + Ni-Ti alloy; and Al + Ni {yields} AlNi. In all three reactions, the first step was the melting of the metal reactants. Formation of TiC in the first two reactions was completed within 400 milliseconds of the melting of the Ti metal, indicating that the formation of TiCmore » took place during the passage of the combustion wave front. In the Al + Ni reaction, however, passage of the wave front was followed by the appearance and disappearance of at least one intermediate in the afterburn region. The final AlNi was formed some 5 seconds later and exhibited a delayed appearance of the (210) reflection, which tends to support a phase transformation from a disordered AlNi phase at high temperature to an ordered CsCl structure some 20 seconds later. This new experimental approach can be used to study the chemical dynamics of high-temperature solid-state phenomena and to provide the needed database to test various models for solid combustion. 28 refs., 4 figs.« less
Xu, Jiao; Zhao, Yang; Chen, Jingjing; Mao, Zhiyong; Yang, Yanfang; Wang, Dajian
2017-09-01
Two synthesis routes, solid-state reaction and precipitation reaction, were employed to prepare BaSiO 3 :Eu 2+ phosphors in this study. Discrepancies in the luminescence green emission at 505 nm for the solid-state reaction method sample and in the yellow emission at 570 nm for the sample prepared by the precipitation reaction method, were observed respectively. A detail investigation about the discrepant luminescence of BaSiO 3 :Eu 2+ phosphors was performed by evaluation of X-ray diffraction (XRD), photoluminescence (PL)/photoluminescence excitation (PLE), decay time and thermal quenching properties. The results showed that the yellow emission was generated from the BaSiO 3 :Eu 2+ phosphor, while the green emission was ascribed to a small amount of Ba 2 SiO 4 :Eu 2+ compound that was present in the solid-state reaction sample. This work clarifies the luminescence properties of Eu 2+ ions in BaSiO 3 and Ba 2 SiO 4 hosts. Copyright © 2017 John Wiley & Sons, Ltd.
Reaction Heterogeneity in LiNi 0.8 Co 0.15 Al 0.05 O 2 Induced by Surface Layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grenier, Antonin; Liu, Hao; Wiaderek, Kamila M.
2017-08-15
Through operando synchrotron powder X-ray diffraction (XRD) analysis of layered transition metal oxide electrodes of composition LiNi0.8Co0.15Al0.05O2 (NCA), we decouple the intrinsic bulk reaction mechanism from surface-induced effects. For identically prepared and cycled electrodes stored in different environments, we demonstrate that the intrinsic bulk reaction for pristine NCA follows solid-solution mechanism, not a two-phase as suggested previously. By combining high resolution powder X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and surface sensitive X-ray photoelectron spectroscopy (XPS), we demonstrate that adventitious Li2CO3 forms on the electrode particle surface during exposure to air, through reaction with atmospheric CO2. This surfacemore » impedes ionic and electronic transport to the underlying electrode, with progressive erosion of this layer during cycling giving rise to different reaction states in particles with an intact vs an eroded Li2CO3 surface-coating. This reaction heterogeneity, with a bimodal distribution of reaction states, has previously been interpreted as a “two-phase” reaction mechanism for NCA, as an activation step that only occurs during the first cycle. Similar surface layers may impact the reaction mechanism observed in other electrode materials using bulk probes such as operando powder XRD.« less
Chung, Tim S; Ayitou, Anoklase J-L; Park, Jin H; Breslin, Vanessa M; Garcia-Garibay, Miguel A
2017-04-20
Aqueous nanocrystalline suspensions provide a simple and efficient medium for performing transmission spectroscopy measurements in the solid state. In this Letter we describe the use of laser flash photolysis methods to analyze the photochemistry of 2-azidobiphenyl and several aryl-substituted derivatives. We show that all the crystalline compounds analyzed in this study transform quantitatively into carbazole products via a crystal-to-crystal reconstructive phase transition. While the initial steps of the reaction cannot be followed within the time resolution of our instrument (ca. 8 ns), we detected the primary isocarbazole photoproducts and analyzed the kinetics of their formal 1,5-H shift reactions, which take place in time scales that range from a few nanoseconds to several microseconds. It is worth noting that the high reaction selectivity observed in the crystalline state translates into a clean and simple kinetic process compared to that in solution.
Wen, Cun; Barrow, Elizabeth; Hattrick-Simpers, Jason; Lauterbach, Jochen
2014-02-21
In this study, we demonstrate the production of long-chain hydrocarbons (C8+) from 2-methylfuran (2MF) and butanal in a single step reactive process by utilizing a bi-functional catalyst with both acid and metallic sites. Our approach utilizes a solid acid for the hydroalkylation function and as a support as well as a transition metal as hydrodeoxygenation catalyst. A series of solid acids was screened, among which MCM-41 demonstrated the best combination of activity and stability. Platinum nanoparticles were then incorporated into the MCM-41. The Pt/MCM-41 catalyst showed 96% yield for C8+ hydrocarbons and the catalytic performance was stable over four reaction cycles of 20 hour each. The reaction pathways for the production of long-chain hydrocarbons is probed with a combination of infrared spectroscopy and steady-state reaction experiments. It is proposed that 2MF and butanal go through hydroalkylation first on the acid site followed by hydrodeoxygenation to produce the hydrocarbon fuels.
Yamamoto, Kazuo; Iriyama, Yasutoshi; Hirayama, Tsukasa
2017-02-08
All-solid-state Li-ion batteries having incombustible solid electrolytes are promising energy storage devices because they have significant advantages in terms of safety, lifetime and energy density. Electrochemical reactions, namely, Li-ion insertion/extraction reactions, commonly occur around the nanometer-scale interfaces between the electrodes and solid electrolytes. Thus, transmission electron microscopy (TEM) is an appropriate technique to directly observe such reactions, providing important information for understanding the fundamental solid-state electrochemistry and improving battery performance. In this review, we introduce two types of TEM techniques for operando observations of battery reactions, spatially resolved electron energy-loss spectroscopy in a TEM mode for direct detection of the Li concentration profiles and electron holography for observing the electric potential changes due to Li-ion insertion/extraction reactions. We visually show how Li-ion insertion/extractions affect the crystal structures, electronic structures, and local electric potential during the charge-discharge processes in these batteries. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Chemistry and kinetics of the pyrophoric plutonium hydride-air reaction
Haschke, John M.; Dinh, Long N.
2016-12-18
The chemistry and kinetics of the pyrophoric reaction of the plutonium hydride solid solution (PuH x, 1.9 ≤ x ≤ 3) are derived from pressure-time and gas analysis data obtained after exposure of PuH 2.7 to air in a closed system. The reaction is described in this paper by two sequential steps that result in reaction of all O 2, partial reaction of N 2, and formation of H 2. Hydrogen formed by indiscriminate reaction of N 2 and O 2 at their 3.71:1 M ratio in air during the initial step is accommodated as PuH 3 inside a productmore » layer of Pu 2O 3 and PuN. H 2 is formed by reaction of O 2 and partial reaction of N 2 with PuH 3 during the second step. Both steps of reaction are described by general equations for all values of x. The rate of the first step is proportional to the square of the O 2 pressure, but independent of temperature, x, and N 2 pressure. The second step is a factor of ten slower than step one with its rate controlled by diffusion of O 2 through a boundary layer of product H 2 and unreacted N 2. Finally, rates and enthalpies of reaction are presented and anticipated effects of reactant configuration on the heat flux are discussed.« less
Synthesis cathode material LiNi0.80Co0.15Al0.05O2 with two step solid-state method under air stream
NASA Astrophysics Data System (ADS)
Xia, Shubiao; Zhang, Yingjie; Dong, Peng; Zhang, Yannan
2014-01-01
A facile generic strategy of solid-state reaction under air atmosphere is employed to prepare LiNi0.8Co0.15Al0.05O2 layer structure micro-sphere as cathodes for Li-ion batteries. The impurity phase has been eliminated wholly without changing the R-3m space group of LiNi0.8Co0.15Al0.05O2. The electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathodes depend on the sintering step, temperature, particle size and uniformity. The sample pre-sintered at 540 °C for 12 h and then sintered at 720 °C for 28 h exhibits the best electrochemical performance, which delivers a reversible capacity of 180.4, 165.8, 154.7 and 135.6 mAhg-1 at 0.2 C, 1 C, 2 C and 5 C, respectively. The capacity retention keeps over 87% after 76 cycles at 1 C. This method is simple, cheap and mass-productive, and thus suitable to large scale production of NCA cathodes directly used for lithium ion batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haschke, John M.; Dinh, Long N.
The chemistry and kinetics of the pyrophoric reaction of the plutonium hydride solid solution (PuH x, 1.9 ≤ x ≤ 3) are derived from pressure-time and gas analysis data obtained after exposure of PuH 2.7 to air in a closed system. The reaction is described in this paper by two sequential steps that result in reaction of all O 2, partial reaction of N 2, and formation of H 2. Hydrogen formed by indiscriminate reaction of N 2 and O 2 at their 3.71:1 M ratio in air during the initial step is accommodated as PuH 3 inside a productmore » layer of Pu 2O 3 and PuN. H 2 is formed by reaction of O 2 and partial reaction of N 2 with PuH 3 during the second step. Both steps of reaction are described by general equations for all values of x. The rate of the first step is proportional to the square of the O 2 pressure, but independent of temperature, x, and N 2 pressure. The second step is a factor of ten slower than step one with its rate controlled by diffusion of O 2 through a boundary layer of product H 2 and unreacted N 2. Finally, rates and enthalpies of reaction are presented and anticipated effects of reactant configuration on the heat flux are discussed.« less
NASA Astrophysics Data System (ADS)
Babu, B.; Rama Krishna, Ch.; Venkata Reddy, Ch.; Pushpa Manjari, V.; Ravikumar, R. V. S. S. N.
2013-05-01
Cobalt ions doped zinc oxide nanopowder was prepared at room temperature by a novel and simple one step solid-state reaction method through sonication in the presence of a suitable surfactant Sodium Lauryl Sulphate (SLS). The prepared powder was characterized by various spectroscopic techniques. Powder XRD data revealed that the crystal structure belongs to hexagonal and its average crystallite size was evaluated. From optical absorption data, crystal fields (Dq), inter-electronic repulsion parameters (B, C) were evaluated. By correlating optical and EPR spectral data, the site symmetry of Co2+ ion in the host lattice was determined as octahedral. Photoluminescence spectra exhibited the emission bands in ultraviolet and blue regions. The CIE chromaticity coordinates are also evaluated from the emission spectrum. FT-IR spectra showed the characteristic vibrational bands of Znsbnd O.
Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-01-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.
NASA Astrophysics Data System (ADS)
Yang, Yong; Wang, Peng-Peng; Zhang, Zhi-Cheng; Liu, Hui-Ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-04-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.
Huang, K; Bi, K; Liang, C; Lin, S; Wang, W J; Yang, T Z; Liu, J; Zhang, R; Fan, D Y; Wang, Y G; Lei, M
2015-01-01
Novel graphite-molybdenum carbide nanocomposites (G-Mo2C) are synthesized by a typical solid state reaction with melamine and MoO3 as precursors under inert atmosphere. The characterization results indicate that G-Mo2C composites are composed of high crystallization and purity of Mo2C and few layers of graphite carbon. Mo2C nanoparticles with sizes ranging from 5 to 50 nm are uniformly supported by surrounding graphite layers. It is believed that Mo atom resulting from the reduction of MoO3 is beneficial to the immobilization of graphite carbon. Moreover, the electrocatalytic performances of G-Mo2C for ORR in alkaline medium are investigated by cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry test with 3M methanol. The results show that G-Mo2C has a considerable catalytic activity and superior methanol tolerance performance for the oxygen reduction reaction (ORR) benefiting from the chemical interaction between the carbide nanoparticles and graphite carbon.
Synthesis and characterization of iron based superconductor Nd-1111
NASA Astrophysics Data System (ADS)
Alborzi, Z.; Daadmehr, V.
2018-06-01
Polycrystalline sample of NdFeAsO0.8F0.2 was prepared by one-step solid-state reaction method. The structural and electrical properties of sample were characterized through XRD pattern and the 4-probe method. The critical temperature was obtained at 56 K. The crystal structure was tetragonal with P4/nmm:2 symmetry group.
Reactive Desorption of CO Hydrogenation Products under Cold Pre-stellar Core Conditions
NASA Astrophysics Data System (ADS)
Chuang, K.-J.; Fedoseev, G.; Qasim, D.; Ioppolo, S.; van Dishoeck, E. F.; Linnartz, H.
2018-02-01
The astronomical gas-phase detection of simple species and small organic molecules in cold pre-stellar cores, with abundances as high as ∼10‑8–10‑9 n H, contradicts the generally accepted idea that at 10 K, such species should be fully frozen out on grain surfaces. A physical or chemical mechanism that results in a net transfer from solid-state species into the gas phase offers a possible explanation. Reactive desorption, i.e., desorption following the exothermic formation of a species, is one of the options that has been proposed. In astronomical models, the fraction of molecules desorbed through this process is handled as a free parameter, as experimental studies quantifying the impact of exothermicity on desorption efficiencies are largely lacking. In this work, we present a detailed laboratory study with the goal of deriving an upper limit for the reactive desorption efficiency of species involved in the CO–H2CO–CH3OH solid-state hydrogenation reaction chain. The limit for the overall reactive desorption fraction is derived by precisely investigating the solid-state elemental carbon budget, using reflection absorption infrared spectroscopy and the calibrated solid-state band-strength values for CO, H2CO and CH3OH. We find that for temperatures in the range of 10 to 14 K, an upper limit of 0.24 ± 0.02 for the overall elemental carbon loss upon CO conversion into CH3OH. This corresponds with an effective reaction desorption fraction of ≤0.07 per hydrogenation step, or ≤0.02 per H-atom induced reaction, assuming that H-atom addition and abstraction reactions equally contribute to the overall reactive desorption fraction along the hydrogenation sequence. The astronomical relevance of this finding is discussed.
Kwiecień, Renata A; Molinié, Roland; Paneth, Piotr; Silvestre, Virginie; Lebreton, Jacques; Robins, Richard J
2011-06-01
(15)N heavy isotope effects are especially useful when detail is sought pertaining to the reaction mechanism for the cleavage of a C-N bond. Their potential in assisting to describe the mechanism of N-demethylation of tertiary amines by the action of cytochrome P450 monooxygenase has been investigated. As a working model for the first step, oxidation of the N-methyl group to N-methoxyl, tropine and a cytochrome P450 monooxygenase reaction centre composed of a truncated heme with sulfhydryl as the axial ligand were used. It is apparent that this first step of the reaction proceeds via a hydrogen atom transfer mechanism. Transition states for this step are described for both the high spin ((4)TS(H)) and low spin ((2)TS(H)) pathways in both gas and solvation states. Hence, overall normal secondary (15)N KIE could be calculated for the reaction path modeled in the low spin state, and inverse for the reaction modeled in the high spin state. This partial reaction has been identified as the probable rate limiting step. The model for the second step, fission of the C-N bond, consisted of N-methoxylnortropine and two molecules of water. A transition state described for this step, TS(CN), gives a strongly inverse overall theoretical (15)N KIE. Copyright © 2011 Elsevier Inc. All rights reserved.
A quantum dynamical study of the He++2He-->He2++He reaction
NASA Astrophysics Data System (ADS)
Xie, Junkai; Poirier, Bill; Gellene, Gregory I.
2003-11-01
The temperature dependent rate of the He++2He→He2++He three-body association reaction is studied using two complementary quantum dynamical models. Model I presumes a two-step, reverse Lindemann mechanism, where the intermediate energized complex, He2+*, is interpreted as the rotational resonance states of He2+. The energy and width of these resonances are determined via "exact" quantum calculation using highly accurate potential-energy curves. Model II uses an alternate quantum rate expression as the thermal average of the cumulative recombination probability, N(E). This microcanonical quantity is computed approximately, over the He2+ space only, with the third-body interaction modeled using a special type of absorbing potential. Because Model II implicitly incorporates both the two-step reverse Lindemann mechanism, and a one-step, reverse collision induced dissociation mechanism, the relative importance of the two formation mechanisms can be estimated by a comparison of the Model I and Model II results. For T<300 K, the reaction is found to be dominated by the two-step mechanism, and a formation rate in good agreement with the available experimental results is obtained with essentially no adjustable parameters in the theory. Interestingly, a nonmonotonic He2+ formation rate is observed, with a maximum identified near 25 K. This maximum is associated with just two reaction intermediate resonance states, the lowest energy states that can contribute significantly to the formation kinetics.
Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-01-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants. PMID:23603809
Kim, Dong Young; Kim, Young Soo; Kim, Tae Hyun; Oh, Kyeong Keun
2016-01-01
Fractionation of EFB was conducted in two consecutive steps using a batch reaction system: hemicellulose hydrolysis using acetic acid (AA; 3.0-7.0 wt.%) at 170-190°C for 10-20 min in the first stage, and lignin solubilization using ammonium hydroxide (5-20 wt.%) at 140-220°C for 5-25 min in the second stage. The two-stage process effectively fractionated empty fruit bunches (EFB) in terms of hemicellulose hydrolysis (53.6%) and lignin removal (59.5%). After the two-stage treatment, the fractionated solid contained 65.3% glucan. Among three investigated process parameters, reaction temperature and ammonia concentration had greater impact on the delignification reaction in the second stage than reaction time. The two-stage fractionation processing improved the enzymatic digestibility to 72.9% with 15 FPU of cellulase/g of glucan supplemented with 70 pNPG of β-glycosidase (Novozyme 188)/g-glucan, which was significantly enhanced from the equivalent digestibility of 28.3% for untreated EFB and 45.7% for AAH-fractionated solid. Copyright © 2015 Elsevier Ltd. All rights reserved.
Biodiesel production from used cooking oil by two-step heterogeneous catalyzed process.
Srilatha, K; Prabhavathi Devi, B L A; Lingaiah, N; Prasad, R B N; Sai Prasad, P S
2012-09-01
The present study demonstrates the production of biodiesel from used cooking oil containing high free fatty acid by a two-step heterogeneously catalyzed process. The free fatty acids were first esterified with methanol using a 25 wt.% TPA/Nb(2)O(5) catalyst followed by transesterification of the oil with methanol over ZnO/Na-Y zeolite catalyst. The catalysts were characterized by XRD, FT-IR, BET surface area and CO(2)-TPD. In the case of transesterification the effect of reaction parameters, such as catalyst concentration, methanol to oil molar ratio and reaction temperature, on the yield of ester were investigated. The catalyst with 20 wt.% ZnO loading on Na-Y exhibited the highest activity among the others. Both the solid acid and base catalysts were found to be reusable for several times indicating their efficacy in the two-step process. Copyright © 2012 Elsevier Ltd. All rights reserved.
Guillaume, Christophe L; Serghiou, George; Thomson, Andrew; Morniroli, Jean-Paul; Frost, Dan J; Odling, Nicholas; Jeffree, Chris E
2010-09-20
High pressure and temperature experiments on Ge-Sn mixtures to 24 GPa and 2000 K reveal segregation of Sn from Ge below 10 GPa whereas Ge-Sn agglomerates persist above 10 GPa regardless of heat treatment. At 10 GPa Ge reacts with Sn to form a tetragonal P4(3)2(1)2 Ge(0.9)Sn(0.1) solid solution on recovery, of interest for optoelectronic applications. Using electron diffraction and scanning electron microscopy measurements in conjunction with a series of tailored experiments promoting equilibrium and kinetically hindered synthetic conditions, we provide a step by step correlation between the semiconductor-metal and structural changes of the solid and liquid states of the two elements, and whether they segregate, mix or react upon compression. We identify depletion zones as an effective monitor for whether the process is moving toward reaction or segregation. This work hence also serves as a reference for interpretation of complex agglomerates and for developing successful synthesis conditions for new materials using extremes of pressure and temperature.
Three Short Stories about Hexaarylbenzene-Porphyrin Scaffolds.
Lungerich, Dominik; Hitzenberger, Jakob F; Donaubauer, Wolfgang; Drewello, Thomas; Jux, Norbert
2016-11-14
A feasible two-step synthesis and characterization of a full series of hexaarylbenzene (HAB) substituted porphyrins and tetrabenzoporphyrins is presented. Key steps represent the microwave-assisted porphyrin condensation and the statistical Diels-Alder reaction to the desired HAB-porphyrins. Regarding their applications, they proved to be easily accessible and effective high molecular mass calibrants for (MA)LDI mass spectrometry. The free-base and zinc(II) porphyrin systems, as well as the respective tetrabenzoporphyrins, demonstrate in solid state experiments strong red- and near-infrared-light emission and are potentially interesting for the application in "truly organic" light-emitting devices. Lastly, they represent facile precursors to large polycyclic aromatic hydrocarbon (PAH) substituted porphyrins. We prepared the first tetra-hexa-peri-hexabenzocoronene substituted porphyrin, which represents the largest prepared PAH-porphyrin conjugate to date. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Cordara, T.; Szenknect, S.; Claparede, L.; Podor, R.; Mesbah, A.; Lavalette, C.; Dacheux, N.
2017-12-01
UO2 pellets were prepared by densification of oxides obtained from the conversion of the oxalate precursor. Then characterized in order to perform a multiparametric study of the dissolution in nitric acid medium. In this frame, for each sample, the densification rate, the grain size and the specific surface area of the prepared pellets were determined prior to the final dissolution experiments. By varying the concentration of the nitric acid solution and temperature, three different and successive steps were identified during the dissolution. Under the less aggressive conditions considered, a first transient step corresponding to the dissolution of the most reactive phases was observed at the solid/solution interface. Then, for all the tested conditions, a steady state step was established during which the normalised dissolution rate was found to be constant. It was followed by a third step characterized by a strong and continuous increase of the normalised dissolution rate. The duration of the steady state, also called "induction period", was found to vary drastically as a function of the HNO3 concentration and temperature. However, independently of the conditions, this steady state step stopped at almost similar dissolved material weight loss and dissolved uranium concentration. During the induction period, no important evolution of the topology of the solid/liquid interface was evidenced authorizing the use of the starting reactive specific surface area to evaluate the normalised dissolution rates thus the chemical durability of the sintered pellets. From the multiparametric study of UO2 dissolution proposed, oxidation of U(IV) to U(VI) by nitrate ions at the solid/liquid interface constitutes the limiting step in the overall dissolution mechanism associated to this induction period.
Titanium dioxide@polypyrrole core-shell nanowires for all solid-state flexible supercapacitors
NASA Astrophysics Data System (ADS)
Yu, Minghao; Zeng, Yinxiang; Zhang, Chong; Lu, Xihong; Zeng, Chenghui; Yao, Chenzhong; Yang, Yangyi; Tong, Yexiang
2013-10-01
Herein, we developed a facile two-step process to synthesize TiO2@PPy core-shell nanowires (NWs) on carbon cloth and reported their improved electrochemical performance for flexible supercapacitors (SCs). The fabricated solid-state SC device based on TiO2@PPy core-shell NWs not only has excellent flexibility, but also exhibits remarkable electrochemical performance.Herein, we developed a facile two-step process to synthesize TiO2@PPy core-shell nanowires (NWs) on carbon cloth and reported their improved electrochemical performance for flexible supercapacitors (SCs). The fabricated solid-state SC device based on TiO2@PPy core-shell NWs not only has excellent flexibility, but also exhibits remarkable electrochemical performance. Electronic supplementary information (ESI) available: Experimental details, XRD pattern, FT-IR absorption spectrum and CV curves of TiO2@PPy NWs, and SEM images of the PPy. See DOI: 10.1039/c3nr03578f
Isotopic Exchange in Porous and Dense Magnesium Borohydride.
Zavorotynska, Olena; Deledda, Stefano; Li, Guanqiao; Matsuo, Motoaki; Orimo, Shin-ichi; Hauback, Bjørn C
2015-09-01
Magnesium borohydride (Mg(BH4)2) is one of the most promising complex hydrides presently studied for energy-related applications. Many of its properties depend on the stability of the BH4(-) anion. The BH4(-) stability was investigated with respect to H→D exchange. In situ Raman measurements on high-surface-area porous Mg(BH4 )2 in 0.3 MPa D2 have shown that the isotopic exchange at appreciable rates occurs already at 373 K. This is the lowest exchange temperature observed in stable borohydrides. Gas-solid isotopic exchange follows the BH4(-) +D˙ →BH3D(-) +H˙ mechanism at least at the initial reaction steps. Ex situ deuteration of porous Mg(BH4)2 and its dense-phase polymorph indicates that the intrinsic porosity of the hydride is the key behind the high isotopic exchange rates. It implies that the solid-state H(D) diffusion is considerably slower than the gas-solid H→D exchange reaction at the surface and it is a rate-limiting steps for hydrogen desorption and absorption in Mg(BH4)2. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rani, R Uma; Kumar, S Adish; Kaliappan, S; Yeom, Ick-Tae; Banu, J Rajesh
2014-05-01
High efficiency resource recovery from dairy waste activated sludge (WAS) has been a focus of attention. An investigation into the influence of two step sono-alkalization pretreatment (using different alkaline agents, pH and sonic reaction times) on sludge reduction potential in a semi-continuous anaerobic reactor was performed for the first time in literature. Firstly, effect of sludge pretreatment was evaluated by COD solubilization, suspended solids reduction and biogas production. At optimized condition (4172 kJ/kg TS of supplied energy for NaOH - pH 10), COD solubilization, suspended solids reduction and biogas production was 59%, 46% and 80% higher than control. In order to clearly describe the hydrolysis of waste activated sludge during sono-alkalization pretreatment by a two step process, concentrations of ribonucleic acid (RNA) and bound extracellular polymeric substance (EPS) were also measured. Secondly, semi-continuous process performance was studied in a lab-scale semi-continuous anaerobic reactor (5L), with 4 L working volume. With three operated SRTs, the SRT of 15 d was found to be most appropriate for economic operation of the reactor. Combining pretreatment with anaerobic digestion led to 58% and 62% of suspended solids and volatile solids reduction, respectively, with an improvement of 83% in biogas production. Thus, two step sono-alkalization pretreatment laid the basis in enhancing the anaerobic digestion potential of dairy WAS. Copyright © 2013 Elsevier B.V. All rights reserved.
Solid-State Explosive Reaction for Nanoporous Bulk Thermoelectric Materials.
Zhao, Kunpeng; Duan, Haozhi; Raghavendra, Nunna; Qiu, Pengfei; Zeng, Yi; Zhang, Wenqing; Yang, Jihui; Shi, Xun; Chen, Lidong
2017-11-01
High-performance thermoelectric materials require ultralow lattice thermal conductivity typically through either shortening the phonon mean free path or reducing the specific heat. Beyond these two approaches, a new unique, simple, yet ultrafast solid-state explosive reaction is proposed to fabricate nanoporous bulk thermoelectric materials with well-controlled pore sizes and distributions to suppress thermal conductivity. By investigating a wide variety of functional materials, general criteria for solid-state explosive reactions are built upon both thermodynamics and kinetics, and then successfully used to tailor material's microstructures and porosity. A drastic decrease in lattice thermal conductivity down below the minimum value of the fully densified materials and enhancement in thermoelectric figure of merit are achieved in porous bulk materials. This work demonstrates that controlling materials' porosity is a very effective strategy and is easy to be combined with other approaches for optimizing thermoelectric performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hydrolysis of ferric chloride in solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lussiez, G.; Beckstead, L.
1996-11-01
The Detox{trademark} process uses concentrated ferric chloride and small amounts of catalysts to oxidize organic compounds. It is under consideration for oxidizing transuranic organic wastes. Although the solution is reused extensively, at some point it will reach the acceptable limit of radioactivity or maximum solubility of the radioisotopes. This solution could be cemented, but the volume would be increased substantially because of the poor compatibility of chlorides and cement. A process has been developed that recovers the chloride ions as HCl and either minimizes the volume of radioactive waste or permits recycling of the radioactive chlorides. The process involves amore » two-step hydrolysis at atmospheric pressure, or preferably under a slight vacuum, and relatively low temperature, about 200{degrees}C. During the first step of the process, hydrolysis occurs according to the reaction below: FeCl{sub 3 liquid} + H{sub 2}O {r_arrow} FeOCl{sub solid} + 2 HCl{sub gas} During the second step, the hot, solid, iron oxychloride is sprayed with water or placed in contact with steam, and hydrolysis proceeds to the iron oxide according to the following reaction: 2 FeOCl{sub solid} + H{sub 2}O {r_arrow} Fe{sub 2}O{sub 3 solid} + 2 HCl{sub gas}. The iron oxide, which contains radioisotopes, can then be disposed of by cementation or encapsulation. Alternately, these chlorides can be washed off of the solids and can then either be recycled or disposed of in some other way.« less
Duddu, S P; Grant, D J
1992-08-01
Physical mixtures (conglomerates) of the two enantiomers of ephedrine base, each containing 0.5% (w/w) of water, were observed to be converted to the 1:1 racemic compound in the solid, liquid, solution, or vapor state. From a geometrically mixed racemic conglomerate of particle size 250-300 microns (50-60 mesh), the formation of the racemic compound follows second-order kinetics (first order with respect to each enantiomer), with a rate constant of 392 mol-1 hr-1 at 22 degrees C. The reaction appears to proceed via the vapor phase as indicated by the growth of the crystals of the racemic compound between diametrically separated crystals of the two enantiomers in a glass petri dish. The observed kinetics of conversion in the solid state are explained by a homogeneous reaction model via the vapor and/or liquid states. Formation of the racemic compound from the crystals of ephedrine enantiomers in the solution state may explain why Schmidt et al. (Pharm. Res. 5:391-395, 1988) observed a consistently lower aqueous solubility of the mixture than of the pure enantiomers. The solid phase in equilibrium with the solution at the end of the experiment was found to be the racemic compound, whose melting point and heat of fusion are higher than those of the enantiomers. An association reaction, of measurable rate, between the opposite enantiomers in a binary mixture in the solid, liquid, solution, or vapor state to form the racemic compound may be more common than is generally realized.
Combustion modeling of RDX, HMX and GAP with detailed kinetics
NASA Astrophysics Data System (ADS)
Davidson, Jeffrey Edward
A one-dimensional, steady-state numerical model of the combustion of homogeneous solid propellant has been developed. The combustion processes is modeled in three regions: solid, two-phase (liquid and gas) and gas. Conservation of energy and mass equations are solved in the two-phase and gas regions and the eigenvalue of the system (the mass burning rate) is converged by matching the heat flux at the interface of these two regions. The chemical reactions of the system are modeled using a global kinetic mechanism in the two-phase region and an elementary kinetic mechanism in the gas region. The model has been applied to RDX, HMX and GAP. There is very reasonable agreement between experimental data and model predictions for burning rate, temperature sensitivity, surface temperature, adiabatic flame temperature, species concentration profiles and melt-layer thickness. Many of the similarities and differences in the combustion of RDX and HMX are explained from sensitivity analysis results. The combustion characteristics of RDX and HMX are similar because of their similar chemistry. Differences in combustion characteristics arise due to differences in melting temperature, vapor pressure and initial decomposition steps. A reduced mechanism consisting of 18 species and 39 reactions was developed from the Melius-Yetter RDX mechanism (45 species, 232 reactions). This reduced mechanism reproduces most of the predictions of the full mechanism but is 7.5 times faster. Because of lack of concrete thermophysical property data for GAP, the modeling results are preliminary but indicate what type of experimental data is necessary before GAP can be modeled with more certainty.
Rapid, cool sintering of wet processed yttria-stabilized zirconia ceramic electrolyte thin films.
Park, Jun-Sik; Kim, Dug-Joong; Chung, Wan-Ho; Lim, Yonghyun; Kim, Hak-Sung; Kim, Young-Beom
2017-09-29
Here we report a photonic annealing process for yttria-stabilized zirconia films, which are one of the most well-known solid-state electrolytes for solid oxide fuel cells (SOFCs). Precursor films were coated using a wet-chemical method with a simple metal-organic precursor solution and directly annealed at standard pressure and temperature by two cycles of xenon flash lamp irradiation. The residual organics were almost completely decomposed in the first pre-annealing step, and the fluorite crystalline phases and good ionic conductivity were developed during the second annealing step. These films showed properties comparable to those of thermally annealed films. This process is much faster than conventional annealing processes (e.g. halogen furnaces); a few seconds compared to tens of hours, respectively. The significance of this work includes the treatment of solid-state electrolyte oxides for SOFCs and the demonstration of the feasibility of other oxide components for solid-state energy devices.
Global distribution of secondary organic aerosol particle phase state
NASA Astrophysics Data System (ADS)
Shiraiwa, M.; Li, Y., Sr.; Tsimpidi, A.; Karydis, V.; Berkemeier, T.; Pandis, S. N.; Lelieveld, J.; Koop, T.; Poeschl, U.
2016-12-01
Secondary organic aerosols (SOA) account for a large fraction of submicron particles in the atmosphere and play a key role in aerosol effects on climate, air quality and public health. The formation and aging of SOA proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of SOA evolution in atmospheric aerosol models. SOA particles can adopt liquid, semi-solid and amorphous solid (glassy) phase states depending on chemical composition, relative humidity and temperature. The particle phase state is crucial for various atmospheric gas-particle interactions, including SOA formation, heterogeneous and multiphase reactions and ice nucleation. We found that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. Based on the concept of molecular corridors, we develop a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, which is a key property for determination of particle phase state. We use the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the atmospheric SOA phase state. For the planetary boundary layer, global simulations indicate that SOA is mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes, and solid over dry lands. We find that in the middle and upper troposphere (>500 hPa) SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants, and organic molecules could kinetically limit gas-particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded within SOA.
Nonclassical nucleation pathways in protein crystallization
NASA Astrophysics Data System (ADS)
Zhang, Fajun
2017-11-01
Classical nucleation theory (CNT), which was established about 90 years ago, has been very successful in many research fields, and continues to be the most commonly used theory in describing the nucleation process. For a fluid-to-solid phase transition, CNT states that the solute molecules in a supersaturated solution reversibly form small clusters. Once the cluster size reaches a critical value, it becomes thermodynamically stable and favored for further growth. One of the most important assumptions of CNT is that the nucleation process is described by one reaction coordinate and all order parameters proceed simultaneously. Recent studies in experiments, computer simulations and theory have revealed nonclassical features in the early stage of nucleation. In particular, the decoupling of order parameters involved during a fluid-to-solid transition leads to the so-called two-step nucleation mechanism, in which a metastable intermediate phase (MIP) exists between the initial supersaturated solution and the final crystals. Depending on the exact free energy landscapes, the MIPs can be a high density liquid phase, mesoscopic clusters, or a pre-ordered state. In this review, we focus on the studies of nonclassical pathways in protein crystallization and discuss the applications of the various scenarios of two-step nucleation theory. In particular, we focus on protein solutions in the presence of multivalent salts, which serve as a model protein system to study the nucleation pathways. We wish to point out the unique features of proteins as model systems for further studies.
Nonclassical nucleation pathways in protein crystallization.
Zhang, Fajun
2017-11-08
Classical nucleation theory (CNT), which was established about 90 years ago, has been very successful in many research fields, and continues to be the most commonly used theory in describing the nucleation process. For a fluid-to-solid phase transition, CNT states that the solute molecules in a supersaturated solution reversibly form small clusters. Once the cluster size reaches a critical value, it becomes thermodynamically stable and favored for further growth. One of the most important assumptions of CNT is that the nucleation process is described by one reaction coordinate and all order parameters proceed simultaneously. Recent studies in experiments, computer simulations and theory have revealed nonclassical features in the early stage of nucleation. In particular, the decoupling of order parameters involved during a fluid-to-solid transition leads to the so-called two-step nucleation mechanism, in which a metastable intermediate phase (MIP) exists between the initial supersaturated solution and the final crystals. Depending on the exact free energy landscapes, the MIPs can be a high density liquid phase, mesoscopic clusters, or a pre-ordered state. In this review, we focus on the studies of nonclassical pathways in protein crystallization and discuss the applications of the various scenarios of two-step nucleation theory. In particular, we focus on protein solutions in the presence of multivalent salts, which serve as a model protein system to study the nucleation pathways. We wish to point out the unique features of proteins as model systems for further studies.
NASA Astrophysics Data System (ADS)
Mencos, Alejandro; Krim, Lahouari
2018-06-01
We show in the current study carried out in solid phase at cryogenic temperatures that methane (CH4) ice exposed to nitrogen atoms is a source of two acids HCN, HNC, and their corresponding hydrogenated unsaturated species CH2NH, in addition to CH3, C2H6, CN-, and three nitrogen hydrides NH, NH2, and NH3. The solid state N + CH4 reaction taken in the ground state seems to be strongly temperature dependent. While at temperatures lower than 10 K only CH3, NH, NH2, and NH3 species formation is promoted due to CH bond dissociation and NH bond formation, stable compounds with CN bonds are formed at temperatures ranged between 10 and 40 K. Many of these reaction products, resulting from CH4 + N reaction, have already been observed in N2-rich regions such as the atmospheres of Titan, Kuiper belt objects, and molecular clouds of the interstellar medium. Our results show the power of the solid state N-atom chemistry in the transformation of simple astrochemical relevant species, such as CH4 molecules and N atoms into complex organic molecules which are also potentially prebiotic species.
Surface-mediated nucleation in the solid-state polymorph transformation of terephthalic acid.
Beckham, Gregg T; Peters, Baron; Starbuck, Cindy; Variankaval, Narayan; Trout, Bernhardt L
2007-04-18
A molecular mechanism for nucleation for the solid-state polymorph transformation of terephthalic acid is presented. New methods recently developed in our group, aimless shooting and likelihood maximization, are employed to construct a model for the reaction coordinate for the two system sizes studied. The reaction coordinate approximation is validated using the committor probability analysis. The transformation proceeds via a localized, elongated nucleus along the crystal edge formed by fluctuations in the supramolecular synthons, suggesting a nucleation and growth mechanism in the macroscopic system.
NASA Astrophysics Data System (ADS)
Palos, A. Ibarra; Anne, M.; Strobel, P.
2001-08-01
The composition Li2Mn4O9, reported as a spinel oxide containing vacancies on both tetrahedral and octahedral sites [A. de Kock et al., Mater. Res. Bull. 25, 657 (1990)], was approached using three different preparation routes: low-temperature solid state reaction (A), chemical delithiation (B), and electrochemical delithiation (C). Rietveld refinements from neutron diffraction data confirmed the double-vacancy scheme proposed previously for product A, but with more tetrahedral and fewer octahedral vacancies than in the ideal Li2Mn4O9 formula. Low-temperature solid state reactions systematically result in broad reflections. Sample B, which was obtained topotactically, exhibits much narrower reflections. But chemical analyses, thermogravimetry, and neutron diffraction show that the acid treatment introduces significant amounts of protons, resulting in a formula close to Li0.92HMn4O9. Samples A and B were cycled electrochemically in lithium cells at 3 V with better stability than LiMn2O4, probably due to their higher initial manganese oxidation state. No separate electrochemical step linked to the filling of vacancies is observed in A, whereas B gives an additional redox step ca. 200 mV above the main plateau. This feature is not observed on compounds A or C; it is reversible, and seems to be a specific property of this spinel with a low initial cell parameter (8.09 Å). Sample A2 with double cation vacancies is especially stable on cycling at 3 V, and shows a very small volume variation on lithium intercalation.
A comparative study of heterostructured CuO/CuWO4 nanowires and thin films
NASA Astrophysics Data System (ADS)
Polyakov, Boris; Kuzmin, Alexei; Vlassov, Sergei; Butanovs, Edgars; Zideluns, Janis; Butikova, Jelena; Kalendarev, Robert; Zubkins, Martins
2017-12-01
A comparative study of heterostructured CuO/CuWO4 core/shell nanowires and double-layer thin films was performed through X-ray diffraction, confocal micro-Raman spectroscopy and electron (SEM and TEM) microscopies. The heterostructures were produced using a two-step process, starting from a deposition of amorphous WO3 layer on top of CuO nanowires and thin films by reactive DC magnetron sputtering and followed by annealing at 650 °C in air. The second step induced a solid-state reaction between CuO and WO3 oxides through a thermal diffusion process, revealed by SEM-EDX analysis. Morphology evolution of core/shell nanowires and double-layer thin films upon heating was studied by electron (SEM and TEM) microscopies. A formation of CuWO4 phase was confirmed by X-ray diffraction and confocal micro-Raman spectroscopy.
NASA Astrophysics Data System (ADS)
Krim, Lahouari; Nourry, Sendres
2015-06-01
In the last few years, ambitious programs were launched to probe the interstellar medium always more accurately. One of the major challenges of these missions remains the detection of prebiotic compounds and the understanding of reaction pathways leading to their formation. These complex heterogeneous reactions mainly occur on icy dust grains, and their studies require the coupling of laboratory experiments mimicking the extreme conditions of extreme cold and dilute media. For that purpose, we have developed an original experimental approach that combine the study of heterogeneous reactions (by exposing neutral molecules adsorbed on ice to non-energetic radicals H, OH, N...) and a neon matrix isolation study at very low temperatures, which is of paramount importance to isolate and characterize highly reactive reaction intermediates. Such experimental approach has already provided answers to many questions raised about some astrochemically-relevant reactions occurring in the ground state on the surface of dust grain ices in dense molecular clouds. The aim of this new present work is to show the implication of ground state atomic nitrogen on hydrogen atom abstraction reactions from some astrochemically-relevant species, at very low temperatures (3K-20K), without providing any external energy. Under cryogenic temperatures and with high barrier heights, such reactions involving N(4S) nitrogen atoms should not occur spontaneously and require an initiating energy. However, the detection of some radicals species as byproducts, in our solid samples left in the dark for hours at 10K, proves that hydrogen abstraction reactions involving ground state N(4S) nitrogen atoms may occur in solid phase at cryogenic temperatures. Our results show the efficiency of radical species formation stemming from non-energetic N-atoms and astrochemically-relevant molecules. We will then discuss how such reactions, involving nitrogen atoms in their ground states, might be the first key step towards complex organic molecules production in the interstellar medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naghavi, S. Shahab; Emery, Antoine A.; Hansen, Heine A.
Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Cemore » 4+/Ce 3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.« less
Titanium dioxide@polypyrrole core-shell nanowires for all solid-state flexible supercapacitors.
Yu, Minghao; Zeng, Yinxiang; Zhang, Chong; Lu, Xihong; Zeng, Chenghui; Yao, Chenzhong; Yang, Yangyi; Tong, Yexiang
2013-11-21
Herein, we developed a facile two-step process to synthesize TiO2@PPy core-shell nanowires (NWs) on carbon cloth and reported their improved electrochemical performance for flexible supercapacitors (SCs). The fabricated solid-state SC device based on TiO2@PPy core-shell NWs not only has excellent flexibility, but also exhibits remarkable electrochemical performance.
Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble.
Klimov, Paul V; Falk, Abram L; Christle, David J; Dobrovitski, Viatcheslav V; Awschalom, David D
2015-11-01
Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 10(3) identical registers in a 40-μm(3) volume (with [Formula: see text] fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology.
Production of aligned microfibers and nanofibers and derived functional monoliths
Hu, Michael Z [Knoxville, TN; DePaoli, David W [Knoxville, TN; Kuritz, Tanya [Kingston, TN; Omatete, Ogbemi [New Port Richey, FL
2007-08-14
The present invention comprises a method for producing microfibers and nanofibers and further fabricating derived solid monolithic materials having aligned uniform micro- or nanofibrils. A method for producing fibers ranging in diameter from micrometer-sized to nanometer-sized comprises the steps of producing an electric field and preparing a solid precipitative reaction media wherein the media comprises at least one chemical reactive precursor and a solvent having low electrical conductivity and wherein a solid precipitation reaction process for nucleation and growth of a solid phase occurs within the media. Then, subjecting the media to the electric field to induce in-situ growth of microfibers or nanofibers during the reaction process within the media causing precipitative growth of solid phase particles wherein the reaction conditions and reaction kinetics control the size, morphology and composition of the fibers. The fibers can then be wet pressed while under electric field into a solid monolith slab, dried and consolidated.
Theoretical and computer models of detonation in solid explosives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarver, C.M.; Urtiew, P.A.
1997-10-01
Recent experimental and theoretical advances in understanding energy transfer and chemical kinetics have led to improved models of detonation waves in solid explosives. The Nonequilibrium Zeldovich - von Neumann - Doring (NEZND) model is supported by picosecond laser experiments and molecular dynamics simulations of the multiphonon up-pumping and internal vibrational energy redistribution (IVR) processes by which the unreacted explosive molecules are excited to the transition state(s) preceding reaction behind the leading shock front(s). High temperature, high density transition state theory calculates the induction times measured by laser interferometric techniques. Exothermic chain reactions form product gases in highly excited vibrational states,more » which have been demonstrated to rapidly equilibrate via supercollisions. Embedded gauge and Fabry-Perot techniques measure the rates of reaction product expansion as thermal and chemical equilibrium is approached. Detonation reaction zone lengths in carbon-rich condensed phase explosives depend on the relatively slow formation of solid graphite or diamond. The Ignition and Growth reactive flow model based on pressure dependent reaction rates and Jones-Wilkins-Lee (JWL) equations of state has reproduced this nanosecond time resolved experimental data and thus has yielded accurate average reaction zone descriptions in one-, two- and three- dimensional hydrodynamic code calculations. The next generation reactive flow model requires improved equations of state and temperature dependent chemical kinetics. Such a model is being developed for the ALE3D hydrodynamic code, in which heat transfer and Arrhenius kinetics are intimately linked to the hydrodynamics.« less
A solid-state pH sensor for nonaqueous media including ionic liquids.
Thompson, Brianna C; Winther-Jensen, Orawan; Winther-Jensen, Bjorn; MacFarlane, Douglas R
2013-04-02
We describe a solid state electrode structure based on a biologically derived proton-active redox center, riboflavin (RFN). The redox reaction of RFN is a pH-dependent process that requires no water. The electrode was fabricated using our previously described 'stuffing' method to entrap RFN into vapor phase polymerized poly(3,4-ethylenedioxythiophene). The electrode is shown to be capable of measuring the proton activity in the form of an effective pH over a range of different water contents including nonaqueous systems and ionic liquids (ILs). This demonstrates that the entrapment of the redox center facilitates direct electron communication with the polymer. This work provides a miniaturizable system to determine pH (effective) in nonaqueous systems as well as in ionic liquids. The ability to measure pH (effective) is an important step toward the ability to customize ILs with suitable pH (effective) for catalytic reactions and biotechnology applications such as protein preservation.
A promising high-energy-density material.
Zhang, Wenquan; Zhang, Jiaheng; Deng, Mucong; Qi, Xiujuan; Nie, Fude; Zhang, Qinghua
2017-08-03
High-energy density materials represent a significant class of advanced materials and have been the focus of energetic materials community. The main challenge in this field is to design and synthesize energetic compounds with a highest possible density and a maximum possible chemical stability. Here we show an energetic compound, [2,2'-bi(1,3,4-oxadiazole)]-5,5'-dinitramide, is synthesized through a two-step reaction from commercially available reagents. It exhibits a surprisingly high density (1.99 g cm -3 at 298 K), poor solubility in water and most organic solvents, decent thermal stability, a positive heat of formation and excellent detonation properties. The solid-state structural features of the synthesized compound are also investigated via X-ray diffraction and several theoretical techniques. The energetic and sensitivity properties of the explosive compound are similar to those of 2, 4, 6, 8, 10, 12-(hexanitrohexaaza)cyclododecane (CL-20), and the developed compound shows a great promise for potential applications as a high-energy density material.High energy density materials are of interest, but density is the limiting factor for many organic compounds. Here the authors show the formation of a high density energetic compound from a two-step reaction between commercially available compounds that exhibit good heat thermal stability and detonation properties.
Chemical degradation of proteins in the solid state with a focus on photochemical reactions.
Mozziconacci, Olivier; Schöneich, Christian
2015-10-01
Protein pharmaceuticals comprise an increasing fraction of marketed products but the limited solution stability of proteins requires considerable research effort to prepare stable formulations. An alternative is solid formulation, as proteins in the solid state are thermodynamically less susceptible to degradation. Nevertheless, within the time of storage a large panel of kinetically controlled degradation reactions can occur such as, e.g., hydrolysis reactions, the formation of diketopiperazine, condensation and aggregation reactions. These mechanisms of degradation in protein solids are relatively well covered by the literature. Considerably less is known about oxidative and photochemical reactions of solid proteins. This review will provide an overview over photolytic and non-photolytic degradation reactions, and specially emphasize mechanistic details on how solid structure may affect the interaction of protein solids with light. Copyright © 2014 Elsevier B.V. All rights reserved.
Two-step carbon coating of lithium vanadium phosphate as high-rate cathode for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Kuang, Quan; Zhao, Yanming
2012-10-01
Carbon-coated Li3V2(PO4)3 was firstly prepared at 850 °C via two-step reaction method combined sol-gel and conventional solid-state synthesis by using VPO4/carbon as an intermediate. Two different carbon sources, citric acid and glucose as carbon additives in sequence, ultimately deduced double carbon-coated Li3V2(PO4)3 as a high-rate cathode material. The Li3V2(PO4)3/carbon with 4.39% residual carbon has a splendid electronic conductivity of 4.76×10-2 S cm-1. Even in the voltage window of 2.5-4.8 V, the Li3V2(PO4)3/carbon cathode can retain outstanding rate ability (170.4 mAh g-1 at 1.2 C, 101.9 mAh g-1 at 17 C), and no degradation is found after 120 C current rate. These phenomena show that the two-step carbon-coated Li3V2(PO4)3 can act as a fast charge-discharge cathode material for high-power Li-ion batteries. Furthermore, it's believed that this synthesize method can be easily transplanted to prepare other lithiated vanadium-based phosphates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Huajun; Gao, Tao; Li, Xiaogang
Rechargeable magnesium batteries have attracted considerable attention because of their potential high energy density and low cost. However, their development has been severely hindered because of the lack of appropriate cathode materials. Here we report a rechargeable magnesium/iodine battery, in which the soluble iodine reacts with Mg 2+ to form a soluble intermediate and then an insoluble final product magnesium iodide. The liquid–solid two-phase reaction pathway circumvents solid-state Mg 2+ diffusion and ensures a large interfacial reaction area, leading to fast reaction kinetics and high reaction reversibility. As a result, the rechargeable magnesium/iodine battery shows a better rate capability (180more » mAh g –1 at 0.5 C and 140 mAh g –1 at 1 C) and a higher energy density (~400 Wh kg –1) than all other reported rechargeable magnesium batteries using intercalation cathodes. As a result, this study demonstrates that the liquid–solid two-phase reaction mechanism is promising in addressing the kinetic limitation of rechargeable magnesium batteries.« less
High power rechargeable magnesium/iodine battery chemistry
Tian, Huajun; Gao, Tao; Li, Xiaogang; ...
2017-01-10
Rechargeable magnesium batteries have attracted considerable attention because of their potential high energy density and low cost. However, their development has been severely hindered because of the lack of appropriate cathode materials. Here we report a rechargeable magnesium/iodine battery, in which the soluble iodine reacts with Mg 2+ to form a soluble intermediate and then an insoluble final product magnesium iodide. The liquid–solid two-phase reaction pathway circumvents solid-state Mg 2+ diffusion and ensures a large interfacial reaction area, leading to fast reaction kinetics and high reaction reversibility. As a result, the rechargeable magnesium/iodine battery shows a better rate capability (180more » mAh g –1 at 0.5 C and 140 mAh g –1 at 1 C) and a higher energy density (~400 Wh kg –1) than all other reported rechargeable magnesium batteries using intercalation cathodes. As a result, this study demonstrates that the liquid–solid two-phase reaction mechanism is promising in addressing the kinetic limitation of rechargeable magnesium batteries.« less
Development of a computerized analysis for solid propellant combustion instability with turbulence
NASA Technical Reports Server (NTRS)
Chung, T. J.; Park, O. Y.
1988-01-01
A multi-dimensional numerical model has been developed for the unsteady state oscillatory combustion of solid propellants subject to acoustic pressure disturbances. Including the gas phase unsteady effects, the assumption of uniform pressure across the flame zone, which has been conventionally used, is relaxed so that a higher frequency response in the long flame of a double-base propellant can be calculated. The formulation is based on a premixed, laminar flame with a one-step overall chemical reaction and the Arrhenius law of decomposition with no condensed phase reaction. In a given geometry, the Galerkin finite element solution shows the strong resonance and damping effect at the lower frequencies, similar to the result of Denison and Baum. Extended studies deal with the higher frequency region where the pressure varies in the flame thickness. The nonlinear system behavior is investigated by carrying out the second order expansion in wave amplitude when the acoustic pressure oscillations are finite in amplitude. Offset in the burning rate shows a negative sign in the whole frequency region considered, and it verifies the experimental results of Price. Finally, the velocity coupling in the two-dimensional model is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozawa, Takahiro, E-mail: t-kozawa@jwri.osaka-u.ac.jp; Yanagisawa, Kazumichi; Murakami, Takeshi
Morphology control of particles formed during conventional solid-state reactions without any additives is a challenging task. Here, we propose a new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles based on water vapor-induced growth of particles during solid-state reactions. We have investigated the synthesis and microstructural evolution of LiMn{sub 2}O{sub 4} particles in air and water vapor atmospheres as model reactions; LiMn{sub 2}O{sub 4} is used as a low-cost cathode material for lithium-ion batteries. By using spherical MnCO{sub 3} precursor impregnated with LiOH, LiMn{sub 2}O{sub 4} spheres with a hollow structure were obtained in air, while angulated particlesmore » with micrometer sizes were formed in water vapor. The pore structure of the particles synthesized in water vapor was found to be affected at temperatures below 700 °C. We also show that the solid-state reaction in water vapor is a simple and valuable method for the large-scale production of particles, where the shape, size, and microstructure can be controlled. - Graphical abstract: This study has demonstrated a new strategy towards achieving morphology control without the use of additives during conventional solid-state reactions by exploiting water vapor-induced particle growth. - Highlights: • A new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles is proposed. • Water vapor-induced particle growth is exploited in solid-state reactions. • The microstructural evolution of LiMn{sub 2}O{sub 4} particles is investigated. • The shape, size and microstructure can be controlled by solid-state reactions.« less
Farazdaghi, Hadi
2011-02-01
Photosynthesis is the origin of oxygenic life on the planet, and its models are the core of all models of plant biology, agriculture, environmental quality and global climate change. A theory is presented here, based on single process biochemical reactions of Rubisco, recognizing that: In the light, Rubisco activase helps separate Rubisco from the stored ribulose-1,5-bisphosphate (RuBP), activates Rubisco with carbamylation and addition of Mg²(+), and then produces two products, in two steps: (Step 1) Reaction of Rubisco with RuBP produces a Rubisco-enediol complex, which is the carboxylase-oxygenase enzyme (Enco) and (Step 2) Enco captures CO₂ and/or O₂ and produces intermediate products leading to production and release of 3-phosphoglycerate (PGA) and Rubisco. PGA interactively controls (1) the carboxylation-oxygenation, (2) electron transport, and (3) triosephosphate pathway of the Calvin-Benson cycle that leads to the release of glucose and regeneration of RuBP. Initially, the total enzyme participates in the two steps of the reaction transitionally and its rate follows Michaelis-Menten kinetics. But, for a continuous steady state, Rubisco must be divided into two concurrently active segments for the two steps. This causes a deviation of the steady state from the transitional rate. Kinetic models are developed that integrate the transitional and the steady state reactions. They are tested and successfully validated with verifiable experimental data. The single-process theory is compared to the widely used two-process theory of Farquhar et al. (1980. Planta 149, 78-90), which assumes that the carboxylation rate is either Rubisco-limited at low CO₂ levels such as CO₂ compensation point, or RuBP regeneration-limited at high CO₂. Since the photosynthesis rate cannot increase beyond the two-process theory's Rubisco limit at the CO₂ compensation point, net photosynthesis cannot increase above zero in daylight, and since there is always respiration at night, it leads to progressively negative daily CO₂ fixation with no possibility of oxygenic life on the planet. The Rubisco-limited theory at low CO₂ also contradicts all experimental evidence for low substrate reactions, and for all known enzymes, Rubisco included. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Mishra, Abha; Debnath Das, Meera
2002-01-01
pH and temperature play critical roles in multistep enzymatic conversions. In such conversions, the optimal pH for individual steps differs greatly. In this article, we describe the production of glucoamylase (from Aspergillus oryzae MTCC152 in solid-state fermentation) and glucose isomerase (from Streptomyces griseus NCIM2020 in submerged fermentation), used in industries for producing high-fructose syrup. Optimum pH for glucoamylase was found to be 5.0. For glucose isomerase, the optimum pH ranged between 7.0 and 8.5, depending on the type of buffer used. Optimum temperature for glucoamylase and glucose isomerase was 50 and 60 degrees C, respectively. When both the enzymatic conversions were performed simultaneously at a compromised pH of 6.5, both the enzymes showed lowered activity. We also studied the kinetics at different pHs, which allows the two-step reaction to take place simultaneously. This was done by separating two steps by a thin layer of urease. Ammonia generated by the hydrolysis of urea consumed the hydrogen ions, thereby allowing optimal activity of glucose isomerase at an acidic pH of 5.0.
NASA Astrophysics Data System (ADS)
Kołodziej, B.; Morawiak, M.; Kamieński, B.; Schilf, W.
2016-05-01
A new unexpected product of condensation reaction of 1,8-diaminonaphthalene (DAN) and carbonyl compound (here: dehydroacetic acid (dha)) was synthesized. Discussion about the molecular structure of possible products of this reaction was done on the base of NMR studies. The structure of the titled product in both DMSO solution and in the solid state was resolved by analysis of its spectral data (X-ray structure analysis, multinuclear NMR in solution and solid state spectra) and MS measurements. The presented studies provided clear evidence that the titled product exists in diluted DMSO solution as the mixture of two kinetic free ionic species whereas in concentrated DMSO solution as well as in the solid state this system forms associated ionic pairs bonded together by hydrogen bonds.
Pharmacy on Demand Feasibility Assessment
2008-07-19
We have successfully carried out the first two steps of the ibuprofen synthesis in our microreactor using homogeneous reactions in a continuous...Average of two trials. c Average of three trials. d Using a 0.25 M stock solution of isobutylbenzene. e Using a 0.5 M stock solution of...the creation of a packed-bed microreactor is the preparation of the solid-supported reagent. We have previously demonstrated that the performance
Davis, J.A.; Fuller, C.C.; Cook, A.D.
1987-01-01
The rate of Cd2+ sorption by calcite was determined as a function of pH and Mg2+ in aqueous solutions saturated with respect to calcite but undersaturated with respect to CdCO3. The sorption is characterized by two reaction steps, with the first reaching completion within 24 hours. The second step proceeded at a slow and nearly constant rate for at least 7 days. The rate of calcite recrystallization was also studied, using a Ca2+ isotopic exchange technique. Both the recrystallization rate of calcite and the rate of slow Cd2+ sorption decrease with increasing pH or with increasing Mg2+. The recrystallization rate could be predicted from the number of moles of Ca present in the hydrated surface layer. A model is presented which is consistent with the rates of Cd2+ sorption and Ca2+ isotopic exchange. In the model, the first step in Cd2+ sorption involves a fast adsorption reaction that is followed by diffusion of Cd2+ into a surface layer of hydrated CaCO3 that overlies crystalline calcite. Desorption of Cd2+ from the hydrated layer is slow. The second step is solid solution formation in new crystalline material, which grows from the disordered mixture of Cd and Ca carbonate in the hydrated surface layer. Calculated distribution coefficients for solid solutions formed at the surface are slightly greater than the ratio of equilibrium constants for dissolution of calcite and CdCO3, which is the value that would be expected for an ideal solid solution in equilibrium with the aqueous solution. ?? 1987.
Two dimensional, transient catalytic combustion of CO-air on platinum
NASA Technical Reports Server (NTRS)
Sinha, N.; Bruno, C.; Bracco, F. V.
1985-01-01
The light off transient of catalytic combustion of lean CO-air mixtures in a platinum coated channel of a honeycomb monolith is studied with a model that resolves transient radial and axial gradients in both the gas and the solid. For the conditions studied it is concluded that: the initial heat release occurs near the entrance at the gas-solid interface and is controlled by heterogeneous reactions; large spatial and temporal temperature gradients occur in the solid near the entrance controlled mostly by the availability of fuel; the temperature of the solid near the entrance achieves almost its steady state value before significant heating of the back; heterogeneous reactions and the gas heated up front and flowing downstream heat the back of the solid; the overall transient time is controlled by the thermal inertia of the solid and by forced convection; radiation significantly influences both transient and steady state particularly near the entrance; the oxidation of CO occurs mostly on the catalyst and becomes diffusion controlled soon into the transient.
Science Update: Inorganic Chemistry.
ERIC Educational Resources Information Center
Rawls, Rebecca
1981-01-01
Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)
Skrdla, Peter J; Robertson, Rebecca T
2005-06-02
Many solid-state reactions and phase transformations performed under isothermal conditions give rise to asymmetric, sigmoidally shaped conversion-time (x-t) profiles. The mathematical treatment of such curves, as well as their physical interpretation, is often challenging. In this work, the functional form of a Maxwell-Boltzmann (M-B) distribution is used to describe the distribution of activation energies for the reagent solids, which, when coupled with an integrated first-order rate expression, yields a novel semiempirical equation that may offer better success in the modeling of solid-state kinetics. In this approach, the Arrhenius equation is used to relate the distribution of activation energies to a corresponding distribution of rate constants for the individual molecules in the reagent solids. This distribution of molecular rate constants is then correlated to the (observable) reaction time in the derivation of the model equation. In addition to providing a versatile treatment for asymmetric, sigmoidal reaction curves, another key advantage of our equation over other models is that the start time of conversion is uniquely defined at t = 0. We demonstrate the ability of our simple, two-parameter equation to successfully model the experimental x-t data for the polymorphic transformation of a pharmaceutical compound under crystallization slurry (i.e., heterogeneous) conditions. Additionally, we use a modification of this equation to model the kinetics of a historically significant, homogeneous solid-state reaction: the thermal decomposition of AgMnO4 crystals. The potential broad applicability of our statistical (i.e., dispersive) kinetic approach makes it a potentially attractive alternative to existing models/approaches.
UV-induced solvent free synthesis of truxillic acid-bile acid conjugates
NASA Astrophysics Data System (ADS)
Koivukorpi, Juha; Kolehmainen, Erkki
2009-07-01
The solvent free UV-induced [2 + 2] intermolecular cycloaddition of two molecules of 3α-cinnamic acid ester of methyl lithocholate produced in 99% yield of α- and ɛ-truxillic acid-bis(methyl lithocholate) isomers, which possess two structurally different potential binding sites. A prerequisite for this effective solid state reaction is a proper self-assembled crystal structure of the starting conjugate crystallized from acetonitrile. The crystallization of cinnamic acid ester of methyl lithocholate from acetonitrile produces two different crystalline forms (polymorphs), which is the reason for the solid state formation of two isomers of truxillic acid-bis(methyl lithocholate).
NASA Technical Reports Server (NTRS)
Jiang, Ching-Biau; T'ien, James S.
1994-01-01
Excerpts from a paper describing the numerical examination of concurrent-flow flame spread over a thin solid in purely forced flow with gas-phase radiation are presented. The computational model solves the two-dimensional, elliptic, steady, and laminar conservation equations for mass, momentum, energy, and chemical species. Gas-phase combustion is modeled via a one-step, second order finite rate Arrhenius reaction. Gas-phase radiation considering gray non-scattering medium is solved by a S-N discrete ordinates method. A simplified solid phase treatment assumes a zeroth order pyrolysis relation and includes radiative interaction between the surface and the gas phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rojas-Chavez, H., E-mail: uu_gg_oo@yahoo.com.mx; Reyes-Carmona, F.; Jaramillo-Vigueras, D.
2011-10-15
Highlights: {yields} PbSe synthesized from PbO instead of Pb powder do not require an inert atmosphere. {yields} During high-energy milling oxygen has to be chemically reduced from the lead oxide. {yields} Solid-state and solid-gas chemical reactions promote both solid and gaseous products. -- Abstract: Both solid-solid and gas-solid reactions have been traced during high-energy milling of Se and PbO powders under vial (P, T) conditions in order to synthesize the PbSe phase. Chemical and thermodynamic arguments are postulated to discern the high-energy milling mechanism to transform PbO-Se micropowders onto PbSe-nanocrystals. A set of reactions were evaluated at around room temperature.more » Therefore an experimental campaign was designed to test the nature of reactions in the PbO-Se system during high-energy milling.« less
NASA Astrophysics Data System (ADS)
Qin, Shiying; Zhu, Xiaohong; Jiang, Yue; Ling, Ming'en; Hu, Zhiwei; Zhu, Jiliang
2018-03-01
A highly self-textured Ga2O3-substituted Li7La3Zr2O12 (LLZO-Ga) solid electrolyte with a nominal composition of Li6.55Ga0.15La3Zr2O12 is obtained by a simple and low-cost solid-state reaction technique, requiring no seed crystals to achieve grain orientation. The as-prepared self-textured LLZO-Ga shows a strong (420) preferred orientation with a high Lotgering factor of 0.91. Coherently, a terrace-shaped microstructure consisting of many parallel layers, indicating a two-dimensional-like growth mode, is clearly observed in the self-textured sample. As a result, the highly self-textured garnet-type lithium-ion conducting solid electrolyte of LLZO-Ga exhibits an extremely high ionic conductivity, reaching a state-of-the-art level of 2.06 × 10-3 S cm-1 at room temperature (25 °C) and thus shedding light on an important strategy for improving the structure and ionic conductivity of solid electrolytes.
Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble
Klimov, Paul V.; Falk, Abram L.; Christle, David J.; Dobrovitski, Viatcheslav V.; Awschalom, David D.
2015-01-01
Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 103 identical registers in a 40-μm3 volume (with 0.95−0.07+0.05 fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology. PMID:26702444
Zheng, Dalong; Ma, Liping; Wang, Rongmou; Yang, Jie; Dai, Quxiu
2018-02-01
Phosphogypsum is a solid industry by-product generated when sulphuric acid is used to process phosphate ore into fertiliser. Phosphogypsum stacks without pretreatment are often piled on the land surface or dumped in the sea, causing significant environmental damage. This study examined the reaction characteristics of phosphogypsum, when decomposed in a multi-atmosphere fluidised bed. Phosphogypsum was first dried, sieved and mixed proportionally with lignite at the mass ratio of 10:1, it was then immersed in 0.8 [Formula: see text] with a solid-liquid ratio of 8:25. The study included a two-step cycle of multi-atmosphere control. First, a reducing atmosphere was provided to allow phosphogypsum decomposition through partial lignite combustion. After the reduction stage reaction was completed, the reducing atmosphere was changed into an air-support oxidising atmosphere at the constant temperature. Each atmosphere cycle had a conversion time of 30 min to ensure a sufficient reaction. The decomposing properties of phosphogypsum were obtained in different atmosphere cycles, at different reaction temperatures, different heating rates and different fluidised gas velocities, using experimental results combined with a theoretical analysis using FactSage 7.0 Reaction module. The study revealed that the optimum reaction condition was to circulate the atmosphere twice at a temperature of 1100 °C. The heating rate above 800 °C was 5 [Formula: see text], and the fluidised gas velocity was 0.40 [Formula: see text]. The procedure proposed in this article can serve as a phosphogypsum decomposition solution, and can support the future management of this by-product, resulting in more sustainable production.
The quantum dynamics of electronically nonadiabatic chemical reactions
NASA Technical Reports Server (NTRS)
Truhlar, Donald G.
1993-01-01
Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally adiabatic functions in various quantum scattering algorithms.
The Mechanochemical Reaction of Palladium(II) Chloride with a Bidentate Phosphine
ERIC Educational Resources Information Center
Berry, David E.; Carrie, Philippa; Fawkes, Kelli L.; Rebner, Bruce; Xing, Yao
2010-01-01
This experiment describes the reaction of palladium(II) chloride with 1,5-bis(diphenylphosphino)pentane by grinding the two powders together in the solid state. The product is the precursor for the metalation reaction at one of the methylene carbon atoms of the ligand's backbone. The final product is known to be a catalyst for Suzuki-Miyaura…
Compression selective solid-state chemistry
NASA Astrophysics Data System (ADS)
Hu, Anguang
Compression selective solid-state chemistry refers to mechanically induced selective reactions of solids under thermomechanical extreme conditions. Advanced quantum solid-state chemistry simulations, based on density functional theory with localized basis functions, were performed to provide a remarkable insight into bonding pathways of high-pressure chemical reactions in all agreement with experiments. These pathways clearly demonstrate reaction mechanisms in unprecedented structural details, showing not only the chemical identity of reactive intermediates but also how atoms move along the reaction coordinate associated with a specific vibrational mode, directed by induced chemical stress occurred during bond breaking and forming. It indicates that chemical bonds in solids can break and form precisely under compression as we wish. This can be realized through strongly coupling of mechanical work to an initiation vibrational mode when all other modes can be suppressed under compression, resulting in ultrafast reactions to take place isothermally in a few femtoseconds. Thermodynamically, such reactions correspond to an entropy minimum process on an isotherm where the compression can force thermal expansion coefficient equal to zero. Combining a significantly brief reaction process with specific mode selectivity, both statistical laws and quantum uncertainty principle can be bypassed to precisely break chemical bonds, establishing fundamental principles of compression selective solid-state chemistry. Naturally this leads to understand the ''alchemy'' to purify, grow, and perfect certain materials such as emerging novel disruptive energetics.
Garai, Mousumi; Biradha, Kumar
2015-09-01
The homologous series of phenyl and pyridyl substituted bis(acrylamido)alkanes have been synthesized with the aim of systematic analysis of their crystal structures and their solid-state [2 + 2] reactivities. The changes in the crystal structures with respect to a small change in the molecular structure, that is by varying alkyl spacers between acrylamides and/or by varying the end groups (phenyl, 2-pyridyl, 3-pyridyl, 4-pyridyl) on the C-terminal of the amide, were analyzed in terms of hydrogen-bonding interference (N-H⋯Npy versus N-H⋯O=C) and network geometries. In this series, a greater tendency towards the formation of N-H⋯O hydrogen bonds (β-sheets and two-dimensional networks) over N-H⋯N hydrogen bonds was observed. Among all the structures seven structures were found to have the required alignments of double bonds for the [2 + 2] reaction such that the formations of single dimer, double dimer and polymer are facilitated. However, only four structures were found to exhibit such a solid-state [2 + 2] reaction to form a single dimer and polymers. The two-dimensional hydrogen-bonding layer via N-H⋯O hydrogen bonds was found to promote solid-state [2 + 2] photo-polymerization in a single-crystal-to-single-crystal manner. Such two-dimensional layers were encountered only when the spacer between acryl amide moieties is butyl. Only four out of the 16 derivatives were found to form hydrates, two each from 2-pyridyl and 4-pyridyl derivatives. The water molecules in these structures govern the hydrogen-bonding networks by the formation of an octameric water cluster and one-dimensional zigzag water chains. The trends in the melting points and densities were also analyzed.
Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction
NASA Astrophysics Data System (ADS)
Prasad, Virendra; D'Souza, Charlene; Yadav, Deepti; Shaikh, A. J.; Vigneshwaran, Nadanathangam
2006-09-01
Well-crystallized zinc oxide nanorods have been fabricated by single step solid-state reaction using zinc acetate and sodium hydroxide, at room temperature. The sodium lauryl sulfate (SLS) stabilized zinc oxide nanorods were characterized by using X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and photoluminescence spectroscopy. The X-ray diffraction revealed the wurtzite structure of zinc oxide. The size estimation by XRD and TEM confirmed that the ZnO nanorods are made of single crystals. The growth of zinc oxide crystals into rod shape was found to be closely related to its hexagonal nature. The mass ratio of SLS:ZnO in the nanorods was found to be 1:10 based on the thermogravimetric analysis. Blue shift of photoluminescence emission was noticed in the ZnO nanorods when compared to that of ZnO bulk. FT-IR analysis confirmed the binding of SLS with ZnO nanorods. Apart from ease of preparation, this method has the advantage of eco-friendliness since the solvent and other harmful chemicals were eliminated in the synthesis protocol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xinyi; Hiremath, Nitilaksha; Hong, Kunlun
Individual carbon nanotubes (CNTs) exhibit exceptional mechanical properties. However, difficulties remain in fully realizing these properties in CNT macro-assemblies, because the weak inter-tube forces result in the CNTs sliding past one another. Here in this study, a simple solid-state reaction is presented that enhances the mechanical properties of carbon nanotube fibers (CNTFs) through simultaneous covalent functionalization and crosslinking. This is the first chemical crosslinking proposed without the involvement of a catalyst or byproducts. The specific tensile strength of CNTFs obtained from the treatment employing a benzocyclobutene-based polymer is improved by 40%. Such improvement can be attributed to a reduced numbermore » of voids, impregnation of the polymer, and the formation of covalent crosslinks. This methodology is confirmed using both multiwalled nanotube (MWNT) powders and CNTFs. Thermogravimetric analysis, differential scanning calorimetry, x-ray photoelectron spectroscopy, and transmission electron microscopy of the treated MWNT powders confirm the covalent functionalization and formation of inter-tube crosslinks. This simple one-step reaction can be applied to industrial-scale production of high-strength CNTFs.« less
Lu, Xinyi; Hiremath, Nitilaksha; Hong, Kunlun; ...
2017-03-13
Individual carbon nanotubes (CNTs) exhibit exceptional mechanical properties. However, difficulties remain in fully realizing these properties in CNT macro-assemblies, because the weak inter-tube forces result in the CNTs sliding past one another. Here in this study, a simple solid-state reaction is presented that enhances the mechanical properties of carbon nanotube fibers (CNTFs) through simultaneous covalent functionalization and crosslinking. This is the first chemical crosslinking proposed without the involvement of a catalyst or byproducts. The specific tensile strength of CNTFs obtained from the treatment employing a benzocyclobutene-based polymer is improved by 40%. Such improvement can be attributed to a reduced numbermore » of voids, impregnation of the polymer, and the formation of covalent crosslinks. This methodology is confirmed using both multiwalled nanotube (MWNT) powders and CNTFs. Thermogravimetric analysis, differential scanning calorimetry, x-ray photoelectron spectroscopy, and transmission electron microscopy of the treated MWNT powders confirm the covalent functionalization and formation of inter-tube crosslinks. This simple one-step reaction can be applied to industrial-scale production of high-strength CNTFs.« less
New organophilic kaolin clays based on single-point grafted 3-aminopropyl dimethylethoxysilane.
Zaharia, A; Perrin, F-X; Teodorescu, M; Radu, A-L; Iordache, T-V; Florea, A-M; Donescu, D; Sarbu, A
2015-10-14
In this study, the organophilization procedure of kaolin rocks with a monofunctional ethoxysilane- 3 aminopropyl dimethyl ethoxysilane (APMS) is depicted for the first time. The two-step organophilization procedure, including dimethyl sulfoxide intercalation and APMS grafting onto the inner hydroxyl surface of kaolinite (the mineral) layers was tested for three sources of kaolin rocks (KR, KC and KD) with various morphologies and kaolinite compositions. The load of APMS in the kaolinite interlayer space was higher than that of 3-aminopropyl triethoxysilane (APTS) due to the single-point grafting nature of the organophilization reaction. A higher long-distance order of kaolinite layers with low staking was obtained for the APMS, due to a more controllable organiphilization reaction. Last but not least, the solid state (29)Si-NMR tests confirmed the single-point grafting mechanism of APMS, corroborating monodentate fixation on the kaolinite hydroxyl facets, with no contribution to the bidentate or tridentate fixation as observed for APTS.
Giant onsite electronic entropy enhances the performance of ceria for water splitting
Naghavi, S. Shahab; Emery, Antoine A.; Hansen, Heine A.; ...
2017-08-18
Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Cemore » 4+/Ce 3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.« less
Larsen, Flemming H; Schöbitz, Michael; Schaller, Jens
2012-06-20
The hydration properties of 2,3-O-hydroxypropylcellulose (HPC) and 2,3-O-hydroxyethylcellulose (HEC) were analyzed by multi-nuclear solid-state MAS NMR spectroscopy. By 13C single-pulse (SP) MAS and cross-polarization (CP) MAS NMR, differences between the immobile regions and all parts of the polysaccharides were detected as a function of hydration. Complementary information about the water environments was observed by 2H MAS NMR. By this approach it was demonstrated that side chains in 2,3-O-HPC and 2,3-O-HEC were easier to hydrate than the cellulose backbone. Furthermore the motion of water was more restricted (slower) in 2,3-O-HPC than in 2,3-O-HEC. For both polysaccharides the hydration could be explained by a two-step process: in step one increased ordering of the immobile regions occurs after which the entire polymer is hydrated in step two. Copyright © 2012 Elsevier Ltd. All rights reserved.
Free-Energy Landscape of the Dissolution of Gibbsite at High pH.
Shen, Zhizhang; Kerisit, Sebastien N; Stack, Andrew G; Rosso, Kevin M
2018-04-05
The individual elementary reactions involved in the dissolution of a solid into solution remain mostly speculative due to a lack of direct experimental probes. In this regard, we have applied atomistic simulations to map the free-energy landscape of the dissolution of gibbsite from a step edge as a model of metal hydroxide dissolution. The overall reaction combines kink formation and kink propagation. Two individual reactions were found to be rate-limiting for kink formation, that is, the displacement of Al from a step site to a ledge adatom site and its detachment from ledge/terrace adatom sites into the solution. As a result, a pool of mobile and labile adsorbed species, or adatoms, exists before the release of Al into solution. Because of the quasi-hexagonal symmetry of gibbsite, kink site propagation can occur in multiple directions. Overall, our results will enable the development of microscopic mechanistic models of metal oxide dissolution.
NASA Astrophysics Data System (ADS)
Anga, Srinivas; Kottalanka, Ravi K.; Pal, Tigmansu; Panda, Tarun K.
2013-05-01
We report the full characterization of two glyoxal-based ligands N,N bis(diphenylmethyl)-1,4-diaza-1,3-butadiene ligand (DADPh2, 1) and more bulky N,N bis(triphenylmethyl)-1,4-diaza-1,3-butadiene ligand (DADPh3, 2) by the condensation reaction of glyoxal and diphenylmethanamine and triphenyl-methanamine respectively. The copper (I) complex of composition [Cu(DADPh2)2]PF6 (3) having two neutral bidentate N,N bis(diphenyl-methyl)-1,4-diaza-1,3-butadiene ligand was prepared by the reaction of [Cu(CH3CN)4]PF6 and 1 in 1:2 ratio in dichloromethane. In a similar reaction with N,N bis(triphenylmethyl)-1,4-diaza-1,3-butadiene ligand (2) and [Cu(CH3CN)4]PF6 in dichloromethane yielded corresponding heteroleptic copper (I) complex [Cu(DADPh3)(CH3CN)2]PF6 (4). Another copper (I) complex [Cu(DADPh2)(PPh3)]PF6 (5) can also be obtained by the one pot reaction involving ligand 1, [Cu(CH3CN)4]PF6 and triphenylphosphine. Solid state structures of all the five compounds were established by single crystal X-ray diffraction analysis. The solid state structures of the copper complexes 3-5 reveal a distorted tetrahedral geometry around the copper (I) centers. The copper complexes 3-5 were tested as catalysts for the coupling reaction of o-iodophenol and phenyl acetylene and it was observed that complex 4 exhibits the highest catalytic activity.
Synthesis and Structural Data of Tetrabenzo[8]circulene
Miller, Robert W.; Duncan, Alexandra K.; Schneebeli, Severin T.; Gray, Danielle L.; Whalley, Adam C.
2015-01-01
In 1976, the first attempted synthesis of the saddle-shaped molecule [8]circulene was reported. The next 37 years produced no advancement towards the construction of this complicated molecule. Remarkably, however, over the last six months a flurry of progress has been made with two groups reporting independent and strikingly different strategies for the synthesis of [8]circulene derivatives. Herein, we present a third synthetic method in which we target tetrabenzo[8]circulene. Our approach employs a Diels-Alder reaction and a palladium-catalyzed arylation reaction as the key steps. Despite calculations describing the instability of [8]circulene, coupled with the reported instability of synthesized derivatives of the parent molecule, the addition of four fused benzenoid rings around the periphery of the molecule provides a highly stable structure. This increased stability over the parent [8]circulene was predicted using Clar’s theory of aromatic sextets and is a result of the compound becoming fully benzenoid upon incorporation of these additional rings. The synthesized compound exhibits remarkable stability under ambient conditions – even at elevated temperatures – with no signs of decomposition over several months. The solid-state structure of this compound is significantly twisted compared to the calculated structure primarily as a result of crystal packing forces in the solid state. Despite this contortion from the lowest energy structure, a range of structural data is presented confirming the presence of localized aromaticity in this large polycyclic aromatic hydrocarbon. PMID:24615957
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, Makoto, E-mail: waseda.ogawa@gmail.com; Department of Earth Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050; Morita, Masashi, E-mail: m-masashi@y.akane.waseda.jp
2013-10-15
A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassiummore » lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst.« less
Nguyen, Son T.; Nakayama, Tadachika; Suematsu, Hisayuki; ...
2017-04-03
A two-step processing was developed to prepare Yb 2Si 2O 7-SiC nanocomposites. Yb 2Si 2O 7-Yb 2SiO 5-SiC composites were first fabricated by a solid state reaction/hot-pressing method. The composites were then annealed at 1250°C in air for 2 h to activate the oxidation of SiC, which effectively transformed the Yb 2SiO 5 into Yb 2Si 2O 7. The surface cracks purposely induced can be fully healed during the oxidation treatment. The treated composites have improved flexural strength compared to their pristine composites. As a result, the mechanism for crack-healing and silicate transformation have been proposed and discussed in detail.
Mustard, Thomas J L; Mack, Daniel J; Njardarson, Jon T; Cheong, Paul Ha-Yeon
2013-01-30
Density functional theory computations of the Cu-catalyzed ring expansion of vinyloxiranes is mediated by a traceless dual Cu(I)-catalyst mechanism. Overall, the reaction involves a monomeric Cu(I)-catalyst, but a single key step, the Cu migration, requires two Cu(I)-catalysts for the transformation. This dual-Cu step is found to be a true double Cu(I) transition state rather than a single Cu(I) transition state in the presence of an adventitious, spectator Cu(I). Both Cu(I) catalysts are involved in the bond forming and breaking process. The single Cu(I) transition state is not a stationary point on the potential energy surface. Interestingly, the reductive elimination is rate-determining for the major diastereomeric product, while the Cu(I) migration step is rate-determining for the minor. Thus, while the reaction requires dual Cu(I) activation to proceed, kinetically, the presence of the dual-Cu(I) step is untraceable. The diastereospecificity of this reaction is controlled by the Cu migration step. Suprafacial migration is favored over antarafacial migration due to the distorted Cu π-allyl in the latter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Yi-Mu, E-mail: ymlee@nuu.edu.t; Yang, Hsi-Wen
2011-03-15
High-transparency and high quality ZnO nanorod arrays were grown on the ITO substrates by a two-step chemical bath deposition (CBD) method. The effects of processing parameters including reaction temperature (25-95 {sup o}C) and solution concentration (0.01-0.1 M) on the crystal growth, alignment, optical and electrical properties were systematically investigated. It has been found that these process parameters are critical for the growth, orientation and aspect ratio of the nanorod arrays, showing different structural and optical properties. Experimental results reveal that the hexagonal ZnO nanorod arrays prepared under reaction temperature of 95 {sup o}C and solution concentration of 0.03 M possessmore » highest aspect ratio of {approx}21, and show the well-aligned orientation and optimum optical properties. Moreover the ZnO nanorod arrays based heterojunction electrodes and the solid-state dye-sensitized solar cells (SS-DSSCs) were fabricated with an improved optoelectrical performance. -- Graphical abstract: The ZnO nanorod arrays demonstrate well-alignment, high aspect ratio (L/D{approx}21) and excellent optical transmittance by low-temperature chemical bath deposition (CBD). Display Omitted Research highlights: > Investigate the processing parameters of CBD on the growth of ZnO nanorod arrays. > Optimization of CBD process parameters: 0.03 M solution concentration and reaction temperature of 95 {sup o}C. > The prepared ZnO samples possess well-alignment and high aspect ratio (L/D{approx}21). > An n-ZnO/p-NiO heterojunction: great rectifying behavior and low leakage current. > SS-DSSC has J{sub SC} of 0.31 mA/cm{sup 2} and V{sub OC} of 590 mV, and an improved {eta} of 0.059%.« less
Solid-State Diffusional Behaviors of Functional Metal Oxides at Atomic Scale.
Chen, Jui-Yuan; Huang, Chun-Wei; Wu, Wen-Wei
2018-02-01
Metal/metal oxides have attracted extensive research interest because of their combination of functional properties and compatibility with industry. Diffusion and thermal reliability have become essential issues that require detailed study to develop atomic-scaled functional devices. In this work, the diffusional reaction behavior that transforms piezoelectric ZnO into magnetic Fe 3 O 4 is investigated at the atomic scale. The growth kinetics of metal oxides are systematically studied through macro- and microanalyses. The growth rates are evaluated by morphology changes, which determine whether the growth behavior was a diffusion- or reaction-controlled process. Furthermore, atom attachment on the kink step is observed at the atomic scale, which has important implications for the thermodynamics of functional metal oxides. Faster growth planes simultaneously decrease, which result in the predominance of low surface energy planes. These results directly reveal the atomic formation process of metal oxide via solid-state diffusion. In addition, the nanofabricated method provides a novel approach to investigate metal oxide evolution and sheds light on diffusional reaction behavior. More importantly, the results and phenomena of this study provide considerable inspiration to enhance the material stability and reliability of metal/oxide-based devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nonthermal effects in photostimulated solid state reaction of Mn doped SrTiO3
NASA Astrophysics Data System (ADS)
Daraselia, D.; Japaridze, D.; Jibuti, Z.; Shengelaya, A.; Müller, K. A.
2017-04-01
The effect of a photostimulated solid state reaction was investigated in Mn doped SrTiO3 samples. Light irradiation was performed by either halogen or UV lamps in order to study the effect of the spectral composition, and the results were compared with samples prepared at the same temperatures in a conventional furnace. The obtained samples were studied by X-ray diffraction for structural characterization and by Electron Paramagnetic Resonance, which provides microscopic information about the local environment as well as the valence state of Mn ions. It was found that light irradiation significantly enhances the solid state reaction rate compared to synthesis in the conventional furnace. Moreover, it was observed that UV lamp irradiation is much more effective compared to halogen lamps. This indicates that the absorption of light with energy larger than the materials band gap plays an important role and points towards the nonthermal mechanism of the photostimulated solid state reaction.
Comparison of designed and randomly generated catalysts for simple chemical reactions.
Kipnis, Yakov; Baker, David
2012-09-01
There has been recent success in designing enzymes for simple chemical reactions using a two-step protocol. In the first step, a geometric matching algorithm is used to identify naturally occurring protein scaffolds at which predefined idealized active sites can be realized. In the second step, the residues surrounding the transition state model are optimized to increase transition state binding affinity and to bolster the primary catalytic side chains. To improve the design methodology, we investigated how the set of solutions identified by the design calculations relate to the overall set of solutions for two different chemical reactions. Using a TIM barrel scaffold in which catalytically active Kemp eliminase and retroaldolase designs were obtained previously, we carried out activity screens of random libraries made to be compositionally similar to active designs. A small number of active catalysts were found in screens of 10³ variants for each of the two reactions, which differ from the computational designs in that they reuse charged residues already present in the native scaffold. The results suggest that computational design considerably increases the frequency of catalyst generation for active sites involving newly introduced catalytic residues, highlighting the importance of interaction cooperativity in enzyme active sites. Copyright © 2012 The Protein Society.
Monas, Andrea; Užarević, Krunoslav; Halasz, Ivan; Kulcsár, Marina Juribašić; Ćurić, Manda
2016-10-27
Room-temperature accelerated aging in the solid state has been applied for atom- and energy-efficient activation of either one or two C-H bonds of azobenzene and methyl orange by palladium(ii) acetate. Organopalladium complexes are prepared in quantitative reactions without potentially harmful side products. Dicyclopalladated methyl orange is water-soluble and is a selective chromogenic biothiol sensor at physiologically-relevant micromolar concentrations in buffered aqueous media.
A coupled theory for chemically active and deformable solids with mass diffusion and heat conduction
NASA Astrophysics Data System (ADS)
Zhang, Xiaolong; Zhong, Zheng
2017-10-01
To analyse the frequently encountered thermo-chemo-mechanical problems in chemically active material applications, we develop a thermodynamically-consistent continuum theory of coupled deformation, mass diffusion, heat conduction and chemical reaction. Basic balance equations of force, mass and energy are presented at first, and then fully coupled constitutive laws interpreting multi-field interactions and evolving equations governing irreversible fluxes are constructed according to the energy dissipation inequality and the chemical kinetics. To consider the essential distinction between mass diffusion and chemical reactions in affecting free energy and dissipations of a highly coupled system, we regard both the concentrations of diffusive species and the extent of reaction as independent state variables. This new formulation then distinguishes between the energy contribution from the diffusive species entering the solid and that from the subsequent chemical reactions occurring among these species and the host solid, which not only interact with stresses or strains in different manners and on different time scales, but also induce different variations of solid microstructures and material properties. Taking advantage of this new description, we further establish a specialized isothermal model to predict precisely the transient chemo-mechanical response of a swelling solid with a proposed volumetric constraint that accounts for material incompressibility. Coupled kinetics is incorporated to capture the volumetric swelling of the solid caused by imbibition of external species and the simultaneous dilation arised from chemical reactions between the diffusing species and the solid. The model is then exemplified with two numerical examples of transient swelling accompanied by chemical reaction. Various ratios of characteristic times of diffusion and chemical reaction are taken into account to shed light on the dependency on kinetic time scales of evolution patterns for a diffusion-reaction controlled deformable solid.
Simulation of hot spots formation and evolution in HMX
NASA Astrophysics Data System (ADS)
Wang, Cheng; Yang, Tonghui
2017-06-01
In order to study the formation and evolution of hot spots under shock loading, HMX explosives were selected as the object of study for the two-dimensional finite difference numerical simulation. A fifth order finite difference weighted essentially non-oscillatory (WENO) scheme and a third order TVD Runge-Kutta method are utilized for the spatial discretization and the time advance, respectively. The governing equations are based on the fluid elasto-plastic control equations. The Mie-Gruneisen equation of state and the ideal gas equation of state are selected to use in the state equation of the solid explosives and gas material. In order to simplify the calculation of the model, the reaction can be considered to complete in one step. The calculated area is [ 3.0 ×10-5 m ] × [ 3.0 ×10-5 m ] . The radius is 0.6 ×10-5 m, and the internal gas is not involved in the reaction. The calculation area is divided into 300×300 grids and 10 grids are selected from the bottom of each column to give the particle velocity u as the initial condition. In the selected grid, different initial velocity 100m/s and 200m/s are loaded respectively to study the influence of hot spot formation and evolution in different impact intensity.
Hot atoms in cosmic chemistry.
Rossler, K; Jung, H J; Nebeling, B
1984-01-01
High energy chemical reactions and atom molecule interactions might be important for cosmic chemistry with respect to the accelerated species in solar wind, cosmic rays, colliding gas and dust clouds and secondary knock-on particles in solids. "Hot" atoms with energies ranging from a few eV to some MeV can be generated via nuclear reactions and consequent recoil processes. The chemical fate of the radioactive atoms can be followed by radiochemical methods (radio GC or HPLC). Hot atom chemistry may serve for laboratory simulation of the reactions of energetic species with gaseous or solid interstellar matter. Due to the effective measurement of 10(8)-10(10) atoms only it covers a low to medium dose regime and may add to the studies of ion implantation which due to the optical methods applied are necessarily in the high dose regime. Experimental results are given for the systems: C/H2O (gas), C/H2O (solid, 77 K), N/CH4 (solid, 77K) and C/NH3 (solid, 77 K). Nuclear reactions used for the generation of 2 to 3 MeV atoms are: N(p,alpha) 11C, 16O(p,alpha pn) 11C and 12C(d,n) 13N with 8 to 45 MeV protons or deuterons from a cyclotron. Typical reactions products are: CO, CO2, CH4, CH2O, CH3OH, HCOOH, NH3, CH3NH2, cyanamide, formamidine, guanidine etc. Products of hot reactions in solids are more complex than in corresponding gaseous systems, which underlines the importance of solid state reactions for the build-up of precursors for biomolecules in space. As one of the major mechanisms for product formation, the simultaneous or fast consecutive reactions of a hot carbon with two target molecules (reaction complex) is discussed.
NASA Astrophysics Data System (ADS)
Lamberts, T.; Fedoseev, G.; Kästner, J.; Ioppolo, S.; Linnartz, H.
2017-03-01
We present a combined experimental and theoretical study focussing on the quantum tunneling of atoms in the reaction between CH4 and OH. The importance of this reaction pathway is derived by investigating isotope substituted analogs. Quantitative reaction rates needed for astrochemical models at low temperature are currently unavailable both in the solid state and in the gas phase. Here, we study tunneling effects upon hydrogen abstraction in CH4 + OH by focusing on two reactions: CH4 + OD → CH3 + HDO and CD4 + OH → CD3 + HDO. The experimental study shows that the solid-state reaction rate RCH4 + OD is higher than RCD4 + OH at 15 K. Experimental results are accompanied by calculations of the corresponding unimolecular and bimolecular reaction rate constants using instanton theory taking into account surface effects. For the work presented here, the unimolecular reactions are particularly interesting as these provide insight into reactions following a Langmuir-Hinshelwood process. The resulting ratio of the rate constants shows that the H abstraction (kCH4 + OD) is approximately ten times faster than D-abstraction (kCD4 + OH) at 65 K. We conclude that tunneling is involved at low temperatures in the abstraction reactions studied here. The unimolecular rate constants can be used by the modeling community as a first approach to describe OH-mediated abstraction reactions in the solid phase. For this reason we provide fits of our calculated rate constants that allow the inclusion of these reactions in models in a straightforward fashion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Nannan; College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108; He, Zhangzhen, E-mail: hcz1988@hotmail.com
2015-08-15
Two vanadate compounds Ca{sub 5}M{sub 4}V{sub 6}O{sub 24} (M=Co, Ni) have been synthesized by a high-temperature solid-state reaction. The compounds are found to crystallize in the cubic system with a space group Ia-3d, which exhibit a typical garnet structural framework. Magnetic measurements show that Ca{sub 5}M{sub 4}V{sub 6}O{sub 24} (M=Co, Ni) exhibit similar magnetic behaviors, in which Ca{sub 5}Co{sub 4}V{sub 6}O{sub 24} possesses an antiferromagnetic ordering at T{sub N}=~6 K while Ca{sub 5}Ni{sub 4}V{sub 6}O{sub 24} shows an antiferromagnetic ordering at T{sub N}=~7 K. - Graphical abstract: Garnet vanadate compounds Ca{sub 5}M{sub 4}V{sub 6}O{sub 24} (M=Co, Ni) have been synthesizedmore » by a high-temperature solid-state reaction. Structural features and magnetic behaviors are also investigated. - Highlights: • New type of garnet vanadates Ca{sub 5}M{sub 4}V{sub 6}O{sub 24} (M=Co, Ni) are synthesized by a high-temperature solid-state reaction. • Structural features are confirmed by single crystal samples. • Magnetic behaviors are firstly investigated in the systems.« less
Transmission of a detonation across a density interface
NASA Astrophysics Data System (ADS)
Tang Yuk, K. C.; Mi, X. C.; Lee, J. H. S.; Ng, H. D.
2018-05-01
The present study investigates the transmission of a detonation wave across a density interface. The problem is first studied theoretically considering an incident Chapman-Jouguet (CJ) detonation wave, neglecting its detailed reaction-zone structure. It is found that, if there is a density decrease at the interface, a transmitted strong detonation wave and a reflected expansion wave would be formed; if there is a density increase, one would obtain a transmitted CJ detonation wave followed by an expansion wave and a reflected shock wave. Numerical simulations are then performed considering that the incident detonation has the Zel'dovich-von Neumann-Döring reaction-zone structure. The transient process that occurs subsequently to the detonation-interface interaction has been captured by the simulations. The effects of the magnitude of density change across the interface and different reaction kinetics (i.e., single-step Arrhenius kinetics vs. two-step induction-reaction kinetics) on the dynamics of the transmission process are explored. After the transient relaxation process, the transmitted wave reaches the final state in the new medium. For the cases with two-step induction-reaction kinetics, the transmitted wave fails to evolve to a steady detonation wave if the magnitude of density increase is greater than a critical value. For the cases wherein the transmitted wave can evolve to a steady detonation, the numerical results for both reaction models give final propagation states that agree with the theoretical solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suharta, W. G., E-mail: wgsuharta@gmail.com; Wendri, N.; Ratini, N.
The synthesis of B{sub 2}O{sub 3} flux substituted NLBCO superconductor NdBa{sub 1.75}La{sub 0.25}Cu{sub 3}O{sub 7-∂} has been done using solid state reaction and wet-mixing methods in order to obtain homogeneous crystals and single phase. From DTA/TGA characteritations showed the synthesis process by wet-mixing requires a lower temperature than the solid state reaction in growing the superconductor NdBa{sub 1.75}La{sub 0.25}Cu{sub 3}O{sub 7-∂}. Therefore, in this research NdBa{sub 1.75}La{sub 0.25}Cu{sub 3}O{sub 7-∂} sample calcinated at 650°C for wet-mixing method and 820°C for solid state reaction methods. The all samples was sintered at 950°C for ten hours. Crystallinity of the sample was confirmedmore » using X-ray techniques and generally obtained sharp peaks that indicates the sample already well crystallized. Search match analyses for diffraction data gave weight fractions of impurity phase of the solid state reaction method higher than wet-mixing method. In this research showed decreasing the price of the lattice parameter about 1% with the addition of B{sub 2}O{sub 3} flux for the both synthesis process and 2% of wet mixing process for all samples. Characterization using scanning electron microscopy (SEM) showed the distribution of crystal zise for wet-mixing method more homogeneous than solid state reaction method, with he grain size of samples is around 150–250 nm. The results of vibrating sample magnetometer (VSM) showed the paramagnetic properties for all samples.« less
Structure Evolution and Reactivity of the Sc(2- x)V xO3+δ (0 ≤ x ≤ 2.0) System.
Lussier, Joey A; Simon, Fabian J; Whitfield, Pamela S; Singh, Kalpana; Thangadurai, Venkataraman; Bieringer, Mario
2018-05-07
Solid oxide fuel cells (SOFCs) are solid-state electrochemical devices that directly convert chemical energy of fuels into electricity with high efficiency. Because of their fuel flexibility, low emissions, high conversion efficiency, no moving parts, and quiet operation, they are considered as a promising energy conversion technology for low carbon future needs. Solid-state oxide and proton conducting electrolytes play a crucial role in improving the performance and market acceptability of SOFCs. Defect fluorite phases are some of the most promising fast oxide ion conductors for use as electrolytes in SOFCs. We report the synthesis, structure, phase diagram, and high-temperature reactivity of the Sc (2- x) V x O 3+δ (0 ≤ x ≤ 2.00) oxide defect model system. For all Sc (2- x) V x O 3.0 phases with x ≤ 1.08 phase-pure bixbyite-type structures are found, whereas for x ≥ 1.68 phase-pure corundum structures are reported, with a miscibility gap found for 1.08 < x < 1.68. Structural details obtained from the simultaneous Rietveld refinements using powder neutron and X-ray diffraction data are reported for the bixbyite phases, demonstrating a slight V 3+ preference toward the 8b site. In situ X-ray diffraction experiments were used to explore the oxidation of the Sc (2- x) V x O 3.0 phases. In all cases ScVO 4 was found as a final product, accompanied by Sc 2 O 3 for x < 1.0 and V 2 O 5 when x > 1.0; however, the oxidative pathway varied greatly throughout the series. Comments are made on different synthesis strategies, including the effect on crystallinity, reaction times, rate-limiting steps, and reaction pathways. This work provides insight into the mechanisms of solid-state reactions and strategic guidelines for targeted materials synthesis.
Theoretical study of gas hydrate decomposition kinetics--model development.
Windmeier, Christoph; Oellrich, Lothar R
2013-10-10
In order to provide an estimate of the order of magnitude of intrinsic gas hydrate dissolution and dissociation kinetics, the "Consecutive Desorption and Melting Model" (CDM) is developed by applying only theoretical considerations. The process of gas hydrate decomposition is assumed to comprise two consecutive and repetitive quasi chemical reaction steps. These are desorption of the guest molecule followed by local solid body melting. The individual kinetic steps are modeled according to the "Statistical Rate Theory of Interfacial Transport" and the Wilson-Frenkel approach. All missing required model parameters are directly linked to geometric considerations and a thermodynamic gas hydrate equilibrium model.
Inhibition of the hammerhead ribozyme by neomycin.
Stage, T K; Hertel, K J; Uhlenbeck, O C
1995-01-01
A series of antibiotics was tested for stimulation or inhibition of the hammerhead ribozyme cleavage reaction. Neomycin was found to be a potent inhibitor of the reaction with a Kl of 13.5 microM. Two hammerheads with well-characterized kinetics were used to determine which steps in the reaction mechanism were inhibited by neomycin. The data suggest that neomycin interacts preferentially with the enzyme-substrate complex and that this interaction leads to a reduction in the cleavage rate by stabilizing the ground state of the complex and destabilizing the transition state of the cleavage step. A comparison of neomycin with other aminoglycosides and inhibitors of hammerhead cleavage implies that the ammonium ions of neomycin are important for the antibiotic-hammerhead interaction. PMID:7489494
Parejas, Almudena; Montes, Vicente; Hidalgo-Carrillo, Jesús; Sánchez-López, Elena; Marinas, Alberto; Urbano, Francisco J
2017-12-18
Two series of catalysts were prepared by sol-gel and microemulsion synthetic procedure (SG and ME, respectively). Each series includes both pure Mg and Zr solids as well as Mg-Zr mixed solids with 25%, 50% and 75% nominal Zr content. The whole set of catalysts was characterized from thermal, structural and surface chemical points of view and subsequently applied to the liquid-phase xylose dehydration to furfural. Reactions were carried out in either a high-pressure autoclave or in an atmospheric pressure multi-reactor under a biphasic (organic/water) reaction mixture. Butan-2-ol and toluene were essayed as organic solvents. Catalysts prepared by microemulsion retained part of the surfactant used in the synthetic procedure, mainly associated with the Zr part of the solid. The MgZr-SG solid presented the highest surface acidity while the Mg3Zr-SG one exhibited the highest surface basicity among mixed systems. Xylose dehydration in the high-pressure system and with toluene/water solvent mixture led to the highest furfural yield. Moreover, the yield of furfural increases with the Zr content of the catalyst. Therefore, the catalysts constituted of pure ZrO₂ (especially Zr-SG) are the most suitable to carry out the process under study although MgZr mixed solids could be also suitable for overall processes with additional reaction steps.
Arynes and Heteroarynes in the Synthesis of Dibenzocinnolines, Diazaxanthyledenes, and Triptycenes
NASA Astrophysics Data System (ADS)
Suh, Sung-Eun
Arynes are known as useful synthons in organic synthesis. In particular, reactions accompanying multiple arynes have been employed for the construction of arenes and heteroarenes of complex molecules. Employing known reactivity modes of arynes such as cycloadditions, nucleophilic addition, bond insertion, Alder-ene, annulation, desaturation, and polymerization, a wide variety of transformation of reactive starting materials led to the development of novel fluorophores and energy materials, as well as the synthesis of natural products. Harnessing the highly reactive arynes, the triple aryne-tetrazine (TAT) reaction was disclosed as a novel metal-free synthetic method for the preparation of dibenzo[de,g]cinnoline derivatives in a single operation. Dibenzo[de,g]cinnolines have been shown as potential fluorescent probes in cells. For the mechanism, multiple mechanistic steps of the TAT reaction were scrutinized by isolation of intermediates and byproducts as well as a computational study on the transition states and the competitive reactions pathways. A facile two-step synthesis of the reported structure of xylopyridine A was developed from a pyridyne precursor and 2-fluorobenzoic acid utilizing a pyridyne insertion reaction followed by reductive coupling. Simple transformation of the reported xylopyridine A structure have given photoactivatable dyes and specific organelle staining probes in either live or fixed cells and tissues, exhibiting high quantum yields, photostability, cell permeability and low toxicity. On the basis of these results, the synthesis of multistage photoactivatable dyes was designed and studied. Utilization of arynes allowed access to the synthesis of 9-substituted triptycene derivatives which have been recognized as three-way junction binders. Accompanying solid-phase peptide synthesis, the rapid diversification of the triptycene scaffold was achieved for screening in a nucleic acid junction binding assay.
ERIC Educational Resources Information Center
Thananatthanachon, Todsapon
2016-01-01
In this experiment, the students explore the synthesis of a crystalline solid-state material, barium zirconate (BaZrO3) by two different synthetic methods: (a) the wet chemical method using BaCl[subscript 2]·2H[subscript 2]O and ZrOCl[subscript 2]·8H[subscript 2]O as the precursors, and (b) the solid-state reaction from BaCO[subscript 3] and…
Method for polymer synthesis in a reaction well
Brennan, Thomas M.
1998-01-01
A method of synthesis for building a polymer chain, oligonucleotides in particular, by sequentially adding monomer units to at least one solid support for growing and immobilizing a polymer chain thereon in a liquid reagent solution. The method includes the step of: A) depositing a liquid reagent in a reaction well (26) in contact with at least one solid support and at least one monomer unit of the polymer chain affixed to the solid support. The well (26) includes at least one orifice (74) extending into the well (26), and is of a size and dimension to form a capillary liquid seal to retain the reagent solution in the well (26) to enable polymer chain growth on the solid support. The method further includes the step of B) expelling the reagent solution from the well (26), while retaining the polymer chain therein. This is accomplished by applying a first gas pressure to the reaction well such that a pressure differential between the first gas pressure and a second gas pressure exerted on an exit (80) of the orifice (74) exceeds a predetermined amount sufficient to overcome the capillary liquid seal and expel the reagent solution from the well (26) through the orifice exit (80).
Method for polymer synthesis in a reaction well
Brennan, T.M.
1998-09-29
A method of synthesis is described for building a polymer chain, oligonucleotides in particular, by sequentially adding monomer units to at least one solid support for growing and immobilizing a polymer chain thereon in a liquid reagent solution. The method includes the step of: (A) depositing a liquid reagent in a reaction well in contact with at least one solid support and at least one monomer unit of the polymer chain affixed to the solid support. The well includes at least one orifice extending into the well, and is of a size and dimension to form a capillary liquid seal to retain the reagent solution in the well to enable polymer chain growth on the solid support. The method further includes the step of (B) expelling the reagent solution from the well, while retaining the polymer chain therein. This is accomplished by applying a first gas pressure to the reaction well such that a pressure differential between the first gas pressure and a second gas pressure exerted on an exit of the orifice exceeds a predetermined amount sufficient to overcome the capillary liquid seal and expel the reagent solution from the well through the orifice exit. 9 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Junlang, E-mail: lijunlangx@163.com; Xu, Jian, E-mail: xu.jian.57z@st.kyoto-u.ac.jp; Graduate School of Human and Environmental Studies, Division of Materials Function, Kyoto University, Kyoto 606-8501
2014-07-01
Highlights: • We fabricate Ce doped lutetium aluminum garnet ceramics by solid-state method. • The raw materials include Lu{sub 2}O{sub 3} nanopowders synthesized by co-precipitation method. • The density of the transparent ceramics reach 99.7% of the theoretical value. • The optical transmittance of the bulk ceramic at 550 nm was 57.48%. • Some scattering centers decrease the optical characteristic of the ceramic. - Abstract: Polycrystalline Ce{sup 3+} doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics fabricated by one step solid-state reaction method using synthetic nano-sized Lu{sub 2}O{sub 3}, commercial α-Al{sub 2}O{sub 3} and CeO{sub 2} powders were investigated in thismore » paper. The green compacts shaped by the mixed powders were successfully densified into Ce:LuAG transparent ceramics after vacuum sintering at 1750 °C for 10 h. The in-line optical transmittance of the Ce:LuAG ceramic made by home-made Lu{sub 2}O{sub 3} powders could reach 57.48% at 550 nm, which was higher than that of the ceramic made by commercial Lu{sub 2}O{sub 3} powders (22.96%). The microstructure observation showed that light scattering centers caused by micro-pores, aluminum segregation and refraction index inhomogeneities induced the decrease of optical transparency of the Ce:LuAG ceramics, which should be removed and optimized in the future work.« less
Enantioselective catalysis of photochemical reactions.
Brimioulle, Richard; Lenhart, Dominik; Maturi, Mark M; Bach, Thorsten
2015-03-23
The nature of the excited state renders the development of chiral catalysts for enantioselective photochemical reactions a considerable challenge. The absorption of a 400 nm photon corresponds to an energy uptake of approximately 300 kJ mol(-1) . Given the large distance to the ground state, innovative concepts are required to open reaction pathways that selectively lead to a single enantiomer of the desired product. This Review outlines the two major concepts of homogenously catalyzed enantioselective processes. The first part deals with chiral photocatalysts, which intervene in the photochemical key step and induce an asymmetric induction in this step. In the second part, reactions are presented in which the photochemical excitation is mediated by an achiral photocatalyst and the transfer of chirality is ensured by a second chiral catalyst (dual catalysis). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Fedoseev, G.; Cuppen, H. M.; Ioppolo, S.; Lamberts, T.; Linnartz, H.
2015-04-01
This study focuses on the formation of two molecules of astrobiological importance - glycolaldehyde (HC(O)CH2OH) and ethylene glycol (H2C(OH)CH2OH) - by surface hydrogenation of CO molecules. Our experiments aim at simulating the CO freeze-out stage in interstellar dark cloud regions, well before thermal and energetic processing become dominant. It is shown that along with the formation of H2CO and CH3OH - two well-established products of CO hydrogenation - also molecules with more than one carbon atom form. The key step in this process is believed to be the recombination of two HCO radicals followed by the formation of a C-C bond. The experimentally established reaction pathways are implemented into a continuous-time random-walk Monte Carlo model, previously used to model the formation of CH3OH on astrochemical time-scales, to study their impact on the solid-state abundances in dense interstellar clouds of glycolaldehyde and ethylene glycol.
The Ice Line in Pre-Solar Protoplanetary Disks
NASA Technical Reports Server (NTRS)
Davis, Sanford S.
2012-01-01
Protoplanetary disks contain abundant quantities of water molecules in both gas and solid phases. The distribution of these two phases in an evolving protoplanetary disk will have important consequences regarding water sequestration in planetary embryos. The boundary between gaseous and solid water is the "ice line" or "snow line" A simplified model that captures the complicated two-branched structure of the ice line is developed and compared with recent investigations. The effect of an evolving Sun is also included for the first time. This latter parameter could have important consequences regarding the thermodynamic state and the surface reaction environment for the time-dependent chemical reactions occurring during the 1- to 10-million-year lifetime of the pre-solar disk.
Lee, Lanlee; Kang, Byungwuk; Han, Suyoung; Kim, Hee-Eun; Lee, Moo Dong; Bang, Jin Ho
2018-05-27
A thermal reaction route that induces grain fracture instead of grain growth is devised and developed as a top-down approach to prepare nanostructured oxides from bulk solids. This novel synthesis approach, referred to as the sequential oxygen-nitrogen exchange (SONE) reaction, exploits the reversible anion exchange between oxygen and nitrogen in oxides that is driven by a simple two-step thermal treatment in ammonia and air. Internal stress developed by significant structural rearrangement via the formation of (oxy)nitride and the creation of oxygen vacancies and their subsequent combination into nanopores transforms bulk solid oxides into nanostructured oxides. The SONE reaction can be applicable to most transition metal oxides, and when utilized in a lithium-ion battery, the produced nanostructured materials are superior to their bulk counterparts and even comparable to those produced by conventional bottom-up approaches. Given its simplicity and scalability, this synthesis method could open a new avenue to the development of high-performance nanostructured electrode materials that can meet the industrial demand of cost-effectiveness for mass production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hybrid Rocket Performance Prediction with Coupling Method of CFD and Thermal Conduction Calculation
NASA Astrophysics Data System (ADS)
Funami, Yuki; Shimada, Toru
The final purpose of this study is to develop a design tool for hybrid rocket engines. This tool is a computer code which will be used in order to investigate rocket performance characteristics and unsteady phenomena lasting through the burning time, such as fuel regression or combustion oscillation. When phenomena inside a combustion chamber, namely boundary layer combustion, are described, it is difficult to use rigorous models for this target. It is because calculation cost may be too expensive. Therefore simple models are required for this calculation. In this study, quasi-one-dimensional compressible Euler equations for flowfields inside a chamber and the equation for thermal conduction inside a solid fuel are numerically solved. The energy balance equation at the solid fuel surface is solved to estimate fuel regression rate. Heat feedback model is Karabeyoglu's model dependent on total mass flux. Combustion model is global single step reaction model for 4 chemical species or chemical equilibrium model for 9 chemical species. As a first step, steady-state solutions are reported.
Li, Xin; Liao, Tao; Chung, Lung Wa
2017-11-22
The photoinduced Zimmerman di-π-methane (DPM) rearrangement of polycyclic molecules to form synthetically useful cyclopropane derivatives was found experimentally to proceed in a triplet excited state. We have applied state-of-the-art quantum mechanical methods, including M06-2X, DLPNO-CCSD(T) and variational transition-state theory with multidimensional tunneling corrections, to an investigation of the reaction rates of the two steps in the triplet DPM rearrangement of dibenzobarrelene, benzobarrelene and barrelene. This study predicts a high probability of carbon tunneling in regions around the two consecutive transition states at 200-300 K, and an enhancement in the rates by 104-276/35-67% with carbon tunneling at 200/300 K. The Arrhenius plots of the rate constants were found to be curved at low temperatures. Moreover, the computed 12 C/ 13 C kinetic isotope effects were affected significantly by carbon tunneling and temperature. Our predictions of electronically excited-state carbon tunneling and two consecutive carbon tunneling are unprecedented. Heavy-atom tunneling in some photoinduced reactions with reactive intermediates and narrow barriers can be potentially observed at relatively low temperature in experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qadri, S. B.; Rath, B. B.; Gorzkowski, E. P.
Nanoparticles, submicron-diameter tubes, and rods of Si{sub 3}N{sub 4} were synthesized from the thermal treatment of wheat and rice husks at temperatures at and above 1300 °C in a nitrogen atmosphere. The whole pattern Rietveld analysis of the observed diffraction data from treatments at 1300 °C showed the formation of only hexagonal α-phase of Si{sub 3}N{sub 4} with an R-factor of 1%, whereas samples treated at 1400 °C and above showed both α- and β-phases with an R-factor of 2%. Transmission electron microscopy showed the presence of tubes, rods, and nanoparticles of Si{sub 3}N{sub 4}. In a two-step process, where pure SiC wasmore » produced first from rice or wheat husk in an argon atmosphere and subsequently treated in a nitrogen atmosphere at 1450 °C, a nanostructured composite material having α- and β-phases of Si{sub 3}N{sub 4} combined with cubic phase of SiC was formed. The thermodynamics of the formation of silicon nitride is discussed in terms of the solid state reaction between organic matter (silica content), which is inherently present in the wheat and rice husks, with the nitrogen from the furnace atmosphere. Nanostructures of silicon nitride formed by a single direct reaction or their composites with SiC formed in a two-step process of agricultural byproducts provide an uncomplicated sustainable synthesis route for silicon nitride used in mechanical, biotechnology, and electro-optic nanotechnology applications.« less
Nanostructured silicon nitride from wheat and rice husks
NASA Astrophysics Data System (ADS)
Qadri, S. B.; Rath, B. B.; Gorzkowski, E. P.; Wollmershauser, J. A.; Feng, C. R.
2016-04-01
Nanoparticles, submicron-diameter tubes, and rods of Si3N4 were synthesized from the thermal treatment of wheat and rice husks at temperatures at and above 1300 °C in a nitrogen atmosphere. The whole pattern Rietveld analysis of the observed diffraction data from treatments at 1300 °C showed the formation of only hexagonal α-phase of Si3N4 with an R-factor of 1%, whereas samples treated at 1400 °C and above showed both α- and β-phases with an R-factor of 2%. Transmission electron microscopy showed the presence of tubes, rods, and nanoparticles of Si3N4. In a two-step process, where pure SiC was produced first from rice or wheat husk in an argon atmosphere and subsequently treated in a nitrogen atmosphere at 1450 °C, a nanostructured composite material having α- and β-phases of Si3N4 combined with cubic phase of SiC was formed. The thermodynamics of the formation of silicon nitride is discussed in terms of the solid state reaction between organic matter (silica content), which is inherently present in the wheat and rice husks, with the nitrogen from the furnace atmosphere. Nanostructures of silicon nitride formed by a single direct reaction or their composites with SiC formed in a two-step process of agricultural byproducts provide an uncomplicated sustainable synthesis route for silicon nitride used in mechanical, biotechnology, and electro-optic nanotechnology applications.
Nourry, Sendres; Krim, Lahouari
2016-07-21
Although NH3 molecules interacting with ground state nitrogen atoms N((4)S) seem not to be a very reactive system without providing additional energy to initiate the chemical process, we show through this study that, in the solid phase, at very low temperature, NH3 + N((4)S) reaction leads to the formation of the amidogen radical NH2. Such a dissociation reaction previously thought to occur exclusively through UV photon or energetic particle irradiation is in this work readily occurring just by stimulating the mobility of N((4)S)-atoms in the 3-10 K temperature range in the solid sample. The N((4)S)-N((4)S) recombination may be the source of metastable molecular nitrogen N2(A), a reactive species which might trigger the NH3 dissociation or react with ground state nitrogen atoms N((4)S) to form excited nitrogen atoms N((4)P/(2)D) through energy transfer processes. Based on our obtained results, it is possible to propose reaction pathways to explain the NH2 radical formation which is the first step in the activation of stable species such as NH3, a chemical induction process that, in addition to playing an important role in the origin of molecular complexity in interstellar space, is known to require external energy supplies to occur in the gas phase.
Liu, Xuejun; Piao, Xianglan; Wang, Yujun; Zhu, Shenlin
2010-03-25
Modeling of the transesterification of vegetable oils to biodiesel using a solid base as a catalyst is very important because the mutual solubilities of oil and methanol will increase with the increasing biodiesel yield. The heterogeneous liquid-liquid-solid reaction system would become a liquid-solid system when the biodiesel reaches a certain content. In this work, we adopted a two-film theory and a steady state approximation assumption, then established a heterogeneous liquid-liquid-solid model in the first stage. After the diffusion coefficients on the liquid-liquid interface and the liquid-solid interface were calculated on the basis of the properties of the system, the theoretical value of biodiesel productivity changing with time was obtained. The predicted values were very near the experimental data, which indicated that the proposed models were suitable for the transesterification of soybean oil to biodiesel when solid bases were used as catalysts. Meanwhile, the model indicated that the transesterification reaction was controlled by both mass transfer and reaction. The total resistance will decrease with the increase in biodiesel yield in the liquid-liquid-solid stage. The solid base catalyst exhibited an activation energy range of 9-20 kcal/mol, which was consistent with the reported activation energy range of homogeneous catalysts.
Chakravorty, Dhruva K.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon
2009-01-01
Hybrid quantum/classical molecular dynamics simulations of the two proton transfer reactions catalyzed by ketosteroid isomerase are presented. The potential energy surfaces for the proton transfer reactions are described with the empirical valence bond method. Nuclear quantum effects of the transferring hydrogen increase the rates by a factor of ~8, and dynamical barrier recrossings decrease the rates by a factor of 3–4. For both proton transfer reactions, the donor-acceptor distance decreases substantially at the transition state. The carboxylate group of the Asp38 side chain, which serves as the proton acceptor and donor in the first and second steps, respectively, rotates significantly between the two proton transfer reactions. The hydrogen bonding interactions within the active site are consistent with the hydrogen bonding of both Asp99 and Tyr14 to the substrate. The simulations suggest that a hydrogen bond between Asp99 and the substrate is present from the beginning of the first proton transfer step, whereas the hydrogen bond between Tyr14 and the substrate is virtually absent in the first part of this step but forms nearly concurrently with the formation of the transition state. Both hydrogen bonds are present throughout the second proton transfer step until partial dissociation of the product. The hydrogen bond between Tyr14 and Tyr55 is present throughout both proton transfer steps. The active site residues are more mobile during the first step than during the second step. The van der Waals interaction energy between the substrate and the enzyme remains virtually constant along the reaction pathway, but the electrostatic interaction energy is significantly stronger for the dienolate intermediate than for the reactant and product. Mobile loop regions distal to the active site exhibit significant structural rearrangements and, in some cases, qualitative changes in the electrostatic potential during the catalytic reaction. These results suggest that relatively small conformational changes of the enzyme active site and substrate strengthen the hydrogen bonds that stabilize the intermediate, thereby facilitating the proton transfer reactions. Moreover, the conformational and electrostatic changes associated with these reactions are not limited to the active site but rather extend throughout the entire enzyme. PMID:19799395
Kumar, Nitin; Radin, Maxwell D.; Wood, Brandon C.; ...
2015-04-13
A viable Li/O 2 battery will require the development of stable electrolytes that do not continuously decompose during cell operation. In some recent experiments it is suggested that reactions occurring at the interface between the liquid electrolyte and the solid lithium peroxide (Li 2O 2) discharge phase are a major contributor to these instabilities. To clarify the mechanisms associated with these reactions, a variety of atomistic simulation techniques, classical Monte Carlo, van der Waals-augmented density functional theory, ab initio molecular dynamics, and various solvation models, are used to study the initial decomposition of the common electrolyte solvent, dimethoxyethane (DME), onmore » surfaces of Li 2O 2. Comparisons are made between the two predominant Li 2O 2 surface charge states by calculating decomposition pathways on peroxide-terminated (O 2 2–) and superoxide-terminated (O 2 1–) facets. For both terminations, DME decomposition proceeds exothermically via a two-step process comprised of hydrogen abstraction (H-abstraction) followed by nucleophilic attack. In the first step, abstracted H dissociates a surface O 2 dimer, and combines with a dissociated oxygen to form a hydroxide ion (OH –). In the remaining surface oxygen then attacks the DME, resulting in a DME fragment that is strongly bound to the Li 2O 2 surface. DME decomposition is predicted to be more exothermic on the peroxide facet; nevertheless, the rate of DME decomposition is faster on the superoxide termination. The impact of solvation (explicit vs implicit) and an applied electric field on the reaction energetics are investigated. Finally, our calculations suggest that surface-mediated electrolyte decomposition should out-pace liquid-phase processes such as solvent auto-oxidation by dissolved O 2.« less
End-Member Formulation of Solid Solutions and Reactive Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lichtner, Peter C.
2015-09-01
A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed tomore » correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.« less
Thaler, Florian; Valsasina, Barbara; Baldi, Rosario; Xie, Jin; Stewart, Albert; Isacchi, Antonella; Kalisz, Henryk M; Rusconi, Luisa
2003-06-01
beta-Elimination of the phosphate group on phosphoserine and phosphothreonine residues and addition of an alkyldithiol is a useful tool for analysis of the phosphorylation states of proteins and peptides. We have explored the influence of several conditions on the efficiency of this PO(4)(3-) elimination reaction upon addition of propanedithiol. In addition to the described influence of different bases, the solvent composition was also found to have a major effect on the yield of the reaction. In particular, an increase in the percentage of DMSO enhances the conversion rate, whereas a higher amount of protic polar solvents, such as water or isopropanol, induces the opposite effect. We have also developed a protocol for enrichment of the modified peptides, which is based on solid-phase covalent capture/release with a dithiopyridino-resin. The procedure for beta-elimination and isolation of phosphorylated peptides by solid-phase capture/release was developed with commercially available alpha-casein. Enriched peptide fragments were characterized by MALDI-TOF mass spectrometric analysis before and after alkylation with iodoacetamide, which allowed rapid confirmation of the purposely introduced thiol moiety. Sensitivity studies, carried out in order to determine the detection limit, demonstrated that samples could be detected even in the low picomolar range by mass spectrometry. The developed solid-phase enrichment procedure based on reversible covalent binding of the modified peptides is more effective and significantly simpler than methods based on the interaction between biotin and avidin, which require additional steps such as tagging the modified peptides and work-up of the samples prior to the affinity capture step.
Signatures of a quantum diffusion limited hydrogen atom tunneling reaction.
Balabanoff, Morgan E; Ruzi, Mahmut; Anderson, David T
2017-12-20
We are studying the details of hydrogen atom (H atom) quantum diffusion in highly enriched parahydrogen (pH 2 ) quantum solids doped with chemical species in an effort to better understand H atom transport and reactivity under these conditions. In this work we present kinetic studies of the 193 nm photo-induced chemistry of methanol (CH 3 OH) isolated in solid pH 2 . Short-term irradiation of CH 3 OH at 1.8 K readily produces CH 2 O and CO which we detect using FTIR spectroscopy. The in situ photochemistry also produces CH 3 O and H atoms which we can infer from the post-photolysis reaction kinetics that display significant CH 2 OH growth. The CH 2 OH growth kinetics indicate at least three separate tunneling reactions contribute; (i) reactions of photoproduced CH 3 O with the pH 2 host, (ii) H atom reactions with the CH 2 O photofragment, and (iii) long-range migration of H atoms and reaction with CH 3 OH. We assign the rapid CH 2 OH growth to the following CH 3 O + H 2 → CH 3 OH + H → CH 2 OH + H 2 two-step sequential tunneling mechanism by conducting analogous kinetic measurements using deuterated methanol (CD 3 OD). By performing photolysis experiments at 1.8 and 4.3 K, we show the post-photolysis reaction kinetics change qualitatively over this small temperature range. We use this qualitative change in the reaction kinetics with temperature to identify reactions that are quantum diffusion limited. While these results are specific to the conditions that exist in pH 2 quantum solids, they have direct implications on the analogous low temperature H atom tunneling reactions that occur on metal surfaces and on interstellar grains.
Free-Energy Landscape of the Dissolution of Gibbsite at High pH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Zhizhang; Kerisit, Sebastien N.; Stack, Andrew G.
The individual elementary reactions involved in the dissolution of a solid into solution remain mostly speculative due to a lack of suitable, direct experimental probes. In this regard, we have applied atomistic simulations to map the free energy landscape of the dissolution of gibbsite from a step edge, as a model of metal hydroxide dissolution. The overall reaction combines kink site formation and kink site propagation. Two individual reactions were found to be rate-limiting for kink site formation, that is, the displacement of Al from a step site to a ledge adatom site and its detachment from ledge/terrace adatom sitesmore » into the solution. As a result, a pool of mobile and labile Al adsorbed species, or adatoms, exists before the release of Al into solution. Because of the quasi-hexagonal symmetry of gibbsite, kink site propagation can occur in multiple directions. Overall, the simulation results will enable the development of microscopic mechanistic models of metal oxide dissolution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chenna, Ahmed; Gupta, Ramesh C.; Bonala, Radha R.
N2-(4-Hydroxyphenyl)-2'-deoxyguanosine-5'-O-DMT-3'-phosphoramidite has been synthesized and used to incorporate the N2-(4-hydroxyphenyl)-2'-dG (N2-4-HOPh-dG) into DNA, using solid-state synthesis technology. The key step to obtaining the xenonucleoside is a palladium (Xantphos-chelated) catalyzed N2-arylation (Buchwald-Hartwig reaction) of a fully protected 2'-deoxyguanosine derivative by 4-isobutyryloxybromobenzene. The reaction proceeded in good yield and the adduct was converted to the required 5'-O-DMT-3'-O-phosphoramidite by standard methods. The latter was used to synthesize oligodeoxynucleotides in which the N2-4-HOPh-dG adduct was incorporated site-specifically. The oligomers were purified by reverse-phase HPLC. Enzymatic hydrolysis and HPLC analysis confirmed the presence of this adduct in the oligomers.
Mechanism and microstructures in Ga2O3 pseudomartensitic solid phase transition.
Zhu, Sheng-Cai; Guan, Shu-Hui; Liu, Zhi-Pan
2016-07-21
Solid-to-solid phase transition, although widely exploited in making new materials, challenges persistently our current theory for predicting its complex kinetics and rich microstructures in transition. The Ga2O3α-β phase transformation represents such a common but complex reaction with marked change in cation coordination and crystal density, which was known to yield either amorphous or crystalline products under different synthetic conditions. Here we, via recently developed stochastic surface walking (SSW) method, resolve for the first time the atomistic mechanism of Ga2O3α-β phase transformation, the pathway of which turns out to be the first reaction pathway ever determined for a new type of diffusionless solid phase transition, namely, pseudomartensitic phase transition. We demonstrate that the sensitivity of product crystallinity is caused by its multi-step, multi-type reaction pathway, which bypasses seven intermediate phases and involves all types of elementary solid phase transition steps, i.e. the shearing of O layers (martensitic type), the local diffusion of Ga atoms (reconstructive type) and the significant lattice dilation (dilation type). While the migration of Ga atoms across the close-packed O layers is the rate-determining step and yields "amorphous-like" high energy intermediates, the shearing of O layers contributes to the formation of coherent biphase junctions and the presence of a crystallographic orientation relation, (001)α//(201[combining macron])β + [120]α//[13[combining macron]2]β. Our experiment using high-resolution transmission electron microscopy further confirms the theoretical predictions on the atomic structure of biphase junction and the formation of (201[combining macron])β twin, and also discovers the late occurrence of lattice expansion in the nascent β phase that grows out from the parent α phase. By distinguishing pseudomartensitic transition from other types of mechanisms, we propose general rules to predict the product crystallinity of solid phase transition. The new knowledge on the kinetics of pseudomartensitic transition complements the theory of diffusionless solid phase transition.
Mourad, Eléonore; Coustan, Laura; Lannelongue, Pierre; Zigah, Dodzi; Mehdi, Ahmad; Vioux, André; Freunberger, Stefan A; Favier, Frédéric; Fontaine, Olivier
2017-04-01
Kinetics of electrochemical reactions are several orders of magnitude slower in solids than in liquids as a result of the much lower ion diffusivity. Yet, the solid state maximizes the density of redox species, which is at least two orders of magnitude lower in liquids because of solubility limitations. With regard to electrochemical energy storage devices, this leads to high-energy batteries with limited power and high-power supercapacitors with a well-known energy deficiency. For such devices the ideal system should endow the liquid state with a density of redox species close to the solid state. Here we report an approach based on biredox ionic liquids to achieve bulk-like redox density at liquid-like fast kinetics. The cation and anion of these biredox ionic liquids bear moieties that undergo very fast reversible redox reactions. As a first demonstration of their potential for high-capacity/high-rate charge storage, we used them in redox supercapacitors. These ionic liquids are able to decouple charge storage from an ion-accessible electrode surface, by storing significant charge in the pores of the electrodes, to minimize self-discharge and leakage current as a result of retaining the redox species in the pores, and to raise working voltage due to their wide electrochemical window.
Tomov, Toma E; Tsukanov, Roman; Glick, Yair; Berger, Yaron; Liber, Miran; Avrahami, Dorit; Gerber, Doron; Nir, Eyal
2017-04-25
Realization of bioinspired molecular machines that can perform many and diverse operations in response to external chemical commands is a major goal in nanotechnology, but current molecular machines respond to only a few sequential commands. Lack of effective methods for introduction and removal of command compounds and low efficiencies of the reactions involved are major reasons for the limited performance. We introduce here a user interface based on a microfluidics device and single-molecule fluorescence spectroscopy that allows efficient introduction and removal of chemical commands and enables detailed study of the reaction mechanisms involved in the operation of synthetic molecular machines. The microfluidics provided 64 consecutive DNA strand commands to a DNA-based motor system immobilized inside the microfluidics, driving a bipedal walker to perform 32 steps on a DNA origami track. The microfluidics enabled removal of redundant strands, resulting in a 6-fold increase in processivity relative to an identical motor operated without strand removal and significantly more operations than previously reported for user-controlled DNA nanomachines. In the motor operated without strand removal, redundant strands interfere with motor operation and reduce its performance. The microfluidics also enabled computer control of motor direction and speed. Furthermore, analysis of the reaction kinetics and motor performance in the absence of redundant strands, made possible by the microfluidics, enabled accurate modeling of the walker processivity. This enabled identification of dynamic boundaries and provided an explanation, based on the "trap state" mechanism, for why the motor did not perform an even larger number of steps. This understanding is very important for the development of future motors with significantly improved performance. Our universal interface enables two-way communication between user and molecular machine and, relying on concepts similar to that of solid-phase synthesis, removes limitations on the number of external stimuli. This interface, therefore, is an important step toward realization of reliable, processive, reproducible, and useful externally controlled DNA nanomachines.
Chiroplasmonic magnetic gold nanocomposites produced by one-step aqueous method using κ-carrageenan.
Lesnichaya, Marina V; Sukhov, Boris G; Aleksandrova, Galina P; Gasilova, Ekaterina R; Vakul'skaya, Tamara I; Khutsishvili, Spartak S; Sapozhnikov, Anatoliy N; Klimenkov, Igor V; Trofimov, Boris A
2017-11-01
Novel water-soluble chiroplasmonic nanobiocomposites with directly varied gold content were synthesized by a one-step redox method in water using a biocompatible polysaccharide κ-carrageenan (industrial product from algae) as both reducing and stabilizing matrix. The influence of the reactants ratio, temperature, and pH on the reaction was studied and the optimal reaction parameters were found. The structure and the properties of composite nanomaterials were examined in solid state and aqueous solutions by using complementary physical-chemical methods X-ray diffraction analysis, transmission electron microscopy, spectroscopy of electron paramagnetic resonance, atomic absorption and optical spectroscopy, polarimetry including optical rotatory dispersion with registration of interphase-crossbred Cotton effect of a chiral polysaccharide matrix on plasmonic chromophore of gold nanoparticles, dynamic and static light scattering. The new perspective multi-purpose nanocomposites demonstrate a complex of chiroplasmonic and magnetic properties, imparted by both nanoparticles and radicals enriched chiral polysaccharide matrix. Copyright © 2017 Elsevier Ltd. All rights reserved.
40 CFR 256.63 - Requirements for public participation in the permitting of facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE... solid waste disposal facility the State shall hold a public hearing to solicit public reaction and...
Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A
2016-10-24
The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
McMillan, Paul F.; Gryko, Jan; Bull, Craig; Arledge, Richard; Kenyon, Anthony J.; Cressey, Barbara A.
2005-03-01
A new solid-state metathesis synthesis route was applied to obtain bulk samples of amorphous or microcrystalline Si and Ge. The method involves reaction of Zintl phases such as NaSi or NaGe, with ammonium or metal (e.g., CuCl, CoBr 2) halides. The driving force for the solid-state reaction is provided by the formation of alkali halides and the transition metals or metal silicides, or gaseous ammonia and hydrogen. The semiconductors were purified by washing to remove other solid products. The amorphous semiconductors were obtained in bulk form from reactions carried out at 200-300 °C. Syntheses at higher temperatures gave rise to microcrystalline semiconductors, or to micro-/nanocrystalline particles contained within the amorphous material. Similar crystalline/amorphous composites were obtained after heat treatment of bulk amorphous materials.
Ginosar, Daniel M.; Fox, Robert V.; Kong, Peter C.
2000-01-01
This invention relates to an improved method for the alkylation reaction of isoparaffins with olefins over solid catalysts including contacting a mixture of an isoparaffin, an olefin and a phase-modifying material with a solid acid catalyst member under alkylation conversion conditions at either supercritical fluid, or near-supercritical fluid conditions, at a temperature and a pressure relative to the critical temperature(T.sub.c) and the critical pressure(P.sub.c) of the reaction mixture. The phase-modifying phase-modifying material is employed to promote the reaction's achievement of either a supercritical fluid state or a near-supercritical state while simultaneously allowing for decreased reaction temperature and longer catalyst life.
Ribas-Arino, Jordi; Carvajal, Maria Angels; Chaumont, Alain; Masia, Marco
2012-12-03
A multiscale computational study was performed with the aim of tracing the source of stereoselectivity and disclosing the role of water in the stereoselective step of propionaldehyde aldol self-condensation catalyzed by proline amide in water, a reaction that serves as a model for aqueous organocatalytic aldol condensations. Solvent mixing and hydration behavior were assessed by classical molecular dynamics simulations, which show that the reaction between propanal and the corresponding enamine takes place in a fully hydrated environment. First-principles molecular dynamics simulations were used to study the free-energy profile of four possible reaction paths, each of which yields a different stereoisomer, and high-level static first-principles calculations were employed to characterize the transition states for microsolvated species. The first solvation shell of the oxygen atom of the electrophilic aldehyde at the transition states contains two water molecules, each of which donates one hydrogen bond to the nascent alkoxide and thereby largely stabilizes its excess electron density. The stereoselectivity originates in an extra hydrogen bond donated by the amido group of proline amide in two reaction paths. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hansen, U P; Gradmann, D; Sanders, D; Slayman, C L
1981-01-01
This paper develops a simple reaction-kinetic model to describe electrogenic pumping and co- (or counter-) transport of ions. It uses the standard steady-state approach for cyclic enzyme- or carrier-mediated transport, but does not assume rate-limitation by any particular reaction step. Voltage-dependence is introduced, after the suggestion of Läuger and Stark (Biochim. Biophys. Acta 211:458-466, 1970), via a symmetric Eyring barrier, in which the charge-transit reaction constants are written as k12 = ko12 exp(zF delta psi/2RT) and k21 = ko21 exp(-zF delta psi/2RT). For interpretation of current-voltage relationships, all voltage-independent reaction steps are lumped together, so the model in its simplest form can be described as a pseudo-2-state model. It is characterized by the two voltage-dependent reaction constants, two lumped voltage-independent reaction constants (k12, k21), and two reserve factors (ri, ro) which formally take account of carrier states that are indistinguishable in the current-voltage (I-V) analysis. The model generates a wide range of I-V relationships, depending on the relative magnitudes of the four reaction constants, sufficient to describe essentially all I-V datas now available on "active" ion-transport systems. Algebraic and numerical analysis of the reserve factors, by means of expanded pseudo-3-, 4-, and 5-state models, shows them to be bounded and not large for most combinations of reaction constants in the lumped pathway. The most important exception to this rule occurs when carrier decharging immediately follows charge transit of the membrane and is very fast relative to other constituent voltage-independent reactions. Such a circumstance generates kinetic equivalence of chemical and electrical gradients, thus providing a consistent definition of ion-motive forces (e.g., proton-motive force, PMF). With appropriate restrictions, it also yields both linear and log-linear relationships between net transport velocity and either membrane potential or PMF. The model thus accommodates many known properties of proton-transport systems, particularly as observed in "chemiosmotic" or energy-coupling membranes.
Cao, Xiehong; Zheng, Bing; Shi, Wenhui; Yang, Jian; Fan, Zhanxi; Luo, Zhimin; Rui, Xianhong; Chen, Bo; Yan, Qingyu; Zhang, Hua
2015-08-26
Reduced graphene oxide-wrapped MoO3M (rGO/MoO3 ) is prepared by a novel and simple method that is developed by using a metal-organic framework as the precursor. After a two-step annealing process, the obtained rGO/MoO3 composite is used for a high-performance supercapacitor electrode. Moreover, an all-solid-state flexible supercapacitor is fabricated based on the rGO/MoO3 composite, which shows stable performance under different bending states. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
George, Russ
2005-03-01
Nano-lattices of deuterium loving metals exhibit coherent behavior by populations of deuterons (d's) occupying a Bloch state. Therein, coherent d-overlap occurs wherein the Bloch condition reduces the Coulomb barrier.Overlap of dd pairs provides a high probability fusion will/must occur. SEM photo evidence showing fusion events is now revealed by laboratories that load or flux d into metal nano-domains. Solid-state dd fusion creates an excited ^4He nucleus entangled in the large coherent population of d's.This contrasts with plasma dd fusion in collision space where an isolated excited ^4He nucleus seeks the ground state via fast particle emission. In momentum limited solid state fusion,fast particle emission is effectively forbidden.Photographed nano-explosive events are beyond the scope of chemistry. Corroboration of the nuclear nature derives from photographic observation of similar events on spontaneous fission, e.g. Cf. We present predictive theory, heat production, and helium isotope data showing reproducible e14 to e16 solid-state fusion reactions.
Design and synthesis of digitally encoded polymers that can be decoded and erased
NASA Astrophysics Data System (ADS)
Roy, Raj Kumar; Meszynska, Anna; Laure, Chloé; Charles, Laurence; Verchin, Claire; Lutz, Jean-François
2015-05-01
Biopolymers such as DNA store information in their chains using controlled sequences of monomers. Here we describe a non-natural information-containing macromolecule that can store and retrieve digital information. Monodisperse sequence-encoded poly(alkoxyamine amide)s were synthesized using an iterative strategy employing two chemoselective steps: the reaction of a primary amine with an acid anhydride and the radical coupling of a carbon-centred radical with a nitroxide. A binary code was implemented in the polymer chains using three monomers: one nitroxide spacer and two interchangeable anhydrides defined as 0-bit and 1-bit. This methodology allows encryption of any desired sequence in the chains. Moreover, the formed sequences are easy to decode using tandem mass spectrometry. Indeed, these polymers follow predictable fragmentation pathways that can be easily deciphered. Moreover, poly(alkoxyamine amide)s are thermolabile. Thus, the digital information encrypted in the chains can be erased by heating the polymers in the solid state or in solution.
Design and synthesis of digitally encoded polymers that can be decoded and erased.
Roy, Raj Kumar; Meszynska, Anna; Laure, Chloé; Charles, Laurence; Verchin, Claire; Lutz, Jean-François
2015-05-26
Biopolymers such as DNA store information in their chains using controlled sequences of monomers. Here we describe a non-natural information-containing macromolecule that can store and retrieve digital information. Monodisperse sequence-encoded poly(alkoxyamine amide)s were synthesized using an iterative strategy employing two chemoselective steps: the reaction of a primary amine with an acid anhydride and the radical coupling of a carbon-centred radical with a nitroxide. A binary code was implemented in the polymer chains using three monomers: one nitroxide spacer and two interchangeable anhydrides defined as 0-bit and 1-bit. This methodology allows encryption of any desired sequence in the chains. Moreover, the formed sequences are easy to decode using tandem mass spectrometry. Indeed, these polymers follow predictable fragmentation pathways that can be easily deciphered. Moreover, poly(alkoxyamine amide)s are thermolabile. Thus, the digital information encrypted in the chains can be erased by heating the polymers in the solid state or in solution.
2015-01-01
We introduce an approach to synthesize rare earth oxide nanoparticles using high temperature without aggregation of the nanoparticles. The dispersity of the nanoparticles is controlled at the nanoscale by using small organosilane molds as reaction containers. Zeptoliter reaction vessels prepared from organosilane self-assembled monolayers (SAMs) were used for the surface-directed synthesis of rare earth oxide (REO) nanoparticles. Nanopores of octadecyltrichlorosilane were prepared on Si(111) using particle lithography with immersion steps. The nanopores were filled with a precursor solution of erbium and yttrium salts to confine the crystallization step to occur within individual zeptoliter-sized organosilane reaction vessels. Areas between the nanopores were separated by a matrix film of octadecyltrichlorosilane. With heating, the organosilane template was removed by calcination to generate a surface array of erbium-doped yttria nanoparticles. Nanoparticles synthesized by the surface-directed approach retain the periodic arrangement of the nanopores formed from mesoparticle masks. While bulk rare earth oxides can be readily prepared by solid state methods at high temperature (>900 °C), approaches for preparing REO nanoparticles are limited. Conventional wet chemistry methods are limited to low temperatures according to the boiling points of the solvents used for synthesis. To achieve crystallinity of REO nanoparticles requires steps for high-temperature processing of samples, which can cause self-aggregation and dispersity in sample diameters. The facile steps for particle lithography address the problems of aggregation and the requirement for high-temperature synthesis. PMID:25163977
Lin, Yao; Ying, Yi-Lun; Gao, Rui; Long, Yi-Tao
2018-03-25
The nanopore can generate an electrochemical confinement for single-molecule sensing that help understand the fundamental chemical principle in nanoscale dimensions. By observing the generated ionic current, individual bond-making and bond-breaking steps, single biomolecule dynamic conformational changes and electron transfer processes that occur within pore can be monitored with high temporal and current resolution. These single-molecule studies in nanopore confinement are revealing information about the fundamental chemical and biological processes that cannot be extracted from ensemble measurements. In this Concept article, we introduce and discuss the electrochemical confinement effects on single-molecule covalent reactions, conformational dynamics of individual molecules and host-guest interactions in protein nanopores. Then, we extend the concept of nanopore confinement effects to confine electrochemical redox reactions in solid-state nanopores for developing new sensing mechanisms. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, Paul F.; Gryko, Jan; Bull, Craig
A new solid-state metathesis synthesis route was applied to obtain bulk samples of amorphous or microcrystalline Si and Ge. The method involves reaction of Zintl phases such as NaSi or NaGe, with ammonium or metal (e.g., CuCl, CoBr{sub 2}) halides. The driving force for the solid-state reaction is provided by the formation of alkali halides and the transition metals or metal silicides, or gaseous ammonia and hydrogen. The semiconductors were purified by washing to remove other solid products. The amorphous semiconductors were obtained in bulk form from reactions carried out at 200-300{sup o}C. Syntheses at higher temperatures gave rise tomore » microcrystalline semiconductors, or to micro-/nanocrystalline particles contained within the amorphous material. Similar crystalline/amorphous composites were obtained after heat treatment of bulk amorphous materials.« less
Acidic attack of perfluorinated alkyl ether lubricant molecules by metal oxide surfaces
NASA Technical Reports Server (NTRS)
Zehe, Michael J.; Faut, Owen D.
1990-01-01
The reactions of linear perfluoropolyalkylether (PFAE) lubricants with alpha-Fe203 and Fe203-based solid superacids were studied. The reaction with alpha-Fe203 proceeds in two stages. The first stage is an initial slow catalytic decomposition of the fluid. This reaction releases reactive gaseous products which attach the metal oxide and convert it to FeF3. The second stage is a more rapid decomposition of the fluid, effected by the surface FeF3. A study of the initial breakdown step was performed using alpha-Fe203, alpha-Fe203 preconverted to FeF3, and sulfate-promoted alpha-Fe203 superacids. The results indicate that the breakdown reaction involves acidic attack at fluorine atoms on acetal carbons in the linear PFAE. Possible approaches to combat the problem are outlined.
Bae, Seo-Yoon; Kim, Dongwook; Shin, Dongbin; Mahmood, Javeed; Jeon, In-Yup; Jung, Sun-Min; Shin, Sun-Hee; Kim, Seok-Jin; Park, Noejung; Lah, Myoung Soo; Baek, Jong-Beom
2017-11-17
Solid-state reaction of organic molecules holds a considerable advantage over liquid-phase processes in the manufacturing industry. However, the research progress in exploring this benefit is largely staggering, which leaves few liquid-phase systems to work with. Here, we show a synthetic protocol for the formation of a three-dimensional porous organic network via solid-state explosion of organic single crystals. The explosive reaction is realized by the Bergman reaction (cycloaromatization) of three enediyne groups on 2,3,6,7,14,15-hexaethynyl-9,10-dihydro-9,10-[1,2]benzenoanthracene. The origin of the explosion is systematically studied using single-crystal X-ray diffraction and differential scanning calorimetry, along with high-speed camera and density functional theory calculations. The results suggest that the solid-state explosion is triggered by an abrupt change in lattice energy induced by release of primer molecules in the 2,3,6,7,14,15-hexaethynyl-9,10-dihydro-9,10-[1,2]benzenoanthracene crystal lattice.
Influence of interface point defect on the dielectric properties of Y doped CaCu3Ti4O12 ceramics
NASA Astrophysics Data System (ADS)
Deng, Jianming; Sun, Xiaojun; Liu, Saisai; Liu, Laijun; Yan, Tianxiang; Fang, Liang; Elouadi, Brahim
2016-04-01
CaCu3Ti4-xYxO12 (0≤x≤0.12) ceramics were fabricated with conventional solid-state reaction method. Phase structure and microstructure of prepared ceramics were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The impedance and modulus tests both suggested the existence of two different relaxation behavior, which were attributed to bulk and grain boundary response. In addition, the conductivity and dielectric permittivity showed a step-like behavior under 405K. Meanwhile, frequency independence of dc conduction became dominant when above 405K. In CCTO ceramic, rare earth element Y3+ ions as an acceptor were used to substitute Ti sites, decreasing the concentration of oxygen vacancy around grain-electrode and grain boundary. The reason to the reduction of dielectric behavior in low frequencies range was associated with the Y doping in CCTO ceramic.
Combinatorial synthesis of phosphors using arc-imaging furnace
Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo
2011-01-01
We have applied a novel ‘melt synthesis technique’ rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10–60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1–5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10–60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions. PMID:27877432
Combinatorial synthesis of phosphors using arc-imaging furnace
NASA Astrophysics Data System (ADS)
Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo
2011-10-01
We have applied a novel 'melt synthesis technique' rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10-60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1-5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10-60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions.
Bessler, Wolfgang G; Vogler, Marcel; Störmer, Heike; Gerthsen, Dagmar; Utz, Annika; Weber, André; Ivers-Tiffée, Ellen
2010-11-14
This article presents a literature review and new results on experimental and theoretical investigations of the electrochemistry of solid oxide fuel cell (SOFC) model anodes, focusing on the nickel/yttria-stabilized zirconia (Ni/YSZ) materials system with operation under H(2)/H(2)O atmospheres. Micropatterned model anodes were used for electrochemical characterization under well-defined operating conditions. Structural and chemical integrity was confirmed by ex situ pre-test and post-test microstructural and chemical analysis. Elementary kinetic models of reaction and transport processes were used to assess reaction pathways and rate-determining steps. The comparison of experimental and simulated electrochemical behaviors of pattern anodes shows quantitative agreement over a wide range of operating conditions (p(H(2)) = 8×10(2) - 9×10(4) Pa, p(H(2)O) = 2×10(1) - 6×10(4) Pa, T = 400-800 °C). Previously published experimental data on model anodes show a strong scatter in electrochemical performance. Furthermore, model anodes exhibit a pronounced dynamics on multiple time scales which is not reproduced in state-of-the-art models and which is also not observed in technical cermet anodes. Potential origin of these effects as well as consequences for further steps in model anode and anode model studies are discussed.
Modeling study on the cleavage step of the self-splicing reaction in group I introns
NASA Technical Reports Server (NTRS)
Setlik, R. F.; Garduno-Juarez, R.; Manchester, J. I.; Shibata, M.; Ornstein, R. L.; Rein, R.
1993-01-01
A three-dimensional model of the Tetrahymena thermophila group I intron is used to further explore the catalytic mechanism of the transphosphorylation reaction of the cleavage step. Based on the coordinates of the catalytic core model proposed by Michel and Westhof (Michel, F., Westhof, E. J. Mol. Biol. 216, 585-610 (1990)), we first converted their ligation step model into a model of the cleavage step by the substitution of several bases and the removal of helix P9. Next, an attempt to place a trigonal bipyramidal transition state model in the active site revealed that this modified model for the cleavage step could not accommodate the transition state due to insufficient space. A lowering of P1 helix relative to surrounding helices provided the additional space required. Simultaneously, it provided a better starting geometry to model the molecular contacts proposed by Pyle et al. (Pyle, A. M., Murphy, F. L., Cech, T. R. Nature 358, 123-128. (1992)), based on mutational studies involving the J8/7 segment. Two hydrated Mg2+ complexes were placed in the active site of the ribozyme model, using the crystal structure of the functionally similar Klenow fragment (Beese, L.S., Steitz, T.A. EMBO J. 10, 25-33 (1991)) as a guide. The presence of two metal ions in the active site of the intron differs from previous models, which incorporate one metal ion in the catalytic site to fulfill the postulated roles of Mg2+ in catalysis. The reaction profile is simulated based on a trigonal bipyramidal transition state, and the role of the hydrated Mg2+ complexes in catalysis is further explored using molecular orbital calculations.
Chen, Wei; Rosser, Ethan W.; Zhang, Di; ...
2015-05-11
Hydrogen polysulfides (H 2S n, n>1) have been recently suggested to be the actual signalling molecules that involved in sulfur-related redox biology. However the exact mechanisms of H 2S n are still poorly understood and a major hurdle in this field is the lack of reliable and convenient methods for H 2S n detection. In this work we report a unique ring-opening reaction of N-sulfonylaziridine by Na 2S 2 under mild conditions. Based on this reaction a novel H 2S n-specific fluorescent probe (AP) was developed. The probe showed high sensitivity and selectivity for H 2S n. Notably, the fluorescentmore » turn-on product, i.e. compound 1, exhibited excellent two-photon photophysical properties and a large Stokes shift. Moreover, the high solid state luminescent efficiency of compound 1 makes it a potential candidate for organic emitters and solid-state lighting devices.« less
Ema, Tadashi; Nanjo, Yoshiko; Shiratori, Sho; Terao, Yuta; Kimura, Ryo
2016-11-04
The intermolecular or intramolecular asymmetric benzoin reaction was catalyzed by a small amount of N-heterocyclic carbene (NHC) (0.2-1 mol %) under solvent-free conditions. The solvent-free intramolecular asymmetric Stetter reaction also proceeded efficiently with NHC (0.2-1 mol %). In some cases, even solid-to-solid or solid-to-liquid conversions took place with low catalyst loading (0.2-1 mol %).
Pennycook, Timothy J; Jones, Lewys; Pettersson, Henrik; Coelho, João; Canavan, Megan; Mendoza-Sanchez, Beatriz; Nicolosi, Valeria; Nellist, Peter D
2014-12-22
Dynamic processes, such as solid-state chemical reactions and phase changes, are ubiquitous in materials science, and developing a capability to observe the mechanisms of such processes on the atomic scale can offer new insights across a wide range of materials systems. Aberration correction in scanning transmission electron microscopy (STEM) has enabled atomic resolution imaging at significantly reduced beam energies and electron doses. It has also made possible the quantitative determination of the composition and occupancy of atomic columns using the atomic number (Z)-contrast annular dark-field (ADF) imaging available in STEM. Here we combine these benefits to record the motions and quantitative changes in the occupancy of individual atomic columns during a solid-state chemical reaction in manganese oxides. These oxides are of great interest for energy-storage applications such as for electrode materials in pseudocapacitors. We employ rapid scanning in STEM to both drive and directly observe the atomic scale dynamics behind the transformation of Mn3O4 into MnO. The results demonstrate we now have the experimental capability to understand the complex atomic mechanisms involved in phase changes and solid state chemical reactions.
Solid State Pathways towards Molecular Complexity in Space
NASA Astrophysics Data System (ADS)
Linnartz, Harold; Bossa, Jean-Baptiste; Bouwman, Jordy; Cuppen, Herma M.; Cuylle, Steven H.; van Dishoeck, Ewine F.; Fayolle, Edith C.; Fedoseev, Gleb; Fuchs, Guido W.; Ioppolo, Sergio; Isokoski, Karoliina; Lamberts, Thanja; Öberg, Karin I.; Romanzin, Claire; Tenenbaum, Emily; Zhen, Junfeng
2011-12-01
It has been a long standing problem in astrochemistry to explain how molecules can form in a highly dilute environment such as the interstellar medium. In the last decennium more and more evidence has been found that the observed mix of small and complex, stable and highly transient species in space is the cumulative result of gas phase and solid state reactions as well as gas-grain interactions. Solid state reactions on icy dust grains are specifically found to play an important role in the formation of the more complex ``organic'' compounds. In order to investigate the underlying physical and chemical processes detailed laboratory based experiments are needed that simulate surface reactions triggered by processes as different as thermal heating, photon (UV) irradiation and particle (atom, cosmic ray, electron) bombardment of interstellar ice analogues. Here, some of the latest research performed in the Sackler Laboratory for Astrophysics in Leiden, the Netherlands is reviewed. The focus is on hydrogenation, i.e., H-atom addition reactions and vacuum ultraviolet irradiation of interstellar ice analogues at astronomically relevant temperatures. It is shown that solid state processes are crucial in the chemical evolution of the interstellar medium, providing pathways towards molecular complexity in space.
Synthesis of azines in solid state: reactivity of solid hydrazine with aldehydes and ketones.
Lee, Byeongno; Lee, Kyu Hyung; Cho, Jaeheung; Nam, Wonwoo; Hur, Nam Hwi
2011-12-16
Highly conjugated azines were prepared by solid state grinding of solid hydrazine and carbonyl compounds such as aldehydes and ketones, using a mortar and a pestle. Complete conversion to the azine product is generally achieved at room temperature within 24 h, without using solvents or additives. The solid-state reactions afford azines as the sole products with greater than 97% yield, producing only water and carbon dioxide as waste.
NASA Astrophysics Data System (ADS)
Kim, Sang-Kyun; Paik, Ungyu; Oh, Seong-Geun; Park, Yong-Kook; Katoh, Takeo; Park, Jea-Gun
2003-03-01
Ceria powders were synthesized by two different methods, solid-state displacement reaction and wet chemical precipitation, and the influence of the physical characteristics of cerium oxide on the removal rate of plasma-enhanced tetraethylorthosilicate (PETEOS) and chemical vapor deposition (CVD) nitride films in chemical mechanical planarization (CMP) was investigated. The fundamental physicochemical property and electrokinetic behavior of ceria particles in aqueous suspending media were investigated to identify the correlation between the colloidal property of ceria and the CMP performance. The surface potentials of two different ceria particles are found to have different isoelectric point (pHiep) values and differences in physical properties of ceria particles such as porosity and density were found to be the key parameters in CMP of PETEOS films. Ceria powders synthesized by the solid-state displacement reaction method yielded a higher removal rate of PETEOS and higher selectivity than powders synthesized by the wet chemical precipitation method.
Tan, X; Meltzer, N; Lindebaum, S
1992-09-01
The solid-state stabilities of 13-cis-retinoic acid and all-trans-retinoic acid in the presence and absence of oxygen were investigated. The samples were first evaluated using microcalorimetry. The rate laws of different samples under different conditions were deduced from the shapes of the heat flow curves, and the activation energies of the reactions were determined from Arrhenius plots. Under an air atmosphere, the decomposition of 13-cis-retinoic acid is an autocatalytic reaction, while all-trans-retinoic acid undergoes a zero-order process. The degradation of the two compounds at a selected elevated temperature was also determined utilizing HPLC analysis. This technique confirmed the decomposition kinetics. Hence, their half-lives and shelf lives at room temperature could be calculated. Under a nitrogen atmosphere, the microcalorimetric experiment showed a first-order phenomenon for both samples, but HPLC analysis showed no degradation, suggesting that the two samples, in the absence of oxygen, undergo only a physical change.
ORGANIC REACTIONS IN THE SOLID STATE AND IN SOLID SOLUTIONS.
on the reactions of phthalic acid and acetanilide , various acyl anilides, and ring-substituted acetanilides . Exploratory experiments were also...performed between ring-substituted acetanilides and succinic, glutaric, maleic and fumaric acids. The influence of imidazole as a catalyst of the...transacylation reaction of phthalic anhydride and acetanilide is also reported. (Author)
Complex impedance analyses and magnetoelectric effect in ferrite ferroelectric composite ceramics
NASA Astrophysics Data System (ADS)
Patankar, K. K.; Kanade, S. A.; Padalkar, D. S.; Chougule, B. K.
2007-02-01
Magnetoelectric (ME) composites yBa0.8Pb0.2TiO3 (1-y)CuFe2O4 are prepared by ceramic method. The component phases are prepared from two different routes, viz. CuFe2O4 (ferrite phase) is prepared by oxalate precursor route and Ba0.8Pb0.2TiO3 (ferroelectric phase) by solid-state reaction route. No intermediate phases are observed in the composites containing these ferrite and ferroelectric phases. ME conversion factor (measure of ME effect) is found to be enhanced compared to those reported in the composites, in which the component phases were prepared by only one route, i.e. solid-state reaction route. The results on ME conversion are well accounted by measuring the complex impedance and analyzing their Nyquist plots.
High temperature lubricating process
Taylor, R.W.; Shell, T.E.
1979-10-04
It has been difficult to provide adequate lubrication for load bearing, engine components when such engines are operating in excess of about 475/sup 0/C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface, such as in an engine being operated at temperatures in excess of about 475/sup 0/C. The process comprises contacting and maintaining the following steps: a gas phase is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant; the gas phase is contacted with the load bearing surface; the load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant; and the solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.
High temperature lubricating process
Taylor, Robert W.; Shell, Thomas E.
1982-01-01
It has been difficult to provide adaquate lubrication for load bearing, engine components when such engines are operating in excess of about 475.degree. C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface (14), such as in an engine (10) being operated at temperatures in excess of about 475.degree. C. The process comprises contacting and maintaining steps. A gas phase (42) is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant. The gas phase is contacted with the load bearing surface. The load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant. The solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma
Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less
Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma; ...
2018-02-15
Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less
NASA Astrophysics Data System (ADS)
Chen, Lingyun; Shen, Yongming; Bai, Junfeng; Wang, Chunzhao
2009-08-01
We describe here a one-step solid-state process for the synthesis of metal three-dimensional (3D) superstructures from a metal-organic framework (MOF). Novel symmetrical coralloid Cu 3D superstructures with surface interspersed with clusters of Cu nanoparticles were successfully synthesized by thermolysis of the [Cu 3( btc) 2] ( btc=benzene-1,3,5-tricarboxylato) MOF in a one-end closed horizontal tube furnace (OCTF). The obtained products were characterized by TGA, FT-IR, XRD, EDX, SEM, TEM, HRTEM and SAED. Different reaction conditions were discussed. Furthermore, the synthesized Cu samples were converted into CuO microstructures by in-situ calcination in the air. In addition, the possible formation mechanism was also proposed. This method is a simple and facile route, which builds a direct linkage between metal-carboxylate MOF crystals and metal nano- or microstructures and also opens a new application field of MOFs.
All-solid-state lithium-ion and lithium metal batteries - paving the way to large-scale production
NASA Astrophysics Data System (ADS)
Schnell, Joscha; Günther, Till; Knoche, Thomas; Vieider, Christoph; Köhler, Larissa; Just, Alexander; Keller, Marlou; Passerini, Stefano; Reinhart, Gunther
2018-04-01
Challenges and requirements for the large-scale production of all-solid-state lithium-ion and lithium metal batteries are herein evaluated via workshops with experts from renowned research institutes, material suppliers, and automotive manufacturers. Aiming to bridge the gap between materials research and industrial mass production, possible solutions for the production chains of sulfide and oxide based all-solid-state batteries from electrode fabrication to cell assembly and quality control are presented. Based on these findings, a detailed comparison of the production processes for a sulfide based all-solid-state battery with conventional lithium-ion cell production is given, showing that processes for composite electrode fabrication can be adapted with some effort, while the fabrication of the solid electrolyte separator layer and the integration of a lithium metal anode will require completely new processes. This work identifies the major steps towards mass production of all-solid-state batteries, giving insight into promising manufacturing technologies and helping stakeholders, such as machine engineering, cell producers, and original equipment manufacturers, to plan the next steps towards safer batteries with increased storage capacity.
Yancey, Benjamin; Vyazovkin, Sergey
2015-04-21
This study highlights the effect of the aggregate state of a reactant on the reaction kinetics under the conditions of nanoconfinement. Our previous work (Phys. Chem. Chem. Phys., 2014, 16, 11409) has demonstrated considerable deceleration of the solid state trimerization of sodium dicyanamide in organically modified silica nanopores. In the present study we use FTIR, NMR, pXRD, TGA and DSC to analyze the kinetics and mechanism of the liquid state trimerization of potassium and rubidium dicyanamide under similar conditions of nanoconfinement. It is found that nanoconfinement accelerates dramatically the kinetics of the liquid state trimerization, whereas it does not appear to affect the reaction mechanism. Kinetic analysis indicates that the acceleration is associated with an increase in the preexponential factor. Although nanoconfinement has the opposite effects on the respective kinetics of solid and liquid state trimerization, both effects are linked to a change in the preexponential factor. The results obtained are consistent with our hypothesis that the effects differ because nanoconfinement may promote disordering of the solid and ordering of the liquid reaction media.
Choudhary, Eric; Velmurugan, Jeyavel; Marr, James M; Liddle, James A; Szalai, Veronika
2016-01-01
Heterogeneous catalytic materials and electrodes are used for (electro)chemical transformations, including those important for energy storage and utilization. 1, 2 Due to the heterogeneous nature of these materials, activity measurements with sufficient spatial resolution are needed to obtain structure/activity correlations across the different surface features (exposed facets, step edges, lattice defects, grain boundaries, etc.). These measurements will help lead to an understanding of the underlying reaction mechanisms and enable engineering of more active materials. Because (electro)catalytic surfaces restructure with changing environments, 1 it is important to perform measurements in operando . Sub-diffraction fluorescence microscopy is well suited for these requirements because it can operate in solution with resolution down to a few nm. We have applied sub-diffraction fluorescence microscopy to a thin cell containing an electrocatalyst and a solution containing the redox sensitive dye p-aminophenyl fluorescein to characterize reaction at the solid-liquid interface. Our chosen dye switches between a nonfluorescent reduced state and a one-electron oxidized bright state, a process that occurs at the electrode surface. This scheme is used to investigate the activity differences on the surface of polycrystalline Pt, in particular to differentiate reactivity at grain faces and grain boundaries. Ultimately, this method will be extended to study other dye systems and electrode materials.
NASA Astrophysics Data System (ADS)
Lu, Xiu Hui; Yu, Hai Bin; Wu, Wei Rong; Xu, Yue Hua
Mechanisms of the cycloaddition reaction between singlet difluoromethylene carbene and acetone have been investigated with the second-order Møller-Plesset (MP2)/6-31G* method, including geometry optimization and vibrational analysis. Energies for the involved stationary points on the potential energy surface (PES) are corrected by zero-point energy (ZPE) and CCSD(T)/6-31G* single-point calculations. From the PES obtained with the CCSD(T)//MP2/6-31G* method for the cycloaddition reaction between singlet difluoromethylene carbene and acetone, it can be predicted that path B of reactions 2 and 3 should be two competitive leading channels of the cycloaddition reaction between difluoromethylene carbene and acetone. The former consists of two steps: (i) the two reactants first form a four-membered ring intermediate, INT2, which is a barrier-free exothermic reaction of 97.8 kJ/mol; (ii) the intermediate INT2 isomerizes to a four-membered product P2b via a transition state TS2b with an energy barrier of 24.9 kJ/mol, which results from the methyl group transfer. The latter proceeds in three steps: (i) the two reactants first form an intermediate, INT1c, through a barrier-free exothermic reaction of 199.4 kJ/mol; (ii) the intermediate INT1c further reacts with acetone to form a polycyclic intermediate, INT3, which is also a barrier-free exothermic reaction of 27.4 kJ/mol; and (iii) INT3 isomerizes to a polycyclic product P3 via a transition state TS3 with an energy barrier of 25.8 kJ/mol.
NASA Astrophysics Data System (ADS)
Johnson, David; Clarke, Simon; Wiley, John; Koumoto, Kunihito
2014-06-01
Layered compounds, materials with a large anisotropy to their bonding, electrical and/or magnetic properties, have been important in the development of solid state chemistry, physics and engineering applications. Layered materials were the initial test bed where chemists developed intercalation chemistry that evolved into the field of topochemical reactions where researchers are able to perform sequential steps to arrive at kinetically stable products that cannot be directly prepared by other approaches. Physicists have used layered compounds to discover and understand novel phenomena made more apparent through reduced dimensionality. The discovery of charge and spin density waves and more recently the remarkable discovery in condensed matter physics of the two-dimensional topological insulating state were discovered in two-dimensional materials. The understanding developed in two-dimensional materials enabled subsequent extension of these and other phenomena into three-dimensional materials. Layered compounds have also been used in many technologies as engineers and scientists used their unique properties to solve challenging technical problems (low temperature ion conduction for batteries, easy shear planes for lubrication in vacuum, edge decorated catalyst sites for catalytic removal of sulfur from oil, etc). The articles that are published in this issue provide an excellent overview of the spectrum of activities that are being pursued, as well as an introduction to some of the most established achievements in the field. Clusters of papers discussing thermoelectric properties, electronic structure and transport properties, growth of single two-dimensional layers, intercalation and more extensive topochemical reactions and the interleaving of two structures to form new materials highlight the breadth of current research in this area. These papers will hopefully serve as a useful guideline for the interested reader to different important aspects in this field and an overview of current areas of research interest.
Room temperature structural and dielectric studies of Pb(Fe0.585Nb0.25W0.165)O3 solid solution
NASA Astrophysics Data System (ADS)
Nagaraja, T.; Dadami, Sunanda T.; Angadi, Basavaraj
2018-05-01
The perovskite A(B'B''B''')O3 structure Pb(Fe0.585Nb0.25W0.165)O3 (PFNW) multiferroic material was synthesized by single step solid state reaction method. The single phase was achieved at low temperature with optimized synthesis parameters as calcination (700°C/2hr) and sintering (800 °C /3hr). Single phase was confirmed by room temperature (RT) X-ray diffraction (XRD). The scanning electron microscopy (SEM) shows the uniform distribution of grains throughout the surface of PFNW and the energy dispersive X-ray spectroscopy (EDX) confirms the exact elemental composition as that of the experimental. Fourier transform infrared spectroscopy (FTIR) exhibits two absorption bands at 602 cm-1 and 1385 cm-1 corresponds to the bending and stretching vibrations of metal oxides. RT dielectric studies (dielectric constant, tanδ, AC conductivity) exhibits maximum values at lower frequency region and decreases as the frequency increases. Thesingle semicircular arc in RT impedance spectra (Nyquist plot)indicatesthe contribution to the conductivity is from grains only. Hence PFNW is a potential candidate for near room temperature applications.
Solid state laser media driven by remote nuclear powered fluorescence
Prelas, Mark A.
1992-01-01
An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.
NASA Astrophysics Data System (ADS)
Peng, Jiaoyu; Bian, Shaoju; Lin, Feng; Wang, Liping; Dong, Yaping; Li, Wu
2017-10-01
The synthesis of pinnoite (MgB2O(OH)6) in boron-containing brine was established with a novel dilution method. Effects of temperature, precipitation time, boron concentration and mass dilution ratio on the formation of pinnoite were investigated. The products obtained were characterized by X-ray diffraction (XRD), Raman, thermogravimetric and differential scanning calorimeter (TG-DSC), and scanning electron microscopy. The transformation mechanism of pinnoite with different dilution ratios was assumed by studying the crystal growth of pinnoite. The results showed that pinnoite was synthesized above 60 °C in the diluted brine. There were two reaction steps - precipitation of amorphous solid and the formation of pinnoite crystals - during the whole reaction process of pinnoite when the dilution ratio is more than 1.0 at 80 °C. While in the 0.5 diluted brine, only one reaction step of pinnoite crystal formation was observed and its transformation mechanism was discussed based on dissociation of polyborates in brine. Besides, the origin of pinnoite mineral deposited on salt lake bottom was proposed.
Purification of optical imaging ligand-Cybesin by high-speed counter-current chromatography
Ma, Zhiyong; Ma, Ying; Sun, Xilin; Ye, Yunpeng; Shen, Baozhong; Chen, Xiaoyuan; Ito, Yoichiro
2010-01-01
Fluorescent Cybesin (Cypate-Bombesin Peptide Analogue Conjugate) was synthesized from Indocyanine Green (ICG) and the bombesin receptor ligand as a contrast agent for detecting pancreas tumors. However, the LC–MS analysis indicated that the target compound was only a minor component in the reaction mixture. Since preparative HPLC can hardly separate such a small amount of the target compound directly from the original crude reaction mixture without a considerable adsorptive loss onto the solid support, high-speed counter-current chromatography (HSCCC) was used for purification since the method uses no solid support and promises high sample recovery. A suitable two-phase solvent system composed of hexane/ethyl acetate/methanol/methyl t.-butyl ether/acetonitrile/water) at a volume ratio of 1:1:1:4:4:7 was selected based on the partition coefficient of Cybesin (K ≈ 0.9) determined by LC–MS. The separation was performed in two steps using the same solvent system with lower aqueous mobile phase. From 400 mg of the crude reaction mixture the first separation yielded 7.7 mg of fractions containing the target compound at 12.8% purity, and in the second run 1 mg of Cybesin was obtained at purity of 94.0% with a sample recovery rate of over 95% based on the LC–MS Analysis. PMID:20933483
Combined subcritical water and enzymatic hydrolysis for reducing sugar production from coconut husk
NASA Astrophysics Data System (ADS)
Muharja, Maktum; Junianti, Fitri; Nurtono, Tantular; Widjaja, Arief
2017-05-01
Coconut husk wastes are abundantly available in Indonesia. It has a potential to be used into alternative renewable energy sources such as hydrogen using enzymatic hydrolysis followed by a fermentation process. Unfortunately, enzymatic hydrolysis is hampered by the complex structure of lignocellulose, so the cellulose component is hard to degrade. In this study, Combined Subcritical Water (SCW) and enzymatic hydrolysis are applied to enhance fermentable, thereby reducing production of sugar from coconut husk. There were two steps in this study, the first step was coconut husk pretreated by SCW in batch reactor at 80 bar and 150-200°C for 60 minutes reaction time. Secondly, solid fraction from the results of SCW was hydrolyzed using the mixture of pure cellulose and xylanase enzymes. Analysis was conducted on untreated and SCW-treated by gravimetric assay, liquid fraction after SCW and solid fraction after enzymatic hydrolysis using DNS assay. The maximum yield of reducing sugar (including xylose, arabinose glucose, galactose, mannose) was 1.254 gr per 6 gr raw material, representing 53.95% of total sugar in coconut husk biomass which was obtained at 150°C 80 bar for 60 minutes reaction time of SCW-treated and 6 hour of enzymatic hydrolysis using mixture of pure cellulose and xylanase enzymes (18.6 U /gram of coconut husk).
Evidence of a Nonphotochemical Mechanism for the Solid-State Formation of Uranyl Peroxide.
Kirkegaard, Marie C; Miskowiec, Andrew; Ambrogio, Michael W; Anderson, Brian B
2018-05-21
We have demonstrated the solid-state formation of a uranyl peroxide (UP) species from hydrated uranyl fluoride via a uranyl hydroxide intermediate, the first observation of a UP species formed in a solid-state reaction. Water vapor pressure is shown to be a driving factor of both the loss of fluorine and the subsequent formation of peroxo units. We have ruled out a photochemical mechanism for formation of the UP species by demonstrating that the same reaction occurs in the dark. A radiolytic mechanism is unlikely because of the low radioactivity of the sample material, suggesting the existence of a novel UP formation mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobo, Raul F
2010-09-20
Recently, two groups separately reported what amounts to a synthetic version of glycolysis. The sum of these two reactions is equivalent to what is accomplished in living organisms by glycolysis in terms of the redistribution of oxidation states of the carbon, and is an important step in reproducing using chemical routes that living organisms accomplish daily.
Roh, Dong Kyu; Chi, Won Seok; Ahn, Sung Hoon; Jeon, Harim; Kim, Jong Hak
2013-08-01
Herein, we report a facile synthesis of high-density anatase-phase vertically aligned thornbush-like TiO2 nanowires (TBWs) on transparent conducting oxide glasses. Morphologically controllable TBW arrays of 9 μm in length are generated through a one-step hydrothermal reaction at 200 °C over 11 h using potassium titanium oxide oxalate dehydrate, diethylene glycol (DEG), and water. The TBWs consist of a large number of nanoplates or nanorods, as confirmed by SEM and TEM imaging. The morphologies of TBWs are controllable by adjusting DEG/water ratios. TBW diameters gradually decrease from 600 (TBW600) to 400 (TBW400) to 200 nm (TBW200) and morphologies change from nanoplates to nanorods with an increase in DEG content. TBWs are utilized as photoanodes for quasi-solid-state dye-sensitized solar cells (qssDSSCs) and solid-state DSSCs (ssDSSCs). The energy-conversion efficiency of qssDSSCs is in the order: TBW200 (5.2%)>TBW400 (4.5%)>TBW600 (3.4%). These results can be attributed to the different surface areas, light-scattering effects, and charge transport rates, as confirmed by dye-loading measurements, reflectance spectroscopy, and incident photon-to-electron conversion efficiency and intensity-modulated photovoltage spectroscopy/intensity-modulated photocurrent spectroscopy analyses. TBW200 is further treated with a graft-copolymer-directed organized mesoporous TiO2 to increase the surface area and interconnectivity of TBWs. As a result, the energy-conversion efficiency of the ssDSSC increases to 6.7% at 100 mW cm(-2) , which is among the highest values for N719-dye-based ssDSSCs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Acidic attack of perfluorinated alkyl ether lubricant molecules by metal oxide surfaces
NASA Technical Reports Server (NTRS)
Zehe, Michael J.; Faut, Owen D.
1989-01-01
The reactions of linear perfluoropolyalkylether (PFAE) lubricants with alpha-Fe2O3 and Fe2O3-based solid superacids were studied. The reaction with alpha-Fe2O3 proceeds in two stages. The first stage is an initial slow catalytic decomposition of the fluid. This reaction releases reactive gaseous products which attach the metal oxide and convert it to FeF3. The second stage is a more rapid decomposition of the fluid, effected by the surface FeF3. A study of the inital breakdown step was performed using alpha-Fe2O3, alpha-Fe2O3 preconverted to FeF3, and sulfate-promoted alpha-Fe2O3 superacids. The results indicate that the breakdown reaction involves acidic attack at fluorine atoms on acetal carbons in the linear PFAE. Possible approaches to combat the problem are outlined.
Ye, Jianchu; Tu, Song; Sha, Yong
2010-10-01
For the two-step transesterification biodiesel production made from the sunflower oil, based on the kinetics model of the homogeneous base-catalyzed transesterification and the liquid-liquid phase equilibrium of the transesterification product, the total methanol/oil mole ratio, the total reaction time, and the split ratios of methanol and reaction time between the two reactors in the stage of the two-step reaction are determined quantitatively. In consideration of the transesterification intermediate product, both the traditional distillation separation process and the improved separation process of the two-step reaction product are investigated in detail by means of the rigorous process simulation. In comparison with the traditional distillation process, the improved separation process of the two-step reaction product has distinct advantage in the energy duty and equipment requirement due to replacement of the costly methanol-biodiesel distillation column. Copyright 2010 Elsevier Ltd. All rights reserved.
Luo, Chao; Ji, Xiao; Chen, Ji; Gaskell, Karen J; He, Xinzi; Liang, Yujia; Jiang, Jianjun; Wang, Chunsheng
2018-05-23
Organic electrode materials are promising for green and sustainable lithium-ion batteries. However, the high solubility of organic materials in the liquid electrolyte results in the shuttle reaction and fast capacity decay. Herein, azo compounds are firstly applied in all-solid-state lithium batteries (ASSLB) to suppress the dissolution challenge. Due to the high compatibility of azobenzene (AB) based compounds to Li 3 PS 4 (LPS) solid electrolyte, the LPS solid electrolyte is used to prevent the dissolution and shuttle reaction of AB. To maintain the low interface resistance during the large volume change upon cycling, a carboxylate group is added into AB to provide 4-(phenylazo) benzoic acid lithium salt (PBALS), which could bond with LPS solid electrolyte via the ionic bonding between oxygen in PBALS and lithium ion in LPS. The ionic bonding between the active material and solid electrolyte stabilizes the contact interface and enables the stable cycle life of PBALS in ASSLB. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Numerical Simulation of Combustion and Extinction of a Solid Cylinder in Low-Speed Cross Flow
NASA Technical Reports Server (NTRS)
Tien, J. S.; Yang, Chin Tien
1998-01-01
The combustion and extinction behavior of a diffusion flame around a solid fuel cylinder (PMMA) in low-speed forced flow in zero gravity was studied numerically using a quasi-steady gas phase model. This model includes two-dimensional continuity, full Navier Stokes' momentum, energy, and species equations with a one-step overall chemical reaction and second-order finite-rate Arrhenius kinetics. Surface radiation and Arrhenius pyrolysis kinetics are included on the solid fuel surface description and a parameter Phi, representing the percentage of gas-phase conductive heat flux going into the solid, is introduced into the interfacial energy balance boundary condition to complete the description for the quasi-steady gas-phase system. The model was solved numerically using a body-fitted coordinate transformation and the SIMPLE algorithm. The effects of varying freestream velocity and Phi were studied. These parameters have a significant effect on the flame structure and extinction limits. Two flame modes were identified: envelope flame and wake flame. Two kinds of flammability limits were found: quenching at low-flow speeds due to radiative loss and blow-off at high flow speeds due to insufficient gas residence time. A flammability map was constructed showing the existence of maximum Phi above which the solid is not flammable at any freestream velocity.
Cheng, Y D; Lin, S Y
2000-03-01
A novel Fourier transform infrared (FT-IR) microspectrophotometer equipped with differential scanning calorimetry (DSC) was used to investigate the kinetics of intramolecular cyclization of aspartame (APM) sweetener in the solid state under isothermal conditions. The thermal-dependent changes in the peak intensity of IR spectra at 1543, 1283, and 1259 cm(-1) were examined to explore the reaction. The results support that the intramolecular cyclization process in APM proceeded in three steps: the methoxyl group of ester was first thermolyzed to release methanol, then an acyl cation was attacked by the lone pair of electrons available on nitrogen by an S(N)1 pathway, and finally ring-closure occurred. The intramolecular cyclization of APM determined by this microscopic FT-IR/DSC system was found to follow zero-order kinetics after a brief induction period. The bond cleavage energy (259.38 kJ/mol) of thermolysis for the leaving group of -OCH(3), the bond conversion energy (328.88 kJ/mol) for the amide II NH band to DKP NH band, and the CN bond formation energy (326.93 kJ/mol) of cyclization for the DKP in the APM molecule were also calculated from the Arrhenius equation. The total activation energy of the DKP formation via intramolecular cyclization was 261.33 kJ/mol, calculated by the above summation of the bond energy of cleavage, conversion, and formation, which was near to the value determined by the DSC or TGA method. This indicates that the microscopic FT-IR/DSC system is useful as a potential tool not only to investigate the degradation mechanism of drugs in the solid state but also to directly predict the bond energy of the reaction.
Moving bed reactor setup to study complex gas-solid reactions.
Gupta, Puneet; Velazquez-Vargas, Luis G; Valentine, Charles; Fan, Liang-Shih
2007-08-01
A moving bed scale reactor setup for studying complex gas-solid reactions has been designed in order to obtain kinetic data for scale-up purpose. In this bench scale reactor setup, gas and solid reactants can be contacted in a cocurrent and countercurrent manner at high temperatures. Gas and solid sampling can be performed through the reactor bed with their composition profiles determined at steady state. The reactor setup can be used to evaluate and corroborate model parameters accounting for intrinsic reaction rates in both simple and complex gas-solid reaction systems. The moving bed design allows experimentation over a variety of gas and solid compositions in a single experiment unlike differential bed reactors where the gas composition is usually fixed. The data obtained from the reactor can also be used for direct scale-up of designs for moving bed reactors.
NASA Astrophysics Data System (ADS)
Li, Feng; Li, Hongren; Cui, Tianfang
2017-11-01
Fluorescent carbon-based nanomaterials(CNs) with tunable visible emission are biocompatible, environment friendly and most suitable for various biomedical applications. Despite the successes in preparing strongly fluorescent CNs, preserving the luminescence in solid materials is still challenging because of the serious emission quenching of CNs in solid state materials. In this work, fluorescent carbon and silica nanohybrids (SiCNHs) were synthesized via a simple one-step hydrothermal approach by carbonizing sodium citrate and (3-aminopropyl)triethoxysilane(APTES), and hydrolysis of tetraethyl orthosilicate(TEOS). The resultant SiCNs were characterized through X-ray diffraction (XRD), transmission electron microscopy (TEM), FT-IR, X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy. The SiCNs exhibited strong fluorescence in both aqueous and solid states. The luminescent solid state SiCNs power were successfully used as a fluorescent labeling material for enhanced imaging of latent fingerprints(LFPs) on single background colour and multi-coloured surfaces substrates in forensic science for individual identification.
Hydrothermal pre-treatment of oil palm empty fruit bunch into fermentable sugars
NASA Astrophysics Data System (ADS)
Muhd Ali, M. D.; Tamunaidu, P.; Nor Aslan, A. K. H.; Morad, N. A.; Sugiura, N.; Goto, M.; Zhang, Z.
2016-06-01
Presently oil palm empty fruit bunch (OPEFB) is one of the solid waste which is produced daily whereby it is usually left at plantation site to act as organic fertilizer for the plants to ensure the sustainability of fresh fruit bunch. The major drawback in biomass conversion technology is the difficulty of degrading the material in a short period of time. A pre-treatment step is required to break the lignocellulosic biomass to easily accessible carbon sources for further use in the production of fuels and fine chemicals. Therefore, this study investigated the effect of hydrothermal pre-treatment under different reaction temperatures (100 - 250°C), reaction time (10 - 40 min), solid to solvent ratio of (1:10 - 1:20 w/v) and particle size (0.15 - 1.00 mm) on the solubilization of OPEFB to produce soluble fermentable sugars. The maximum soluble sugars of 68.18 mg glucose per gram of OPEFB were achieved at 175°C of reaction temperature, 20 min of reaction time, 1:15 w/v of solid to solvent ratio for 30 mm of particle size. Results suggest that reaction temperature, reaction time, the amount of solid to solvent ratio and size of the particle are crucial parameters for hydrothermal pretreatment, in achieving a high yield of soluble fermentable sugars.
Understanding the mechanisms of solid-water reactions through analysis of surface topography.
Bandstra, Joel Z; Brantley, Susan L
2015-12-01
The topography of a reactive surface contains information about the reactions that form or modify the surface and, therefore, it should be possible to characterize reactivity using topography parameters such as surface area, roughness, or fractal dimension. As a test of this idea, we consider a two-dimensional (2D) lattice model for crystal dissolution and examine a suite of topography parameters to determine which may be useful for predicting rates and mechanisms of dissolution. The model is based on the assumption that the reactivity of a surface site decreases with the number of nearest neighbors. We show that the steady-state surface topography in our model system is a function of, at most, two variables: the ratio of the rate of loss of sites with two neighbors versus three neighbors (d(2)/d(3)) and the ratio of the rate of loss of sites with one neighbor versus three neighbors (d(1)/d(3)). This means that relative rates can be determined from two parameters characterizing the topography of a surface provided that the two parameters are independent of one another. It also means that absolute rates cannot be determined from measurements of surface topography alone. To identify independent sets of topography parameters, we simulated surfaces from a broad range of d(1)/d(3) and d(2)/d(3) and computed a suite of common topography parameters for each surface. Our results indicate that the fractal dimension D and the average spacing between steps, E[s], can serve to uniquely determine d(1)/d(3) and d(2)/d(3) provided that sufficiently strong correlations exist between the steps. Sufficiently strong correlations exist in our model system when D>1.5 (which corresponds to D>2.5 for real 3D reactive surfaces). When steps are uncorrelated, surface topography becomes independent of step retreat rate and D is equal to 1.5. Under these conditions, measures of surface topography are not independent and any single topography parameter contains all of the available mechanistic information about the surface. Our results also indicate that root-mean-square roughness cannot be used to reliably characterize the surface topography of fractal surfaces because it is an inherently noisy parameter for such surfaces with the scale of the noise being independent of length scale.
Analysis of reaction schemes using maximum rates of constituent steps
Motagamwala, Ali Hussain; Dumesic, James A.
2016-01-01
We show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, rmax,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of rmax,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of rmax,i can be used to predict the rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. This approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps. PMID:27162366
Analysis of reaction schemes using maximum rates of constituent steps
Motagamwala, Ali Hussain; Dumesic, James A.
2016-05-09
In this paper, we show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, r max,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of r max,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of r max,i can be used to predict themore » rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. Finally, this approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps.« less
NASA Astrophysics Data System (ADS)
Yao, Jianzhuang; Yuan, Yaxia; Zheng, Fang; Zhan, Chang-Guo
2016-02-01
Extensive computational modeling and simulations have been carried out, in the present study, to uncover the fundamental reaction pathway for butyrylcholinesterase (BChE)-catalyzed hydrolysis of ghrelin, demonstrating that the acylation process of BChE-catalyzed hydrolysis of ghrelin follows an unprecedented single-step reaction pathway and the single-step acylation process is rate-determining. The free energy barrier (18.8 kcal/mol) calculated for the rate-determining step is reasonably close to the experimentally-derived free energy barrier (~19.4 kcal/mol), suggesting that the obtained mechanistic insights are reasonable. The single-step reaction pathway for the acylation is remarkably different from the well-known two-step acylation reaction pathway for numerous ester hydrolysis reactions catalyzed by a serine esterase. This is the first time demonstrating that a single-step reaction pathway is possible for an ester hydrolysis reaction catalyzed by a serine esterase and, therefore, one no longer can simply assume that the acylation process must follow the well-known two-step reaction pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wei; Rosser, Ethan W.; Zhang, Di
Hydrogen polysulfides (H 2S n, n>1) have been recently suggested to be the actual signalling molecules that involved in sulfur-related redox biology. However the exact mechanisms of H 2S n are still poorly understood and a major hurdle in this field is the lack of reliable and convenient methods for H 2S n detection. In this work we report a unique ring-opening reaction of N-sulfonylaziridine by Na 2S 2 under mild conditions. Based on this reaction a novel H 2S n-specific fluorescent probe (AP) was developed. The probe showed high sensitivity and selectivity for H 2S n. Notably, the fluorescentmore » turn-on product, i.e. compound 1, exhibited excellent two-photon photophysical properties and a large Stokes shift. Moreover, the high solid state luminescent efficiency of compound 1 makes it a potential candidate for organic emitters and solid-state lighting devices.« less
Prebiotic significance of the Maillard reaction
NASA Astrophysics Data System (ADS)
Kolb, Vera M.; Bajagic, Milica; Zhu, William; Cody, George D.
2005-09-01
The Maillard reaction was studied from a prebiotic point of view. We have shown that the Maillard reaction between ribose and common amino acids occurs readily in the solid state at 65°C. The C-13 NMR spectra of the solid insoluble Maillard products of ribose and serine, or alanine or isoleucine were compared to the spectrum of the insoluble organic carbon on Murchison.
Giuliani, J R; Harley, S J; Carter, R S; Power, P P; Augustine, M P
2007-08-01
Water soluble silicon nanoparticles were prepared by the reaction of bromine terminated silicon nanoparticles with 3-(dimethylamino)propyl lithium and characterized with liquid and solid state nuclear magnetic resonance (NMR) and photoluminescence (PL) spectroscopies. The surface site dependent 29Si chemical shifts and the nuclear spin relaxation rates from an assortment of 1H-29Si heteronuclear solid state NMR experiments for the amine coated reaction product are consistent with both the 1H and 13C liquid state NMR results and routine transmission electron microscopy, ultra-violet/visible, and Fourier transform infrared measurements. PL was used to demonstrate the pH dependent solubility properties of the amine passivated silicon nanoparticles.
NASA Astrophysics Data System (ADS)
Cui, Z.; Welty, C.; Maxwell, R. M.
2011-12-01
Lagrangian, particle-tracking models are commonly used to simulate solute advection and dispersion in aquifers. They are computationally efficient and suffer from much less numerical dispersion than grid-based techniques, especially in heterogeneous and advectively-dominated systems. Although particle-tracking models are capable of simulating geochemical reactions, these reactions are often simplified to first-order decay and/or linear, first-order kinetics. Nitrogen transport and transformation in aquifers involves both biodegradation and higher-order geochemical reactions. In order to take advantage of the particle-tracking approach, we have enhanced an existing particle-tracking code SLIM-FAST, to simulate nitrogen transport and transformation in aquifers. The approach we are taking is a hybrid one: the reactive multispecies transport process is operator split into two steps: (1) the physical movement of the particles including the attachment/detachment to solid surfaces, which is modeled by a Lagrangian random-walk algorithm; and (2) multispecies reactions including biodegradation are modeled by coupling multiple Monod equations with other geochemical reactions. The coupled reaction system is solved by an ordinary differential equation solver. In order to solve the coupled system of equations, after step 1, the particles are converted to grid-based concentrations based on the mass and position of the particles, and after step 2 the newly calculated concentration values are mapped back to particles. The enhanced particle-tracking code is capable of simulating subsurface nitrogen transport and transformation in a three-dimensional domain with variably saturated conditions. Potential application of the enhanced code is to simulate subsurface nitrogen loading to the Chesapeake Bay and its tributaries. Implementation details, verification results of the enhanced code with one-dimensional analytical solutions and other existing numerical models will be presented in addition to a discussion of implementation challenges.
Shape-selective synthesis of non-micellar cobalt oxide (CoO) nanomaterials by microwave irradiations
NASA Astrophysics Data System (ADS)
Kundu, Subrata; Jayachandran, M.
2013-04-01
Shape-selective formation of CoO nanoparticles has been developed using a simple one-step in situ non-micellar microwave (MW) heating method. CoO NPs were synthesized by mixing aqueous CoCl2·6H2O solution with poly (vinyl) alcohol (PVA) in the presence of sodium hydroxide (NaOH). The reaction mixture was irradiated using MW for a total time of 2 min. This process exclusively generated different shapes like nanosphere, nanosheet, and nanodendrite structures just by tuning the Co(II) ion to PVA molar ratios and controlling other reaction parameters. The proposed synthesis method is efficient, straightforward, reproducible, and robust. Other than in catalysis, these cobalt oxide nanomaterials can be used for making pigments, battery materials, for developing solid state sensors, and also as an anisotropy source for magnetic recording.
Lin, Shan-Yang; Wang, Shun-Li
2012-04-01
The solid-state chemistry of drugs has seen growing importance in the pharmaceutical industry for the development of useful API (active pharmaceutical ingredients) of drugs and stable dosage forms. The stability of drugs in various solid dosage forms is an important issue because solid dosage forms are the most common pharmaceutical formulation in clinical use. In solid-state stability studies of drugs, an ideal accelerated method must not only be selected by different complicated methods, but must also detect the formation of degraded product. In this review article, an analytical technique combining differential scanning calorimetry and Fourier-transform infrared (DSC-FTIR) microspectroscopy simulates the accelerated stability test, and simultaneously detects the decomposed products in real time. The pharmaceutical dipeptides aspartame hemihydrate, lisinopril dihydrate, and enalapril maleate either with or without Eudragit E were used as testing examples. This one-step simultaneous DSC-FTIR technique for real-time detection of diketopiperazine (DKP) directly evidenced the dehydration process and DKP formation as an impurity common in pharmaceutical dipeptides. DKP formation in various dipeptides determined by different analytical methods had been collected and compiled. Although many analytical methods have been applied, the combined DSC-FTIR technique is an easy and fast analytical method which not only can simulate the accelerated drug stability testing but also at the same time enable to explore phase transformation as well as degradation due to thermal-related reactions. This technique offers quick and proper interpretations. Copyright © 2012 Elsevier B.V. All rights reserved.
Sumboja, Afriyanti; An, Tao; Goh, Hai Yang; Lübke, Mechthild; Howard, Dougal Peter; Xu, Yijie; Handoko, Albertus Denny; Zong, Yun; Liu, Zhaolin
2018-05-09
Catalysts for hydrogen evolution reaction are in demand to realize the efficient conversion of hydrogen via water electrolysis. In this work, cobalt phosphides were prepared using a one-step, scalable, and direct gas-solid phosphidation of commercially available cobalt salts. It was found that the effectiveness of the phosphidation reaction was closely related to the state of cobalt precursors at the reaction temperature. For instance, a high yield of cobalt phosphides obtained from the phosphidation of cobalt(II) acetate was related to the good stability of cobalt salt at the phosphidation temperature. On the other hand, easily oxidizable salts (e.g., cobalt(II) acetylacetonate) tended to produce a low amount of cobalt phosphides and a large content of metallic cobalt. The as-synthesized cobalt phosphides were in nanostructures with large catalytic surface areas. The catalyst prepared from phosphidation of cobalt(II) acetate exhibited an improved catalytic activity as compared to its counterpart derived from phosphidation of cobalt(II) acetylacetonate, showing an overpotential of 160 and 175 mV in acidic and alkaline electrolytes, respectively. Both catalysts also displayed an enhanced long-term stability, especially in the alkaline electrolyte. This study illustrates the direct phosphidation behavior of cobalt salts, which serve as a good vantage point in realizing the large-scale synthesis of transition-metal phosphides for high-performance electrocatalysts.
Catalytic liquid-phase nitrite reduction: Kinetics and catalyst deactivation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pintar, A.; Bercic, G.; Levec, J.
1998-10-01
Liquid-phase reduction using a solid catalyst provides a potential technique for the removal of nitrites from waters. Activity and selectivity measurements were performed for a wide range of reactant concentrations and reaction conditions in an isothermal semi-batch slurry reactor, which was operated at temperatures below 298 K and atmospheric pressure. The effects of catalyst loading and initial nitrite concentration on the reaction rate were also investigated. The Pd monometallic catalysts were found to be advantageous over the Pd-Cu bimetallic catalyst with respect to either reaction activity or selectivity. Among the catalysts tested, minimum ammonia formation was observed for the Pd(1more » wt.%)/{gamma}-Al{sub 2}O{sub 3} catalyst. The proposed intrinsic rate expression for nitrite disappearance over the most selective catalyst is based on the steady-state adsorption model of Hinshelwood, which accounts for a dissociative hydrogen adsorption step on the catalyst surface and an irreversible surface reaction step between adsorbed hydrogen species and nitrite ions in the Helmholtz layer. Both processes occur at comparable rates. An exponential decay in the activity of Pd(1 wt. %)/{gamma}-Al{sub 2}O{sub 3} catalyst has been observed during the liquid-phase nitrite reduction. This is attributed to the catalyst surface deprotonation, which occurs due to the partial neutralization of stoichiometrically produced hydroxide ions with carbon dioxide.« less
Hydrogen production from carbonaceous material
Lackner, Klaus S.; Ziock, Hans J.; Harrison, Douglas P.
2004-09-14
Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.
NASA Astrophysics Data System (ADS)
Wissmeier, L. C.; Barry, D. A.
2009-12-01
Computer simulations of water availability and quality play an important role in state-of-the-art water resources management. However, many of the most utilized software programs focus either on physical flow and transport phenomena (e.g., MODFLOW, MT3DMS, FEFLOW, HYDRUS) or on geochemical reactions (e.g., MINTEQ, PHREEQC, CHESS, ORCHESTRA). In recent years, several couplings between both genres of programs evolved in order to consider interactions between flow and biogeochemical reactivity (e.g., HP1, PHWAT). Software coupling procedures can be categorized as ‘close couplings’, where programs pass information via the memory stack at runtime, and ‘remote couplings’, where the information is exchanged at each time step via input/output files. The former generally involves modifications of software codes and therefore expert programming skills are required. We present a generic recipe for remotely coupling the PHREEQC geochemical modeling framework and flow and solute transport (FST) simulators. The iterative scheme relies on operator splitting with continuous re-initialization of PHREEQC and the FST of choice at each time step. Since PHREEQC calculates the geochemistry of aqueous solutions in contact with soil minerals, the procedure is primarily designed for couplings to FST’s for liquid phase flow in natural environments. It requires the accessibility of initial conditions and numerical parameters such as time and space discretization in the input text file for the FST and control of the FST via commands to the operating system (batch on Windows; bash/shell on Unix/Linux). The coupling procedure is based on PHREEQC’s capability to save the state of a simulation with all solid, liquid and gaseous species as a PHREEQC input file by making use of the dump file option in the TRANSPORT keyword. The output from one reaction calculation step is therefore reused as input for the following reaction step where changes in element amounts due to advection/dispersion are introduced as irreversible reactions. An example for the coupling of PHREEQC and MATLAB for the solution of unsaturated flow and transport is provided.
Chang, Chen-Wei; Webb, Colin
2017-03-01
Lignocellulosic materials, mostly from agricultural and forestry residues, provide a potential renewable resource for sustainable biorefineries. Reducing sugars can be produced only after a pre-treatment stage, which normally involves chemicals but can be biological. In this case, two steps are usually necessary: solid-state cultivation of fungi for deconstruction, followed by enzymatic hydrolysis using cellulolytic enzymes. In this research, the utilisation of solid-state bioprocessing using the fungus Trichoderma longibrachiatum was implemented as a simultaneous microbial pretreatment and in-situ enzyme production method for fungal autolysis and further enzyme hydrolysis of fermented solids. Suspending the fermented solids in water at 50°C led to the highest hydrolysis yields of 226mg/g reducing sugar and 7.7mg/g free amino nitrogen (FAN). The resultant feedstock was shown to be suitable for the production of various products including ethanol. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kabbani, Mohamad A.
In its first part, this thesis deals with ambient mechanochemical solid-state reactions of differently functionalized multiple walled carbon nanotubes (MWCNTs) while in its second part it investigates the cross-linking reactions of CNTs in solution via covalent coordinate bonds with transitions metals and carboxylate groups decorating their surfaces. In the first part a series of mechanochemical reactions involving different reactive functionalities on the CNTs such as COOH/OH, COOH/NH2 and COCl/OH were performed. The solid-state unzipping of CNTs leading to graphene formation was confirmed using spectroscopic, thermal and electron microscopy techniques. The non-grapheme products were established using in-situ quadruple mass spectroscopy. The experimental results were confirmed by theoretical simulation calculations using the 'hot spots' protocol. The kinetics of the reaction between MWCNT-COOH and MWCNT-OH was monitored using variable temperature Raman spectroscopy. The low activation energy was discussed in terms of hydrogen bond mediated proton transfer mechanism. The second part involves the reaction of MWCNTII COOH with Zn (II) and Cu (II) to form CNT metal-organic frame (MOFs) products that were tested for their effective use as counter-electrodes in dyes sensitized solar cells (DSSC). The thesis concludes by the study of the room temperature reaction between the functionalized graphenes, GOH and G'-COOH followed by the application of compressive loads. The 3D solid graphene pellet product ( 0.6gm/cc) is conductive and reflective with a 35MPa ultimate strength as compared to 10MPa strength of graphite electrode ( 2.2gm/cc).
Sintering of BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) with/without SrTiO3 Dopant
NASA Technical Reports Server (NTRS)
Dynys, F.; Sayir, A.; Heimann, P. J.
2004-01-01
The perovskite composition, BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta), displays excellent protonic conduction at high temperatures making it a desirable candidate for hydrogen separation membranes. This paper reports on the sintering behavior of BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) powders doped with SrTiO3. Two methods were used to synthesize BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) powders: (1) solid state reaction and (2) wet chemical co-precipitation. Co-precipitated powder crystallized into the perovskite phase at 1000 C for 4 hrs. Complete reaction and crystallization of the perovskite phase by solid state was achieved by calcining at 1200 C for 24 hrs. Solid state synthesis produced a coarser powder with an average particle size of 1.3 microns and surface area of 0.74 sq m/g. Co-precipitation produced a finer powder with a average particle size of 65 nm and surface area of 14.9 sq m/g. Powders were doped with 1, 2, 5, and 10 mole % SrTiO3. Samples were sintered at 1450 C, 1550 C and 1650 C. SrTiO3 enhances sintering, optimal dopant level is different for powders synthesized by solid state and co-precipitation. Both powders exhibit similar grain growth behavior. Dopant levels of 5 and 10 mole % SrTiO3 significantly enhances the grain size.
Analysis of borderline substitution/electron transfer pathways from direct ab initio MD simulations
NASA Astrophysics Data System (ADS)
Yamataka, Hiroshi; Aida, Misako; Dupuis, Michel
2002-02-01
Ab initio molecular dynamics simulations were carried out for the borderline reaction pathways in the reaction of CH 2O rad - with CH 3Cl. The simulations reveal distinctive features of three types of mechanisms passing through the S N2-like transition state (TS): (i) a direct formation of S N2 products, (ii) a direct formation of ET products, and (iii) a two-step formation of ET products via the S N2 valley. The direct formation of the ET product through the S N2-like TS appears to be more favorable at higher temperatures. The two-step process depends on the amount of energy that goes into the C-C stretching mode.
Synthesis of ST7612AA1, a Novel Oral HDAC Inhibitor, via Radical Thioacetic Acid Addition.
Battistuzzi, Gianfranco; Giannini, Giuseppe
2016-12-01
In the expanding field of anticancer drugs, HDAC inhibitors are playing an increasingly important role. To date, four/five HDAC inhibitors have been approved by FDA. All these compounds fit the widely accepted HDAC inhibitors pharmacophore model characterized by a cap group, a linker chain and a zinc binding group (ZBG), able to bind the Zn 2+ ion in a pocket of the HDAC active site. Romidepsin, a natural compound, is the only thiol derivative. We have selected a new class of synthetic HDAC inhibitors, the thio-ω(lactam-carboxamide) derivatives, with ST7612AA1 as drug candidate, pan-inhibitor active in the range of single- to two-digit nanomolar concentrations. Preliminary results of a synthetic optimization attempt towards a fast scale-up process are here proposed. In the four steps of synthesis, from unsaturated amino acid intermediate to the final product, we explored different synthetic conditions in order to have a transferable process for a scale-up synthetic laboratory. In the first step, isobutyl chloroformate was used and, after a simple work up with 1M HCl, 2 (96% yield) was obtained as a white solid, which was used directly in the next step. For thioacetic acid addition to the double bond of intermediate 2 , two different routes were possible, with addition reaction in the first (D') or last step (D). Reactions of 2 to give 5 or of 4 to give ST7612AA1 were both performed in dioxane. Reactions were fast and did not need the usually advised radical quenching with cyclohexene. The corresponding products were obtained in good yields (step D', 89%; step D, 81%) after a flash chromatography. , a thiol derivative prodrug of ST7464AA1 , is the first of a new generation of HDAC inhibitors, very potent, orally administered, and well tolerated. Here, we have identified a synthetic route, competitive, versatile and easily transferable to industrial processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwak, Ja Hun; Hu, Jian Z.; Hoyt, David W.
2010-03-11
Ex situ solid state NMR was used for the first time to study fundamental mineral carbonation processes and reaction extent relevant to geologic carbon sequestration (GCS) using a model silicate mineral forsterite (Mg2SiO4)+supercriticalCO2 with and without H2O. Run conditions were 80 C and 96 atm. 29Si NMR clearly shows that in the absence of CO2, the role of H2O is to hydrolyze surface Mg-O-Si bonds to produce dissolved Mg2+, and mono- and oligomeric hydroxylated silica species. Surface hydrolysis products contain only Q0 (Si(OH)4) and Q1(Si(OH)3OSi) species. An equilibrium between Q0, Q1 and Mg2+ with a saturated concentration equivalent to lessmore » than 3.2% of the Mg2SiO4 conversion is obtained at a reaction time of up to 7 days. Using scCO2 without H2O, no reaction is observed within 7 days. Using both scCO2 and H2O, the surface reaction products for silica are mainly Q3 (SiOH(OSi)3) species accompanied by a lesser amount of Q2 (Si(OH)2(OSi)2) and Q4 (Si(OSi)4). However, no Q0 and Q1 were detected, indicating the carbonic acid formation/deprotonation and magnesite (MgCO3) precipitation reactions are faster than the forsterite hydrolysis process. Thus it can be concluded that the Mg2SiO4 hydrolysis process is the rate limiting step of the overall mineral carbonation process. 29Si NMR combined with XRD, TEM, SAED and EDX further reveal that the reaction is a surface reaction with the Mg2SiO4 crystallite in the core and with condensed Q2-Q4 species forming amorphous surface layers. 13C MAS NMR identified a possible reaction intermediate as (MgCO3)4-Mg(OH)2-5H2O. However, at long reaction times only crystallite magnesite MgCO3 products are observed.« less
Vibrational Mode-Specific Reaction of Methane with a Nickel Surface
NASA Astrophysics Data System (ADS)
Beck, Rainer
2004-03-01
The dissociation of methane on a nickel catalyst is a key step in steam reforming of natural gas for hydrogen production. Despite substantial effort in both experiment and theory, there is still no atomic scale description of this important gas-surface reaction. To elucidate its dynamics, we have performed quantum state resolved studies of vibrationally excited methane reacting on the Ni(100) surface using pulsed laser and molecular beam techniques. We observed up to a factor of 5 greater reaction probability for methane-d2 with two quanta of excitation in one C-H bond versus a nearly isoenergetic state with one quanta in each of two C-H bonds. The observed reactivities point to a transition state structure which has one of the C-H bonds significantly elongated. Our results also clearly exclude the possibility of statistical models correctly describing the mechanism of this process and emphasize the importance of full-dimensional calculations of the reaction dynamics.
Unsteady combustion of solid propellants
NASA Astrophysics Data System (ADS)
Chung, T. J.; Kim, P. K.
The oscillatory motions of all field variables (pressure, temperature, velocity, density, and fuel fractions) in the flame zone of solid propellant rocket motors are calculated using the finite element method. The Arrhenius law with a single step forward chemical reaction is used. Effects of radiative heat transfer, impressed arbitrary acoustic wave incidence, and idealized mean flow velocities are also investigated. Boundary conditions are derived at the solid-gas interfaces and at the flame edges which are implemented via Lagrange multipliers. Perturbation expansions of all governing conservation equations up to and including the second order are carried out so that nonlinear oscillations may be accommodated. All excited frequencies are calculated by means of eigenvalue analyses, and the combustion response functions corresponding to these frequencies are determined. It is shown that the use of isoparametric finite elements, Gaussian quadrature integration, and the Lagrange multiplier boundary matrix scheme offers a convenient approach to two-dimensional calculations.
NASA Astrophysics Data System (ADS)
Wang, Biqiong; Liu, Jian; Sun, Qian; Li, Ruying; Sham, Tsun-Kong; Sun, Xueliang
2014-12-01
Atomic layer deposition (ALD) has been shown as a powerful technique to build three-dimensional (3D) all-solid-state microbattery, because of its unique advantages in fabricating uniform and pinhole-free thin films in 3D structures. The development of solid-state electrolyte by ALD is a crucial step to achieve the fabrication of 3D all-solid-state microbattery by ALD. In this work, lithium phosphate solid-state electrolytes were grown by ALD at four different temperatures (250, 275, 300, and 325 °C) using two precursors (lithium tert-butoxide and trimethylphosphate). A linear dependence of film thickness on ALD cycle number was observed and uniform growth was achieved at all four temperatures. The growth rate was 0.57, 0.66, 0.69, and 0.72 Å/cycle at deposition temperatures of 250, 275, 300, and 325 °C, respectively. Furthermore, x-ray photoelectron spectroscopy confirmed the compositions and chemical structures of lithium phosphates deposited by ALD. Moreover, the lithium phosphate thin films deposited at 300 °C presented the highest ionic conductivity of 1.73 × 10-8 S cm-1 at 323 K with ˜0.51 eV activation energy based on the electrochemical impedance spectroscopy. The ionic conductivity was calculated to be 3.3 × 10-8 S cm-1 at 26 °C (299 K).
Evidence of a Nonphotochemical Mechanism for the Solid-State Formation of Uranyl Peroxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkegaard, Marie C.; Miskowiec, Andrew J.; Ambrogio, Michael W.
Here, we have demonstrated the solid-state formation of a uranyl peroxide (UP) species from hydrated uranyl fluoride via a uranyl hydroxide intermediate, the first observation of a UP species formed in a solid-state reaction. Water vapor pressure is shown to be a driving factor of both the loss of fluorine and the subsequent formation of peroxo units. We have ruled out a photochemical mechanism for formation of the UP species by demonstrating that the same reaction occurs in the dark. A radiolytic mechanism is unlikely because of the low radioactivity of the sample material, suggesting the existence of a novelmore » UP formation mechanism.« less
Evidence of a Nonphotochemical Mechanism for the Solid-State Formation of Uranyl Peroxide
Kirkegaard, Marie C.; Miskowiec, Andrew J.; Ambrogio, Michael W.; ...
2018-05-10
Here, we have demonstrated the solid-state formation of a uranyl peroxide (UP) species from hydrated uranyl fluoride via a uranyl hydroxide intermediate, the first observation of a UP species formed in a solid-state reaction. Water vapor pressure is shown to be a driving factor of both the loss of fluorine and the subsequent formation of peroxo units. We have ruled out a photochemical mechanism for formation of the UP species by demonstrating that the same reaction occurs in the dark. A radiolytic mechanism is unlikely because of the low radioactivity of the sample material, suggesting the existence of a novelmore » UP formation mechanism.« less
Chase, R.L.
1963-05-01
An electronic fast multiplier circuit utilizing a transistor controlled voltage divider network is presented. The multiplier includes a stepped potentiometer in which solid state or transistor switches are substituted for mechanical wipers in order to obtain electronic switching that is extremely fast as compared to the usual servo-driven mechanical wipers. While this multiplier circuit operates as an approximation and in steps to obtain a voltage that is the product of two input voltages, any desired degree of accuracy can be obtained with the proper number of increments and adjustment of parameters. (AEC)
Time scale of random sequential adsorption.
Erban, Radek; Chapman, S Jonathan
2007-04-01
A simple multiscale approach to the diffusion-driven adsorption from a solution to a solid surface is presented. The model combines two important features of the adsorption process: (i) The kinetics of the chemical reaction between adsorbing molecules and the surface and (ii) geometrical constraints on the surface made by molecules which are already adsorbed. The process (i) is modeled in a diffusion-driven context, i.e., the conditional probability of adsorbing a molecule provided that the molecule hits the surface is related to the macroscopic surface reaction rate. The geometrical constraint (ii) is modeled using random sequential adsorption (RSA), which is the sequential addition of molecules at random positions on a surface; one attempt to attach a molecule is made per one RSA simulation time step. By coupling RSA with the diffusion of molecules in the solution above the surface the RSA simulation time step is related to the real physical time. The method is illustrated on a model of chemisorption of reactive polymers to a virus surface.
Bao, Junwei Lucas; Seal, Prasenjit; Truhlar, Donald G
2015-06-28
The growth of nanodusty particles, which is critical in plasma chemistry, physics, and engineering. The aim of the present work is to understand the detailed reaction mechanisms of early steps in this growth. The polymerization of neutral silane with the silylene or silyl anion, which eliminates molecular hydrogen with the formation of their higher homologues, governs the silicon hydride clustering in nanodusty plasma chemistry. The detailed mechanisms of these important polymerization reactions in terms of elementary reactions have not been proposed yet. In the present work, we investigated the initial steps of these polymerization reactions, i.e., the SiH4 + Si2H4(-)/Si2H5(-) reactions, and we propose a three-step mechanism, which is also applicable to the following polymerization steps. CM5 charges of all the silicon-containing species were computed in order to analyze the character of the species in the proposed reaction mechanisms. We also calculated thermal rate constant of each step using multi-structural canonical variational transition state theory (MS-CVT) with the small-curvature tunneling (SCT) approximation, based on the minimum energy path computed using M08-HX/MG3S electronic structure method.
NASA Astrophysics Data System (ADS)
Liu, Chengsong; Yang, Shufeng; Li, Jingshe; Ni, Hongwei; Zhang, Xueliang
2017-04-01
The aim of this study was to control the physicochemical characteristics of inclusions in steel through appropriate heat treatment. Using a confocal scanning laser microscope (CSLM) and pipe furnace, the solid-state reactions between Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide during heat treatment at 1473 K (1200 °C) and the influence of these reactions on the compositions of and phases in the alloy and oxide were investigated by the diffusion couple method. Suitable pretreatment of the oxide using a CSLM and production of the diffusion couple of Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide gave good contact between the alloy and oxide. The diffusion couple was then sealed in a quartz tube with a piece of Ti foil to lower oxygen partial pressure and a block of Fe-Al-Ca alloy was introduced to conduct heat treatment experiments. Solid-state reactions between the alloy and oxide during heat treatment at 1473 K (1200 °C) were analyzed and discussed. A dynamic model to calculate the width of the particle precipitation zone based on the Wagner model of internal oxidation of metal was proposed. This model was helpful to understand the solid-state reaction mechanism between Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide.
ERIC Educational Resources Information Center
Koga, Nobuyoshi; Goshi, Yuri; Yoshikawa, Masahiro; Tatsuoka, Tomoyuki
2014-01-01
An undergraduate kinetic experiment of the thermal decomposition of solids by microscopic observation and thermal analysis was developed by investigating a suitable reaction, applicable techniques of thermal analysis and microscopic observation, and a reliable kinetic calculation method. The thermal decomposition of sodium hydrogen carbonate is…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greg Sitz
2011-08-12
The 2011 Gordon Conference on Dynamics at Surfaces is the 32nd anniversary of a meeting held every two years that is attended by leading researchers in the area of experimental and theoretical dynamics at liquid and solid surfaces. The conference focuses on the dynamics of the interaction of molecules with either liquid or solid surfaces, the dynamics of the outermost layer of liquid and solid surfaces and the dynamics at the liquid-solid interface. Specific topics that are featured include state-to-state scattering dynamics, chemical reaction dynamics, non-adiabatic effects in reactive and inelastic scattering of molecules from surfaces, single molecule dynamics atmore » surfaces, surface photochemistry, ultrafast dynamics at surfaces, and dynamics at water interfaces. The conference brings together investigators from a variety of scientific disciplines including chemistry, physics, materials science, geology, biophysics, and astronomy.« less
Gold, Raymond; Roberts, James H.
1989-01-01
A solid state track recording type dosimeter is disclosed to measure the time dependence of the absolute fission rates of nuclides or neutron fluence over a period of time. In a primary species an inner recording drum is rotatably contained within an exterior housing drum that defines a series of collimating slit apertures overlying windows defined in the stationary drum through which radiation can enter. Film type solid state track recorders are positioned circumferentially about the surface of the internal recording drum to record such radiation or its secondary products during relative rotation of the two elements. In another species both the recording element and the aperture element assume the configuration of adjacent disks. Based on slit size of apertures and relative rotational velocity of the inner drum, radiation parameters within a test area may be measured as a function of time and spectra deduced therefrom.
An improved external recycle reactor for determining gas-solid reaction kinetics
NASA Technical Reports Server (NTRS)
Miller, Irvin M.; Hoyt, Ronald F.
1987-01-01
These improvements in the recycle system effectively eliminate initial concentration variation by two modifications: (1) a vacuum line connection to the recycle loop which permits this loop to be evacuated and then filled with the test gas mixture to slightly above atmospheric pressure; and (2) a bypass line across the reactor which permits the reactor to be held under vacuum while the rest of the recycle loop is filled with test gas. A three-step procedure for bringing the feed gas mixture into contact with the catalyst at time zero is described.
Solid State Lighting Program (Falcon)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meeks, Steven
2012-06-30
Over the past two years, KLA-Tencor and partners successfully developed and deployed software and hardware tools that increase product yield for High Brightness LED (HBLED) manufacturing and reduce product development and factory ramp times. This report summarizes our development effort and details of how the results of the Solid State Light Program (Falcon) have started to help HBLED manufacturers optimize process control by enabling them to flag and correct identified killer defect conditions at any point of origin in the process manufacturing flow. This constitutes a quantum leap in yield management over current practice. Current practice consists of die dispositioningmore » which is just rejection of bad die at end of process based upon probe tests, loosely assisted by optical in-line monitoring for gross process deficiencies. For the first time, and as a result of our Solid State Lighting Program, our LED manufacturing partners have obtained the software and hardware tools that optimize individual process steps to control killer defects at the point in the processes where they originate. Products developed during our two year program enable optimized inspection strategies for many product lines to minimize cost and maximize yield. The Solid State Lighting Program was structured in three phases: i) the development of advanced imaging modes that achieve clear separation between LED defect types, improves signal to noise and scan rates, and minimizes nuisance defects for both front end and back end inspection tools, ii) the creation of defect source analysis (DSA) software that connect the defect maps from back-end and front-end HBLED manufacturing tools to permit the automatic overlay and traceability of defects between tools and process steps, suppress nuisance defects, and identify the origin of killer defects with process step and conditions, and iii) working with partners (Philips Lumileds) on product wafers, obtain a detailed statistical correlation of automated defect and DSA map overlay to failed die identified using end product probe test results. Results from our two year effort have led to “automated end-to-end defect detection” with full defect traceability and the ability to unambiguously correlate device killer defects to optically detected features and their point of origin within the process. Success of the program can be measured by yield improvements at our partner’s facilities and new product orders.« less
NASA Astrophysics Data System (ADS)
Fouad, D. M.; Ismail, N. M.; El-Gahami, M. A.; Ibrahim, S. A.
2007-06-01
The ligand substitution reactions of dehydroacetic acid (Hdha) in [Fe(dha) 3] with second ligand such as 8-hydroxyquinoline (Hquin), 1,4-dihydroxyanthraquinone (H 2dhaq) and 1,4,5,8-tetra-hydroxyanthraquinone (H 4thaq) were investigated spectrophotometrically by in low polarity solvents like benzene, chloroform and dichloromethane. It is deduced that the substitution reaction takes place through one successive step. The reaction was performed at four different temperatures (5-25) °C, and it exhibits a first order dependence on the concentration of the starting complex. The observed rate constant depends on the concentration of both leaving and entering ligands. The evaluation of the kinetic data gives activation parameters which support an associative mechanism in the transition states and the higher rate of substitution of the dha in Fe(dha) 3 complex is due to entropy effect. The solid complexes were synthesized and characterized by elemental analysis, IR and UV-vis spectral techniques.
ERIC Educational Resources Information Center
Wixtrom, Alex; Buhler, Jessica; Abdel-Fattah, Tarek
2014-01-01
Mechanochemical syntheses avoid or considerably reduce the use of reaction solvents, thus providing green chemistry synthetic alternatives that are both environmentally friendly and economically advantageous. The increased solid-state reactivity generated by mechanical energy imparted to the reactants by grinding or milling can offer alternative…
Cinetica de oxidacion de polimeros conductores: poli-3,4- etilendioxitiofeno
NASA Astrophysics Data System (ADS)
Caballero Romero, Maria
Films of poly-3,4-ethylenedioxythiophene (PEDOT) perchlorate used as electrodes in liquid electrolytes incorporate anions and solvent during oxidation for charge and osmotic balance: the film swells. During reduction the film shrinks, closes its structure trapping counterions getting then rising conformational packed states by expulsion of counterions and solvent. Here by potential step from the same reduced initial state to the same oxidized final state the rate coefficient, the activation energy and reaction orders related to the counterion concentration in solution and to the concentration of active centers in the polymer film, were attained following the usual methodology used for chemical and electrochemical kinetics. Now the full methodology was repeated using different reduced-shrunk or reduced-conformational compacted initial states every time. Those initial states were attained by reduction of the oxidized film at rising cathodic potentials for the same reduction time each. Rising reduced and conformational compacted states give slower subsequent oxidation rates by potential step to the same anodic potential every time. The activation energy, the reaction coefficient and reaction orders change for rising conformational compacted initial states. Decreasing rate constants and increasing activation energies are obtained for the PEDOT oxidation from increasing conformational compacted initial states. The experimental activation energy presents two linear ranges as a function of the initial reduced-compacted state. Using as initial states for the oxidation open structures attained by reduction at low cathodic potentials, activation energies attained were constant: namely the chemical activation energy. Using as initial states for the oxidation deeper reduced, closed and packed conformational structures, the activation energy includes two components: the constant chemical energy plus the conformational energy required to relax the conformational structure generating free volume which allows the entrance of the balancing counterions required for the reaction. The conformational energy increases linearly as a function of the reduction-compaction potential. The kinetic magnitudes include conformational and structural information. The Chemical Kinetics becomes Structural (or conformational) Chemical Kinetics.
Goethite Bench-scale and Large-scale Preparation Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josephson, Gary B.; Westsik, Joseph H.
2011-10-23
The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetiummore » that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the ferrous ion, Fe{sup 2+}-Fe{sup 2+} is oxidized to Fe{sup 3+} - in the presence of goethite seed particles. Rhenium does not mimic that process; it is not a strong enough reducing agent to duplicate the TcO{sub 4}{sup -}/Fe{sup 2+} redox reactions. Laboratory tests conducted in parallel with these scaled tests identified modifications to the liquid chemistry necessary to reduce ReO{sub 4}{sup -} and capture rhenium in the solids at levels similar to those achieved by Um (2010) for inclusion of Tc into goethite. By implementing these changes, Re was incorporated into Fe-rich solids for testing at VSL. The changes also changed the phase of iron that was in the slurry product: rather than forming goethite ({alpha}-FeOOH), the process produced magnetite (Fe{sub 3}O{sub 4}). Magnetite was considered by Pacific Northwest National Laboratory (PNNL) and VSL to probably be a better product to improve Re retention in the melter because it decomposes at a higher temperature than goethite (1538 C vs. 136 C). The feasibility tests at VSL were conducted using Re-rich magnetite. The tests did not indicate an improved retention of Re in the glass during vitrification, but they did indicate an improved melting rate (+60%), which could have significant impact on HLW processing. It is still to be shown whether the Re is a solid solution in the magnetite as {sup 99}Tc was determined to be in goethite.« less
Kim, Minkyung; Lee, Seongsu; Kang, Byoungwoo
2016-03-01
Use of compounds that contain fluorine (F) as electrode materials in lithium ion batteries has been considered, but synthesizing single-phase samples of these compounds is a difficult task. Here, it is demonstrated that a simple scalable single-step solid-state process with additional fluorine source can obtain highly pure LiVPO 4 F. The resulting material with submicron particles achieves very high rate capability ≈100 mAh g -1 at 60 C-rate (1-min discharge) and even at 200 C-rate (18 s discharge). It retains superior capacity, ≈120 mAh g -1 at 10 C charge/10 C discharge rate (6-min) for 500 cycles with >95% retention efficiency. Furthermore, LiVPO 4 F shows low polarization even at high rates leading to higher operating potential >3.45 V (≈3.6 V at 60 C-rate), so it achieves high energy density. It is demonstrated for the first time that highly pure LiVPO 4 F can achieve high power capability comparable to LiFePO 4 and much higher energy density (≈521 Wh g -1 at 20 C-rate) than LiFePO 4 even without nanostructured particles. LiVPO 4 F can be a real substitute of LiFePO 4.
Lee, Dong Ha; Sun, Kyung Chul; Qadir, Muhammad Bilal; Jeong, Sung Hoon
2014-12-01
Dye-sensitized solar cell (DSSC) is an attractive renewable energy technology currently under intense investigation. Electrolyte plays an important role in the photovoltaic performance of the DSSCs and many efforts have been contributed to study different kinds of electrolytes with various characteristics such as liquid electrolytes, polymer electrolytes and so on. In this study, DSSC is developed by using quasi-solid electrolyte and a novel procedure is adopted for filling this electrolyte. The quasi-solid-state electrolyte was prepared by mixing Poly ethylene oxide (PEO) and bismaleimide together and constitution was taken as PEO (15 wt%) at various bismaleimide concentrations (1, 3, 5 wt%). The novel procedure of filling electrolyte consists of three major steps (first step: filling liquid electrolyte, second step: vaporization of liquid electrolyte, third step: refilling quasi-solid-state electrolyte). The electrochemical and photovoltaic performances of DSSCs with these electrolytes were also investigated. The electrochemical impedance spectroscopy (EIS) indicated that TiO2/Dye/electrolyte impedance is reduced and electron lifetime is increased, and consequently efficiency of cell has been improved after using this novel procedure. The photovoltaic power conversion efficiency of 6.39% has been achieved under AM 1.5 simulated sunlight (100 W/cm2) through this novel procedure and by using specified blend of polymers.
Kuklja, M M; Kotomin, E A; Merkle, R; Mastrikov, Yu A; Maier, J
2013-04-21
Solid oxide fuel cells (SOFC) are under intensive investigation since the 1980's as these devices open the way for ecologically clean direct conversion of the chemical energy into electricity, avoiding the efficiency limitation by Carnot's cycle for thermochemical conversion. However, the practical development of SOFC faces a number of unresolved fundamental problems, in particular concerning the kinetics of the electrode reactions, especially oxygen reduction reaction. We review recent experimental and theoretical achievements in the current understanding of the cathode performance by exploring and comparing mostly three materials: (La,Sr)MnO3 (LSM), (La,Sr)(Co,Fe)O3 (LSCF) and (Ba,Sr)(Co,Fe)O3 (BSCF). Special attention is paid to a critical evaluation of advantages and disadvantages of BSCF, which shows the best cathode kinetics known so far for oxides. We demonstrate that it is the combined experimental and theoretical analysis of all major elementary steps of the oxygen reduction reaction which allows us to predict the rate determining steps for a given material under specific operational conditions and thus control and improve SOFC performance.
Taikar, D R; Joshi, C P; Moharil, S V
2017-09-01
Modified synthesis and luminescence of Y 2 BaZnO 5 phosphors activated with the rare earths (RE) Eu 3 + , Tb 3 + , Pr 3 + and Sm 3 + are reported. RE 2 BaZnO 5 phosphors have attracted attention because of their interesting magnetic and optical properties; and are usually prepared using a two-step solid-state reaction. In the first step, carbonates or similar precursors are thoroughly mixed and heated at 900°C to decompose them to oxides. To eliminate the unwanted phases like BaRE 2 O 4 , the resulting powders are reheated at 1100°C for a long time. We prepared Y 2 BaZnO 5 phosphors activated with various activators by replacing the first step with combustion synthesis. The photoluminescence results are presented. The photoluminescence results for Eu 3 + , Tb 3 + and Pr 3 + are in good agreement with the literature. However, photoluminescence emission from Sm 3 + has not been documented previously. The excitation spectrum of Eu 3 + is dominated by a charge transfer band around 261 nm, and an additional band around 238 nm is always present, irrespective of the type of activator. The presence of this band for all these different types of activators was interpreted as host absorption. Copyright © 2016 John Wiley & Sons, Ltd.
Titration of a Solid Acid Monitored by X-Ray Diffraction
ERIC Educational Resources Information Center
Dungey, Keenan E.; Epstein, Paul
2007-01-01
An experiment is described to introduce students to an important class of solid-state reactions while reinforcing concepts of titration by using a pH meter and a powder X-ray diffractometer. The experiment was successful in teaching students the abstract concepts of solid-state structure and diffraction by applying the diffraction concepts learned…
Alternating electron and proton transfer steps in photosynthetic water oxidation
Klauss, André; Haumann, Michael; Dau, Holger
2012-01-01
Water oxidation by cyanobacteria, algae, and plants is pivotal in oxygenic photosynthesis, the process that powers life on Earth, and is the paradigm for engineering solar fuel–production systems. Each complete reaction cycle of photosynthetic water oxidation requires the removal of four electrons and four protons from the catalytic site, a manganese–calcium complex and its protein environment in photosystem II. In time-resolved photothermal beam deflection experiments, we monitored apparent volume changes of the photosystem II protein associated with charge creation by light-induced electron transfer (contraction) and charge-compensating proton relocation (expansion). Two previously invisible proton removal steps were detected, thereby filling two gaps in the basic reaction-cycle model of photosynthetic water oxidation. In the S2 → S3 transition of the classical S-state cycle, an intermediate is formed by deprotonation clearly before electron transfer to the oxidant (). The rate-determining elementary step (τ, approximately 30 µs at 20 °C) in the long-distance proton relocation toward the protein–water interface is characterized by a high activation energy (Ea = 0.46 ± 0.05 eV) and strong H/D kinetic isotope effect (approximately 6). The characteristics of a proton transfer step during the S0 → S1 transition are similar (τ, approximately 100 µs; Ea = 0.34 ± 0.08 eV; kinetic isotope effect, approximately 3); however, the proton removal from the Mn complex proceeds after electron transfer to . By discovery of the transient formation of two further intermediate states in the reaction cycle of photosynthetic water oxidation, a temporal sequence of strictly alternating removal of electrons and protons from the catalytic site is established. PMID:22988080
Alternating electron and proton transfer steps in photosynthetic water oxidation.
Klauss, André; Haumann, Michael; Dau, Holger
2012-10-02
Water oxidation by cyanobacteria, algae, and plants is pivotal in oxygenic photosynthesis, the process that powers life on Earth, and is the paradigm for engineering solar fuel-production systems. Each complete reaction cycle of photosynthetic water oxidation requires the removal of four electrons and four protons from the catalytic site, a manganese-calcium complex and its protein environment in photosystem II. In time-resolved photothermal beam deflection experiments, we monitored apparent volume changes of the photosystem II protein associated with charge creation by light-induced electron transfer (contraction) and charge-compensating proton relocation (expansion). Two previously invisible proton removal steps were detected, thereby filling two gaps in the basic reaction-cycle model of photosynthetic water oxidation. In the S(2) → S(3) transition of the classical S-state cycle, an intermediate is formed by deprotonation clearly before electron transfer to the oxidant (Y Z OX). The rate-determining elementary step (τ, approximately 30 µs at 20 °C) in the long-distance proton relocation toward the protein-water interface is characterized by a high activation energy (E(a) = 0.46 ± 0.05 eV) and strong H/D kinetic isotope effect (approximately 6). The characteristics of a proton transfer step during the S(0) → S(1) transition are similar (τ, approximately 100 µs; E(a) = 0.34 ± 0.08 eV; kinetic isotope effect, approximately 3); however, the proton removal from the Mn complex proceeds after electron transfer to . By discovery of the transient formation of two further intermediate states in the reaction cycle of photosynthetic water oxidation, a temporal sequence of strictly alternating removal of electrons and protons from the catalytic site is established.
Processes and kinetics of Cd2+ sorption by a calcareous aquifer sand
Fuller, C.C.; Davis, J.A.
1987-01-01
The rate of Cd2+ sorption by a calcareous aquifer sand was characterized by two reaction steps, with the first step reaching completion in 24 hours. The second step proceeded at a slow and nearly constant rate for at least seven days. The first step includes a fast adsorption reaction which is followed by diffusive transport into either a disordered surface film of hydrated calcium carbonate or into pore spaces. After 24 hours the rate of Cd2+ sorption was constant and controlled by the rate of surface coprecipitation, as a solid solution of CdCO3 in CaCO3 formed in recrystallizing material. Desorption of Cd2+ from the sand was slow. Clean grains of primary minerals, e.g. quartz and aluminosilicates. sorbed much less Cd2+ than grains which had surface patches of secondary minerals, e.g. carbonates, iron and manganese oxides. Calcite grains sorbed the greatest amount of Cd2+ on a weight-normalized basis despite the greater abundance of quartz. A method is illustrated for determining empirical binding constants for trace metals at in situ pH values without introducing the experimental problem of supersaturation. The binding constants are useful for solute transport models which include a computation of aqueous speciation. ?? 1987.
Lelièvre, Dominique; Terrier, Victor P; Delmas, Agnès F; Aucagne, Vincent
2016-03-04
The Fmoc-based solid phase synthesis of C-terminal cysteine-containing peptides is problematic, due to side reactions provoked by the pronounced acidity of the Cα proton of cysteine esters. We herein describe a general strategy consisting of the postsynthetic introduction of the C-terminal Cys through a key chemoselective native chemical ligation reaction with N-Hnb-Cys peptide crypto-thioesters. This method was successfully applied to the demanding peptide sequences of two natural products of biological interest, giving remarkably high overall yields compared to that of a state of the art strategy.
He, Xiangming; Wang, Jixian; Dai, Zhongjia; Wang, Li; Tian, Guangyu
2016-01-01
LiMnxFe1−xPO4/C material has been synthesized through a facile solid-state reaction under the condition of carbon coating, using solvothermal-prepared LiMnPO4 and LiFePO4 as precursors and sucrose as a carbon resource. XRD and element distribution analysis reveal completed solid-state reaction of precursors. LiMnxFe1−xPO4/C composites inherit the morphology of precursors after heat treatment without obvious agglomeration and size increase. LiMnxFe1−xPO4 solid solution forms at low temperature around 350 °C, and Mn2+/Fe2+ diffuse completely within 1 h at 650 °C. The LiMnxFe1−xPO4/C (x < 0.8) composite exhibits a high-discharge capacity of over 120 mAh·g−1 (500 Wh·kg−1) at low C-rates. This paves a way to synthesize the crystal-optimized LiMnxFe1−xPO4/C materials for high performance Li-ion batteries. PMID:28773887
A novel solid state photocatalyst for living radical polymerization under UV irradiation
NASA Astrophysics Data System (ADS)
Fu, Qiang; McKenzie, Thomas G.; Ren, Jing M.; Tan, Shereen; Nam, Eunhyung; Qiao, Greg G.
2016-02-01
This study presents the development of a novel solid state photocatalyst for the photoinduced controlled radical polymerization of methacrylates under mild UV irradiation (λmax ≈ 365 nm) in the absence of conventional photoinitiators, metal-catalysts or dye sensitizers. The photocatalyst design was based on our previous finding that organic amines can act in a synergistic photochemical reaction with thiocarbonylthio compounds to afford well controlled polymethacrylates under UV irradiation. Therefore, in the current contribution an amine-rich polymer was covalently grafted onto a solid substrate, thus creating a heterogeneous catalyst that would allow for facile removal, recovery and recyclability when employed for such photopolymerization reactions. Importantly, the polymethacrylates synthesized using the solid state photocatalyst (ssPC) show similarly excellent chemical and structural integrity as those catalysed by free amines. Moreover, the ssPC could be readily recovered and re-used, with multiple cycles of polymerization showing minimal effect on the integrity of the catalyst. Finally, the ssPC was employed in various photo-“click” reactions, permitting high yielding conjugations under photochemical control.
Acevedo, Nuria C; Schebor, Carolina; Buera, Pilar
2008-06-01
Non-enzymatic browning (NEB) development was studied in dehydrated potato at 70°C. It was related to the macroscopic and molecular properties and to water-solid interactions over a wide range of water activities. Time resolved (1)H NMR, thermal transitions and water sorption isotherms were evaluated. Although non-enzymatic browning could be detected in the glassy state; colour development was higher in the supercooled state. The reaction rate increased up to a water content of 26g/100g of solids (aw=0.84) and then decreased at higher water contents, concomitantly with the increase of water proton mobility. The joint analyses of NEB kinetics, water sorption isotherm and proton relaxation behaviour made it evident that the point at which the reaction rate decreased, after a maximum value, could be related to the appearance of highly mobile water. The results obtained in this work indicate that the prediction of chemical reaction kinetics can be performed through the integrated analysis of water sorption, water and solids mobility and the physical state of the matrix. Copyright © 2007 Elsevier Ltd. All rights reserved.
Shimizu, Taiyo; Kanamori, Kazuyoshi; Maeno, Ayaka; Kaji, Hironori; Doherty, Cara M; Nakanishi, Kazuki
2017-05-09
Transparent, low-density ethenylene-bridged polymethylsiloxane [Ethe-BPMS, O 2/2 (CH 3 )Si-CH═CH-Si(CH 3 )O 2/2 ] aerogels from 1,2-bis(methyldiethoxysilyl)ethene have successfully been synthesized via a sol-gel process. A two-step sol-gel process composed of hydrolysis under acidic conditions and polycondensation under basic conditions in a liquid surfactant produces a homogeneous pore structure based on cross-linked nanosized colloidal particles. Visible-light transmittance of the aerogels varies with the concentration of the base catalyst and reaches as high as 87% (at a wavelength of 550 nm for a 10 mm thick sample). Gelation and aging temperature strongly affect the deformation behavior of the resultant aerogels against uniaxial compression, and the obtained aerogels prepared at 80 °C show high elasticity after being unloaded. This highly resilient behavior is primarily derived from the rigidity of ethenylene groups, which is confirmed by a comparison with other aerogels with similar molecular structures, ethylene-bridged polymethylsiloxane and polymethylsilsesquioxane. Applicability of the addition reaction using a Diels-Alder reaction of benzocyclobutene has also been investigated, revealing that a successful addition takes place on the ethenylene linkings, which is verified using Raman and solid-state NMR spectroscopies. Insights into the effect of molecular structure on mechanical properties and the availability of surface functionalization provided in this study are important for realizing transparent aerogels with the desired functionality.
Method and apparatus for semi-solid material processing
Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN
2009-02-24
A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming machine.
Method and apparatus for semi-solid material processing
Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN
2009-11-24
A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming maching.
Method and apparatus for semi-solid material processing
Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN
2007-05-15
A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming machine.
Samuvel, K; Ramachandran, K
2015-07-05
This study examined the effects of the combination of starting materials on the properties of solid-state reacted BaTiO3 using two different types of BaCO3 and TiO2. In addition, the effect of mechanochemical activation by high energy milling and the Ba/Ti molar ratio on the reaction temperature, particle size and tetragonality were investigated. The TiO2 phase and size plays a major role in increasing the reaction temperature and particle size. With the optimum selection of starting materials and processing conditions, BaTiO3 with a particle size <200 nm (Scherrer's formula) and a tetragonality c/a of approximately 1.007 was obtained. Broadband dielectric spectroscopy is applied to investigate the electrical properties of disordered perovskite-like ceramics in a wide temperature range. From the X-ray diffraction analysis it was found that the newly obtained BaTi0.5Fe0.5O3 ceramics consist of two chemically different phases. The electric modulus M∗ formalism used in the analysis enabled us to distinguish and separate the relaxation processes, dominated by marked conductivity in the ε∗(ω) representation. Interfacial effects on the dielectric properties of the samples have been understood by Cole-Cole plots in complex impedance and modulus formalism. Modulus formalism has identified the effects of both grain and grain boundary microstructure on the dielectric properties, particularly in solid state routed samples. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Samuvel, K.; Ramachandran, K.
2015-07-01
This study examined the effects of the combination of starting materials on the properties of solid-state reacted BaTiO3 using two different types of BaCO3 and TiO2. In addition, the effect of mechanochemical activation by high energy milling and the Ba/Ti molar ratio on the reaction temperature, particle size and tetragonality were investigated. The TiO2 phase and size plays a major role in increasing the reaction temperature and particle size. With the optimum selection of starting materials and processing conditions, BaTiO3 with a particle size <200 nm (Scherrer's formula) and a tetragonality c/a of approximately 1.007 was obtained. Broadband dielectric spectroscopy is applied to investigate the electrical properties of disordered perovskite-like ceramics in a wide temperature range. From the X-ray diffraction analysis it was found that the newly obtained BaTi0.5Fe0.5O3 ceramics consist of two chemically different phases. The electric modulus M∗ formalism used in the analysis enabled us to distinguish and separate the relaxation processes, dominated by marked conductivity in the ε∗(ω) representation. Interfacial effects on the dielectric properties of the samples have been understood by Cole-Cole plots in complex impedance and modulus formalism. Modulus formalism has identified the effects of both grain and grain boundary microstructure on the dielectric properties, particularly in solid state routed samples.
Method of detecting sulfur dioxide
Spicer, Leonard D.; Bennett, Dennis W.; Davis, Jon F.
1985-01-01
(CH.sub.3).sub.3 SiNSO is produced by the reaction of ((CH.sub.3).sub.3 Si).sub.2 NH with SO.sub.2. Also produced in the reaction are ((CH.sub.3).sub.3 Si).sub.2 O and a new solid compound [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ]. Both (CH.sub.3).sub.3 SiNSO and [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ] have fluorescent properties. The reaction of the subject invention is used in a method of measuring the concentration of SO.sub.2 pollutants in gases. By the method, a sample of gas is bubbled through a solution of ((CH.sub.3).sub.3 Si).sub.2 NH, whereby any SO.sub.2 present in the gas will react to produce the two fluorescent products. The measured fluorescence of these products can then be used to calculate the concentration of SO.sub.2 in the original gas sample. The solid product [NH.sub.4][(CH.sub.3).sub.3 SiOSO.sub.2 ] may be used as a standard in solid state NMR spectroscopy.
Prabhavathi Devi, B L A; Vijai Kumar Reddy, T; Vijaya Lakshmi, K; Prasad, R B N
2014-02-01
Simultaneous esterification and transesterification method is employed for the preparation of biodiesel from 7.5% free fatty acid (FFA) containing karanja (Pongamia glabra) oil using water resistant and reusable carbon-based solid acid catalyst derived from glycerol in a single step. The optimum reaction parameters for obtaining biodiesel in >99% yield by simultaneous esterification and transesterification are: methanol (1:45 mole ratio of oil), catalyst 20wt.% of oil, temperature 160°C and reaction time of 4h. After the reaction, the catalyst was easily recovered by filtration and reused for five times with out any deactivation under optimized conditions. This single-step process could be a potential route for biodiesel production from high FFA containing oils by simplifying the procedure and reducing costs and effluent generation. Copyright © 2013 Elsevier Ltd. All rights reserved.
A template-free solid-state synthesis of a morphologically controlled and highly organized iron(III)oxide micro–mesoporous Fenton catalyst has been engineered through a simple two-step synthetic procedure. The 3D nanoassembly of hematite nanoparticles (5–7 nm) organized into a ro...
Transient Numerical Modeling of Catalytic Channels
NASA Technical Reports Server (NTRS)
Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.
2007-01-01
This paper presents a transient model of catalytic combustion suitable for isolated channels and monolith reactors. The model is a lumped two-phase (gas and solid) model where the gas phase is quasi-steady relative to the transient solid. Axial diffusion is neglected in the gas phase; lateral diffusion, however, is accounted for using transfer coefficients. The solid phase includes axial heat conduction and external heat loss due to convection and radiation. The combustion process utilizes detailed gas and surface reaction models. The gas-phase model becomes a system of stiff ordinary differential equations while the solid phase reduces, after discretization, into a system of stiff ordinary differential-algebraic equations. The time evolution of the system came from alternating integrations of the quasi-steady gas and transient solid. This work outlines the numerical model and presents some sensitivity studies on important parameters including internal transfer coefficients, catalytic surface site density, and external heat-loss (if applicable). The model is compared to two experiments using CO fuel: (1) steady-state conversion through an isothermal platinum (Pt) tube and (2) transient propagation of a catalytic reaction inside a small Pt tube. The model requires internal mass-transfer resistance to match the experiments at lower residence times. Under mass-transport limited conditions, the model reasonably predicted exit conversion using global mass-transfer coefficients. Near light-off, the model results did not match the experiment precisely even after adjustment of mass-transfer coefficients. Agreement improved for the first case after adjusting the surface kinetics such that the net rate of CO adsorption increased compared to O2. The CO / O2 surface mechanism came from a sub-set of reactions in a popular CH4 / O2 mechanism. For the second case, predictions improved for lean conditions with increased external heat loss or adjustment of the kinetics as in the first case. Finally, the results show that different initial surface-species distribution leads to different steady-states under certain conditions. These results demonstrate the utility of a lumped two-phase model of a transient catalytic combustor with detailed chemistry.
Qiao, Yan; Han, Keli; Zhan, Chang-Guo
2013-01-01
The pharmacological function of heroin requires an activation process which transforms heroin into 6-monoacetylmorphine (6-MAM) which is the most active form. The primary enzyme responsible for this activation process in human plasma is butyrylcholinesterase (BChE). The detailed reaction pathway of the activation process via BChE-catalyzed hydrolysis has been explored computationally, for the first time, in the present study by performing molecular dynamics simulation and first-principles quantum mechanical/molecular mechanical free energy calculations. It has been demonstrated that the whole reaction process includes acylation and deacylation stages. The acylation consists of two reaction steps, i.e. the nucleophilic attack on the carbonyl carbon of 3-acetyl group of heroin by the hydroxyl oxygen of Ser198 side chain and the dissociation of 6-MAM. The deacylation also consists of two reaction steps, i.e. the nucleophilic attack on the carbonyl carbon of the acyl-enzyme intermediate by a water molecule and the dissociation of the acetic acid from Ser198. The calculated free energy profile reveals that the second transition state (TS2) should be rate-determining. The structural analysis reveals that the oxyanion hole of BChE plays an important role in the stabilization of the rate-determining transition state TS2. The free energy barrier (15.9±0.2 or 16.1±0.2 kcal/mol) calculated for the rate-determining step is in good agreement with the experimentally-derived activation free energy (~16.2 kcal/mol), suggesting that the mechanistic insights obtained from the present computational study are reliable. The obtained structural and mechanistic insights could be valuable for use in future rational design of a novel therapeutic treatment of heroin abuse. PMID:23992153
Tang, Xiaohui; Lui, Yu Hui; Merhi, Abdul Rahman; Chen, Bolin; Ding, Shaowei; Zhang, Bowei; Hu, Shan
2017-12-27
To enhance the energy density of solid-state supercapacitors, a novel solid-state cell, made of redox-active poly(vinyl alcohol) (PVA) hydrogel electrolytes and functionalized carbon nanotube-coated cellulose paper electrodes, was investigated in this work. Briefly, acidic PVA-[BMIM]Cl-lactic acid-LiBr and neutral PVA-[BMIM]Cl-sodium acetate-LiBr hydrogel polymer electrolytes are used as catholyte and anolyte, respectively. The acidic condition of the catholyte contributes to suppression of the undesired irreversible reaction of Br - and extension of the oxygen evolution reaction potential to a higher value than that of the redox potential of Br - /Br 3 - reaction. The observed Br - /Br 3 - redox activity at the cathode contributes to enhance the cathode capacitance. The neutral condition of the anolyte helps extend the operating voltage window of the supercapacitor by introducing hydrogen evolution reaction overpotential to the anode. The electrosorption of nascent H on the negative electrode also increases the anode capacitance. As a result, the prepared solid-state hybrid supercapacitor shows a broad voltage window of 1.6 V, with a high Coulombic efficiency of 97.6% and the highest energy density of 16.3 Wh/kg with power density of 932.6 W/kg at 2 A/g obtained. After 10 000 cycles of galvanostatic charge and discharge tests at the current density of 10 A/g, it exhibits great cyclic stability with 93.4% retention of the initial capacitance. In addition, a robust capacitive performance can also be observed from the solid-state supercapacitor at different bending angles, indicating its great potential as a flexible energy storage device.
Calcite phase determination of CaCO3 nanoparticles synthesized by one step drying method
NASA Astrophysics Data System (ADS)
Sulimai, N. H.; Rani, Rozina Abdul; Khusaimi, Z.; Abdullah, S.; Salifairus, M. J.; Alrokayan, Salman; Khan, Haseeb; Rusop, M.
2018-05-01
Calcium Carbonate (CaCO3) is a type of carbonic salt. It exist naturally as white odourless solid and may also be synthesized by chemical reactions. This work studies one-step precipitation of CaCO3 that was prepared by novel method of one-step precipitation method. The method was then proceeded by different types of drying. The first type is by normal drying in oven whereas the second type is with the presence of hydrothermal influence. From the results, precipitated CaCO3 dried by normal drying method produces CaCO3 with two polymorphs present; calcite and vaterite. Normal drying at 500°C has no vaterite phase left. Drying by hydrothermal precipitated CaCO3 has Nitrogen (N) left on the surfaces of the precipitated CaCO3. This work successfully identified calcite phase in the precipitated CaCO3.
Emotional influences on locomotor behavior.
Naugle, Kelly M; Joyner, Jessica; Hass, Chris J; Janelle, Christopher M
2010-12-01
Emotional responses to appetitive and aversive stimuli motivate approach and avoidance behaviors essential for survival. The purpose of the current study was to determine the impact of specific emotional stimuli on forward, approach-oriented locomotion. Steady state walking was assessed while participants walked toward pictures varying in emotional content (erotic, happy people, attack, mutilation, contamination, and neutral). Step length and step velocity were calculated for the first two steps following picture onset. Exposure to the mutilation and contamination pictures shortened the lengths of step one and step two compared to the erotic pictures. Additionally, step velocity was greater during exposure to the erotic pictures compared to (1) the contamination and mutilation pictures for step one and (2) all other picture categories for step two. These findings suggest that locomotion is facilitated when walking toward approach-oriented emotional stimuli but compromised when walking toward aversive emotional stimuli. The data extend our understanding of fundamental interactions among motivational orientations, emotional reactions, and resultant actions. Theoretical and practical implications are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Dielectric properties of layered perovskite Sr1-xAxBi2Nb2O9 ferroelectrics (A=La, Ca and x=0,0.1)
NASA Astrophysics Data System (ADS)
Forbess, M. J.; Seraji, S.; Wu, Y.; Nguyen, C. P.; Cao, G. Z.
2000-05-01
In this letter, we report an experimental study on the influences of 10 at. % Ca2+ and La3+ doping on dielectric properties and dc conductivity of SrBi2Nb2O9 ferroelectric ceramics. All the samples were made by two-step solid-state reaction sintering at temperatures up to 1150 °C for 0.5-1 h in air. X-ray diffraction analysis indicated that single-phase layered perovskite ferroelectrics were obtained and no appreciable secondary phase was found. The Curie point was found to increase from 418 °C without doping to 475 °C with Ca2+ doping and to 480 °C with La3+ doping. Dielectric constants, loss tangent, and dc conductivity of SrBi2Nb2O9 ferroelectrics doped with Ca2+ and La3+ were studied and the relationships among doping, crystal structure, and dielectric properties were discussed.
β-Na2TeO4: Phase Transition from an Orthorhombic to a Monoclinic Form. Reversible CO2 Capture.
Galven, Cyrille; Pagnier, Thierry; Rosman, Noël; Le Berre, Françoise; Crosnier-Lopez, Marie-Pierre
2018-06-18
The present work concerns the tellurate Na 2 TeO 4 which has a 1D structure and could then present a CO 2 capture ability. It has been synthesized in a powder form via a solid-state reaction and structurally characterized by thermal X-ray diffraction experiments, Raman spectroscopy, and differential scanning calorimetry. The room temperature structure corresponds to the β-Na 2 TeO 4 orthorhombic form, and we show that it undergoes a reversible structural transition near 420 °C toward a monoclinic system. Ab initio computations were also performed on the room temperature structure, the Raman vibration modes calculated, and a normal mode attribution proposed. In agreement with our expectations, this sodium oxide is able to trap CO 2 by a two-step mechanism: Na + /H + exchange and carbonation of the released sodium as NaHCO 3 . This capture is reversible since CO 2 can be released upon heating by recombination of the mother phase.
Phase behavior and reactive transport of partial melt in heterogeneous mantle model
NASA Astrophysics Data System (ADS)
Jordan, J.; Hesse, M. A.
2013-12-01
The reactive transport of partial melt is the key process that leads to the chemical and physical differentiation of terrestrial planets and smaller celestial bodies. The essential role of the lithological heterogeneities during partial melting of the mantle is increasingly recognized. How far can enriched melts propagate while interacting with the ambient mantle? Can the melt flow emanating from a fertile heterogeneity be localized through a reactive infiltration feedback in a model without exogenous factors or contrived initial conditions? A full understanding of the role of heterogeneities requires reactive melt transport models that account for the phase behavior of major elements. Previous work on reactive transport in the mantle focuses on trace element partitioning; we present the first nonlinear chromatographic analysis of reactive melt transport in systems with binary solid solution. Our analysis shows that reactive melt transport in systems with binary solid solution leads to the formation of two separate reaction fronts: a slow melting/freezing front along which enthalpy change is dominant and a fast dissolution/precipitation front along which compositional changes are dominated by an ion-exchange process over enthalpy change. An intermediate state forms between these two fronts with a bulk-rock composition and enthalpy that are not necessarily bounded by the bulk-rock composition and enthalpy of either the enriched heterogeneity or the depleted ambient mantle. The formation of this intermediate state makes it difficult to anticipate the porosity changes and hence the stability of reaction fronts. Therefore, we develop a graphical representation for the solution that allows identification of the intermediate state by inspection, for all possible bulk-rock compositions and enthalpies of the heterogeneity and the ambient mantle. We apply the analysis to the partial melting of an enriched heterogeneity. This leads to the formation of moving precipitation front that followes a stationary melting front which creates low porosity intermediate states. Therefore, localization of the melt flow is not observed because the precipitation front is stable and the melting front is always stationary under these conditions. This analysis illustrates the counterintuitive behavior that can arise when the phase behavior is taken into account and is a first step to understanding reactive melt transport and the reactive constraints on channelization in partial melts. ¬¬
Zhang, Xue-Wei; Chen, Shi-Lu
2018-05-11
The initial step of methanogenesis is the fixation of CO 2 to formyl-methanofuran (formyl-MFR) catalyzed by formyl-MFR dehydrogenase, which can be divided into two half reactions. Herein, the second half reaction catalyzed by FwdA (formyl-methanofuran dehydrogenase subunit A), i.e., from formate to formyl-methanofuran, has been investigated using density functional theory and a chemical model based on the X-ray crystal structure. The calculations indicate that, compared with other well-known di-zinc hydrolases, the FwdA reaction employs a reverse mechanism, including the nucleophilic attack of MFR amine on formate carbon leading to a tetrahedral gem-diolate intermediate, two steps of proton transfer from amine to formate moieties assisted by the Asp385, and the CO bond dissociation to form the formyl-MFR product. The second step of proton transfer from the amine moiety to the Asp385 is rate-limiting with an overall barrier of 21.2 kcal/mol. The two zinc ions play an important role in stabilizing the transition states and intermediates, in particular the negative charge at the formate moiety originated from the nucleophilic attack of the MFR amine. The work here appends a crucial piece in the methanogenic mechanistics and advances the understanding of the global carbon cycle. Copyright © 2018 Elsevier Inc. All rights reserved.
Nuclear conversion theory: molecular hydrogen in non-magnetic insulators
NASA Astrophysics Data System (ADS)
Ilisca, Ernest; Ghiglieno, Filippo
2016-09-01
The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main `symmetry-breaking' interactions are brought together. In a typical channel, the electron spin-orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule-solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted `electronic' conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted `nuclear', the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and `continui' of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule-solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures.
Nuclear conversion theory: molecular hydrogen in non-magnetic insulators
Ghiglieno, Filippo
2016-01-01
The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main ‘symmetry-breaking’ interactions are brought together. In a typical channel, the electron spin–orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule–solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted ‘electronic’ conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted ‘nuclear’, the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and ‘continui’ of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule–solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures. PMID:27703681
FLUORIDE VOLATILITY PROCESS FOR THE RECOVERY OF URANIUM
Katz, J.J.; Hyman, H.H.; Sheft, I.
1958-04-15
The separation and recovery of uraniunn from contaminants introduced by neutron irradiation by a halogenation and volatilization method are described. The irradiated uranium is dissolved in bromine trifluoride in the liquid phase. The uranium is converted to the BrF/sub 3/ soluble urmium hexafluoride compound whereas the fluorides of certain contaminating elements are insoluble in liquid BrF/sub 3/, and the reaction rate of the BrF/sub 3/ with certain other solid uranium contamirnnts is sufficiently slower than the reaction rate with uranium that substantial portions of these contaminating elements will remain as solids. These solids are then separated from the solution by a distillation, filtration, or centrifugation step. The uranium hexafluoride is then separated from the balance of the impurities and solvent by one or more distillations.
NASA Astrophysics Data System (ADS)
Serena, S.; Caballero, A.; Turrillas, X.; Martin, D.; Sainz, M. A.
2009-05-01
Calcium zirconate-magnesium oxide material was obtained by solid-state reaction from mixed dolomite (CaMg(CO3)2) and zirconia (m-ZrO2) nanopowders. The nanopowders were obtained by high-energy milling, which produced an increase of the superficial free energy of the particles. The role of nanoparticles in the reaction process of monoclinic-zirconia and dolomite was analysed for the first time using neutron thermodiffraction and differential thermal analysis-thermogravimetric techniques. The neutron thermodiffraction of this mixture provides a clear description in situ of the different decomposition and reaction processes that occur in the nanopowders mixture. The results make it possible to analyze the effect of the nanoparticles on the reaction behaviour of these materials.
Can Chlorine Anion Catalyze the Reaction fo HOCl with HCl?
NASA Technical Reports Server (NTRS)
Richardson, S. L.; Francisco, J. S.; Mebel, A. M.; Morokuma, K.
1997-01-01
The reaction of HOCl + HCl -> Cl2 + H20 in the presence of Cl has been studied using ab initio methods. This reaction has been shown to have a high activation barrier of 46.5 kcal/mol. The chlorine anion, Cl- is found to catalyze the reaction, viz. two mechanisms. The first involves Cl- interacting through the concerted four-center transition state of the neutral reaction. The other mechanism involves the formation of a HCl-HOCl-Cl- intermediate which dissociates into Cl2 + Cl- + H20. The steps are found to have no barriers. The overall exothermicity is 15.5 kcal/mol.
Shen, Aijin; Wei, Jie; Yan, Jingyu; Jin, Gaowa; Ding, Junjie; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao
2017-03-01
An orthogonal two-dimensional solid-phase extraction strategy was established for the selective enrichment of three aminoglycosides including spectinomycin, streptomycin, and dihydrostreptomycin in milk. A reversed-phase liquid chromatography material (C 18 ) and a weak cation-exchange material (TGA) were integrated in a single solid-phase extraction cartridge. The feasibility of two-dimensional clean-up procedure that experienced two-step adsorption, two-step rinsing, and two-step elution was systematically investigated. Based on the orthogonality of reversed-phase and weak cation-exchange procedures, the two-dimensional solid-phase extraction strategy could minimize the interference from the hydrophobic matrix existing in traditional reversed-phase solid-phase extraction. In addition, high ionic strength in the extracts could be effectively removed before the second dimension of weak cation-exchange solid-phase extraction. Combined with liquid chromatography and tandem mass spectrometry, the optimized procedure was validated according to the European Union Commission directive 2002/657/EC. A good performance was achieved in terms of linearity, recovery, precision, decision limit, and detection capability in milk. Finally, the optimized two-dimensional clean-up procedure incorporated with liquid chromatography and tandem mass spectrometry was successfully applied to the rapid monitoring of aminoglycoside residues in milk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reaction pathways of propene pyrolysis.
Qu, Yena; Su, Kehe; Wang, Xin; Liu, Yan; Zeng, Qingfeng; Cheng, Laifei; Zhang, Litong
2010-05-01
The gas-phase reaction pathways in preparing pyrolytic carbon with propene pyrolysis have been investigated in detail with a total number of 110 transition states and 50 intermediates. The structure of the species was determined with density functional theory at B3PW91/6-311G(d,p) level. The transition states and their linked intermediates were confirmed with frequency and the intrinsic reaction coordinates analyses. The elementary reactions were explored in the pathways of both direct and the radical attacking decompositions. The energy barriers and the reaction energies were determined with accurate model chemistry method at G3(MP2) level after an examination of the nondynamic electronic correlations. The heat capacities and entropies were obtained with statistical thermodynamics. The Gibbs free energies at 298.15 K for all the reaction steps were reported. Those at any temperature can be developed with classical thermodynamics by using the fitted (as a function of temperature) heat capacities. It was found that the most favorable paths are mainly in the radical attacking chain reactions. The chain was proposed with 26 reaction steps including two steps of the initialization of the chain to produce H and CH(3) radicals. For a typical temperature (1200 K) adopted in the experiments, the highest energy barriers were found in the production of C(3) to be 203.4 and 193.7 kJ/mol. The highest energy barriers for the production of C(2) and C were found 174.1 and 181.4 kJ/mol, respectively. These results are comparable with the most recent experimental observation of the apparent activation energy 201.9 +/- 0.6 or 137 +/- 25 kJ/mol. Copyright 2010 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Oie, T.; Loew, G. H.; Burt, S. K.; MacElroy, R. D.
1984-01-01
The SN2 reaction between glycine and ammonia molecules with magnesium cation Mg2+ as a catalyst has been studied as a model reaction for Mg(2+)-catalyzed peptide bond formation using the ab initio Hartree-Fock molecular orbital method. As in previous studies of the uncatalyzed and amine-catalyzed reactions between glycine and ammonia, two reaction mechanisms have been examined, i.e., a two-step and a concerted reaction. The stationary points of each reaction including intermediate and transition states have been identified and free energies calculated for all geometry-optimized reaction species to determine the thermodynamics and kinetics of each reaction. Substantial decreases in free energies of activation were found for both reaction mechanisms in the Mg(2+)-catalyzed amide bond formation compared with those in the uncatalyzed and amine-catalyzed amide bond formation. The catalytic effect of the Mg2+ cation is to stabilize both the transition states and intermediate, and it is attributed to the neutralization of the developing negative charge on the electrophile and formation of a conformationally flexible nonplanar five-membered chelate ring structure.
Hirai, Daiki; Iwao, Yasunori; Kimura, Shin-Ichiro; Noguchi, Shuji; Itai, Shigeru
2017-04-30
Metastable crystals and the amorphous state of poorly water-soluble drugs in solid dispersions (SDs), are subject to a solid-liquid interface reaction upon exposure to a solvent. The dissolution behavior during the solid-liquid interface reaction often shows that the concentration of drugs is supersaturated, with a high initial drug concentration compared with the solubility of stable crystals but finally approaching the latter solubility with time. However, a method for measuring the precipitation rate of stable crystals and/or the potential solubility of metastable crystals or amorphous drugs has not been established. In this study, a novel mathematical model that can represent the dissolution behavior of the solid-liquid interface reaction for metastable crystals or amorphous drug was developed and its validity was evaluated. The theory for this model was based on the Noyes-Whitney equation and assumes that the precipitation of stable crystals at the solid-liquid interface occurs through a first-order reaction. Moreover, two models were developed, one assuming that the surface area of the drug remains constant because of the presence of excess drug in the bulk and the other that the surface area changes in time-dependency because of agglomeration of the drug. SDs of Ibuprofen (IB)/polyvinylpyrrolidone (PVP) were prepared and their dissolution behaviors under non-sink conditions were fitted by the models to evaluate improvements in solubility. The model assuming time-dependent surface area showed good agreement with experimental values. Furthermore, by applying the model to the dissolution profile, parameters such as the precipitation rate and the potential solubility of the amorphous drug were successfully calculated. In addition, it was shown that the improvement in solubility with supersaturation was able to be evaluated quantitatively using this model. Therefore, this mathematical model would be a useful tool to quantitatively determine the supersaturation concentration of a metastable drug from solid dispersions. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Saliba, Daniel; Al-Ghoul, Mazen
2016-11-01
We report the synthesis of magnesium-aluminium layered double hydroxide (LDH) using a reaction-diffusion framework (RDF) that exploits the multiscale coupling of molecular diffusion with chemical reactions, nucleation and growth of crystals. In an RDF, the hydroxide anions are allowed to diffuse into an organic gel matrix containing the salt mixture needed for the precipitation of the LDH. The chemical structure and composition of the synthesized magnesium-aluminium LDHs are determined using powder X-ray diffraction (PXRD), thermo-gravimetric analysis, differential scanning calorimetry, solid-state nuclear magnetic resonance (SSNMR), Fourier transform infrared and energy dispersive X-ray spectroscopy. This novel technique also allows the investigation of the mechanism of intercalation of some fluorescent probes, such as the neutral three-dimensional rhodamine B (RhB) and the negatively charged two-dimensional 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS), using in situ steady-state fluorescence spectroscopy. The incorporation of these organic dyes inside the interlayer region of the LDH is confirmed via fluorescence microscopy, solid-state lifetime, SSNMR and PXRD. The activation energies of intercalation of the corresponding molecules (RhB and HPTS) are computed and exhibit dependence on the geometry of the involved probe (two or three dimensions), the charge of the fluorescent molecule (anionic, cationic or neutral) and the cationic ratio of the corresponding LDH. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.
Insights into reaction mechanisms in heterogeneous catalysis revealed by in situ NMR spectroscopy.
Blasco, Teresa
2010-12-01
This tutorial review intends to show the possibilities of in situ solid state NMR spectroscopy in the elucidation of reaction mechanisms and the nature of the active sites in heterogeneous catalysis. After a brief overview of the more usual experimental devices used for in situ solid state NMR spectroscopy measurements, some examples of applications taken from the recent literature will be presented. It will be shown that in situ NMR spectroscopy allows: (i) the identification of stable intermediates and transient species using indirect methods, (ii) to prove shape selectivity in zeolites, (iii) the study of reaction kinetics, and (iv) the determination of the nature and the role played by the active sites in a catalytic reaction. The approaches and methodology used to get this information will be illustrated here summarizing the most relevant contributions on the investigation of the mechanisms of a series of reactions of industrial interest: aromatization of alkanes on bifunctional catalysts, carbonylation reaction of methanol with carbon monoxide, ethylbenzene disproportionation, and the Beckmann rearrangement reaction. Special attention is paid to the research carried out on the role played by carbenium ions and alkoxy as intermediate species in the transformation of hydrocarbon molecules on solid acid catalysts.
Some studies on a solid-state sulfur probe for coal gasification systems
NASA Technical Reports Server (NTRS)
Jacob, K. T.; Rao, D. B.; Nelson, H. G.
1978-01-01
As a part of a program for the development of a sulfur probe for monitoring the sulfur potential in coal gasification reactors, an investigation was conducted regarding the efficiency of the solid electrolyte cell Ar+H2+H2S/CaS+CaF2+(Pt)//CaF2//Pt)+CaF2+CaS/H2S+H2+Ar. A demonstration is provided of the theory, design, and operation of a solid-state sulfur probe based on CaF2 electrolyte. It was found that the cell responds to changes in sulfur potential in a manner predicted by the Nernst equation. The response time of the cell at 1225 K, after a small change in temperature or gas composition, was 2.5 Hr, while at a lower temperature of 990 K the response time was approximately 9 hr. The cell emf was insensitive to a moderate increase in the flow rate of the test gas and/or the reference gas. The exact factors affecting the slow response time of galvanic cells based on a CaF2 electrolyte have not yet been determined. The rate-limiting steps may be either the kinetics of electrode reactions or the rate of transport through the electrolyte.
Further analytical study of hybrid rocket combustion
NASA Technical Reports Server (NTRS)
Hung, W. S. Y.; Chen, C. S.; Haviland, J. K.
1972-01-01
Analytical studies of the transient and steady-state combustion processes in a hybrid rocket system are discussed. The particular system chosen consists of a gaseous oxidizer flowing within a tube of solid fuel, resulting in a heterogeneous combustion. Finite rate chemical kinetics with appropriate reaction mechanisms were incorporated in the model. A temperature dependent Arrhenius type fuel surface regression rate equation was chosen for the current study. The governing mathematical equations employed for the reacting gas phase and for the solid phase are the general, two-dimensional, time-dependent conservation equations in a cylindrical coordinate system. Keeping the simplifying assumptions to a minimum, these basic equations were programmed for numerical computation, using two implicit finite-difference schemes, the Lax-Wendroff scheme for the gas phase, and, the Crank-Nicolson scheme for the solid phase.
Kim, Myoung-Ho; Choi, Suk-Jung
2015-04-15
In this study, we devised a stationary liquid-phase lab-on-a-chip (SLP LOC), which was operated by moving solid-phase magnetic particles in the stationary liquid phase. The SLP LOC consisted of a sample chamber to which a sample and reactants were added, a detection chamber containing enzyme substrate solution, and a narrow channel connecting the two chambers and filled with buffer. As a model system, competitive immunoassays of saxitoxin (STX), a paralytic shellfish toxin, were conducted in the SLP LOC using protein G-coupled magnetic particles (G-MPs) as the solid phase. Anti-STX antibodies, STX-horseradish peroxidase conjugate, G-MPs, and a STX sample were added to the sample chamber and reacted by shaking. While liquids were in the stationary state, G-MPs were transported from the sample chamber to the detection chamber by moving a magnet below the LOC. After incubation to allow the enzymatic reaction to occur, the absorbance of the detection chamber solution was found to be reciprocally related to the STX concentration of the sample. Thus, the SLP LOC may represent a novel, simple format for point-of-care testing applications of enzyme-linked immunosorbent assays by eliminating complicated liquid handling steps. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Thallam Thattai, A.; van Biert, L.; Aravind, P. V.
2017-12-01
Major operating challenges remain to safely operate methane fuelled solid oxide fuel cells due to undesirable temperature gradients across the porous anode and carbon deposition. This article presents an experimental study on methane steam reforming (MSR) global kinetics for single operating SOFCs with Ni-GDC (gadolinium doped ceria) anodes for low steam to carbon (S/C) ratios and moderate current densities. The study points out the hitherto insufficient research on MSR global and intrinsic kinetics for operating SOFCs with complete Ni-ceria anodes. Further, it emphasizes the need to develop readily applicable global kinetic models as a subsequent step from previously reported state-of-art and complex intrinsic models. Two rate expressions of the Power law (PL) and Langmuir-Hinshelwood (LH) type have been compared and based on the analysis, limitations of using previously proposed rate expressions for Ni catalytic beds to study MSR kinetics for complete cermet anodes have been identified. Firstly, it has been shown that methane reforming on metallic (Ni) current collectors may not be always negligible, contrary to literature reports. Both PL and LH kinetic models predict significantly different local MSR reaction rate and species partial pressure distributions along the normalized reactor length, indicating a strong need for further experimental verifications.
Goryanova, Bogdana; Spong, Krisztina; Amyes, Tina L.; Richard, John P.
2013-01-01
The syntheses of two novel truncated analogs of the natural substrate orotidine 5′-monophosphate (OMP) for orotidine 5′-monophosphate decarboxylase (OMPDC) with enhanced reactivity towards decarboxylation are reported: 1-(β-D-erythrofuranosyl)-5-fluoroorotic acid (FEO) and 5′-deoxy-5-fluoroorotidine (5′-dFO). A comparison of the second-order rate constants for the OMPDC-catalyzed decarboxylations of FEO (10 M−1 s−1) and 1-(β-D-erythrofuranosyl)orotic acid (EO, 0.026 M−1 s−1) shows that the vinyl carbanion-like transition state is stabilized by 3.5 kcal/mol by interactions with the 5-F substituent of FEO. The OMPDC-catalyzed decarboxylations of FEO and EO are both activated by exogenous phosphite dianion (HPO32−), but the 5-F substituent results in only a 0.8 kcal stabilization of the transition state for the phosphite-activated reaction of FEO. This provides strong evidence that the phosphite-activated OMPDC-catalyzed reaction of FEO is not limited by the chemical step of decarboxylation of the enzyme-bound substrate. Evidence is presented that there is a change in rate-limiting step from the chemical step of decarboxylation for the phosphite-activated reaction of EO, to closure of the phosphate gripper loop and an enzyme conformational change at the ternary E·FEO·HPO32− complex for the reaction of FEO. The 4′-CH3 and 4′-CH2OH groups of 5′-dFO and orotidine, respectively, result in identical destabilizations of the transition state for the unactivated decarboxylation of 2.9 kcal/mol. By contrast, the 4′-CH3 group of 5′-dFO and the 4′-CH2OH group of orotidine result in very different 4.7 and 8.3 kcal/mol destabilizations of the transition state for the phosphite-activated decarboxylation. Here, the destabilizing effect of the 4′-CH3 substituent at 5′-dFO is masked by the rate-limiting conformational change that depresses the third-order rate constant for the phosphite-activated reaction of the parent substrate FEO. PMID:23276261
Goryanova, Bogdana; Spong, Krisztina; Amyes, Tina L; Richard, John P
2013-01-22
The syntheses of two novel truncated analogs of the natural substrate orotidine 5'-monophosphate (OMP) for orotidine 5'-monophosphate decarboxylase (OMPDC) with enhanced reactivity toward decarboxylation are reported: 1-(β-d-erythrofuranosyl)-5-fluoroorotic acid (FEO) and 5'-deoxy-5-fluoroorotidine (5'-dFO). A comparison of the second-order rate constants for the OMPDC-catalyzed decarboxylations of FEO (10 M⁻¹ s⁻¹) and 1-(β-d-erythrofuranosyl)orotic acid (EO, 0.026 M⁻¹ s⁻¹) shows that the vinyl carbanion-like transition state is stabilized by 3.5 kcal/mol by interactions with the 5-F substituent of FEO. The OMPDC-catalyzed decarboxylations of FEO and EO are both activated by exogenous phosphite dianion (HPO₃²⁻), but the 5-F substituent results in only a 0.8 kcal stabilization of the transition state for the phosphite-activated reaction of FEO. This provides strong evidence that the phosphite-activated OMPDC-catalyzed reaction of FEO is not limited by the chemical step of decarboxylation of the enzyme-bound substrate. Evidence is presented that there is a change in the rate-limiting step from the chemical step of decarboxylation for the phosphite-activated reaction of EO, to closure of the phosphate gripper loop and an enzyme conformational change at the ternary E•FEO•HPO₃²⁻ complex for the reaction of FEO. The 4'-CH₃ and 4'-CH₂OH groups of 5'-dFO and orotidine, respectively, result in identical destabilizations of the transition state for the unactivated decarboxylation of 2.9 kcal/mol. By contrast, the 4'-CH₃ group of 5'-dFO and the 4'-CH₂OH group of orotidine result in very different 4.7 and 8.3 kcal/mol destabilizations of the transition state for the phosphite-activated decarboxylation. Here, the destabilizing effect of the 4'-CH₃ substituent at 5'-dFO is masked by the rate-limiting conformational change that depresses the third-order rate constant for the phosphite-activated reaction of the parent substrate FEO.
Study on Kinetic Mechanism of Bastnaesite Concentrates Decomposition Using Calcium Hydroxide
NASA Astrophysics Data System (ADS)
Cen, Peng; Wu, Wenyuan; Bian, Xue
2018-06-01
The thermal decomposition of bastnaesite concentrates using calcium hydroxide was studied. Calcium hydroxide can effectively inhibit the emission of fluorine during roasting by transforming it to calcium fluoride. The decomposition rate increased with increasing reaction temperature and amount of calcium hydroxide. The decomposition kinetics were investigated. The decomposition reaction was determined to be a heterogeneous gas-solid reaction, and it followed an unreacted shrinking core model. By means of the integrated rate equation method, the reaction was proven to be kinetically first order. Different reaction models were fit to the experimental data to determine the reaction control process. The chemical reaction at the phase interface controlled the reaction rate in the temperatures ranging from 673 K to 773 K (400 °C to 500 °C) with an apparent activation energy of 82.044 kJ·mol-1. From 773 K to 973 K (500 °C to 700 °C), diffusion through the solid product's layer became the determining step, with a lower activation energy of 15.841 kJ·mol-1.
Nika, Heinz; Nieves, Edward; Hawke, David H.; Angeletti, Ruth Hogue
2013-01-01
A rugged sample-preparation method for comprehensive affinity enrichment of phosphopeptides from protein digests has been developed. The method uses a series of chemical reactions to incorporate efficiently and specifically a thiol-functionalized affinity tag into the analyte by barium hydroxide catalyzed β-elimination with Michael addition using 2-aminoethanethiol as nucleophile and subsequent thiolation of the resulting amino group with sulfosuccinimidyl-2-(biotinamido) ethyl-1,3-dithiopropionate. Gentle oxidation of cysteine residues, followed by acetylation of α- and ε-amino groups before these reactions, ensured selectivity of reversible capture of the modified phosphopeptides by covalent chromatography on activated thiol sepharose. The use of C18 reversed-phase supports as a miniaturized reaction bed facilitated optimization of the individual modification steps for throughput and completeness of derivatization. Reagents were exchanged directly on the supports, eliminating sample transfer between the reaction steps and thus, allowing the immobilized analyte to be carried through the multistep reaction scheme with minimal sample loss. The use of this sample-preparation method for phosphopeptide enrichment was demonstrated with low-level amounts of in-gel-digested protein. As applied to tryptic digests of α-S1- and β-casein, the method enabled the enrichment and detection of the phosphorylated peptides contained in the mixture, including the tetraphosphorylated species of β-casein, which has escaped chemical procedures reported previously. The isolates proved highly suitable for mapping the sites of phosphorylation by collisionally induced dissociation. β-Elimination, with consecutive Michael addition, expanded the use of the solid-phase-based enrichment strategy to phosphothreonyl peptides and to phosphoseryl/phosphothreonyl peptides derived from proline-directed kinase substrates and to their O-sulfono- and O-linked β-N-acetylglucosamine (O-GlcNAc)-modified counterparts. Solid-phase enzymatic dephosphorylation proved to be a viable tool to condition O-GlcNAcylated peptide in mixtures with phosphopeptides for selective affinity purification. Acetylation, as an integral step of the sample-preparation method, precluded reduction in recovery of the thiolation substrate caused by intrapeptide lysine-dehydroalanine cross-link formation. The solid-phase analytical platform provides robustness and simplicity of operation using equipment readily available in most biological laboratories and is expected to accommodate additional chemistries to expand the scope of solid-phase serial derivatization for protein structural characterization. PMID:23997662
Aromatic sulfonation with sulfur trioxide: mechanism and kinetic model.
Moors, Samuel L C; Deraet, Xavier; Van Assche, Guy; Geerlings, Paul; De Proft, Frank
2017-01-01
Electrophilic aromatic sulfonation of benzene with sulfur trioxide is studied with ab initio molecular dynamics simulations in gas phase, and in explicit noncomplexing (CCl 3 F) and complexing (CH 3 NO 2 ) solvent models. We investigate different possible reaction pathways, the number of SO 3 molecules participating in the reaction, and the influence of the solvent. Our simulations confirm the existence of a low-energy concerted pathway with formation of a cyclic transition state with two SO 3 molecules. Based on the simulation results, we propose a sequence of elementary reaction steps and a kinetic model compatible with experimental data. Furthermore, a new alternative reaction pathway is proposed in complexing solvent, involving two SO 3 and one CH 3 NO 2 .
Solid-state polymerisation via [2+2] cycloaddition reaction involving coordination polymers.
Medishetty, Raghavender; Park, In-Hyeok; Lee, Shim Sung; Vittal, Jagadese J
2016-03-14
Highly crystalline metal ions containing organic polymers are potentially useful to manipulate the magnetic and optical properties to make advanced multifunctional materials. However, it is challenging to synthesise monocrystalline metal complexes of organic polymers and single-phase hybrid materials made up of both coordination and organic polymers by traditional solution crystallisation. This requires an entirely different approach in the solid-state by thermal or photo polymerisation of the ligands. Among the photochemical methods available, [2+2] cycloaddition reaction has been recently employed to generate cyclobutane based coordination polymers from the metal complexes. Cyclobutane polymers have also been integrated into coordination polymers in this way. Recent advancements in the construction of polymeric chains of cyclobutane rings through photo-dimerisation reaction in the monocrystalline solids containing metal complexes, coordination polymers and metal-organic framework structures are discussed here.
NASA Technical Reports Server (NTRS)
Bellan, J.; Lathouwers, D.
2000-01-01
A novel multiphase flow model is presented for describing the pyrolysis of biomass in a 'bubbling' fluidized bed reactor. The mixture of biomass and sand in a gaseous flow is conceptualized as a particulate phase composed of two classes interacting with the carrier gaseous flow. The solid biomass is composed of three initial species: cellulose, hemicellulose and lignin. From each of these initial species, two new solid species originate during pyrolysis: an 'active' species and a char, thus totaling seven solid-biomass species. The gas phase is composed of the original carrier gas (steam), tar and gas; the last two species originate from the volumetric pyrolysis reaction. The conservation equations are derived from the Boltzmann equations through ensemble averaging. Stresses in the gaseous phase are the sum of the Newtonian and Reynolds (turbulent) contributions. The particulate phase stresses are the sum of collisional and Reynolds contributions. Heat transfer between phases, and heat transfer between classes in the particulate phase is modeled, the last resulting from collisions between sand and biomass. Closure of the equations must be performed by modeling the Reynolds stresses for both phases. The results of a simplified version (first step) of the model are presented.
Emerging applications of spark plasma sintering in all solid-state lithium-ion batteries and beyond
NASA Astrophysics Data System (ADS)
Zhu, Hongzheng; Liu, Jian
2018-07-01
Solid-state batteries have received increasing attention due to their high safety aspect and high energy and power densities. However, the development of solid-state batteries is hindered by inferior solid-solid interfaces between the solid-state electrolyte and electrode, which cause high interfacial resistance, reduced Li-ion and electron transfer rate, and limited battery performance. Recently, spark plasma sintering (SPS) is emerging as a promising technique for fabricating solid-state electrolyte and electrode pellets with clean and intimate solid-solid interfaces. During the SPS process, the unique reaction mechanism through the combination of current, pressure and high heating rate allow the formation of desirable solid-solid interfaces between active material particles. Herein, this work focuses on the overview of the application of SPS for fabricating solid-state electrolyte and electrode in all solid-state Li-ion batteries, and beyond, such as solid-state Li-S and Na-ion batteries. The correlations among SPS parameters, interfacial resistance, and electrochemical properties of solid-state electrolytes and electrodes are discussed for different material systems. In the end, we point out future opportunities and challenges associated with SPS application in the hot area of solid-state batteries. It is expected that this timely review will stimulate more fundamental and applied research in the development of solid-state batteries by SPS.
Liu, Sisi; Wang, Mengfan; Sun, Xinyi; Xu, Na; Liu, Jie; Wang, Yuzhou; Qian, Tao; Yan, Chenglin
2018-01-01
Driven by the intensified demand for energy storage systems with high-power density and safety, all-solid-state zinc-air batteries have drawn extensive attention. However, the electrocatalyst active sites and the underlying mechanisms occurring in zinc-air batteries remain confusing due to the lack of in situ analytical techniques. In this work, the in situ observations, including X-ray diffraction and Raman spectroscopy, of a heteroatom-doped carbon air cathode are reported, in which the chemisorption of oxygen molecules and oxygen-containing intermediates on the carbon material can be facilitated by the electron deficiency caused by heteroatom doping, thus improving the oxygen reaction activity for zinc-air batteries. As expected, solid-state zinc-air batteries equipped with such air cathodes exhibit superior reversibility and durability. This work thus provides a profound understanding of the reaction principles of heteroatom-doped carbon materials in zinc-air batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mechanochemical Association Reaction of Interfacial Molecules Driven by Shear.
Khajeh, Arash; He, Xin; Yeon, Jejoon; Kim, Seong H; Martini, Ashlie
2018-05-29
Shear-driven chemical reaction mechanisms are poorly understood because the relevant reactions are often hidden between two solid surfaces moving in relative motion. Here, this phenomenon is explored by characterizing shear-induced polymerization reactions that occur during vapor phase lubrication of α-pinene between sliding hydroxylated and dehydroxylated silica surfaces, complemented by reactive molecular dynamics simulations. The results suggest that oxidative chemisorption of the α-pinene molecules at reactive surface sites, which transfers oxygen atoms from the surface to the adsorbate molecule, is the critical activation step. Such activation takes place more readily on the dehydroxylated surface. During this activation, the most strained part of the α-pinene molecules undergoes a partial distortion from its equilibrium geometry, which appears to be related to the critical activation volume for mechanical activation. Once α-pinene molecules are activated, association reactions occur between the newly attached oxygen and one of the carbon atoms in another molecule, forming ether bonds. These findings have general implications for mechanochemistry because they reveal that shear-driven reactions may occur through reaction pathways very different from their thermally induced counterparts and specifically the critical role of molecular distortion in such reactions.
NASA Astrophysics Data System (ADS)
Tan, Shuai; Cheng, Yongqiang; Daemen, Luke L.; Lutterman, Daniel A.
2018-01-01
Catalysis is a critical enabling science for future energy needs. The next frontier of catalysis is to evolve from catalyst discovery to catalyst design, and for this next step to be realized, we must develop new techniques to better understand reaction mechanisms. To do this, we must connect catalytic reaction rates and selectivities to the kinetics, energetics, and dynamics of individual elementary steps and relate these to the structure and dynamics of the catalytic sites involved. Neutron scattering spectroscopies offer unique capabilities that are difficult or impossible to match by other techniques. The current study presents the development of a compact and portable instrumental design that enables the in situ investigation of catalytic samples by neutron scattering techniques. The developed apparatus was tested at the Spallation Neutron Source (SNS) in Oak Ridge National Laboratory and includes a gas handling panel that allows for computer hookups to control the panel externally and online measurement equipment such as coupled GC-FID/TCD (Gas Chromatography-Flame Ionization Detector/Thermal Conductivity Detector) and MS (Mass Spectrometry) to characterize offgassing while the sample is in the neutron scattering spectrometer. This system is flexible, modular, compact, and portable enabling its use for many types of gas-solid and liquid-solid reactions at the various beamlines housed at the SNS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Linsen; Chen-Wiegart, Yu-chen Karen; Wang, Jiajun
In situ techniques with high temporal, spatial and chemical resolution are key to understand ubiquitous solid-state phase transformations, which are crucial to many technological applications. Hard X-ray spectro-imaging can visualize electrochemically driven phase transformations but demands considerably large samples with strong absorption signal so far. Here we show a conceptually new data analysis method to enable operando visualization of mechanistically relevant weakly absorbing samples at the nanoscale and study electrochemical reaction dynamics of iron fluoride, a promising high-capacity conversion cathode material. In two specially designed samples with distinctive microstructure and porosity, we observe homogeneous phase transformations during both discharge andmore » charge, faster and more complete Li-storage occurring in porous polycrystalline iron fluoride, and further, incomplete charge reaction following a pathway different from conventional belief. In conclusion, these mechanistic insights provide guidelines for designing better conversion cathode materials to realize the promise of high-capacity lithium-ion batteries.« less
Li, Linsen; Chen-Wiegart, Yu-chen Karen; Wang, Jiajun; ...
2015-04-20
In situ techniques with high temporal, spatial and chemical resolution are key to understand ubiquitous solid-state phase transformations, which are crucial to many technological applications. Hard X-ray spectro-imaging can visualize electrochemically driven phase transformations but demands considerably large samples with strong absorption signal so far. Here we show a conceptually new data analysis method to enable operando visualization of mechanistically relevant weakly absorbing samples at the nanoscale and study electrochemical reaction dynamics of iron fluoride, a promising high-capacity conversion cathode material. In two specially designed samples with distinctive microstructure and porosity, we observe homogeneous phase transformations during both discharge andmore » charge, faster and more complete Li-storage occurring in porous polycrystalline iron fluoride, and further, incomplete charge reaction following a pathway different from conventional belief. In conclusion, these mechanistic insights provide guidelines for designing better conversion cathode materials to realize the promise of high-capacity lithium-ion batteries.« less
Transesterification reaction of the fat originated from solid waste of the leather industry.
Işler, Asli; Sundu, Serap; Tüter, Melek; Karaosmanoğlu, Filiz
2010-12-01
The leather industry is an industry which generates a large amount of solid and liquid wastes. Most of the solid wastes originate from the pre-tanning processes while half of it comes from the fleshing step. Raw fleshing wastes which mainly consist of protein and fat have almost no recovery option and the disposal is costly. This study outlines the possibility of using the fleshing waste as an oil source for transesterification reaction. The effect of oil/alcohol molar ratio, the amount of catalyst and temperature on ester production was individually investigated and optimum reaction conditions were determined. The fuel properties of the ester product were also studied according to the EN 14214 standard. Cold filter plugging point and oxidation stability have to be improved in order to use the ester product as an alternative fuel candidate. Besides, this product can be used as a feedstock in lubricant production or cosmetic industry. Copyright © 2010 Elsevier Ltd. All rights reserved.
Solid-state reaction kinetics of neodymium doped magnesium hydrogen phosphate system
NASA Astrophysics Data System (ADS)
Gupta, Rashmi; Slathia, Goldy; Bamzai, K. K.
2018-05-01
Neodymium doped magnesium hydrogen phosphate (NdMHP) crystals were grown by using gel encapsulation technique. Structural characterization of the grown crystals has been carried out by single crystal X-ray diffraction (XRD) and it revealed that NdMHP crystals crystallize in orthorhombic crystal system with space group Pbca. Kinetics of the decomposition of the grown crystals has been studied by non-isothermal analysis. The estimation of decomposition temperatures and weight loss has been made from the thermogravimetric/differential thermo analytical (TG/DTA) in conjuncture with DSC studies. The various steps involved in the thermal decomposition of the material have been analysed using Horowitz-Metzger, Coats-Redfern and Piloyan-Novikova equations for evaluating various kinetic parameters.
Valentín, J L; López-Manchado, M A; Posadas, P; Rodríguez, A; Marcos-Fernández, A; Ibarra, L
2006-06-15
The mechanism of the reaction between a silica sample coming from acid treatment of sepiolite (denominated Silsep) and an organosilane, namely bis(triethoxysilylpropyl)tetrasulfane (TESPT), has been evaluated by solid state NMR spectroscopy, being compared with the silanization reaction of a commercial silica. The effect of the silane concentration and temperature on the course of the reaction was considered. Experimental results indicate that the silanization reaction is more effective in the case of Silsep, favoring both the reaction of silane molecules with the filler surface and the reaction between neighboring silane molecules. This different behavior is attributed to structural factors, moisture, and number of acid centers on silica surface. Environmental scanning electron microscopy (ESEM) was used to deposit micrometric water drops on the surface of these samples and to evaluate the proportion and distribution of the organophylization process.
Semi-solid state bioremediation of CCA-treated wood using malted barley as a nutrient source
Carol A. Clausen
2002-01-01
Bioremediation processes for recovery and reuse of CCA-treated wood invariably increase the cost of any secondary products manufactured from the remediated fiber. Microbial remediation using either bacteria or fungi has been shown to remove heavy metals from CCA-treated southern yellow pine (SYP). In a two-step remediation process utilizing oxalic acid extraction and...
Physics Division annual review, 1 April 1980-31 March 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-06-01
Progress in nuclear physics research is reported in the following areas: medium-energy physics (pion reaction mechanisms, high-resolution studies and nuclear structure, and two-nucleon physics with pions and electrons); heavy-ion research at the tandem and superconducting linear accelerator (resonant structure in heavy-ion reactions, fusion cross sections, high angular momentum states in nuclei, and reaction mechanisms and distributions of reaction strengths); charged-particle research; neutron and photonuclear physics; theoretical physics (heavy-ion direct-reaction theory, nuclear shell theory and nuclear structure, nuclear matter and nuclear forces, intermediate-energy physics, microscopic calculations of high-energy collisions of heavy ions, and light ion direct reactions); the superconducting linac; acceleratormore » operations; and GeV electron linac. Progress in atomic and molecular physics research is reported in the following areas: dissociation and other interactions of energetic molecular ions in solid and gaseous targets, beam-foil research and collision dynamics of heavy ions, photoionization- photoelectron research, high-resolution laser rf spectroscopy with atomic and molecular beams, moessbauer effect research, and theoretical atomic physics. Studies on interactions of energetic particles with solids are also described. Publications are listed. (WHK)« less
Mechanistic insights into the dehalogenation reaction of fluoroacetate/fluoroacetic acid
NASA Astrophysics Data System (ADS)
Miranda-Rojas, Sebastián; Toro-Labbé, Alejandro
2015-05-01
Fluoroacetate is a toxic compound whose environmental accumulation may represent an important contamination problem, its elimination is therefore a challenging issue. Fluoroacetate dehalogenase catalyzes its degradation through a two step process initiated by an SN2 reaction in which the aspartate residue performs a nucleophilic attack on the carbon bonded to the fluorine; the second step is hydrolysis that releases the product as glycolate. In this paper, we present a study based on density functional theory calculations of the SN2 initiation reaction modeled through the interaction between the substrate and the propionate anion as the nucleophile. Results are analyzed within the framework of the reaction force and using the reaction electronic flux to identify and characterize the electronic activity that drives the reaction. Our results reveal that the selective protonation of the substrate catalyzes the reaction by decreasing the resistance of the structural and electronic reorganization needed to reach the transition state. Finally, the reaction energy is modulated by the degree of stabilization of the fluoride anion formed after the SN2 reaction. In this way, a site-induced partial protonation acts as a chemical switch in a key process that determines the output of the reaction.
Yokoyama, Takamichi; Cao, Duyen H; Stoumpos, Constantinos C; Song, Tze-Bin; Sato, Yoshiharu; Aramaki, Shinji; Kanatzidis, Mercouri G
2016-03-03
The development of Sn-based perovskite solar cells has been challenging because devices often show short-circuit behavior due to poor morphologies and undesired electrical properties of the thin films. A low-temperature vapor-assisted solution process (LT-VASP) has been employed as a novel kinetically controlled gas-solid reaction film fabrication method to prepare lead-free CH3NH3SnI3 thin films. We show that the solid SnI2 substrate temperature is the key parameter in achieving perovskite films with high surface coverage and excellent uniformity. The resulting high-quality CH3NH3SnI3 films allow the successful fabrication of solar cells with drastically improved reproducibility, reaching an efficiency of 1.86%. Furthermore, our Kelvin probe studies show the VASP films have a doping level lower than that of films prepared from the conventional one-step method, effectively lowering the film conductivity. Above all, with (LT)-VASP, the short-circuit behavior often obtained from the conventional one-step-fabricated Sn-based perovskite devices has been overcome. This study facilitates the path to more successful Sn-perovskite photovoltaic research.
Goel, Alok; Zhao, Zhicheng; Sørensen, Dan; Zhou, Jay; Zhang, Fa
2016-09-10
Esterification of pseudoephedrine hydrochloride (PSE) by citric acid was observed in a solid dose pharmaceutical preparation at room temperature and accelerated stability condition (40°C/75% relative humidity). The esterification of PSE with citric acid was confirmed by a solid-state binary reaction in the presence of minor level of water at elevated temperature to generate three isomeric esters. The structures of the pseudoephedrine citric acid esters were elucidated using high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy (NMR). Occurrence of esterification in solid state, instead of amidation which is generally more favorable than esterification, is likely due to remaining HCl salt form of solid pseudoephedrine hydrochloride to protect its amino group from amidation with citric acid. In contrast, the esterification was not observed from solution reaction between PSE and citric acid. Copyright © 2016 Elsevier B.V. All rights reserved.
Reliable Transition State Searches Integrated with the Growing String Method.
Zimmerman, Paul
2013-07-09
The growing string method (GSM) is highly useful for locating reaction paths connecting two molecular intermediates. GSM has often been used in a two-step procedure to locate exact transition states (TS), where GSM creates a quality initial structure for a local TS search. This procedure and others like it, however, do not always converge to the desired transition state because the local search is sensitive to the quality of the initial guess. This article describes an integrated technique for simultaneous reaction path and exact transition state search. This is achieved by implementing an eigenvector following optimization algorithm in internal coordinates with Hessian update techniques. After partial convergence of the string, an exact saddle point search begins under the constraint that the maximized eigenmode of the TS node Hessian has significant overlap with the string tangent near the TS. Subsequent optimization maintains connectivity of the string to the TS as well as locks in the TS direction, all but eliminating the possibility that the local search leads to the wrong TS. To verify the robustness of this approach, reaction paths and TSs are found for a benchmark set of more than 100 elementary reactions.
Sun, Jian-Ke; Zhang, Weiyi; Guterman, Ryan; Lin, Hui-Juan; Yuan, Jiayin
2018-04-30
Soft actuators with integration of ultrasensitivity and capability of simultaneous interaction with multiple stimuli through an entire event ask for a high level of structure complexity, adaptability, and/or multi-responsiveness, which is a great challenge. Here, we develop a porous polycarbene-bearing membrane actuator built up from ionic complexation between a poly(ionic liquid) and trimesic acid (TA). The actuator features two concurrent structure gradients, i.e., an electrostatic complexation (EC) degree and a density distribution of a carbene-NH 3 adduct (CNA) along the membrane cross-section. The membrane actuator performs the highest sensitivity among the state-of-the-art soft proton actuators toward acetic acid at 10 -6 mol L -1 (M) level in aqueous media. Through competing actuation of the two gradients, it is capable of monitoring an entire process of proton-involved chemical reactions that comprise multiple stimuli and operational steps. The present achievement constitutes a significant step toward real-life application of soft actuators in chemical sensing and reaction technology.
Rozenel, Sergio S.; Perrin, Lionel; Eisenstein, Odile; ...
2016-10-26
The thermal rearrangement of the f-block metallocene amides Cp* 2MNR 1R 2, where R 1 is CHMe 2, R 2 is either CHMe 2 or CMe 3, and M is either La or Ce, to the corresponding enamides Cp* 2MNR 1[C(Me)=CH 2] and H 2 or CH 4, respectively, occurs when the solid amides are heated in sealed evacuated ampules at 160–180 °C for 1–2 weeks. The net reaction is a β-H or β-Me elimination followed by a γ-abstraction of a proton at the group from which the β-elimination occurs. When R 1 is either SiMe 3 or SiMe 2CMemore » 3 and R 2 is CMe 3, the enamide Cp* 2MNR 1[C(Me)=CH 2] is isolated, the result of β-Me elimination, but when R 2 is CHMe 2, the enamides Cp* 2MNR 1[C(Me)=CH 2] and Cp* 2NR 1[C(H)=CH 2] are isolated, the result of β-H and β-Me elimination. In the latter cases, both enamides are formed in similar amounts and the rates of the β-H and β-Me elimination steps must be similar. A two-step mechanism is developed from DFT calculations. The first step is migration of a hydride or a methyl anion to the Cp* 2M fragment, forming M–H or M–Me bonds as the N=C bond in the intermediate imine forms. Furthermore, the enamide evolves from the metal-coordinated imine by abstraction of a proton from the γ-carbon of the intermediate imine. The two elementary steps involve significant geometrical changes within the N αC βC γ set of atoms during the two-step elimination process that are in large part responsible for the relatively high activation barriers for the net reaction, which may be classified as a proton-coupled hydride or methyl anion transfer reaction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozenel, Sergio S.; Perrin, Lionel; Eisenstein, Odile
The thermal rearrangement of the f-block metallocene amides Cp* 2MNR 1R 2, where R 1 is CHMe 2, R 2 is either CHMe 2 or CMe 3, and M is either La or Ce, to the corresponding enamides Cp* 2MNR 1[C(Me)=CH 2] and H 2 or CH 4, respectively, occurs when the solid amides are heated in sealed evacuated ampules at 160–180 °C for 1–2 weeks. The net reaction is a β-H or β-Me elimination followed by a γ-abstraction of a proton at the group from which the β-elimination occurs. When R 1 is either SiMe 3 or SiMe 2CMemore » 3 and R 2 is CMe 3, the enamide Cp* 2MNR 1[C(Me)=CH 2] is isolated, the result of β-Me elimination, but when R 2 is CHMe 2, the enamides Cp* 2MNR 1[C(Me)=CH 2] and Cp* 2NR 1[C(H)=CH 2] are isolated, the result of β-H and β-Me elimination. In the latter cases, both enamides are formed in similar amounts and the rates of the β-H and β-Me elimination steps must be similar. A two-step mechanism is developed from DFT calculations. The first step is migration of a hydride or a methyl anion to the Cp* 2M fragment, forming M–H or M–Me bonds as the N=C bond in the intermediate imine forms. Furthermore, the enamide evolves from the metal-coordinated imine by abstraction of a proton from the γ-carbon of the intermediate imine. The two elementary steps involve significant geometrical changes within the N αC βC γ set of atoms during the two-step elimination process that are in large part responsible for the relatively high activation barriers for the net reaction, which may be classified as a proton-coupled hydride or methyl anion transfer reaction.« less
4D porosity evolution during solid-solid replacement reaction in mineral system (KBr, KCl)
NASA Astrophysics Data System (ADS)
Beaudoin, Nicolas; Hamilton, Andrea; Koehn, Daniel; Shipton, Zoe
2017-04-01
An extensive understanding of the controlling mechanisms of phase transformation is key in geosciences to better predicting the evolution of the physical parameters of rocks (porosity, permeability, and rheology) from centimetre-scale (e.g. fingering in siltstones) to kilometer-scale (e.g. Dolostone geobodies), in both the diagenetic and metamorphic domains. This contribution reports the 4D monitoring of a KBr crystal at different time steps during an experimental, fluid-mediated replacement reaction with KCl. Volumes are reconstructed based on density contrast using non-destructive X-ray Computed Tomography (XCT) at a resolution of 3 microns. A sample of KBr was immersed in a static bath of saturated KCl at room temperature and pressure. 5 scans were performed during the reaction at 5, 10, 20, 35 and 55 minutes, until 50% of the original crystal was replaced. As a control experiment, two samples reacted continuously for 15 and 55 minutes, respectively. Each 3D dataset was reconstructed to visualize and quantify the different mineral phases, the porosity distribution and connectivity, along with the reaction front morphology. In the case of successive baths, results show that the front morphology evolves from rough with small fingers to flat and thick during the reaction, suggesting a switch between advection and diffusion controlled reactant distribution through time. This switch is also reflected in the mass evolution and the rate of propagation of the replaced zone, being rapid in the first 20 minutes before reaching steady state. The porosity develops perpendicular to the crystal wall, suggesting a self-organization process governed by advection, before connecting laterally. While the reaction changes from advection controlled to diffusion controlled, the direction of the connected pores becomes parallel to the crystal walls. This phenomenon is not observed when the crystal is reacting discontinuously for 55 minutes. In the latter case, self-organization similar to extended fingering is observed, suggesting the advection to diffusion switch is related to the successive stop of reaction progress for scanning. In both cases, when considering only the reacting zone of the crystal, we can estimate the porosity created by Br-Cl substitution at 30%. The evolution of connected porosity distribution helps to understand how fluid flow can migrate in a transforming rock, for example during dolomitisation, a phenomenon extensively observed in sedimentary basins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Thi Nu; Ono, Shota; Ohno, Kaoru, E-mail: ohno@ynu.ac.jp
Doing ab initio molecular dynamics simulations, we demonstrate a possibility of hydrogenation of carbon monoxide producing methanol step by step. At first, the hydrogen atom reacts with the carbon monoxide molecule at the excited state forming the formyl radical. Formaldehyde was formed after adding one more hydrogen atom to the system. Finally, absorption of two hydrogen atoms to formaldehyde produces methanol molecule. This study is performed by using the all-electron mixed basis approach based on the time dependent density functional theory within the adiabatic local density approximation for an electronic ground-state configuration and the one-shot GW approximation for an electronicmore » excited state configuration.« less
Laser pyrolysis fabrication of ferromagnetic gamma'-Fe4N and FeC nanoparticles
NASA Technical Reports Server (NTRS)
Grimes, C. A.; Qian, D.; Dickey, E. C.; Allen, J. L.; Eklund, P. C.
2000-01-01
Using the laser pyrolysis method, single phase gamma'-Fe4N nanoparticles were prepared by a two step method involving preparation of nanoscale iron oxide and a subsequent gas-solid nitridation reaction. Single phase Fe3C and Fe7C3 could be prepared by laser pyrolysis from Fe(CO)5 and 3C2H4 directly. Characterization techniques such as XRD, TEM and vibrating sample magnetometer were used to measure phase structure, particle size and magnetic properties of these nanoscale nitride and carbide particles. c2000 American Journal of Physics.
NASA Astrophysics Data System (ADS)
Obeidat, Amr M.
Clean and renewable energy systems have emerged as an important area of research having diverse and significant new applications. These systems utilize different energy storage methods such as the batteries and supercapacitors. Supercapacitors are electrochemical energy storage devices that are designed to bridge the gap between batteries and conventional capacitors. Supercapacitors which store electrical energy by electrical double layer capacitance are based on large surface area structured carbons. The materials systems in which the Faradaic reversible redox reactions store electrical energy are the transition metal oxides and electronically conducting polymers. Among the different types of conducting polymers, poly (3, 4- ethylenedioxythiophene) (PEDOT) is extensively investigated owing to its chemical and mechanical stability. Due to instability of aqueous electrolytes at high voltages and toxicity of organic electrolytes, potential of supercapacitors has not been fully exploited. A novel aspect of this work is in utilizing the ionic liquid gel polymer electrolyte to design solid-state supercapacitors for energy storage. Various electrochemical systems were investigated including graphene, PEDOT, PEDOT-carbon nanotubes, PEDOT-manganese oxide, and PEDOT-iron oxide nanocomposites. The electrochemical performance of solid-state supercapacitor devices was evaluated based on cyclic voltammetry (CV), charge-discharge (CD), prolonged cyclic tests, and electrochemical impedance spectroscopy (EIS) techniques. Raman spectroscopy technique was also utilized to analyze the bonding structure of the electrode materials. The graphene solid-state supercapacitor system displayed areal capacitance density of 141.83 mF cm-2 based on high potential window up to 4V. The PEDOT solid-state supercapacitor system was synthesized in acetonitrile and aqueous mediums achieving areal capacitance density of 219.17 mF cm-2. The hybrid structure of solid-state supercapacitors was also studied in solid-state design based on PEDOT and graphene electrodes that produced areal capacitance density of 198.26 mF cm-2. Symmetrical PEDOT-manganese oxide nanocomposites were synthesized by co-deposition and dip-coating techniques to fabricate solid-state supercapacitor systems achieving areal capacitance density of 122.08 mF cm-2 credited to the PEDOT-MnO2 supercapacitor that was synthesized by dipping the PEDOT electrode in pure KMnO4 solution. The electrochemical performance of PEDOT-carbon nanotube solid-state supercapacitors was also investigated in both acetonitrile and aqueous medium showing good dispersion characteristics with optimum CNT content of 1 mg. The PEDOT-CNT solid-state supercapacitor system synthesized in acetonitrile displayed areal capacitance density of 297.43 mF cm-2. PEDOT-Fe2O3 nanocomposites were synthesized by single-step co-deposition techniques, and these were used to fabricate solid-state supercapacitors achieving areal capacitance density of 96.89 mF cm-2. Furthermore, some of these thin flexible solid-state supercapacitors were integrated with solar cells for direct storage of solar electricity, which proved to be promising as autonomous power source for flexible and wearable electronics. This dissertation describes the electrode synthesis, design and properties of solid-state supercapacitors, and their electrochemical performance in the storage of electrical energy.
Free energy of steps using atomistic simulations
NASA Astrophysics Data System (ADS)
Freitas, Rodrigo; Frolov, Timofey; Asta, Mark
The properties of solid-liquid interfaces are known to play critical roles in solidification processes. Particularly special importance is given to thermodynamic quantities that describe the equilibrium state of these surfaces. For example, on the solid-liquid-vapor heteroepitaxial growth of semiconductor nanowires the crystal nucleation process on the faceted solid-liquid interface is influenced by the solid-liquid and vapor-solid interfacial free energies, and also by the free energies of associated steps at these faceted interfaces. Crystal-growth theories and mesoscale simulation methods depend on quantitative information about these properties, which are often poorly characterized from experimental measurements. In this work we propose an extension of the capillary fluctuation method for calculation of the free energy of steps on faceted crystal surfaces. From equilibrium atomistic simulations of steps on (111) surfaces of Copper we computed accurately the step free energy for different step orientations. We show that the step free energy remains finite at all temperature up to the melting point and that the results obtained agree with the more well established method of thermodynamic integration if finite size effects are taken into account. The research of RF and MA at UC Berkeley were supported by the US National Science Foundation (Grant No. DMR-1105409). TF acknowledges support through a postdoctoral fellowship from the Miller Institute for Basic Research in Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xue; Jing, Yan; Yang, Jia
Graphical abstract: - Highlights: • MNb{sub 2}O{sub 6} was prepared by a mild two-step hydrothermal method. • Their flower-like nanostructure morphology was studied by SEM and TEM. • High BET surface areas for MnNb{sub 2}O{sub 6} (∼50 m{sup 2}/g) and ZnNb{sub 2}O{sub 6} (∼100 m{sup 2}/g). • Band gap energies were estimated by UV–vis diffuse reflectance spectra. • Photocatalytic activities were evaluated under UV-light irradiation. - Abstract: Nano-scaled MNb{sub 2}O{sub 6} (M = Mn, Zn) was successfully synthesized via a two-step hydrothermal method. It is important to control the exact pH of the reaction solution in order to obtain puremore » products. The as-prepared samples both crystallize in the columbite structure. Interestingly, the products possess a flower-like morphology in a pseudo-six-fold symmetry, which is in fact arrayed by two-dimensional nanosheets. Their surface areas (51 m{sup 2}/g for MnNb{sub 2}O{sub 6} and 103 m{sup 2}/g for ZnNb{sub 2}O{sub 6}) are about 25–50 times of those prepared by solid state reaction. UV–vis diffuse reflectance spectra show the nano-scaled sample has a stronger absorption and a narrower band gap than its bulk form. The estimated band gap energies are 2.70 eV (MnNb{sub 2}O{sub 6}) and 3.77 eV (ZnNb{sub 2}O{sub 6}), respectively. The nano-scaled ZnNb{sub 2}O{sub 6} exhibits a double enhancement of photocatalytic activity in the decolorization of methylene blue than bulk ZnNb{sub 2}O{sub 6}.« less
Carbothermal Reduction of Quartz with Carbon from Natural Gas
NASA Astrophysics Data System (ADS)
Li, Fei; Tangstad, Merete
2017-04-01
Carbothermal reaction between quartz and two different carbons originating from natural gas were investigated in this paper. One of two carbons is the commercial carbon black produced from natural gas in a medium thermal production process. The other carbon is obtained from natural gas cracking at 1273 K (1000 °C) deposited directly on the quartz pellet. At the 1923 K (1650 °C) and CO atmosphere, the impact of carbon content, pellet structure, gas transfer, and heating rate are investigated in a thermo-gravimetric furnace. The reaction process can be divided into two steps: an initial SiC-producing step followed by a SiO-producing step. Higher carbon content and increased gas transfer improves the reaction rate of SiC-producing step, while the thicker carbon coating in carbon-deposited pellet hinders reaction rate. Better gas transfer of sample holder improves reaction rate but causes more SiO loss. Heating rate has almost no influence on reaction. Mass balance analysis shows that mole ratios between SiO2, free carbon, and SiC in the SiC-producing step and SiO-producing step in CO and Ar fit the reaction SiO2(s) + 3 C(s) = SiC(s) + 2 CO(g). SiC-particle and SiC-coating formation process in mixed pellet and carbon-deposited pellet are proposed. SiC whiskers formed in the voids of these two types of pellets.
Shekibi, Youssof; Rüther, Thomas; Huang, Junhua; Hollenkamp, Anthony F
2012-04-07
Replacement of volatile and combustible electrolytes in conventional lithium batteries is desirable for two reasons: safety concerns and increase in specific energy. In this work we consider the use of an ionic organic plastic crystal material (IOPC), N-ethyl-N-methylpyrrolidinium tetrafluoroborate, [C2mpyr][BF(4)], as a solid-state electrolyte for lithium battery applications. The effect of inclusion of 1 to 33 mol% lithium tetrafluoroborate, LiBF(4), into [C2mpyr][BF(4)] has been investigated over a wide temperature range by differential scanning calorimetry (DSC), impedance spectroscopy, cyclic voltammetry and cycling of full Li|LiFePO(4) batteries. The increases in ionic conductivity by orders of magnitude observed at higher temperature are most likely associated with an increase in Li ion mobility in the highest plastic phase. At concentrations >5 mol% LiBF(4) the ionic conductivity of these solid-state composites is comparable to the ionic conductivity of room temperature ionic liquids. Galvanostatic cycling of Li|Li symmetrical cells showed that the reversibility of the lithium metal redox reaction at the interface of this plastic crystal electrolyte is sufficient for lithium battery applications. For the first time we demonstrate an all solid state lithium battery incorporating solid electrolytes based on IOPC as opposed to conventional flammable organic solvents.
Consistent post-reaction vibrational energy redistribution in DSMC simulations using TCE model
NASA Astrophysics Data System (ADS)
Borges Sebastião, Israel; Alexeenko, Alina
2016-10-01
The direct simulation Monte Carlo (DSMC) method has been widely applied to study shockwaves, hypersonic reentry flows, and other nonequilibrium flow phenomena. Although there is currently active research on high-fidelity models based on ab initio data, the total collision energy (TCE) and Larsen-Borgnakke (LB) models remain the most often used chemistry and relaxation models in DSMC simulations, respectively. The conventional implementation of the discrete LB model, however, may not satisfy detailed balance when recombination and exchange reactions play an important role in the flow energy balance. This issue can become even more critical in reacting mixtures involving polyatomic molecules, such as in combustion. In this work, this important shortcoming is addressed and an empirical approach to consistently specify the post-reaction vibrational states close to thermochemical equilibrium conditions is proposed within the TCE framework. Following Bird's quantum-kinetic (QK) methodology for populating post-reaction states, the new TCE-based approach involves two main steps. The state-specific TCE reaction probabilities for a forward reaction are first pre-computed from equilibrium 0-D simulations. These probabilities are then employed to populate the post-reaction vibrational states of the corresponding reverse reaction. The new approach is illustrated by application to exchange and recombination reactions relevant to H2-O2 combustion processes.
NASA Astrophysics Data System (ADS)
Xiao, Yaoming; Han, Gaoyi; Chang, Yunzhen; Zhou, Haihan; Li, Miaoyu; Li, Yanping
2014-12-01
High performance dual function of polyaniline (PANI) with brachyplast structure is synthesized by using a two-step cyclic voltammetry (CV) approach onto the fluorinated tin oxide (FTO) glass substrate, which acts as the sensitizer and p-type hole-transporting material (p-HTM) for the all-solid-state perovskite-sensitized solar cell (ass-PSSC) due to its π-π* transition and the localized polaron. The ass-PSSC based on the PANI delivers a photovoltaic conversion efficiency of 7.34%, and reduces from 7.34% to 6.71% after 1000 h, thereby 91.42% of the energy conversion efficiency is kept, indicating the device has a good long-term stability.
Chen, Rong; Yang, Jianhua; Cheng, Xinbing; Pan, Zilong
2017-03-01
High voltage pulse generators are widely applied in a number of fields. Defense and industrial applications stimulated intense interests in the area of pulsed power technology towards the system with high power, high repetition rate, solid state characteristics, and compact structure. An all-solid-state microsecond-range quasi-square pulse generator based on a fractional-turn ratio saturable pulse transformer and anti-resonance network is proposed in this paper. This generator consists of a charging system, a step-up system, and a modulating system. In this generator, the fractional-turn ratio saturable pulse transformer is the key component since it acts as a step-up transformer and a main switch during the working process. Demonstrative experiments show that if the primary storage capacitors are charged to 400 V, a quasi-square pulse with amplitude of about 29 kV can be achieved on a 3500 Ω resistive load, as well as the pulse duration (full width at half maximum) of about 1.3 μs. Preliminary repetition rate experiments are also carried out, which indicate that this pulse generator could work stably with the repetition rates of 30 Hz and 50 Hz. It can be concluded that this kind of all-solid-state microsecond-range quasi-square pulse generator can not only lower both the operating voltage of the primary windings and the saturable inductance of the secondary windings, thus ideally realizing the magnetic switch function of the fractional-turn ratio saturable pulse transformer, but also achieve a quasi-square pulse with high quality and fixed flat top after the modulation of a two-section anti-resonance network. This generator can be applied in areas of large power microwave sources, sterilization, disinfection, and wastewater treatment.
Guo, Xunmin; Wang, Sufan; Xia, Andong; Su, Hongmei
2007-07-05
We present a general two-color two-pulse femtosecond pump-dump approach to study the specific population transfer along the reaction coordinate through the higher vibrational energy levels of excited states of a complex solvated molecule via the depleted spontaneous emission. The time-dependent fluorescence depletion provides the correlated dynamical information between the monitored fluorescence state and the SEP "dumped" dark states, and therefore allow us to obtain the dynamics of the formation of the dark states corresponding to the ultrafast photoisomerization processes. The excited-state dynamics of LDS 751 have been investigated as a function of solvent viscosity and solvent polarity, where a cooperative two-step isomerization process is clearly identified within LDS 751 upon excitation.
Brunner, Henri; Tsuno, Takashi
2018-05-01
Invited for this month's cover picture are Prof. Dr. Henri Brunner from the University of Regensburg (Germany) and Prof. Dr. Takashi Tsuno from Nihon University (Japan). The cover picture shows the conformational reaction of JIDLUD→FIHTUL. The order of sample points of solid-state structures reveals information concerning low-energy, directed, and coupled movements in molecules. Read the full text of their Communication at https://doi.org/10.1002/open.201800007.
An Interactive Classroom Activity Demonstrating Reaction Mechanisms and Rate-Determining Steps
ERIC Educational Resources Information Center
Jennings, Laura D.; Keller, Steven W.
2005-01-01
An interactive classroom activity that includes two-step reaction of unwrapping and eating chocolate candies is described which brings not only the reaction intermediate, but also the reactants and products into macroscopic view. The qualitative activation barriers of both steps can be adjusted independently.
Synergies Between Quantum Mechanics and Machine Learning in Reaction Prediction.
Sadowski, Peter; Fooshee, David; Subrahmanya, Niranjan; Baldi, Pierre
2016-11-28
Machine learning (ML) and quantum mechanical (QM) methods can be used in two-way synergy to build chemical reaction expert systems. The proposed ML approach identifies electron sources and sinks among reactants and then ranks all source-sink pairs. This addresses a bottleneck of QM calculations by providing a prioritized list of mechanistic reaction steps. QM modeling can then be used to compute the transition states and activation energies of the top-ranked reactions, providing additional or improved examples of ranked source-sink pairs. Retraining the ML model closes the loop, producing more accurate predictions from a larger training set. The approach is demonstrated in detail using a small set of organic radical reactions.
Nanointerface-driven reversible hydrogen storage in the nanoconfined Li-N-H system
Wood, Brandon C.; Stavila, Vitalie; Poonyayant, Natchapol; ...
2017-01-20
Internal interfaces in the Li 3N/[LiNH 2 + 2LiH] solid-state hydrogen storage system alter the hydrogenation and dehydrogenation reaction pathways upon nanosizing, suppressing undesirable intermediate phases to dramatically improve kinetics and reversibility. Finally, the key role of solid interfaces in determining thermodynamics and kinetics suggests a new paradigm for optimizing complex hydrides for solid-state hydrogen storage by engineering internal microstructure.
Synthesis and luminescence of Ca 4YO(BO 3) 3:Eu 3+ for fluorescent lamp application
NASA Astrophysics Data System (ADS)
Kuo, Te-Wen; Chen, Teng-Ming
2010-07-01
The red-emitting Ca 4YO(BO 3) 3:Eu 3+ phosphor has been prepared at 1200 °C by the simple solid-state reaction. This preparation temperature is much lower than Y 2O 3:Eu 3+ (1400-1500 °C) for conventional solid-state reaction method. In particular, the complete process to produce high-quality phosphor particles was carried out through the single-step heat treatment of the mixture of corresponding oxide-type metal sources. For this material, the XRD, PL, PL excitation (PLE) and SEM features have also been investigated. The X-ray diffraction data indicate that pure phase of Ca 4YO(BO 3) 3:Eu 3+ can be successfully obtained. Among the different emission transitions 5D 0 → 7F J=0, 1, 2, 3, 4 of this phosphor, one particular transition ( 5D 0 → 7F 2) at 610 nm has been found. Besides carrying out these essential measurements, we have also made an attempt to observe a strong red emission performance displayed by this phosphor for use as coating material on compact fluorescent lamps (CFLs). The results clearly indicate that the life time based on Ca 4YO(BO 3) 3:Eu 3+ was found to be much longer than that using Y 2O 3:Eu 3+. The good performances of the CFLs demonstrate that this phosphor may be suitable for application on short ultraviolet fluorescent lamp.
A simple model of hysteresis behavior using spreadsheet analysis
NASA Astrophysics Data System (ADS)
Ehrmann, A.; Blachowicz, T.
2015-01-01
Hysteresis loops occur in many scientific and technical problems, especially as field dependent magnetization of ferromagnetic materials, but also as stress-strain-curves of materials measured by tensile tests including thermal effects, liquid-solid phase transitions, in cell biology or economics. While several mathematical models exist which aim to calculate hysteresis energies and other parameters, here we offer a simple model for a general hysteretic system, showing different hysteresis loops depending on the defined parameters. The calculation which is based on basic spreadsheet analysis plus an easy macro code can be used by students to understand how these systems work and how the parameters influence the reactions of the system on an external field. Importantly, in the step-by-step mode, each change of the system state, compared to the last step, becomes visible. The simple program can be developed further by several changes and additions, enabling the building of a tool which is capable of answering real physical questions in the broad field of magnetism as well as in other scientific areas, in which similar hysteresis loops occur.
Atomistic Details of the Associative Phosphodiester Cleavage in Human Ribonuclease H
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elsasser, Brigitta M.; Fels, Gregor
2010-07-30
During translation of the genetic information of DNA into proteins, mRNA is synthesized by RNA polymerase and after the transcription process degraded by RNase H. The endoribonuclease RNase H is a member of the nucleotidyl-transferase (NT) superfamily and is known to hydrolyze the phosphodiester bonds of RNA which is hybridized to DNA. Retroviral RNase H is part of the viral reverse transcriptase enzyme that is indispensable for the proliferation of retroviruses, such as HIV. Inhibitors of this enzyme could therefore provide new drugs against diseases like AIDS. In our study we investigated the molecular mechanism of RNA cleavage by humanmore » RNase H using a comprehensive high level DFT/B3LYP QM/MM theoretical method for the calculation of the stationary points and nudged elastic band (NEB) and free energy calculations to identify the transition state structures, the rate limiting step and the reaction barrier. Our calculations reveal that the catalytic mechanism proceeds in two steps and that the nature of the nucleophile is a water molecule. In the first step, the water attack on the scissile phosphorous is followed by a proton transfer from the water to the O2P oxygen and a trigonal bipyramidal pentacoordinated phosphorane is formed. Subsequently, in the second step the proton is shuttled to the O30 oxygen to generate the product state. During the reaction mechanism two Mg2+ ions support the formation of a stable associated in-line SN2-type phosphorane intermediate. Our calculated energy barrier of 19.3 kcal mol*1 is in excellent agreement with experimental findings (20.5 kcal mol*1). These results may contribute to the clarification and understanding of the RNase H reaction mechanism and of further enzymes from the RNase family.« less
Method of preparing (CH.sub.3).sub.3 SiNSO and byproducts thereof
Spicer, Leonard D.; Bennett, Dennis W.; Davis, Jon F.
1984-01-01
(CH.sub.3).sub.3 SiNSO is produced by the reaction of ((CH.sub.3).sub.3 Si).sub.2 NH with SO.sub.2. Also produced in the reaction are ((CH.sub.3).sub.3 Si).sub.2 O and a new solid compound [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ]. Both (CH.sub.3).sub.3 SiNSO and [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ] have fluorescent properties. The reaction of the subject invention is used in a method of measuring the concentration of SO.sub.2 pollutants in gases. By the method, a sample of gas is bubbled through a solution of ((CH.sub.3).sub.3 Si).sub.2 NH, whereby any SO.sub.2 present in the gas will react to produce the two fluorescent products. The measured fluorescence of these products can then be used to calculate the concentration of SO.sub.2 in the original gas sample. The solid product [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ] may be used as a standard in solid state NMR spectroscopy.
Reduction in the Band Gap of Manganese-Doped Zinc Oxide: Role of the Oxidation State
NASA Astrophysics Data System (ADS)
Sharma, Sonia; Ramesh, Pranith; Swaminathan, P.
2015-12-01
Manganese-doped zinc oxide powders were synthesized by solid state reaction of the respective oxides. The high-temperature conditions were chosen such that multiple valence states of manganese were doped in the host zinc oxide lattice. Structural characterization was carried out to confirm the doping and to find the maximum amount of manganese that can be incorporated. Diffuse reflectance spectroscopy was used to measure the optical band gap of the doped sample and the lowering with respect to pure ZnO was attributed to the presence of higher oxidation states of manganese. The presence of these oxidation states was confirmed using x-ray photoelectron spectroscopy. The study shows that a solid state reaction is a viable route for synthesizing doped metal oxides with desired optical properties.
NASA Astrophysics Data System (ADS)
Bhunia, Snehasis; Singh, Ajeet; Ojha, Animesh K.
2016-05-01
In the present report, un-catalyzed peptide bond formation between two monomers of glycine (Gly), alanine (Ala), serine (Ser), threonine (Thr), and aspartic acid (Asp) has been investigated in gas phase via two steps reaction mechanism and concerted mechanism at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. The peptide bond is formed through a nucleophilic reaction via transition states, TS1 and TS2 in stepwise mechanism. The TS1 reveals formation of a new C-N bond while TS2 illustrate the formation of C=O bond. In case of concerted mechanism, C-N bond is formed by a single four-centre transition state (TS3). The energy barrier is used to explain the involvement of energy at each step of the reaction. The energy barrier (20-48 kcal/mol) is required for the transformation of reactant state R1 to TS1 state and intermediate state I1 to TS2 state. The large value of energy barrier is explained in terms of distortion and interaction energies for stepwise mechanism. The energy barrier of TS3 in concerted mechanism is very close to the energy barrier of the first transition state (TS1) of the stepwise mechanism for the formation of Gly-Gly and Ala-Ala di- peptide. However, in case of Ser-Ser, Thr-Thr and Asp-Asp di-peptide, the energy barrier of TS3 is relatively high than that of the energy barrier of TS1 calculated at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. In both the mechanisms, the value of energy barrier calculated at B3LYP/6-31G(d,p) level of theory is greater than that of the value calculated at M062X/6-31G(d,p) level of theory.
Weiße, Maik; Zille, Markus; Jacob, Katharina; Schmidt, Robert; Stolle, Achim
2015-04-20
It was demonstrated that ortho-substituted anilines are prone to undergo hydroamination reactions with diethyl acetylenedicarboxylate in a planetary ball mill. A sequential coupling of the intermolecular hydroamination reaction with intramolecular ring closure was utilized for the syntheses of benzooxazines, quinoxalines, and benzothiazines from readily available building blocks, that is, electrophilic alkynes and anilines with OH, NH, or SH groups in the ortho position. For the heterocycle formation, it was shown that several stress conditions were able to initiate the reaction in the solid state. Processing in a ball mill seemed to be advantageous over comminution with mortar and pestle with respect to process control. In the latter case, significant postreaction modification occurred during solid-state analysis. Cryogenic milling proved to have an adverse effect on the molecular transformation of the reagents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chemical looping fluidized-bed concentrating solar power system and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhiwen
A concentrated solar power (CSP) plant comprises a receiver configured to contain a chemical substance for a chemical reaction and an array of heliostats. Each heliostat is configured to direct sunlight toward the receiver. The receiver is configured to transfer thermal energy from the sunlight to the chemical substance in a reduction reaction. The CSP plant further comprises a first storage container configured to store solid state particles produced by the reduction reaction and a heat exchanger configured to combine the solid state particles and gas through an oxidation reaction. The heat exchanger is configured to transfer heat produced inmore » the oxidation reaction to a working fluid to heat the working fluid. The CSP plant further comprises a power turbine coupled to the heat exchanger, such that the heated working fluid turns the power turbine, and a generator coupled to and driven by the power turbine to generate electricity.« less
Nitrogen-Functionalized Hydrothermal Carbon Materials by Using Urotropine as the Nitrogen Precursor.
Straten, Jan Willem; Schleker, Philipp; Krasowska, Małgorzata; Veroutis, Emmanouil; Granwehr, Josef; Auer, Alexander A; Hetaba, Walid; Becker, Sylvia; Schlögl, Robert; Heumann, Saskia
2018-03-25
Nitrogen-containing hydrothermal carbon (N-HTC) materials of spherical particle morphology were prepared by means of hydrothermal synthesis with glucose and urotropine as precursors. The molar ratio of glucose to urotropine has been varied to achieve a continuous increase in nitrogen content. By raising the ratio of urotropine to glucose, a maximal nitrogen fraction of about 19 wt % could be obtained. Decomposition products of both glucose and urotropine react with each other; this opens up a variety of possible reaction pathways. The pH has a pronounced effect on the reaction pathway of the corresponding reaction steps. For the first time, a comprehensive analytical investigation, comprising a multitude of analytical tools and instruments, of a series of nitrogen-containing HTC materials was applied. Functional groups and structural motifs identified were analyzed by means of FTIR spectroscopy, thermogravimetric MS, and solid-state NMR spectroscopy. Information on reaction mechanisms and structural details were obtained by electronic structure calculations that were compared with vibrational spectra of polyfuran or polypyrrole-like groups, which represent structural motifs occurring in the present samples. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Fiber-optic projected-fringe digital interferometry
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Beheim, Glenn
1990-01-01
A phase-stepped projected-fringe interferometer was developed which uses a closed-loop fiber-optic phase-control system to make very accurate surface profile measurements. The closed-loop phase-control system greatly reduces phase-stepping error, which is frequently the dominant source of error in digital interferometers. Two beams emitted from a fiber-optic coupler are combined to form an interference fringe pattern on a diffusely reflecting object. Reflections off of the fibers' output faces are used to create a phase-indicating signal for the closed-loop optical phase controller. The controller steps the phase difference between the two beams by pi/2 radians in order to determine the object's surface profile using a solid-state camera and a computer. The system combines the ease of alignment and automated data reduction of phase-stepping projected-fringe interferometry with the greatly improved phase-stepping accuracy of our closed-loop phase-controller. The system is demonstrated by measuring the profile of a plate containing several convex surfaces whose heights range from 15 to 25 micron high.
Surov, Artem O; Churakov, Andrei V; Proshin, Alexey N; Dai, Xia-Lin; Lu, Tongbu; Perlovich, German L
2018-05-30
Three distinct solid forms, namely anhydrous cocrystals with 2 : 1 and 1 : 1 drug/acid ratios ([TDZ : GA] (2 : 1), [TDZ : GA] (1 : 1)), and a hydrated one having 1 : 1 : 1 drug/acid/water stoichiometry ([TDZ : GA : H2O] (1 : 1 : 1)), have been formed by cocrystallization of the biologically active 1,2,4-thiadiazole derivative (TDZ) with gallic acid (GA). The thermodynamic stability relationships between the cocrystals were rationalized in terms of Gibbs energies of the formation reactions and further verified by performing a set of competitive and exchange mechanochemical reactions. Interestingly, competitive grinding in the presence of the structurally related vanillic acid led to the formation of a new polymorphic form of the [TDZ : Vanillic acid] (1 : 1) cocrystal, which was promoted by gallic acid. The mechanochemical method was also applied to elucidate the alternative pathways of the [TDZ : GA : H2O] (1 : 1 : 1) cocrystal formation. Direct cocrystallization of TDZ with GA monohydrate was found to proceed much faster than the reaction of TDZ and anhydrous GA in the presence of an acetonitrile/water mixture, which may indicate the presence of a transitional stage. According to dissolution studies, the [TDZ : GA : H2O] (1 : 1 : 1) cocrystal was ca. 6.6 times more soluble than the parent 1,2,4-thiadiazole at pH 2.0 and 25.0 °C. The apparent two-step dehydration behavior of the [TDZ : GA : H2O] (1 : 1 : 1) cocrystal monohydrate was clarified by analyzing the intermolecular interactions of water molecules with the crystalline environment derived from solid state DFT calculations.
Wan, Hongli; Mwizerwa, Jean Pierre; Qi, Xingguo; Liu, Xin; Xu, Xiaoxiong; Li, Hong; Hu, Yong-Sheng; Yao, Xiayin
2018-03-27
High ionic conductivity electrolyte and intimate interfacial contact are crucial factors to realize high-performance all-solid-state sodium batteries. Na 2.9 PS 3.95 Se 0.05 electrolyte with reduced particle size of 500 nm is first synthesized by a simple liquid-phase method and exhibits a high ionic conductivity of 1.21 × 10 -4 S cm -1 , which is comparable with that synthesized with a solid-state reaction. Meanwhile, a general interfacial architecture, that is, Na 2.9 PS 3.95 Se 0.05 electrolyte uniformly anchored on Fe 1- x S nanorods, is designed and successfully prepared by an in situ liquid-phase coating approach, forming core-shell structured Fe 1- x S@Na 2.9 PS 3.95 Se 0.05 nanorods and thus realizing an intimate contact interface. The Fe 1- x S@Na 2.9 PS 3.95 Se 0.05 /Na 2.9 PS 3.95 Se 0.05 /Na all-solid-state sodium battery demonstrates high specific capacity and excellent rate capability at room temperature, showing reversible discharge capacities of 899.2, 795.5, 655.1, 437.9, and 300.4 mAh g -1 at current densities of 20, 50, 100, 150, and 200 mA g -1 , respectively. The obtained all-solid-state sodium batteries show very high energy and power densities up to 910.6 Wh kg -1 and 201.6 W kg -1 based on the mass of Fe 1- x S at current densities of 20 and 200 mA g -1 , respectively. Moreover, the reaction mechanism of Fe 1- x S is confirmed by means of ex situ X-ray diffraction techniques, showing that partially reversible reaction occurs in the Fe 1- x S electrode after the second cycle, which gives the obtained all-solid-state sodium battery an exceptional cycling stability, exhibiting a high capacity of 494.3 mAh g -1 after cycling at 100 mA g -1 for 100 cycles. This contribution provides a strategy for designing high-performance room temperature all-solid-state sodium battery.
Conformational dimorphism of isochroman-1-ones in the solid state
NASA Astrophysics Data System (ADS)
Babjaková, Eva; Hanulíková, Barbora; Dastychová, Lenka; Kuřitka, Ivo; Nečas, Marek; Vícha, Robert
2014-12-01
Isochroman-1-one derivatives, which are relatives of coumarins, display a broad spectrum of biological activity; therefore, these derivatives attract the attention of chemists. A series of new isochroman-1-ones were prepared by the reaction of benzyl-derived Grignard reagents with acyl chlorides. All of the prepared compounds were characterized using single-crystal X-ray diffraction as well as FT-IR, NMR and MS techniques. Single crystal X-ray diffraction analysis revealed that the isochromanones can adopt two distinct conformations in the solid state. For one of the compounds, two polymorphs with unique forms crystallized separately under different temperatures. The packing of all of the examined crystals is stabilized via weak intramolecular C-H⋯π and/or C-H⋯O interactions. Although the closed conformer was predominantly found in the actual crystals, the open conformer is thermochemically more stable for all of the examined compounds according to DFT calculations.
The use of solid-liquid phase transfer catalysis has an advantage of carrying out reaction between two immiscible substrates, one in solid phase and the other in liquid phase, with high selectivity and at relatively low temperatures. In this study we investigated the synthesis ci...
Zhang, Ying; Kuang, Min; Zhang, Lijuan; Yang, Pengyuan; Lu, Haojie
2013-06-04
In light of the significance of glycosylation for wealthy biological events, it is important to prefractionate glycoproteins/glycopeptides from complex biological samples. Herein, we reported a novel protocol of solid-phase extraction of glycopeptides through a reductive amination reaction by employing the easily accessible 3-aminopropyltriethoxysilane (APTES)-functionalized magnetic nanoparticles. The amino groups from APTES, which were assembled onto the surface of the nanoparticles through a one-step silanization reaction, could conjugate with the aldehydes from oxidized glycopeptides and, therefore, completed the extraction. To the best of our knowledge, this is the first example of applying the reductive amination reaction into the isolation of glycopeptides. Due to the elimination of the desalting step, the detection limit of glycopeptides was improved by 2 orders of magnitude, compared to the traditional hydrazide chemistry-based solid phase extraction, while the extraction time was shortened to 4 h, suggesting the high sensitivity, specificity, and efficiency for the extraction of N-linked glycopeptides by this method. In the meantime, high selectivity toward glycoproteins was also observed in the separation of Ribonuclease B from the mixtures contaminated with bovine serum albumin. What's more, this technique required significantly less sample volume, as demonstrated in the successful mapping of glycosylation of human colorectal cancer serum with the sample volume as little as 5 μL. Because of all these attractive features, we believe that the innovative protocol proposed here will shed new light on the research of glycosylation profiling.
NASA Technical Reports Server (NTRS)
Sheridan, P. S.
1980-01-01
A scheme for the photochemical fixation of water is proposed which involves a five-step reaction sequence; the first step involves the 2 electron reduction of a metal by a coordinated carbonate ligand, with corresponding oxidation of the carbonate to CO2 and O2. Ligand field photolysis of trans- (RH(en)2 H2O CO3) ClO4, and (Rh(en)2 CO3) CLO4 have been studied in the solid state and in aqueous solution at various pH values. Both salts are photoinert in the solid phase, but are quite photoreactive in aqueous solution. In solution, the monodentate ion undergoes efficient isomerization to a mixture of cis and trans - (Rh(en)2 H2O CO3)+, presumably with water exchange. A minor pH increase upon photolysis is evidence of inefficient carbonate (CO3 =) release, with formation of (Rh(en)2 (H2O)2)3+. In contrast, aqueous solutions of the bidentate carbonato complex undergo efficient pH decrease upon ligand field photolysis. Changes in the electronic spectrum (200-500 nm) and pH changes indicate that the desired redox is occurring. The pH increase is due to the aqueous behavior of CO2.
Hallmarks of mechanochemistry: from nanoparticles to technology.
Baláž, Peter; Achimovičová, Marcela; Baláž, Matej; Billik, Peter; Cherkezova-Zheleva, Zara; Criado, José Manuel; Delogu, Francesco; Dutková, Erika; Gaffet, Eric; Gotor, Francisco José; Kumar, Rakesh; Mitov, Ivan; Rojac, Tadej; Senna, Mamoru; Streletskii, Andrey; Wieczorek-Ciurowa, Krystyna
2013-09-21
The aim of this review article on recent developments of mechanochemistry (nowadays established as a part of chemistry) is to provide a comprehensive overview of advances achieved in the field of atomistic processes, phase transformations, simple and multicomponent nanosystems and peculiarities of mechanochemical reactions. Industrial aspects with successful penetration into fields like materials engineering, heterogeneous catalysis and extractive metallurgy are also reviewed. The hallmarks of mechanochemistry include influencing reactivity of solids by the presence of solid-state defects, interphases and relaxation phenomena, enabling processes to take place under non-equilibrium conditions, creating a well-crystallized core of nanoparticles with disordered near-surface shell regions and performing simple dry time-convenient one-step syntheses. Underlying these hallmarks are technological consequences like preparing new nanomaterials with the desired properties or producing these materials in a reproducible way with high yield and under simple and easy operating conditions. The last but not least hallmark is enabling work under environmentally friendly and essentially waste-free conditions (822 references).
Leung, Kevin
2016-12-10
The density functional theory and ab initio molecular dynamics simulations are applied to investigate the migration of Mn(II) ions to above-surface sites on spinel Li xMn 2O 4 (001) surfaces, the subsequent Mn dissolution into the organic liquid electrolyte, and the detrimental effects on graphite anode solid electrolyte interphase (SEI) passivating films after Mn(II) ions diffuse through the separator. The dissolution mechanism proves complex; the much-quoted Hunter disproportionation of Mn(III) to form Mn(II) is far from sufficient. Key steps that facilitate Mn(II) loss include concerted liquid/solid-state motions; proton-induced weakening of Mn–O bonds forming mobile OH – surface groups; and chemicalmore » reactions of adsorbed decomposed organic fragments. Mn(II) lodged between the inorganic Li 2CO 3 and organic lithium ethylene dicarbonate (LEDC) anode SEI components facilitate electrochemical reduction and decomposition of LEDC. Our findings help inform future design of protective coatings, electrolytes, additives, and interfaces.« less
Solid state SPS microwave generation and transmission study. Volume 2, phase 2: Appendices
NASA Technical Reports Server (NTRS)
Maynard, O. E.
1980-01-01
The solid state sandwich concept for SPS was further defined. The design effort concentrated on the spacetenna, but did include some system analysis for parametric comparison reasons. Basic solid state microwave devices were defined and modeled. An initial conceptual subsystems and system design was performed as well as sidelobe control and system selection. The selected system concept and parametric solid state microwave power transmission system data were assessed relevant to the SPS concept. Although device efficiency was not a goal, the sensitivities to design of this efficiency were parametrically treated. Sidelobe control consisted of various single step tapers, multistep tapers and Gaussian tapers. A hybrid concept using tubes and solid state was evaluated. Thermal analyses are included with emphasis on sensitivities to waste heat radiator form factor, emissivity, absorptivity, amplifier efficiency, material and junction temperature.
Investigation of thermodynamic properties of metal-oxide catalysts
NASA Astrophysics Data System (ADS)
Shah, Parag Rasiklal
An apparatus for Coulometric Titration was developed and used to measure the redox isotherms (i.e. oxygen fugacity P(O2) vs oxygen stoichiometry) of ceria-zirconia solid solutions, mixed oxides of vanadia, and vanadia supported on ZrO2. This data was used to correlate the redox thermodynamics of these oxides to their structure and catalytic properties. From the redox isotherms measured between 873 K and 973 K, the differential enthalpies of oxidation (DeltaH) for Ce0.81Zr0.19O 2.0 and Ce0.25Zr0.75O2.0 were determined, and they were found to be independent of extent of reduction or composition of the solid solution. They were also lower than DeltaH for ceria, which explains the better redox properties of ceria-zirconia solid solutions. The oxidation was driven by entropy in the low reduction region, and a structural model was proposed to explain the observed entropy effects. Redox isotherms were also measured for a number of bulk vanadates between 823 K and 973 K. DeltaG, DeltaH and DeltaS were reported for V 2O5, Mg3(VO4)2, CeVO 4 and ZrV2O7 along with DeltaG values for AlVO 4, LaVO4, CrVO4. V2O5 and ZrV2O7, which were the only oxides having V-O-V bonds, showed a two-step transition of vanadium for V+3↔V +4 and V+4↔V+5 equilibrium in the redox isotherms. The other oxides, all of which have only M-O-V (M=cation other than V), showed a direct one-step transition, V+3↔V +5. The nature of the M-atom also influenced the P(O2) at which the V+3↔V+5 transition occurs. Redox isotherms at 748 K were measured for vanadia supported on ZrO 2; with two different vanadia loadings corresponding to isolated vanadyls and polymeric vanadyls. The isotherm for the sample with isolated vanadyls showed a single-step transition, similar to the one seen in bulk vanadates with M-O-V linkages, while no such one-step transition was observed in the isotherm of the other sample. To study the affect of the varying redox properties of the vanadium-based catalysts on oxidation rates, kinetic studies were performed for methanol and propane oxidation reactions on some of these catalysts. The results suggested that there was no effect of thermodynamic properties of these catalysts on the rates of these oxidation reactions.
Solid electrolyte: The key for high-voltage lithium batteries
Li, Juchuan; Ma, Cheng; Chi, Miaofang; ...
2014-10-14
A solid-state high-voltage (5 V) lithium battery is demonstrated to deliver a cycle life of 10 000 with 90% capacity retention. Furthermore, the solid electrolyte enables the use of high-voltage cathodes and Li anodes with minimum side reactions, leading to a high Coulombic efficiency of 99.98+%.
Realization of reliable solid-state quantum memory for photonic polarization qubit.
Zhou, Zong-Quan; Lin, Wei-Bin; Yang, Ming; Li, Chuan-Feng; Guo, Guang-Can
2012-05-11
Faithfully storing an unknown quantum light state is essential to advanced quantum communication and distributed quantum computation applications. The required quantum memory must have high fidelity to improve the performance of a quantum network. Here we report the reversible transfer of photonic polarization states into collective atomic excitation in a compact solid-state device. The quantum memory is based on an atomic frequency comb (AFC) in rare-earth ion-doped crystals. We obtain up to 0.999 process fidelity for the storage and retrieval process of single-photon-level coherent pulse. This reliable quantum memory is a crucial step toward quantum networks based on solid-state devices.
Fabrication of hollow nanorod electrodes based on RuO2//Fe2O3 for an asymmetric supercapacitor.
Wang, Qiufan; Liang, Xiao; Ma, Yun; Zhang, Daohong
2018-06-12
In this work, hollow RuO2 nanotube arrays were successfully grown on carbon cloth by using a facile two-step method to fabricate a binder-free electrode. The well-aligned electrode displays excellent electrochemical performance. By using RuO2 hollow nanotube arrays as the positive electrode and Fe2O3 as the negative electrode, a flexible solid-state asymmetric supercapacitor (ASC) has been fabricated which exhibited excellent electrochemical performance, such as a high capacitance of 4.9 F cm-3, a high energy density of 1.5 mW h cm-3 and a high power density of 9.1 mW cm-3. In addition, the two-electrode SC shows high cycling stability with 97% capacitance retention after 5000 charge-discharge cycles. These excellent electrochemical performances are ascribed to the unique hollow structural design of electrodes, which can shorten the ion diffusion length, provide a fast ion transport channel, and offer a large electrode/electrolyte interface for the charge-transfer reaction. The structural design and the synthesis approach are general and can be extended to synthesizing a broad range of materials systems.
Reactive solid surface morphology variation via ionic diffusion.
Sun, Zhenchao; Zhou, Qiang; Fan, Liang-Shih
2012-08-14
In gas-solid reactions, one of the most important factors that determine the overall reaction rate is the solid morphology, which can be characterized by a combination of smooth, convex and concave structures. Generally, the solid surface structure varies in the course of reactions, which is classically noted as being attributed to one or more of the following three mechanisms: mechanical interaction, molar volume change, and sintering. Here we show that if a gas-solid reaction involves the outward ionic diffusion of a solid-phase reactant then this outward ionic diffusion could eventually smooth the surface with an initial concave and/or convex structure. Specifically, the concave surface is filled via a larger outward diffusing surface pointing to the concave valley, whereas the height of the convex surface decreases via a lower outward diffusion flux in the vertical direction. A quantitative 2-D continuum diffusion model is established to analyze these two morphological variation processes, which shows consistent results with the experiments. This surface morphology variation by solid-phase ionic diffusion serves to provide a fourth mechanism that supplements the traditionally acknowledged solid morphology variation or, in general, porosity variation mechanisms in gas-solid reactions.
Catalytic ignition model in a monolithic reactor with in-depth reaction
NASA Technical Reports Server (NTRS)
Tien, Ta-Ching; Tien, James S.
1990-01-01
Two transient models have been developed to study the catalytic ignition in a monolithic catalytic reactor. The special feature in these models is the inclusion of thermal and species structures in the porous catalytic layer. There are many time scales involved in the catalytic ignition problem, and these two models are developed with different time scales. In the full transient model, the equations are non-dimensionalized by the shortest time scale (mass diffusion across the catalytic layer). It is therefore accurate but is computationally costly. In the energy-integral model, only the slowest process (solid heat-up) is taken as nonsteady. It is approximate but computationally efficient. In the computations performed, the catalyst is platinum and the reactants are rich mixtures of hydrogen and oxygen. One-step global chemical reaction rates are used for both gas-phase homogeneous reaction and catalytic heterogeneous reaction. The computed results reveal the transient ignition processes in detail, including the structure variation with time in the reactive catalytic layer. An ignition map using reactor length and catalyst loading is constructed. The comparison of computed results between the two transient models verifies the applicability of the energy-integral model when the time is greater than the second largest time scale of the system. It also suggests that a proper combined use of the two models can catch all the transient phenomena while minimizing the computational cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Lingyun, E-mail: lychen@cqu.edu.c; Shen Yongming; Bai Junfeng, E-mail: bjunfeng@nju.edu.c
2009-08-15
We describe here a one-step solid-state process for the synthesis of metal three-dimensional (3D) superstructures from a metal-organic framework (MOF). Novel symmetrical coralloid Cu 3D superstructures with surface interspersed with clusters of Cu nanoparticles were successfully synthesized by thermolysis of the [Cu{sub 3}(btc){sub 2}] (btc=benzene-1,3,5-tricarboxylato) MOF in a one-end closed horizontal tube furnace (OCTF). The obtained products were characterized by TGA, FT-IR, XRD, EDX, SEM, TEM, HRTEM and SAED. Different reaction conditions were discussed. Furthermore, the synthesized Cu samples were converted into CuO microstructures by in-situ calcination in the air. In addition, the possible formation mechanism was also proposed. Thismore » method is a simple and facile route, which builds a direct linkage between metal-carboxylate MOF crystals and metal nano- or microstructures and also opens a new application field of MOFs. - Graphical abstract: Novel symmetrical coralloid Cu 3D superstructures were synthesized by thermolysis of the [Cu{sub 3}(btc){sub 2}] (btc=benzene-1,3,5-tricarboxylato) MOF microcrystals in a one-end closed horizontal tube furnace (OCTF).« less
A universal pathway for kinesin stepping.
Clancy, Bason E; Behnke-Parks, William M; Andreasson, Johan O L; Rosenfeld, Steven S; Block, Steven M
2011-08-14
Kinesin-1 is an ATP-driven, processive motor that transports cargo along microtubules in a tightly regulated stepping cycle. Efficient gating mechanisms ensure that the sequence of kinetic events proceeds in the proper order, generating a large number of successive reaction cycles. To study gating, we created two mutant constructs with extended neck-linkers and measured their properties using single-molecule optical trapping and ensemble fluorescence techniques. Owing to a reduction in the inter-head tension, the constructs access an otherwise rarely populated conformational state in which both motor heads remain bound to the microtubule. ATP-dependent, processive backstepping and futile hydrolysis were observed under moderate hindering loads. On the basis of measurements, we formulated a comprehensive model for kinesin motion that incorporates reaction pathways for both forward and backward stepping. In addition to inter-head tension, we found that neck-linker orientation is also responsible for ensuring gating in kinesin.
Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Fan, Yajun; Liu, Chunliang
2016-08-01
An all solid-state high repetitive sub-nanosecond risetime pulse generator featuring low-energy-triggered bulk gallium arsenide (GaAs) avalanche semiconductor switches and a step-type transmission line is presented. The step-type transmission line with two stages is charged to a potential of 5.0 kV also biasing at the switches. The bulk GaAs avalanche semiconductor switch closes within sub-nanosecond range when illuminated with approximately 87 nJ of laser energy at 905 nm in a single pulse. An asymmetric dipolar pulse with peak-to-peak amplitude of 9.6 kV and risetime of 0.65 ns is produced on a resistive load of 50 Ω. A technique that allows for repetition-rate multiplication of pulse trains experimentally demonstrated that the parallel-connected bulk GaAs avalanche semiconductor switches are triggered in sequence. The highest repetition rate is decided by recovery time of the bulk GaAs avalanche semiconductor switch, and the operating result of 100 kHz of the generator is discussed.
Residual thermal stresses in a solid sphere cast from a thermosetting material
NASA Technical Reports Server (NTRS)
Levitsky, M.; Shaffer, B. W.
1975-01-01
Expressions are developed for the residual thermal stresses in a solid sphere cast from a chemically hardening thermosetting material in a rigid spherical mold. The description of the heat generation rate and temperature variation is derived from a first-order chemical reaction. Solidification is described by the continuous transformation of the material from an inviscid liquidlike state into an elastic solid, with intermediate properties determined by the degree of chemical reaction. Residual stress components are obtained as functions of the parameters of the hardening process and the properties of the hardening material. Variation of the residual stresses with a nondimensionalized reaction rate parameter and the relative compressibility of the hardened material is discussed in detail.
Jena, N R; Mishra, P C
2005-07-28
Mechanisms of formation of the mutagenic product 8-oxoguanine (8OG) due to reactions of guanine with two separate OH* radicals and with H2O2 were investigated at the B3LYP/6-31G, B3LYP/6-311++G, and B3LYP/AUG-cc-pVDZ levels of theory. Single point energy calculations were carried out with the MP2/AUG-cc-pVDZ method employing the optimized geometries at the B3LYP/AUG-cc-pVDZ level. Solvent effect was treated using the PCM and IEF-PCM models. Reactions of two separate OH* radicals and H2O2 with the C2 position of 5-methylimidazole (5MI) were investigated taking 5MI as a model to study reactions at the C8 position of guanine. The addition reaction of an OH* radical at the C8 position of guanine is found to be nearly barrierless while the corresponding adduct is quite stable. The reaction of a second OH* radical at the C8 position of guanine leading to the formation of 8OG complexed with a water molecule can take place according to two different mechanisms, involving two steps each. According to one mechanism, at the first step, 8-hydroxyguanine (8OHG) complexed with a water molecule is formed ,while at the second step, 8OHG is tautomerized to 8OG. In the other mechanism, at the first step, an intermediate complexed (IC) with a water molecule is formed, the five-membered ring of which is open, while at the second step, the five-membered ring is closed and a hydrogen bonded complex of 8OG with a water molecule is formed. The reaction of H2O2 with guanine leading to the formation of 8OG complexed with a water molecule can also take place in accordance with two different mechanisms having two steps each. At the first step of one mechanism, H2O2 is dissociated into two OH* groups that react with guanine to form the same IC as that formed in the reaction with two separate OH* radicals, and the subsequent step of this mechanism is also the same as that of the reaction of guanine with two separate OH* radicals. At the first step of the other mechanism of the reaction of guanine with H2O2, the latter molecule is dissociated into a hydrogen atom and an OOH* group which become bonded to the N7 and C8 atoms of guanine, respectively. At the second step of this mechanism, the OOH* group is dissociated into an oxygen atom and an OH* group, the former becomes bonded to the C8 atom of guanine while the latter abstracts the H8 atom bonded to C8, thus producing 8OG complexed with a water molecule. Solvent effects of the aqueous medium on certain reaction barriers and released energies are appreciable. 5MI works as a satisfactory model for a qualitative study of the reactions of two separate OH* radicals or H2O2 occurring at the C8 position of guanine.
Effects of K-Doping on Thermoelectric Properties of Bi1- x K x CuOTe
NASA Astrophysics Data System (ADS)
An, Tae-Ho; Lim, Young Soo; Seo, Won-Seon; Park, Cheol-Hee; Yoo, Mi Duk; Park, Chan; Lee, Chang Hoon; Shim, Ji Hoon
2017-05-01
The effects of K-doping on the thermoelectric properties of Bi1- x K x CuOTe ( x = 0 to 0.08) have been investigated. The compounds were synthesized by a one-step solid-state reaction method and consolidated by a spark plasma sintering process. As the amount of K-doping was increased, the electrical and thermal conductivities increased while the Seebeck coefficient decreased due to increasing hole concentration. A ZT value of 0.69 was obtained for the compound K0.01Bi0.99CuOTe at 700 K, to the best of our knowledge the highest value reported for this material system. The origin of this enhanced ZT is discussed in terms of the density of states effective mass estimated by a single parabolic band model and electronic structures calculated based on density functional theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uetsuka, H.; Watanabe, K.; Kimpara, H.
Kinetics and dynamics of CO oxidation have been studied on a stepped Pd(335) surface at a steady-state condition and compared with those on flat Pd(111). The infrared (IR) chemiluminescence technique was applied to determine where the active catalytic sites are on the Pd(335) surface. Since the vibrational energy state of the product CO{sub 2} is sensitive to the structures of the reaction sites on Pd surfaces, information about the working reaction sites during the steady-state CO oxidation can be obtained from the IR emission spectra of the product CO{sub 2}. The production rate of CO{sub 2} was higher on Pd(335)more » than on Pd(111), indicating that the steps on the surface enhance the catalytic activity for Co oxidation under the steady-state condition. However, the rate data do not necessarily show the real active sites for the CO + O recombination reaction. At a surface temperature of 850 K, the vibrational Boltzmann temperature (T{sub v}) of the product CO{sub 2} on Pd(335) was quite different from (much lower than) that on Pd(111), although the Pd(335) surface has four-atom wide (111) terraces. The lower T{sub v} value on Pd(335) was similar to that on Pd(110)(1 x 1), indicating that a relatively linear activated CO{sub 2} complex was formed. Therefore, during the steady-state CO oxidation on Pd(335), the reaction does not take place on the (111) terrace sites, but mostly on the step sites at 850 K. On the contrary, as the CO coverage increased at a lower surface temperature and at a high CO/O{sub 2} ratio, the T{sub v} values on Pd(335) tend to approach those on Pd(111), indicating that the contribution of the active sites on the steps is decreased and the working reaction sites shift to the (111) terrace sites.« less
Solid-State Kinetic Investigations of Nonisothermal Reduction of Iron Species Supported on SBA-15
2017-01-01
Iron oxide catalysts supported on nanostructured silica SBA-15 were synthesized with various iron loadings using two different precursors. Structural characterization of the as-prepared FexOy/SBA-15 samples was performed by nitrogen physisorption, X-ray diffraction, DR-UV-Vis spectroscopy, and Mössbauer spectroscopy. An increasing size of the resulting iron species correlated with an increasing iron loading. Significantly smaller iron species were obtained from (Fe(III), NH4)-citrate precursors compared to Fe(III)-nitrate precursors. Moreover, smaller iron species resulted in a smoother surface of the support material. Temperature-programmed reduction (TPR) of the FexOy/SBA-15 samples with H2 revealed better reducibility of the samples originating from Fe(III)-nitrate precursors. Varying the iron loading led to a change in reduction mechanism. TPR traces were analyzed by model-independent Kissinger method, Ozawa, Flynn, and Wall (OFW) method, and model-dependent Coats-Redfern method. JMAK kinetic analysis afforded a one-dimensional reduction process for the FexOy/SBA-15 samples. The Kissinger method yielded the lowest apparent activation energy for the lowest loaded citrate sample (Ea ≈ 39 kJ/mol). Conversely, the lowest loaded nitrate sample possessed the highest apparent activation energy (Ea ≈ 88 kJ/mol). For samples obtained from Fe(III)-nitrate precursors, Ea decreased with increasing iron loading. Apparent activation energies from model-independent analysis methods agreed well with those from model-dependent methods. Nucleation as rate-determining step in the reduction of the iron oxide species was consistent with the Mampel solid-state reaction model. PMID:29230346
Integrating Sub-3 nm Plasmonic Gaps into Solid-State Nanopores.
Shi, Xin; Verschueren, Daniel; Pud, Sergii; Dekker, Cees
2018-05-01
Plasmonic nanopores combine the advantages of nanopore sensing and surface plasmon resonances by introducing confined electromagnetic fields to a solid-state nanopore. Ultrasmall nanogaps between metallic nanoantennas can generate the extremely enhanced localized electromagnetic fields necessary for single-molecule optical sensing and manipulation. Challenges in fabrication, however, hamper the integration of such nanogaps into nanopores. Here, a top-down approach for integrating a plasmonic antenna with an ultrasmall nanogap into a solid-state nanopore is reported. Employing a two-step e-beam lithography process, the reproducible fabrication of nanogaps down to a sub-1 nm scale is demonstrated. Subsequently, nanopores are drilled through the 20 nm SiN membrane at the center of the nanogap using focused-electron-beam sculpting with a transmission electron microscope, at the expense of a slight gap expansion for the smallest gaps. Using this approach, sub-3 nm nanogaps can be readily fabricated on solid-state nanopores. The functionality of these plasmonic nanopores for single-molecule detection is shown by performing DNA translocations. These integrated devices can generate intense electromagnetic fields at the entrance of the nanopore and can be expected to find applications in nanopore-based single-molecule trapping and optical sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A High-Throughput Process for the Solid-Phase Purification of Synthetic DNA Sequences
Grajkowski, Andrzej; Cieślak, Jacek; Beaucage, Serge L.
2017-01-01
An efficient process for the purification of synthetic phosphorothioate and native DNA sequences is presented. The process is based on the use of an aminopropylated silica gel support functionalized with aminooxyalkyl functions to enable capture of DNA sequences through an oximation reaction with the keto function of a linker conjugated to the 5′-terminus of DNA sequences. Deoxyribonucleoside phosphoramidites carrying this linker, as a 5′-hydroxyl protecting group, have been synthesized for incorporation into DNA sequences during the last coupling step of a standard solid-phase synthesis protocol executed on a controlled pore glass (CPG) support. Solid-phase capture of the nucleobase- and phosphate-deprotected DNA sequences released from the CPG support is demonstrated to proceed near quantitatively. Shorter than full-length DNA sequences are first washed away from the capture support; the solid-phase purified DNA sequences are then released from this support upon reaction with tetra-n-butylammonium fluoride in dry dimethylsulfoxide (DMSO) and precipitated in tetrahydrofuran (THF). The purity of solid-phase-purified DNA sequences exceeds 98%. The simulated high-throughput and scalability features of the solid-phase purification process are demonstrated without sacrificing purity of the DNA sequences. PMID:28628204
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Aubrey L.
2005-07-01
This work was carried out to understand the behavior of the solid and gas phases in a CFB riser. Only the riser is modeled as a straight pipe. A model with linear algebraic approximation to solids viscosity of the form, {musubs} = 5.34{epsisubs}, ({espisubs} is the solids volume fraction) with an appropriate boundary condition at the wall obtained by approximate momentum balance solution at the wall to acount for the solids recirculation is tested against experimental results. The work done was to predict the flow patterns in the CFB risers from available experimental data, including data from a 7.5-cm-ID CFBmore » riser at the Illinois Institute of Technology and data from a 20.0-cm-ID CFB riser at the Particulate Solid Research, Inc., facility. This research aims at modeling the removal of hydrogen sulfide from hot coal gas using zinc oxide as the sorbent in a circulating fluidized bed and in the process indentifying the parameters that affect the performance of the sulfidation reactor. Two different gas-solid reaction models, the unreacted shrinking core (USC) and the grain model were applied to take into account chemical reaction resistances. Also two different approaches were used to affect the hydrodynamics of the process streams. The first model takes into account the effect of micro-scale particle clustering by adjusting the gas-particle drag law and the second one assumes a turbulent core with pseudo-steady state boundary condition at the wall. A comparison is made with experimental results.« less
Wang, Hui-Fang; Liu, Zhi-Pan
2008-08-20
Ethanol oxidation on Pt is a typical multistep and multiselectivity heterogeneous catalytic process. A comprehensive understanding of this fundamental reaction would greatly benefit design of catalysts for use in direct ethanol fuel cells and the degradation of biomass-derived oxygenates. In this work, the reaction network of ethanol oxidation on different Pt surfaces, including close-packed Pt{111}, stepped Pt{211}, and open Pt{100}, is explored thoroughly with an efficient reaction path searching method, which integrates our new transition-state searching technique with periodic density functional theory calculations. Our new technique enables the location of the transition state and saddle points for most surface reactions simply and efficiently by optimization of local minima. We show that the selectivity of ethanol oxidation on Pt depends markedly on the surface structure, which can be attributed to the structure-sensitivity of two key reaction steps: (i) the initial dehydrogenation of ethanol and (ii) the oxidation of acetyl (CH3CO). On open surface sites, ethanol prefers C-C bond cleavage via strongly adsorbed intermediates (CH2CO or CHCO), which leads to complete oxidation to CO2. However, only partial oxidizations to CH3CHO and CH3COOH occur on Pt{111}. Our mechanism points out that the open surface Pt{100} is the best facet to fully oxidize ethanol at low coverages, which sheds light on the origin of the remarkable catalytic performance of Pt tetrahexahedra nanocrystals found recently. The physical origin of the structure-selectivity is rationalized in terms of both thermodynamics and kinetics. Two fundamental quantities that dictate the selectivity of ethanol oxidation are identified: (i) the ability of surface metal atoms to bond with unsaturated C-containing fragments and (ii) the relative stability of hydroxyl at surface atop sites with respect to other sites.
Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography.
Yu, Young-Sang; Farmand, Maryam; Kim, Chunjoong; Liu, Yijin; Grey, Clare P; Strobridge, Fiona C; Tyliszczak, Tolek; Celestre, Rich; Denes, Peter; Joseph, John; Krishnan, Harinarayan; Maia, Filipe R N C; Kilcoyne, A L David; Marchesini, Stefano; Leite, Talita Perciano Costa; Warwick, Tony; Padmore, Howard; Cabana, Jordi; Shapiro, David A
2018-03-02
Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a set of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokoyama, Takamichi; Cao, Duyen H.; Stoumpos, Constantinos C.
2016-02-17
The development of Sn-based perovskite solar cells has been challenging because devices often show short-circuit behavior due to poor morphologies and undesired electrical properties of the thin films. A low-temperature vapor-assisted solution process (LT-VASP) has been employed as a novel kinetically controlled gas–solid reaction film fabrication method to prepare lead-free CH3NH3SnI3 thin films. We show that the solid SnI2 substrate temperature is the key parameter in achieving perovskite films with high surface coverage and excellent uniformity. The resulting high-quality CH3NH3SnI3 films allow the successful fabrication of solar cells with drastically improved reproducibility, reaching an efficiency of 1.86%. Furthermore, our Kelvinmore » probe studies show the VASP films have a doping level lower than that of films prepared from the conventional one-step method, effectively lowering the film conductivity. Above all, with (LT)-VASP, the short-circuit behavior often obtained from the conventional one-step-fabricated Sn-based perovskite devices has been overcome. This study facilitates the path to more successful Sn-perovskite photovoltaic research.« less
Madhu, Devarapaga; Chavan, Supriya B; Singh, Veena; Singh, Bhaskar; Sharma, Yogesh C
2016-08-01
Biodiesel has emerged as a prominent source to replace petroleum diesel. The cost incurred in the production of biodiesel is higher than that for refining of crude oil to obtain mineral diesel. The heterogeneous catalyst was prepared from crab shells by calcining the crushed mass at 800°C. The solid waste catalyst was characterized with XRD, XPS, BET, SEM-EDS, and FT-IR. Millettia pinnata (karanja) oil extracted from its seeds was used as a feedstock for the synthesis of biodiesel. Biodiesel was synthesized through esterification followed by transesterification in a two-step process. Characterization of biodiesel was done using proton NMR spectroscopy. Reaction parameters such as reaction time, reaction temperature, concentration of catalyst and stirrer speed were optimized. Reusability of catalyst was checked and found that there was no loss of catalytic activity up to five times. Copyright © 2016. Published by Elsevier Ltd.
Puebla-Hellmann, Gabriel; Mayor, Marcel; Lörtscher, Emanuel
2016-01-01
On the road towards the long-term goal of the NCCR Molecular Systems Engineering to create artificial molecular factories, we aim at introducing a compartmentalization strategy based on solid-state silicon technology targeting zeptoliter reaction volumes and simultaneous electrical contact to ensembles of well-oriented molecules. This approach allows the probing of molecular building blocks under a controlled environment prior to their use in a complex molecular factory. Furthermore, these ultra-sensitive electrical conductance measurements allow molecular responses to a variety of external triggers to be used as sensing and feedback mechanisms. So far, we demonstrate the proof-of-concept by electrically contacting self-assembled mono-layers of alkane-dithiols as an established test system. Here, the molecular films are laterally constrained by a circular dielectric confinement, forming a so-called 'nanopore'. Device yields above 85% are consistently achieved down to sub-50 nm nanopore diameters. This generic platform will be extended to create distributed, cascaded reactors with individually addressable reaction sites, including interconnecting micro-fluidic channels for electrochemical communication among nanopores and sensing sites for reaction control and feedback. In this scientific outlook, we will sketch how such a solid-state nanopore concept can be used to study various aspects of molecular compounds tailored for operation in a molecular factory.
Matthes, Jochen; Pery, Tal; Gründemann, Stephan; Buntkowsky, Gerd; Sabo-Etienne, Sylviane; Chaudret, Bruno; Limbach, Hans-Heinrich
2004-07-14
Some transition metal complexes are known to catalyze ortho/para hydrogen conversion, hydrogen isotope scrambling, and hydrogenation reactions in liquid solution. Using the example of Vaska's complex, we present here evidence by NMR that the solvent is not necessary for these reactions to occur. Thus, solid frozen solutions or polycrystalline powdered samples of homogeneous catalysts may become heterogeneous catalysts. Comparative liquid- and solid-state studies provide novel insight into the reaction mechanisms.
Yamada, Hidetaka; Matsuzaki, Yoichi; Higashii, Takayuki; Kazama, Shingo
2011-04-14
We used density functional theory (DFT) calculations with the latest continuum solvation model (SMD/IEF-PCM) to determine the mechanism of CO(2) absorption into aqueous solutions of 2-amino-2-methyl-1-propanol (AMP). Possible absorption process reactions were investigated by transition-state optimization and intrinsic reaction coordinate (IRC) calculations in the aqueous solution at the SMD/IEF-PCM/B3LYP/6-31G(d) and SMD/IEF-PCM/B3LYP/6-311++G(d,p) levels of theory to determine the absorption pathways. We show that the carbamate anion forms by a two-step reaction via a zwitterion intermediate, and this occurs faster than the formation of the bicarbonate anion. However, we also predict that the carbamate readily decomposes by a reverse reaction rather than by hydrolysis. As a result, the final product is dominated by the thermodynamically stable bicarbonate anion that forms from AMP, H(2)O, and CO(2) in a single-step termolecular reaction.
Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion
Narang, Prineha; Sundararaman, Ravishankar; Atwater, Harry A.
2016-06-11
Surface plasmons provide a pathway to efficiently absorb and confine light in metallic nanostructures, thereby bridging photonics to the nano scale. The decay of surface plasmons generates energetic ‘hot’ carriers, which can drive chemical reactions or be injected into semiconductors for nano-scale photochemical or photovoltaic energy conversion. Novel plasmonic hot carrier devices and architectures continue to be demonstrated, but the complexity of the underlying processes make a complete microscopic understanding of all the mechanisms and design considerations for such devices extremely challenging.Here,we review the theoretical and computational efforts to understand and model plasmonic hot carrier devices.We split the problem intomore » three steps: hot carrier generation, transport and collection, and review theoretical approaches with the appropriate level of detail for each step along with their predictions. As a result, we identify the key advances necessary to complete the microscopic mechanistic picture and facilitate the design of the next generation of devices and materials for plasmonic energy conversion.« less
Liang, Meijuan; Ren, Yi; Zhang, Haijuan; Ma, Yunxia; Niu, Xiaoying; Chen, Xingguo
2017-09-01
Heteroatom-doped carbon nanoparticles (CNPs) have attracted considerable attention due to an effective improvement in their intrinsic properties. Here, a facile and simple synthesis of nitrogen, boron co-doped carbon nanoparticles (NB-CNPs) from a sole precursor, 3-aminophenylboronic acid, was performed via a one-step solid-phase approach. Because of the presence of boronic acid, NB-CNPs can be used directly as a fluorescent probe for glucose. Based on a boronic acid-triggered specific reaction, we developed a simple NB-CNP probe without surface modification for the detection of glucose. When glucose was introduced, the fluorescence of NB-CNPs was suppressed through a surface-quenching states mechanism. Obvious fluorescence quenching allowed the highly sensitive determination of glucose with a limit of detection of 1.8 μM. Moreover, the proposed method has been successfully used to detect glucose in urine from people with diabetes, suggesting potential application in sensing glucose. Copyright © 2017 John Wiley & Sons, Ltd.
Vibrational Mode-Specific Reaction of Methane on a Nickel Surface
NASA Astrophysics Data System (ADS)
Beck, Rainer D.; Maroni, Plinio; Papageorgopoulos, Dimitrios C.; Dang, Tung T.; Schmid, Mathieu P.; Rizzo, Thomas R.
2003-10-01
The dissociation of methane on a nickel catalyst is a key step in steam reforming of natural gas for hydrogen production. Despite substantial effort in both experiment and theory, there is still no atomic-scale description of this important gas-surface reaction. We report quantum state-resolved studies, using pulsed laser and molecular beam techniques, of vibrationally excited methane reacting on the nickel (100) surface. For doubly deuterated methane (CD2H2), we observed that the reaction probability with two quanta of excitation in one C-H bond was greater (by as much as a factor of 5) than with one quantum in each of two C-H bonds. These results clearly exclude the possibility of statistical models correctly describing the mechanism of this process and attest to the importance of full-dimensional calculations of the reaction dynamics.
Vibrational mode-specific reaction of methane on a nickel surface.
Beck, Rainer D; Maroni, Plinio; Papageorgopoulos, Dimitrios C; Dang, Tung T; Schmid, Mathieu P; Rizzo, Thomas R
2003-10-03
The dissociation of methane on a nickel catalyst is a key step in steam reforming of natural gas for hydrogen production. Despite substantial effort in both experiment and theory, there is still no atomic-scale description of this important gas-surface reaction. We report quantum state-resolved studies, using pulsed laser and molecular beam techniques, of vibrationally excited methane reacting on the nickel (100) surface. For doubly deuterated methane (CD2H2), we observed that the reaction probability with two quanta of excitation in one C-H bond was greater (by as much as a factor of 5) than with one quantum in each of two C-H bonds. These results clearly exclude the possibility of statistical models correctly describing the mechanism of this process and attest to the importance of full-dimensional calculations of the reaction dynamics.
Wang, Hui-Gang; Zhang, Mei; Guo, Min
2017-10-05
One-step solid state reaction method was proposed for the first time to realize the transformation of the Zn-containing EAFD from hazardous solid waste to multi-metal doped ferrite with enhanced magnetic property. The effect of Zn-containing EAFD to NiCl 2 ·6H 2 O mass ratio (R ZE/N , g·g -1 ) on the phases transformation was investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Raman spectroscopy. The as-synthesized samples were treated by toxicity characteristic leaching procedure (TCLP). It is shown that the TCPL played a key role in determining both the purity and toxicity of the obtained ferrites. The pure metal doped Ni-Zn ferrite with higher saturation magnetization (Ms, 56.8 emu·g -1 ) and lower coercivity (Hc, 58.5Oe) was gained under the optimum conditions. And the pure ferrite was a green product according to the TCLP and EN12457 standards. Moreover, the evaluation of environmental impact and the recovery ratio of the dust were also discussed. Copyright © 2017. Published by Elsevier B.V.
Naimi-Jamal, M Reza; Hamzeali, Hamideh; Mokhtari, Javad; Boy, Jürgen; Kaupp, Gerd
2009-01-01
Benzylic alcohols are quantitatively oxidized by gaseous nitrogen dioxide to give pure aromatic aldehydes. The reaction gas mixtures are transformed to nitric acid, which renders the processes free of waste. The exothermic gas-liquid or gas-solid reactions profit from the solubility of nitrogen dioxide in the neat benzylic alcohols. The acid formed impedes further oxidation of the benzaldehydes. The neat isolated benzaldehydes and nitrogen dioxide quantitatively give the benzoic acids. Solid long-chain primary alcohols are directly and quantitatively oxidized with nitrogen dioxide gas to give the fatty acids in the solid state. The oxidations with ubiquitous nitrogen dioxide are extended to solid heterocyclic thioamides, which gives disulfides, and to diphenylamine, which gives tetraphenylhydrazine. These sustainable (green) specific oxidation procedures produce no dangerous residues from the oxidizing agent or from auxiliaries.
Solid state SPS microwave generation and transmission study. Volume 1: Phase 2
NASA Technical Reports Server (NTRS)
Maynard, O. E.
1980-01-01
The solid state sandwich concept for Solar Power Station (SPS) was investigated. The design effort concentrated on the spacetenna, but did include some system analysis for parametric comparison reasons. The study specifically included definition and math modeling of basic solid state microwave devices, an initial conceptual subsystems and system design, sidelobe control and system selection, an assessment of selected system concept and parametric solid state microwave power transmission system data relevant to the SPS concept. Although device efficiency was not a goal, the sensitivities to design of this efficiency were parametrically treated. Sidelobe control consisted of various single step tapers, multistep tapers, and Gaussian tapers. A preliminary assessment of a hybrid concept using tubes and solid state is also included. There is a considerable amount of thermal analysis provided with emphasis on sensitivities to waste heat radiator form factor, emissivity, absorptivity, amplifier efficiency, material and junction temperature.
Christians, Jeffrey A; Kamat, Prashant V
2013-09-24
In solid-state semiconductor-sensitized solar cells, commonly known as extremely thin absorber (ETA) or solid-state quantum-dot-sensitized solar cells (QDSCs), transfer of photogenerated holes from the absorber species to the p-type hole conductor plays a critical role in the charge separation process. Using Sb2S3 (absorber) and CuSCN (hole conductor), we have constructed ETA solar cells exhibiting a power conversion efficiency of 3.3%. The hole transfer from excited Sb2S3 into CuSCN, which limits the overall power conversion efficiency of these solar cells, is now independently studied using transient absorption spectroscopy. In the Sb2S3 absorber layer, photogenerated holes are rapidly localized on the sulfur atoms of the crystal lattice, forming a sulfide radical (S(-•)) species. This trapped hole is transferred from the Sb2S3 absorber to the CuSCN hole conductor with an exponential time constant of 1680 ps. This process was monitored through the spectroscopic signal seen for the S(-•) species in Sb2S3, providing direct evidence for the hole transfer dynamics in ETA solar cells. Elucidation of the hole transfer mechanism from Sb2S3 to CuSCN represents a significant step toward understanding charge separation in Sb2S3 solar cells and provides insight into the design of new architectures for higher efficiency devices.
Investigation of Super Tube Structure and Performance (Postprint)
2010-04-01
thermosyphon is claimed as thermally superconductive and offers solid state mode of heat transport. A host of speculations about this claim was emerging...sealed structure and design of a conventional heat pipe or thermosyphon is claimed as thermally superconductive and offers solid state mode of heat...matrix. The tilt angle was varied to check for gravity dependence. Tests were run as step functions allowing the tube to reach steady state at a new
Irmak Aslan, Dilan; Parthasarathy, Prakash; Goldfarb, Jillian L; Ceylan, Selim
2017-10-01
Land applied disposal of waste tires has far-reaching environmental, economic, and human health consequences. Pyrolysis represents a potential waste management solution, whereby the solid carbonaceous residue is heated in the absence of oxygen to produce liquid and gaseous fuels, and a solid char. The design of an efficient conversion unit requires information on the reaction kinetics of pyrolysis. This work is the first to probe the appropriate reaction model of waste tire pyrolysis. The average activation energy of pyrolysis was determined via iso-conversional methods over a mass fraction conversion range between 0.20 and 0.80 to be 162.8±23.2kJmol -1 . Using the Master Plots method, a reaction order of three was found to be the most suitable model to describe the pyrolytic decomposition. This suggests that the chemical reactions themselves (cracking, depolymerization, etc.), not diffusion or boundary layer interactions common with carbonaceous biomasses, are the rate-limiting steps in the pyrolytic decomposition of waste tires. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yoshizawa, K; Kamachi, T; Shiota, Y
2001-10-10
Dynamic aspects of alkane hydroxylation mediated by Compound I of cytochrome P450 are discussed from classical trajectory calculations at the B3LYP level of density functional theory. The nuclei of the reacting system are propagated from a transition state to a reactant or product direction according to classical dynamics on a Born-Oppenheimer potential energy surface. Geometric and energetic changes in both low-spin doublet and high-spin quartet states are followed along the ethane to ethanol reaction pathway, which is partitioned into two chemical steps: the first is the H-atom abstraction from ethane by the iron-oxo species of Compound I and the second is the rebound step in which the resultant iron-hydroxo complex and the ethyl radical intermediate react to form the ethanol complex. Molecular vibrations of the C-H bond being dissociated and the O-H bond being formed are significantly activated before and after the transition state, respectively, in the H-atom abstraction. The principal reaction coordinate that can represent the first chemical step is the C-H distance or the O-H distance while other geometric parameters remain almost unchanged. The rebound process begins with the iron-hydroxo complex and the ethyl radical intermediate and ends with the formation of the ethanol complex, the essential process in this reaction being the formation of the C-O bond. The H-O-Fe-C dihedral angle corresponds to the principal reaction coordinate for the rebound step. When sufficient kinetic energy is supplied to this rotational mode, the rebound process should efficiently take place. Trajectory calculations suggest that about 200 fs is required for the rebound process under specific initial conditions, in which a small amount of kinetic energy (0.1 kcal/mol) is supplied to the transition state exactly along the reaction coordinate. An important issue about which normal mode of vibration is activated during the hydroxylation reaction is investigated in detail from trajectory calculations. A large part of the kinetic energy is distributed to the C-H and O-H stretching modes before and after the transition state for the H-atom abstraction, respectively, and a small part of the kinetic energy is distributed to the Fe-O and Fe-S stretching modes and some characteristic modes of the porphyrin ring. The porphyrin marker modes of nu(3) and nu(4) that explicitly involve Fe-N stretching motion are effectively enhanced in the hydroxylation reaction. These vibrational modes of the porphyrin ring can play an important role in the energy transfer during the enzymatic process.
Edreis, Elbager M A; Luo, Guangqian; Li, Aijun; Chao, Chen; Hu, Hongyun; Zhang, Sen; Gui, Ben; Xiao, Li; Xu, Kai; Zhang, Pingan; Yao, Hong
2013-05-01
This study investigates the non-isothermal mechanism and kinetic behaviour of gasification of a lower sulphur petroleum coke, sugar cane bagasse and blends under carbon dioxide atmosphere conditions using the thermogravimetric analyser (TGA). The gas products were measured online with coupled Fourier transform infrared spectroscopy (FTIR). The achieved results explored that the sugar cane bagasse and blend gasification happened in two steps: at (<500 °C) the volatiles are released, and at (>700 °C) char gasification occurred, whereas the lower sulphur petroleum coke presented only one char gasification stage at (>800 °C). Significant interactions were observed in the whole process. Some solid-state mechanisms were studied by the Coats-Redfern method in order to observe the mechanisms responsible for the gasification of samples. The results show that the chemical first order reaction is the best responsible mechanism for whole process. The main released gases are CO2, CO, CH4, HCOOH, C6H5OH and CH3COOH. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mei, Xuefeng; August, Adam T.; Wolf, Christian
2008-01-01
A chemo- and regioselective copper-catalyzed cross-coupling reaction for effective amination of 2-chlorobenzoic acids with aniline derivatives has been developed. The method eliminates the need for acid protection and produces a wide range of N-aryl anthranilic acid derivatives in up to 99%. The amination was found to proceed with both electron-rich and electron-deficient aryl chlorides and anilines and also utilizes sterically hindered anilines such as 2,6-dimethylaniline and 2-tert-butylaniline. The conformational isomerism of appropriately substituted N-aryl anthranilic acids has been investigated in the solid state. Crystallographic analysis of seven anthranilic acid derivatives showed formation of two distinct supramolecular architectures exhibiting trans-anti- and unprecedented trans-syn-dimeric structures. PMID:16388629
Lupi, Laura; Peters, Baron; Molinero, Valeria
2016-12-07
According to Classical Nucleation Theory (CNT), the transition from liquid to crystal occurs in a single activated step with a transition state controlled by the size of the crystal embryo. This picture has been challenged in the last two decades by several reports of two-step crystallization processes in which the liquid first produces pre-ordered or dense domains, within which the crystal nucleates in a second step. Pre-ordering preceding crystal nucleation has been recently reported in simulations of ice crystallization, raising the question of whether the mechanism of ice nucleation involves two steps. In this paper, we investigate the heterogeneous nucleation of ice on carbon surfaces. We use molecular simulations with efficient coarse-grained models combined with rare event sampling methods and free energy calculations to elucidate the role of pre-ordering of liquid water at the carbon surface in the reaction coordinate for heterogeneous nucleation. We find that ice nucleation proceeds through a classical mechanism, with a single barrier between liquid and crystal. The reaction coordinate that determines the crossing of the nucleation barrier is the size of the crystal nucleus, as predicted by CNT. Wetting of the critical ice nuclei within pre-ordered domains decreases the nucleation barrier, increasing the nucleation rates. The preferential pathway for crystallization involves the early creation of pre-ordered domains that are the birthplace of the ice crystallites but do not represent a minimum in the free energy pathway from liquid to ice. We conclude that a preferential pathway through an intermediate-order precursor does not necessarily result in a two-step mechanism.
Inorganic Halogen Oxidizer Research.
1978-01-25
depend on the rate of exchange. Finally, in our experiments we were dealing RI/RD78-125 B-4 -5- with polymeric solid AsF 5 or BF3 phases which on...well be a heterogeneous diffusion controlled reaction and step (5) might be the rate determining step in the above mechanism. It was shown that at...temperatures above -196*C, where a given NF+ salt is still stable in the absence of light, uv irradiation causes a rapid decay RI/RD78-125 B-5 -6- decay of
Fekete, Attila; Komáromi, István
2016-12-07
A proteolytic reaction of papain with a simple peptide model substrate N-methylacetamide has been studied. Our aim was twofold: (i) we proposed a plausible reaction mechanism with the aid of potential energy surface scans and second geometrical derivatives calculated at the stationary points, and (ii) we investigated the applicability of the dispersion corrected density functional methods in comparison with the popular hybrid generalized gradient approximations (GGA) method (B3LYP) without such a correction in the QM/MM calculations for this particular problem. In the resting state of papain the ion pair and neutral forms of the Cys-His catalytic dyad have approximately the same energy and they are separated by only a small barrier. Zero point vibrational energy correction shifted this equilibrium slightly to the neutral form. On the other hand, the electrostatic solvation free energy corrections, calculated using the Poisson-Boltzmann method for the structures sampled from molecular dynamics simulation trajectories, resulted in a more stable ion-pair form. All methods we applied predicted at least a two elementary step acylation process via a zwitterionic tetrahedral intermediate. Using dispersion corrected DFT methods the thioester S-C bond formation and the proton transfer from histidine occur in the same elementary step, although not synchronously. The proton transfer lags behind (or at least does not precede) the S-C bond formation. The predicted transition state corresponds mainly to the S-C bond formation while the proton is still on the histidine Nδ atom. In contrast, the B3LYP method using larger basis sets predicts a transition state in which the S-C bond is almost fully formed and the transition state can be mainly featured by the Nδ(histidine) to N(amid) proton transfer. Considerably lower activation energy was predicted (especially by the B3LYP method) for the next amide bond breaking elementary step of acyl-enzyme formation. Deacylation appeared to be a single elementary step process in all the methods we applied.
A new route for the synthesis of submicron-sized LaB{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lihong, Bao; Wurentuya,; Wei, Wei
Submicron crystalline LaB{sub 6} has been successfully synthesized by a solid-state reaction of La{sub 2}O{sub 3} with NaBH{sub 4} at 1200 °C. The effects of reaction temperature on the crystal structure, grain size and morphology were investigated by X-ray diffraction, scanning electron microscope and transmission electron microscope. It is found that when the reaction temperature is in the range of 1000–1100 °C, there are ultrafine nanoparticles and nanocrystals that coexist. When the reaction temperature elevated to 1200 °C, the grain morphology transformed from ultrafine nanoparticle to submicron crystals completely. High resolution transmission electron microscope images fully confirm the formation ofmore » LaB{sub 6} cubic structure. - Highlights: • Single-phased LaB{sub 6} have been synthesized by a solid-state reaction in a continuous evacuating process. • The reaction temperature has a important effect on the phase composition. • The grain size increase from nano-size to submicron with increasing reaction temperature.« less
NASA Astrophysics Data System (ADS)
Zhang, Fangfang; Ma, Junjie; Watanabe, Junji; Tang, Jinlong; Liu, Huiyu; Shen, Heyun
2017-02-01
An electrophoretic technique was combined with an enzyme-linked immunosorbent assay (ELISA) system to achieve a rapid and sensitive immunoassay. A cellulose acetate filter modified with polyelectrolyte multilayer (PEM) was used as a solid substrate for three-dimensional antigen-antibody reactions. A dual electrophoresis process was used to induce directional migration and local condensation of antigens and antibodies at the solid substrate, avoiding the long diffusion times associated with antigen-antibody reactions in conventional ELISAs. The electrophoretic forces drove two steps in the ELISA process, namely the adsorption of antigen, and secondary antibody-labelled polystyrene nanoparticles (NP-Ab). The total time needed for dual electrophoresis-driven detection was just 4 min, nearly 2 h faster than a conventional ELISA system. Moreover, the rapid NP-Ab electrophoresis system simultaneously achieved amplification of the specific signal and a reduction in noise, leading to a more sensitive NP-Ab immunoassay with a limit of detection (LOD) of 130 fM, and wide range of detectable concentrations from 0.13 to 130 pM. These results suggest that the combination of dual electrophoresis detection and NP-Ab signal amplification has great potential for future immunoassay systems.
Electrode Reaction Pathway in Oxide Anode for Solid Oxide Fuel Cells
NASA Astrophysics Data System (ADS)
Li, Wenyuan
Oxide anodes for solid oxide fuel cells (SOFC) with the advantage of fuel flexibility, resistance to coarsening, small chemical expansion and etc. have been attracting increasing interest. Good performance has been reported with a few of perovskite structure anodes, such as (LaSr)(CrMn)O3. However, more improvements need to be made before meeting the application requirement. Understanding the oxidation mechanism is crucial for a directed optimization, but it is still on the early stage of investigation. In this study, reaction mechanism of oxide anodes is investigated on doped YCrO 3 with H2 fuel, in terms of the origin of electrochemical activity, rate-determining steps (RDS), extension of reactive zone, and the impact from overpotential under service condition to those properties. H2 oxidation on the YCs anodes is found to be limited by charge transfer and H surface diffusion. A model is presented to describe the elementary steps in H2 oxidation. From the reaction order results, it is suggested that any models without taking H into the charge transfer step are invalid. The nature of B site element determines the H2 oxidation kinetics primarily. Ni displays better adsorption ability than Co. However, H adsorption ability of such oxide anode is inferior to that of Ni metal anode. In addition, the charge transfer step is directly associated with the activity of electrons in the anode; therefore it can be significantly promoted by enhancement of the electron activity. It is found that A site Ca doping improves the polarization resistance about 10 times, by increasing the activity of electrons to promote the charge transfer process. For the active area in the oxide anode, besides the traditional three-phase boundary (3PB), the internal anode surface as two-phase boundary (2PB) is proven to be capable of catalytically oxidizing the H2 fuel also when the bulk lattice is activated depending on the B site elements. The contribution from each part is estimated by switching the electrolyte to change 3PB kinetics. Compared to Ni, Co doping activates the bulk oxygen more significantly, promoting the reaction at 2PB. The active surface reaction zone is found to be enlarged by the electrolyte with high oxygen activity (SSZ vs. YSZ) when charge transfer is one of the RDS. Due to the larger exchange current for charge transfer in 3PB with SSZ electrolyte, the adsorption gradient zone is broadened, leading to enhanced surface reaction kinetics. The potential application of such finding is demonstrated on SSZ/YSZ/SSZ sandwich, showing largely improved electrode performance, opening a wide door for the utilization of electrolytes that are too expensive, fragile or instable to be used before. The bulk path way in 2PB reaction can be affected by overpotential in terms of local vacancy concentration, built-in electrical field and stability. It is proven that an uneven distribution of lattice oxygen is established under operation conditions with overpotential by both qualitative analysis and analytic solution. An electrostatic field force is present besides the concentration gradient in the anode lattice to control the motion of oxygen ions. Compared to the usual estimation based on chemical diffusion mechanism, the real deviation of ionic defects concentration under polarization from the equilibrium state near electrode/electrolyte interface is smaller with the built-in electrical field. The overpotential is demonstrated to be able to open up or shut down the bulk pathway depending on the ionic defects of electrodes. The analysis on the bulk pathway in terms of local charged species and various potentials provides new insight in anion diffusion and electrode stability.
A global reaction route mapping-based kinetic Monte Carlo algorithm
NASA Astrophysics Data System (ADS)
Mitchell, Izaac; Irle, Stephan; Page, Alister J.
2016-07-01
We propose a new on-the-fly kinetic Monte Carlo (KMC) method that is based on exhaustive potential energy surface searching carried out with the global reaction route mapping (GRRM) algorithm. Starting from any given equilibrium state, this GRRM-KMC algorithm performs a one-step GRRM search to identify all surrounding transition states. Intrinsic reaction coordinate pathways are then calculated to identify potential subsequent equilibrium states. Harmonic transition state theory is used to calculate rate constants for all potential pathways, before a standard KMC accept/reject selection is performed. The selected pathway is then used to propagate the system forward in time, which is calculated on the basis of 1st order kinetics. The GRRM-KMC algorithm is validated here in two challenging contexts: intramolecular proton transfer in malonaldehyde and surface carbon diffusion on an iron nanoparticle. We demonstrate that in both cases the GRRM-KMC method is capable of reproducing the 1st order kinetics observed during independent quantum chemical molecular dynamics simulations using the density-functional tight-binding potential.
A global reaction route mapping-based kinetic Monte Carlo algorithm.
Mitchell, Izaac; Irle, Stephan; Page, Alister J
2016-07-14
We propose a new on-the-fly kinetic Monte Carlo (KMC) method that is based on exhaustive potential energy surface searching carried out with the global reaction route mapping (GRRM) algorithm. Starting from any given equilibrium state, this GRRM-KMC algorithm performs a one-step GRRM search to identify all surrounding transition states. Intrinsic reaction coordinate pathways are then calculated to identify potential subsequent equilibrium states. Harmonic transition state theory is used to calculate rate constants for all potential pathways, before a standard KMC accept/reject selection is performed. The selected pathway is then used to propagate the system forward in time, which is calculated on the basis of 1st order kinetics. The GRRM-KMC algorithm is validated here in two challenging contexts: intramolecular proton transfer in malonaldehyde and surface carbon diffusion on an iron nanoparticle. We demonstrate that in both cases the GRRM-KMC method is capable of reproducing the 1st order kinetics observed during independent quantum chemical molecular dynamics simulations using the density-functional tight-binding potential.
Porous-Hybrid Polymers as Platforms for Heterogeneous Photochemical Catalysis.
Haikal, Rana R; Wang, Xia; Hassan, Youssef S; Parida, Manas R; Murali, Banavoth; Mohammed, Omar F; Pellechia, Perry J; Fontecave, Marc; Alkordi, Mohamed H
2016-08-10
A number of permanently porous polymers containing Ru(bpy)n photosensitizer or a cobaloxime complex, as a proton-reduction catalyst, were constructed via one-pot Sonogashira-Hagihara (SH) cross-coupling reactions. This process required minimal workup to access porous platforms with control over the apparent surface area, pore volume, and chemical functionality from suitable molecular building blocks (MBBs) containing the Ru or Co complexes, as rigid and multitopic nodes. The cobaloxime molecular building block, generated through in situ metalation, afforded a microporous solid that demonstrated noticeable catalytic activity toward hydrogen-evolution reaction (HER) with remarkable recyclability. We further demonstrated, in two cases, the ability to affect the excited-state lifetime of the covalently immobilized Ru(bpy)3 complex attained through deliberate utilization of the organic linkers of variable dimensions. Overall, this approach facilitates construction of tunable porous solids, with hybrid composition and pronounced chemical and physical stability, based on the well-known Ru(bpy)nor the cobaloxime complexes.
Muravyev, Nikita V; Koga, Nobuyoshi; Meerov, Dmitry B; Pivkina, Alla N
2017-01-25
This study focused on kinetic modeling of a specific type of multistep heterogeneous reaction comprising exothermic and endothermic reaction steps, as exemplified by the practical kinetic analysis of the experimental kinetic curves for the thermal decomposition of molten ammonium dinitramide (ADN). It is known that the thermal decomposition of ADN occurs as a consecutive two step mass-loss process comprising the decomposition of ADN and subsequent evaporation/decomposition of in situ generated ammonium nitrate. These reaction steps provide exothermic and endothermic contributions, respectively, to the overall thermal effect. The overall reaction process was deconvoluted into two reaction steps using simultaneously recorded thermogravimetry and differential scanning calorimetry (TG-DSC) curves by considering the different physical meanings of the kinetic data derived from TG and DSC by P value analysis. The kinetic data thus separated into exothermic and endothermic reaction steps were kinetically characterized using kinetic computation methods including isoconversional method, combined kinetic analysis, and master plot method. The overall kinetic behavior was reproduced as the sum of the kinetic equations for each reaction step considering the contributions to the rate data derived from TG and DSC. During reproduction of the kinetic behavior, the kinetic parameters and contributions of each reaction step were optimized using kinetic deconvolution analysis. As a result, the thermal decomposition of ADN was successfully modeled as partially overlapping exothermic and endothermic reaction steps. The logic of the kinetic modeling was critically examined, and the practical usefulness of phenomenological modeling for the thermal decomposition of ADN was illustrated to demonstrate the validity of the methodology and its applicability to similar complex reaction processes.
Monazami, Ehsan; McClimon, John B; Rondinelli, James; Reinke, Petra
2016-12-21
The understanding and control of molecule-metal interfaces is critical to the performance of molecular electronics and photovoltaics devices. We present a study of the interface between C 60 and W, which is a carbide-forming transition metal. The complex solid-state reaction at the interface can be exploited to adjust the electronic properties of the molecule layer. Scanning tunneling microscopy/spectroscopy measurements demonstrate the progression of this reaction from wide band gap (>2.5 eV) to metallic molecular surface during annealing from 300 to 800 K. Differential conduction maps with 10 4 scanning tunneling spectra are used to quantify the transition in the density of states and the reduction of the band gap during annealing with nanometer spatial resolution. The electronic transition is spatially homogeneous, and the surface band gap can therefore be adjusted by a targeted annealing step. The modified molecules, which we call nanospheres, are quite resistant to ripening and coalescence, unlike any other metallic nanoparticle of the same size. Densely packed C 60 and isolated C 60 molecules show the same transition in electronic structure, which confirms that the transformation is controlled by the reaction at the C 60 -W interface. Density functional theory calculations are used to develop possible reaction pathways in agreement with experimentally observed electronic structure modulation. Control of the band gap by the choice of annealing temperature is a unique route to tailoring molecular-layer electronic properties.
Near-thermal reactions of Au(+)(1S,3D) with CH3X (X = F,Cl).
Taylor, William S; Matthews, Cullen C; Hicks, Ashley J; Fancher, Kendall G; Chen, Li Chen
2012-01-26
Reactions of Au(+)((1)S) and Au(+)((3)D) with CH(3)F and CH(3)Cl have been carried out in a drift cell in He at a pressure of 3.5 Torr at both room temperature and reduced temperatures in order to explore the influence of the electronic state of the metal on reaction outcomes. State-specific product channels and overall two-body rate constants were identified using electronic state chromatography. These results indicate that Au(+)((1)S) reacts to yield an association product in addition to AuCH(2)(+) in parallel steps with both neutrals. Product distributions for association vs HX elimination were determined to be 79% association/21% HX elimination for X = F and 50% association/50% HX elimination when X = Cl. Reaction of Au(+)((3)D) with CH(3)F also results in HF elimination, which in this case is thought to produce (3)AuCH(2)(+). With CH(3)Cl, Au(+)((3)D) reacts to form AuCH(3)(+) and CH(3)Cl(+) in parallel steps. An additional product channel initiated by Au(+)((3)D) is also observed with both methyl halides, which yields CH(2)X(+) as a higher-order product. Kinetic measurements indicate that the reaction efficiency for both Au(+) states is significantly greater with CH(3)Cl than with CH(3)F. The observed two-body rate constant for depletion of Au(+)((1)S) by CH(3)F represents less than 5% of the limiting rate constant predicted by the average dipole orientation model (ADO) at room temperature and 226 K, whereas CH(3)Cl reacts with Au(+)((1)S) at the ADO limit at both room temperature and 218 K. Rate constants for depletion of Au(+)((3)D) by CH(3)F and CH(3)Cl were measured at 226 and 218 K respectively, and indicate that Au(+)((3)D) is consumed at approximately 2% of the ADO limit by CH(3)F and 69% of the ADO limit by CH(3)Cl. Product formation and overall efficiency for all four reactions are consistent with previous experimental results and available theoretical models.
Solid-state reaction of iron on β-SiC
NASA Astrophysics Data System (ADS)
Kaplan, R.; Klein, P. H.; Addamiano, A.
1985-07-01
The solid-state reaction between Fe and β-SiC has been studied using Auger-electron and electron-energy-loss spectroscopies and ion sputter profiling. Fe films from submonolayer coverage to 1000 Å thickness were grown in ultrahigh vacuum, and annealed at temperatures up to 550 °C. Auger line-shape changes occurred even for initial Fe coverage at 190 °C, indicating substantial bond alteration in the SiC substrate. A 1000-Å film was largely consumed by reaction with Si and C diffused from the substrate during a 500 °C anneal, and exhibited both Fe silicide and carbide throughout most of its original volume and free C present as graphite primarily at the surface. As an aid in identifying the reaction products studied in this work, Auger line shapes were first determined for the SiLVV peak in Fe silicide and for the CKLL transition in Fe carbide.
Wezenberg, Daphne; Cutti, Andrea G; Bruno, Antonino; Houdijk, Han
2014-01-01
Decreased push-off power by the prosthetic foot and inadequate roll-over shape of the foot have been shown to increase the energy dissipated during the step-to-step transition in human walking. The aim of this study was to determine whether energy storage and return (ESAR) feet are able to reduce the mechanical energy dissipated during the step-to-step transition. Fifteen males with a unilateral lower-limb amputation walked with their prescribed ESAR foot (Vari-Flex, Ossur; Reykjavik, Iceland) and with a solid-ankle cushioned heel foot (SACH) (1D10, Ottobock; Duderstadt, Germany), while ground reaction forces and kinematics were recorded. The positive mechanical work on the center of mass performed by the trailing prosthetic limb was larger (33%, p = 0.01) and the negative work performed by the leading intact limb was lower (13%, p = 0.04) when walking with the ESAR foot compared with the SACH foot. The reduced step-to-step transition cost coincided with a higher mechanical push-off power generated by the ESAR foot and an extended forward progression of the center of pressure under the prosthetic ESAR foot. Results can explain the proposed improvement in walking economy with this kind of energy storing and return prosthetic foot.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houghton, Adrian Y.; Autrey, Tom
The mechanism of H2 activation by B(C6F5)3 and P(mes)3 was investigated by isothermal reaction calorimetry, and the heat curves generated were modelled in Berkeley Madonna. The reaction is treated as a single, termolecular step, and an Eyring analysis gave activation parameters of ΔH‡ = 13.6(9) kJ mol-1 and ΔS‡ = -204(85) J K-1 mol-1. The enthalpy of the reaction was found to be -141 kJ mol-1. The kinetic isotope effect was measured as 1.1, consistent with a four-center transition state containing two isotopically exchangeable atoms.
Ciogli, Alessia; Simone, Patrizia; Villani, Claudio; Gasparrini, Francesco; Laganà, Aldo; Capitani, Donatella; Marchetti, Nicola; Pasti, Luisa; Massi, Alessandro; Cavazzini, Alberto
2014-06-23
The structural and chromatographic characterization of two novel fluorinated mesoporous materials prepared by covalent reaction of 3-(pentafluorophenyl)propyldimethylchlorosilane and perfluorohexylethyltrichlorosilane with 2.5 μm fully porous silica particles is reported. The adsorbents were characterized by solid state (29)Si, (13)C, and (19)F NMR spectroscopy, low-temperature nitrogen adsorption, elemental analysis (C and F), and various chromatographic measurements, including the determination of adsorption isotherms. The structure and abundance of the different organic surface species, as well as the different silanol types, were determined. In particular, the degree of so-called horizontal polymerization, that is, Si-O-Si bridging parallel to the silica surface due to the reaction, under "quasi-dry" conditions, of trifunctional silanizing agents with the silica surface was quantified. Significant agreement was found between the information provided by solid-state NMR, elemental analysis, and excess isotherms regarding the amount of surface residual silanol groups, on the one hand, and the degree of surface functionalization, on the other. Finally, the kinetic performance of the fluorinated materials as separation media for applications in near-ultrahigh-performance liquid chromatography was evaluated. At reduced velocities of about 5.5 (ca. 600 bar backpressure at room temperature) with 3 mm diameter columns and toluene as test compound, reduced plate heights on the order of 2 were obtained on columns of both adsorbents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Ma, Yan-Zi; Jia, Li; Ma, Kai-Guo; Wang, Hai-Hong; Jing, Xi-Ping
2017-01-01
An integrated and inquiry-based experiment on solid state chemistry is applied to an inorganic chemistry lab course to provide insight into the characteristics of the solid phase reaction. In this experiment, students have the opportunity to synthesize long-lasting phosphors with formula xSrO·yAl[subscript 2]O[subscript 3]:Eu[superscript 2+],…
NASA Astrophysics Data System (ADS)
Shoji, Mitsuo; Isobe, Hiroshi; Shigeta, Yasuteru; Nakajima, Takahito; Yamaguchi, Kizashi
2018-04-01
The reaction mechanism of the O2 formation in the S4 state of the oxygen-evolving complex of photosystem II was clarified at the quantum mechanics/molecular mechanics (QM/MM) level. After the Yz (Y161) oxidation and the following proton transfer in the S3 state, five reaction steps are required to produce the molecular dioxygen. The highest barrier step is the first proton transfer reaction (0 → 1). The following reactions involving electron transfers were precisely analyzed in terms of their energies, structures and spin densities. We found that the one-electron transfer from the Mn4Ca cluster to Y161 triggers the O-O sigma bond formation.
Energy conservation and maximal entropy production in enzyme reactions.
Dobovišek, Andrej; Vitas, Marko; Brumen, Milan; Fajmut, Aleš
2017-08-01
A procedure for maximization of the density of entropy production in a single stationary two-step enzyme reaction is developed. Under the constraints of mass conservation, fixed equilibrium constant of a reaction and fixed products of forward and backward enzyme rate constants the existence of maximum in the density of entropy production is demonstrated. In the state with maximal density of entropy production the optimal enzyme rate constants, the stationary concentrations of the substrate and the product, the stationary product yield as well as the stationary reaction flux are calculated. The test, whether these calculated values of the reaction parameters are consistent with their corresponding measured values, is performed for the enzyme Glucose Isomerase. It is found that calculated and measured rate constants agree within an order of magnitude, whereas the calculated reaction flux and the product yield differ from their corresponding measured values for less than 20 % and 5 %, respectively. This indicates that the enzyme Glucose Isomerase, considered in a non-equilibrium stationary state, as found in experiments using the continuous stirred tank reactors, possibly operates close to the state with the maximum in the density of entropy production. Copyright © 2017 Elsevier B.V. All rights reserved.
Numerical Modeling of Suspension HVOF Spray
NASA Astrophysics Data System (ADS)
Jadidi, M.; Moghtadernejad, S.; Dolatabadi, A.
2016-02-01
A three-dimensional two-way coupled Eulerian-Lagrangian scheme is used to simulate suspension high-velocity oxy-fuel spraying process. The mass, momentum, energy, and species equations are solved together with the realizable k-ɛ turbulence model to simulate the gas phase. Suspension is assumed to be a mixture of solid particles [mullite powder (3Al2O3·2SiO2)], ethanol, and ethylene glycol. The process involves premixed combustion of oxygen-propylene, and non-premixed combustion of oxygen-ethanol and oxygen-ethylene glycol. One-step global reaction is used for each mentioned reaction together with eddy dissipation model to compute the reaction rate. To simulate the droplet breakup, Taylor Analogy Breakup model is applied. After the completion of droplet breakup, and solvent evaporation/combustion, the solid suspended particles are tracked through the domain to determine the characteristics of the coating particles. Numerical simulations are validated against the experimental results in the literature for the same operating conditions. Seven or possibly eight shock diamonds are captured outside the nozzle. In addition, a good agreement between the predicted particle temperature, velocity, and diameter, and the experiment is obtained. It is shown that as the standoff distance increases, the particle temperature and velocity reduce. Furthermore, a correlation is proposed to determine the spray cross-sectional diameter and estimate the particle trajectories as a function of standoff distance.
Charge and discharge characteristics of lithium-ion graphite electrodes in solid-state cells
NASA Astrophysics Data System (ADS)
Lemont, S.; Billaud, D.
Lithium ions have been electrochemically intercalated into graphite in solid-state cells operating with solid polymer electrolytes based on poly(ethylene oxide) (PEO) complexed with lithium perchlorate (LiClO 4). The working composite electrode is composed of active-divided natural graphite associated with P(EO) 8-LiClO 4 acting as a binder and a Li + ionic conductor. Intercalation and de-intercalation of Li + were performed using galvanostatic or voltammetry techniques. The curves obtained in our solid-state cells were compared with those performed in liquid ethylene carbonate-LiClO 4 electrolyte. It is shown that in solid-state cells, side reactions occur both in the reduction and in the oxidation processes which leads to some uncertainty in the determination of the maximum reversible capacity of the graphite material.
Um, Ik-Hwan; Han, Hyun-Joo; Ahn, Jung-Ae; Kang, Swan; Buncel, Erwin
2002-11-29
A kinetic study is reported for the reaction of the anionic nucleophiles OH-, CN-, and N 3 - with aryl benzoates containing substituents on the benzoyl as well as the aryloxy moiety, in 80 mol % H2O - 20 mol % dimethyl sulfoxide at 25.0 degrees C. Hammett log k vs sigma plots for these systems are consistently nonlinear. However, a possible traditional explanation in terms of a mechanism involving a tetrahedral intermediate with curvature resulting from a change in rate-determining step is considered but rejected. The proposed explanation involves ground-state stabilization through resonance interaction between the benzoyl substituent and the electrophilic carbonyl center in the two-stage mechanism. Accordingly, the data are nicely accommodated on the basis of the Yukawa-Tsuno equation, which gives linear plots for all three nuceophiles. Literature reports of the mechanism of acyl transfer processes are reconsidered in this light.
Development of solid-state NMR techniques for the characterisation of pharmaceutical compounds
NASA Astrophysics Data System (ADS)
Tatton, Andrew S.
Structural characterisation in the solid state is an important step in understanding the physical and chemical properties of a material. Solid-state NMR techniques applied to solid delivery forms are presented as an alternative to more established structural characterisation methods. The effect of homonuclear decoupling upon heteronuclear couplings is investigated using a combination of experimental and density-matrix simulation results acquired from a 13C-1H spinecho pulse sequence, modulated by scalar couplings. It is found that third-order cross terms under MAS and homonuclear decoupling contribute to strong dephasing effects in the NMR signal. Density-matrix simulations allow access to parameters currently unattainable in experiment, and demonstrate that higher homonuclear decoupling rf nutation frequencies reduce the magnitude of third-order cross terms. 15N-1H spinecho experiments were applied to pharmaceutically relevant samples to differentiate between the number of directly attached protons. Using this method, proton transfer in an acid-base reaction is proven in pharmaceutical salts. The indirect detection of 14N lineshapes via protons obtained using 2D 14N-1H HMQC experiments is presented, where coherence transfer is achieved via heteronuclear through-space dipolar couplings. The importance of fast MAS frequencies is demonstrated, and it is found that increasing the recoupling duration reveals longer range NH proximities. The 2D 14N-1H HMQC method is used to demonstrate the presence of specific hydrogen bonding interactions, and thus aid in identifying molecular association in a cocrystal and an amorphous dispersion. In addition, hydrogen bonding motifs were identified by observing the changes in the 14N quadrupolar parameters between individual molecular components relative to the respective solid delivery form. First-principles calculations of NMR chemical shifts and quadrupolar parameters using the GIPAW method were combined with 14N-1H experimental results to assist with spectral assignment and the identification of the hydrogen bonding interactions.
Low Energy Nuclear Reactions: A Millennium Status Report
NASA Astrophysics Data System (ADS)
Mallove, Eugene F.
2000-03-01
This talk will summarize some of the more convincing recent experiments that show that helium-4, nuclear scale excess energy, tritium, low-level neutron production, and the transmutation of heavy elements can occur near room temperature in relatively simple systems. Despite inappropriate theory-based arguments against it and unethical attacks by people unfamiliar with the supporting experiments, the new field of solid state nuclear reactions is progressing. The physical theory behind the associated phenomena continues to be debated among theorists. The facts of the history of this scientific controversy suggest that it is inadvisable to rush to judgment against allegedly ``impossible" new phenomena when increasingly careful experiments have revealed new vistas in physics. Detailed discussion of evidence for solid state nuclear reactions is available elsewhere (http://www.infinite-energy.com). abstract document
Method of using a nuclear magnetic resonance spectroscopy standard
Spicer, Leonard D.; Bennett, Dennis W.; Davis, Jon F.
1985-01-01
(CH.sub.3).sub.3 SiNSO is produced by the reaction of ((CH.sub.3).sub.3 Si).sub.2 NH with SO.sub.2. Also produced in the reaction are ((CH.sub.3).sub.3 Si).sub.2 O and a new solid compound [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ]. Both (CH.sub.3).sub.3 SiNSO and [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ] have fluorescent properties. The reaction of the subject invention is used in a method of measuring the concentration of SO.sub.2 pollutants in gases. By the method, a sample of gas is bubbled through a solution of ((CH.sub.3).sub.3 Si).sub.2 NH, whereby any SO.sub.2 present in the gas will react to produce the two fluorescent products. The measured fluorescence of these products can then be used to calculate the concentration of SO.sub.2 in the original gas sample. The solid product [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ] may be used as a standard in solid state NMR spectroscopy, wherein the resonance peaks of either .sup.1 H, .sup.13 C, .sup.15 N, or .sup.29 Si may be used as a reference.
Regeneration of sulfated metal oxides and carbonates
Hubble, Bill R.; Siegel, Stanley; Cunningham, Paul T.
1978-03-28
Alkali metal or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate found in dolomite or limestone are employed for removal of sulfur dioxide from combustion exhaust gases. The sulfated carbonates are regenerated to oxides through use of a solid-solid reaction, particularly calcium sulfide with calcium sulfate to form calcium oxide and sulfur dioxide gas. The regeneration is performed by contacting the sulfated material with a reductant gas such as hydrogen within an inert diluent to produce calcium sulfide in mixture with the sulfate under process conditions selected to permit the sulfide-sulfate, solid-state reaction to occur.
An, Seong Jin; Li, Jianlin; Daniel, Claus; ...
2016-04-09
An in-depth review is presented on the science of lithium-ion battery (LIB) solid electrolyte interphase (SEI) formation on the graphite anode, including structure, morphology, chemical composition, electrochemistry, formation mechanism, and LIB formation cycling. During initial operation of LIBs, the SEI layer forms on the graphite surfaces, the most commonly used anode material, due to side reactions with the electrolyte solvent/salt at low electro-reduction potentials. It is accepted that the SEI layer is essential to the long-term performance of LIBs, and it also has an impact on its initial capacity loss, self-discharge characteristics, cycle life, rate capability, and safety. While themore » presence of the anode SEI layer is vital, it is difficult to control its formation and growth, as the chemical composition, morphology, and stability depend on several factors. These factors include the type of graphite, electrolyte composition, electrochemical conditions, and cell temperature. Thus, SEI layer formation and electrochemical stability over long-term operation should be a primary topic of future investigation in the development of LIB technology. We review the progression of knowledge gained about the anode SEI, from its discovery in 1979 to the current state of understanding, and covers its formation process, differences in the chemical and structural makeup when cell materials and components are varied, methods of characterization, and associated reactions with the liquid electrolyte phase. It also discusses the relationship of the SEI layer to the LIB formation step, which involves both electrolyte wetting and subsequent slow charge-discharge cycles to grow the SEI.« less
On a new ironmaking process to produce hydrogen and reduce energy consumption
NASA Astrophysics Data System (ADS)
Corbari, Rodrigo
The primary purpose of the present work is to compute the volume and composition of the products of a theoretical charring unit for high volatile coals. In particular, the compositions of volatile gas and char and the hydrogen yield of the process. The volume of oxygen necessary to supply the energy for the process was also calculated. The model consists of materials and energy balance equations and local thermodynamic equilibrium. The model was combined with experimental results relating the effect of temperature on the extent of devolatilization and chemistry evolution of coal. Results of the model indicated that temperature plays a major role defining the quantities and composition of charring products. The H2 concentration of the volatile gas increased from about 16vol% at 700°C to 47vol% at 900°C, leveling off at approximately 52vol% at 1100°C. The hydrogen yield of the process increased from 7 to 60 percent at 700°C and 1100°C respectively. For a typical high volatile coal considered, the volume of gas generated varied from about 210 to 780 liters/kg-coal(STP) according to temperature and fraction of solids combusted. The char becomes enriched in carbon and depleted in hydrogen as temperature is increased. As much as 97 percent of the hydrogen in coal is removed at 1100°C. In the second part of this study, the kinetics of reduction of iron oxide fines with simulated smelter gas was experimentally studied by thermogravimetry. An equimolar CO/CO2 mixture was selected to simulate the off-gas of a smelter operating with char at 50 percent post combustion. Reduction temperatures ranged from 590°C to 1000°C. Under these conditions, reduction was limited to wustite. Results indicated that the reduction kinetics and dominating reaction mechanism varied with temperature, extent of reduction and type of iron oxide employed. Reduction from hematite to wustite proceeded in two consecutive reaction steps with magnetite as an intermediate oxide. The first reduction step, hematite to magnetite, was fast and controlled by external gas mass transfer independently of type of iron oxide and temperature employed in this work. The second reduction step, magnetite to wustite, was the overall reaction controlling step. The reduction mechanism varied with temperature and type of iron oxide. For moderately porous oxide fines (VALE and Taconite ores), the magnetite to wustite reduction followed a uniform internal reaction regime, where the chemical reaction at the gas-solid surface is the slowest step. For highly porous oxide (PAH), the magnetite to wustite reduction step was controlled by external gas mass transfer above 700°C. Below that, a mixed regime involving external gas mass transfer and limited mixed control, which comprises pore diffusion and chemical reaction, took place. The rate equations for this mixed control reaction mechanism were developed and the limited mixed control rate constant (klm) was computed. For denser oxides under uniform internal reaction, the product of the rate constant and pore surface area (k·S) was calculated. The final part of this research focused on the study of the mechanisms contributing for the distribution of sulfur in the smelter process. A methodology was developed for this purpose, which computes the sulfur concentration and distribution between the metal, slag and gas phases of the smelter for selected case scenarios. The model assumed the smelter as an ideal continuous stirred reactor under steady state conditions. Sulfur in the gas phase resulted from slag desulfurization by reaction with gas and the direct transfer of sulfur from coal or char. In general, it was found that a large fraction of sulfur leaves the smelter with the gas when coal or char is the only sulfur input to the process. However, the predominant mechanism for transfer of sulfur into the gas depended on process operating conditions. The effect of recycling sulfur back into the smelter was also evaluated. This is important when sulfur leaving with the smelter gas is captured by pre-reduced iron oxide or by dust particles and re-introduced in the process. In general, the more sulfur is recycled into the smelter, the higher the metal and slag sulfur concentration. However, the increasing sulfur content of metal and slag when sulfur is recycled may be partially counter-balanced by the use of char in place of coal. (Abstract shortened by UMI.)
Introduction to Polymer Chemistry.
ERIC Educational Resources Information Center
Harris, Frank W.
1981-01-01
Reviews the physical and chemical properties of polymers and the two major methods of polymer synthesis: addition (chain, chain-growth, or chain-reaction), and condensation (step-growth or step-reaction) polymerization. (JN)
The Barium Hydroxide-Ammonium Thiocyanate Reaction: A Titrimetric Continuous Variations Experiment.
ERIC Educational Resources Information Center
Harris, Arlo D.
1979-01-01
Presents an experiment for inorganic, organic, or physical chemistry students utilizing acid-base titrimetry to study the stoichiometric of a solid state reaction. Time involved ranges from one to three, three-hour lab periods. (Author/SA)
Conventional and Microwave Joining of Silicon Carbide Using Displacement Reactions
NASA Technical Reports Server (NTRS)
Kingsley, J.; Yiin, T.; Barmatz, M.
1995-01-01
Microwave heating was used to join Silicon Carbide rods using a thin TiC /Si tape interlayer . Microwaves quickly heated the rods and tape to temperatures where solid-state displacement reactions between TiC and Si occurred.
SRB combustion dynamics analysis computer program (CDA-1)
NASA Technical Reports Server (NTRS)
Chung, T. J.; Park, O. Y.
1988-01-01
A two-dimensional numerical model is developed for the unsteady oscillatory combustion of the solid propellant flame zone. Variations of pressure with low and high frequency responses across the long flame, such as in the double-base propellants, are accommodated. The formulation is based on a premixed, laminar flame with a one-step overall chemical reaction and the Arrhenius law of decomposition for the gaseous phase with no condensed phase reaction. Numerical calculations are carried out using the Galerkin finite elements, with perturbations expanded to the zeroth, first, and second orders. The numerical results indicate that amplification of oscillatory motions does indeed prevail in high frequency regions. For the second order system, the trend is similar to the first order system for low frequencies, but instabilities may appear at frequencies lower than those of the first order system. The most significant effect of the second order system is that the admittance is extremely oscillatory between moderately high frequency ranges.
Kim, Minjune; Su, Yaqiong; Fukuoka, Atsushi; Hensen, Emiel J M; Nakajima, Kiyotaka
2018-05-14
The utilization of 5-(hydroxymethyl)furfural (HMF) for the large-scale production of essential chemicals has been largely limited by the formation of solid humin as a byproduct, which prevents the operation of stepwise batch-type and continuous flow-type processes. The reaction of HMF with 1,3-propanediol produces an HMF acetal derivative that exhibits excellent thermal stability. Aerobic oxidation of the HMF acetal with a CeO 2 -supported Au catalyst and Na 2 CO 3 in water gives a 90-95 % yield of furan 2,5-dicarboxylic acid, an increasingly important commodity chemical for the biorenewables industry, from concentrated solutions (10-20 wt %) without humin formation. The six-membered acetal ring suppresses thermal decomposition and self-polymerization of HMF in concentrated solutions. Kinetic studies supported by DFT calculations identify two crucial steps in the reaction mechanism, that is, the partial hydrolysis of the acetal into 5-formyl-2-furan carboxylic acid involving OH - and Lewis acid sites on CeO 2 , and subsequent oxidative dehydrogenation of the in situ generated hemiacetal involving Au nanoparticles. These results represent a significant advance over the current state of the art, overcoming an inherent limitation of the oxidation of HMF to an important monomer for biopolymer production. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Shuai; Zhu, Jinlong; Wang, Yonggang; ...
2015-12-10
Lithium-rich Anti-perovskite (LiRAP), with general formula Li 3OX (X = Cl, Br, I), and recently reported as superionic conductors with 3-dimensional Li + migrating channels, is emerging as a promising candidate for solid electrolyte of all-solid-state LIBs. But, it is still difficult to fabricate pure LiRAP due to the difficulty of the phase formation and moisture-sensitive nature of the products. In this work, we thoroughly studied the formation mechanism of Li 3OCl and Li 3OBr in various solid state reaction routes. We developed different experimental strategies in order to improve the syntheses, in purposes of improved phase stability and large-scalemore » production of LiRAP. One feasible method is to use strongly reductive agents Li metal or LiH to eliminate OH species. The results show that LiH is more effective than Li metal because of negatively charged H - and uniform reaction. The other well-established method is using Li 2O and LiX mixture as reagents to preventing OH phase at the beginning, and using protected ball milling to make fine powders and hence active the reaction. Finally, IR spectroscopy, thermal analyses and first-principle calculation were performed to give indications on the reaction pathway.« less
NASA Astrophysics Data System (ADS)
Liang, Danyang; Ding, Yu; Wang, Nan; Cai, Xiaomeng; Li, Jia; Han, Linyu; Wang, Shiqi; Han, Yuanyuan; Jia, Guang; Wang, Liyong
2017-09-01
A method for mixed-phase bismuth molybdate doped with Eu3+ ions was developed by solid-state reaction assisting with polyvinyl alcohol (PVA). The results of powder X-ray diffraction showed a mixed-phase structure and the microscopical characterization technology revealed the formation process with the addition of PVA. As a structure inducer, the PVA molecules played a vital role in the formation of phase structure. The as-obtained Eu3+-doped bismuth molybdates were also characterized by using different spectroscopic techniques including FTIR and photoluminescence (PL). The results show that doping concentration, PVA addition and calcination temperature affect photoluminescence properties remarkably.
Stern, L.A.; Kirby, S.H.; Durham, W.B.
1996-01-01
Slow, constant-volume heating of water ice plus methane gas mixtures forms methane clathrate hydrate by a progressive reaction that occurs at the nascent ice/liquid water interface. As this reaction proceeds, the rate of melting of metastable water ice may be suppressed to allow short-lived superheating of ice to at least 276 kelvin. Plastic flow properties measured on clathrate test specimens are significantly different from those of water ice; under nonhydrostatic stress, methane clathrate undergoes extensive strain hardening and a process of solid-state disproportionation or exsolution at conditions well within its conventional hydrostatic stability field.
Synthesisofc-lifepo4 composite by solid state reaction method
NASA Astrophysics Data System (ADS)
Rahayu, I.; Hidayat, S.; Noviyanti, A. R.; Rakhmawaty, D.; Ernawati, E.
2017-02-01
In this research, the enhancement of LiFePO4 conductivity was conducted by doping method with carbon materials. Carbon-based materials were obtained from the mixture of sucrose, and the precursor of LiH2PO4 and α-Fe2O3 was synthesized by solid state reaction. Sintering temperature was varied at 700°C, 800°C, 900°C and 1,000°C. The result showed that C-LiFePO4 could be synthesized by using solid state reaction method. Based on the XRD and FTIR spectrums, C-LiFePO4 can be identified as the type of crystal, characterized by the appearance of sharp signal on (011), (211) and typical peak of LiFePO4 materials. The result of conductivity measurement from C-LiFePO4 at sintering temperature of 900°C and 1,000°C was 2×10-4 S/cm and 4×10-4S/cm, respectively. The conductivity value at sintering temperature of 700°C and 800°C was very small (<10-6 S/cm), which cannot be measured by the existing equipment.
Sanchez, Jason C; Toal, Sarah J; Wang, Zheng; Dugan, Regina E; Trogler, William C
2007-11-01
Detection of trace quantities of explosive residues plays a key role in military, civilian, and counter-terrorism applications. To advance explosives sensor technology, current methods will need to become cheaper and portable while maintaining sensitivity and selectivity. The detection of common explosives including trinitrotoluene (TNT), cyclotrimethylenetrinitramine, cyclotetramethylene-tetranitramine, pentaerythritol tetranitrate, 2,4,6-trinitrophenyl-N-methylnitramine, and trinitroglycerin may be carried out using a three-step process combining "turn-off" and "turn-on" fluorimetric sensing. This process first detects nitroaromatic explosives by their quenching of green luminescence of polymetalloles (lambda em approximately 400-510 nm). The second step places down a thin film of 2,3-diaminonaphthalene (DAN) while "erasing" the polymetallole luminescence. The final step completes the reaction of the nitramines and/or nitrate esters with DAN resulting in the formation of a blue luminescent traizole complex (lambda(em) = 450 nm) providing a "turn-on" response for nitramine and nitrate ester-based explosives. Detection limits as low as 2 ng are observed. Solid-state detection of production line explosives demonstrates the applicability of this method to real world situations. This method offers a sensitive and selective detection process for a diverse group of the most common high explosives used in military and terrorist applications today.
Remote quantum entanglement between two micromechanical oscillators.
Riedinger, Ralf; Wallucks, Andreas; Marinković, Igor; Löschnauer, Clemens; Aspelmeyer, Markus; Hong, Sungkun; Gröblacher, Simon
2018-04-01
Entanglement, an essential feature of quantum theory that allows for inseparable quantum correlations to be shared between distant parties, is a crucial resource for quantum networks 1 . Of particular importance is the ability to distribute entanglement between remote objects that can also serve as quantum memories. This has been previously realized using systems such as warm 2,3 and cold atomic vapours 4,5 , individual atoms 6 and ions 7,8 , and defects in solid-state systems 9-11 . Practical communication applications require a combination of several advantageous features, such as a particular operating wavelength, high bandwidth and long memory lifetimes. Here we introduce a purely micromachined solid-state platform in the form of chip-based optomechanical resonators made of nanostructured silicon beams. We create and demonstrate entanglement between two micromechanical oscillators across two chips that are separated by 20 centimetres . The entangled quantum state is distributed by an optical field at a designed wavelength near 1,550 nanometres. Therefore, our system can be directly incorporated in a realistic fibre-optic quantum network operating in the conventional optical telecommunication band. Our results are an important step towards the development of large-area quantum networks based on silicon photonics.
Reinehr, Christian Oliveira; Treichel, Helen; Tres, Marcus Vinicius; Steffens, Juliana; Brião, Vandré Barbosa; Colla, Luciane Maria
2017-06-01
In this study, we developed a simplified method for producing, separating, and concentrating lipases derived from solid-state fermentation of agro-industrial residues by filamentous fungi. First, we used Aspergillus niger to produce lipases with hydrolytic activity. We analyzed the separation and concentration of enzymes using membrane separation processes. The sequential use of microfiltration and ultrafiltration processes made it possible to obtain concentrates with enzymatic activities much higher than those in the initial extract. The permeate flux was higher than 60 L/m 2 h during microfiltration using 20- and 0.45-µm membranes and during ultrafiltration using 100- and 50-kDa membranes, where fouling was reversible during the filtration steps, thereby indicating that the fouling may be removed by cleaning processes. These results demonstrate the feasibility of lipase production using A. niger by solid-state fermentation of agro-industrial residues, followed by successive tangential filtration with membranes, which simplify the separation and concentration steps that are typically required in downstream processes.
Influence of physical state on the ozonolysis of shikimic acid
NASA Astrophysics Data System (ADS)
Steimer, Sarah; Krieger, Ulrich; Lampimäki, Markus; Peter, Thomas; Ammann, Markus
2014-05-01
Atmospheric aerosols are an important focus of environmental research due to their effect on climate, air quality and human health. They undergo continuous transformation, changing their physical and chemical properties. Recent findings show that secondary organic aerosol (SOA) particles can form amorphous solids and semi-solids under atmospheric conditions [1]. Since such physical states are highly viscous, diffusivity within the bulk decreases. The decrease in mass transport could slow down chemical reactions, thereby increasing the lifetime of the organic compounds involved. First indications of such behavior were recently shown for reaction of thin protein films with ozone [2], formation of organonitrogen from ammonia uptake to α-pinene secondary organic material [3] and reaction of SOA-coated benzo[a]pyrene with ozone [4]. In this study, we investigated the influence of physical state on the ozonolysis of shikimic acid. Said carboxylic acid is a constituent of biomass burning aerosols and used here as a proxy for oxygenated organic material. Its viscosity was adjusted by varying the humidity of the system between 0% and 92% RH, assuming correlation between the two parameters since water acts as a plasticizer. The system was probed with three complementary techniques: an electrodynamic balance (EDB), measuring the response of single particles to changes in humidity, coated wall flow tube measurements, where uptake of ozone is measured via loss from the gas phase and in situ X-ray microspectroscopy on single particles, where oxidation of the bulk can be observed. Additionally, a kinetic model was used to facilitate data analysis. EDB measurements showed clear evidence of humidity dependent glass formation and correlation of water content and water diffusivity. The dependence of the ozonolysis on relative humidity was observed with both flow tube and microspectroscopy measurements. The coated wall flow tube experiments showed a long term, gradually changing ozone uptake over more than 15 hours, the magnitude of which varied over nearly two orders between lowest and highest humidity. It was possible to separate the uptake into two distinct kinetic regimes, the first of which displayed a Langmuir-Hinshelwood type behavior regarding the ozone gas phase concentration. Microspectroscopy showed that the speed at which the characteristic double bond peak of shikimic acid disappeared was humidity dependent. The measured dependence of the reaction kinetics on humidity supports the hypothesis that the uptake coefficient is highly dependent on the diffusion coefficients of ozone and/or shikimic acid in the organic film. [1] Virtanen, A., et al., An amorphous solid state of biogenic secondary organic aerosol particles. Nature, 2010. 467(7317): p. 824-827. [2] Shiraiwa, M., et al., Gas uptake and chemical aging of semisolid organic aerosol particles. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(27): p. 11003-11008. [3] Kuwata, M. and Martin, S. T., Phase of atmospheric secondary organic material affects its reactivity. Proceedings of the National Academy of Sciences of the United States of America, 109(43): p. 17354-17359. [4] Zhou, S., et al., Kinetic limitations in gas-particle reactions arising from slow diffusion in secondary organic aerosol. Faraday Discussions, 2013. 165: p. 391-406.
Spectroscopic and Thermal Behavior of Chromium Soaps
NASA Astrophysics Data System (ADS)
Mehrotra, K. N.; Jain, Mamta
1996-02-01
The physicochemical characteristics of chromium soaps (myristate and stearate) were investigated in the solid state (thermal, X-ray, and IR measurements) and in solutions (spectrophotometric measurements). The thermal measurements showed that the decomposition of chromium soaps is a two-step process. The soap decomposed into chromium oxycarboxylate, ketone, and carbon dioxide in the first step and the intermediate oxycarboxylate underwent further decomposition to chromium trioxide in the second step. The results showed that the second step is kinetically of zero order and the values of energy of activation for the first and second steps lie in the ranges 6-7 and 17-18 kcal mol-1, respectively. The X-ray diffraction results showed that these soaps possess double-layer structure with molecular axes slightly inclined to the basal plane. The infrared results revealed that the fatty acids exist with dimeric structure through hydrogen bonding between two molecules of fatty acids whereas the metal-to-oxygen bonds in chromium soaps are not purely ionic but possess considerable covalent character. The results of spectrophotometric measurements also confirmed the somewhat covalent nature of chromium soaps in solutions in dichloromethane.
Nims, Robert J.; Maas, Steve; Weiss, Jeffrey A.
2014-01-01
Mechanobiological processes are rooted in mechanics and chemistry, and such processes may be modeled in a framework that couples their governing equations starting from fundamental principles. In many biological applications, the reactants and products of chemical reactions may be electrically charged, and these charge effects may produce driving forces and constraints that significantly influence outcomes. In this study, a novel formulation and computational implementation are presented for modeling chemical reactions in biological tissues that involve charged solutes and solid-bound molecules within a deformable porous hydrated solid matrix, coupling mechanics with chemistry while accounting for electric charges. The deposition or removal of solid-bound molecules contributes to the growth and remodeling of the solid matrix; in particular, volumetric growth may be driven by Donnan osmotic swelling, resulting from charged molecular species fixed to the solid matrix. This formulation incorporates the state of strain as a state variable in the production rate of chemical reactions, explicitly tying chemistry with mechanics for the purpose of modeling mechanobiology. To achieve these objectives, this treatment identifies the specific theoretical and computational challenges faced in modeling complex systems of interacting neutral and charged constituents while accommodating any number of simultaneous reactions where reactants and products may be modeled explicitly or implicitly. Several finite element verification problems are shown to agree with closed-form analytical solutions. An illustrative tissue engineering analysis demonstrates tissue growth and swelling resulting from the deposition of chondroitin sulfate, a charged solid-bound molecular species. This implementation is released in the open-source program FEBio (www.febio.org). The availability of this framework may be particularly beneficial to optimizing tissue engineering culture systems by examining the influence of nutrient availability on the evolution of inhomogeneous tissue composition and mechanical properties, the evolution of construct dimensions with growth, the influence of solute and solid matrix electric charge on the transport of cytokines, the influence of binding kinetics on transport, the influence of loading on binding kinetics, and the differential growth response to dynamically loaded versus free-swelling culture conditions. PMID:24558059
Ateshian, Gerard A; Nims, Robert J; Maas, Steve; Weiss, Jeffrey A
2014-10-01
Mechanobiological processes are rooted in mechanics and chemistry, and such processes may be modeled in a framework that couples their governing equations starting from fundamental principles. In many biological applications, the reactants and products of chemical reactions may be electrically charged, and these charge effects may produce driving forces and constraints that significantly influence outcomes. In this study, a novel formulation and computational implementation are presented for modeling chemical reactions in biological tissues that involve charged solutes and solid-bound molecules within a deformable porous hydrated solid matrix, coupling mechanics with chemistry while accounting for electric charges. The deposition or removal of solid-bound molecules contributes to the growth and remodeling of the solid matrix; in particular, volumetric growth may be driven by Donnan osmotic swelling, resulting from charged molecular species fixed to the solid matrix. This formulation incorporates the state of strain as a state variable in the production rate of chemical reactions, explicitly tying chemistry with mechanics for the purpose of modeling mechanobiology. To achieve these objectives, this treatment identifies the specific theoretical and computational challenges faced in modeling complex systems of interacting neutral and charged constituents while accommodating any number of simultaneous reactions where reactants and products may be modeled explicitly or implicitly. Several finite element verification problems are shown to agree with closed-form analytical solutions. An illustrative tissue engineering analysis demonstrates tissue growth and swelling resulting from the deposition of chondroitin sulfate, a charged solid-bound molecular species. This implementation is released in the open-source program FEBio ( www.febio.org ). The availability of this framework may be particularly beneficial to optimizing tissue engineering culture systems by examining the influence of nutrient availability on the evolution of inhomogeneous tissue composition and mechanical properties, the evolution of construct dimensions with growth, the influence of solute and solid matrix electric charge on the transport of cytokines, the influence of binding kinetics on transport, the influence of loading on binding kinetics, and the differential growth response to dynamically loaded versus free-swelling culture conditions.
NASA Astrophysics Data System (ADS)
Iriyama, Yasutoshi; Wadaguchi, Masaki; Yoshida, Koki; Yamamoto, Yuta; Motoyama, Munekazu; Yamamoto, Takayuki
2018-05-01
Composite electrodes (∼9 μm in thickness) composed of 5V-class electrode of LiNi0.5Mn1.5O4 (LNM) and high Li+ conductive crystalline-glass solid electrolyte (LATP, Ohara Inc.) were prepared at room temperature by aerosol deposition (AD) on platinum sheets. The resultant LNM-LATP composite electrodes were combined with LiPON and Li, and 5V-class bulk-type all-solid-state rechargeable lithium batteries (SSBs) were prepared. The crystallnity of the LNM in the LNM-LATP composite electrode was improved by annealing. Both thermogravimetry-mass spectroscopy analysis and XRD analysis clarified that the side reactions between the LNM and the LATP occurred over 500 °C with oxygen release. From these results, annealing temperature of the LNM-LATP composite electrode system was optimized at 500 °C due to the improved crystallinity of the LNM with avoiding the side-reactions. The SSBs with the composite electrodes (9 μm in thickness, 40 vol% of the LNM) annealed at 500 °C delivered 100 mAh g-1 at 10 μA cm-2 at 100 °C. Degradation of the discharge capacity with the repetition of the charge-discharge reactions was observed, which will originate from large volume change of the LNM (∼6.5%) during the reactions.
High yield of secondary B-side electron transfer in mutant Rhodobacter capsulatus reaction centers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kressel, Lucas; Faries, Kaitlyn M.; Wander, Marc J.
2014-08-01
From the crystal structures of reaction centers (RCs) from purple photosynthetic bacteria, two pathways for electron transfer (ET) are apparent but only one pathway (the A side) operates in the native protein-cofactor complex. Partial activation of the B-side pathway has unveiled the true inefficiencies of ET processes on that side in comparison to analogous reactions on the A side. Of significance are the relative rate constants for forward ET and the competing charge recombination reactions. On the B side, these rate constants are nearly equal for the secondary charge-separation step (ET from bacteriopheophytin to quinone), relegating the yield of thismore » process to < 50%. Herein we report efforts to optimize this step. In surveying all possible residues at position 131 in the M subunit, we discovered that when glutamic acid replaces the native valine the efficiency of the secondary ET is nearly two-fold higher than in the wild-type RC. The positive effect of M131 Glu is likely due to formation of a hydrogen bond with the ring V keto group of the B-side bacteriopheophytin leading to stabilization of the charge-separated state involving this cofactor. In conclusion, this change slows charge recombination by roughly a factor of two and affords the improved yield of the desired forward ET to the B-side quinone terminal acceptor.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-28
... chemical state and their catalytic activity in various chemical reactions, by investigating solid... instrument. The unique features of this instrument include its small volume (0.045 L) reaction cell in which...
Spins and photons: connecting quantum registers in diamond
NASA Astrophysics Data System (ADS)
Childress, Lily
2012-06-01
Long-lived electronic and nuclear spin states have made the nitrogen-vacancy (NV) defect in diamond a leading candidate for quantum information processing in the solid state. Multi-qubit quantum registers formed by single defects and nearby nuclear spins can currently be controlled and detected with high fidelity. Nevertheless, development of coherent connections between distant NVs remains an outstanding challenge. One advantage to working with solid-state defects is the opportunity to integrate them with microfabricated mechanical, electronic, or optical devices; in principle, such devices could mediate interactions between registers, turning them into nodes within a larger quantum network. In the last few months, several experiments have made key steps toward realizing a coherent quantum interface between individual NV centers using a mechanical quantum bus [1] or optical channels [2,3]. This talk will explore the current state of the art, and report on recent observation of two photon quantum interference between different gate-tunable defect centers [2]. These results pave the way towards measurement-based entanglement between remote NV centers and the realization of quantum networks with solid-state spins.[4pt] [1] Kolkowitz et al., Science 335, 1603 (2012)[2] Bernien et al., Phys. Rev. Lett. 108, 043604 (2012)[3] Sipahigil et al., http://lanl.arxiv.org/abs/1112.3975
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fei, Yiyan; Landry, James P.; Zhu, X. D., E-mail: xdzhu@physics.ucdavis.edu
A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400–10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven,more » entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.« less
NASA Astrophysics Data System (ADS)
Fei, Yiyan; Landry, James P.; Li, Yanhong; Yu, Hai; Lau, Kam; Huang, Shengshu; Chokhawala, Harshal A.; Chen, Xi; Zhu, X. D.
2013-11-01
A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400-10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven, entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.
Skating on thin ice: surface chemistry under interstellar conditions
NASA Astrophysics Data System (ADS)
Fraser, H.; van Dishoeck, E.; Tielens, X.
Solid CO2 has been observed towards both active star forming regions and quiescent clouds (Gerakines et. al. (1999)). The high abundance of CO2 in the solid phase, and its low abundance in the gas phase, support the idea that CO2 is almost exclusively formed in the solid state. Several possible formation mechanisms have been postulated (Ruffle &Herbst (2001): Charnley &Kaufman (2000)), and the detection of CO2 towards quiescent sources such as Elias 16 (Whittet et. al. (1998)) clearly suggests that CO2 can be produced in the absence of UV or electron mediated processes. The most likely route is via the surface reactions between O atoms, or OH radicals, and CO. The tools of modern surface- science offer us the potential to determine many of the physical and chemical attributes of icy interstellar grain mantles under highly controlled conditions, that closely mimic interstellar environments. The Leiden Surface Reaction Simulation Device ( urfreside) combines UHV (UltraS High Vacuum) surface science techniques with an atomic beam to study chemical reactions occurring on the SURFACE and in the BULK of interstellar ice grain mimics. By simultaneously combining two or more surface analysis techniques, the chemical kinetics, reaction mechanisms and activation energies can be determined directly. The experiment is aimed at identifying the key barrierless reactions and desorption pathways on and in H2 O and CO ices under interstellar conditions. The results from traditional HV (high vacuum) and UHV studies of the CO + O and CO + OH reactions will be presented in this paper. Charnley, S.B., & Kaufman, M.J., 2000, ApJ, 529, L111 Gerakines, P.A., 1999, ApJ, 522, 357 Ruffle, D.P., & Herbst, E., 2001, MNRAS, 324, 1054 Whittet, D.C.B., et.al., 1998, ApJ, 498, L159
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holder, G.D.; Tierney, J.W.
Experimental work is presently being concentrated on a two-step synthesis of methanol from CO and H/sub 2/ Which consists of the carbonylation of a molecule of methanol to methyl formate followed by hydrogenation to form two molecules of methanol. Carrying out both reactions concurrently gives different results than predicted. One explanation is interaction between the two catalysts. Since one catalyst is homogeneous and the other heterogeneous, the interaction, due to absorption of the homogeneous catalyst on the heterogeneous one, at room temperature was measured and found to be significant. Measurements of mass transfer cooefficients from gas phase to liquid phasemore » for systems containing H/sub 2/, CO, methanol and methyl formate were made to verify that the reaction rate data being obtained are not influenced by mass transfer limitations. Mass transfer rates in the experimental reactor are a least 1000 times larger than reaction rates and hence are not rate limiting. Modeling of the unsteady state slurry phase Fischer-Tropsch reaction continued in order to investigate interactions among the Fischer-Tropsch reactions, the thermal effects, and the water gas shift reaction. A computer program for solution of the reaction equations was written. Also included in this report is the entire program for evaluating mass transfer coefficients under supercritical conditions is described and a review of current knowledge and planned correlational approaches is given. 61 refs., 22 figs, 7 tabs.« less
Sbarciog, M; Moreno, J A; Vande Wouwer, A
2014-01-01
This paper presents the estimation of the unknown states and inputs of an anaerobic digestion system characterized by a two-step reaction model. The estimation is based on the measurement of the two substrate concentrations and of the outflow rate of biogas and relies on the use of an observer, consisting of three parts. The first is a generalized super-twisting observer, which estimates a linear combination of the two input concentrations. The second is an asymptotic observer, which provides one of the two biomass concentrations, whereas the third is a super-twisting observer for one of the input concentrations and the second biomass concentration.
On the Structure Sensitivity of Formic Acid Decomposition on Cu Catalysts
Li, Sha; Scaranto, Jessica; Mavrikakis, Manos
2016-08-03
Catalytic decomposition of formic acid (HCOOH) has attracted substantial attention since HCOOH is a major by-product in biomass reforming, a promising hydrogen carrier, and also a potential low temperature fuel cell feed. Despite the abundance of experimental studies for vapor-phase HCOOH decomposition on Cu catalysts, the reaction mechanism and its structure sensitivity is still under debate. In this work, self-consistent, periodic density functional theory calculations were performed on three model surfaces of copper—Cu(111), Cu(100) and Cu(211), and both the HCOO (formate)-mediated and COOH (carboxyl)-mediated pathways were investigated for HCOOH decomposition. The energetics of both pathways suggest that the HCOO-mediated routemore » is more favorable than the COOH-mediated route on all three surfaces, and that HCOOH decomposition proceeds through two consecutive dehydrogenation steps via the HCOO intermediate followed by the recombinative desorption of H 2. On all three surfaces, HCOO dehydrogenation is the likely rate determining step since it has the highest transition state energy and also the highest activation energy among the three catalytic steps in the HCOO pathway. The reaction is structure sensitive on Cu catalysts since the examined three Cu facets have dramatically different binding strengths for the key intermediate HCOO and varied barriers for the likely rate determining step—HCOO dehydrogenation. Cu(100) and Cu(211) bind HCOO much more strongly than Cu(111), and they are also characterized by potential energy surfaces that are lower in energy than that for the Cu(111) facet. Coadsorbed HCOO and H represents the most stable state along the reaction coordinate, indicating that, under reaction conditions, there might be a substantial surface coverage of the HCOO intermediate, especially at under-coordinated step, corner or defect sites. Therefore, under reaction conditions, HCOOH decomposition is predicted to occur most readily on the terrace sites of Cu nanoparticles. Finally, as a result, we hereby present an example of a fundamentally structure-sensitive reaction, which may present itself as structure-insensitive in typical varied particle-size experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Niyanth; Isheim, D.; Seidman, David N.
Solid state joining is achieved in three steps, (i) interface asperity deformation, (ii) oxide dispersion, followed by (iii) atomic contact and bonding. Atomically clean metallic surfaces without an oxide layer bond spontaneously. Despite its importance the oxide dispersion mechanism is not well studied. In this work the first ever atom probe study of iron-aluminum solid state welds show that the oxygen concentration at the interface is 20 at.%. This is significantly lower than any equilibrium oxide concentration. Here, we therefore propose that the high-strain rate deformation at the interfaces renders the oxide unstable resulting in the observed concentration of oxygen.
Sridharan, Niyanth; Isheim, D.; Seidman, David N.; ...
2016-12-14
Solid state joining is achieved in three steps, (i) interface asperity deformation, (ii) oxide dispersion, followed by (iii) atomic contact and bonding. Atomically clean metallic surfaces without an oxide layer bond spontaneously. Despite its importance the oxide dispersion mechanism is not well studied. In this work the first ever atom probe study of iron-aluminum solid state welds show that the oxygen concentration at the interface is 20 at.%. This is significantly lower than any equilibrium oxide concentration. Here, we therefore propose that the high-strain rate deformation at the interfaces renders the oxide unstable resulting in the observed concentration of oxygen.
Gupta, Rupal; Stringer, John; Struppe, Jochem; Rehder, Dieter; Polenova, Tatyana
2018-07-01
Electronic and structural properties of short-lived metal-peroxido complexes, which are key intermediates in many enzymatic reactions, are not fully understood. While detected in various enzymes, their catalytic properties remain elusive because of their transient nature, making them difficult to study spectroscopically. We integrated 17 O solid-state NMR and density functional theory (DFT) to directly detect and characterize the peroxido ligand in a bioinorganic V(V) complex mimicking intermediates non-heme vanadium haloperoxidases. 17 O chemical shift and quadrupolar tensors, measured by solid-state NMR spectroscopy, probe the electronic structure of the peroxido ligand and its interaction with the metal. DFT analysis reveals the unusually large chemical shift anisotropy arising from the metal orbitals contributing towards the magnetic shielding of the ligand. The results illustrate the power of an integrated approach for studies of oxygen centers in enzyme reaction intermediates. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Oylumluoglu, Gorkem; Coban, Mustafa Burak; Kocak, Cagdas; Aygun, Muhittin; Kara, Hulya
2017-10-01
Two new lanthanide-based coordination complexes, [Dy(2-stp).2(H2O)]n (1) and {[Ho(2-stp).3(H2O)]·(H2O)}n (2) [2-stp = 2-sulfoterephthalic acid] were synthesized by hydrothermal reaction and characterized by elemental analysis, UV, IR, single crystal X-ray diffraction and solid state photoluminescence. DyIII and HoIII atoms are eight-coordinated and adopt a distorted square-antiprismatic geometry in complexes 1 and 2, respectively. In compound 1, Dy atoms are coordinated by four bridging 2-stp ligands forming two-dimensional (2D) layer, while Ho atoms by three bridging 2-stp ligands creating one dimensional (1D) double chains in 2. In addition, complexes 1 and 2 display in the solid state and at room temperature an intense yellow emission, respectively; this photoluminescence is achieved by an indirect process (antenna effect). The excellent luminescent performances make these complexes very good candidates for potential luminescence materials.
Ogihara, Yusuke; Yamamoto, Takeshi; Kato, Shigeki
2010-09-23
Triplet ketene exhibits a steplike structure in the experimentally observed dissociation rates, but its mechanism is still unknown despite many theoretical efforts in the past decades. In this paper we revisit this problem by quantum mechanically calculating the reaction probability with multireference-based electronic structure theory. Specifically, we first construct an analytical potential energy surface of triplet state by fitting it to about 6000 ab initio energies computed at the multireference second-order Mller-Plesset perturbation (MRMP2) level. We then evaluate the cumulative reaction probability by using the transition state wave packet method together with an adiabatically constrained Hamiltonian. The result shows that the imaginary barrier frequency on the triplet surface is 328i cm-1, which is close to the CCSD(T) result (321i cm-1) but is likely too large for reproducing the experimentally observed steps. Indeed, our calculated reaction probability exhibits no signature of steps, reflecting too strong tunneling effect along the reaction coordinate. Nevertheless, it is emphasized that the flatness of the potential profile in the transition-state region (which governs the degree of tunneling) depends strongly on the level of electronic structure calculation, thus leaving some possibility that the use of more accurate theories might lead to the observed steps. We also demonstrate that the triplet potential surface differs significantly between the CASSCF and MRMP2 results, particularly in the transition-state region. This fact seems to require more attention when studying the "nonadiabatic" scenario for the steps, in which the crossing seam between S0 and T1 surfaces is assumed to play a central role.
A facile synthesis of the basic steroidal skeleton using a Pauson-Khand reaction as a key step.
Kim, Do Han; Kim, Kwang; Chung, Young Keun
2006-10-13
A high-yield synthesis of steroid-type molecules under mild reaction conditions is achieved in two steps involving nucleophilic addition of alkynyl cerium reagent to an easily enolizable carbonyl compound (beta-tetralone) followed by an intramolecular Pauson-Khand reaction.
ERIC Educational Resources Information Center
Phonchaiya, Sonthi; Panijpan, Bhinyo; Rajviroongit, Shuleewan; Wright, Tony; Blanchfield, Joanne T.
2009-01-01
Liquid 2-chlorobenzaldehyde was converted, by grinding with potassium hydroxide pellets, into equimolar quantities of solid 2-chlorobenzoic acid and solid 2-chlorobenzyl alcohol in a Cannizzaro reaction. TLC, IR, and NMR experiments, using authentic samples for comparison, confirmed the identity and purity of the two products. Guided-inquiry…
Rare earth separations by selective borate crystallization
Yin, Xuemiao; Wang, Yaxing; Bai, Xiaojing; Wang, Yumin; Chen, Lanhua; Xiao, Chengliang; Diwu, Juan; Du, Shiyu; Chai, Zhifang; Albrecht-Schmitt, Thomas E.; Wang, Shuao
2017-01-01
Lanthanides possess similar chemical properties rendering their separation from one another a challenge of fundamental chemical and global importance given their incorporation into many advanced technologies. New separation strategies combining green chemistry with low cost and high efficiency remain highly desirable. We demonstrate that the subtle bonding differences among trivalent lanthanides can be amplified during the crystallization of borates, providing chemical recognition of specific lanthanides that originates from Ln3+ coordination alterations, borate polymerization diversity and soft ligand coordination selectivity. Six distinct phases are obtained under identical reaction conditions across lanthanide series, further leading to an efficient and cost-effective separation strategy via selective crystallization. As proof of concept, Nd/Sm and Nd/Dy are used as binary models to demonstrate solid/aqueous and solid/solid separation processes. Controlling the reaction kinetics gives rise to enhanced separation efficiency of Nd/Sm system and a one-step quantitative separation of Nd/Dy with the aid of selective density-based flotation. PMID:28290448
The Chemistry of Inorganic Precursors during the Chemical Deposition of Films on Solid Surfaces.
Barry, Seán T; Teplyakov, Andrew V; Zaera, Francisco
2018-03-20
The deposition of thin solid films is central to many industrial applications, and chemical vapor deposition (CVD) methods are particularly useful for this task. For one, the isotropic nature of the adsorption of chemical species affords even coverages on surfaces with rough topographies, an increasingly common requirement in microelectronics. Furthermore, by splitting the overall film-depositing reactions into two or more complementary and self-limiting steps, as it is done in atomic layer depositions (ALD), film thicknesses can be controlled down to the sub-monolayer level. Thanks to the availability of a vast array of inorganic and metalorganic precursors, CVD and ALD are quite versatile and can be engineered to deposit virtually any type of solid material. On the negative side, the surface chemistry that takes place in these processes is often complex, and can include undesirable side reactions leading to the incorporation of impurities in the growing films. Appropriate precursors and deposition conditions need to be chosen to minimize these problems, and that requires a proper understanding of the underlying surface chemistry. The precursors for CVD and ALD are often designed and chosen based on their known thermal chemistry from inorganic chemistry studies, taking advantage of the vast knowledge developed in that field over the years. Although a good first approximation, however, this approach can lead to wrong choices, because the reactions of these precursors at gas-solid interfaces can be quite different from what is seen in solution. For one, solvents often aid in the displacement of ligands in metalorganic compounds, providing the right dielectric environment, temporarily coordinating to the metal, or facilitating multiple ligand-complex interactions to increase reaction probabilities; these options are not available in the gas-solid reactions associated with CVD and ALD. Moreover, solid surfaces act as unique "ligands", if these reactions are to be viewed from the point of view of the metalorganic complexes used as precursors: they are bulky and rigid, can provide multiple binding sites for a single reaction, and can promote unique bonding modes, especially on metals, which have delocalized electronic structures. The differences between the molecular and surface chemistry of CVD and ALD precursors can result in significant variations in their reactivity, ultimately leading to unpredictable properties in the newly grown films. In this Account, we discuss some of the main similarities and differences in chemistry that CVD/ALD precursors follow on surfaces when contrasted against their known behavior in solution, with emphasis on our own work but also referencing other key contributions. Our approach is unique in that it combines expertise from the inorganic, surface science, and quantum-mechanics fields to better understand the mechanistic details of the chemistry of CVD and ALD processes and to identify new criteria to consider when designing CVD/ALD precursors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coker, Eric Nicholas; Rodriguez, Mark A.; Ambrosini, Andrea
Hydrogen and carbon monoxide may be produced using solar-thermal energy in two-stage reactions of water and carbon dioxide, respectively, over certain metal oxide materials. The most active materials observed experimentally for these processes are complex mixtures of ferrite and zirconia based solids, and it is not clear how far the ferrites, the zirconia, or a solid solution between the two participate in the change of oxidation state during the cycling. Identification of the key phases in the redox material that enable splitting is of paramount importance to developing a working model of the materials. A three-pronged approach was adopted here:more » computer modeling to determine thermodynamically favorable materials compositions, bench reactor testing to evaluate materials’ performance, and in-situ characterization of reactive materials to follow phase changes and identify the phases active for splitting. For the characterization and performance evaluation thrusts, cobalt ferrites were prepared by co-precipitation followed by annealing at 1400 °C. An in-situ X-ray diffraction capability was developed and tested, allowing phase monitoring in real time during thermochemical redox cycling. Key observations made for an un-supported cobalt ferrite include: 1) ferrite phases partially reduce to wustite upon heating to 1400 °C in helium; 2) exposing the material to air at 1100 °C causes immediate re-oxidation; 3) the re-oxidized material may be thermally reduced at 1400 °C under inert; 4) exposure of a reduced material to CO 2 results in gradual re-oxidation at 1100 °C, but minimization of background O 2-levels is essential; 5) even after several redox cycles, the lattice parameters of the ferrites remain constant, indicating that irreversible phase separation does not occur, at least over the first five cycles; 6) substituting chemical (hydrogen) reduction for thermal reduction resulted in formation of a CoFe metallic alloy. Materials were also evaluated for their CO 2-splitting performance in bench reactor systems utilizing chemical reduction in place of thermal reduction. These tests lead to the following general conclusions: 1) despite over-reduction of the cobalt ferrite phase to CoFe alloy on chemical reduction, splitting of CO 2 still occurs; 2) the kinetics of chemical reduction follow the sequence: un-supported < ZrO 2-supported < yttria-stabilized ZrO 2 (YSZ)-supported ferrite; 3) ferrite/YSZ re-oxidizes faster than ferrite/ZrO 2 under CO 2 in the range 400 – 700 °C. The temperature and pressure regimes in which the thermal reduction and water-splitting steps are thermodynamically favorable in terms of the enthalpy and entropy of oxide reduction, were determined. These metrics represent a useful design goal for any proposed water-splitting cycle. Applying this theoretical framework to available thermodynamic data, it was shown that none of the 105 binary oxide redox couples that were screened possess both energetically favorable reduction and oxidation steps. However, several driving forces, including low pressure and a large positive solid-state entropy of reduction of the oxide, have the potential to enable thermodynamically-favored two-step cycles.« less
NASA Astrophysics Data System (ADS)
Babu, S. Harinath; Kaleemulla, S.; Rao, N. Madhusudhana; Rao, G. Venugopal; Krishnamoorthi, C.
2016-11-01
Indium-tin-oxide (ITO) (In0.95Sn0.05)2O3 and Cr doped indium-tin-oxide (In0.90Sn0.05Cr0.05)2O3 nanoparticles were prepared using simple low cost solid state reaction method and characterized by different techniques to study their structural, optical and magnetic properties. Microstructures, surface morphology, crystallite size of the nanoparticles were studied using X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM). From these methods it was found that the particles were about 45 nm. Chemical composition and valence states of the nanoparticles were studied using energy dispersive analysis of X-rays (EDAX) and X-ray photoelectron spectroscopy (XPS). From these techniques it was observed that the elements of indium, tin, chromium and oxygen were present in the system in appropriate ratios and they were in +3, +4, +3 and -2 oxidation states. Raman studies confirmed that the nanoparticle were free from unintentional impurities. Two broad emission peaks were observed at 330 nm and 460 nm when excited wavelength of 300 nm. Magnetic studies were carried out at 300 K and 100 K using vibrating sample magnetometer (VSM) and found that the ITO nanoparticles were ferromagnetic at 100 K and 300 K. Where-as the room temperature ferromagnetism completely disappeared in Cr doped ITO nanoparticles at 100 K and 300 K.
Abdul Bashid, Hamra Assyaima; Lim, Hong Ngee; Kamaruzaman, Sazlinda; Abdul Rashid, Suraya; Yunus, Robiah; Huang, Nay Ming; Yin, Chun Yang; Rahman, Mohammad Mahbubur; Altarawneh, Mohammednoor; Jiang, Zhong Tao; Alagarsamy, Pandikumar
2017-12-01
A nanocomposite comprising of polypyrrole and reduced graphene oxide was electrodeposited onto a carbon bundle fibre (CBF) through a two-step approach (CBF/PPy-rGO-2). The CBF/PPy-rGO-2 had a highly porous structure compared to a nanocomposite of polypyrrole and reduced graphene oxide that was electrodeposited onto a CBF in a one-step approach (CBF/PPy-rGO), as observed through a field emission scanning electron microscope. An X-ray photoelectron spectroscopic analysis revealed the presence of hydrogen bond between the oxide functional groups of rGO and the amine groups of PPy in PPy-rGO-2 nanocomposite. The fabricated CBF/PPy-rGO-2 nanocomposite material was used as an electrode material in a symmetrical solid-state supercapacitor, and the device yielded a specific capacitance, energy density and power density of 96.16 F g - 1 , 13.35 Wh kg - 1 and of 322.85 W kg - 1 , respectively. Moreover, the CBF/PPy-rGO-2 showed the capacitance retention of 71% after 500 consecutive charge/discharge cycles at a current density of 1 A g - 1 . The existence of a high degree of porosity in CBF/PPy-rGO-2 significantly improved the conductivity and facilitated the ionic penetration. The CBF/PPy-rGO-2-based symmetrical solid-state supercapacitor device demonstrated outstanding pliability because the cyclic voltammetric curves remained the same upon bending at various angles. Carbon bundle fibre modified with porous polypyrrole/reduced graphene oxide nanocomposite for flexible miniature solid-state supercapacitor.
Different amorphous solid-state forms of roxithromycin: A thermodynamic and morphological study.
Milne, Marnus; Liebenberg, Wilna; Aucamp, Marique Elizabeth
2016-02-10
The striking impact that different preparation methods have on the characteristics of amorphous solid-state forms has attracted considerable attention during the last two decades. The pursuit of more extensive knowledge regarding polyamorphism therefore continues. The aim of this study was firstly, to investigate the influence of different preparation techniques to obtain amorphous solid-state forms for the same active pharmaceutical ingredient, namely roxithromycin. The preparation techniques also report on a method utilizing hot air, which although it is based on a melt intermediary step, is considered a novel preparation method. Secondly, to conduct an in-depth investigation into any physico-chemical differences between the resulting amorphous forms and thirdly, to bring our findings into context with that of previous work done, whilst simultaneously discussing a well-defined interpretation for the term polyamorphism and propose a discernment between true polyamorphism and pseudo-polyamorphism/atypical-polyamorphism. The preparation techniques included melt, solution, and a combination of solution-mechanical disruption as intermediary steps. The resulting amorphous forms were investigated using differential scanning calorimetry, X-ray powder diffraction, hot-stage microscopy, scanning electron microscopy, and vapor sorption. Clear and significant thermodynamic differences were determined between the four amorphous forms. It was also deduced from this study that different preparation techniques have a mentionable impact on the morphological properties of the resulting amorphous roxithromycin powders. Thermodynamic properties as well as the physical characteristics of the amorphous forms greatly governed other physico-chemical properties i.e. solubility and dissolution. Copyright © 2015 Elsevier B.V. All rights reserved.
Cyclometalation and coupling of a rigid 4,5-bis(imino)acridanide pincer ligand on yttrium.
Wong, Edwin W Y; Emslie, David J H
2015-07-07
An extremely rigid NNN-donor proligand, 4,5-bis{(diphenylmethylene)amino}-2,7,9,9-tetramethylacridan, H[AIm2] was prepared in five steps starting from 5-methyl-2-aminobenzoic acid and 4-bromotoluene. Reaction of intensely orange H[AIm2] with LiCH2SiMe3 formed deep blue Li(x)[AIm2]x (x = 2 in the solid state), while reaction with [Y(CH2SiMe3)3(THF)2] (0.5 equiv.) afforded deep blue [Y(AIm2)(AIm)] (1; AIm = an AIm2 ligand cyclometalated at the ortho-position of one of the phenyl rings). Compound 1 slowly isomerizes to form green-brown 2, which contains a single trianionic, hexadentate ligand that features one amine, two imine, and three amido donors. The acridanide backbone and one imine group in each of the original AIm2 ligands is intact, but the two acridanide backbones are now linked by an isoindoline heterocycle. Yttrium in 2 is coordinated to six nitrogen donors and the ortho carbon of an isoindoline phenyl substituent. The intense colours of H[AIm2], Li(x)[AIm2]x and 1 were shown by TD-DFT calculations to arise from charge transfer transitions from the HOMO, which is localized on the acridanide ligand backbone, to the LUMO and LUMO+1, which are localized on the imine substituents. The conversion of 1 to 2 was studied by UV-Visible absorption spectroscopy and is first-order with a half-life of 7.8 hours at room temperature.
Hsiao, Ya-Shan; Narhe, Bharat D; Chang, Ying-Sheng; Sun, Chung-Ming
2013-10-14
A one-pot, two-step synthesis of imidazo[1,2-a]benzimidazoles has been achieved by a three-component reaction of 2-aminobenzimidazoles with an aromatic aldehyde and an isocyanide. The reaction involving condensation of 2-aminobenzimidazole with an aldehyde is run under microwave activation to generate an imine intermediate under basic conditions which then undergoes [4 + 1] cycloaddition with an isocyanide.
Porous Organic Nanolayers for Coating of Solid-state Devices
2011-01-01
Background Highly hydrophobic surfaces can have very low surface energy and such low surface energy biological interfaces can be obtained using fluorinated coatings on surfaces. Deposition of biocompatible organic films on solid-state surfaces is attained with techniques like plasma polymerization, biomineralization and chemical vapor deposition. All these require special equipment or harsh chemicals. This paper presents a simple vapor-phase approach to directly coat solid-state surfaces with biocompatible films without any harsh chemical or plasma treatment. Hydrophilic and hydrophobic monomers were used for reaction and deposition of nanolayer films. The monomers were characterized and showed a very consistent coating of 3D micropore structures. Results The coating showed nano-textured surface morphology which can aid cell growth and provide rich molecular functionalization. The surface properties of the obtained film were regulated by varying monomer concentrations, reaction time and the vacuum pressure in a simple reaction chamber. Films were characterized by contact angle analysis for surface energy and with profilometer to measure the thickness. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed the chemical composition of the coated films. Variations in the FTIR results with respect to different concentrations of monomers showed the chemical composition of the resulting films. Conclusion The presented approach of vapor-phase coating of solid-state structures is important and applicable in many areas of bio-nano interface development. The exposure of coatings to the solutions of different pH showed the stability of the coatings in chemical surroundings. The organic nanocoating of films can be used in bio-implants and many medical devices. PMID:21569579
Szostak, Roman; Shi, Shicheng; Meng, Guangrong; Lalancette, Roger; Szostak, Michal
2016-09-02
Amide N-C(O) bonds are generally unreactive in cross-coupling reactions employing low-valent transition metals due to nN → π*C═O resonance. Herein we demonstrate that N-acyl-tert-butyl-carbamates (Boc) and N-acyl-tosylamides (Ts), two classes of acyclic amides that have recently enabled the development of elusive amide bond N-C cross-coupling reactions with organometallic reagents, are intrinsically twisted around the N-C(O) axis. The data have important implications for the design of new amide cross-coupling reactions with the N-C(O) amide bond cleavage as a key step.
NASA Astrophysics Data System (ADS)
Irankhah, Reza; Raissi, Babak; Maghsoudipour, Amir; Irankhah, Abdullah; Ghashghai, Sasan
2016-04-01
In the present study, Ni-Fe spinel powder was synthesized via a solid state reaction. In the next step, the electrophoretic deposition (EPD) method was used to apply the NiFe2O4 spinel, as an oxidation-resistant layer, on a commercially available stainless steel (SUS 430) in a potential range of 100 to 300 V. Microscopic studies of the deposited layers showed that crack-free NiFe2O4 films were obtained at 100 V. The coated and uncoated samples were then pre-sintered in air and 5% H2 bal Ar atmospheres at 900 °C for 3 h followed by cyclic oxidation at 800 °C for 500 h. The investigation of the oxidation resistance of the samples using Energy Dispersive Spectroscopy (EDS) revealed that the NiFe2O4 coating acted as an effective barrier against chromium migration into the coating. The oxidation resistance of 5% H2 bal Ar pre-sintered sample was enhanced with an oxidation rate constant ( K P) of 8.9 × 10-15 g2 cm-4 s-1.
Wang, Meng; Wang, Ting; Song, Shenhua; Ravi, Muchakayala; Liu, Renchen; Ji, Shishan
2017-01-01
Based on precursor powders with a size of 200–300 nm prepared by the low-temperature solid-state reaction method, phase-pure YMnO3 ceramics are fabricated using spark plasma sintering (SPS). X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that the high-purity YMnO3 ceramics can be prepared by SPS at 1000 °C for 5 minutes with annealing at 800 °C for 2 h. The relative density of the sample is as high as 97%, which is much higher than those of the samples sintered by other methods. The present dielectric and magnetic properties are much better than those of the samples fabricated by conventional methods and SPS with ball-milling precursors, and the ferroelectric loops at room temperature can be detected. These findings indicate that the YMnO3 ceramics prepared by the low temperature solid reaction method and SPS possess excellent dielectric lossy ferroelectric properties at room temperature, and magnetic properties at low temperature (10 K), making them suitable for potential multiferroic applications. PMID:28772832
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murgia, Fabrizio; Antitomaso, Philippe; Stievano, Lorenzo
The ternary Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} was successfully synthetized using a simple and cost-effective solid-state microwave-assisted reaction. While solid-state routes require days of high-temperature treatment under inert atmosphere, highly pure and crystalline Cu{sub 2}Mo{sub 6}S{sub 8} could be obtained in only 400 s from this precursor, the Chevrel binary phase Mo{sub 6}S{sub 8} was then obtained by copper removal through acidic leaching, and was evaluated as a positive electrode material for Mg-battery. The electrochemical performance in half-cell configuration shows reversible capacity exceeding 80 mAh/g, which is comparable to previous works carried out with materials synthesized by conventional high-temperaturemore » solid-state routes. - Graphical abstract: Ultrafast micro-wave synthesis of Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} towards Mo{sub 6}S{sub 8} as positive electrode of Mg-battery. - Highlights: • Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} is synthesized by fast microwave-assisted solid-state reaction. • Highly-pure and well-crystalline Cu{sub 2}Mo{sub 6}S{sub 8} is obtained. • Mo{sub 6}S{sub 8} obtained from leaching is tested as a positive electrode for Mg batteries.« less
2009-01-01
Understanding the integrity of well-bore systems that are lined with Portland-based cements is critical to the successful storage of sequestered CO2 in gas and oil reservoirs. As a first step, we investigate reaction rates and mechanistic pathways for cement mineral growth in the absence of CO2 by coupling water chemistry with XRD and NMR spectroscopic data. We find that semi-crystalline calcium (alumino-)silicate hydrate (Al-CSH) forms as a precursor solid to the cement mineral tobermorite. Rate constants for tobermorite growth were found to be k = 0.6 (± 0.1) × 10-5 s-1 for a solution:solid of 10:1 and 1.6 (± 0.8) × 10-4 s-1 for a solution:solid of 5:1 (batch mode; T = 150°C). This data indicates that reaction rates for tobermorite growth are faster when the solution volume is reduced by half, suggesting that rates are dependent on solution saturation and that the Gibbs free energy is the reaction driver. However, calculated solution saturation indexes for Al-CSH and tobermorite differ by less than one log unit, which is within the measured uncertainty. Based on this data, we consider both heterogeneous nucleation as the thermodynamic driver and internal restructuring as possible mechanistic pathways for growth. We also use NMR spectroscopy to characterize the site symmetry and bonding environment of Al and Si in a reacted tobermorite sample. We find two [4]Al coordination structures at δiso = 59.9 ppm and 66.3 ppm with quadrupolar product parameters (PQ) of 0.21 MHz and 0.10 MHz (± 0.08) from 27Al 3Q-MAS NMR and speculate on the Al occupancy of framework sites by probing the protonation environment of Al metal centers using 27Al{1H}CP-MAS NMR. PMID:19144195
Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography
Yu, Young-Sang; Farmand, Maryam; Kim, Chunjoong; ...
2018-03-02
Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here in this paper, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a setmore » of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices.« less
Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Young-Sang; Farmand, Maryam; Kim, Chunjoong
Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here in this paper, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a setmore » of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices.« less
NASA Astrophysics Data System (ADS)
Wang, Gaojun; Chen, Linfeng; Mathur, Gyanesh N.; Varadan, Vijay K.
2011-04-01
Improving soldier portable power systems is very important for saving soldiers' lives and having a strategic advantage in a war. This paper reports our work on synthesizing lithium vanadium oxides (Li1+xV3O8) and developing their applications as the cathode (positive) materials in lithium-ion batteries for soldier portable power systems. Two synthesizing methods, solid-state reaction method and sol-gel method, are used in synthesizing lithium vanadium oxides, and the chemical reaction conditions are determined mainly based on thermogravimetric and differential thermogravimetric (TG-DTG) analysis. The synthesized lithium vanadium oxides are used as the active positive materials in the cathodes of prototype lithium-ion batteries. By using the new solid-state reaction technique proposed in this paper, lithium vanadium oxides can be synthesized at a lower temperature and in a shorter time, and the synthesized lithium vanadium oxide powders exhibit good crystal structures and good electrochemical properties. In the sol-gel method, different lithium source materials are used, and it is found that lithium nitrate (LiNO3) is better than lithium carbonate (Li2CO3) and lithium hydroxide (LiOH). The lithium vanadium oxides synthesized in this work have high specific charge and discharge capacities, which are helpful for reducing the sizes and weights, or increasing the power capacities, of soldier portable power systems.
NASA Astrophysics Data System (ADS)
Hapsari, M.; Windarti, T.; Purbowatiningrum; Ngadiwiyana; Ismiyarto
2018-04-01
A 4-hydroxy-3-methylchalcone has been synthesized from 4-hydroxy-3-methylbenzaldehyde as the Reimer-Tiemann reaction product. This research consists of three steps involve synthesize of 4-hydroxy-3-methylbenzaldehyde from ortho-cresol, synthesize of chalcone derivatives from 4-hydroxy-3-methylbenzaldehyde and 4-hydroxy-3-methoxybenzaldehyde or vanillin for the comparison, the last is antibacterial activity test of both chalcone derivatives against Escherichia coli (negative gram) and Staphylococcus aureus (positive gram) bacteria using disc diffusion method. Results of Reimer-Tiemann reaction is 4-hydroxy-3-methylbenzaldehyde compound in an orange colour solid form which has 43% yields and melting point 110-114°C. A 4-hydroxy-3-methylbenzaldehyde then reacted with acetophenone in a base condition and form 4-hydroxy-3-methylchalcone compound in a yellow colour solid form which has 40% yields and melting point 83-86°C. The antibacterial activity of the 4-hydroxy-3-methylchalcone against gram-positive bacteria Staphylococcus aureus is better than the 4-hydroxy-3-methoxychalcone.
TG study of the Li0.4Fe2.4Zn0.2O4 ferrite synthesis
NASA Astrophysics Data System (ADS)
Lysenko, E. N.; Nikolaev, E. V.; Surzhikov, A. P.
2016-02-01
In this paper, the kinetic analysis of Li-Zn ferrite synthesis was studied using thermogravimetry (TG) method through the simultaneous application of non-linear regression to several measurements run at different heating rates (multivariate non-linear regression). Using TG-curves obtained for the four heating rates and Netzsch Thermokinetics software package, the kinetic models with minimal adjustable parameters were selected to quantitatively describe the reaction of Li-Zn ferrite synthesis. It was shown that the experimental TG-curves clearly suggest a two-step process for the ferrite synthesis and therefore a model-fitting kinetic analysis based on multivariate non-linear regressions was conducted. The complex reaction was described by a two-step reaction scheme consisting of sequential reaction steps. It is established that the best results were obtained using the Yander three-dimensional diffusion model at the first stage and Ginstling-Bronstein model at the second step. The kinetic parameters for lithium-zinc ferrite synthesis reaction were found and discussed.
Fast intersection detection algorithm for PC-based robot off-line programming
NASA Astrophysics Data System (ADS)
Fedrowitz, Christian H.
1994-11-01
This paper presents a method for fast and reliable collision detection in complex production cells. The algorithm is part of the PC-based robot off-line programming system of the University of Siegen (Ropsus). The method is based on a solid model which is managed by a simplified constructive solid geometry model (CSG-model). The collision detection problem is divided in two steps. In the first step the complexity of the problem is reduced in linear time. In the second step the remaining solids are tested for intersection. For this the Simplex algorithm, which is known from linear optimization, is used. It computes a point which is common to two convex polyhedra. The polyhedra intersect, if such a point exists. Regarding the simplified geometrical model of Ropsus the algorithm runs also in linear time. In conjunction with the first step a resultant collision detection algorithm is found which requires linear time in all. Moreover it computes the resultant intersection polyhedron using the dual transformation.
Solution and solid state NMR approaches to draw iron pathways in the ferritin nanocage.
Lalli, Daniela; Turano, Paola
2013-11-19
Ferritins are intracellular proteins that can store thousands of iron(III) ions as a solid mineral. These structures autoassemble from four-helix bundle subunits to form a hollow sphere and are a prototypical example of protein nanocages. The protein acts as a reservoir, encapsulating iron as ferric oxide in its central cavity in a nontoxic and bioavailable form. Scientists have long known the structural details of the protein shell, owing to very high resolution X-ray structures of the apoform. However, the atomic level mechanism governing the multistep biomineralization process remained largely elusive. Through analysis of the chemical behavior of ferritin mutants, chemists have found the role of some residues in key reaction steps. Using Mössbauer and XAS, they have identified some di-iron intermediates of the catalytic reaction trapped by rapid freeze quench. However, structural information about the iron interaction sites remains scarce. The entire process is governed by a number of specific, but weak, interactions between the protein shell and the iron species moving across the cage. While this situation may constitute a major problem for crystallography, NMR spectroscopy represents an optimal tool to detect and characterize transient species involving soluble proteins. Regardless, NMR analysis of the 480 kDa ferritin represents a real challenge. Our interest in ferritin chemistry inspired us to use an original combination of solution and solid state approaches. While the highly symmetric structure of the homo-24-mer frog ferritin greatly simplifies the spectra, the large protein size hinders the efficient coherence transfer in solution, thus preventing the sequence specific assignments. In contrast, extensive (13)C-spin diffusion makes the solution (13)C-(13)C NOESY experiment our gold standard to monitor protein side chains both in the apoprotein alone and in its interaction with paramagnetic iron species, inducing line broadening on the resonances of nearby residues. We could retrieve the structural information embedded in the (13)C-(13)C NOESY due to a partial sequence specific assignment of protein backbone and side chains we obtained from solid state MAS NMR of ferritin microcrystals. We used the 59 assigned amino acids (∼33% of the total) as probes to locate paramagnetic ferric species in the protein cage. Through this approach, we could identify ferric dimers at the ferroxidase site and on their pathway towards the nanocage. Comparison with existing data on bacterioferritins and bacterial ferritins, as well as with eukaryotic ferritins loaded with various nonfunctional divalent ions, allowed us to reinterpret the available information. The resulting picture of the ferroxidase site is slightly different with various ferritins but is designed to provide multiple and generally weak iron ligands. The latter assist binding of two incoming iron(II) ions in two proximal positions to facilitate coupling with oxygen. Subsequent oxidation is accompanied by a decrease in the metal-metal distance (consistent with XAS/Mössbauer) and in the number of protein residues involved in metal coordination, facilitating the release of products as di-iron clusters under the effect of new incoming iron(II) ions.
NASA Astrophysics Data System (ADS)
Hadef, Fatma
2016-12-01
The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe-Al-X systems, in order to improve mainly Fe-Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems.
Effect of wall-mediated hydrodynamic fluctuations on the kinetics of a Brownian nanoparticle
NASA Astrophysics Data System (ADS)
Yu, Hsiu-Yu; Eckmann, David M.; Ayyaswamy, Portonovo S.; Radhakrishnan, Ravi
2016-12-01
The reactive flux formalism (Chandler 1978 J. Chem. Phys. 68, 2959-2970. (doi:10.1063/1.436049)) and the subsequent development of methods such as transition path sampling have laid the foundation for explicitly quantifying the rate process in terms of microscopic simulations. However, explicit methods to account for how the hydrodynamic correlations impact the transient reaction rate are missing in the colloidal literature. We show that the composite generalized Langevin equation (Yu et al. 2015 Phys. Rev. E 91, 052303. (doi:10.1103/PhysRevE.91.052303)) makes a significant step towards solving the coupled processes of molecular reactions and hydrodynamic relaxation by examining how the wall-mediated hydrodynamic memory impacts the two-stage temporal relaxation of the reaction rate for a nanoparticle transition between two bound states in the bulk, near-wall and lubrication regimes.
NASA Astrophysics Data System (ADS)
Boyes, Edward D.; Gai, Pratibha L.
2014-02-01
Advances in atomic resolution Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM) for probing gas-solid catalyst reactions in situ at the atomic level under controlled reaction conditions of gas environment and temperature are described. The recent development of the ESTEM extends the capability of the ETEM by providing the direct visualisation of single atoms and the atomic structure of selected solid state heterogeneous catalysts in their working states in real-time. Atomic resolution E(S)TEM provides a deeper understanding of the dynamic atomic processes at the surface of solids and their mechanisms of operation. The benefits of atomic resolution-E(S)TEM to science and technology include new knowledge leading to improved technological processes with substantial economic benefits, improved healthcare, reductions in energy needs and the management of environmental waste generation. xml:lang="fr"
Modeling shock-driven reaction in low density PMDI foam
NASA Astrophysics Data System (ADS)
Brundage, Aaron; Alexander, C. Scott; Reinhart, William; Peterson, David
Shock experiments on low density polyurethane foams reveal evidence of reaction at low impact pressures. However, these reaction thresholds are not evident over the low pressures reported for historical Hugoniot data of highly distended polyurethane at densities below 0.1 g/cc. To fill this gap, impact data given in a companion paper for polymethylene diisocyanate (PMDI) foam with a density of 0.087 g/cc were acquired for model validation. An equation of state (EOS) was developed to predict the shock response of these highly distended materials over the full range of impact conditions representing compaction of the inert material, low-pressure decomposition, and compression of the reaction products. A tabular SESAME EOS of the reaction products was generated using the JCZS database in the TIGER equilibrium code. In particular, the Arrhenius Burn EOS, a two-state model which transitions from an unreacted to a reacted state using single step Arrhenius kinetics, as implemented in the shock physics code CTH, was modified to include a statistical distribution of states. Hence, a single EOS is presented that predicts the onset to reaction due to shock loading in PMDI-based polyurethane foams. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.
Room temperature luminescence and ferromagnetism of AlN:Fe
NASA Astrophysics Data System (ADS)
Li, H.; Cai, G. M.; Wang, W. J.
2016-06-01
AlN:Fe polycrystalline powders were synthesized by a modified solid state reaction (MSSR) method. Powder X-ray diffraction and transmission electron microscopy results reveal the single phase nature of the doped samples. In the doped AlN samples, Fe is in Fe2+ state. Room temperature ferromagnetic behavior is observed in AlN:Fe samples. Two photoluminescence peaks located at about 592 nm (2.09 eV) and 598 nm (2.07 eV) are observed in AlN:Fe samples. Our results suggest that AlN:Fe is a potential material for applications in spintronics and high power laser devices.
Alvaro, Elsa
2010-01-01
Detailed mechanistic studies on the coupling of aryl halides with thiols catalyzed by palladium complexes of the alkylbisphosphine ligand CyPF-tBu (1-dicyclohexylphosphino-2-di-tert-butylphosphinoethylferrocene) are reported. The elementary steps that constitute the catalytic cycle, i.e. oxidative addition, transmetalation and reductive elimination, have been studied, and their relative rates are reported. Each of the steps of the catalytic process occurs at temperatures that are much lower than those required for the reactions catalyzed by a combination of palladium precursors and CyPF-tBu. To explain these differences in rates between the catalytic and stoichiometric reactions, studies were conducted to identify the resting state of the catalyst of the reactions catalyzed by a combination of Pd(OAc)2 and CyPF-tBu, a combination of Pd(dba)2 and CyPF-tBu, or the likely intermediate Pd(CyPF-tBu)(Ar)(Br). These show that the major palladium complex in each case lies off of the catalytic cycle. The resting state of the reactions catalyzed by Pd(OAc)2 and CyPF-tBu was the palladium bis-thiolate complex [Pd(CyPF-tBu)(SR)2] (R = alkyl or aryl). The resting state in reactions catalyzed by Pd2(dba)3 and CyPF-tBu was the binuclear complex [Pd(CyPF-tBu)]2(μ2, η2-dba) (9). The resting state of reactions of both aromatic and aliphatic thiols catalyzed by [Pd(CyPF-tBu)(p-tolyl)(Br)] (3a) was the hydridopalladium thiolate complex [Pd(CyPF-tBu)(H)(SR)] (R= alkyl and aryl). All these palladium species have been prepared independently, and the mechanisms by which they enter the catalytic cycle have been examined in detail. These features of the reaction catalyzed by palladium and CyPF-tBu have been compared with those of reactions catalyzed by the alkylbisphosphine DiPPF and Pd(OAc)2 or Pd(dba)2. Our data indicate that the resting states of these reactions are similar to each other and that our mechanistic conclusions about reactions catalyzed by palladium and CyPF-tBu can be extrapolated to reactions catalyzed by complexes of other electron-rich bisphosphines. PMID:19453106
Jin, Lei; Zhang, Yashan; Dombrowski, James; ...
2011-01-21
The search for solid state materials with high catalytic activities and with no leaching into the reaction medium is one of the key steps toward reducing the cost of producing biodiesel. We report a high biodiesel yield (>95%) in less than 5 min under mild reaction conditions (<100°C) on a ZnO/La₂O₂CO₃ heterogeneous catalyst, showing no catalyst leaching into the reaction medium. The ZnO/La₂O₂CO₃ catalyst is prepared by a co-precipitation method and characterized by X-ray diffraction (XRD), thermogravimetric analyses (TGA), transmission electron microscopy (SEM), and transmission electron microscopy (TEM). The fatty acid methyl ester (FAME) yields as function of different amountsmore » of catalyst was also investigated. Less than 1.0 wt.% catalyst can be used in the reaction to get higher than a 95% FAME yield under mild reaction conditions. The catalytic performance is maintained after storing the catalyst in Ar for a month and no catalyst leaching into the products was found based on XRF analysis. The catalyst has a higher reaction rate than the homogeneous KOH catalyst with the assistance of microwave irradiation. All of these results promote the industrial application of the synthesized ZnO/La₂O₂CO₃ as an ideal catalyst for fast biodiesel production, avoiding many of the issues found in both commercial and independently published catalysts.« less
Aligning Metabolic Pathways Exploiting Binary Relation of Reactions.
Huang, Yiran; Zhong, Cheng; Lin, Hai Xiang; Huang, Jing
2016-01-01
Metabolic pathway alignment has been widely used to find one-to-one and/or one-to-many reaction mappings to identify the alternative pathways that have similar functions through different sets of reactions, which has important applications in reconstructing phylogeny and understanding metabolic functions. The existing alignment methods exhaustively search reaction sets, which may become infeasible for large pathways. To address this problem, we present an effective alignment method for accurately extracting reaction mappings between two metabolic pathways. We show that connected relation between reactions can be formalized as binary relation of reactions in metabolic pathways, and the multiplications of zero-one matrices for binary relations of reactions can be accomplished in finite steps. By utilizing the multiplications of zero-one matrices for binary relation of reactions, we efficiently obtain reaction sets in a small number of steps without exhaustive search, and accurately uncover biologically relevant reaction mappings. Furthermore, we introduce a measure of topological similarity of nodes (reactions) by comparing the structural similarity of the k-neighborhood subgraphs of the nodes in aligning metabolic pathways. We employ this similarity metric to improve the accuracy of the alignments. The experimental results on the KEGG database show that when compared with other state-of-the-art methods, in most cases, our method obtains better performance in the node correctness and edge correctness, and the number of the edges of the largest common connected subgraph for one-to-one reaction mappings, and the number of correct one-to-many reaction mappings. Our method is scalable in finding more reaction mappings with better biological relevance in large metabolic pathways.
Interaction of tetraethoxysilane with OH-terminated SiO2 (0 0 1) surface: A first principles study
NASA Astrophysics Data System (ADS)
Deng, Xiaodi; Song, Yixu; Li, Jinchun; Pu, Yikang
2014-06-01
First principles calculates have been performed to investigate the surface reaction mechanism of tetraethoxysilane (TEOS) with fully hydroxylated SiO2(0 0 1) substrate. In semiconductor industry, this is the key step to understand and control the SiO2 film growth in chemical vapor deposition (CVD) and atomic layer deposition (ALD) processes. During the calculation, we proposed a model which breaks the surface dissociative chemisorption into two steps and we calculated the activation barriers and thermochemical energies for each step. Our calculation result for step one shows that the first half reaction is thermodynamically favorable. For the second half reaction, we systematically studied the two potential reaction pathways. The comparing result indicates that the pathway which is more energetically favorable will lead to formation of crystalline SiO2 films while the other will lead to formation of disordered SiO2 films.
Chu, Qianli; Duncan, Andrew J E; Papaefstathiou, Giannis S; Hamilton, Tamara D; Atkinson, Manza B J; Mariappan, S V Santhana; MacGillivray, Leonard R
2018-04-11
Enlargement of a self-assembled metal-organic rhomboid is achieved via the organic solid state. The solid-state synthesis of an elongated organic ligand was achieved by a template directed [2 + 2] photodimerization in a cocrystal. Initial cocrystals obtained of resorcinol template and reactant alkene afforded a 1:2 cocrystal with the alkene in a stacked yet photostable geometry. Cocrystallization performed in the presence of excess template resulted in a 3:2 cocrystal composed of novel discrete 10-component hydrogen-bonded "superassemblies" wherein the alkenes undergo a head-to-head [2 + 2] photodimerization. Isolation and reaction of elongated photoproduct with Cu(II) ions afforded a metal-organic rhomboid of nanoscale dimensions that hosts small molecules in the solid state as guests.
NASA Astrophysics Data System (ADS)
Yonemura, M.; Okada, J.; Watanabe, Y.; Ishikawa, T.; Nanao, S.; Shobu, T.; Toyokawa, H.
2013-03-01
Liquid state provides functions such as matter transport or a reaction field and plays an important role in manufacturing processes such as refining, forging or welding. However, experimental procedures are significantly difficult for an observation of solidification process of iron and iron-based alloys in order to identify rapid transformations subjected to fast temperature evolution. Therefore, in order to study the solidification in iron and iron-based alloys, we considered a combination of high energy X-ray diffraction measurements and an electrostatic levitation method (ESL). In order to analyze the liquid/solid fraction, the solidification of melted spherical specimens was measured at a time resolution of 0.1 seconds during rapid cooling using the two-dimensional time-resolved X-ray diffraction. Furthermore, the observation of particle sizes and phase identification was performed on a trial basis using X-ray small angle scattering with X-ray diffraction.
El Malah, Tamer; Ciesielski, Artur; Piot, Luc; Troyanov, Sergey I; Mueller, Uwe; Weidner, Steffen; Samorì, Paolo; Hecht, Stefan
2012-01-21
Efficient Cu-catalyzed 1,3-dipolar cycloaddition reactions have been used to prepare two series of three regioisomers of G-1 and G-2 poly(triazole-pyridine) dendrons. The G-1 and G-2 dendrons consist of branched yet conformationally pre-organized 2,6-bis(phenyl/pyridyl-1,2,3-triazol-4-yl)pyridine (BPTP) monomeric and trimeric cores, respectively, carrying one focal and either two or four peripheral alkyl side chains. In the solid state, the conformation and supramolecular organization were studied by means of a single crystal X-ray structure analysis of one derivative. At the liquid-solid interface, the self-assembly behavior was investigated by scanning tunneling microscopy (STM) on graphite surfaces. Based on the observed supramolecular organization, it appears that the subtle balance between conformational preferences inherent in the dendritic backbone on the one side and the adsorption and packing of the alkyl side chains on the graphite substrate on the other side dictate the overall structure formation in 2D.
Intermediate Band Material of Titanium-Doped Tin Disulfide for Wide Spectrum Solar Absorption.
Hu, Keyan; Wang, Dong; Zhao, Wei; Gu, Yuhao; Bu, Kejun; Pan, Jie; Qin, Peng; Zhang, Xian; Huang, Fuqiang
2018-04-02
Intermediate band (IB) materials are of great significance due to their superior solar absorption properties. Here, two IBs peaking at 0.88 and 1.33 eV are reported to be present in the forbidden gap of semiconducting SnS 2 ( E g = 2.21 eV) by doping titanium up to 6 atom % into the Sn site via a solid-state reaction at 923 K. The solid solution of Sn 1- x Ti x S 2 is able to be formed, which is attributed to the isostructural structure of SnS 2 and TiS 2 . These two IBs were detected in the UV-vis-NIR absorption spectra with the appearance of two additional absorption responses at the respective regions, which in good agreement with the conclusion of first-principles calculations. The valence band maximum (VBM) consists mostly of the S 3p state, and the conduction band minimum (CBM) is the hybrid state composing of Ti 3d (e g ), S 3p, and Sn 5s, and the IBs are mainly the nondegenerate t 2g states of Ti 3d orbitals. The electronic states of Ti 3d reveal a good ability to transfer electrons between metal and S atoms. These wide-spectrum absorption IBs bring about more solar energy utilization to enhance solar thermal collection and photocatalytic degradation of methyl orange.
Yang, Xinzheng
2013-09-07
Density functional theory calculations reveal a complete reaction mechanism with detailed energy profiles and transition state structures for the dehydrogenation of formic acid catalyzed by an iron complex, [P(CH2CH2PPh2)3FeH](+). In the cationic reaction pathway, a β-hydride elimination process is confirmed to be the rate-determining step in this catalytic reaction. A potential reaction pathway starting with a direct hydride transfer from HCOO(-) to Fe is found to be possible, but slightly less favorable than the catalytic cycle with a β-hydride elimination step.
A thermodynamic framework for thermo-chemo-elastic interactions in chemically active materials
NASA Astrophysics Data System (ADS)
Zhang, XiaoLong; Zhong, Zheng
2017-08-01
In this paper, a general thermodynamic framework is developed to describe the thermo-chemo-mechanical interactions in elastic solids undergoing mechanical deformation, imbibition of diffusive chemical species, chemical reactions and heat exchanges. Fully coupled constitutive relations and evolving laws for irreversible fluxes are provided based on entropy imbalance and stoichiometry that governs reactions. The framework manifests itself with a special feature that the change of Helmholtz free energy is attributed to separate contributions of the diffusion-swelling process and chemical reaction-dilation process. Both the extent of reaction and the concentrations of diffusive species are taken as independent state variables, which describe the reaction-activated responses with underlying variation of microstructures and properties of a material in an explicit way. A specialized isothermal formulation for isotropic materials is proposed that can properly account for volumetric constraints from material incompressibility under chemo-mechanical loadings, in which inhomogeneous deformation is associated with reaction and diffusion under various kinetic time scales. This framework can be easily applied to model the transient volumetric swelling of a solid caused by imbibition of external chemical species and simultaneous chemical dilation arising from reactions between the diffusing species and the solid.
Solid-state NMR studies of proteins immobilized on inorganic surfaces
Shaw, Wendy J.
2014-10-29
Solid state NMR is the primary tool for studying the quantitative, site-specific structure, orientation, and dynamics of biomineralization proteins under biologically relevant conditions. Two calcium phosphate proteins, statherin and leucine rich amelogenin protein (LRAP), have been studied in depth and have different features, challenging our ability to extract design principles. More recent studies of the significantly larger full-length amelogenin represent a challenging but necessary step to ultimately investigate the full diversity of biomineralization proteins. Interactions of amino acids and silaffin peptide with silica are also being studied, along with qualitative studies of proteins interacting with calcium carbonate. Dipolar recoupling techniquesmore » have formed the core of the quantitative studies, yet, the need for isolated spin pairs makes this approach costly and time intensive. The use of multi-dimensional techniques is advancing, methodology which, despite its challenges with these difficult-to-study proteins, will continue to drive future advancements in this area.« less
A global reaction route mapping-based kinetic Monte Carlo algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Izaac; Page, Alister J., E-mail: sirle@chem.nagoya-u.ac.jp, E-mail: alister.page@newcastle.edu.au; Irle, Stephan, E-mail: sirle@chem.nagoya-u.ac.jp, E-mail: alister.page@newcastle.edu.au
2016-07-14
We propose a new on-the-fly kinetic Monte Carlo (KMC) method that is based on exhaustive potential energy surface searching carried out with the global reaction route mapping (GRRM) algorithm. Starting from any given equilibrium state, this GRRM-KMC algorithm performs a one-step GRRM search to identify all surrounding transition states. Intrinsic reaction coordinate pathways are then calculated to identify potential subsequent equilibrium states. Harmonic transition state theory is used to calculate rate constants for all potential pathways, before a standard KMC accept/reject selection is performed. The selected pathway is then used to propagate the system forward in time, which is calculatedmore » on the basis of 1st order kinetics. The GRRM-KMC algorithm is validated here in two challenging contexts: intramolecular proton transfer in malonaldehyde and surface carbon diffusion on an iron nanoparticle. We demonstrate that in both cases the GRRM-KMC method is capable of reproducing the 1st order kinetics observed during independent quantum chemical molecular dynamics simulations using the density-functional tight-binding potential.« less
NASA Astrophysics Data System (ADS)
Dadami, Sunanda T.; Matteppanvar, Shidaling; Shivaraja, I.; Rayaprol, Sudhindra; Deshapande, S. K.; Angadi, Basavaraj
2018-05-01
In this paper the structural and low temperature dielectric properties of Pb0.8Bi0.2Fe0.6Nb0.4O3 (PBFNO) multiferroic solid solution were reported. PBFNO multiferroic was synthesized by single step solid state reaction method. Calcination was carried out at 700 °/2hr with different sintering temperature (800 °C, 850 °C, 900 °C, 950 °C, 1000 °C and 1050 °C for 1 hr) and time duration (800 °C for 1 to 5 hr). Single phase was confirmed through room temperature (RT) X-ray Diffraction (XRD). It was found that sintering carried out at 800°C/3 hr gives single phase. Rietveld refined lattice parameters using monoclinic structure are: a = 5.6663(1) Å, b = 5.6694(1) Å, c = 4.0112(1) Å and β = 90.038(1)° with the average grain size as 2.987 µm. The dielectric properties studied over a wide range of frequency (100 Hz - 5 MHz) and temperature (133 K - 293 K). Dielectric constant and loss tangent exhibits frequency dispersion nature at low frequency region. AC conductivity increases with increase in temperature corresponds to negative temperature coefficient of resistance (NTCR) behaviour.
NASA Astrophysics Data System (ADS)
Singh, Arvind; Sinha, A. S. K.
2018-02-01
rGO supported CdS photocatalysts has been prepared by a two steps method, i.e. impregnation of GO/rGO with CdSO4 followed by a high temperature reaction with H2S gas. Activity of this catalyst was superior to a catalyst of same composition prepared by commonly reported hydrothermal technique. Detailed microstructure studies were carried out using FTIR, PL, DRS, XRD, TEM, SAED, TPO and XPS. A much greater chemical interaction at the interface of CdS and rGO and also a higher absorption of visible light were observed in the reported catalyst. It has been concluded that the high temperature reaction with H2S has imparted n-type semiconductivity to CdS which with p-type rGO and synergy of chemical interaction at the interface has resulted into formation of a p-n hetrojunction. The formation of hetrojunction and high electron mobility of rGO has given a superior activity due to an efficient charge separation to the catalyst prepared by the technique reported in this paper.
Quantum mechanical hydrogen tunneling in bacterial copper amine oxidase reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakawa, Takeshi; Okajima, Toshihide; Kuroda, Shun'ichi
A key step decisively affecting the catalytic efficiency of copper amine oxidase is stereospecific abstraction of substrate {alpha}-proton by a conserved Asp residue. We analyzed this step by pre-steady-state kinetics using a bacterial enzyme and stereospecifically deuterium-labeled substrates, 2-phenylethylamine and tyramine. A small and temperature-dependent kinetic isotope effect (KIE) was observed with 2-phenylethylamine, whereas a large and temperature-independent KIE was observed with tyramine in the {alpha}-proton abstraction step, showing that this step is driven by quantum mechanical hydrogen tunneling rather than the classical transition-state mechanism. Furthermore, an Arrhenius-type preexponential factor ratio approaching a transition-state value was obtained in the reactionmore » of a mutant enzyme lacking the critical Asp. These results provide strong evidence for enzyme-enhanced hydrogen tunneling. X-ray crystallographic structures of the reaction intermediates revealed a small difference in the binding mode of distal parts of substrates, which would modulate hydrogen tunneling proceeding through either active or passive dynamics.« less
Two-Step Reactive Aid Sintering of BaZr0.8Y0.2O3- δ Proton-Conducting Ceramics
NASA Astrophysics Data System (ADS)
Wang, Siwei; Chen, Yan; Zhang, Lingling; Ren, Cong; Chen, Fanglin; Brinkman, Kyle S.
2015-12-01
Ceramic-based proton conductors enable high-temperature hydrogen economy applications such as hydrogen separation membranes, fuel cells, and steam electrolyzers. BaZr0.8Y0.2O3- δ (BZY) proton-conducting oxide possesses the highest level of proton conductivity reported to date, but poor sinterability hinders its widespread utilization. In this paper, we report a two-step reactive aid sintering (TRAS) method involving the introduction of BaCO3 and B2O3-Li2O for the preparation of dense BZY ceramics sintered at 1500°C. The resulting BZY samples showed a pure perovskite structure with a dramatic increase in the relative density to 91.5%. In addition, the shrinkage during sintering was improved to 19.3% by a TRAS method as compared to 2.6% by the conventional solid date reaction method. The bulk conductivity was improved due to enhanced densification, while the grain boundary conductivity decreased due to the blocking behavior of the sintering aid resulting in a decrease in the total conductivity of the samples.
Two-Step Reactive Aid Sintering of BaZr 0.8Y 0.2O 3-δ Proton-Conducting Ceramics
Wang, Siwei; Chen, Yan; Zhang, Lingling; ...
2015-10-14
Ceramic-based proton conductors enable high-temperature hydrogen economy applications such as hydrogen separation membranes, fuel cells, and steam electrolyzers. BaZr 0.8Y 0.2O 3-δ (BZY) proton-conducting oxide possesses the highest level of proton conductivity reported to date, but poor sinterability hinders its widespread utilization. Here, we report a two-step reactive aid sintering (TRAS) method involving the introduction of BaCO 3 and B 2O 3-Li 2O for the preparation of dense BZY ceramics sintered at 1500°C. The resulting BZY samples showed a pure perovskite structure with a dramatic increase in the relative density to 91.5%. In addition, the shrinkage during sintering was improvedmore » to 19.3% by a TRAS method as compared to 2.6% by the conventional solid date reaction method. Moreover, the bulk conductivity was improved due to enhanced densification, while the grain boundary conductivity decreased due to the blocking behavior of the sintering aid resulting in a decrease in the total conductivity of the samples.« less
Production of oxygen from lunar ilmenite
NASA Technical Reports Server (NTRS)
Zhao, Y.; Shadman, F.
1990-01-01
The following subjects are addressed: (1) the mechanism and kinetics of carbothermal reduction of simulated lunar ilmenite using carbon and, particularly, CO as reducing agents; (2) the determination of the rate-limiting steps; (3) the investigation of the effect of impurities, particularly magnesium; (4) the search for catalysts suitable for enhancement of the rate-limiting step; (5) the comparison of the kinetics of carbothermal reduction with those of hydrogen reduction; (6) the study of the combined use of CO and hydrogen as products of gasification of carbonaceous solids; (7) the development of reduction methods based on the use of waste carbonaceous compounds for the process; (8) the development of a carbothermal reaction path that utilizes gasification of carbonaceous solids to reducing gaseous species (hydrocarbons and carbon monoxide) to facilitate the reduction reaction kinetics and make the process more flexible in using various forms of carbonaceous feeds; (9) the development of advanced gas separation techniques, including the use of high-temperature ceramic membranes; (10) the development of an optimum process flow sheet for carbothermal reduction, and comparison of this process with the hydrogen reduction scheme, as well as a general comparison with other leading oxygen production schemes; and (11) the use of new and advanced material processing and separation techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter, Anthuvan John, E-mail: quantajohn@gmail.com; Banu, I. B. Shameem
2015-06-24
Optically efficient europium activated alkaline earth metal tungstate nano phosphor (SrWO{sub 4}) with different doping concentrations have been synthesized by mechanochemically assisted solid state metathesis reaction at room temperature for the first time. The XRD and Raman spectra results indicated that the prepared powders exhibit a scheelite-type tetragonal structure. FTIR spectra exhibited a high absorption band situated at around 854 cm{sup −1}, which was ascribed to the W–O antisymmetric stretching vibrations into the [WO{sub 4}]{sup 2−} tetrahedron groups. Analysis of the emission spectra with different Eu{sup 3+} concentrations revealed that the optimum dopant concentration for SrWO{sub 4}: x Eu{sup 3+} phosphormore » is about 8 mol% of Eu{sup 3+}.The red emission intensity of the SSM prepared SrWO{sub 4}: 0.08Eu{sup 3+} phosphors are 2 times greater than that of the commercial Y{sub 2}O{sub 2}S: Eu{sup 3+} red phosphor prepared by the conventional solid state reaction method. All the results indicate that the phosphor is a promising red phosphor pumped by NUV InGaN chip for fabricating WLED.« less
Jones, Matthew D; Beezer, Anthony E; Buckton, Graham
2008-10-01
Knowledge of the kinetics of solid state reactions is important when considering the stability of many medicines. Potentially, such reactions could follow different kinetics on the surface of particles when compared with their interior, yet solid state processes are routinely followed using only bulk characterisation techniques. Atomic force microscopy (AFM) has previously been shown to be a suitable technique for the investigation of surface processes, but has not been combined with bulk techniques in order to analyse surface and bulk kinetics separately. This report therefore describes the investigation of the outer layer and bulk kinetics of the dehydration of trehalose dihydrate at ambient temperature and low humidity, using AFM, dynamic vapour sorption (DVS) and near infrared spectroscopy (NIR). The use of AFM enabled the dehydration kinetics of the outer layers to be determined both directly and from bulk data. There were no significant differences between the outer layer dehydration kinetics determined using these methods. AFM also enabled the bulk-only kinetics to be analysed from the DVS and NIR data. These results suggest that the combination of AFM and bulk characterisation techniques should enable a more complete understanding of the kinetics of certain solid state reactions to be achieved. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association
Peverati, Roberto; Truhlar, Donald G
2014-03-13
Kohn-Sham density functional theory is in principle an exact formulation of quantum mechanical electronic structure theory, but in practice we have to rely on approximate exchange-correlation (xc) functionals. The objective of our work has been to design an xc functional with broad accuracy across as wide an expanse of chemistry and physics as possible, leading--as a long-range goal--to a functional with good accuracy for all problems, i.e. a universal functional. To guide our path towards that goal and to measure our progress, we have developed-building on earlier work of our group-a set of databases of reference data for a variety of energetic and structural properties in chemistry and physics. These databases include energies of molecular processes, such as atomization, complexation, proton addition and ionization; they also include molecular geometries and solid-state lattice constants, chemical reaction barrier heights, and cohesive energies and band gaps of solids. For this paper, we gather many of these databases into four comprehensive databases, two with 384 energetic data for chemistry and solid-state physics and another two with 68 structural data for chemistry and solid-state physics, and we test two wave function methods and 77 density functionals (12 Minnesota meta functionals and 65 others) in a consistent way across this same broad set of data. We especially highlight the Minnesota density functionals, but the results have broader implications in that one may see the successes and failures of many kinds of density functionals when they are all applied to the same data. Therefore, the results provide a status report on the quest for a universal functional.
Two steps hydrothermal growth and characterisations of BaTiO3 films composed of nanowires
NASA Astrophysics Data System (ADS)
Zawawi, Che Zaheerah Najeehah Che Mohd; Salleh, Shahril; Oon Jew, Lee; Tufail Chaudhary, Kashif; Helmi, Mohamad; Safwan Aziz, Muhammad; Haider, Zuhaib; Ali, Jalil
2018-05-01
Barium titanate (BaTiO3) films composed of nanowires have gained considerable research interest due to their lead-free composition and strong energy conversion efficiency. BaTiO3 films can be developed with a simple two steps hydrothermal reactions, which are low cost effective. In this research, BaTiO3 films were fabricated on titanium foil through two steps hydrothermal method namely, the growth of TiO2 and followed by BaTiO3 films. The structural evolutions and the dielectric properties of the films were investigated as well. The structural evolutions of titanium dioxide (TiO2) and BaTiO3 nanowires were characterized using X-ray diffraction and scanning electron microscopy. First step of hydrothermal reaction, TiO2 nanowires were prepared in varied temperatures of 160 °C, 200 °C and 250 °C respectively. Second step of hydrothermal reaction was performed to produce a layer of BaTiO3 films.